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Introduction

Ordinary differential equations (ODEs) are a fundamental tool for studying and understanding
the behavior of a vast array of natural phenomena [1, 2]. They have become an essential part of the
curriculum in many undergraduate science programs and are widely used in various fields, including
engineering, technology, and the natural sciences. While ODEs can model a broad range of natural
processes, only a select few allow for explicit solutions. For many other systems, qualitative theory
and related methods offer alternative tools for surveying their behavior. Qualitative techniques can
provide a more comprehensive understanding of significant subsets of solutions, see the book [5].
This approach reveals valuable information about the flow, parametric stability, and bifurcations of
the ODEs. Therefore, qualitative techniques are a crucial complement to traditional methods, and
their use should be encouraged to obtain a more complete understanding of the behavior of ODEs in
diverse applications.

A dynamical system is any system that changes over time, and ODEs provide a concise and ele-
gant way to capture this behavior. A dynamical system can be defined as a function that describes
the time dependence of a point in an ambient space, such as a parametric curve. Examples of dyna-
mical systems that can be modeled with ODEs include the oscillation of a clock pendulum, the flow
of water through a pipe, the motion of particles in the air, and the population dynamics of a lake’s
fish species. By modeling these systems with ODEs, we gain insight into their behavior, which can
inform important decisions in fields such as physics, engineering, and ecology. Therefore, ODEs
play a crucial role in the study of dynamical systems and are essential tools for understanding the
behavior of natural phenomena.

Piecewise dynamical systems are a particular type of dynamical system that is defined by dif-
ferent sets of differential equations in different regions of the state space. The boundary between
regions, called the switching surface or switching manifold, defines the conditions under which the
system switches from one set of equations to another, please refer to [6, 10, 18]. These systems are
often used to model complex phenomena that exhibit different behaviors or dynamics under different
conditions, such as ecological systems or mechanical systems subject to switching or control inputs.

The study of dynamical systems and piecewise dynamical systems involves the analysis of the
system’s behavior, stability, and bifurcations. The complexity of these systems often limits the effec-
tiveness of analytical methods. Therefore, we utilize qualitative methods to study and gain a deeper
understanding of these systems.

Dynamical systems and piecewise dynamical systems have numerous applications in science
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and engineering [3, 11]. Understanding the principles of these systems can help researchers and
engineers gain insight into the behavior of real-world systems, leading to more effective control and
optimization strategies.

In this thesis, we study planar dynamical systems, which are mathematical models that describe
the motion of particles or objects in two-dimensional space, are incredibly important in many fields
of science and engineering. One reason for their importance is that they can be used to study a
wide range of physical phenomena, such as the motion of celestial bodies, the behavior of fluids,
and the dynamics of electrical circuits. Furthermore, planar dynamical systems can help us gain in-
sight into the behavior of more complex systems, by providing simplified models that capture the
essential features of the system. This makes them useful for both theoretical analysis and practical
applications, such as designing control systems for industrial processes or understanding the beha-
vior of ecological systems. In addition, planar dynamical systems are often studied because they are
mathematically interesting in their own right, and have deep connections to other areas of mathema-
tics, such as topology and geometry. Overall, the study of planar dynamical systems is essential for
advancing our understanding of the natural world and developing new technologies.

The thesis is structured into three chapters, each addressing different aspects of our study of
the piecewise differential system. The first chapter provides the necessary background information
and mathematical concepts that underpin our analysis, including definitions, lemmas, and theorems.
These concepts include periodic orbits, Poincaré maps, averaging theory, first integrals, Hamiltonian
systems, and Filippov systems. By establishing a solid foundation of these concepts, we aim to
provide readers with a comprehensive understanding of the mathematical tools and techniques that
will be employed throughout our analysis. In the subsequent chapters, we apply these concepts to
our study of the piecewise differential system and draw conclusions based on our findings.

Chapter 2 of our thesis marks the beginning of our investigation into the behavior of the piecewise
differential system. Specifically, we examine the limit cycles that arise from perturbations of the
periodic orbits of the linear differential center ẋ = −y, ẏ = x by discontinuous piecewise
differential systems. By studying these limit cycles, we aim to gain a deeper understanding of the
dynamics of the piecewise differential system and draw conclusions about its long-term behavior.

Chapter 3 of our thesis focuses on the investigation of a specific type of piecewise differential
system in the plane. This system is constructed by dividing the plane into four quadrants, each of
which contains a linear Hamiltonian system. The system is formed by four pieces separated by the
axes of coordinates, such that it is continuous on the x-axis but discontinuous on the y-axis. Our
investigation of this particular sort of piecewise differential system intends to provide useful insights
into its dynamics. We are particularly interested in determining the maximum number of limit cycles
that can occur in these systems.
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Chapitre 1
Preliminary

This chapter introduces the second and third chapters by introducing numerous basic concepts
and theorems that will be used throughout the rest of the thesis. By definition, a polynomial system
is a two-dimensional planar differential system expressed as follows

dx

dt
= ẋ = P (x, y),

dx

dt
= ẏ = Q(x, y). (1.1)

The variables x and y are real, and t is the independent variable (time). The functions P andQ are
polynomials with real coefficients in the variables x and y.

1.1 First Integrals

System (1.1) is said to be integrable on an open subset U of R2 if there exists a non-constant
analytic function H : U → F, known as a first integral of the system on U , that remains constant
along all solution curves (x(t), y(t)) of the system (1.1) contained within U . More specifically,
H(x(t), y(t)) is constant for all values of t for which the solution (x(t), y(t)) is defined and
contained within U . The vector field χ associated with system (1.1) can be defined as follows

χ = P
∂

∂x
+Q

∂

∂y
,

H is a first integral of system (1.1) on U if and only if it satisfies the following condition

χH = PHx +QHy ≡ 0.

1.2 Hamiltonian system

Let U be an open subset of R2 and letH ∈ C2(U) whereH = H(x, y) with x, y ∈ R2. A
system of the form

ẋ =
∂H

∂y
,

ẏ =−
∂H

∂x
,

is called a Hamiltonian system with first integralH .
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1.3. Piecewise differential systems

Example 1. The Hamiltonian function

H(x, y) = (x2 + y2)/2.

is the energy function for the pendulum

ẋ =y,

ẏ =− x,

This system is equivalent to the harmonic oscillators

ẍ+ x = 0.

