
People’s Democratic Republic Of Algeria

 وزارة التعليـــــم العــــــــــالــــــي والبحـــــث العـــلــمـــــي

Ministry Of Higher Education And Scientific Research

 جـــــامعــــــــــــة بـــرج بوعـــريـــــريــــج

University Of Bordj Bou Arreridj

Faculty OF Mathematics And Computer Science

IT Department

Report Of The Final study project

In view of obtaining the Diploma of

IT master

Option: Business Intelligence Engineer

Theme:

Analysis Of Teamwork Quality Impact On Software

Development Team Performance

Realized by :

 Helali Khadhir

 Talbi Chahinaz

Publicly defended on: October th 2020 in front of the jury composed of:

President: Mr: .A à L’U. El Bachir El Ibrahimi-BBA

Examiner: Mr: M.A à L’U. El Bachir El Ibrahimi-BBA

Supervisor: Mr: MAA à L’U. El Bachir El Ibrahimi-BBA

Promotion :2019/2020

First of all, I would like to thank my supervisor

Dr. Mohamed Amine Beghoura, my teacher and

my role model Dr. Foudil Belhadj for the

opportunity to conduct my research, also I would like

to thank them for their support and assistance.

I want to thank my mom and dad for caring for

me, and their eagerness to study me. Also, my

friends in university residence, we participated for 5

years and lived the sweet and bitter together

Table of contents:

Acknowledgment……………………………………………………………..

Table of contents…………………………………………………………......

Table of figures………………………………………………………………

General Introduction…………………………………………………………...I

Introduction……………………………………………………….……....2

Chapter 1

1. Introduction
1.1Introduction…………………………………………………..………..……...4
1.2 What is teamwork?...4

1.2.1The effect of communication on teamwork………………….….….….5

1.3 What is Software Engineering…………………………………...……...…….5

1.3.1 Definition of Software………………………………………….....…..5

1.3.2 Engineering…………………………………………………….....…..6

1.3.3 History of software engineering …………………………………..….6

1.4 Stages of building the initial system ……………………………………….....6

1.5 Software Development Life Cycle ……………………………………….…...6

1.5.1 SDLC Activities………………………...……………………..............6

1) Waterfall Model……………………………………………....….6

2) Iterative Model …………………………………………….….....7

3) Spiral Model………………..………………………………..…...7

4) V-Model……………………..………………………………..….8

1.6 The difference between programming and software engineering………….....8

1.7 Conclusion………………………………………………………..………..…..9

1.8 Memory plan………………………………………………….……….….…...9

1.8.1 Chapter 1 - Introduction……………………………….…….….……..9

1.8.2 Chapter 2- Related work ……………………………….….………….9

1.8.3 Chapter 3- Methodology………………………………….….………..9

1.8.4 Chapter 4-Impact analysis of teams………………………..………….9

Chapter 2

2. Related Work

2.1 Introduction……………………………………………………………..…..11

2.2. Related work…………………………………………………………….…..11

2.3 Contribution……………………………………………………………….…13

2.4 Conclusion…………………………………………………………………....13

Chapter 3

3. Methodology

3.1 Introduction…………………………………………….……………….......14

3.2 Git and how it works……………………………………………………........14

3.3 Git Hub…………………………………………………………………….…...17

3.3.1 Forking a Repo………………………………………………………....17

3.3.2 Pull Requests …………………………………………………………..17

3.3.3 Social networking……………………………………………………....17

3.3.4 Change logs…………………………………………………………….18

3.4 Dataset description…………………………..………………………………….18

3.5 Models Study……………………………..…………………………………….18

3.5.1 Random Forest…………………………………………...……………..18

 3.5.1.1 Decision trees………………….................…….................18

 3.5.1.2 Random forest………………………………………...…19

3.5.1.2.1 Working of random forest algorithm………….....19

3.5.2 Extreme gradient boosting………………………………………..…….20

3.5.2.1 Tree boosting algorithm……………………………….....21

3.6 Conclusion…………………………………………………………………...…21

Chapter 4

4. Impact analysis of team

4.1 Introduction……………………………………………………………………23

4.2 Auxiliary environment to work……………………………………………….....23

4.3 Implementation of models…………………………………………………...….23

4.4 Evaluation and feedback………………………………………………………...25

4.4.1 XGBoost model………………………………………………………...25

4.4.2 Random forest………………………………………………………….27

4.5 Comparison of the results……………………………………………………….29

4.5.1 Similarities……………………………………………………………...29

4.5.2 Differences…………………………………………………………......29

4.6 Conclusion………………………………………………………………….….30

General Conclusion

5. Conclusion……………………………………………………………………………..32

6. Recommendation……………………………………………………………………...32

7. Future work……………………………………………………………………...……32

References…………………………………………………………………….....35

Abstract……………………………………………………………………......

Table of figures:

Figure 1: Waterfall model …………………………………………………………………..7

Figure 2: Iterative model ……………………………………………………………………7

Figure 3: Spiral model ………………………………………………………………………8

Figure 4: V_model …………………………………………………………………………..8

Figure 5: Storing data as changes to a base version of each file …………………………15

Figure 6: Storing data as snapshots of the project over time ……………………………16

Figure 7: Working tree, staging area, and Git directory ………………………………..16

Figure 8: The structure of decision tree …………………………………………………..19

Figure 9: The structure of Random Forests ………………………………………………20

Figure 10: The structure of XGBoost ……………………………………………………..20

Figure 11: Packages and functions for XGBoost …………………………………………23

Figure 12: Packages and functions for RF ………………………………………………..23

Figure 13: Read data ……………………………………………………………………….24

Figure 14: Dropping data ………………………………………………………………….24

Figure 15: Release count attribute ………………………………………………………..24

Figure 16: Has download attribute ……………………………………………………….25

Figure 17: The parameters of XGBoost ………………………………………………….25

Figure 18: Number of trees classified …………………………………………………….26

Figure 19: The score of XGBoost ………………………………………………………....26

Figure 20: Confusion Matrix of XGBoost ………………………………………………..26

Figure 21: The importance features of XGBoost ………………………………………...27

Figure 22: The parameters of Random Forest …………………………………………...27

Figure 23: The Score of Random Forest ………………………………………………….28

Figure 24: Confusion Matrix of Random Forest …………………………………………28

Figure 25: The importance features of Random Forest ………………………………….28

General

Introduction

General Introduction……………………………………………………………………………………………...

