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CHAPTER 1. GENERAL INTRODUCTION

1.1 Context:

Similarity has been a subject of great interest in human history since a long time ago.
Even before computers were made, humans have been interested in finding similarity in
everything. Each and every field of study provides their own definition of what similarity is.
In Psychology similarity “...refers to the psychological nearness or proximity of two mental
representations.” while in music it’s “...a certain similarity between two or more musical
fragments “and in geometry “Two geometrical objects are called similar if they both have the

same shape.”

Similarity is a broad and abstract topic. Every time Similarity is mentioned, the
question pops up: “What kind of Similarity?” The topic is quite big in the Information
Retrieval field and lately it has become quite the hype again. People are making search
engines, plagiarism programs, optimizing search algorithms, finding out how to specify the
searches better and faster, and where to focus whether it be images, sound or strings.

Definitions for similarity are different for every field but what keeps going in each of

them is the use of one big field to prove the similarity: Math.

Math is used to calculate similarity where it dominates the field. After the start of two
new fields in last century, Information Theory and Computer Science, the topic of similarity
has not become smaller at all. Instead by using the computer it has been easier to find out how

similar two or more things are to each other.

Textual similarity which is a subcategory of Information Retrieval is quite close to its
brother the search engine since both takes a query and find forth the similar texts for the
query. Where it is expected from search engines to find the respective query’s document of
relevance and rank them, it is expected from the text similarity to find out how similar the
query is to the documents. Both overlap a lot but are still a bit different. Even when there is no
shortage of textual materials on a particular topic, procedures for indexing or extracting the
knowledge or conceptual information contained in them can be lacking. Recently developed

information retrieval systems (IRS) are based on the concept of a vector space Models.
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1.2 Problematic:

The world witnesses a huge informational revolution that brings out lots of information
and researches. Researching for this information without using search engines is a hard task or
it is impossible to gain accurate information without them. Besides, the importance of
information retrieval (IR) sciences has evolved. This science depended only on libraries in the
past, but with the widespread and the evolution of digital libraries and the Internet has
dramatically transformed the processing, storage, compare and retrieval of information. But
this transformation brings a lot of problems, some of them are retrieving information becomes
more difficult, also, one of the biggest problems is the plagiarism that becomes more and
more withing the growth of information in the digital areas, and its detection becomes harder.

Detection of plagiarism can be undertaken in a variety of ways. Human detection is the
most traditional form of identifying plagiarism from written work. This can be a lengthy and
time-consuming task for the reader and can also result in inconsistencies in how plagiarism is
identified within an organization. So, how can we make the detect the plagiarism without any
human interaction easier? and how we can make information retrieving and classification

more accurate and efficacy?
1.3 Objectives:
Nowadays, measuring the similarity of documents plays an important role in text related

researches and applications such as document clustering, plagiarism detection, information

retrieval, machine translation and automatic essay scoring.

Our objective is to develop and evaluate the performance of a text comparison system

based on Vector Space Models which indicate the similarity between texts or documents.
1.4 Thesis plan:
In addition to this introductive chapter, our work will be divided into three chapters, 2™

chapter includes a state of art that defines and explains some of the measuring similarity

models and give a little brief about the model we choose to study.
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In the 3 chapter, we will look deep in the vector space model we already choose, we
will see its definitions, main techniques and approaches, then we will create our own model
and explains the steps of creation in the meanwhile.

In the last chapter, we will implement our model using Python as programming language
and PyCharm as an IDE, then we will see the interfaces and windows of our application and
its results.
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CHAPTER 2. STATE OF ART

2.1 Introduction:

Measuring similarity between documents is fundamental to most forms of document
analysis. Some of the applications that use document similarity measures include:
Information retrieval, text classification, document clustering, topic modeling, topic tracking,
matrix decomposition. In the next section, we will see some of the main methods and

algorithms that are used in similarity measuring.
2.2 Text similarity methods:

Different approaches have been promoted to measure the similarity between one text
with another. The method is divided into four major groups, String-based, Corpus-based,
Knowledge-based, and Hybrid text similarities; as shown in Fig. 1. These approaches will be

discussed in the following subsections.

Figure 2. 1 Four major groups of text similarity methods and algorithms
2.2.1 Corpus-based Similarity:
Corpus-based similarity uses a semantic approach. This similarity approach determines

the similarity between two concepts based on the information extracted from a large

corpora. A corpus (plural corpora) is a large collection of electronic written or spoken text.

6
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Corpus contains a predefined set of sentences and their translation to other language. The
aim is to match input text with the text in the corpus and achieve translation [1]. Many
corpus-based similarity or relatedness measures are based on concept-based resources,

such as Wikipedia.

