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INTRODUCTION

Ordinary differential equations appear in many interdisciplinary areas and are the favored
language for the study of various natural phenomena that are employed extensively in natural
sciences, engineering, and technology. At present, ordinary differential equations are integrated
into any standard undergraduate science curriculum, while continuing to be the subject of intensive

research.

In general, most of the nonlinear differential equations cannot be solved by terms of elementary
functions. The qualitative or geometrical theory of differential equations is being used to analyze
differential equations whose explicit solutions are hard to find. These tools are originated by Henri

Poincaré in his work on differential equations at the end of the nineteenth century [1].

The main goal of this thesis is the global analysis of the behavior of solutions, under the point of
view of the qualitative or geometrical theory of nonlinear planar differential systems, especially those
depend on a parameter or several parameters then the problem is what’s happened if our differential
equation depends on a parameter and this parameter change?. In this work we address the question
of how the qualitative behavior of a differential equation change as we change the function of vector

field, here we are on the presence of bifurcation.

The qualitative theory offers two types of tools that permit the analysis of a differential equation.
On the one hand, there are tools of local character, some of these tools such as the Hartman-Grobman
Theorem, enable describing the singular points of the dynamical system; other techniques are used
to the analysis of the flow in the neighborhood of singular points or periodic orbits. We should also
mention the Poincaré-Bendixson Theorem, which allows the analysis of the ar and w-limit sets in
planar dynamical systems, i.e., the values to which the orbits of the dynamical system tend, as the
time approaches the extreme values in the interval of definition. Furthermore, the qualitative theory
contains tools of the global portraits, such as the study of the invariant algebraic curves which are
invariant by the flow of the differential system, which the calculation of a sufficient number of them

enables the calculation of first integrals.



Now, we describe the structure of this thesis which is divided into three chapters, in the first one
we present the necessary background information to perform our study as singular points and their
nature, Hartman-Grobman theorem, Poincaré map, phase portraits, structural stability (see [2]).

Chapter 2 begins with our examination concern the Hopf bifurcations and bifurcations of limit
cycles from a multiple focus and bifurcations at non-hyperbolic periodic orbit [7], we present theorems
of creation of limit cycles from a multiple focus, bifurcations in the neighborhood of a multiple focus
of multiplicity m = 1.

In chapter 3 we tackle the Hopf bifurcations and classifies all phase portraits of a family of rigid

systems under the form
& = —y+x(a+bx® +cy®), §==z+y(a+bz?+cy?),

where b? + ¢? is not zero. Moreover, it distinguish between center and focus for these systems.




CHAPTER |

INTRODUCTION TO BIFURCATION THEORY

In this chapter we adress the question of how the qualitative behavior of the ordinary differential
equation change as we change parameters. If the qualitative behavior remains the same for all nearby

vector fields,
= f(x). (L1)

then the system (I.1) or the function f said to be structurally stable, if a vector field f € C*(E) is
not structurally stable, it belongs to the bifurcation set in C* (E).

Our aim is to give the basic results to study a what we called a bifurcation, firstly we mention in
which case we have bifurcation after that we need to define what’s we mean by structurally stable
or unstable and we end the chapter by a technique for studying the stability and bifurcation of the

periodic orbits. This is done by the so-called "Poincaré map".

I.L1 Some concepts of differential equations

A good place to start analyzing the nonlinear system (Z.1) is to determine the equilibrium points

of (I.1) and describe the behavior of this system near its equilibrium points.

Definition 1.1 (Equilibrium points). A point o € R" is called an equilibrium point or critical point

of (I.1) if f (o) = 0.

Definition 1.2. An equilibrium point xo of (1.1) is called a sink if all of the eigenvalues of the matrix
D f(xo) have a negative real part, it is called source if all of the eigenvalues of D f (o) have a positive

real part. And it is a saddle if there exists an eigenvalue positive, and there exists another one negative.

Definition 1.3 (Flow). Let E be an open subset of R™ and f € C*(E). Forxo € E, let ¢¢(xo) be

the solution of the initial value problem (I.1) with xo on its maximal interval of existence I (xq). Then



L1. Some concepts of differential equations

the set

{t € I(wo) : Pe(wo) = @(t, o)},
is called the flow of the differential equation (I.1). Which satisfies the following basic properties for all
xin R"
® po(x) =,
o $u(Ps(x)) = brys(x) foralls, t € R,
o ¢i(p-i(x)) = ¢—t(Pt(x)) = x forallt € R,

The same properties preserve for a linear system have the flow ¢, = e defined from R™ to R".

In general, the study of the local behavior of the flow near an equilibrium point x¢ is quite
complicated. Already the linear systems show different classes, even for local topological equivalence.
We say that D f () is the linear part of the vector field f at @¢. There are many types of equilibrium
points of a differential equation (I.1) that classify from the eigenvalues of D f (o).

.1.1 Hyperbolic and non-hyperbolic equilibrium points
Hyperbolic equilibrium points

Definition 1.4 (Hyperbolic equilibrium point). The equilibrium xq is said to be hyperbolic if all

eigenvalues of the Jacobian matrix D f (o) have non-zero real parts.

Hartman-Grobman theorem

The Hartman-Grobman theorem is one of the very important results in the qualitative theory of
ordinary differential equations. The theorem shows that near a hyperbolic equilibrium point x¢, the

nonlinear system (I.1) has the same qualitative structure as the linear system
r= Ax. (1.2)

with A = D f (), in what follow we shall assume that the equilibrium point & has been translated

to the origin.

Definition 1.5 (Topologically equivalent). two autonomous systems of differential equations are said
to be topologically equivalent in a neighboorhood of the origin Ns(0) or have the same qualitative
structure near the origin if there is a homeomorphism H mapping an open U containing the origin onto
an open set V' containing the origin which map trajectories of the first system in U to the second one in

V' and preserves their orientation by time. cf. Figure (I1.1), for more details see [2].

7 Chapter 1. Introduction to bifurcation theory
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—

H

Figure L.1: Topologically equivalent.

Theorem 1.1. Let E be an open sub set of R™ containing the origin, let f € C*(FE), and ¢; be the
flow of the nonlinear system (I.1). Suppose that the origin is an equilibrium point of (I.1) which
mean f(0) = 0 and that the matrix D f(0) has no eigenvalue with zero real part. Then there exists
H : U — V Homeomorphism such that for all xy € U, there is an open interval Iy C R
containing zero such that for allzy € U andt € I

H o ¢(xzp) = eAtH(a:O);

i.e, H maps trajectories of (I.1) near the origin onto trajectories of (I.2) near the origin and preserves

the parametrization by time.

The proof consists of five steps, see [2] and [9].

By the Hartman-Grobman theorem the nature and stability of any hyperbolic equilibrium point
x¢ of the nonlinear system (I.1) is determine by the signs of the real parts of the eigenvalues A; of
the matrix D f(xo). The stability of non-hyperbolic equilibrium points is typically more difficult to

determine.

Non-hyperbolic equilibrium points

Definition 1.6 (Non-hyperbolic equilibrium point). If at least one eigenvalue of the Jacobian matrix

is zero or has a zero real part, then the equilibrium is said to be non-hyperbolic.

Definition 1.7 (Center). The origin is called a center for the nonlinear system (I.1) if there exists a
strictly positive € such that every solution curve of (I.1) in the neighborhood N(0) containing the

origin in the interior, is a closed curve.

Definition 1.8 (Focus). The origin is called a focus for the nonlinear system (I.1) if there exists a

8 Chapter 1. Introduction to bifurcation theory



L1. Some concepts of differential equations

positive e > 0 such that for0 < rg < € and 0y € R,
’I"(t, To, 00) — 0 and G(t, ’1“0,00) — OO,

ast — oo for a stable focus, andt — —oo for unstable focus.