A fundamental property of Hamiltonian systems is that they are conservative, meaning that the
Hamiltonian function or the total energyH(x, y) is conserved along the system’s trajectories . For
more details of Hamiltonian system see [15].

1.3 Piecewise differential systems

A piecewise differential system on an open region Ω⊆ R2 is a set of vector fields

Ẋ = fi(X),

such that X ∈ Ωi ⊂ Ω, fi is a function defined from Ωi to R2, and Ωi is an open set in R2

satisfying that Ωi ∩ Ωj= ∅ if i 6= j and ∪i∈IΩi = Ω. As usual Ωi denotes the closure of Ωi, See
[13, 14].

We see that the definition of a piecewise differential system contains no information regarding
the flow’s behavior at the boundaries between the regions, its classification is determined by how
the vector field is extended to these borders. If the equations fi = fj hold true for all points, the
piecewise differential system is said to be continuous. If the equations do not hold, the system is
classified as discontinuous

Example 2. The differential equation

 ẋ = x2 + xy,

ẏ = ex,
if x > 0,

and  ẋ = y2x+ 1
ẏ = cosxy

if x < 0,

is a piecewise differential system with

Ω1 = {(x, y) ∈ R2 : x > 0}, Ω2 = {(x, y) ∈ R2 : x < 0}, Γ = {(x, y) ∈ R2 : x = 0}.
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1.4. Standard and sliding solutions of Filippov systems

1.4 Standard and sliding solutions of Filippov systems

Consider a discontinuous system

Ẋ =

 f1(X), X ∈ Ω1

f2(X), X ∈ Ω2
(1.2)

whereX ∈ R2

Ω1 = {X ∈ R2 : L(X) < 0}; Ω2 = {X ∈ R2 : L(X) > 0};

L : R2 → R is smooth with LX(X) 6= 0 on the discontinuity boundary∑
= {X ∈ R2 : L(X) = 0};

L is a smooth scalar function with nonvanishing gradient OL = LX(X) = (
∂L

∂x
,
∂L

∂y
)T , and

fi : R2 → R2 are smooth functions. Orbits of (1.2) are defined by concatenation of standard and
sliding orbit segments.

ForX ∈ ∑, define

σ(X) = 〈LX(X), f1(X)〉〈LX(X), f2(X)〉

and introduce the sets of
a) crossing points :

∑
c = {X ∈ ∑ : σ(X) > 0},

b) sliding points :
∑
s = {X ∈ ∑ : σ(X) ≤ 0},

c) regular sliding points :
∑̂
s = {X ∈ ∑s : 〈LX(X), f2(X)− f1(x)〉 6= 0},

Crossing orbits : At X ∈ ∑
c, concatenate the standard orbit of f1 reaching X from Ω1 with the

standard orbit of f2 departing fromX into Ω2, or vice versa.

f(X)
(X)
2L (X)

X

X

1

2

C

f1

Sliding orbits : ForX ∈ ∑̂s define the Filippov vector

g(X) = λ(X)f1(X) + (1− λ(X))f2(X),

where

λ(X) =
〈LX(X), f2(X)〉

〈LX(X), f2(X)− f1(X)〉
.

For more detailed information , please refer to [9].
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1.5. Several models of Piecewise differential systems

f(X)
1

f(X)
2

L (X)
X

X

S

S

1

2

s

g(X)

1.5 Several models of Piecewise differential systems

1.5.1 ResonantLC power inverters under zero current switching strategy [3]

Resonant inverters are systems that include a switching network and a resonant LC tank circuit
that converts a DC voltage into anAC voltage, thus providingAC power to a load. They have been
around for a while, but their use has usually been limited to certain applications such as high-voltage
power supplies or audio amplifiers. [16, 17]. Recently, they gained significant attention in various
emerging applications, including wireless power transfer, battery charging in electric vehicles, in-
duction heating, and powering high-intensity discharge lighting.

FIGURE 1.1 – Generalized schematic diagram of an LC resonant inverter.

By utilizing certain electronic laws and algebraic simplifications, it is possible to simplify and
streamline the analysis and design processes in LC resonant inverter circuits.

d

dt

 vC

iL

 = A

 vC

iL

 + ub, (1.3)
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1.5. Several models of Piecewise differential systems

where

A =

 −Gp

C
− k
C

− k
L
−Rs

L

 , b =

 0
Vg

L

 ,
and the factor k is introduced to define the equivalent series resistanceRs and the equivalent parallel
conductanceGp.

Zero Current Switching (ZCS) is a control approach that makes switching decisions based
on the sign of the inductor current.The switching condition, which is generally a function of state
variables and time, is reduced to relying just on inductor current. As a result, it can be represented
utilizing the state variables as

h(vC; iL) = iL

so that the ZCS control strategy leads to u = sign (h(vC; iL)) and the system is autonomous.
By change of variables system (1.3) becomes the following piecewise differential system

dX

dt
= AX + ub,

h(X) = x2, (1.4)

where

A =

 0 1

−1 −
1
Q

 , b =

 −βQ
1


and u = 1 if h(X) > 0 or u = −1 if h(X) < 0.

According to (1.4), the switching manifold
∑

is defined as∑ = {(x1, x2) : x2 = 0}, and so the state space of the canonical form has two linearity regions,
namely ∑+ = {(x1, x2) : x2 > 0}, ∑− = {(x1, x2) : x2 < 0}.

1.5.2 System with purely elastic one-sided supports [11]

Consider the system represented in Figure 1.2, which is made up entirely of completely elastic
one-sided supports. A mass (m), spring constants (k and kf), and a force (f0(x) cos(ωt)) acting
on the mass in the direction of its acceleration comprise the system. A non-smooth continuous vector
field can be used to represent this system.

mẍ+ kx = f0 cos(ωt)− f(x),

such that

f(x) =

 0, x ≤ 0,
kfx, x > 0.