Some of corpus-based similarity measures are Hyperspace Analogue to Language (HAL),
Latent Semantic Analysis (LSA), Explicit Semantic Analysis (ESA), Pointwise Mutual
Information (PMI), Normalized Google Distance (NGD), and Extracting Distributional Similar

words using Co-occurrence (DISCO). [2]

HAL
LSA — GLSA
ESA S— CL-ESA

Corpus-Based

PMI-IR — S0C-PMI

NGD
< DISCO1
DISCO : .
; DISCO2

Figure 2. 2 Corpus-Based Similarity Measures[5]

2.2.2 Knowledge-Based Similarity:

Knowledge-Based Similarity is one of semantic similarity measures that bases on
identifying the degree of similarity between words using information derived from semantic
networks [3]. WordNet [4]is the most popular semantic network in the area of measuring

the Knowledge-Based similarity between words; WordNet is a large lexical database of

7
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English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept. Synsets are interlinked by means of

conceptual-semantic and lexical relations .As shown in figure 3, Knowledge-based similarity
measures can be divided roughly into two groups: measures of semantic similarity and

measures of semantic relatedness.[5]

There are six measures of semantic similarity; three of them are based on information
content: Resnik (res), Lin (lin) and Jiang & Conrath (jcn). The other three measures are based
on path length: Leacock & Chodorow (Ich), Wu & Palmer (wup) and Path Length (path).

Furthermore, there are three measures of semantic relatedness: St.Onge (hso) , Lesk (lesk)

res

.Infnrmatiun | ( . |
lin

Content | | J
jen

and vector pairs (vector). [5]

- -

Similarity —
Ich
K ledge- Path ’ wup .I
nowledge-
Based Length . /
hso path
Relatedness lesk
vector

Figure 2. 3 Knowledge-Based Similarity Measures [5]

2.2.3 String-based Similarity:

String-based similarity is the oldest, simplest yet most popular measurement
approach. This measure operates on string sequences and character composition. Two main
types of string similarity functions are character-based similarity functions, and token-based

similarity functions.
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2.2.3.1 Character-based Similarity:

Is also called sequence-based or edit distance (ED) measurement. It takes two strings
of characters and then calculates the edit distance (including insertion, deletion and
substitution) between them. Character-based quantifies character similarity between two
strings to quantify the similarity, for instance ED which is the minimum number of single-
character edit operations needed to transform one to another [6]. In another word, two
strings are similar if the edit distance minimum operation number is smaller than the given
threshold. Some examples of this approach are Hamming distance, Levenshtein distance.
Damerau-Levenshtein, Needleman-Wunsch, Longest Common Subsequence. Smith-

Waterman, Jaro, JaroWinkler, and N-gram.[5]
2.2.3.2 The term-based similarity:

Also known as token-based because it models each string as a set of tokens. The
similarity between strings can be assessed by manipulating sets of tokens, such as words.
The main idea behind this approach is to perform two string similarity measurement based
on general tokens, correspond to its token sets. [7] If the similarity is denoted, the string pair
is flagged as being similar or duplicate. Term-based similarity address drawback on

character-based when it works on larger string. [8]

The main characteristic of token-based similarity is the use of the overlap of two
token sets as likeness quantification. The overlap is computed based on exactly matched
token pairs without considering other similar tokens. Token-based similarity approach is
useful for recognizing the term rearrangement by breaking the strings into substrings. Vector
space models (Jaccard similarity, Dice’s coefficient, Cosine similarity) are some examples of

these methods. And it will be the core subject that we will treat in the next chapter.
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Figure 2. 4 String-Based Similarity Measures [5]

2.2.4 Hybrid Similarities:

In addition to the three categories previously described, there are still several
similarity measures that cannot be categorized into any prior family. The idea of this
approach is to combine the previously described approaches, including string-based,
corpus-based, and knowledge-based similarity to reach a better metric by adopt their

advantages.[5]

2.3 Token-based models’ objectives:
Token-based similarities are very widely used in different areas. Probably, it is the most

well-known approach to work with texts, that’s because of its:

* Simplicity, since it is based on a linear algebra model.

10
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* Ability to incorporate term weights any kind of term weight can be added.

» Can measure similarity between almost everything; query and document, document and

document, query and query, sentence and sentences and so on.
* Partial matching is allowed.

* Ranking of documents compared to their relevance is allowed.

2.4  Conclusion:

In this chapter, we saw some of the main methods used in textual similarity measuring,
and we introduce them and their algorithms, then we have seen the String-Based similarity
method and its algorithms that called vector space models which would be our subject in the

next chapters.

11
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CHAPTER 3. ARCHITECTURE AND CONCEPTION

3.1 Introduction:

In this chapter we will define the VSM (Vector Space Model), then we will explain the four
main techniques of vector space model. After that we try to concept the model and apply

those four techniques.
3.2 Vector Space Model:

3.2.1 Definitions:

Definition1: The Vector space model is a model where the document and the query both are
represented in vector, each vector constructed of weight in a multidimensional space, whose

dimensions are the terms used to build an index that represents documents

Definition2: A content-based model that represents a document as a vector in an n-
dimensional space, where each dimension represents a term and similarity between two

documents is measured through cosine angle between the two vectors [9]

Definition3: One of classical representations of document content. The documents are points
(or vectors rooted in coordinate origin) in this high-dimensional space (spanned by terms
being coordinate axes), with the point (vector) coordinates reflecting frequencies of different

terms (linearly or in a more complex manner) in a given document [10]

Definition4: Is an algebraic model for representing documents (not only text) as vectors of
identifiers, such as, for example, index terms. It is used in information filtering, information
retrieval, indexing and relevancy rankings. Its first use was in the SMART Information

Retrieval System [11]

3.2.2 Models and approaches:

As we said before, there is four main techniques in VSM, which are:

e Inner product
e Cosine similarity
13
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e Jaccard index

e Dice index

3.2.2.1 Inner Product:

Inner product is the first technique in the vector space model. This technique considered
as a base for other techniques. All the other techniques depend on the results of this technique

to compute the results of their functions.