Definition 1.9 (Center-focus). The origin is called a center-focus for (I.1) if there exists a decreases
sequence of closed solution curves I'y,; i.e., I';, 1 in the interior of Iy, such thatI',, — 0 asn — oo

and such that every trajectory between I';, and Iy, 1 spirals toward Ty, or 'y, 11 ast — +.

Theorem 1.2. Let E be an open subset of R? containing the origin and let f € C*(E) with £(0) = 0.
Suppose that the origin is a center for the linear system (I1.2) with A = D f(0). Then the origin is

either a center, a center-focus or a focus for the nonlinear system (I1.1).

A center-focus cannot occur in an analytic system. This is a consequence of Dulac’s theorem [2].
Liapunov’s method is one tool that can be used to distinguiche a center from a focus for a nonlinear

system. In our work, we interested in the second tool which is the so-called "Poincaré map".

.1.2 Phase portraits

Although it is often impossible (or very difficult) to determine explicitly the solutions of a differ-
ential equation, it is still important to obtain information about these solutions, at least of qualitative
nature. To a considerable extent, this can be done describing the phase portrait of the differential
equation.

Let f : D — IR™ be a continuous function in an open set D C R™ and consider the autonomous

equation (I.1). The set D is called the phase space of the equation.

Definition 1.10 (Orbits). Ifx(t) = ®.(x) is a solution of equation (I.1) with maximal interval I,
then the set x(t) : t € I C D is called an orbit of the equation (I.1).

Definition 1.11. The phase portrait of an autonomous ordinary differential equation is obtained by
representing the orbits in the set D, also indicating the direction of motion. It is common not to indicate

the directions of the axes, since these could be confused with the direction of motion.

.1.3 Global phace portais

In order to study the behavior of trajectories of a planar differential system near infinity, it is
possible to use a compactification. One of the possible constructions relies on the stereographic
projection of the sphere onto the plane ( for more information see [6]). A better approach to studying
the behavior of trajectories "at infinity" is to use the so-called Poincaré sphere. However, some of the
singular points at infinity, on the Poincaré sphere my still be very complicated (see all the details for

instance in chapter 5 of [5] and [2]).

9 Chapter 1. Introduction to bifurcation theory
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Local charts

Let x = @8 \ 0x + ¥ 0 \ Ay be the planar polynomial vector field or in other words

(L3)

{58 = p(z,y),
y == ¢(w,y),

We recall that n the degree of the system (I.3), is the maximum between d, do degrees of ¢ and ).
The Poincaré sphere is definedas S? = {y = (X, Y, Z) € R®: X2 +Y?+ Z2 = 1} andits
tangent space at the point Y € §? is denoted by Ty S?, which is tangent to R? in T{g,0,1)S* = R2.

We define the central projection f : T(0,0,1)S* — S? as follows: to each point (z, y) €
T(0,0,1)S? the central projection associates the two intersection points f(x, y), f~(x, y) of
the straight line which connects the points (, y) and (0, 0, 0) with the sphere §. This central
projection gives two copies of (I.3) in S2, one in each hemisphere, Hy = {Z € §? : Z < 0} the
northen hemisphere and H_ = {Z € §? : Z > 0} the southern hemisphere; cf. Figure (1.1.3).

Tio.01)S” x )
S? (X,Y,Z)
(o]
SQ
xX\Y\z"
FIGURE 1.1.3 — central projection, Across — section of the central

of the upper hemisphere.

x 1
.f+(w7 y) = (X, Y, Z2) = <A(:E,y), A(::Z,y)’ A(:I:,y))’
Fy) = (XY, 2) = (=" v - ).

B A(w,y)’ _A(a:,y)’ _A(:B, Y)

A(z,y) = 2 +y?2+1.

In this way, we obtain induced vector fields in each hemisphere. Of course, all of them are analytically

Where

10 Chapter 1. Introduction to bifurcation theory
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conjugate to . the induced vector field on Hy is X (f T (x, y)) = Df*(x, y)x(z, y), and the
onein H_isx(f (z, y)) = Df (x, y)x(z, y). The equator S*' = {Z € §? : Z = 0} can
be identified with the infinity of R2.

Remark 1.1. We remark that X is a vector field on S*\S* that is everywhere tangent to S.

We extend the vector field ¥ from §? \ S? to S?, then the extended vector field on S? is called the
Poincaré compactification of the vector field x on IR?, and is denoted by P (x) (see all the details for
instance in chapter 5 of [5]).

In summary, we have two symmetric copies of x on §? \ §!, and studying the dynamics of
P(x) near S, we have the dynamics of x at infinity. The Poincaré disc, denoted by D?, is the
closed northern hemisphere of {Z € S? : Z > 0} projected on Z = 0 under the projection
(X, Y, Z) — (z,y). The infinity S* is invariant under the flow of the Poincaré compactification
P(x).

Here two polynomial vector fields X and Y associated to system (.1) are topologically equivalent
if there is a homeomorphism on S? preserving the infinity S' carrying orbits of the flow of P(X)
into orbits of the flow of P(Y"), either reversing or preserving the sense of all orbits. For computing
the analytic expression of P(x) we use the fact that S? is a differentiable manifold. Thus we take
the six local charts U; = {y = (y1,¥2,y3) € S?: y; > 0},and V; = {y = (y1,Y2,y3) € S?:
y; < 0} for i = 1, 2, 3; and the associated diffeomorphisms F; : U; — R? and G, : V; — R?
for© = 1, 2, 3 are respectively the inverses of the central projections from the planes tangent at the
points (1,0, 0); (—1,0,0); (0,1,0); (0, —1,0); (0,0,1) and (0,0, —1). The value of F;(y) or
G;(y) for some ¢ = 1, 2, 3 is denoted by z = (z1, 22), consequently according to the local charts

under consideration the same letter z represents different coordinates.

After a rescaling in the independent variable in the local chart (Uy, F;) the expression for P(x) is

. n 1 u 1 u . il 1 u
uw=v"|—up|—— |+ |-, — sy UV=-—0 Pl =]
v v v v v v

in the local chart (Us, F») the expression for P(x) is

u=v"p|—— | —up|—,— v=—v"Y|—,—];
v v vV v vV v

and for the local chart (Us, F3) the expression for P(x) is

= p(u,v), v=1(u,v).

In the chart (V;, G;) the expression for P () is the same than in the chart (U;, F;) multiplied
by (—1)™*! for ¢ = 1, 2, 3. We note that the points at the infinity S* in any chart have coordinates
(u,v) = (u,0).

11 Chapter 1. Introduction to bifurcation theory



L2. Structurally stable

The equilibrium points of P(x) which come from the equilibrium points of x are called finite
equilibrium points of x, and the equilibrium points of P(x) which are in S are called infinite
equilibrium points of )x. We observe that the unique infinite equilibrium points which cannot be
contained in the charts U; U V; are the origins of the local charts U, and V5. Therefore when we
study the infinite equilibrium points on the charts Us U V;, we only need to verify if the origin of

these charts is an equilibrium point.

I.2 Structurally stable

In this Section, we present the concept of structurally stable vector field or dynamical system and
give necessary and sufficient conditions for a C*-vector fieled f on a compact to be structurally
stable.

The idea of structural stability originated with Andronov and Pontrygin in 1937; cf. 7], p.56. We
say that f is structurally stable vector field if for any vector field g near f, the vectors f and g

topologically equivalent, which means that those two vectors fields are close to each other.

