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Introduction

Ordinary differential equations play a major and prominent role in all fields of science due

to their wide of applications in physics, engineering, and biology as an approximate model or

as a result of physical laws for a phenomenon. The nonlinear behavior of the real world makes

the nonlinear ordinary differential equations the key that determines the relationship between

all the variables that describe that phenomenon. Closed-form solution of nonlinear ordinary

differential problems are rarely obtainable or impossible, in this case, mathematician deals with

qualitative methods to show stability, periodicity and different properties of solutions without

solving these nonlinear ordinary differential equations, another different point of view is to

deal with numerical techniques to get an approximate solution, and finally searching for an

analytical approximate solution is another way to deal with the subject, which is the main goal

of this thesis taking into account the classical well known Van der Pol second order non–linear

ordinary differential equation (VDPDE) which appears in the study of nonlinear damping.

The Van der Pol oscillator was first introduced by the Dutch engineer and physicist Balthasar

van der Pol. It has been used in the analysis of a vacuum-tube circuit among other practical

problems in engineering as a basic model for oscillatory processes in physics, electronics, bi-

ology, neurology, sociology, and economics. In this work, we will study the behavior of the

Van der Pol equation mathematically, and see some analytical approximate methods to solve

the Van der Pol equation. Van der Pol oscillator is a non-conservative oscillator with nonlinear

damping governed by the following second-order ordinary differential equation

d2x
dt2 − ε(1− x2)

dx
dt

+ x = 0,

this equation is equivalent to the first order nonlinear system

ẋ = y, ẏ = ε(1− x2)y− x.

The first chapter is devoted to basic concepts, definitions and some prerequisites in the
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subject of ordinary differential equations and their solutions, and we give also some necessary

tools which are needed for the next chapters of our thesis to solve the Van der Pol equation.

In the second chapter,contains three sections the first one we apply the G′/G expansion

method to determine some general solutions to the Van der Pol equation x′′+ ε(x2− λ) x′+

α x = 0 where α, λ and ε are real parameters. Using the change of variable x =
√

w, we convert

the Van der Pol equation into a second order nonlinear differential equation with respect to w.

Finally, we apply the G′/G method to the new equation to find two families of solutions.

In the second section we use the first order approximation perturbation method to find the

approximate solution by substituting x(t) = x0 + αx1 in the van der Pol equation x”− α(1−
x2)x′+ x = 0, then we collocate the terms with same power of α and we equating the terms

which multiplying by higher power α to zero we get two coupled second order differential

equations with respect to x0(t) and x1(t) to get the solution of the van der Pol equation on the

form x(t) = x0 + αx1.

The averaging method is used in the last section to prove that the van der Pol equation has

a period solution and studying its stability, furthermore the periodic orbits in this case is an

isolated one which means that the Van der Pol oscillator has a limit cycle.

In the final chapter the homotopy perturbation method is considered and used to give an

approximate analytical solution for the Van der Pol differential equation with different bound-

ary conditions.
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Chapter 1
Basic concepts and prerequisites

1.1 Differential Equations

Definition 1.1 A differential equation is an equation that contains one or more functions with its

derivatives.

Order of Differential Equation

The order of the differential equation is the order of the highest order derivative present

in the equation, as an example dy
dx = 5x + 4 is a first order differential equation, while the

differential equation d2y
d2x − 3dy

dx + y = 0 is a second order one.

Linear Differential Equations

Definition 1.2 A linear differential equation is any differential equation that can be written in the

following form.

an(t)y(n)(t) + an−1(t)y(n−1)(t) + ...a1(t)y′+ a0(t)y(t) = g(t).

The coefficients an, an−1...a0 and g(t) can be zero or non-zero functions, constant or non-constant

functions, linear or non-linear functions. Only the function y(t), and its derivatives are used in deter-

mining if a differential equation is linear.
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CHAPTER 1. BASIC CONCEPTS AND PREREQUISITES

1.2 Differential system

Definition 1.3 A differential system is a set of coupled differential equations, that can not be solved

separately , these are usually ordinary differential equations:X ′ = P(x,y),

Y ′ = Q(x,y).

where P and Q polynomials in x and y with real coefficients of degree d, the dependent variable x and

y, the independent variable t.

Linear and non linear Differential system

A linear Differential system consists of linear Differential Equations. And a non linear dif-

ferential system consists of non linear differential equations.

1.3 Solution of Differential system

Definition 1.4 A solution of differential system, are the applications;

φi : I→Ω where Ω is an open set of IR2 such that:
dφ1(t)

dt
= P(φ1(t),φ2(t)),

dφ2(t)
dt

= Q(φ1(t),φ2(t)).
(1.1)

1.3.1 Periodic solutions

Definition 1.5 A periodic solution of the system (1.1) is a solution such that: for ol t > 0

(φ1(T + t),φ2(T + t)) = (φ1(t),φ2(t)).

For T > 0 , to any periodic solution corresponds a closed orbit in the space of phases.

1.3.2 Limit cycle

Definition 1.6 A limite cycle is an isolated closed orbite of (1.1), and we can not find another closed

orbit in it’s neighborhood.
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Stable and unstable limit cycle

A periodic orbit Γ is called stable if for each ε > 0 there is a neighborhood U of Γ such that

for all x ∈U and t > 0 we have

d(φ(t, x),Γ)< ε.

A periodic orbit Γ is called unstable if it is not stable.

1.4 Homotopy perturbation method

A homotopy between two continuous functions f and g from a topological space X to a

topological space Y is defined to be a continuous function H : X× [0,1]→ Y from the product

of the space X with the unit interval [0,1] such that H(x,0) = f (x) and H(x,1) = g(x) for all

x ∈ X.

1.4.1 Homotopy perturbation method

Consider the following non-linear differential equation [3, 6].