An inner product is a generalization of the dot product. In a vector space, it is a way to
multiply vectors together, with the result of this

multiplication being a scalar.

(x1. )

Figure 3. 1 representation of inner product

There are several different ways of representing/calculating the inner product. Equation
(1) gives you the geometric meaning of inner product. Equation (2) would not shows you any
idea of visualization, but it gives you a way of calculating the inner product with very simple
multiplication and sums (Equation (2) would be the most common ways to calculate the inner

product in most of the application)
U-V =|U||V|cos@
Equation 3. 1: Geometric Inner product
u'U=x1X x2+ ylxyz

Equation 3. 2: Inner Product

The idea here is to implement our documents or texts as vectors and to find the similarity

between these documents.

14
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3.2.2.2 Cosine Similarity:

Cosine similarity measures the similarity between two vectors of an inner product space. It is
measured by the cosine of the angle between two vectors and determines whether two vectors
are pointing in roughly the same direction. It is often used to measure document similarity in

text analysis. [12]

Let u and v be two vectors for comparison. Using the cosine measure as a similarity

function, we have

uv XXXty Xy,
||ul[l|v]] Va2 +v:2 X252 + 9,2

SiMeosine (U, V) = cosO =

Equation 3. 3: Cosine Similarity

The measure computes the cosine of the angle between vectors u and v. A cosine value of
0 means that the two vectors are at 90 degrees to each other (orthogonal) and have no match,
which means the documents we are comparing are quietly different. The closer the cosine

value to 1, the smaller the angle and the greater the match between documents.

3.2.2.3 Jaccard Similarity:

” Also known as Jaccard index, the Jaccard similarity coefficient is a statistical measure

of similarity between sample sets” [13]

The Jaccard index or Jaccard coefficient [14] is the ratio between the cardinality (the size)
of the intersection of the sets considered and the cardinality of the union of the sets. It allows
to evaluate the similarity between the sets. The documents d1 and d2 are therefore represented

as sets of terms. The similarity obtained sim;gccqrq € [0,1]

[|d1 nd2||

Simjaccard (dl’ d2) = m

Equation 3. 4 : Jaccard Similarity for sets

It is also possible to use vector weighted representation:

u-v

sim; =
jaccard wWHvi—u-v

15
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X1 X X+ Y1 XY
G+ y1)2+ 0+ y)2 = X X+ Y1 X,

S imjaccard =

Equation 3. 5: Jaccard Similarity for vectors

3.2.2.4 Dice Similarity:

The D index measures the similarity between two documents d1 and d2 based on the
number of terms common between d1 and d2. Dice measurement is used like Jaccard to find
the similarity between two vectors but gives twice the weight to agreements, the dice

similarity measure [15] obtained by the formula:

c

Slmdice(dl,dZ) = m

Equation 3. 6: Dice Similarity for sets
Where Nc is the number of common words between d1 and d2, and N1(resp. N2) is the
number of terms in d1(resp. d2)

While the vector weighted calculation can be done with the formula:

iMgice(dl,d2) =2 ——
Slmdlce( ) u? 4 p2

X1 X X+ Y1 XY,
(x1 +y1)2 + (23 + ¥2)?

Simgice (U, v) = 2

Equation 3. 7: Dice Similarity for vectors

3.2.3 Term Weighting:

Term weighting is a procedure that takes place during the text indexing process in order to
assess the value of each term to the document. Term weighting is the assignment of numerical
values to terms that represent their importance in a document in order to improve retrieval

effectiveness [16]

Essentially it considers the relative importance of individual words in an information
retrieval system, which can improve system effectiveness, since not all the terms in a given
document collection are of equal importance. Weighing the terms is the means that enables

the retrieval system to determine the importance of a given term in a certain document or a

16
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query. It is a crucial component of any information retrieval system, a component that has

shown great potential for improving the retrieval effectiveness of an information retrieval

system [17]. One of the most important term weighting method is TF-IDF.

3.2.3.1 TF-IDF weighting:

tf—idf or TFIDF, short for term frequency—inverse document frequency, is a numerical
statistic that is intended to reflect how important a word is to a document in a collection or

corpus.

Typically, the tf-idf weight is composed by two terms: the first computes the normalized
Term Frequency (TF), aka. the number of times a word appears in a document, divided by the
total number of words in that document; the second term is the Inverse Document Frequency
(IDF), computed as the logarithm of the number of the documents in the corpus divided by the

number of documents where the specific term appears

3.2.3.2 Term Frequency (TF):

which measures how frequently a term occurs in a document. Since every document is
different in length, it is possible that a term would appear much more times in long documents
than shorter ones. Thus, the term frequency is often divided by the document length (aka. the

total number of terms in the document) as a way of normalization:

count of tind

TF =
(&.d) number of words ind

Equation 3. 8: Term Frequency

Where t; term, d: document

3.2.3.3 Document frequency (DF):

This measures the importance of document in whole set of corpora, this is very similar to
TF. The only difference is that TF is frequency counter for a term t in document d, where DF
is the count of occurrences of term t in the document set N. In other words, DF is the number
of documents in which the word is present. We consider one occurrence if the term consists in

the document at least once, we do not need to know the number of times the term is present.