Definition 1.12 (The C*-Norme). If f € C* where E is an open subset of R™, then the C*-Norme
of f which defined from E into E,

1£lls = sup | f ()| 4 sup || D f(x)]-
ek z€FE
where |.| the euclidien norme, and ||.|| the usual norme. So, we use the C*-Norme to measure the
distance between any two functions in C', and if E is a compact implie that || f|1 < +oo.
Definition 1.13 (Structurally stable). Let E be an open subset of R", we said that the vector field

f € C* is structurally Stable, if there exist € > 0 such that for allg € C* with

”.f _ng < g,

f and g are topologically equivalent on E, which means that there exit h from E onto E Homeo-
morphisme which map trajectories of ' = f(x), onto trajectories of ' = g(x) and preserve their

orientation by time, then we said f structurally unstable if the vector field f is not structurally stable.

As we know, a periodic orbit or a cycle of a differential equation is any closed solution curve, that
can be stable or unstable. In the next section we are going to define the Poincaré map which allow us

to study the stability and bifurcation of periodic orbits.

12 Chapter 1. Introduction to bifurcation theory



I3. The Poincaré map

I.3 The Poincaré map

Probably the most basic tool for studying the stability and bifurcation of the periodic orbits is the
Poincaré map. The idea of the Poincaré map when I' is a periodic orbit of the system (I.1) through
o, with 3 is a hyperplane perpendicular to I' at @, then for any point € 3 sufficiently near xq
the solution of (I.1) through x at t = 0, ®;(x), will cross ¥ again at P(x) near xq ; cf.Figure
(I.2), the mapping * — P(x) is called the Poincaré map. The Poincaré map can also be defined

when XY is a smooth surface.

Figure 1.2: The Poincaré map.

Theorem 1.3 (The existence and continuity of the Poincaré map and its first derivative). Let E be an
open subset of R"™ and let f € C*(E). Suppose that ®;(xo) is a periodic solution of (I.1) of period
T and that the cycle

F={xeR"| x=P(xg), 0t T},

is contained in E. Let )~ be the hyperplane orthogonal toI' at x¢; i.e., let
Y={z e R"| (& —z0) - f(x0) = 0},

then 39 > 0 and 3! function T(x) defined and continuously differentiable for x € Nj(x()
such that

T(wo) =T
{ B,y (z) € 3 forall x € Ns(zo).

Proof. The proof of this theorem is an immediate application of the implicit function theorem, by

the supposition of
F(t,x) = (®y(x) — o) - f(x0), foragiven xog € T' C E.

for more details see [2]. =

13 Chapter 1. Introduction to bifurcation theory



I3. The Poincaré map

Definition 1.14 (The Poincaré map). Let T', 3, 8, and T(x) be defined as in theorem (I1.3). Then,
forx € Ns(xo) N X, the function
P(m) - (I)T(w)a

is called the Poincaré map for I' at x.

Remark 1.2. It follows from theorem (I.3) that P € C*(U) where U = Nz, N 2.

e If fanalyticin E = P analyticinU ,
e Fixed points of the Poincaré map, i.e.,(pointsx € X : P(x) = x) are periodic orbits of (1.1),

® By considering the system (I.1) witht — —t, we can show that the Poincaré map P has a
C*'-inverse, P~ (x) = ®_ () (x). Thus, P is a diffeomorphism; i.e., a smooth function with a

smooth inverse.

.3.1 The Poincaré map of planar systems

Now, we are going to cite some specific results for the Poincaré map for planar systems. For
planar systems, if we translate the origin to the point 9 € ¥ N I'. The point 0 € I' N X divide X
on two open segments X7 A X~ ; cf. Figure (I.3) below. Let s be the signed distance along 3 with
s > 0 for points in X1 .

Figure L.3: The straight line normal 3 to I" at 0

By theorem (I.3), the Poincaré map P(s) defined for |s| < & and we have P(0). In order
to see how the stability of the cycle I' is determined by P’(0), let us introduce the displacement
function, which defined for all |s| < & by

d(s) = P(s) — s. (1.4)

with P(0) = O0and d’'(s) = P’(s) — 1. From the mean value theorem, for |s| < §, 3o €
[0, s] such that : d(s) = d'(o)s. Since d'(s) is continuous, the sign of d’(s) will be the same

14 Chapter 1. Introduction to bifurcation theory



I3. The Poincaré map

as d’(0) for |s| sufficiently small as long as d’(0) # 0. Thus, if d’(0) < 0 implie that d(s) <
Ofors > 0and d(s) > Ofors < 0and that s < 0in X7; ie, the cycle I is a stable limit
cycle Cf. Figure (I.3). Similarly, if d’(0) > O then I' is an unstable limit cycle. So, we have
the corresponding results that if P(0) = 0and P’(0) < 1, then I is stable limit cycle and if
P(0) = 0and P’(0) > 1, then I is an unstable limit cycle.

Theorem 1.4. Let the differential equation (I.3) in the plane, and let ¢(x, y, t) be the flow of (I.3),
and V - f(x,y) be the divergence of the vector field f = (¢, ) at (x, y). Now, let us take
yeand L = {x, ;1 < x < x3} withxy, T2 € R, we chose these so that the horizontal line
Y = L x {y.} is transversal; ie, P (x,y.) # 0 forxinL. Assume that L' C L is an open
subinterval such that for each @ € L', the solution of (I.3) starting from (x, y.) returnsto L X {y.}
forsomeT(x) > 0;ie, ¢Y(x,y.) € L X {y.}, and P(x) be the first coordinate of the first return
map or the Poincaré map as indicated in (I.4). Then, for anyx € L'

Ple) = o) ean [V p(@(a ) .

1/)(P(:13), Y

In particular if P(x¢) = o, then

Pl@) = eap( [ V- J(@e:y..1)) dt}.

Ysp — —

O T T To X

Figure 1.4: The straight line normal ¥ = L X {y.} to ¢(t, z, y) at (x, y«).

Proof. The derivative of the flow D¢ is known to be a fundamental matrix solution of the first

variational equation ¢(x, y, t), i.e.,

d
aDd)(w’ Y, t) = D.f(d)(m’ Y, t)) . D¢($, Y, t)’

Since det D¢ (x,y,x9) = det(id) = 1 because of ¢p(x,y,x0) = ¢(x,y) = (x,y), the

15 Chapter 1. Introduction to bifurcation theory



I3. The Poincaré map

Abel-Liouville formula gives that

det qu(il?, Yxs T(:L')) = emp{/(:(m) v f(¢(ma Yus t)) dt}'

To complete the proof it is necessary to relate P’(x) with D¢(x, y., 7(x)). Taking the partial
derivative of (P(x), y«) = ¢(x,y«, T(x)) gives

(P/(2),0) = 22 (@, y., 7(2)) +7(@) - (660 ().
Using the factatt = 0
() 0 0@,y (@) = LO(T(@) - (s yest)

it follows that f(P(x), y.) = Do(x,y., 7(x)) - f(x, ys)-. So,

0 "qb(P(iB)a y*)
= det| 2(z, y., (&)  D(@s s m(x)) - £ y2) |
tdet [ 7/(x) - f(D(@,yes (@) F((@s Y, T(@))) |

$(P(x), y.) - P'(x) = det[Pl(m) o(P(z), y*)]

1
— det[D¢(-)] - det f()
0

()
_ <emp 0 V-f[¢(w,y*,t)]>-¢(:v,y*)-

Dividing by ¥ (P(x), y.) gives the desired formula.

Now, we are going to cite the most useful formula of the Poincaré map for studying the stability

of limit cycles of the vector field f.

Corollary 1.1. Let E be an open subset of R? and suppose that f = (p, 1) € C*(E), and y(t) be
a periodic solution of (I.3) of period T'. then

P(0) = oxp{ [ V- F(v(®)dt},

is the derivative of the Poincaré map P(s) along 3.
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Corollary 1.2. Under the hypotheses of corollary (I.1), the periodic solution ~(t) is

e astable limit cycle if [ V - f(~(t))dt < 0,
e an unstable limit cycle if [3 V - f(v(¢))dt > 0.