M(y)− q(x) = 0, x ∈ϕ. (1.2)

With boundary conditions,

N
(

y,
dy
dx

)
= 0, x ∈Φ. (1.3)

Where M is a general differential operator, N is a boundary operator, q(x) is known analytic

function the operator M has two parts (linear and non linear), where Ln is linear and Nln the

non linear part. Therefor, can rewritten as follows

Ln(y) + NLn(y)− q(x) = 0. (1.4)

by the homotopy technique, we introduced a homotopy g(r, t) : Φ× [0,1]→R

which satisfy

H(g, t) = (1− t)[Ln(g)− Ln(y0)] + t[M(y)− q(x)] = 0, t =∈ [0,1], x ∈ φ. (1.5)
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Which is equivalent to:

H(g, t) = Ln(g)− Ln(y0) + tLn(y0) + t[NLn(g)] = 0. (1.6)

where t ∈ [0,1] is an embedding parameter, y0 is an initial approximation of (1.2), which satis-

fies the boundary condition,

then from equation (1.5) we have:

H(g,0) = Ln(g)− Ln(y0) = 0, (1.7)

H(g,1) = R(g)− q(x) = 0. (1.8)

the changing process of t from zero to unity is just that of g(x, t) from y0(x) to g(x). In

topology, this is called deformation, and Ln(g)− Ln(y0) ,R(g)− q(x) are called homotopic

here, t is very small and assume that the solution of Eqequation (1.5) can be written as a power

series in p

g = g0 + tg1 + t2g2 + ... (1.9)

Setting t = 1 , approximate solution of Equation (1.2) can be obtained as,

g = g0 + g1 + g2 + ... (1.10)

Example 1 (see [3]) We consider equation as follows

(x + εy)
dy
dx

+ y = 0, y(1) = 1. (1.11)

We can readily construct a homotopy which satisfies

(1− p)
[

εY
dY
dx
− εy0

dy0

dx

]
+ t

[
(x + εY)

dY
dx

+ Y
]
= 0, p ∈ [0,1]. (1.12)

One may now try to obtain a solution of (1.2) in the forme:

Y(x) = Y0(x) + tY1(x) + t2Y2(x) + ... (1.13)

where the Yi(x) are functions not yet to be determined,

by substitution of (1.13) into (1.12)

εY0
dY0

dx
− εy0

dy0

dx
= 0, (1.14)
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εY1
dY1

dx
+

[
(x + εY0)

dY0

dx
+ Y0

]
= 0. (1.15)

The initial approximation Y0(x) or y0(x) can be chosen , here we set

Y0(x) = y0(x) =
−x

ε
, Y0(1) =

−1
ε

. (1.16)

The substitution of Eq (1.16) into (1.15)) gives;

εY1
dY1

dx
− x

ε
= 0, Y1(1) = 1 +

1
ε

. (1.17)

the solution of (1.17) written as follows:

Y1(x) =
1
ε

√
x2 + 2ε + ε2.

If the first approximation is sufficient , then we obtain:

y1(x) = Y0(x) + Y1(x) =
−x

ε
+

1
ε

√
x2 + 2ε + ε2.

Wiche is the solution.

1.5 Asymptotic Expansion

To determine the asymptotic behaviour of the singular root by the expansion method [2]

we simply pose a formal power series expansion for the solution x(ε);

x(ε) = x0 + εx1 + ε2x2 + ε3x3 + ... (1.18)

Where the coefficient, x1, x2, x3,... are a-priori unknown. We then substitute this expansion into

the quadratic equation and formally equate powers of ε.

Example 2 Consider the following quadratic equation for x which involves the small parameter ε:

x2 + εx− 1 = 0. (1.19)

Where 0 < ε < 1 in this simple case we can solve the equation exactly so the solution exacte is:

x(t) =


−1
2 ε +

√
1 + 1

4 ε2,
−1
2 ε−

√
1 + 1

4 ε2.
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We substitute this expansion (1.18) into the quadratic equation (1.19) and formally equate powers of ε,

we get:

(1 + εx1 + ε2x2
2 + ε3x3

3 + ...)2 + ε(1 + εx1 + ε2x2
2 + ε3x3

3 + ...)− 1 = 0,

then for

(1 + ε(2x1) + ε2(2x2 + x2
1) + ε3(2x32x1x2) + ...) + (ε + ε2x1 + ε3x2 + ...)− 1 = 0.

Now equating the powers of ε on both sides of the equation:

1− 1 = 0,

2x1 + 1 = 0⇒ x1 =−
1
2

,

2x2 + x2
1 + x1 = 0⇒ x2 =

1
2

,

2x3 + 2x1x2 + x2 = 0⇒ x3 = 0.

Note that the first equation is trivial since we actually expanded about the ε = 0 solution, namely x0 = 1

so:

x(ε) = 1− 1
2

ε +
1
8

ε2 +ϕ(ε4).

For ε small, this expansion truncated after the third term is a good approximation to the actual positive

root of (1.19), and We say it is an order 4 approximation , the error is a term ϕ(ε4).

1.6 First order averaging method for periodic orbits

The method of averaging is a classical tool allowing us to study the dynamics of the non-

linear differential systems under periodic forcing, the method of averaging has a long history

starting with the classical works of Lagrange and Laplace, who provided an intuitive justifica-

tion of the method. The first formalization of this theory was done in 1928 by Fatou [4].

In general, to obtain analytically periodic solutions of a differential system is a very difficult

problem, many times a problem impossible to solve. As we shall see when we can apply the

averaging theory, this difficult problem for differential systems

x′ = εF(t, x) + ε2R(t, x,ε). (1.20)

Is reduced to finding the zeros of a non-linear function of dimension at most n, i.e., now the

problem has the same difficulty as the problem of finding the singular or equilibrium points
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CHAPTER 1. BASIC CONCEPTS AND PREREQUISITES

of a differential system. An important problem for studying periodic solutions of differential

systems of the form

x′ = F(t, x) or x′ = F(x) (1.21)

using averaging theory is to transform them into systems written in the normal form of the

averaging theory, i.e., as a system (1.20). Note that systems (1.21), in general, are not periodic

in the independent variable t and do not have any small parameter ε. So, we must find changes

of variables which allow us to write the differential systems (1.21) into the form (1.20).

We consider the differential equation:

x′ = εF(t, x) + ε2R(t, x,ε), (1.22)

with x ∈ D ⊂ Rn, D a bounded domain, and t ≥ 0. Moreover we assume that F(t, x) and

R(t, x,ε) are T-periodic in t.

The averaged system associated to the system(1.22) is defined by:

Y ′ = ε f 0(y), (1.23)

where

f 0(y) =
1
T

∫ T

0
F(s,y)ds. (1.24)

The next theorem says under what conditions the singular points of the averaged system

(1.23) provide T-periodic orbits for the system (1.22).