1.5.3 System with visco-elastic supports and dry friction [11]

Let’s consider a system depicted in Figure 1.3, which consists of visco-elastic supports and dry
friction. The system includes a mass (m), a spring constant (k), and a force (f0(x)cos(wt))
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1.6. Periodic orbits : Poincare map

acting on the mass in the direction of its acceleration. This system can be mathematically described
by a differential equation with a discontinuous right-hand side, while maintaining a time-continuous
state.

FIGURE 1.2 – elastic support model.

mẍ+ kx = f0 cos(ωt)− f(ẋ),

such that

f(x) =


−Fs, ẋ < 0,
[−Fs, Fs] , ẋ = 0,
Fs, ẋ > 0.

1.6 Periodic orbits : Poincare map

The Poincare map is the most important tool for studying flows near periodic orbits. Consider a
differential equation

Ẋ = f(X) (1.5)

such that f : U ⊂ Rn → Rn and let φ(s, x) be the flow defined by (1.5). Let
∑

be a hypersurface
in Rn and p ∈ ∑∩ U.

• If f(p) /∈ Tp
∑

the flow φ is said to be transverse to
∑

at the point p.
• If f(p) ∈ Tp

∑
then p is called a contact point of the flow with

∑
.

Remark 1.1. Let V be an open subset of
∑

. We say that the flow is transverse to
∑

at V if the
flow is transverse to

∑
at every point in V .

We will now look at two open hypersurfaces
∑

1,
∑

2 and p1 ∈
∑

1 ∩ U, p2 ∈
∑

2 ∩ U such
that p2 = φ(s1, p1). There are neighbourhoods V1(p1) ⊂ ∑

1 ∩ U , V2(p2) ⊂ ∑
2 ∩ U , and a

function τ : V1 → R satisfying τ (p1) = s1 and φ(τ (q), q) ∈ V2 for every q ∈ V1.
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1.6. Periodic orbits : Poincare map

FIGURE 1.3 – elastic support model with dry friction.

In this case, we refer to the Poincare map as the map π : V1 → V2 given by

π(q) = φ(τ (q), q),

for every q ∈ V1, see Figure 1.4.

FIGURE 1.4 – Poincaré map π.

Remark 1.2. When the vector field is globally Lipschitz, Cr with r ≥ 1, or analytic, the Poincare
map π is also continuous, Cr with r ≥ 1, or analytic, respectively. By reversing the sense of the
flow it is easy to conclude that the Poincare map is invertible and the inverse map π−1 is continuous,
Cr with r ≥ 1, or analytic,respectively. In the particular case when

∑
1 = ∑

2 the Poincare map
π is called a return map.

Consider p ∈ ∑
1 and let γ(p) be a periodic orbit. The flow’s continous dependence on the

initial conditions implies that a return map π exists in a neighbourhood of p, and p is a fixed point
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1.7. The Averaging theory for periodic orbit

of π. In contrast, if p ∈ ∑
1 is a fixed point of a return map π, then γ(p) is a periodic orbit. As a

result, limit cycles correspond to isolated fixed points of return maps. A hyperbolic limit cycle is one
in which the absolute value of all the eigenvalues of the Jacobian matrix Dπ(p) differs from one,
instead, γ(p) is referred to as a nonhyperbolic limit cycle. It should be noted that this definition is
independent of the chosen point p or cross section

∑
1 .

Theorem 1.1. Let the differential equation ẋ = f(x), f be a Lipschitz function inU ⊂ Rn; γ(p)
be a hyperbolic limit cycle and π be a return map defined in a neighbourhood of γ(p). Assume that
π is differentiable in a neighbourhood of p. Then the following statements hold.

(a) If every eigenvalue of Dπ(p) has an absolute value smaller than 1, then γ(p) is a stable
limit cycle.

(b) If the absolute value of at least one eigenvalue of Dπ(p) is greater than 1, then γ(p) is an
unstable limit cycle.
A proof of this result can be found in [5].

1.7 The Averaging theory for periodic orbit

The main idea behind averaging theory is to replace the original system with a simpler system
that captures the essential features of the original system but is easier to analyze. This is done by
averaging the behavior of the original system over one or more periods of the rapid oscillations,
effectively smoothing out the fluctuations and simplifying the system’s behavior. For some diffe-
rential systems, averaging methods are valuable tools for determining the number of periodic orbits
[4]. Numerous researchers have focused their efforts to studying the existence of periodic orbit via
this method which has a long history. As we see in the work of Marsden and Mc. Cracken (Mars-
den,1976), chow and Hale (chow,1982), Samders , Buica and Llibre et al.

We must investigate the periodic solution of the following system

Ẋ =
k∑
i=0
εiFi(t,X) + εk+1R(t,X, ε), (1.6)

suth that

Fi : R×D → Rn for i = 0, 1, 2, ..., k,

R : R×D × (−ε0, ε0)→ Rn

are locally Lipschitz functions, and T–periodic in the first variable, being D an open subset of Rn ;
eventually F0 can be the zero constant function.

In classical works, the averaging theory is employed to investigate periodic solutions of a dif-
ferential system (1.6) in the small parameter ε this theory is generally only provided up to first (k
= 1) or second (k = 2) order. Moreover, these theories presuppose that the functions Fi and R are
differentiable up to classes C2 and C3, respectively. The averaging theory for finding periodic so-
lutions was recently developed up to second order in dimension n, and up to third order (k = 3) in
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1.7. The Averaging theory for periodic orbit

dimension 1, only needing that the functions Fi and R be locally Lipschitz functions.The averaging
theory for calculating periodic solutions to an arbitrary order k in ε for analytical differential equa-
tions in dimension 1 was developed in a recent paper [7]. Consider a harmonic oscillator that has
been perturbed by an arbitrary polynomial

ẋ = −y + ∑
j≥1 ε

jfj(x, y),
ẏ = x+ ∑

j≥1 ε
jfj(x, y),

(1.7)

where ε is a small parameter, the polynomials fj and gj are of degree n in the variables x, y and
analytic in the variables x, y and ε. Using the averaging theory up to order s in [7], the authors
have provred no more than [s(n − 1)/2] periodic solutions can be bifurcating from linear center
ẋ = −y, ẏ = x, this bound can be reached when we perturbed this center by an arbitrary
polynamial fo degree n.Here [x] represents the integer part function of the real number x.