Remark 1.3. It may be a stable, unstable, or semi-stable limit cycle or it may belong to a continuous

band of cycles if this quantity is zero.

1.3.2 A multiple limit cycle of multiplicity k

Definition 1.15 (A multiple limit cycle of multiplicity k). Let P(s) be The Poincaré map for a cycle T
of planar analytic system (I.1) and let

d(s) = P(s) — s,
be the displacement function. Then if
d(0) = d'(0) = --- =d* VY (0) =0 and d*(0) # 0,
I is called a multiple limit cycle of multiplicity k. If k = 1 then I is called a simple limit cycle.
Remark 1.4. It can be shown the stability of the limit cycle I" from ”k”.
1. k even = T is semi-stable limit cycle,
2. k odd = T is stable limit cycle if d*)(0) < 0 and unstable limit cycle if d*)(0) > 0.

We shall see in the next chapter that if T' multiple limit cycle of multiplicity k, then k> limit cycles
can be made to bifurcate from I' under a small periodic perturbation of the differential system (I.1).
Then it can be shown that in the analytic case, d®) (0) = 0 fork = 0,1,2,... iff T belongstoa

continuous band of cycles.

1.3.3 The Poincaré map for a focus

In this part, we discuss The Poincaré map in the neighborhood of a focus, of course for planar

analytic systems, and to define what we mean by a multiple focus.

Suppose that the planar analytic system (I.1) has a focus at the origin and that D f(0) # O.
Then (I.1) is linearly equivalent to the system

{ T = ax — by +p($ay)’ (I.5)

Yy = b$+ay+Q(93ay),

17 Chapter 1. Introduction to bifurcation theory



I3. The Poincaré map

with b # 0, and the power series expansions of p, ¢ with second or higher degree terms. In polar

coordinates (I.5) equivalent to

{7’“ = ar + O(r?), (L6)

6 = b+ 0O(r?),

Suppose that (¢, 7o, 8) and (¢, o, Op) are the solution of (I.6) satisfying (0, r¢, 8g) = 70
and 6(0, 79, 600) = 6O¢. Then for 7o > 0 sufficiently small and b > 0, 6 is strictly increasing
function of ¢. Let t(0, rg, Op) be the inverse of this strictly increasing function and for a fixed 6y,
we define the function

P(’l"g) = ’l"(t(eo -|— 2’71', To, 90), To, 00).

P(ry) is called the Poincaré map for the focus at the origin of (I.6); cf. Figure(I.5).

" P(ro)

7o

\
EI |

b>0 b<0

Figure 1.5: The Poincaré map for a focus at the origin.

Lemma 1.1. There exist v > 0, such that foralls,0 < |s| < r

d(s) - d(—s) < 0.

For the proof see ([7]).

The following theorem gives us the stability and the multiplicity of a multiple focus .

Theorem 1.5. Let P(s) be the Poincaré map for a focus at the origin of planar analytic system (I.5),
and d(s) = P(s) — s the displacement function then by lemma (I.1) and

d(0) = d'(0) = --- = d*Y0) = 0 and d®(0) £ 0,

k is an odd number; i.e, k = 2m + 1 this fact provide in the next chapter. The integer m = (k —
1)/2 is called the multiplicity of the focus.
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e If m = O the focus is called a simple focus, then the sign of d'(0) = a # O determine the
stability of the focus; i.e., ( stable if a < O else unstable). But if d’(0) = 0 which means
a = 0; ie., (I.5) has a multiple focus or center at the origin), and the first nonzero derivative
8 = d*(0) # O is called the Laypunov number for the focus, and the stability of this focus
depends on the sign of 4.

e Ifk = 3 then

63 = d”(0) = 22{[3(aso + bos) + (ai2 + ba21)] — 7[2(az0b20 — ao2boz)
—ay1 (a2 + bao) + bii(aoz + b20)]},

where

p(z,y) = > ai z'y’ andq(z,y) = > biz'y’.
it+j>2 i+j>2

This information will be useful in the next chapter where we shall see that m limit cycles can be
made to bifurcate from a multiple focus of multiplicity m under a suitable small perturbation of the

system (1.5). Now we are going to prove the Laypunov number for k = 3.

Proof. Suppose that the planar analytic system (1.5) has a focus at the origin and that D f(0) # O,

' = ax — by + apy? + aosy® + anzy + a2xy® + az2x?® + axnx?y + azex?,
Yy = ay+ bx + beay? + bosy® + biixy + braxy?® + baox? + bayx?y + bsox?,

with b # 0. In polar coordinates this system has the form

r = ar+r? ((aoz + b11) sin?(0) cos(0) + a11 + byg) sin(8) cos?(0) + az cos®(H)
+boz sin®(0)) + r3((aos + bi2) sin®(0) cos(0) + (a2 + bay) sin?(0) cos?(H)
+(az1 + bsp) sin(0) cos®(0) + asp cos*(0) + bes sin*(9)).

0 = r(—agsin®(0) — (ai; — boz) sin?(0) cos(0) — (aze — byy) sin(0) cos?(H)
+bag cos®(0)) + r2(—aps sin?(0) — (a2 — bes) sin®(0) cos(0) — (az; — b12) X
sin?(0) cos?(0) — (aso — bay) sin(0) cos®(0) + bsg cos*(0)) + b.

then
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dr

o = (ar + r?((aoz + b11) sin®(0) cos(0) + (ai1 + b20) sin(0) cos?(0) + azg cos®(9)

+boz sin®(0)) + r®((aes + b — 12) sin®(0) cos(0) + (a12 + bay) sin?(0) cos?(0)
+(az1 + bsp) sin(0) cos®(0) + asg cos*(0) + bes sin*(0))) /(r(—aoz sin®(0)
—(a11 — boz) sin?(0) cos(0) — (aze — b11) sin(0) cos?(0) + byg cos®(0)]
+72[—ag3sin*(8) — (a2 — bes) sin®(0) cos(0) — (az1 — byz) sin®(0) cos?(H)
—(aso — ba1) sin(0) cos®(0) + by cos*(6)) + b).

Now, by using the series of Taylor of the 5" order with @ = 0, then Fy(r, 6) the coefficients of r2
which given by

Fy(r,0) = [(aoz + by1) sin?(0) cos(0) + azo cos®(0) + bgs sin®(0) + (b + a11)
sin(0) cos?(9)| /b,

by integration of F5(r, 8) between 0 and 27 all over 27 we find 0, the next degree is 3 and F3(r, )

is the coefficients of 73. By integration, we obtain d3. =
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CHAPTER 11

BIFURCATION THEORY

In this chapter, we consider two types of bifurcations, that can occur at a non-hyperbolic equilib-

rium point xq of a differential system which depends on a parameter p,

T = f(w, H’)' (IL.1)

with € IR, here for studying the stability we have two cases for the matrix D f (g, to). The first
one is if it has a simple zero eigenvalue, in the second case we see if the saddle-node bifurcations

were generic.

II.1 Hopf bifurcations and bifurcations of limit cycles from

a multiple focus

In this section, we are interested in the one which has only a simple pair of purely imaginary
eigenvalues ( i.e., no other eigenvalues with zero real part ). Here the implicit function theorem
guarantees that in the neighborhood of 11 there will be a unique equilibrium point x,, near x,.