Theorem 1.1 We consider system (1.22) and assume that the vector functions F, R, DxF, D2
x F and

DX R are continuous and bounded by a constant M (independent of ε in [0,∞)×D, with−εO < ε <

ε0. Moreover, we suppose that F and R are T-periodic in t, with T independent of ε.

(i) If p ∈ D is a singular point of the averaged system (1.23) such that:

det(Dx f 0(p)) 6= 0, (1.25)

then, for |ε|> 0 sufficiently small, there exists a T-periodic solution x(t,ε) of system (1.22) such that

x(0,ε)→ p as ε→ 0.

(ii) If the singular point y = p of the averaged system (1.23) has all its eigenvalues with negative

real part then, for |ε|> 0 sufficiently small, the corresponding periodic solution x(t,ε) of system (1.22)

is asymptotically stable and, if one of the eigenvalues has positive real part x(t,ε), it is unstable.
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Chapter 2
The Van der Pol differential equation using

perturbation method

2.1 G′�G Expansion method

In this section we apply the G′/G expansion method to determine the solution of the van

der pol equation [1]. We consider the well known Van der Pol’s differential equation:

x′′+ ε(x2− λ) x′+ α x = 0, (2.1)

where x is the unknown function and t is the independent variable which represents time. The

derivative is with respect to t. We use the following change of variable,

x =
√

w, w≡w(t). (2.2)

Since we have:

x′ =
w′

2
√

w
,

and

x′′ =
2w′′
√

w− (w′)2

4w
√

w
=

1
2
√

w

(
w′′− 1

2
(w′)2

w

)
.

Equation (2.1) becomes:

1
2
√

w

(
w′′− 1

2
(w′)2

w

)
+ ε(w− λ)

w′

2
√

w
+ α
√

w = 0. (2.3)

12



CHAPTER 2. PERTURBATION METHOD

We multiply this last equation by 2w
√

w, we get:

w w′′− 1
2
(
w′
)2

+ εw2w′− λεww′+ 2αw2 = 0. (2.4)

Now we solve (2.4) by using the G′/G expansion method. We consider the two terms of the

power series with respect to G′/G, i.e.;

w = a0 + a1

(
G′

G

)
, (2.5)

where G is a function and a0, a1 are constant coefficients.

The function G is forced to satisfy the second order linear differential equation:

G′′+ m G′+ n G = 0, (2.6)

where m and n are constant coefficients . Differentiation of (2.5) with respect to t gives

w′ = a1

(
G′′G− (G′)2

G2

)
,

= a1

(
G′′

G
−
(

G′

G

)2
)

. (2.7)

dividing (2.6) by G we get:
G′′

G
+ m

G′

G
+ n = 0,

which means that:
G′′

G
=−m

(
G′

G

)
− n,

and then we substitute
G′′

G
by−m

(
G′

G

)
− n, which gives:

w′ = a1

(
−m

(
G′

G

)
− n−

(
G′

G

)2
)

,

= −a1n− a1m
(

G′

G

)
− a1

(
G′

G

)2

. (2.8)

Differentiation of the above equation with respect to time and making the substitution G′′
G →

13
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−m(G′
G )− n, we obtain:

w′′ = −a1m

(
G′′

G
−
(

G′

G

)2
)
− 2a1

(
G′′

G
−
(

G′

G

)2
)(

G′

G

)

= a1n(m + 2) + a1m2(
G′

G
) + 3a1m(

G′

G
)2 + 2a1

(
G′

G

)3

. (2.9)

Substitution of (2.5), (2.8) and (2.9) into (2.4) rearranging, we obtain the equation:

a2
1

(
3
2
− εa1

)(
G′

G

)4

+ a1[a1(λε + 2m− 2εa0)− εma2
1 + 2a0]

(
G′

G

)3

+[−εna2
1 + a1(2α + mλε− n +

m2

2
− 2εma0) + a0(λε− εa0 + 3m)]

(
G′

G

)2

+a1[a1(nλε− 2εna0 + 2n) + a0(4α + λεm + m2− εma0)]

(
G′

G

)
+a1[n(m + 2)a0− εna2

0− n2 a1

2
+ nλεa0] + 2αa2

0 = 0.

(2.10)

Equation the coefficients of the different power of (
G′

G
)k,k = 1,2,3,4 to zero we obtain the

following system of algebraic equation (a1 6= 0):

3
2
− εa1 = 0

a1(λε + 2m− 2εa0)− εma2
1 + 2a0) = 0

−εna2
1 + a1(2α + mλε− n +

m2

2
− 2εma0) + a0(λε− εa0 + 3m) = 0

[a1(nλε− 2εna0 + 2n) + a0(4α + λεm + m2− εma0) = 0

a1[n(m + 2)a0− εna2
0− n2 a1

2
+ nλεa0] + 2αa2

0) = 0

solving the above system of algebratic equations,we obtain the following two families of solu-

tions:

Solution 2.1

a0 = − 3
2ε

,

a1 =
3
2ε

,

m = −2(λε + 1),

n = 2λε + 1,

α = 2λε + 1. (2.11)

14
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Solution 2.2

a0 = − 3λ

α− 1
,

a1 =
3λ

α− 1
,

m = −2(α + 1),

n = α,

ε =
α− 1

2λ
. (2.12)

Now we use the polynomial r2 + mr + n = 0 to find the general solution of G′′+ mG′+

nG = 0. Because the discriminant is given by

∆ = m2− 4n⇒
√

∆ =
√

m2− 4n.

Then we have two real roots 
G1 =

−m +
√

m2− 4ε

2
,

G2 =
−m−

√
m2− 4ε

2
,

and the general solution is given by

G(t) = k1 exp(G1t) + k2 exp(G2t).

where k1, k2 are constants. Hence

G(t) = k1 exp

(
−m

2
+

√
∆

2

)
t + k2 exp

(
−m

2
−
√

∆

2

)
t).