 2

I. Introduction:
“No wonder we have failed projects, software practitioners cannot tell success From

failure.” Robert L Glass.

The study of multi-function teams is still common as teams are used to integrate

multifunction expertise to achieve higher performance in innovative projects. A stream of

relevant research shows that the difference is associated with only higher performance in

highly innovative situations projects. This research depends on the assumption that

organizations can freely choose integration mechanisms on a project-by-project basis.

However, this assumption is flawed in cases where Organizations, such as software

development laboratories, are committed to a team-based organization designed on a

permanent basis. Also software development teams working on projects with varying degrees

of innovation.

Today, groups are changing rapidly, as a prerequisite for doing business. However, in

this research, we will address the extent to which the quality of teamwork affects the

performance of software development, or rather software projects, whereas in the past most

studies have called for the importance of teamwork as a basis for software success.

Teamwork stimulates unity in the workplace, promotes friendship and loyalty among

team members, creates interrelated relationships and stimulates cooperation in the work

environment. Since individuals have different skills, talents and strengths, collaboration

motivates each employee to do his/her best and use his/her skills and abilities to achieve goals

for the benefit of the team and the company in the end. It also gives an enterprise or company

a variety of ideas. This environment allows individuals to share ideas and experiences, which

in turn creates a competitive advantage for achieving goals and objectives, and exchanges of

views and experiences enhance accountability and help make effective and rapid decisions.

Also in the study, which stressed the importance of communication between members of the

software team for its success, which considered factors affecting either its success or its loss?

While all the studies that have been done before come to our mind as problematic as the

wizards affecting do the software development team have.

A wide range of literature suggests importance. As a team, for successful software

projects. That is growth. The awareness that good teamwork increases the success of

innovative projects raises new questions: How can it be measured ?Why and how is teamwork

linked to the success of innovative projects? How strong the relationship between teamwork

and different measures of project success is like performance or team satisfaction? This is an

article that sets out a comprehensive concept of cooperation in the area of teams, and this is

one of the highlights that we will be talking about in the note.

Chapter1:

Introduction

Chapter1…...Introduction

 4

1.1 Introduction:

“The only truly successful project is the one that delivers what it is supposed to, gets

results, and meets stakeholder expectations.” James P Lewis.

The aim of this chapter is to introduce how literature defines success Software projects

and a detailed definition of teamwork and its relationship to the performance of the software

team.

1.2 What is teamwork?

The concept of teamwork depends on the team itself, and in general, it is the process by

which team member’s work together collaboratively to achieve a set of goals; That is, the

members of the work team will cooperate and use their different individual skills and talents

to provide constructive and useful feedback, and teamwork is also known as the work

performed. By a group of partners, and each of them performs aspecific individualtask and

exerts his best efforts and uses his skills, and this work is to achieve a common goal in which

the employee abandoned On personal prominence for the benefit of the company or institution

in which he works. Thus, teamwork is based on the division of work and tasks and their

coordination among them, while “Cohen (1999) says that teams replace individuals as basic

elements in the organization. In this century, the skill of teamwork was taught as an

educational concept. Essential in schools, so that students learn appropriate strategies to

develop professional skills as part of their educational process” [1].

It is defined in the International Encyclopedia of Social and Behavioral Sciences as: the

ability that team members have to work together, communicate effectively, and anticipate

each other's requests, In the context of speech, communication is an important element in

teamwork Communication is an important part of teamwork. Because it allows the exchange

of information, new ideas between people and a focus on effective communication through

good listening, which is a way to show respect, then, developing mutual trust within the team

environment.

In our research, this we encountered in previous research the importance of teamwork

and cycle .team work it was considered an important reason for achieving work goals, and

there are many actions that a single person cannot accomplish on time and with the required

effectiveness [2]. The following is the importance of teamworkConsolidating social

relationships, improving efficiency and productivity, acquiring new skills, diversifying ideas

and opinions, improving services and attracting talents [2].

Teamwork represents a skill of success, and it requires focus, clarity, codification,

objectivity, avoiding individualism and communication, and aims to develop problems and

solve them through problem testing, treatment planning, problem studies and group

discussion. Skills for success at work include skills in dealing and communicating with

others, [3]establishing good human relationships, and the ability to work as part of a team.

This ability became an urgent need to meet the demands of the world of work. Cooperation

between individuals (individuals and groups) and working with them has become a necessity

for life, whether you use direct or indirect communication skills.... In the context of speech,

we can talk about communication and its importance in teamwork.

Chapter1…...Introduction

 5

1.2.1The effect of communication on teamwork:

Communication affects teamwork in positive and negative ways. The

quantity and quality of communication within a team and from leadership affects teamwork.

The more collaboration your projects require the more assertive and intentional your

communication should be. [3] Every member of the team needs to take the initiative to

communicate. When a team is not actively communicating, their work is at stake. It is

important for everyone to learn how to communicate effectively to improve teamwork.

1.3What is Software Engineering?

Can be defined, as follows is the profession of high-quality software and applications.

Software engineering through configuring the program from its stages during problem

solving, then designing and writing the program until testing, testing and installing it to

implement its own maintenance process, and now we will talk about a historical brief on

software engineering.

1.3.1 Definition of software:

Is a description of all the integrated operations that the computer does, such as solving

mathematical and statistical problems, in addition to making the necessary correction to the

editorial formula and performing the operations requested by the user to the fullest extent. The

term software refers to everything that a computer consists of except for the physical

components of the computer.

 Is more than just a program code? A program is an executable code, which serves

some computational purpose. Software is considered collection of executable

programming code, associated libraries and documentations. Software, when made for

a specific requirement is called software product.