We illustrate the idea and present a general theory for planar systems. For the more general

theory of Hopf bifurcation in higher dimensional system see [3] or [4]. Let the planar analytic system

{ T = pr—y+ p(may)a (I1.2)

Yy = =+ py+q(z,y),

where the analytic functions p, q defined as in chapter (I).
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IL1. Hopf bifurcations and bifurcations of limit cycles from a multiple focus

Changing over polar coordinates (7, @) we first obtain the system

% = F(r,0) = ur + p(rcosb, rsin@)cosd + q(rcosb, rsinf)sinb,
(IL3)
% = 1+0(r,0) =1+ Icosd — Psinb,
and then the equation
dr F(r,0)
R = (IL4)
do 14 ©(r,0)

Definition I1.1 (Hopf bifurcation). A Hopf bifurcation occurs, where a periodic orbit or limit cycle
is created as the stability of the equilibrium point x,, changes, arises or goes away as a parameter [
varies. When a stable limit cycle surrounds an unstable equilibrium point, the bifurcation is called a
supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium point,

then the bifurcation is called a subcritical Hopf bifurcation.

Let Fy be a function of class kg or analytical function in an open region G of R™, § is some

positive number, 7 is a natural number such that r < k.

Definition I1.2 (0-Closeness to rank 7). A function Fy of class k1, » < ky or analytical in an open
region G of IR™ is said to be §-close to rank r to the function Fy, if at any point of the region

[Py — Fo <8, |Fjhiye on = Fhuges ol <8,
1 2 ¢ 1 2 *°*%n

DR ey

wherel = 1,2,...,r,all ; are non-negative numbersand oty + o2 + +++ + o, = L.

Remark 11.1. It is clear that

o Iftwo functions are d-close to rank r in some region G, they are d-close to any rank; moreover,

for any &1, 61 > 9 they are 61 -close to rank r in any subregion of G.

e If we only have the one inequality everywhere in the region G,
|F1 - FO| < 69

i.e., only the functions as such are §-close, but not their derivatives, the functions Fy and Fy are

said to be 6-close to rank 0.

Definition 11.3 (Focal value). The k-th focal value of the focus O is the value of the k-th derivative of
the displacement function (I.15) at the origin, i.e., d® (0).

Lemma 11.1. If there exists k such that

d©0)=d 0)=-.-= d* V() =0, and d®(0) £ 0. (IL5)
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IL1. Hopf bifurcations and bifurcations of limit cycles from a multiple focus

and the origin is a focus, then k is odd number.

Proof. Let suppose that k the multiplicity of the focus is even number, by (I1.3) and (I1.4),r =0

is a solution of equation (II.4). Therefore
d(0) = 0. (IL6)

By using the series of Taylor to the displacement function d and using relations (I1.5) and (I1.6)

we find
d®(ns) ,
k!

where 0 < 17 < 1. Therefore, if k is even, d(r) has the same sign for all sufficiently small r both

d(s) =

negative and positive. contraduction with (7.1). =

Definition IL4. If the lemma (I1.1) satisfied, and k = 2m + 1, m > 0, we shall say that the
focus O is a focus of multiplicity m.

The next theorem shows that a dynamic system may only have a finite number of different

bifurcations in the neighborhood of a focus of a finite multiplicity m.

Theorem I1.1 (Theorem of creation of limit cycles from a multiple focus). If the origin O is a multiple

focus of multiplicity m > 1 of a dynamic system (A), of class N > 2m + 1 then

1. there existeg > 0 and 69 > O such that any system (A) do-close to rank 2m + 1 to system
(A) has at most m closed paths in the neighborhood of the origin N, (O);

2. foranye < € and 8 < & there exists a system (A) of class N to rank 2m + 1 to (A) and
has m closed paths in N, (O).

i.e., If the origin O is a multiple focus of multiplicity m > 1 of (A), systems (A) sufficiently close to
(A) torank 2m + 1 can have at most m closed paths in a sufficiently small neighborhood of the focus.

Thus it may create m, but no more than m limit cycles.

For the details of the proof of this theorem, see [7].

Now lets consider one particular case, which is often encountered in applications, namely a system
dependent on a single parameter and its bifurcations in the neighborhood of a multiple focus of

multiplicity 1 when the parameter is varied. Let the planar analytic system

{ T =a(p)z+b(p)y+e(ry,pn),
Y =c(p)z+dp)y+ ¢y, pn),
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Theorem 11.2 (Bifurcations in the neighborhood of a multiple focus of multiplicity m = 1). For a
planar analytic system has a focus at the origin, if 3 # O defined as in the first chapter theorem (I1.5)
then a Hopf bifurcation occurs at the origin of the planar analytic system (A,,) at the bifurcation value

n=0;

1. if 83 < 0, a unique stable limit cycle bifurcates from the origin of (A,,) in this case, we have
what is called a supercritical Hopf bifurcation;

2. in the second case, if 63 > 0, the critical point generates an unstable limit cycle as p passes

through the bifurcation value pn = 0, we have what is called a subcritical Hopf bifurcation.

Proof. Let (A,,) be a dynamic system which depends on the parameter p, so we will consider the
bifurcations of this system associated with the variation of the parameter p , in the neighborhood of
an equilibrium point O(0, 0), when O(0, 0) is a multiple focus of multiplicity 1. For simplicity, we

assume that ¢ = 0 is the bifurcation value. Let

o(p) = a(p) + d(p), (IL7)
<[ 21 20
Then
o(0) =0, (IL9)
A(p) > 0. (IL.10)
We apply the transformation
a(0) b(0)

(IL11)

£ ==, = - T — ’
N NO NG,

which reduces (Ayp) ((A,) with 4 = 0) to the canonical form

d d
dﬁ = =A@+ @ (&), dz = /A0)E+ ¢ (& m)- (IL12)

Since (II.11) is non-singular transformation, O remains a multiple focus of multiplicity 1 for
(I1.12) also, and its stability does not change either, with the third derivative of the displacement
function does not vanish. We have seen in the first chapter that if 3 < 0, the origin is a stable focus,
and if 3 > 0 it is an unstable focus.

Let Vp be a sufficiently small neighborhood of the point O bounded by a cycle without contact C
of system (Ap) which contains no closed paths or equilibrium point other than O of this system,

and let o9 > 0 be so small that any system (A,,) for which has the following properties :
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1. the curve C'is a cycle without contact for this system;
2. system (A,,) has no equilibrium point, other than O, in Vy;
3. the point O is a focus of (A,,);

4. system (A,,) has at most one closed path in Vj.

Suppose o(p) that reverses its sign as the system passes through the bifurcation value of the
parameter u = 0, i.e., the focus O changes its stability. This condition is clearly satisfied if
0’(0) # 0. Let us now consider the different possible cases.

The case (i): If 3 < 0 we assume that when we passing through the bifurcation value p = 0,
o (p) changes its sign from minus to plus. If 6/(p) # 0 then this conditions are satisfied when p
increases, for o/(p) > 0; when p decreases, for /() < 0.

Since d3 < 0, the focus O is a stable focus of (Ag) for ;t = 0. Therefore all the paths of (A,,) enter
into the cycle without contact C' as t increases. For o(p) < 0, O is a stable focus of (A,)). By
theorem (I1.1), (A,,) has at most one limit cycle in Vp, and if this cycle exists, it is a simple cycle,
i.e., either stable or unstable. Clearly, for () < 0 no such cycle exists. Indeed, if this cycle existed,
it would be stable from outside and unstable from the inside, i.e., it could not be simple. We have
thus established that if 3 < 0 and o(p) < 0, (A,,) has no limit cycles in Vj.

Conversely, if (1) > 0, O is an unstable focus of (A,,). Then, reasoning as before, we conclude
that there is a single limit cycle L, of (A,,) inside Vj, and this is a simple stable cycle. It is ok seen
that if p is sufficiently small, the cycle L, is arbitrarily close to O.

We thus obtain the following results. If 3 < 0 and ¢’(0) > 0, system (A,,) has no limit cycles in
Vo for small negative pt and ;¢ = 0, and O is the stable focus. As the system crosses the bifurcations
value (i.e., for ¢ > 0). The focus becomes unstable, and a stable limit cycle develops inside the
neighborhood V. If p varied in the opposite direction, i.e., we move from positive to negative p,
the stable limit cycle which originally existed in Vi would contract to the focus O and vanish for
p = 0, and the focus will change its stability accordingly.