We differentiate G with respect to t to get

G
′
(t) = k1

(
−m

2
+

√
∆

2

)
exp

(
−m

2
+

√
∆

2

)
t

+ k2

(
−m

2
−
√

∆

2

)
exp

(
−m

2
−
√

∆

2

)
t.
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So

G
′

G
=

exp(
−m

2
t)

[
k1

(
−m

2
+

√
∆

2

)
exp(
√

∆

2
t) + k2

(
−m

2
−
√

∆

2

)
exp(
−
√

∆

2
t)

]

exp(
−m

2
t)

[
k1 exp(

√
∆

2
t) + k2 exp(

−
√

∆

2
t)

] ,

=

k1

2
(
√

∆−m) exp(
√

∆

2
t)− k2

2
(
√

∆ + m) exp(−
√

∆

2
t)

k1 exp(
√

∆

2
t) + k2 exp(−

√
∆

2
t)

,

=
−m

2
+

√
∆

2

k1 exp(
√

∆

2
t)− k2 exp(

−
√

∆

2
t)

k1 exp(
√

∆

2
t) + k2 exp(

−
√

∆

2
t)

 ,

Since we have

exp(
√

∆

2
t) = cosh

(√
∆

2
t

)
+ sinh

(√
∆

2
t

)
and

exp(−
√

∆

2
t) = cosh

(√
∆

2
t

)
− sinh

(√
∆

2
t

)
.

We conclude that

G
′

G
=

√
∆

2

k1 cosh(
√

∆

2
t) + k1 sinh(

√
∆

2
t)− k2 cosh(

√
∆

2
t) + k2 sinh(

√
∆

2
t)

k1 cosh(
√

∆

2
t) + k1 sinh(

√
∆

2
t) + k2 cosh(

√
∆

2
t)− k2 sinh(

√
∆

2
t)


− m

2
,

=
−m

2
+

√
∆

2

(k1− k2) cosh(
√

∆

2
t) + (k1 + k2) sinh(

√
∆

2
t)

(k1 + k2) cosh(
√

∆

2
t) + (k1− k2) sinh(

√
∆

2
t)

 ,

Assuming that k1 + k2 = c1, k1− k2 = c2

G
′

G
=
−m

2
+

√
∆

2

c1 sinh(
√

∆

2
t) + c2 cosh(

√
∆

2
t)

c1 cosh(
√

∆

2
t) + c2 sinh(

√
∆

2
t)

 ,

and from solution 1 we have

m =−2(λε + 1),

and

n = 2λε + 1.
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CHAPTER 2. PERTURBATION METHOD

Replacing m and n in
√

∆ gives

√
∆ =

√
m2− 4n,

=
√
(−2(λε + 1))− 4(2λε + 1),

= 2
√

λ2ε2 + 1 + 2λε− 2λε− 1,

= 2λε.

substitute
√

∆ by 2λε in
G′

G
we get:

G
′

G
= λε + 1 + λε

(
c1 sinh(λεt) + c2 cosh(λεt)
c1 cosh(λεt) + c2 sinh(λεt)

)
.

since we have determined the coefficients m and n ,we can evaluate the function G from (2.6)

becomes;

G′′− 2(λε + 1)G′+ (2λε + 1)G = 0, (2.13)

equation (2.13) admets the general solution:

G(t) = [Acosh(λεt) + Bsinh(λεt)] e(1+λε)t, (2.14)

we thus obtain:

G′

G
= (1 + λε) +

H′

H
, (2.15)

where H = H(t)is given by:

H = Acosh(λεt) + Bsinh(λεt), (2.16)

on the other hand, equation (2.5)gives:

W =− 3
2ε

+
3
2ε

(
G′

G

)
, (2.17)

therefor, using (2.15) and (2.17),we have:

W =
3
2ε

(
λε +

H′

H

)
, (2.18)

17
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we thus find that the first family of solutions of the van der pol equation is given by:

x(t) =

√
3
2ε

(
λε +

H′

H

)
, (2.19)

in this cace we shold take into sccount the relation

α =−1 + 2λε

for the solution 2, equation becomes;

G′′− (α + 1)G′+ αG = 0, (2.20)

which admits general solution:

G = C1 exp(αt) + C2 exp(t), (2.21)

and thus:
G′

G
=

αexp(αt) + C exp(t)
exp(αt) + C exp(t)

, C =
C1

C2
, (2.22)

on the other hand,equation (2.5) gives:

W =− 3λ

α− 1
+

3λ

α− 1α

(
G′

G

)
, (2.23)

therefore using (2.22) and (2.23), we have:

W = 3λ
exp(αt)

exp(αt) + C exp(t)
, (2.24)

we thus find that the second family of solutions of the vander pol equation is given by:

x(t) =

√
3λ

eαt

eαt + Cet . (2.25)

In this case we should also take into account the relation;

ε =
(α− 1)

2λ
, α = 1 + 2λε, (2.26)

we thus arrive at the following theorem:

Theorem 2.1 The van der pol equation :

x′′+ ε(x2− λ)x′+ αx = 0. (2.27)

18
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Under the substitution x =
√

w transforms into the equation:

ww′′− 1
2
(w
′
)2 + εw2w′− λεww′+ 2αw2 = 0. (2.28)

The above equation is solved using the
(

G′

G

)
- method, considering the expansion w= a0 + a1

(
G′

G

)
,

where G ≡ G(t) is a function satisfying the linear second order differential equation G′′ + mG′ +

nG = 0 and a0, a1, m, n are constant coeffcients. There are two families of solutions the first family is

given by

x(t) =

√
3
2ε

(
λε +

H′

H

)
, H = Acosh(λεt) + Bsinh(λεt), α = 1 + 2λε. (2.29)

the second family is given by

x(t) =

√
3λ

e(αt)
e(αt) + C exp(αt)

, α = 1 + λε. (2.30)

2.2 The Van der Pol non linear differential equation using a

first order approximation perturbation method

In this section we use the first order approximation perturbation method to find the ap-

proximate solution [8].We consider the The Van der Pol equation :

x”− ε(1− x2)x′+ x = 0. (2.31)

And assuming initial conditions are x(0) =ϕ and x′(0) = ξ. With a restriction on initial con-

dition, x(0)2 + x′2(0) = 4, which means, ξ2 +ϕ2 = 4 ,with ε� 1.

We assume that the solution x(t) of the Van der Pol equation is given as the following

power series

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . .

Now we neglect the higher powers of ε because they’re too small, we get

x(t) = x0(t) + εx1(t). (2.32)

To determine x0(t) and x1(t), we substituting (2.32) into (2.31) which gives

x”0 + εx”1− εx′0 + εx2
0x′0 + ε3x2

1x′0 + 2ε2x1x0x′0− ε2x′1
+ε2x2

0x′1 + ε4x2
1x′1 + 2ε3x1x0x′1 + x0 + εx1 = 0.
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Collecting terms with same power of ε gives

ε0(x”0 + x0) + ε(x”1− x′0 + x2
0x′0 + x1) + ε2(x2

0x′1 + 2x1x0x′0− x′1)

+ε3(x2
1x′0 + 2x1x0x′1) + ε4x2

1x′1 = 0.