 Software is aintangible thing compared to other products. It a series of thousands or

millions of commands that require the computer to perform certain operations such as

displaying information, performing calculations, or storing data. This software is the

soul of the body in the computer system, and it is constantly expanding and increasing

in complexity, requirements and tasks that it performs. As for software engineering, it

is a branch of engineering thatis based on a set of foundations and rules aimed at

designing and developing programs in abundance and high quality that meet the needs

of users. This branch of engineering is distinguished by that it does not need a large

capital and therefore the loss is little, unlike the rest of the other branches of

engineering. It is not enough to find a good integrated software for one person’s work,

but rather requires a team of good engineers. It was necessary to find a science

concerned with software engineering to lay the foundations and standards that protect

this profession from intruders, so that a good program can be distinguished from a

good one.

Chapter1…...Introduction

 6

1.3.2 Engineering:

In the other hand, is all about developing products, using well-defined, scientific

principles and methods.

1.3.3 History of software engineering:

Software engineering was used as a theoretical concept from time to time in the late

1950s and early 1960s. As for the first official use of this term, it was in a conference held by

the Scientific Committee of the North Atlantic Treaty Organization in 1968 on software, and

this term has been spreading since then and has met with increasing interest in various

aspects. The conference was held to address what is known as the "software crisis", which

appeared due to the lack of a methodology of thinking (Software Development Process) when

building software, which led to the emergence of many errors during the process of building

and maintaining the software, and thus the software has become a lot of time to develop and

maintain, and a high financial cost. More than it is estimated, and after enduring the delay in

time and exceeding the budget, the software was of poor efficiency in accomplishing the

required functions.

1.4 Stages of building the initial system:

In software engineering, building a software system is not just writing code, but rather a

production process that has several basic and necessary stages to obtain the product, which is

the program at the lowest possible cost and the best possible performance. These stages are

called Software Lifecycle, some of which may seem unrelated to programming. There are

many visualizations and models in software engineering, that describe the process of

producing a program and the steps involved in it. In addition, this cycle is always subject to

development, as in addition to the classic courses, the concept of the flexible system appeared

(Agile Process), which abandoned the fixed model of the classical system in order to achieve

more freedom of movement for the project. The following is a presentation of one of the most

famous classic software system life cycles, the waterfall cycle.

1.5 Software Development Life Cycle:

Software Development Life Cycle, SDLC for short, is a well-defined, structured

sequence of stages in software engineering to develop the intended software product.

1.5.1 SDLC Activities:

SDLC provides a series of steps to be followed to design and develop a software

product efficiently. SDLC framework includes the following steps:

1) Waterfall Model:

Waterfall model is the simplest model of software development paradigm. All the

phases of SDLC will function one after another in linear manner. That is, when the first phase

is finished then only the second phase will start and so on.

Chapter1…...Introduction

 7

 2) Iterative Model:

This model leads the software development process in iterations. It projects the process

of development in cyclic manner repeating every step after every cycle of SDLC process.

 3) Spiral Model:

Spiral model is a combination of both, iterative model and one of the SDLC model. It

can beseen as if you choose one SDLC model and combined it with cyclic process (iterative

model).

Figure1. Waterfall model

Figure2. Iterative model

Chapter1…...Introduction

 8

Then one standard SDLC model is used to build the software. In the fourth phase of the

plan of next iteration is prepared.

4) V – model:

The major drawback of waterfall model is we move to the next stage only when the

previous one is finished and there was no chance to go back if something is Software

Engineering Tutorial 13 found wrong in later stages. V-Model provides means of testing of

software at each stage in reverse manner.

So these are the software development models and the formats that software engineers

use to build a specific program.

1.6The difference between programming and software engineering:

Programming is writing code, which some consider the most important process in

building programs. Programming is not concerned with things like the feasibility of the

program, the ability of the user to accept it, or even the viability of it. Whereas, software

engineering works on building the software system as an integrated project, and studies it

from all aspects: programmatic construction, technical support and maintenance, marketing

Figure3.Spiral model

Figure 4.V_model

Chapter1…...Introduction

 9

and sales, development and training on its use, thus it can build large systems for use in the

team work system while individual programming is unable to do so. The various fields that

are related to software engineering.

1.7 Conclusion:

The purpose of this chapter is to introduce the topic of the master’s thesis. Whereas, this

chapter also deals with research objectives, research questions, and in the second chapter we

will talk about some previous projects related to the topic of our memo as well as research

contribution.

1.8 Memory plan:

1.8.1 Chapter 1: Introduction:

In this chapter, we will deal with the basic concepts, which are teamwork, software

engineering, and the relationship between them.

1.8.2 Chapter 2: Related work:

In this chapter, we discussed open source projects that were previously completed and

related to the topic of our memo, and we mention some of those studies related to our work.

1.8.3 Chapter 3: Methodology:

In this chapter, we will talk about Git and try to understand how it is work, further, the

way that Git see its data and the difference between Git and the other systems. Finally, we see

the stream of snapshots method of Git. After that, we will jump into GitHub and we will see

their main pages and the main work of it.

We will describe our data, and the different models study.

1.8.4 Chapter 4: Impact analysis of teams:

In this chapter, we will choose the best environment for our work. After that, we will

apply our models on our data, and will see the result from different algorithms.

Finally, we will see the comparison of the result.

Chapter 2:

Related Work

Chapter 2…..Related Work

 11

2.1. Introduction:

 After the completion of the presentation of all the basic concepts of our project, we will

present in this chapter the findings of previous research and project studies related to the

Master’s thesis.

Many studies have been conducted in order to fully analyze the impact of teamwork on

the performance and quality of software development at the personal and work group levels.

Among the researchers studied, some achieved acceptable results. Here I quote some

projects that have inspired me as part of my master's degree to realize my project, which aims

to find out the factors affecting the software development team.