17
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DF(t) = occurrence of t in documents

3.2.3.4 Inverse Document Frequency (IDF):

The Inverse Document Frequency which is considered to be a discriminating measure for
a term in the text collection. It was proposed in 1972, and has since been widely used. IDF in

information retrieval is used to distinguish words that have the same frequency. [18]

N
IDF(t) = logﬁ+ 1
t

Equation 3. 9: Inverse Document Frequency

Where, N is total number of documents, df;is document frequency of a term t

3.2.3.5 Term frequency-Inverse document frequency(tf.idf):

now combine the definitions of term frequency (the importance of each index term in the
document(tf)and inverse document frequency (the importance of the index term in the text
collection), to produce a composite weight for each term in each document

Weq = tf(t,d) xidf (t) = tf(t,d) * logdlft+ 1

Equation 3. 10: TF.IDF

3.3 Conception:

Before building the VSM model to calculate similarity, there are a few preprocessing to do,
this steps called the NLP Pipeline. the pipeline includes the following:

e Tokenization

e Punctuation and Stop Words Removal
e Stemming or Lemmatization

e Creating the Bag of Words

e Duilding a VSM model

To show the process of building our mode, we have chosen two sample texts extracted from
the book “Please Look After Mom” by “Kyung-sook Shin”

18
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Entrée [4]: d1 = "After your children's mother went missing,you realized that it was your wife who was missing.\
Your wife, whom you'd forgotten about for fifty years, was present in your heart.Only after she disappeared did \
she come to you tangibly, as if you could reach out and touch her."
d2 = "Before you lost sight of your wife on the Seoul Station subway platform, she was merely your children’s mother to you. \
She was like a steadfast tree, until you found yourself in a situation where you might not ever see her again. \
a tree that wouldn’t go away unless it was chopped doun or pulled out."

Entrée [15]: d2 = "Before you lost sight of your wife on the Seoul Station subuay platform, she was merely your children’s mother to you.\
St was Like 3 steadfast tres, until you found yourself in  situstion where you might not ever ses her again. |
3 tree that wouldn't go auay nless it was chapped doun or pulled out.”

Figure 3. 2 Text samples used for conceptions

3.3.1 Tokenization:

Given a character sequence and a defined document unit, tokenization is the task of chopping
it up into pieces, called tokens, this will produce us a list of single items to process.

[Hter, your aildeen’, s, "mother”, "went 'missing‘, Lo, realized’, that’, It was', yaur, wife

who as', missing’, Your wife', ', non', you', ', Morgotten', “about’, or', ifty, years', ',
present‘ ', your, Cheart’, S COnly', Cafter, Cshe', disappeared, 'did’, “ohe’, “come’, o', oo, tanglbl

I, f‘J ou', "could’, “reach’, “out’, “and, touch e,

Figure 3. 3 Tokenization of first document

['Before’, 'you', 'lost’, 'sight’, 'm"l aur', 1fe' o', e, Seoul’, Station', ‘subuay’, platfom’, ', she’, i
s, ‘merely’, yowr', Cchildren’, s, “mther’, 10, you' L Shet wast, Lk, e, Csteadfast’, teee’, ', it
L', "you', “found", "yourself', '1n' El '51tuat10m ihere', you night', ‘mot’, “ever', see’, her’, Tageln’,

', e, that', Nwuld', 't 'go', gy, unless', it Yues', chopped', ‘o', or, 'pulled, ‘ut', "}

Figure 3. 4 Tokenization of second document

3.3.2 Punctuation Removal:

Removing punctuation is the process of deleting all the punctuation marks as dots, comma,

and quotes.

19
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[iter, tyour', Cenildren’, s, Cmoter, Cwent, ‘missing, you', Trealized, et i, g your it 'Hho‘,
s, missing, Your', wife, ‘ihom ,jou, M Morgotten', about”, for', Yy, 'years g, present’, 1
your', “heart’, ‘Only’, after’, ‘she, ‘disappeared’, did’, 'she’, ‘come’, to', you', ‘tanglhly’, ‘', I, yu', coul
d, "reach’, ‘oot Cand’, "touch’, her’

Figure 3. 5 Punctuation removal from d1

[Before’, “you', ost', ‘signt’, ‘of', your', ife’, ‘on', ‘the', “Seaul’, “Station', “subigy’, 'platfom’, ‘she’, “ues',

merely’, your', “cnildren’, s’ ‘mother’, o', wu,'h, ws,lm' 3, steatfast', tree’, until, yau', Mol
', wmﬁ‘tﬂ'?'ﬂﬁmnlmwlwm'MMQWﬁ der, s, her, apaln’, a, e, T,
old', 't 'm’, aey, wless', "It Ywas', chopped’, ‘o', o', ‘pulled’, ‘ot

Figure 3. 6 Punctuation removal from d2

3.3.3 Stop-word removal:

Stop-word removal is the process for deleting all the words that have no meaning. Stop
words include the large number of prepositions, pronouns, conjunctions, etc. in sentences.
These words need to be removed before we analyze the text, so that the frequently used words

are mainly the words relevant to the context and not common words used in the text

Chiter, ol motner, et wdssing, relized, e, sy, o, iR ot yesrs, e

U, et Dy, dlsappesred, o, thgihly, resdh, o]