Remark 1.3. Taking higher order averaging theory into consideration can improve the results on
periodic solutions both qualitatively and quantitatively.

Now, we study the existence of periodic orbits of general differential systems (1.6), for that we
present some notation that will be required in the following part. Let L be a positive integer, let

X = (x1, ..., xn) ∈ D, t ∈ R and Yj = (yj1, ..., yjn) ∈ Rn

for j = 1, ..., L. Given
Fi : R×D → Rn

a sufficiently smooth function, for each (t,X) ∈ R × D we denote by ∂LF (t,X) a symme-
tric L–multilinear map which is applied to a “product” of L vectors of Rn, which we denote as⊙L
j=1 yj ∈ RnL. The definition of this L–multilinear map is

∂LF (t,X)
L⊙
j=1

Yj =
n∑

i1,...,iL=1

∂LF (t,X)
∂xi...∂xiL

yi1...yLiL (1.8)

We define ∂0 as the identity functional. Given a positive integer b and a vector Y ∈ Rn we also
denote Y b = ⊙b

i=1 Y ∈ Rnb.

Remark 1.4. The L-multilinear map defined in (1.8) is the Lth Frechet derivative of the function
F (t, x) with respect to the variable x. Indeed, fixed t ∈ R, if we consider the function
Ft : D → Rn such that Ft(x) = F (t, x), then ∂LF (t, x) = F

(L)
t (x) = ∂L/∂xLF (t, x).

Example 3. To illustrate the above notation (1.8) we consider a smooth functionF : R×R2 → R2.
So for x = (x1, x2) and y1 = (y1

1, y
1
2) we have

∂F (t, x)y1 =
∂F (t, x)
∂x1

y1
1 +

∂F (t, x)
∂x2

y1
2.

Now, for y1 = (y1
1, y

1
2) and y2 = (y2

1, y
2
2) we have

∂2F (t, x)(y1, y2) =
∂2F (t, x)
∂x1∂x1

y1
1y

2
1+
∂2F (t, x)
∂x1∂x2

y1
1y

2
2+
∂2F (t, x)
∂x2∂x1

y1
2y

2
1+
∂2F (t, x)
∂x2∂x2

y2
1y

2
2.
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1.7. The Averaging theory for periodic orbit

Observe that for each (t, x) ∈ R × D, ∂F (t, x) is a linear map in R2 and ∂2F (t, x) is a
bilinear map in R2 × R2.

Let ϕ(∆, z) : [0, tz]→ Rn be the solution of the unperturbed system

Ẋ = F0(t,X) (1.9)

such that ϕ(0, z) = z.
For i = 1, 2, ..., k, we define the Averaged Function fi : D → Rn of order i as

fi =
yi(T, z)
i!

(1.10)

where yi : R×D → R, for i = 1, 2, ..., k − 1 are defined recurrently by the following integral
equation

yi(t, z) = i!
∫ t
0(Fi(s, ϕ(s, z))

+∑i
l=1

∑
Sl

1
b1!b2!2!b2!...bl!l!2!bl!

∂L(Fi−l(s, ϕ(s, z))⊙l
j=1 yj(s, z)bj )ds

(1.11)
where Sl is the set of all l-tuples of non–negative integers (b1, b2, ..., bl) satisfying

b1 + 2b2 + ...+ lbl = l, and L = b1 + b2 + ...+ bl.
In Section 2.1 we compute the sets Sl for l = 1, 2, 3, 4. Furthermore, we make explicit the

functions fk(z) up to k = 4 when F0 = 0. See [12]
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Chapitre 2
On the limit cycles of the piecewise differential
systems formed by linear systems in three
zones

Our objective in this chapter is to study the limit cycles which bifurcate from the periodic orbits
of the linear differential center ẋ = −y, ẏ = x, when we perturb this center by discontinuous
piecewise differential systems, which becomes ẋA = γA + αAx+ βAy,

ẏA = δA − βAx+ αAy,
(2.1)

 ẋM = γM + αMx+ βMy,

ẏM = δM − βMx+ αMy,
(2.2)

 ẋB = γB + αBx+ βBy,

ẏB = δB − βBx+ αBy,
(2.3)

in the following three zones

A = {(x; y) ∈ R2 / θ ∈ [π/4; 3π/4]},

M = {(x; y) ∈ R2 / θ ∈ [0;π/4]
⋃

[3π/4;π]},

B = {(x; y) ∈ R2 / θ ∈ [−π; 0]},

respectively, where x = r cos θ, y = r sin θ ;

αA = αA1ε+ αA2ε
2 + αA3ε

3 + αA4ε
4,

βA = − 1 + βA1ε+ βA2ε
2 + βA3ε

3 + βA4ε
4,

γA = γA1ε+ γA2ε
2 + γA3ε

3 + γA4ε
4,

δA = δA1ε+ δA2ε
2 + δA3ε

3 + δA4ε
4,

16



2.1. The averaging theory up to order 4 for computing limit cycles

αM = αM1ε+ αM2ε
2 + αM3ε

3 + αM4ε
4,

βM = − 1 + βM1ε+ βM2ε
2 + βM3ε

3 + βM4ε
4,

γM = γM1ε+ γM2ε
2 + γM3ε

3 + γM4ε
4,

δM = δM1ε+ δM2ε
2 + δM3ε

3 + δM4ε
4,

αB = αB1ε+ αB2ε
2 + αB3ε

3 + αB4ε
4,

βB = − 1 + βB1ε+ βB2ε
2 + βB3ε

3 + βB4ε
4,

γB = γB1ε+ γB2ε
2 + γB3ε

3 + γB4ε
4, and

δB = δB1ε+ δB2ε
2 + δB3ε

3 + δB4ε
4.