2.2. Related work:

 We have both Zerina Ibrahim _Md Gapar Md Johar_Nurmi Rafida Abdel Rahman by

studying the high quality of practical quality. [4]The project development project was

developed in various stages. Teamwork. Continuous resumption of work in the teamwork

process. Application development the framework, which is the User Requirements Policy

Approach (URS), System Requirements (SRS), Module Planning, Planning Base Data, User

Acceptance Test (UAT), and Final Acceptance Test (FAT) for completing phases during

development. Our current OS applications are considered on readiness. This research expands

the need for findings to empiricism from the commercial, commercial, commercial, and

commercial systems. The validation process is teamwork at work in order to work on the way

to work. This research found that it greatly supports the skill of teamwork in the OS the new

proposed ASDF method is an important part of their present research. With regard to the

system development objectives, a verification of the main problem of extending the project

schedule is reached demonstrate and accomplish teamwork and reduce significant team

cooperation and understanding in system development. Therefore, determine the project

development in progress Equalizer in Oder to control and increase the quality of skills in

cooperation and understanding of teamwork in system development. The current survey found

that TWQ and team performance were most related when team members evaluated these two

concepts. Moreover, the relationship between TWQ and team member success -Satisfaction

with work and learning - loneliness. One explanation is team members regard TWQ and team

members as success as concepts that cannot be distinguished, this is what the authors of the

research reached

Another research [7], Junaid Maqsood, Iman Eshraghi, and Syed Sarmad Ali have

conducted a research essentially identifying success and unsuccessful projects on GitHub

from a sample of 5,000 randomly selected projects in a number of randomly selected

languages (Java,PHP, JavaScript, C # / C, HTML). We have selected 1000 projects

For each of these languages through the publicly available GitHub API has optimized

their dataset and applied various machine-learning algorithms to achieve their goal. They

initially executed several queries against the dataset and found meaningful relationships and

correlations between some of the traits brought in that had an extension of effect on the

popularity of these projects. Later we can develop an application that will determine the

success or failure of an open source project file. the most popular project currently widely

used repository and hosting is GitHub. Having Git as a primary component of its architecture,

GitHub makes the ideal place to conduct such research. In their work, they randomly selected

projects from a number of different languages, which gave them the opportunity to not only

Chapter 2…..Related Work

 12

touch the tip of the iceberg for open source projects, but also touch the gray area, by randomly

selecting the project and they applied an appropriate algorithm to extract the data. They

developed a program that explains the hidden relationship structure from their training data

model. As determined whether, a particular project has more chances of success, in the way of

development or vice versa.

In this, research [5] authors have examined projects’ success by two measures of

popularity and developer activity for 283 OSS projects from Source Forge over a period of 3

years between 2000 and 2004. They have restricted their sample to projects written wholly or

partially in C++ programming language and designed for Microsoft Windows operating

system. They have defined two sets of intrinsic and extrinsic factors involved as cues.

Intrinsic cues represent product-related attributes. Extrinsic cues on the other hand are not part

of the physical product. Intrinsic cues have a major role in product selection decision-making

process, however consumers depend more on extrinsic cues for risk reduction. Researchers

made hypotheses about the success of open source projects and tried to evaluate, the ones that

hold true. They originate that project licensing has a major impact on the popularity and

developer’s activity. Commercial exploitation is one of the fear that stops developer to

contribute towards project. The research also identified that the projects, which have a larger

user base, tends to be more popular, however negative point founds in developers at a certain

point, when it increases. Results [7] show the popularity in the number of language

translations of a project (mostly in regards with the UI). Another finding is the positive

correlation between the correct delegation of responsibilities to developers who are capable of

doing it and the higher developer activity as a result. Since major releases are more stable,

they have found out that developers prefer major releases over minor ones. Their results show

that different factors over time can have different effects on the success of these projects.

In another research [6] authors have studied the impact of App churn on the App

success through the analysis of 154 Android Apps that have a total of 1.2k releases. They

have found that high App churn leads to lower user ratings and less stable apps will result in

lower ratings as well. They have also investigated the link between how frequently API

classes and methods were changed by App developers relative to the amount of discussion of

these code elements on Stack Overflow.

 In this paper [8] authors have conducted a research, in order to find the success factors

of 5000 most-downloaded Open Source projects at sourceforge.net. They have defined a set

of parameters including rank, download, activity, members, translation, operating systems,

license, programming languages. They have applied the Association Rule Data-mining

technique to find rules determining success factor using Weka Data-mining tool. They have

concluded that increasing activity of project, along with the high rank of it, the higher number

of participants in the project and the age of the project are all influencing factors in success of

open source projects.

Chapter 2…..Related Work

 13

2.3. Contribution:

 Regardless of previous research on studying and analyzing, the success or failure factors

of software project.we have seen in every research conducted by researchers on the latter. The

factors affecting its success have not identified. We have chosen in our work a database for

this project, and we have implemented an analysis and classification program through an

existing database. From them, we extracted some of the factors that often affect the success or

loss of the project we have used in our research the method of analysis and classification

using Python program we used the random forest algorithm as our first classifier .In addition

to using, the Expression Blend included in the Visual Studio package that was used

specifically for designing a simple graphical user interface . the goal of our research is to

design a predictive algorithm by using the statistics of any project to predict whether it is

successful or losing and to provide feedback on the projects.

2.4 Conclusion:

 This chapter introduces the existing models, related to the research thesis. And the research

contribution we made, and in the next chapter we'll talk about Git and Github, more deeply as

we define the relationship between Git and Github and describe our dataset related to

teamwork. We will look at some of the methods and algorithms that we use. We depended on

it to reach our goal.

Chapter 3:

Methodology

Chapter 3……..………………..………………………………………………..………………… Methodology

 15

3. Methodology:

3.1 Introduction:

In this chapter we will take a step further with Git and Github, we look deeper and try to

have detailed information that lead us to understand the Git and how it is working after that

we define the relation between Git and Github next we investigate Github and their features.

Our aim was to identify the most features that impact of teamwork' s software projects,

so we need a dataset that have teamworks' data of each project. in section 3.3 we will show

you our dataset description. Finally we will see some methods and algorithms that lead us to a

better understanding.