Setting terms which multiply by higher power ε to zero and since it is assumed that ε is very

small ( εn ' 0,n > 2) therefore:

(x”0 + x0) + ε(x”1− x′0 + x2
0x′0 + x1) = 0.

For the left hand side to be zero implies that

x”0 + x0 = 0, (2.33)

and

(x”1− x′0 + x2
0x′0 + x1) = 0, (2.34)

the solution of equation (2.33) for x0 is :

x0(t) = A0 cos t + B0 sin t.

Assuming that the initial conditions for x1(t) at t = 0 are zero , then initial conditions for x0(t)

can be taken to be those given for x(t):x0(0) =ϕ, x′0(0) = ξ,

x1(0) = 0, x′1(0) = 0.

Which gives x(0) = x0(0) + εx1(0) =ϕ,

x′(0) = x′0(0) + εx′1(0) = ξ.

Solving for A0 , B0 gives:

x0(t) =ϕcos t + ξ sin t.

Since we determined x0(t) we can solve (2.34),

x”1 + x1 = x′0− x2
0x′0.
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The substituting of the solution x0(t) and its derivative into (2.34) gives:

x”1 + x1 = −ϕcos t + ξ sin t− ξ3 cos t sin2 t− 2ξ2ϕcos2 t sin t + ξ2ϕsin3 t

− ξϕ2 cos3 t + 2ξϕ2 cos t sin2 t +ϕ3 cos2 t sin t.

Using the fact that :

sin t cos2 t =
1
4
(sin t + sin3t),

and

cos t sin2 t =
1
4
(cos t− cos3t),

the above equation can be simplified to:

x”1 + x1 =

(
−ϕ− ξ2ϕ

2
+

ϕ3

4

)
sin t +

(
ξ− ξ3

4
+

ξϕ2

2

)
cos t

+

(
ξ3

4
− ξϕ2

2

)
cos3t +

(
−ξ2ϕ

2
+

ϕ3

4

)
sin3t + ξϕ

(
ξ sin3 t−ϕcos3 t

)
.

Using the following equality:

ξ sin3 t−ϕcos3 t =
1
4
(−3ϕcos t−ϕcos3t + 3ξ sin t− ξ sin3t),

the above can be simplified further to

x”1 + x1 = (−ϕ− ξ2ϕ

2
+

ϕ3

4
+

3ξ2ϕ

4
)sin t + (ξ− ξ3

4
+

ξϕ2

2
− 3ξϕ2

4
)cos t

+ (
ξ3

4
− ξϕ2

2
− ξϕ2

4
)cos3t + (−ξ2ϕ

2
+

ϕ3

4
− ξ2ϕ

4
)sin3t, (2.35)

using the restriction regarding the initial condition, ξ2 +ϕ2 = 4, we obtain

(−ϕ− ξ2ϕ

2
+

ϕ3

4
+

3ξ2ϕ

4
) = 0,

and

(ξ− ξ3

4
+

ξϕ2

2
− 3ξϕ2

4
) = 0.

Which means that the equation (2.35) becomes:

x”1 + x1 = (
ξ3

4
− ξϕ2

2
− ξϕ2

4
)cos3t + (−ξ2ϕ

2
+

ϕ3

4
− ξ2ϕ

4
)sin3t.

Then, for

x”1 + x1 = ξ(
ξ2

4
− 3ϕ2

4
)cos3t +ϕ(

ϕ2

4
− 3ξ2

4
)sin3t,
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with ϕ2 = 4− ξ2 and ξ2 = 4−ϕ2, the previous equation becomes;

x”1 + x1 = ξ(ξ2− 3)cos3t +ϕ(ϕ2− 3)sin3t. (2.36)

The homogeneous solution of equation (2.36) is:

x1;h = c1cost + c2sint,

and the two particular solutions x1,p1(t), x1,p2(t) are given by

x1;p1 = a1cos3t + a2sin3t,

and

x1;p2 = d1cos3t + d2sin3t.

By substituting each of these particular solutions into (2.36) one by one, we can determine a1 ,

a2, d1, and d2. We obtain the following result:

x1;p1 =
ξ(3− ξ2)

8
cos3t,

similarly,

x1;p2 =
ϕ(3−ϕ2)

8
sin3t.

the solution of (2.36) becomes;

x1(t) = x1,h + x1,p1 + x1,p2 ,

= (c1cos(t) + c2sin(t)) +
ξ(3− ξ2)

8
cos(3t) +

ϕ(3−ϕ2)

8
sin(3t). (2.37)

By using the initial conditions x1(0) = 0 and x′1(0) = 0, to determine the coefficients c1 and c2

in equation (2.37), and we have:

x1(t) =
ξ(ξ2− 3)

8
cost +

3
8

ϕ(ϕ2− 3)sint +
ξ(3− ξ2)

8
cos3t +

ϕ(3−ϕ2)

8
sin3t.

Therefore we now have the final perturbation solution wiche is:
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x(t) = x0(t) + εx1(t),

= ϕcost + ξsint + ε

(
ξ(ξ2− 3)

8
cost +

3
8

ϕ(ϕ2− 3)sint
)

+

(
ξ(3− ξ2)

8
cos3t +

ϕ(3−ϕ2)

8
sin3t

)
.

Where x(0) =ϕ and x′(0) = ξ and the above solution is valid for ε small under the restriction

x2(0) + x′2(0) = 4.

23



CHAPTER 2. PERTURBATION METHOD

2.3 Periodic solution of the Van der Pol equation using the first

order averaging method

In this last section we use the averaging method to prove that the Van der Pol equation has

a periodic solution and studying its stability [4].

The Van der Pol differential equation

x′′+ x = ε(1− x2) x′,

can be written in the following equivalent differential system form

x′ = y,

y′ = −x + ε(1− x2)y. (2.38)

Using the polar coordinates (r,θ) we have

x = r cos(θ) and y = r sin(θ).