As p is further decreased, the focus remains stable and the topological structure of Vj does not
change.

For 43 < 0 and 6’(0) < 0, the stable limit cycle is created on passing from positive to negative p,
and conversely it disappears when g increases and reaches zero.

The case (ii): For 3 > 0. The investigation proceeds along the same lines as before.

The above results can be summarized in the following table :
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p<0 p=0 p>0
Unstable focus, Stable focus, | Unstable focus,

83 <0,0'(0) >0

no cycle no cycle stable cycle
Unstable focus, Stable focus, Stable focus,
d3<0,0'(0)<0
stable cycle no cycle no cycle

Stable focus, | Unstable focus, | Unstable focus,
d3>0,0'(0) >0

unstable cycle no cycle no cycle
Unstable focus, | Unstable focus, Stable focus,
d3>0,0'(0)<0
no cycle no cycle unstable cycle

The above analysis shows that the change in @ brings about a change in the stability of the focus
if a limit cycle is created from the focus disappears contracting into the focus. A stable focus creates
a stable cycle, and an unstable focus, an unstable cycle. Thus a focus creates a limit cycle of the same
stability, and the stability of the focus changes in the process.

Conversely, when the cycle disappears (when it is absorbed by the focus), the focus acquires the
same stability as that of the cycle before absorption. This state of things is not limited to the case
of a focus of multiplicity 1 : it is observed whenever a focus creates or absorbs a cycle of definite

stability(i.e., not semistable cycle). =

Remark 11.2. The same results are reserve for system (I1.2), because of (I1.2) is a special case of
(Ap)-

The next theorem proved the existance of the Hopf bifurcation in higher dimensional systems
where the Jacobian matrix has a pair of pure imaginary eigenvalues and no other eigenvalues with

zero real part; i.e., \; = £% for all ¢, with 8 > 0.

Theorem 11.3 (Hopf). Suppose that the C*-system (I1.1) withx € R™, u € R which has (xo, o)
as a critical point, with simple pair of purely imaginary eigenvalues and no other eigenvalues with zero
real part. Then there is a smooth curve of equilibrium points () and the eigenvalue, A(pt) and X()
of D f(x (), i) which are pure imaginary at p = po. Furthermore, if

d
a [ReA(/"l’)]Mzuo i 0’
then there is a unique two-dimensional center manifold passing through the point (xo, o) and a smooth

transformation of coordinates such that the system (I1.1) on the center manifold is transformed into

the normal form

{¢ = —y+az(z®+y?) — by(z? + y*) + O(|z|*), (IL13)

Yy = x+bx(z?+y?) + ay(z® + y?) + O(|z|Y),
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in a neighborhood of the origin for a # 0, has a weak focus of multiplicity one at the origin and

{ x = px—y+ azx(x®+ y?) — by(x? + y?), (I1.14)

Y = x4 py+bx(a® +y°) +ay(z® 4+ y7),
is a universal unfolding of this normal form in a neighborhood of the origin on the center manifold.

This theorem can be proved by a direct application of the center manifold (cf.[10]).

The following theorem shows that at most m limit cycles can bifurcate from the origin which
is a weak focus or a multiple focus of multiplicity m > 1 as the parameter p varies through the
bifurcations value and that there is an analytic perturbation of the vector field in (I1.15), which

has exactly m limit cycles.

{a‘: = —y+p(z,y), (IL.15)

Yy =z + q($7 y)a
Theorem I1.4 (The bifurcation of limit cycles from a multiple focus). If the origin is a multiple focus

of multiplicity m of the analytic system (I1.15) then fork > 2m + 1

1. thereisad > 0 and an e > 0 such that any system e-close to (I1.15) in the C*-norm has at

most m limit cycles in N5(0) and,

2. foranyd > 0 ande > O there is an analytic system which is e-close to (I11.15) in the C*-norm
has exactly m simple limit cycles in N(0).

For the proof you can see [7].
In this section, we considered a multiple focus and showed that it may create closed paths. In next
section we will elucidate the number of paths that may be created in the neighborhood of a multiple

limit cycle.

I.2 Bifurcations at non-hyperbolic periodic orbit

Many interesting types of bifurcations can take place at a non-hyperbolic periodic orbit. This is

the case when the derivative of the Poincaré map at g € I, has an eigenvalue equal to one.

Definition I1.5 (Non-hyperbolic periodic orbit). A non-hyperbolic periodic orbit is a periodic orbit

have two or more characteristic exponents with zero real part.

The system (I1.1) is said to have a non-hyperbolic periodic orbit I'g through x¢ at the bifurcation

value pg if DP(xg, po) has an eigenvalue of unit modulus.
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Definition I1.6. A closed path T'g of a dynamic system (A) of class N is said to be limit cycle of
multiplicity k if

d'(0) = d"(0) = ... = d* V() =0, and d®(0) £ 0,
(k is a natural number, k < N ).

The three simplest types of bifurcations that can occurs at a non-hyperbolic periodic orbit in R?

are illustrated in the following theorem.

Theorem IL.5. Suppose that f € C?(E x J) where E is an open subset of R? and J C R. Assume
that the system (I1.1) has a periodic orbit 'y at the bifurcation value pp = po and its Poincaré map
is P(s, p) defined in a neighborhood Ns(0) of the origin which is a multiple limit cycle. Then if
P(0, po) = 0, DP(0, o) = 1 we have three cases;

e ifD?>P(0, o) # 0 and P,(0, o) # 0, a saddle-node bifurcation occurs at the non-hyperbolic
periodic orbit Iy at the bifurcation value pp = g, the periodic orbit I'g is a multiple limit cycle
of multiplicity 2 and exactly two limit cycles.

e if P,(0,0) = 0, DP,(0, o) # 0 and D*>P(0, o) # O, then a transcritical bifurcation

occurs at the non-hyperbolic periodic orbit I'g at the bifurcation value g = po,

o then if P,(0, o) = 0, DP,(0, o) # 0, D*P(0, o) = 0 and D*P(0, o) = 0 a
pitchfork bifurcation occurs at the non-hyperbolic periodic orbit I'y at the bifurcation value

1 = Ho-

Definition 11.7. The root O of the equation

go(x) = 0, (IL.16)

is called a root of multiplicity v of (I11.16) if go is a function of class k = 7 and we have the following

condition are satisfied

1. there existeg > 0, o9 > 0 such that any equation g(x) = 0 of class r which is o¢-close to

rank 7 to the function go(x) has at most r roots for |x| < €y,

2. for any positive e < € and o there exists a function g(x), o-close to rank T to the function

go(x) such that the equation (I1.16) has precisely r roots for |x| < €.

A root xq of a function go(x) is said to be of multiplicity » > 1 if functions g(«) sufficiently
close to go(x) cannot have more than r roots in a sufficiently small neighborhood of the root x,
but there is any number of functions sufficiently close to go(«) which have exactly r roots in any

arbitrarily small neighborhood of x.
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Figure II.1: The values of I'g correspond to the values of the parameter s .

Lemma I1.2. We called the number xq a root of multiplicity r of the function go(x) if and only if

go(xo) = gy(xo) = gg(x0) = ... = gt(f_l)(%) =0, and g(()r)(%) # 0.

For more detail see [7].

Theorem 11.6 (Theorem of the creation of limit cycles from a multiple limit cycle). If (A) is a
dynamic system of class N > 1 or an analytical system, and I'g is a multiple limit cycle of multiplicity
k2 <k < N), then

1. there exist eq > 0 and 8y > 0 such that any system (A) 8q-close to rank k to system (A) has
at most k closed paths in N, (T'o);

2. foranye < g and § < g there exists a system (A) of class N (of analytical class, respectively)
which is 8g-close to rank k to (A) and has k closed paths in N, (To).