3.2 Git and how it works:

“Git is a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency.” [9]

“Git is a distributed version-control system for tracking changes in source

code during software development It is designed for coordinating work among programmers,

but it can be used to track changes in any set of files. Its goals include speed, data integrity,

and support for distributed, non-linear workflows

Git was created by Linus Torvalds in 2005 for development of the Linux kernel, with

other kernel developers contributing to its initial development since 2005, Junio Hamano has

been the core maintainer. As with most other distributed version-control systems, and unlike

most client–server systems, every Git directory on every computer is a full- fledged repository

with complete history and full version-tracking abilities, independent of network access or a

central server Git is free and open-source software distributed under GNU General Public

License Version 2.”[10]

Systems like (CVS, Subversion, Perforce, Bazaar, and so on) store information as a list

of file-based changes. And think of the information they store as a set of files and the changes

made to each file over time

Figure5. Storing data as changes to a base version of each file

Chapter 3……..………………..………………………………………………..………………… Methodology

 16

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a

series of snapshots of a miniature filesystem. With Git, every time you commit, or save the

state of your project, Git basically takes a picture of what all your files look like at that

moment and stores a reference to that snapshot. To be efficient, if files have not changed, Git

doesn’t store the file again, just a link to the previous identical file it has already stored. Git

thinks about its data more like a stream of snapshots.

Figure6. Storing data as snapshots of the project over time

Git has three main states that your files can reside in: modified, staged,

and committed: This leads us to the three main sections of a Git project: the working tree, the

staging area, and the Git directory.

Figure7. Working tree, staging area, and Git directory

Chapter 3……..………………..………………………………………………..………………… Methodology

 17

3.3 GitHub:

GitHub is a web-based version-control and collaboration platform for software

developers. Microsoft, the biggest single contributor to GitHub, initiated an acquisition of

GitHub for $7.5 billion in June, 2018. GitHub, which is delivered through a software-as-a-

service (SaaS) business model, was started in 2008 and was founded on Git, an open source

code management system created by Linus Torvalds to make software builds faster.

Git is used to store the source code for a project and track the complete history of all

changes to that code. It allows developers to collaborate on a project more effectively by

providing tools for managing possibly conflicting changes from multiple developers. GitHub

allows developers to change, adapt and improve software from its public repositories for free,

but it charges for private repositories, offering various paid plans. Each public or private

repository contains all of a project's files, as well as each file's revision history. Repositories

can have multiple collaborators and can be either public or private(Posted by: Margaret

Rouse).

3.3.1 Forking a Repo:

“Forking” is when you create a new project based off of another project that already

exists. This is an amazing feature that vastly encourages the further development of programs

and other projects. If you find a project on GitHub that you’d like to contribute to, you can

fork the repo, make the changes you’d like, and release the revised project as a new repo. If

the original repository that you forked to create your new project gets updated, you can easily

add those updates to your current fork.

3.3.2 Pull Requests:

You’ve forked a repository, made a great revision to the project, and want it to be

recognized by the original developers—maybe even included in the official project/repository.

You can do so by creating a pull request. The authors of the original repository can see your

work, and then choose whether or not to accept it into the official project. Whenever you issue

a pull request, GitHub provides a perfect medium for you and the main project’s maintainer to

communicate.

3.3.3 Social networking:

The social networking aspect of GitHub is probably its most powerful feature, allowing

projects to grow more than just about any of the other features offered. Each user on GitHub

has their own profile that acts like a resume of sorts, showing your past work and

contributions to other projects via pull requests.

Project revisions can be discussed publicly, so a mass of experts can contribute

knowledge and collaborate to advance a project forward. Before the advent of GitHub,

developers interested in contributing to a project would usually need to find some means of

contacting the authors—probably by email—and then convince them that they can be trusted

and their contribution is legit.

Chapter 3……..………………..………………………………………………..………………… Methodology

 18

3.3.4 Changelogs:

When multiple people collaborate on a project, it’s hard to keep track revisions—who

changed what, when, and where those files are stored—. GitHub takes care of this problem by

keeping track of all the changes that have been pushed to the repository.

3.4 Dataset description:

To create any sort of algorithm or model we were need a good dataset that let us know

how the software teams work in their projects. We wanted to get a huge dataset from GitHub

GHTorent contained a huge number of GitHub project’s metadata [11]. After further

researches, when we was searching for our data, we find that almost data does not contain the

attributes that might help us take our research a step further, and contained different data

about what we want..

We find a dataset [12] it is available and free for researchers and student in their site

[13]. This dataset contained five randomly selected languages (C and C#, Java, HTML,

JavaScript and PHP) from the popular list projects of GitHub and then for each language has

1000 randomly selected projects from GHTorent big data. We choose 15 different attributes

including the Name of the project, Author, Language, URL along with the sum of its

contributes, commits, stars, forks, branches, watchers, pull-requests, total issues, open issues,

releases number and the Boolean attribute telling if it had any download file specified or not.

The collected dataset was then formatted in file CSV.

3.5 Models Study:

When we finished going deeper through the dataset’ depths and discovered a lot of

things which are amazing notes we can start with it, we are now ready to apply our model.

3.5.1 Random Forest:

3.5.1.1 Decision Trees:

 To understand the random forest model, we must first learn about decision trees, the

basic building block of a random forest. We all use decision trees in our daily life. Decision

tree is one of the most popular machine learning algorithms used all along, Decision trees are

used for both classification and regression problems.in this paper we talk about classification

problems. [14]

A decision tree is a flowchart-like tree structure where an internal node represents

feature (or attribute), the branch represents a decision rule, and each leaf node represents the

outcome. The topmost node in a decision tree is known as the root node. It learns to partition

on the basis of the attribute value. It partitions the tree in recursively manner call recursive

partitioning. This flowchart-like structure helps you in decision making. It's visualization like

a flowchart diagram which easily mimics the human level thinking. That is why decision trees

are easy to understand and interpret.[15]

Chapter 3……..………………..………………………………………………..………………… Methodology

 19

Figure8.The structure of decision tree

3.5.1.2 Random Forest:

Random forest is a supervised learning algorithm which is used for both classification

as well as regression. But however, it is mainly used for classification problems. As we know

that a forest is made up of trees and more trees means more robust forest. Similarly, random

forest algorithm creates decision trees on data samples and then gets the prediction from each

of them and finally selects the best solution by means of voting. It is an ensemble method

which is better than a single decision tree because it reduces the over-fitting by averaging the

result.[16]

3.5.1.2.1 Working of Random Forest Algorithm:

We can understand the working of Random Forest algorithm with the help of following

steps:

 Step 1 − First, start with the selection of random samples from a given dataset.