Differentiate both r and θ with respect to t, it follows that

r′ = (xx′+ yy′)/r,

= (xy− xy + ε(1− x2)y2)/r,

= (r2 sin(θ)2(1− r2 cos(θ)2)ε)/r,

= rε(1− r2 cos(θ)2)sin(θ)2. (2.39)

And
θ′ = (x y′− x′ y)/r2,

= (−(x2 + y2) + x y ε(1− x2))/r2,

= [−r2 + r2ε(1− r2 cos(θ)2)cos(θ)sin(θ)]/r2,

= −1 + ε(1− r2 cos(θ)2)cos(θ)sin(θ).

Since

cos(θ)sin(θ) = sin(2θ)/2,

after simplification, we get

θ′ =−1 +
ε

2
(1− r2 cos(θ)2)sin(2θ), (2.40)
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CHAPTER 2. PERTURBATION METHOD

dividing (2.39) on (2.40) we find:

dr
dθ

=
rε(1− r2 cos(θ)2)sin(θ)2

−1 +
ε

2
(1− r2 cos(θ)2)sin(2θ)

,

=
−rε(1− r2 cos(θ)2)sin(θ)2

1− ε

2
(1− r2 cos(θ)2)sin(2θ)

.

Now, we use the Taylor expansion of second order

dr
dθ

= −rε(1− r2 cos(θ)2)sin(θ)2(1 + ε
1
2
(1− r2 cos(θ)2)sin(2θ)),

= ε[−r(1− r2 cos(θ)2)sin(θ)2] + ε2[−1
2
(1− r2 cos(θ)2)sin(2θ))sin(θ)2

− r(1− r2 cos(θ)2)].

This differential system is in the normal form x′ = εF(t, x) + ε2R(t, x,ε) for applying the av-

eraging theory, we take x = r, t = θ, T = 2π.

F(r,θ) =−r(1− r2 cos(θ)2)sin(θ)2, and

R(r,θ) =− 1
2(1− r2 cos(θ)2)sin(2θ))sin(θ)2− r(1− r2 cos(θ)2),

F(t, x) is a periodic function with period 2π, continuous and bounded. From (1.24) we get

f 0(r) =
1
T

∫ T

0
−r(1− r2 cos(θ)2)sin(θ)2dθ,

=
1

2π

∫ 2π

0
−r(1− r2 cos(θ)2)sin(θ)2dθ,

=
−r
2π

∫ 2π

0
sin(θ)2dθ+

r3

2π

∫ 2π

0
(cos(θ)sin(θ))2dθ,

=
−r
2π

∫ 2π

0

1− cos(2θ)

2
dθ+

r3

8π

∫ 2π

0
sin(2θ)2dθ,

=
−r
2π

∫ 2π

0

1− cos(2θ)

2
dθ+

r3

8π

∫ 2π

0

1− cos(4θ)

2
dθ,

=
−r
2π

∫ 2π

0

1
2

dθ+
r

2π

∫ 2π

0

cos(2θ)

2
dθ+

r3

8π

∫ 2π

0

1
2

dθ− r3

8π

∫ 2π

0

cos(4θ)

2
dθ,

=
−r
2

+
r3

8
,

=
r
8
(r2− 4).

Then for y′ = 0, we get:

f 0(r) = 0⇒ r
8
(r2− 4) = 0⇒ r = 0 or r = 2.
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And taking the derivative of f 0.

d f 0(r) =
r2

4
− 1

2
⇒ d f 0(2) =

1
2
> 0.

The unique positive root of f 0(r) is r = 2. Since d f 0(2) =
1
2

, according to statement (i) of

the theorem (1.1), we know that the system has a 2π periodic solution, for | ε |= 0 sufficiently

small, a limit cycle bifurcating from the periodic orbit of radius 2 of the unperturbed system

(2.38) with ε = 0. Moreover, since d f 02 =
1
2
> 0. By using statement (ii), of theorem (1.1) we

conclude that the limit cycle bifurcating from system is unstable [?, ?], Figure 2.1 shows limit

cycles of the Van der Pol equation for two different values of ε.

Figure 2.1: The Van der Pol oscillator with limit cycles included for different values of ε.
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Chapter 3
Analytical solution of Van der Pol’s

differential equation using homotoy

perturbation method

In this chapter we use the homotopy perturbation method to find the analytical solution

of the Van der Pol equation withe a different boundary conditions [6].

3.1 The Van der Pol differential equation with Dirichlet bound-

ary conditions

We consider the boundary value problem for the Van der Pol equation as follows

y” + ε(y2− 1)y′+ y = 0, y(0) = 0, y(20) = 1,

where y” + y is the linear part and ε(y2− 1)y′ are the non linear part, we get the following

Homotopy

Y” + Y − (y0” + y0) + t(y0” + y0) + t[ε(Y2− 1)Y ′] = 0. (3.1)

Suppose that

Y = y0 + ty1 + t2y2 (3.2)

we assume that the solution of (3.2) can be written as a power series in t, substituting (3.2) into

(3.2) and equating the coefficients of t from both sides, we get:

y0” + y0 = 0, y0(0) = 0, y0(20) = 1, (3.3)
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y1” + y1 + εy2
0y′0− εy′0 = 0, y1(0) = 0, y1(20) = 0, (3.4)

and

y2” + y2 + 2εy0y1y′0− εy′1 + εy2
0y′1 = 0, y2(0) = 0, y2(20) = 0. (3.5)

The first boundary value problem (3.3) has the following a solution

y0(x) = Acos(x) + Bsin(x).

From the boundary conditions we obtain A = 0 and B =
1

sin(20)
. Replacing by these two

parameters, then y0(x) becomes

y0 = csc(20)sin(x), (3.6)

right now we substituting the solution (3.6) into (3.4) to obtain

y1(x) =
1

16
εcsc3(20)sin(x)(sin(2x)− 2(x− 20)(2cos(40)− 1)− sin(40)),

since we have y0 and y1 we can find y2 from (3.5):

y2 =
1

1536
ε2 csc5(20)[9cos(3x)(2(x− 20)(2cos(40)− 1) + sin(40))

−3cos(x)(4(x + 30) + 4(x− 60)cos(40) + 8xcos(80) + 3sin(40))

+sin(x)((19− 12cos(40))cos(2x)− 5cos(4x) + 12x(x + 2(x− 40)

cos(80)− 40 + sin(40) + sin(80)) + 14− 9621cos(40) + 240cot(20)

+csc(20)(4801sin(100) + 360cos(100)))].