Proof. Lets prove the first proposition,let the displacement function d defined for all s, |s| < n,,

where 1), some positive number. And let Ty be a limit cycle of multiplicity k of system (A), so
d(0) =d'(0)=---=d*V(0)=0, d¥(0)=o0.

we see that 0 is a root of multiplicity k of the displacement function d, then by lemma (I1.2) and
definition (I1.7), there exist a positive number € < 7, and ¢ such that any function d(s) defined
for all s, |s| < g, and o-close to d(s) to rank k may have at most k roots on the segment [—e, €]
(Figure (I1.1)). By the second proposition of the definition (I1.7), a sufficiently small positive
number is taken €, and o is taken also so small that the following condition is satisfied: if system
(A) o¢-close to rank k to A the function d(s) is defined for (A) on the arc X for all s, |s| < n,,
and for |s| < 7, the function d(s) is og-close to d(s) to rank k.
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CHAPTER 111

RIGID SYSTEM

All rigid planar systems are given by the differential equation of the form

{ &t = —y+zq(zy), (IIL.1)

y = z+yq(x,y),

where q : R? — R is an analytic function. A differential planar system in which angular speed is
constant is called a rigid system. It is simple to see this system has the origin as the only equilibrium

point which is of center-focus type when g(0, 0) = 0. There are the following open questions:

e How to decide the stability of the equilibrium point at the origin?

e How to know whether the system presents or not a center at the origin?

These questions are also related to the second part of Hilbert’s 16 problem is still unsolved,

even in the quadratic case. The objective of this chapter is to classify the phase portraits of system
= —y+z(a+bx?+cy?®), ¥==z+y(a+bx?®+ cy?), (II1.2)

in the Poincaré disc. We assume that b% + ¢2 is not zero.

Theorem 111.1. The phase portraits in the Poincaré disc of systems (II11.2) with b*> 4+ ¢ # 0 are
topologically equivalent to one of the four phase portraits given in Figure (I11.1).
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IIl.1. The local phase portraits of system (3.2)

g
NN

Figure III.1: All topologically different phase portraits in the Poincaré disc of systems (III.2).

ZR

III.1 The local phase portraits of system (3.2)

Study of systems (3.2) in the finite region

Let us study the singular points and periodic orbits of systems (II.2) in the finite region. For that,

the following lemma is needed.

Lemma 11I.1. Forall @ € [0, 27] and X > 0, the function

0
¢:0 — p(0) = —/ e***(b+ c+ (b — c) cos 2s)ds + A,
0
is strictly positive if one of the following conditions holds.

(i) b>c, ¢ > 0and (b+ 2a*b+ ¢)(1 — e**™)/2a(1 + a?) + X > 0.
(ii)) b > cand b < 0.
(iii) b < ¢, b > 0 and (b + 2a®b + ¢)(1 — €**™)/2a(1 + a®) + X > 0.
(iv) b < candc < 0.

(v) b=c# 0and(b/a)(1 — e**™) + X > 0.
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IIl.1. The local phase portraits of system (3.2)

Proof.

The case (i): We assume that b > ¢, ¢ > 0 and
(b + 2a*b+ c)(1 — e**™)/2a(1 + a®) + X > 0.
Let the function

¢:0 — ¢p(0) = —/Oeezas(b—}—c—k(b—c)cos2s)ds+)\.

The derivative of this function with respect to 0 is

dé

0 = —(b—c)e 2"9( bte +c0529)

From the conditions b > c and ¢ > 0 it is easy to notice that (b + ¢)/(b — ¢) > 1 which gives
(b4+¢)/(b—c)+ cos20 > 0forall @ € [0,27], thus ¢ is a strictly decreasing function for all
0 € [0, 27]. Since p(0) = A > 0, »(27w) = (b+2a’b+c)(1 —e**™)/2a(l+a?®)+ X >0
and ¢ is a strictly decreasing function we obtain that ¢ is strictly positive for all @ € [0, 27]. We

use the same argument to prove the case (iii).

The case (ii): We assume that b > c and b < 0, this implies (b + ¢) /(b — ¢) < —1 what means
(b+¢)/(b—c)+ cos2s < 0, we get

¢(0) = (c—0b) / 2“3( —|— cos2s)ds + X > 0.

Then ¢ is strictly positive. We use the same argument to prove the case (iv).

The case (v): Under the condition b = ¢ # 0 the function ¢ becomes

/]
o(6) = —/0 2be2%*ds + A.

The derivative of this function with respect to 0 is

d
o = —2be?.
do
So, ¢ is strictly increasing or decreasing between ¢(27) = (b/a)(1 — e**™) + X > 0 and

¢(0) = X > 0. Then ¢ is strictly positive. =
The singular points of systems (I11.2) in finite are studied in the proposition below.
Proposition II1.1. Polynomial differential systems (I11.2) have only one finite singular point which

is the origin of coordinates. If @ > O this singular point is an unstable focus or a stable focus ifa < 0.
When a = 0, the origin is a center if b = —c and a focus if b # —c.

32 Chapter III. Rigid system



IIl.1. The local phase portraits of system (3.2)

Proof. Since the eigenvalues of the linear part at the origin are a =+ 4, it follows that the origin is a
focus, which is unstable if @ > 0 and stable if a < 0. In the case when a = 0, we use the Poincaré
map to distinguish between center and focus. The use of the polar coordinates systems (I11.1)

become equivalent to the following Bernoulli equation

d 1
d; =ar + E(b—l—c—l— (b — c) cos 20)r>.

By solving this last equation, we get

_1
2

0
r(0,79) = {7299 <— / e***(b+ ¢+ (b — c) cos 2s)ds + r0_2>
Jo

From Lemma (I11.1) we see that (6, o) is well defined. For this, we can define the Poincaré map

by
P:rg— P('I"o) = 7'(277’ rO)’

where (2, 1) = e(~%em) (— JoT €***(b+ ¢+ (b — ¢) cos 2s)ds + "'52)_5'

For a = 0, we have
P(ro) = r(2m,70) = (=2(b+ ¢)m + rg?) 3.

If b = —c we obtain 7(2m, rg) = 7¢ for all 7y € RT, then the origin is center. If b # —c we get

r(2m, 1) # 7o for all 7y € R, hence the origin is a focus. =

In the following Proposition, limit cycles of systems (III.2) are studied.

Proposition 1I1.2. The polynomial differential systems (I11.1) have a unique limit cycle if (a >
0, b<0,c<0)or(a<0,b>0, c>0),andits expression in polar coordinates is

0
r(0) = e(~229) (— / e***(b+ ¢+ (b — c) cos 2s)ds + 7';2) ,
0

N[ =

where

N[

=)

Proof. We have defined P in the proof of Proposition (I11.1) by

N|=

27
P(rg) = r(2mw, 1) = e(—4am) (— / e***(b+ c + (b — ¢) cos 2s)ds + rgz)
0

To get a periodic orbit we must verify the equality r (27, 79) = 7. So the unique positive value to
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IIl.1. The local phase portraits of system (3.2)

verify this equation is

fu

o (P

From Lemma (I11.1) and the value 7, to be positive, we must take (& > 0, b < 0, ¢ < 0) or
(a <0, b > 0, ¢ > 0). Then the proof of the proposition is completed. =

The study of systems (3.2) in the infinite region

Throughout this part, we will study the infinite singular points in the Poincaré disc. Therefore,
we need to study all singular points in the chart U; and verify whether the origin of the chart U, is
a singular point. For that, we use the notations given in chapter 1 section (I.1.3), consequently,

then following proposition is deduced.