 Step 2 − Next, this algorithm will construct a decision tree for every sample. Then it

will get the prediction result from every decision tree.

 Step 3 − In this step, voting will be performed for every predicted result.

 Step 4 − At last, select the most voted prediction result as the final prediction result.

The following diagram will illustrate its working:

Chapter 3……..………………..………………………………………………..………………… Methodology

 20

Figure9.The structure of Random Forests

3.5.2 Extreme Gradient Boosting:

XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting”

originates from the paper Greedy Function Approximation: A Gradient Boosting Machine, by

Friedman.

Ever since its introduction in 2014, XGBoost has been lauded as the holy grail of

machine learning hackathons and competitions. From predicting ad click-through rates to

classifying high energy physics events, XGBoost has proved its mettle in terms of

performance – and speed.

Gradient boosting is an important tool in the field of supervised learning, providing

state-of-the-art performance on classification, regression and ranking tasks. XGBoost is an

implementation of a generalised gradient boosting algorithm that has become a tool of choice

in machine learning competitions. This is due to its excellent predictive performance, highly

optimised multicore and distributed machine implementation and the ability to handle sparse

data.

Figure10.The structure of XGBoost

Chapter 3……..………………..………………………………………………..………………… Methodology

 21

3.5.2.1 Tree boosting algorithm:

XGBoost is a supervised learning algorithm that implements a process called boosting

to yield accurate models. Supervised learning refers to the task of inferring a predictive model

from a set of labelled training examples. This predictive model can then be applied to new

unseen examples. The inputs to the algorithm are pairs of training examples

(x→0,y0),(x→1,y1)⋯(x→n,yn) where x→ is a vector of features describing the example and

y is its label. Supervised learning can be thought of as learning a function F(x→)=y that will

correctly label new input instances.

Supervised learning may be used to solve classification or regression problems. In

classification problems the label y takes a discrete (categorical) value. For example, we may

wish to predict if a manufacturing defect occurs or does not occur based on attributes recorded

from the manufacturing process, such as temperature or time, that are represented in x→. In

regression problems the target label y takes a continuous value. This can be used to frame a

problem such as predicting temperature or humidity on a given day.

XGBoost is at its core a decision tree boosting algorithm. Boosting refers to the

ensemble learning technique of building many models sequentially, with each new model

attempting to correct for the deficiencies in the previous model. In tree boosting each new

model that is added to the ensemble is a decision tree.

3.6 Conclusion:

This chapter provided different research methods, different strategies of inquiry, and a

discussion of how to choose research approach and strategy of inquiry. Based on the

discussion, the design of the research in this master thesis was presented.

The research in this master thesis used a classification research approach as strategy of

inquiry and identifies the success projects factors. For data collection, all the projects and

their information was collected from Github web site, the missing data were verified to get

started with the algorithms.

For methods used, two methods were used: Random Forest, XGBoost.

Chapter 4: Impact

analysis of teams

Chapter 4……………………………………………………………………………… Impact analysis of teams

 23

4. Impact analysis of teams:

4.1 Introduction:

To achieve our aim, which is: figure out the most important success factors that affected

on the open source software success, among GitHub projects we analyzed the projects and try

to find the most affected attribute using different tools?

4.2 Auxiliary environment to work:

First move, our data was prepared for classification, we decide that we can use python

algorithm for our research, because of his simplex and it support the classification, after that

we chose Anaconda environment to be our main program which allow us to choose from

different platforms to keep working with.

 After we have looking carefully about the best platform for our research we found that

Jupyter NoteBook is the best solution for our work aim. It has almost the packages and the

function that we need so we choose it for this reason.

4.3 Implementation of models:

Our dataset has 15 attributes including the Author, Language, Project Name and URL,

which we don’t need it for our classification because they have no effect to the project success

so we need to move them out.

After that we check if we have any missing data, lucky we, there is no messing data. So

we are ready to apply our algorithms.

For both XGBoost and Random Forest, we need to call a few packages, each function

has a role for our work process. As we see in figures below the packages and functions we

need it.

Figur11. Packages and functions for XGBoost

Figur12. Packages and functions for RF

Chapter 4……………………………………………………………………………… Impact analysis of teams

 24

We create a variable to read our data into, for this process we apply pandas packages

like we see below:

Figur13. Read data

After we drop the bad attributes our data is looking good to start:

Figur14. Dropping data

After that, we need to clean our data. We have the Release Count need to be fixed, if

any team don’t have a release then we fix 0 to their release count else if they have more than 1

release we fix it 1 we consider that 1 value refer to success team because they reach their aim

and get a release.

Also, Has Download attribute which has a Boolean values (True, False) we turn it into

binary (1, 0) values because this easy for the python and the algorithms to understand.

Figur15. Release count attribute

Chapter 4……………………………………………………………………………… Impact analysis of teams

 25

Figur16. Has download attribute

4.4 Evaluation and feedback:

In this section we will apply our algorithms.

4.4.1 XGBoost model:

First hand, we applied the XGBoost model on our dataset with different parameters until

we get a higher score:

Figure17.The parameters of XGBoost

This classification builds a 15 tree:

Chapter 4……………………………………………………………………………… Impact analysis of teams

 26

Figure18. Number of trees classified

With a score equal to 74%

Figure19.The score of XGBoost

Finally our objective is the answer of the question which attribute has the most affected

on the success of the software project?

To answer this question we need to look at the Releases attribute, we consider that any

project has more than one release is a successful project. Furthermore, we split our data into

two parts the first for training set the second for testing data. Our best accuracy was 74%

Figure20.Confusion Matrix of XGBoost

Chapter 4……………………………………………………………………………… Impact analysis of teams

 27

Among our testing data 200 projects, the matrix confusion shows that XGBoost classify

177 projects as they have a release and they did have. Also 8 projects didn’t have a release

and this is true, it consider that 61 projects have releases the fact they didn’t have a release

and 4 projects didn’t have a release which is a not true.