Figure 3. 7 Stop word removing from d1
['Before’, 'lost’, "sight’, ‘wife', "Seoul’, "Station’, 'subway', ‘platforn’, 'merely’, ‘children’,
other’, “She’, 'Like', 'steadfast’, 'tree’, ‘fownd’, ‘situation’, ‘again’, 'tree’, “auay’, "choppe
d', ‘pulled']

Figure 3. 8 Stop word removing from d2
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3.3.4 Lemmatization:

Architecture and

Lemmatization usually refers to doing things properly with the use of a vocabulary and

morphological analysis of words, normally aiming to remove inflectional endings only and to

return the base LEMMA or dictionary form of a word, which is known as the lemma

Its result would be:

After -----> after
children ----- » child
mother ----- > mother
went ----- > g0

missing ----- > miss
realized ----- > realize
it -----> -PRON-

your ----- = -PROMN-

wife ----- » wife
missing ----- > miss
Your ----- > -PROMN-

wife ----- > wife
forgotten ----- > forget
for -----» for

years -----> year

was -----»> be

Before -----» before
lost ----- » lose

sight ----- » sight

wife ----- > wife

the ----- > the

Seoul ----- » Seoul
Station -----» Station
subway -----» subway
platform ----- » platform
merely -----> merely
your ----- > -PRON-
children ----- > child
mother -----> mother
you ----- > -PRON-

She ----- > -PRON-

like ----- » like
steadfast ----- » steadfast

present ----- *> present
your ----- > -PROMN-

heart ----- > heart

Only ----- > only

she ----- > -PROM-
disappeared ----- > disappear
she ----- » -PROM-

come ----- > come

You ----- > -PROM-
tangibly ----- » tangibly
if -----> if

you ----- > -PRON-

could ----- » could

reach ----- » reach

and ----- > and

touch ----- > touch

treg ----- » tree
you ----- > -PRON-
found ----- *» find
in ----- > in
situation ----- > situation
you ----- > -PRON-
not ----- » not

SEE —---- » Sge
again ----- > again
tree ----- > tree
would ----- » would
gO ----- > go

away ----- > away

it ----- » -PRON-
Was ----- » be
chopped -----» chop
or ----- > oor

pulled ----- > pull

Figure 3. 10 lemmatization of d2
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3.3.5 Creating words-bag:

, nissing, ‘rothe
sthom’, et ‘ol “rescn’ L |

[ gy, il o, Ccone', s, g, onget”, et Lk, ose', vy, niss,
it it realize’, sel, it Csituation, tation, ‘steadfast’, sy’ tanglh
| | Ui, ]

M,WMJW%

Figure 3. 11 Creation of words-bag from d1 and d2

After we create our words-bag, and normalize the two texts, now we move to term weighting.

3.3.6 Compute the term frequency:

Qut[18]:
away chid chop come disappear find forget heart fike lose .. sight situstion sfafion steadfast subway fangibly touch free wife yew

00065 00065 0065 OO00RH006% 0 0. 0 0 0 00 006 006% 0 015 00628

fows £ 30 columns

i

Figure 3. 12 Term weights of d1

away child chop come disappear find forget heat ke lose .. Sigt Situstion station steadfast subway ftangioly touch tree i

00526 00%6 005% 0 0008 0 0 005% 00X . 0026 0066 006 (0066 0O5& 0 0 010% 002

ows x 30 columns

{ }

Figure 3. 13 Term weights of d2

Now, we calculate our IDF, which would be the same for both documents
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Qut[53]:

PRDN: away chid chop come disappear find forget heart like .. sight situation station steadiast subway fangibly fouch  tree wil

116931 1 16931 16931 16931 16931 16931 16931 18931 . 16931 16031 16931 16931 16931 1.6931 16931 16931

rows x 31 columns

{

Figure 3. 14 the inverse document frequency weights

After calculation the Term frequency and inversed term frequency, we compute TF-IDF to get

the final indexed files in order to apply the VSM techniques and calculate the similarity
between those documents

The TF-IDF for the first file is going to be:

Dut[14]:
away child chop  come disappear find  forget  heart like lose .. sight situation station steadfast subway tangibly  touch free wi

I 00 00625 00 0105819 0103819 00 0105819 0403819 00 00 .. 00 00 Q0 00 00 0105819 010819 00 0.2

rows % 30 columns

{

Figure 3. 15 TF-1DF weights of d1

And for the second document:

awdy child  chop come disappear  find forget heart like  lose ..  sight situation station steadfast subway tangibly touc

0089057 00525 0089057 00 00 0089057 0.0 00 0089057 0089057 . 0089057 0089057 0089057 0029057 0089057 00 0.

s % 30 columns
{

Figure 3. 16 TF-1DF weights of d2

3.4 Applying the vector space model Techniques:

Like that, we are ready to measure similarity using deferent techniques, but in order to do that,

we have first to calculate the length of our vectors and the dot product of them
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Out[36]:
0 1 2 3 4 5 6 T 8 9. 0 A /] Fi