Proposition II1.3. In the local chart Uy, if ¢b > 0 the infinity of systems (I1L.2) is filled by singular
points, and if cb < 0 the infinity of systems (I11.2) is filled by singular points and when eliminating
the common factor we get two others singular points (= /—b/c,0). If b > 0 the singular point

(y/—b/c,0) is saddle and (— /—b/c, 0) is weak focus. Ifb < 0 the singular point ( \/—b/c, 0) is
weak focus and (— /—b/c, 0) is saddle.

Proof. The systems (II1.2) on the local chart U is
= v: 4+ u?v?, = —bv— cu’v — av® + uvd. (II1.3)

If bc > 0, the line {v = 0, Yu € R} verify the algebraic system

thus the infinity of systems (IIL.2) is a line of singularities. when we eliminate the common factor v

systems (II1.2) on the local chart U; becomes
U =uv+ uzv, v = —b — cu® — av? + uv?. (1I1.4)

If bc < 0 these systems have two singular points (/—b/¢c,0) and (— /—b/c, 0) with eigen-
values + \/2(b —c)/—b/cand £ \/—Z(b — ¢) y/—b/c, respectively. In the case b > 0 the
value —2(b — ¢) y/—b/c is negative, then the point ( ,/—b/c, 0) is saddle and the eigenvalues

of (—+1/—b/c,0) are =2 1/2(b — c) v/ —b/c. To distinguish if the singular point (— /—b/c, 0
f b +i b b d guish if th gular p b

is center or focus, we need to move this singular point at the origin by the change of variable

u = w — /—b/c, thus systems (I11.4) become

W= — \Fw+(+1)v+w, v—2\/>cw—(a \/>)'v — cw? + vw.
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II1.2. The global phase portraits of systems (3.2)

The eigenvalues of the origin are — /—b/c £ ¢ \/—2 \/—b/c(ec — b+ (/—b/c)/c. Then, the

singular point (— /—b/¢, 0) is focus. We use same argument to prove in the case b < 0 that the
singular point ({/—b/c, 0) is focus. The systems (II1.2) on the chart Uy is

= —v?—u?v?, v=—bv—cu’v—av®— uvd (IIL.5)

The origin of the local chart U, is one point of the line of singularities v = 0. =

II.2 The global phase portraits of systems (3.2)

This section includes all information from subsection (I11.1) to prove the global phase portraits
of systems (I11.2).

I11.2.1 The case:a =0

In this case, the eigenvalues of the origin in finite are purely imaginary. We use the Proposition
(II1.1) to distinguish if the origin is a center or a focus. And with the help of Proposition (111.3),

we prove all different cases in infinite.

The case: (a = 0,b = —c)

From Proposition (I11.1) the origin in finite is a center and there is no limit cycle. And from
Proposition (I11.3) in infinite there is a line of singularities and two singular points ( /—b/c, 0)
and (—4/—b/c,0) in the chart U;; saddle and focus respectively if b > 0, focus and saddle
respectively if b < 0. Then there is a unique possible global phase portrait in the Poincaré disc given
in Figure (I11.2).

The case: (a = 0, bc > 0)

From Proposition (I11.1), the origin in finite is a focus; additionally, there is no limit cycle. Also,
from Proposition (II1.3) in infinite there is a line of singularities; along with a unique possible

global phase portrait in the Poincaré disc given in Figure (I11.3).

The case: (a = 0,b # —c, bc < 0)

From Proposition (II1.1), the origin in finite is a focus and there is no limit cycle. Further-

more, from Proposition (I11.3) in infinite there is a line of singularities and two singular points

(y/—b/c,0) and (— /—b/c, 0) in the chart U;; saddle and focus respectively if b > 0, focus and
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II1.2. The global phase portraits of systems (3.2)

Figure I1I.2: The global phase portrait of systems (II.2) for a = 0 and b = —c, has eleven separatrices (S=11)
and three canonical regions (R=3). The phase portrait can be obtained by takinga = 0,b = 1,¢c = —1.

Figure III.3: The global phase portrait of systems (III.2) fora = 0, b # —c and bc > 0, has tow separatrices
(S=2) and one canonical region (R=1). The phase portrait can be obtained by takinga = 0,b = 1,¢c = 1.
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II1.2. The global phase portraits of systems (3.2)

Figure III.4: The global phase portrait of systems (IIL.2) fora = 0, b # —c and bc < 0, has thirteen
separatrices (S=13) and four canonical regions (R=4). The phase portrait can be obtained by taking a = 0,
b=1,¢c = —-2.

saddle respectively if b < 0. Then there is a unique possible global phase portrait in the Poincaré
disc given in Figure (I11.4).

[11.2.2 Thecase:a # 0

In this case, the eigenvalues of the origin are complex where the real part is not zero, thus the

origin in finite is focus.

The case: when there is a limit cycle

From Proposition (I11.2), in the cases (@ > 0,,b < 0,c¢ < 0)or (a < 0,,b > 0, c > 0) there
is a limit cycle. And from Proposition (I11.3) in infinite, there is a line of singularities. From there

on, there is a unique possible global phase portrait in the Poincaré disc given in Figure (I11.5).

The case: when there is no limit cycle

From Proposition (I11.2), there is a limit cycle if only if one of these conditions (@ > 0, b < 0,
c<0)or(a <0,b>0,c > 0)is verified. If these conditions are not verified and a # 0, the
global phase portrait of systems (III.2) in the Poincaré disc is given in Figure (I11.4) if bc < 0 and
is given in Figure (I11.3) if bec > 0.
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II1.2. The global phase portraits of systems (3.2)

Figure IIL.5: The global phase portrait of systems (II1.2) when there is limit cycle has three separatrices (S=3)
and tow canonical regions (R=2). The phase portrait can be obtained by takinga = 1,b = —6,¢c = —2.
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CONCLUSION

This thesis has tried to show the global analysis of the behavior of solutions of a non-linear
planar differential system, more precisely those depend on a parameter or several parameters. For
that, we have first presented the necessary information as singular points and their nature, Hartman-
Grobman theorem, Poincaré map, phase portraits and structural stability. Then next we have tried to
understand in general theorems concern Hopf bifurcations and bifurcations of limit cycles from a
multiple focus and bifurcations at non-hyperbolic periodic orbit where limit cycles can be made to
bifurcate. Finlly, we have presented an example of a family of rigid systems that Hopf bifurcation
and global phase portraits have been studied, and we get four diffrent global phase portraits where

only one limit cycle created from the origin which is a multiple focus of multiplicity one.
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Abstract

In this work, we have focused on the planar polynomial systems and studied
the Hopf bifurcations and bifurcations of limit cycles from a multiple focus and
bifurcations at non-hyperbolic equilibrium point where limit cycles can be made
to bifurcate. In particular, the limit cycles and global phase portrait of class of
rigid systems under its parameters. The results of bifurcations of limit cycles are
proved by the uses of the Poincaré map and drawing all diffrent phase portraits.
Key words : Hopf bifurcation, Poincaré map, phase portrait, rigid system, limit

cycle, non-hyperbolic.
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Résuwmé

Dans ce travail, nous sommes concentrés sur les systemes polynomiaux pla-
naires et nous sommes étudié les bifurcations de Hopf et les bifurcations des cycles
limites a partir d’un foyer multiple, et des bifurcations au point d’équilibre non
hyperbolique ou les cycles limites peuvent cree. En particulier, les cycles limites et
le portrait de phase global de la classe des systémes rigides sous ses parametres.
Les résultats des bifurcations de cycles limites sont prouvés par les utilisations de
la carte de Poincaré et par le dessin de tous différents les portraits de phase .
Mots clés : Bifurcation de Hopf, carte de Poincaré , portrait de phase, system

rigide, cycle limite, non hyperbolique.
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