So, we have almost 10 attribute we would like to know which is the most affected

attribute ? For that we let the XGBoost tell us

Figure21.The importance features of XGBoost

In the figure above we see that both XGBoost model classify the Total Issues as the

highest affected attribute with 0.25.

We note that Pull Request, Commits, and Contributors attributes have classified as they

have high affect on the success factor,

Otherwise, numbers of open issues, watchers, stars, branches and forks have a low

affect on the success factor.

Finally, the download attribute has no affect on the success factor.

4.4.2 Random Forest:

We applied the random forest classifier model on our data as we see the parameters

below:

Figure22.The parameters of Random Forest

Chapter 4……………………………………………………………………………… Impact analysis of teams

 28

This classification gives us score equal to 75.5%

Figure23.The score of Random Forest

The confusion matrix as we see:

Figure24.Confusion Matrix of Random Forest

The random forest model has classify 139 projects as they have release which is true,

also 12 projects they didn’t have one, in the other hand 39 projects classified as they have a

release but in true data they don’t have it, furthermore 10 projects which they have a release

classified as they don’t have it from our testing data 200 projects.

As usual we need to figure out which is the most imported attribute on the success of

the software projects we found that:

Figure25.The importance features of Random Forest

Chapter 4……………………………………………………………………………… Impact analysis of teams

 29

In the figure above we see that both Random forest model classify the Total Issues as

the highest affected attribute.

We note that both Pull Request, Commits, Stars, Forks and Watchers attribute classified

as they have high affect on the success factor,

Otherwise, numbers of contributors, branches and open issues have a low affect on the

success factor.

Finally, the download attribute has no affect on the success factor.

4.5 Comparison of the results:

To get better results, we think that we can make a comparison between our feedbacks,

so in this section we try discover the similarities and the differences between the feedbacks.

4.5.1 Similarities:

Both result show that the Total Issues is the most affected attribute and this is a logical

conclusion, because when a team works on a project it’s very common that their members

have issues, in github for example have a page called issues that let any member to define

his/her issue and this what we called an open issue the manger of the team read the issue and

he must figure out the problem, and he can help (directly, indirectly) the members and this

what github called issue closed.

Also, any member of the team can help his team member, it is true that he lose some

time on his main work but he win much time for the project and the team progress. This what

we called collaboration.

Second place we see that both algorithms consider Pull Request and Commits have a

high affected on the success of teams, the frequency of the commits affect on the number of

the pull request, if number of commit increase then the number of the pull request also

increase, the opposite is true, instead of a team do all of the work and commit it one time it is

better of them commit each part of their work, and this cost the increase of the pull request

number.

In the third place we note that Open Issues and Branches considered as they have low

importance on the project release, like we knew the issues has an important value on the

success of the project, github let any user to open an issue if he is a member or not, the

manager of the project see the issues and he decides if he must work on it or not, the most of

the open issues came from users not from members and this has low affect on the project

release. And the number of branches also has different values from a project to another so it

has low importance.

 Finally, Has Download the project or not has no affect at all because it simple if you

need a project you can download it.

4.5.2 Differences:

There are differences in the classification of the algorithms, the Stars, Forks,

Contributors and Watchers each model has his word to say.

Chapter 4……………………………………………………………………………… Impact analysis of teams

 30

XGBoost model consider Contributors have a high affect on the success factor .Stars,

Forks and Watchers are considered as they have a low affect. But the random forest see that

number of stars, forks and watchers has a high affect on the project success also the

contributors considered as they have a low important in this model.

4.6 Conclusion:

This chapter presented the results and a discussion of the findings in relation to the

research objectives of this study. The first research objective was to identify success

attributes for software projects and products. The identified success attributes are:

First place:

 Total issues

 Commits

 Pull request

Second:

 Stars

 Forks

 Branches

 Watchers

 Contributors

The second research objective was to identify success factors for the software projects.

The identified success factors are:

 Good Communication

 Collaboration between members

 An experienced leader

 Time response

 Problem attention

 Problem definition

Conclusion

General conclusion…………………………………………………………………………………………………

 32

5. Conclusion:

 Teamwork is increasingly applied in many organizations in an effort to improve

performance, yet empirical evidence demonstrating the relationship between team

effectiveness and project success is scarce. Consequently, this study has undertaken an

empirical assessment of the linkages between team effectiveness and project success on

Github's open software projects.

From a sample of 5000 projects on GitHub, This study has provided an insight into the

various factors that affect teamwork and project success. The key conclusions of the study

are: time response, collaboration, problem attention, clear processes and roles ensure that

projects are done right; and leadership competences correlate directly with project success.

Without these factors, it is highly likely that an application of teamwork will be

counterproductive.

 From the results of the XGBoost and Random forest we found that number of stars of

the project is linearly correlated with number of forks and watchers in these projects. Number

of Commits is linearly correlated with number of pull request also we found that the

frequency of commits and number of pull request affect on the project success. Also we can

conclude that the download of the project has no affect at all on the project success.

Finally, it was broadly perceived among the sample that potential impacts of teamwork

were significantly greater on the success of the project and that is why complex projects today

utilize teams as part of the project management.

6. Recommendation:

Based on the results of the algorithms and the testing of the hypotheses, the authors

recommend the following:

 It is recommended that having well defined and realistic goals, roles, issues,

responsibilities and appropriate leadership are necessary for successful

software projects.

 It is recommended that leader of the team should be suitable and competent

enough to assist team members in effective decision making.

 It is advisable that roles, issues and responsibilities should be well defined and

assigned to qualified members.

 The objectives and goals should be clearly defined at the onset of a project.

 For the success of the project, the team should handle all its conflicts

constructively and respectfully.

 Team members should treat, collaborate and support each other honestly,

sincerely and with respect and trust.

 Communication is a very important aspect for effective teamwork that leads to

project success.

 7. Future work:

 When conducting this study, other questions were found interesting for future

studies. Therefore, these questions are presented below:

General conclusion…………………………………………………………………………………………………

 33

Data collection: our data was to small when we look on GitHub that we collected from, we talk

about a huge dataset that it is free to download it from GHTorent, the main cause we didn’t fetch our

data from this site is too big for our abilities.