Thus the two term solution by HPM is Y = y0 + y1 and the three terms solution by HPM is

Y = y0 + y1 + y2

Table 3.1 shows that there is a negligible difference between the results of two and three terms

HPM solutions comparing with numerical result given by NDSolve which is a function of

MATHEMATICA language that gives numerical solutions for differential equations.

Figures 3.1 and 3.2 show an insignificant difference between the solution given by ND-

Solve[] function of MATHEMATICA and the solutions given by the homotopy method with
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x HPM 2 terms HPM 3 terms NDSolve[] HPM 2 Error HPM 3 Error

0 0 0 0 0 0

1 0.92171 0.860729 0.860855 0.000329678 0.000126869

2 0.996004 0.932566 0.932669 0.000539139 0.000102668

3 0.154577 0.145325 0.145341 0.0000808258 0.0000155596

4 -0.82897 -0.7828 -0.78287 0.000175989 0.0000699884

5 -1.05036 -0.99452 -0.994591 0.000390629 0.0000661627

6 -0.30606 -0.29088 -0.290896 0.000128774 0.0000185554

7 0.719634 0.687061 0.687094 0.0000729565 0.0000325515

8 1.083699 1.037556 1.03759 0.000252919 0.000038365

9 0.451416 0.433663 0.433679 0.000149599 0.0000157133

10 -0.5959 -0.57511 -0.575121 7.46084E-06 0.0000104587

11 -1.09535 -1.06034 -1.06036 0.000140108 0.0000193591

12 -0.58774 -0.57069 -0.570702 0.000149015 0.0000117983

13 0.460232 0.448929 0.448928 0.0000338741 9.37587E-7

14 1.085068 1.061946 1.06195 0.000060492 8.08511E-6

15 0.712297 0.699029 0.699038 0.000133416 9.19814E-6

16 -0.31536 -0.31084 -0.310833 0.0000621931 5.94807E-6

17 -1.05307 -1.04186 -1.04186 0.0000154493 2.45705E-6

18 -0.8226 -0.81587 -0.815879 0.00011073 8.50523E-6

19 0.164169 0.163462 0.163454 0.0000854309 8.28424E-6

20 1. 1. 1. 1.18091E-07 1.18091E-7

Table 3.1: Relative errors for example 1 with ε = 0.01.
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different values of ε.

5 10 15 20
x

-1.0

-0.5

0.5

1.0

y

ε  0.01

y0 NDSolve[] HPT2 HPT3

Figure 3.1: The graph of Van der Pol equation showing the difference between numerical and
analytical solution with ε = 0.01.

5 10 15 20
x

-1.0

-0.5

0.5

1.0

y

ε  0.1

y0 NDSolve[] HPT2 HPT3

Figure 3.2: The graph of Van der Pol equation showing the difference between numerical and
analytical solution with ε = 0.1.

3.2 The Van der Pol equation with first Robin type boundary

condition

Consider the VDP equation with first Robin type boundary condition

y” + ε(y2− 1)y
′
+ y = 0, y(0) = 0, y′(20) = 1.
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Using the new variable Y from (3.2), replacing it into and equating the coefficients of t from

both sides, we get

y”
0 + y0 = 0, y0(0) = 0, y

′
0(20) = 1,

y”
1 + y1 + uy2

0y
′
0− uy

′
0 = 0, y1(0) = 0, y

′
1(20) = 0,

and

y”
2 + y2 + 2uy0y1y

′
0− uy

′
1 + uy2

0y
′
0 = 0, y2(0) = 0, y

′
2(20) = 0.

Solving the first boundary value problem we get y0 = sec(20)sin(x). Then, it follows from

the second boundary value problem that y1 be in the following form

y1 =
1
32

εsec3(20)sin(x)[x(4 + 8cos(40)) + 4sin(x)cos(x)

−160 + tan(20)− sec(20)(7sin(60) + 80cos(60))],

and finally, we determine y2 by solving the third boundary value problem, therefore

y2(x) = − 1
6144

ε2 sec5(20)[sin(x)[−sec2(20)(24x2(1 + 2cos(40) + 2cos(80)

+cos(120))− 12x(80 + sin(40)− sin(80) + 7sin(120) + 160cos(40)

+160cos(80) + 80cos(120)) + 9930− 480sin(40)− 720sin(80)

+1200sin(120) + 18891cos(40) + 19495cos(80) + 9382cos(120))

−81sin2(2x) + 9720sin(2x)]− 20sin7(x)− 100sin(x)cos6(x)

−2sin(x)cos4(x)(25cos(2x)− 118 + 72cos(40)) + 6(3 + 8cos(40))sin5(x)

−12(4cos(80)− 3)sin3(x) + 36(x− 20)sin3(2x)csc(x) + 12sin(x)cos2(x)

(15sin4(x)− 4cos(60)sec(20)sin2(x)− 17 + 8cos(40)− 4cos(80))

+3sec(20)cos3(x)[−16x(−5cos(20)− 2cos(60) + cos(100)) + 12sin2(x)

(4xcos(60) + sin(20)− 7sin(60)− 80cos(60)) + 48sin(20)− 83sin(60)

+28sin(100)− 1200cos(20)− 640cos(60) + 320cos(100)]− 18cos5(x)

(x(4 + 8cos(40))− 160 + tan(20)− 80cos(60)sec(20)− 7sin(60)sec(20))

+3cos(x)[−sec(20)sin2(x)(16x(19cos(20) + 10cos(60) + cos(100))

−253sin(60)− 28sin(100)− 3200cos(60)− 320cos(100)) + sec(20)

(8x(3cos(20) + 3cos(60) + 4cos(100))− 42sin(20) + 41sin(60)

−28sin(100) + 240cos(20) + 160cos(60)− 320cos(100)) + 18sin4(x)

(x(4 + 8cos(40))− 160 + tan(20)− 80cos(60)sec(20)− 7sin(60)sec(20))]].

The comparison between numerical and analytical solutions is displayed in Figure 3.3.
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Figure 3.3: The graph of Van der Pol equation showing the difference between numerical and
analytical solution with ε = 0.05.