Our main result is the following theorem.

Theorem 4. For ε 6= 0 sufficiently small the maximum number of limit cycles of the piecewise
differential systems obtained perturbing the linear differential center ẋ = −y, ẏ = x by the
discontinuous piecewise differential system formed by systems (2.1), (2.2) and (2.3) obtained using
averaging theory up to fourth order is five.

2.1 The averaging theory up to order 4 for computing limit cycles

In this section we present the basic results from the averaging theory for computing the periodic
solutions of discontinuous piecewise differential systems that we shall need for proving the main
results of this work. This improvement of the classical averaging theory for computing limit cycles
of planar discontinuous piecewise differential systems was developed in [8], a summary of this
theory is given in below. We consider discontinous differential systems of the form

ṙ(θ) =


FA(θ, r, ε) if π/4 ≤ θ ≤ 3π/4,
FM(θ, r, ε) if 0 ≤ θ ≤ π/4 or 3π/4 ≤ θ ≤ π,
FB(θ, r, ε) if − π ≤ θ ≤ 0,

(2.4)

where Fj(θ, r, ε) = ∑4
i=1 ε

iF
(j)
i (θ, r) + ε5Rj(θ, r, ε), with θ ∈ S1 and r ∈ D, where D is

an open interval of R+, ε is a small real parameter,and j isA,M orB.
From [8] we define the following functions y(j)

i (t, r) for i = 1, 2, 3 related to system (2.4) :

y
(j)
1 (s, r) =

∫ s

0
F

(j)
1 (t, r)dt,

y
(j)
2 (s, r) =

∫ s

0
[2F (j)

2 (t, r) + 2∂F (j)
1 (t, r)y(j)

1 (t, r)]dt,

y
(j)
3 (s, r) =

∫ s

0
[6F (j)

3 (t, r) + 6∂F (j)
2 (t, r)y(j)

1 (t, r)

+ 3∂2F
(j)
1 (t, r)y(j)

1 (t, r)2 + 3∂F (j)
1 (t, r)y(j)

2 (t, r)]dt,

Here ∂kFl(s, r) means the k − th partial derivative of the function Fl(s, r) with respect to the
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2.2. Proof of Theorem 4

variable r. Also from [8] we have the functions

f
(j)
1 (r) =

∫
j∈Ω
F

(j)
1 (t, r)dt,

f
(j)
2 (r) =

∫
j∈Ω

[F (j)
2 (t, r) + ∂F

(j)
1 (t, r)y(j)

1 (t, r)]dt,

f
(j)
3 (r) =

∫
j∈Ω

[F (j)
3 (t, r) + ∂F

(j)
2 (t, r)y(j)

1 (t, r)

+
1
2
∂2F

(j)
1 (t, r)y(j)

1 (t, r)2 +
1
2
∂F

(j)
1 (t, r)y(j)

2 (t, r)]dt,

f
(j)
4 (r) =

∫
j∈Ω

[F (j)
4 (t, r) + ∂F

(j)
3 (t, r)y(j)

1 (t, r) +
1
2
∂2F

(j)
2 (t, r)y(j)

1 (t, r)2

+
1
2
∂F

(j)
2 (t, r)y(j)

2 (t, r) +
1
2
∂2F

(j)
1 (t, r)y(j)

1 (t, r)y(j)
2 (t, r)

+
1
6
∂3F

(j)
1 (t, r)y(j)

1 (t, r)3 +
1
6
∂F

(j)
1 (t, r)y(j)

3 (t, r)]dt,

where Ω = {A,M,B}. The function fk(r) = fAk (r) + fMk (r)− fBk (r) is called the averaged
function of order k. If fk(r) ≡ 0 for k ∈ {1, . . . , 3} but fk+1(r) 6≡ 0, then the simple positive
real roots of the functions fk+1(r) provide limit cycles of the piecewise differential system (2.4).

2.2 Proof of Theorem 4

Consider the linear center we shall study which periodic orbits of this center become limit cycles
when we perturb the center inside the discontinuous piecewise differential systems formed by sys-
tems

ẋA = −y + ε(γA1 + αA1x+ βA1y) + ε2(γA2 + αA2x+ βA2y)
+ε3(γA3 + αA3x+ βA3y) + ε4(γA4 + αA4x+ βA4y),

ẏA = x+ ε(δA1 − βA1x+ αA1y) + ε2(δA2 − βA2x+ αA2y)
+ε3(δA3 − βA3x+ αA3y) + ε4(δA4 − βA4x+ αA4y),

in the regionA,

ẋM = −y + ε(γM1 + αM1x+ βM1y) + ε2(γM2 + αM2x+ βM2y)
+ε3(γM3 + αM3x+ βM3y) + ε4(γM4 + αM4x+ βM4y),

ẏM = x+ ε(δM1 − βM1x+ αM1y) + ε2(δM2 − βM2x+ αM2y)
+ε3(δM3 − βM3x+ αM3y) + ε4(δM4 − βM4x+ αM4y),

in the regionM and

ẋB = −y + ε(γB1 + αB1x+ βB1y) + ε2(γB2 + αB2x+ βB2y)
+ε3(γB3 + αB3x+ βB3y) + ε4(γB4 + αB4x+ βB4y),

ẏB = x+ ε(δB1 − βB1x+ αB1y) + ε2(δB2 − βB2x+ αB2y)
+ε3(δB3 − βB3x+ αB3y) + ε4(δB4 − βB4x+ αB4y),

in the regionB.
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2.2. Proof of Theorem 4

Now we write the discontinuous piecewise differential systems in polar coordinates (ṙ, θ̇),
where x = r cos(θ) and y = r sin(θ), which give the following systems

ṙA = ε(γA1 cos(θ) + δA1 sin(θ) + αA1r) + ε2(γA2 cos(θ) + δA2 sin(θ) + αA2r)
+ε3(γA3 cos(θ) + δA3 sin(θ) + αA3r) + ε4(γA4 cos(θ) + δA4 sin(θ) + αA4r),