Models study: we try two different algorithms on our data and we get a big success on our

research, what if we apply more than two algorithms? What kind of the results we will get? And this is

a big if.

Accuracy: the reason behind our low accuracy which is equal to 75.5% was our data sorted and

we only have tested on 10 attributes what if we search about more data details? We think that our

accuracy will increase.

Prediction Interface: the time for our research is not lounger enough to create our application

that can let any leader of a team pass the information of his/her team on our application and can easily

predict if the project will get success or not and this will help the software engineering for the best.

So, after we think of these questions, we will get the full GHTorent data with the max

information we can, and use them to create our clean dataset, after that we choose the best algorithms

for classification (more than 8) until we get a higher accuracy (between 95% to 99%) we will work

finally on our prediction application.

References

References………………………………..…………………………………………………………………………

 35

[1] When teamwork really matters: task innovativeness as a moderator of the teamwork–

performance development projects Martin Hoegl a,∗, K. Praveen Parboteeah b,1, Hans Georg

Gemuenden relationship in software

[2] The Quality of Teamwork on Methodology in Software Development Workflow Zairina

Ibrahim1*, Md Gapar Md Johar2 , Normy Rafida Abdul Rahman3

[3] The Impact of Teamwork on Work Performance of Employees: A Study of Faculty

Members in Dhofar University Shouvik Sanyal1* , and Mohammed Wamique Hisam

[4] The Quality of Teamwork on Methodology in Software Development Workflow

[5] [Midha, V., and Palvia, P. 2012. Factors affecting the success of Open Source Software.

Journal of Systems and Software 85 (4), (2012), 895-905.]

[6] [Guerrouj, L., Azad, S., and Rigby, P. C. 2015. The influence of App churns on App

success and StackOverflow discussions. In Y.-G. Guéhéneuc, B. Adams & A. Serebrenik

(eds.), SANER (p./pp. 321-330), : IEEE. ISBN: 978-1-4799- 8469-5

[7] Success or Failure Identification for GitHub’s Open Source Projects

[8] [Istiyanto, J. E., and Wahju Rahardjo Emanuel, A. 2009. Success Factors of Open Source

Software Projects using Datamining Technique. 1st Information and Communication

Technology International Seminar, July 2009. ISSN 2085- 692X]

[9] https://git-scm.com/

[10] https://en.wikipedia.org/wiki/Git/

[11] The GHTorent dataset and tool suite by Georgios Gousios

[12] Success or Failure Identification for GitHub’s Open Source Projects by Junaid Maqsood

and Iman Eshraghi

[13] https://junaidmaqsood.com/success-or-failure-identification-for-githubs-open-source-

projects/

[14]Chapter 4: Decision Trees Algorithms by MadhuSanjeevi(Mady)Oct 6, 2017

[15] Decision Tree Classification in Python by AvinashNavlaniDecember 28th, 2018

[16]https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_

python_classification_algorithms_random_forest.htm

[17] Accelerating the XGBoost algorithm using GPU computing by Rory Mitchell, Eibe

Frank July 24, 2017

Abstract:

Successful or failed software projects have been discussed in literature for many years.

Successful software projects are often defined as meeting business objectives, deliver on time

and within budget, and meeting requirements. Different factors that contribute to software

project success have been identified in the literature. Some of the most common factors that

lead to software project success are: user involvement, management support, realistic

requirements, and having good estimations. However, there are different opinions about what

a successful software project is.

Since there are different factors that affect on the success of the project, this study

investigated in factors that affect on the GitHub projects. In addition, a comparison between

XGBoost and Random Forest result classification. The result shows that good communication

and collaboration between members, an experienced leader, problem attention and time

response have a higher affects on the project success.

 نبذة مختصرة:

تمت مناقشة مشاريع البرامج الناجحة أو الفاشلة في الأدبيات لسنوات عديدة. غالباً ما يتم تعريف مشاريع البرامج

وتلبية المتطلبات. تم تحديد العوامل الميزانية،والتسليم في الوقت المحدد وفي حدود العمل،الناجحة على أنها تحقيق أهداف

المختلفة التي تساهم في نجاح مشروع البرمجيات في الأدبيات. بعض العوامل الأكثر شيوعًا التي تؤدي إلى نجاح مشروع

، هناك البرنامج هي: مشاركة المستخدم ، ودعم الإدارة ، والمتطلبات الواقعية ، والحصول على تقديرات جيدة. ومع ذلك

 آراء مختلفة حول ماهية مشروع البرمجيات الناجح.

نظرًا لوجود عوامل مختلفة تؤثر على نجاح المشروع ، فقد بحثت هذه الدراسة في العوامل التي تؤثر على

التواصل وتصنيف نتائج الغابة العشوائية. تظهر النتيجة أن XGBoost. بالإضافة إلى ذلك ، مقارنة بين GitHubمشاريع

 لها تأثير كبير على نجاح المشروع. جابةقت الإالتعاون والاهتمام بالمشكلة ووالقيادة الناجحة

Résumé :

Les projets de logiciels réussis ou échoués sont évoqués dans la littérature depuis de

nombreuses années. Les projets logiciels réussis sont souvent définis comme la réalisation des

objectifs commerciaux, la livraison à temps et dans les limites du budget, et la satisfaction des

exigences. Différents facteurs contribuant au succès du projet logiciel ont été identifiés dans

la littérature. Certains des facteurs les plus courants qui mènent au succès d'un projet logiciel

sont: l'implication des utilisateurs, le soutien de la direction, des exigences réalistes et de

bonnes estimations. Cependant, il existe différentes opinions sur ce qu'est un projet logiciel

réussi.

Puisqu'il existe différents facteurs qui affectent le succès du projet, cette étude a

examiné les facteurs qui affectent les projets GitHub. En outre, une comparaison entre la

classification des résultats XGBoost et Random Forest. Le résultat montre que la

communication, collaboration, l'attention aux problèmes et le temps de réponse ont un impact

plus important sur la réussite du projet.