TFIDF1  0.000000 0.062500 0.000000 0.105819 0105819 0.000000 0.105819 0105819 0.000000 0.000000 .. 0.000000 0.000000 0.000000 0.000000 0.00
TFIDF2 (0.089057 0.052800 0.08%057 0.000000 0.000000 0089057 0.000000 0.000000 0.089057 0.089057 .. 0089057 (0.089057 0.089057 0.089057 0.0
Product 0.000000 0.003288 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 .. 0.000000 0.000000 0.000000 0.000000 0.00

J1ows ¥ 30 columns

{ 3

dot(dl,d2) = Y w; g1 * W; 4, Where w; g1 is the weight of term i in document d1, and w; g
Is the weight of term i in document d2

dot(d1,d2) = 0.0625 * 0.0526 + 0.10581 * 0.0000 + --- + 0.125  0.0256
dot (d1,d2) = 0.01315

Now, the length of d1 and d2:

len(d) = \/x12 4 2,2 + -+ x;2

Equation 3. 11: Vectors Length

len(dl) = \/0.06252 + 0.1058192% + -+ + 0.1252

len(d1) = 0.3972

len(d2) = \/0.089052 + 0.052602 + 0.089052 + --- 4+ 0.05262

len(d2) = 0.3886

Cosine Similarity:

As we introduced the cosine similarity, it is used to compute the angel between the vectors
for documents and query. We will apply the below equation of cosine similarity on our

example:

di-dz

SiMcosine(d1,d2) = cosf = ——-
iMcosine( ) = cos ”dl”“dzll

24



Chapter 3 Architecture and
Conception

dl-dz2 0.01315

SiMcosine(d1,d2) = cosf = [ai[|22]] ~ 0.3972 * 0.3886

SiM,psine(d1,d2) = 0.08516
SiM psine(d1,d2) = 08,52%
Jaccard Similarity:

di-dz2
d12 +d22 —di-dz

S lmjaccard

_ ~ 0.01315
StMjaccard =3 1578 1+ 0.15106 — 0.01315

SiMjgccara = 0.0444
SiMjgccara = 04,44%
Dice Similarity:

(1, d2) = 2= 22
e (L) =

0.01315
0.1578 + 0.15106

Simgice(d1,d2) = 2

Simyiee(d1,d2) = 0.08514
Simgc.(d1,d2) = 08,51%

3.5 Conclusion:
In this chapter, we have defined what is a vector space model, it’s main techniques and
approaches, then the main steps for implementing it to build a comparison system. We will

show on the next chapter the tool used to apply those techniques in vector space model and

it’s results as well.

25



Chapter 04

Implementation




Chapter 4
Implementation

CHAPTER 4. IMPLEMENTATION

4.1 Introduction:

This chapter represents the last step of our work, which mean the implementing of our
model and discuss the results in the right environment. In this step we will choose the
environment, the tools and the language used to develop our model, then we will give an
overview of the work done in form of codes then the last result of our work as a desktop

application for comparing two texts or documents.

4.2 Programming Language:

To develop our model, we choose Python as a programming language because it’s easy

to use, powerful and versatile (image processing, game developing, data science analyzing...)

4.2.1 Python Presentation:

Python is an interpreted, high-level and general-purpose programming language.
Created by Guido van Rossum and first released in 1991, Python's design philosophy
emphasizes code readability with its notable use of significant whitespace. Its language
constructs and object-oriented approach aim to help programmers write clear, logical code for

small and large-scale projects. [19]
Python has so many features, we mention:

¢ Built-in high-level data types: strings, lists, dictionaries, etc.

e The usual control structures: if, ifelse, ifelifelse, while, plus a powerful collection
iterator (for).

e Multiple levels of organizational structure: functions, classes, modules, and packages.
These assist in organizing code.

e Compile on the fly to byte code Source code is compiled to byte code without a

separate compile step.
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4.2.2 Interactive Python:

If you execute Python from the command line with no script (no arguments), Python
gives you an interactive prompt. This is an excellent facility for learning Python and for trying

small snippets of code.

Start the Python interactive interpreter by typing “python” with no arguments at the

command line. For example:

=N CAWindows\system32\cmd.exe - python = =

icrosoft Windows [version 6.3.96881]1

ype "help'. "copyright', “credits" or "license' for more information.
>33 print{"hello™>

Figure 4. 1 Executing Python from CMD

4.3 Environment and tools:

We have chosen PyCharm IDE (integrated development environment), version 2019.3
under windows 8.1 as an operation system. We choose it because it’s the most widely used
IDEs for Python programming language, and it provides coding assistance and analysis, with
code completion, syntax and error highlighting, linter integration, and quick fixes. We also
use PyQt designer to create the application interfaces, we choose it because it’s easy and

handy to use and use drag to design style.

4.3.1 Presentation of PyCharm:
PyCharm Is an IDE used in computer programming, specifically for the Python
language. It is developed by the Czech company JetBrains. It provides code analysis, a

graphical debugger, an integrated unit tester, integration with version control systems
(VCSes), and supports web development with Django as well as Data Science with Anaconda.
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PyCharm was developed by jetBrains as a cross-platform IDE for Python. In addition

to supporting versions 2.x and 3.x of Python, PyCharm is also compatible with Windows,
Linux, and macOS.

main ¥

@ mainwindow.py @ final_form.py @ POS _Tags.py @ similarities.py @ french_similarities.py @ TF_IDF.py

nt) i result ==

Figure 4. 2 PyCharm interface

4.3.2 PyQt presentation:

PyQt is one of the most popular Python bindings for the Qt cross-platform C++ framework,
implemented as a Python plug in. PyQt is free software developed by the British firm
Riverbank Computing. PyQt supports Microsoft Windows as well as various editions of
UNIX, including Linux and MacOS.