θ̇A = 1−
ε

r
(γA1 sin(θ)− δA1 cos(θ) + βA1r)−

ε2

r
(γA2 sin(θ)− δA2 cos(θ) + βA2r)

−
ε3

r
(γA3 sin(θ)− δA3 cos(θ) + βA3r)−

ε4

r
(γA4 sin(θ)− δA4 cos(θ) + βA4r),

in the regionA,

˙rM = ε(γM1 cos(θ) + δM1 sin(θ) + αM1r) + ε2(γM2 cos(θ) + δM2 sin(θ) + αM2r)
+ε3(γM3 cos(θ) + δM3 sin(θ) + αM3r) + ε4(γM4 cos(θ) + δM4 sin(θ) + αM4r),

˙θM = 1−
ε

r
(γM1 sin(θ)− δM1 cos(θ) + βM1r)−

ε2

r
(γM2 sin(θ)− δM2 cos(θ) + βM2r)

−
ε3

r
(γM3 sin(θ)− δM3 cos(θ) + βM3r)−

ε4

r
(γM4 sin(θ)− δM4 cos(θ) + βM4r),

in the regionM, and

ẋB = ε(γB1 cos(θ) + δB1 sin(θ) + αB1r) + ε2(γB2 cos(θ) + δB2 sin(θ) + αB2r)
+ε3(γB3 cos(θ) + δB3 sin(θ) + αB3r) + ε4(γB4 cos(θ) + δB4 sin(θ) + αB4r),

ẏB = 1−
ε

r
(γB1 sin(θ)− δB1 cos(θ) + βB1r)−

ε2

r
(γB2 sin(θ)− δB2 cos(θ) + βB2r)

−
ε3

r
(γB3 sin(θ)− δB3 cos(θ) + βB3r)−

ε4

r
(γB4 sin(θ)− δB4 cos(θ) + βB4r),

in the regionB.
Then we take as independent variable the angle θ, and the system (ṙ, θ̇) becomes the differential

equation dr/dθ. By doing a Taylor expansion truncated at 4-th order in ε we obtain an expression
for dr/dθ written as the one of the differential system (2.4).

drA

dθA
=ε(γA1 cos(θ) + δA1 sin(θ) + αA1r) + ε2(γA2 cos(θ) + δA2 sin(θ) + αA2r

+
1
r

((γA1 sin(θ)− δA1 cos(θ) + βA1r)(γA1 cos(θ) + δA1 sin(θ) + αA1r))

+ ε3(γA3 cos(θ) + δA3 sin(θ) + αA3r +
1
r

(γA2 cos(θ) + δA2 sin(θ) + αA2r)

(γA1 sin(θ)− δA1 cos(θ) + βA1r) +
1
r2

((γA1 cos(θ) + δA1 sin(θ) + αA1r)

(γ2
A1

sin2(θ) + δ2
A1

cos2(θ) + r2(β2
A1

+ βA2) + r sin(θ)(2βA1γA1 + γA2)
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− cos(θ)(2γA1δA1 sin(θ) + r(2βA1δA1 + δA2)) + ε4(γA4 cos(θ) + δA4 sin(θ)

+ αA4r +
1
r

(γA3 cos(θ) + δA3 sin(θ) + αA3r)(γA1 sin(θ)− δA1 cos(θ) + βA1r)

+
1
r2

(γA2 cos(θ) + δA2 sin(θ) + αA2r)(γ2
A1

sin2(θ) + δ2
A1

cos2(θ)

+ r2(β2
A1

+ βA2) + r sin(θ)(2βA1γA1 + γA2)− cos(θ)(2γA1δA1 sin(θ)

+ r(2βA1δA1 + δA2)) +
1
r3

(γA1 cos(θ) + δA1 sin(θ) + αA1r)

(r3(β3
A1

+ 2βA1βA2 + βA3)− δ3
A1

cos3(θ) + r2 sin(θ)(3β2
A1
γA1 + 2βA1γA2

+ 2βA2γA1 + γA3) + γA1r(3βA1γA1 + 2γA2) sin2(θ) + γ3
A1

sin3(θ)

+ δA1 cos2(θ)(3γA1δA1 sin(θ) + 3βA1δA1r + 2δA2r)− cos(θ)(r2(3β2
A1
δA1

+ 2βA1δA2 + 2βA2δA1 + δA3) + 2r sin(θ)(3βA1γA1δA1 + γA1δA2 + γA2δA1)

+ 3γ2
A1
δA1 sin2(θ)),

drM

dθM
=ε(γM1 cos(θ) + δM1 sin(θ) + αM1r) + ε2(γM2 cos(θ) + δM2 sin(θ) + αM2r

+
1
r

(γM1 sin(θ)− δM1 cos(θ) + βM1r)(γM1 cos(θ) + δM1 sin(θ) + αM1r))

+ ε3(γM3 cos(θ) + δM3 sin(θ) + αM3r +
1
r

(γM2 cos(θ) + δM2 sin(θ) + αM2r)

(γM1 sin(θ)− δM1 cos(θ) + βM1r) +
1
r2

(γM1 cos(θ) + δM1 sin(θ) + αM1r)

(γ2
M1

sin2(θ) + δ2
M1

cos2(θ) + r2(β2
M1

+ βM2) + r sin(θ)(2βM1γM1 + γM2)

− cos(θ)(2γM1δM1 sin(θ) + r(2βM1δM1 + δM2))) + ε4(γM4 cos(θ)

+ δM4 sin(θ) + αM4r +
1
r

(γM1 sin(θ)− δM1 cos(θ) + βM1r)(γM3 cos(θ)

+ δM3 sin(θ) + αM3r) +
1
r2

(γM2 cos(θ) + δM2 sin(θ) + αM2r)(γ2
M1

sin2(θ)

+ δ2
M1

cos2(θ) + r2(β2
M1

+ βM2) + r sin(θ)(2βM1γM1 + γM2)

− cos(θ)(2γM1δM1 sin(θ) + r(2βM1δM1 + δM2)) +
1
r3

(γM1 cos(θ) + δM1 sin(θ)

+ αM1r)(γ3
M1

sin3(θ)− δ3
M1

cos3(θ) + r3(β3
M1

+ 2βM1βM2 + βM3)