3.3 The Van der Pol equation with second Robin type bound-

ary condition

Consider the VDP equation with second Robin type boundary condition,

y” + u(y2− 1)y
′
+ y = 0, y

′
(0) = 0, y(20) = 1

The Homotopy is,

Y” + Y − (y”
0 + y0) + t(y”

0− y0) + t[u(Y2− 1)Y
′
] = 0

From (3.2) we get

Y” + Y − (y”
0 + y0) + t(y”

0− y0) + t[u(Y2− 1)Y
′
] = 0

and equating the coefficients of t from both sides, we get

y”0 + y0 = 0,y
′
0(0) = 0, y0(20) = 1,

y”1 + y1 + uy2
0y
′
0− uy

′
= 0, y

′
1(0) = 0, y1(20) = 0,

and

y”2 + y2 + 2uy0y1y
′
0− uy

′
1 + uy

′2
0 y
′
1 = 0, y

′
2(0) = 0, y2(20) = 0
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Solving the first boundary value problem, we get y0 = sec(20)cos(x), and

y1(x) =
1
64

εsec3(20)[−7sin(x)cos2(x) + sin(x)[sin2(x)− 1− 16cos(40)] + 2cos(x)

(x(4 + 8cos(40))− 160− 3tan(20) + 5sec(20)(sin(60)− 16cos(60)))].

And finally

y2(x) =
1

6144
ε2 sec5(20)[cos(x)[48x2(1 + 2cos(80)) + 100sin6(x)− 6(31 + 48cos(40))

sin4(x) + 12(9 + 56cos(40)− 4cos(80))sin2(x)− 24xsec(20)(−11sin(20)

+8sin(60)− 5sin(100) + 80cos(20) + 80cos(60) + 80cos(100)) + 19455

+477tan2(20) + 6720tan(20) + 19404cos(60)sec(20) + 19214cos(100)sec(20)

−7cos(140)sec(20) + 3840sin(60)sec(20)− 2400sin(100)sec(20)

+5760cos(60) tan(20)sec(20)− 960cos(100) tan(20)sec(20)− 576sin(60)

tan(20)sec(20) + 92sin(100) tan(20)sec(20)− 7sin(140) tan(20)sec(20)]

+20cos7(x) + 6(15cos(2x)− 18 + 16cos(40))cos5(x)− 4cos3(x)[25sin4(x)

+(48cos(40)− 69)sin2(x) + 33 + 96cos(40) + 12cos(80)] + 12cos2(x)

[3sec(20)sin3(x)(4xcos(60)− 3sin(20) + 5sin(60)− 160cos(20)

−80cos(60))− 2(4 + cos(40))sin(x)(x(4 + 8cos(40))− 160− 3tan(20)

−80cos(60)sec(20) + 5sin(60)sec(20))] + 54sin(x)cos4(x)(x(4 + 8cos(40))

−160− 3tan(20)− 80cos(60)sec(20) + 5sin(60)sec(20))− 6sin(x)

[36x− 12xsin2(2x) + 20xcos(60)sec(20) + 3sin4(x)(x(4 + 8cos(40))− 160

−3tan(20)− 80cos(60)sec(20) + 5sin(60)sec(20)) + 4(cos(40)− 2)sin2(x)

(x(4 + 8cos(40))− 160− 3tan(20)− 80cos(60)sec(20) + 5sin(60)sec(20))

+1280 + 49tan(20) + 560cos(60)sec(20)− 160cos(100)sec(20)− 61sin(60)

sec(20) + 10sin(100)sec(20)]].

Figure 3.4 shows an insignificant difference between the solution given by NDSolve[] func-

tion of MATHEMATICA and the solutions given by the homotopy method for ε = 0.06.
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Figure 3.4: The graph of Van der Pol equation showing the difference between numerical and
analytical solution with ε = 0.06.

3.4 The Van der Pol equation with Neumann boundary condi-

tion

Consider the VDP equation with Neumann type boundary condition

y” + u(y2− 1)y
′
+ y = 0, y

′
(0) = 0, y

′
(20) = 1

The Homotopy is,

Y” + Y − (y”
0 + y0) + t(y”

0− y0) + t[u(Y2− 1)Y
′
] = 0.

Working as in previous subsection and equating the coefficients of t from both sides, we get

y”0 + y0 = 0, y′0(0) = 0, y′0(20) = 1

y”1 + y1 + ε y2
0y
′
0− ε y

′
= 0, y′1(0) = 0, y′1(20) = 0

y”2 + y2 + 2ε y0y1y
′
0− ε y

′
1 + ε y′20y′1 = 0, y′2(0) = 0, y′2(20) = 0

Solving the first equation, we get y0 = csc(20)(−cos(x)).

Hence the second equation gives

y1(x) =
1

32
εcsc3(20)[sin(x) + sin(3x) + 4(x− 20)(2cos(40)− 1)cos(x)

−6sin(40)cos(x)− 8cos(40)sin(x)].
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From the third equation we can easily obtain

y2(x) =
1

3072
ε2 csc5(20)[cos(x)[−csc(20)[24x2(sin(20)− sin(60) + sin(100))

+12x(−80(sin(20)− sin(60) + sin(100))− 3cos(20) + 3cos(100))

+9540sin(20)− 9399sin(60) + 9430sin(100) + 1440cos(20) + 3840cos(60)

−240cos(100)] + 25sin4(x) + 36(7cos(40)− 2)sin2(x)] + 30cos5(x)

−cos3(x)(25sin2(x) + 1 + 84cos(40))− 63sin(x)cos2(x)(x(4cos(40)− 2)

+40− 3sin(40)− 80cos(40)) + 3sin(x)[2x(9− 14cos(40) + 8cos(80))

+3sin2(x)(x(4cos(40)− 2) + 40− 3sin(40)− 80cos(40)) + 520

−87sin(40)− 24sin(80)− 1680cos(40)− 640cos(80)]].

Figure 3.5 gives a comparison between numerical solution given by NDSolve[] function

of MATHEMATICA and analytical solutions given by homotopy perturbation method with

ε = 0.07.
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y0 NDSolve[] HPT2 HPT3

Figure 3.5: The graph of Van der Pol equation showing the difference between numerical and
analytical solution with ε = 0.07.
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Conclusion

In this work, we have studied the Van der Pol differential equation with different tech-

niques. First, the G′/G expansion method is used to find a general approximate analytical solu-

tion, and secondly using the averaging method we have proved that the Van der Pol oscillator

has an isolated periodic orbit. Finally, the Van der Pol equation is solved by the perturbation

and the homotopy perturbation technique to find approximate analytical solutions.
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