PyQt is available in two editions: PyQt4 which will build against Qt 4.x and 5.x and
PyQt5 which will only build against 5.x. Both editions can be built for Python 2 and 3. PyQt
contains over 620 classes that cover graphical user interfaces, XML handling, network

communication, SQL databases, Web browsing and other technologies available in Qt.
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4.3.3 PyQt designer:

Qt Designer is the Qt tool for designing and building graphical user interfaces. It allows
you to design widgets, dialogs or complete main windows using on-screen forms and a simple
drag-and-drop interface. It has the ability to preview your designs to ensure they work as you
intended, and to allow you to prototype them with your users, before you have to write any
code.

File Edit Form View Settings Window Help

DA o0 FH%RE ISHEZEE DN

Widget Box 8 % Object Inspector 8 x

:l ( ) =3
Filter (1 Form - frenche_second.i* X |ther
& Line i R S SN 4y Qg
TetEdit Insérer des textes . . e QabWidget
Plain Text Edit s Bub QWidget
i B checkBax 10 QCheckBox

= checkBox 11 QCheckBox 9
Double Spin Box Property Editor 8 X

Time Edit .
D G ‘F\Iter |H} = /
|52 Date Edit T T
E english : QWidget
ﬁ Date/Time Edit Property Value 5
Dial
QObject
@) Horizontal Scroll Bar english
E] Vertical Scroll Bar
@- Horizontal Slider
4 geometry [(0, 0), 808x 510]

? Vertical Slider X 0
Key Sequence Edit Comparer . v 0 hd
J Display Widgets L S S S J S S S - .|| Resource Brawser g %
? - [ similarité cosinus /e
ngmww L S S S S S S S S S| sresource roots
%: Graphics View * L similarité de Jaccard
@ Calendar Widget S o o

LCD Number ~ O Similarité de Dice

Progress Bar

g Horizontal Line
I Vertical Line
[7] OpentL widget 3

SignalSlot Editor | Action Editor | Resource Browser

Figure 4. 3 PyQt designer

Qt Designer uses XML “.ui” files to store designs and does not generate any code
itself. Qt includes the “uic” utility that generates the C++ code that creates the user interface.
Like the “uic” utility it can also generate the Python code that will create the user interface.

PyQt5’s “pyuic5” utility is a command line interface to the “uic” module.
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X CAWindows\System32\cmd.exe

icrosoft Windows [version 6.3.768681
Cc» 2013 Microsoft Corporation. Tous droits réseruvés.

UserssKARIM~FPycharmProjects>pyuics —x mainwindow.ui —o mainwindow.py

sUserssKARIM~PycharmProjects >

Figure 4. 4 Generating python code from .ui

The code that is generated has an identical structure to that generated by Qt’s “uic” and

can be used in the same way.

Figure 4. 5 Python code generated from interface design

4.4 Application Presentation:

Our application is a desktop application for comparison between two texts or two
documents, it uses the Vector Space Models to calculate and compare the similarity. It’s made

up of few windows which we will describe.
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4.4.1 Main window:

Welcome, please choose a language

English French

Figure 4. 6 Main Window of application

This window is the first one of our application, from it the user can choose the
language of the next interfaces and also, the language of the texts he wants to compare or

documents. If he clicks the English button, the next windows will be completely in English as

well as for if he chooses French.

4.4.2 English window:

1=} Documents

Insert texts

This is a window for english texts mais pas pour un text francais

Compare

L1 Cosine simlarity

[l Jaccard Similarity

1 Dice similarity

Figure 4. 7 Texts tab from English Window of application

32



Chapter 4
Implementation
This is the Second window of our application, it’s divided into two tabs, the first one is

for texts, and the second one is for uploading documents.

The first tab is consisting of two plain text edits which in them the user write or copy
the texts he want to calculate the similarity between them, and as we said before, this window
is only for English texts, so if he write a French one, and click compare, a message box will

show to inform him to insert an English one as in the figure below

| English = =
Documents
Insert texts
This is & window for english texts mais pas pour un text francais
n.] error

please enter a valid English tesxt

Ok

Compare
M Cosine simlarity
M Jaccard Similarity

1 Dice similarity

Figure 4. 8 Error message from English window

Also, from this window, the user can choose which type of similarity he want to use,
either a Cosine, Jaccard or Dice similarity or all of them, but he has to choose at least one, if
he didn’t another message box will appear to tell him that he must choose at least one

similarity as in the figure below
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== Documents

Insert texts

This iz @ window for English texts 50 you should type an English text

Please choose a similarity

QK

Compare

[ Cosine simlarity
[ Jaccard Similarity

[ Dice similarity

Figure 4. 9 Error message from English window

So, the user has to enter English texts, and choose one similarity option or more before
he pushes the button compare. If all the requirements are satisfied, a push up window will

appear to show the results of the similarities he chooses.