− cos(θ)(3γ2
M1
δM1 sin2(θ) + r2(3β2

M1
δM1 + 2βM1δM2 + 2βM2δM1 + δM3)

+ 2r sin(θ)(3βM1γM1δM1 + γM1δM2 + γM2δM1) + r2 sin(θ)(3β2
M1
γM1

+ 2βM1γM2 + 2βM2γM1 + γM3) + γM1r sin2(θ)(3βM1γM1 + 2γM2)

+ δM1 cos2(θ)(3γM1δM1 sin(θ) + 3βM1δM1r + 2δM2r))), and
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drB

dθB
=ε(γB1 cos(θ) + δB1 sin(θ) + αB1r) + ε2(γB2 cos(θ) + δB2 sin(θ) + αB2r)

+
1
r

(γB1 cos(θ) + δB1 sin(θ) + αB1r)(γB1 sin(θ)− δB1 cos(θ) + βB1r))

+ ε3(γB3 cos(θ) + δB3 sin(θ) + αB3r +
1
r

(γB2 cos(θ) + δB2 sin(θ) + αB2r)

(γB1 sin(θ)− δB1 cos(θ) + βB1r) +
1
r2

(γB1 cos(θ) + δB1 sin(θ) + αB1r)

(γ2
B1

sin2(θ) + δ2
B1

cos2(θ) + r2(β2
B1

+ βB2) + r sin(θ)(2βB1γB1 + γB2)

− cos(θ)(2γB1δB1 sin(θ) + r(2βB1δB1 + δB2))) + ε4(γB4 cos(θ) + αB4r

+ δB4 sin(θ) +
1
r

(γB3 cos(θ) + δB3 sin(θ) + αB3r)(γB1 sin(θ)− δB1 cos(θ)

+ βB1r)
1
r2

(γB2 cos(θ) + δB2 sin(θ) + αB2r)(γ2
B1

sin2(θ) + δ2
B1

cos2(θ)

+ r2(β2
B1

+ βB2) + r sin(θ)(2βB1γB1 + γB2)− cos(θ)(2γB1δB1 sin(θ)

+ r(2βB1δB1 + δB2)) +
1
r3

(γB1 cos(θ) + δB1 sin(θ) + αB1r)(γ3
B1

sin3(θ)

− δ3
B1

cos3(θ) + r3(β3
B1

+ 2βB1βB2 + βB3)− cos(θ)(3γ2
B1
δB1 sin2(θ)

+ r2(3β2
B1
δB1 + 2βB1δB2 + 2βB2δB1 + δB3) + 2r sin(θ)(3βB1γB1δB1

+ γB1δB2 + γB2δB1)) + r2 sin(θ)(3β2
B1
γB1 + 2βB1γB2 + 2βB2γB1 + γB3)

+ γB1r sin2(θ)(3βB1γB1 + 2γB2) + δB1 cos2(θ)(3γB1δB1 sin(θ) + 3βB1δB1r

+ 2δB2r)).

In short we have written our discontinuous piecewise differential system formed by systems
(2.1), (2.2) and (2.3) in the normal form (2.4) for applying the averaging theory. We give only the ex-
pression of functions F (j)

i (r, θ) for i = 1, 2, 3. We remove the explicit expressions of F (j)
4 (r, θ)

since they are extremely hyge, but they may be easily produced using algebraic manipulator such as
Mathematica or Mapple.

FA
1 (r, θ) = γA1 cos(θ) + δA1 sin(θ) + αR1r,

FM
1 (r, θ) = γM1 cos(θ) + δM1 sin(θ) + αM1r,

FB
1 (r, θ) = γB1 cos(θ) + δB1 sin(θ) + αB1r

FA
2 (r, θ) =

1
2r

(γ2
A1

sin(2θ)− 2γA1δA1 cos(2θ)− δ2
A1

sin(2θ) + 2αA1βA1r
2 + 2αA2r

2

+ 2αA1γA1r sin(θ)− 2αA1δA1r cos(θ) + 2βA1γA1r cos(θ)

+ 2βA1δA1r sin(θ) + 2γA2r cos(θ) + 2δA2r sin(θ)),

FM
2 (r, θ) =

1
2r

(γ2
M1

sin(2θ)− 2γM1δM1 cos(2θ)− δ2
M1

sin(2θ)− 4αB1βM1r
2 + 2αM2r

2

− 2αA1βM1r
2 − 4αB1γM1r sin(θ) + 4αB1δM1r cos(θ)

− 2αA1γM1r sin(θ) + 2αA1δM1r cos(θ) + 2βM1γM1r cos(θ)

+ 2βM1δM1r sin(θ) + 2γM2r cos(θ) + 2δM2r sin(θ)),
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FB
2 (r, θ) =

1
4r

(2γ2
B1

sin(2θ)− 4γB1δM1 cos(2θ) + 2
√

2γB1δM1 cos(2θ)

− 2
√

2γB1δA1 cos(2θ)− 3δ2
M1

sin(2θ) + 2
√

2δ2
M1

sin(2θ)

− 2
√

2δM1δA1 sin(2θ) + 2δM1δA1 sin(2θ)− δ2
A1

sin(2θ) + 4αB1βB1r
2

+ 4αB2r
2 + 4αB1γB1r sin(θ)− 4αB1δM1r cos(θ) + 2

√
2αB1δM1r cos(θ)

− 2
√

2αB1δA1r cos(θ) + 4βB1γB1r cos(θ)− 2
√

2βB1δM1r sin(θ)

+ 4βB1δM1r sin(θ) + 2
√

2βB1δA1r sin(θ) + 4γB2r cos(θ) + 4δB2r sin(θ)),

FA
3 (r, θ) = γA3 cos(θ) + δA3 sin(θ) + αA3r +

1
r

(γA2 cos(θ) + δA2 sin(θ) + αA2r)

(γA1 sin(θ)− δA1 cos(θ) + βA1r) +
1
r2

(γA1 cos(θ) + δA1 sin(θ) + αA1r)