The Second tab is documents,

Upload documents
Add first document Upolad
Add Second document Upolad

Compare

[l Cosine simlarity
[0 Jaccard Similarity

1 Dice similarity
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Figure 4. 10 Documents tab from English window

This window is consisting of two buttons to upload documents with “.docx” format or
“txt” format. When the user pushes the upload button a dialog window pops up and tell him
to choose a file, and when he chooses one, the name of this file is going to appear next to the

button he pushes as in the figure below

tutrri\s il English -
Upload a document n
L . v OneDrive » Documents v & Rechercher dans: Documents 2 ents
Organiser » MNouveau dossier 3=z - ﬂ ﬂ
X Favoris ~ MNom ‘ Medifié le Type chapter3.dﬂ|:x
=] Emplacements ré | Nouveau document texte.bd 10/04/2020 16:16 Document texte
B Bureau Nouveau document texte.txt

& Téléchargements
f@ OneDrive

0@ Groupe résidentiel

18 CePC
m Bureau
| Documents
= Images
dr Musiaue e >
Mom du fichier: Neuveau document textetet v |text files(*ot *.doc) v

Quvrir Annuler

Figure 4. 11 Dialog window to choose documents

Those documents must be both in English, or a message box will appear to tell him to

choose a valid English document
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i

Texts (lali=yli]

Add first document

Add Second document

B Cosine simlarity
[ Jaccard Similarity

[1 Dice similarity

English

Upload documents

Upolad chapter3.docx
Upolad francais.txt
Compare
] errar

please enter a valid English text

OK

Figure 4. 12 Error message from Documents tab

Then the user must at least check one checkbox to choose a similarity or more than one to

compare between documents

4.4.3 French window:

This window is almost like the English one, when the user clicks the French button
from the main window, it appears completely in French and the documents or texts mush be

in French too.
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Documents

Insérer des textes

Comparer
[ similarité cosinus
[ similarité de Jaccard

[ Similarité de Dice

Figure 4. 13 Texts tab from French window

The first tab consists of two plain text entries where the user writes or copy only
French texts, otherwise, he got an error to re-enter a French one, also, from this tab the

user must choose at least one similarity type to calculate,

Télécharger document

Ajouter premier document Télécharger

Ajouter deuxieme document Télécharger

Comparer

L1 similarité cosinus

[ similarité de Jaccard

[ Similarité de Dice
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Figure 4. 14 Documents tab from French window

From this window the user can choose files or documents to upload, those documents

must also be in French, and then he has to choose a similarity to calculate

4.5 Result discussion:

Similarities
Cosine similarity 18.70%

Jaccard Similarity Not Selected

Dice similarity Not Selected

Figure 4. 15 English similarity window

This window shows the results of the similarities that user selected from the previous
English window, if he didn’t choose one of them, the window returns “Not selected”. A same

window will appear if the user chooses to work with French documents as in the figure below

Les Similarités
Similarité Cosinus 18.70%

Similarité de Jaccard MNon séléctionné

Similarité de Dice Non séléctionné

Figure 4. 16 French similarity window
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4.6 Conclusion:

In this chapter, we describe and present the programming language and tools we have
used to implement our model, then we see the application of the model by showing the

deferent interfaces and windows.
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GENERAL CONCLUSION

In this paper, we have developed and implemented an application for comparing and
finding the similarity between texts or documents. This paper is significant in many terms, we
have presented the main features of Vector Space Model and we have implemented these

features.

This work can the backbone of successful text mining operations such as searching and
information retrieval (IR), text classification, information extraction (IE), document
clustering, sentiment analysis, machine translation, text summarization, and natural language

processing (NLP). This work also can be a great help for detecting plagiarism.

We will work in the future to improve the tool in order to enlarge its features, such as
covering multiple file formats like pdf, html and other file formats. Also, we try to implement
this application to work in multiple platforms as Linux, macQOS, and phone operating systems.
Moreover, we will try to make this work supports and covers other Languages like Arabic
Language and many others. Also, we will try to develop this application in order to work with

it online.

We are glad to build such tool and we do appreciate all the readers of this report to try

it out and helps us in order to enhance the current tool.
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Abstract:

The study and comparison of documents has proven to be a very important task for the
detection of plagiarism, the retrieval of new information as well as the categorization of

documents

VSMs (Vector Space Models) are one of the most efficient models of the information
retrieval (IR) system, These models allow to represent complex information in a relatively

simplistic form, which makes it possible to apply vector computation for text analysis.

This project aims to develop a text comparison system based on VSMs which allows to
indicate the correspondence rate (similarity) between two texts or given documents using

the python language.

Key Words:

VSM- Vector Space Models- Document analysis- Plagiarism detection- Python
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Résumé :

L’étude et la comparaison des documents s’est montrée une tache tres importante pour la
détection de plagiat, la récupération de nouvelles informations ainsi que la catégorisation
des

documents

Les VSM(Vector Space Models) sont I'un des modeles les plus efficaces du systéeme de
recherche d’informations (IR) (information retrieval, Ces modéles permettent de représenter
des informations complexes sous une forme relativement simpliste, ce qui permet

d'appliquer le calcul vectoriel a I'analyse de textes.

Ce projet vise a développer un systéme de comparaison de textes basés sur les VSM et qui
permet d’indiquer le taux de correspondance (similarité) entre deux textes ou documents

donnés en utilisant la langages python.

Mots clés :

VSM -Vector Space Models- Analyse des documents — détection de plagiat- Python
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