(γ2
A1

sin2(θ) + δ2
A1

cos2(θ) + r2(β2
A1

+ βA2) + r sin(θ)(2βA1γA1 + γA2)

− cos(θ)(2γA1δA1 sin(θ) + r(2βA1δA1 + δA2)))

FM
3 (r, θ) = γM3 cos(θ) + δM3 sin(θ) + αM3r +

1
r

(γM2 cos(θ) + δM2 sin(θ)

+ r(−πα2
B1
− 2παB1αA1 − 2αB1βB1 + 2αB1βM1 − 2αB2

− πα2
A1

+ αA1βM1 − αA1βA1 − αA2))(βM1r − δM1 cos(θ)

+
1
δM1

γA1δA1 sin(θ)) +
1
r2

(r(−2αB1 − αA1) +
1
δM1

γA1δA1 cos(θ))

(r2(β2
M1

+ βM2) + δ2
M1

cos2(θ) + r sin(θ)(γM2 +
1
δM1

2βM1γA1δA1)

+
1
δ2
M1

γ2
A1
δ2
A1

sin2(θ)− cos(θ)(2γA1δA1 sin(θ) + r(2βM1δM1 + δM2)),

FB
3 (r, θ) = γB3 cos(θ) + δB3 sin(θ) + αB3r +

1
r

(γB1 sin(θ)−
1
2

(−
√

2δM1 + 2δM1+
√

2δA1) cos(θ) + βB1r)(γB2 cos(θ) + αB2r +
1
4

(−8αB1γB1 −
√

2παB1δM1

+ π
√

2αB1δA1 + 4
√

2αA1γA1 − παA1δM1 + παA1δA1 − 4βB1δM1

+ 2
√

2βB1δM1 − 2
√

2βB1δA1 − 2
√

2βM1δM1 + 4βM1δM1 + 2
√

2βA1δA1

− 2
√

2δM2 + 4δM2 +
8
√

2αB1γA1δA1

δM1

−
16αB1γA1δA1

δM1

+
4
√

2αA1γA1δA1

δM1

−
8αA1γA1δA1

δM1

+ 2
√

2δA2) sin(θ)) +
1
r2

(γB1 cos(θ) +
1
2

(−
√

2δM1 + 2δM1

+
√

2δA1) sin(θ) + αB1r)(γ2
B1

sin2(θ) +
1
4

(−
√

2δM1 + 2δM1

+
√

2δA1)2 cos2(θ) + r2(β2
B1

+ βB2) + r sin(θ)(2βB1γB1 + γB2)

− cos(θ)(r(βB1(−
√

2δM1 + 2δM1 +
√

2δA1) +
1
4

(−8αB1γB1

+
8
√

2αB1γA1δA1

δM1

−
16αB1γA1δA1

δM1

−
√

2παB1δM1 + π
√

2αB1δA1
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+
4
√

2αA1γA1δA1

δM1

−
8αA1γA1δA1

δM1

+ 4
√

2αA1γA1 − παA1δM1 + παA1δA1

− 4βB1δM1 + 2
√

2βB1δM1 − 2
√

2βB1δA1 − 2
√

2βM1δM1 + 4βM1δM1

+ 2
√

2βA1δA1 − 2
√

2δM2 + 4δM2 + 2
√

2δA2)) + γB1(−
√

2δM1 + 2δM1

+
√

2δA1) sin(θ))).

Now we compute the averaged function fi(r) defined in section 2.1, and for i = 1 we get

f1(r) = −2δB1 −
(√

2− 2
)
δM1 +

√
2δA1 +

1
2
πr(2αB1 + αM1 + αA1).

Then polynomial f1(r) can have at most one positive real roots r1, which provide one limit cycle
for the discontinuous piecewise differential system (2.1), (2.2) and (2.3) when ε is sufficiently small.
This limit cycle tend to the circular periodic orbit of radius r1 of the linear differential center

ẋ = −y, ẏ = x, when ε→ 0. (2.5)

In order to apply the averaging theory of second order we need that f1(r) ≡ 0. In order to
eliminate the coefficients of this polynomial we must take αM1 = −2αB1 − αA1, δB1 =
1
2

(
−
√

2δM1 + 2δM1 +
√

2δA1

)
. Computing the function f2(r) we obtain

f2(r) =
1
2
πr(πα2

B1
+ 2παB1αA1 + 2αB1βB1 − 2αB1βM1 + 2αB2 + αM2 + πα2

A1

− αA1βM1 + αA1βA1 + αA2) +
1
r

(γA1δA1 − γM1δM1) +
1
2

(−8αB1γB1

− 16αB1γM1 + 8
√

2αB1γM1 −
√

2παB1δM1 + π
√

2αB1δA1 − 8αA1γM1

+ 4
√

2αA1γM1 + 4
√

2αA1γA1 − παA1δM1 + παA1δA1 − 4βB1δM1

+ 2
√

2βB1δM1 − 2
√

2βB1δA1 − 2
√

2βM1δM1 + 4βM1δM1 + 2
√

2βA1δA1 − 4δB2

− 2
√

2δM2 + 4δM2 + 2
√

2δA2).

The polynomial f2(r) can have no more than two positive real roots r1 and r2, which provide
two limit cycles for the discontinuous piecewise differential systems (2.1), (2.2) and (2.3) when
ε is sufficiently small. These limit cycles tend to the circular periodic orbits of radius r1 and r2

of the linear differential center (2.5). To apply the averaging theory of third order, we must have
f2(r) ≡ 0. That we accept

αM2 =− πα2
B1
− 2παB1αA1 − 2αB1βB1 + 2αB1βM1 − 2αB2 − πα2

A1
+ αA1βM1

− αA1βA1 − αA2,

γM1 =
1
δM1

γA1δA1, and

δB2 =
1
4

(−8αB1γB1 − 16αB1γM1 + 8
√

2αB1γM1 −
√

2παB1δM1 + π
√

2αB1δA1

− 8αA1γM1 + 4
√

2αA1γM1 + 4
√

2αA1γA1 − παA1δM1 + παA1δA1 − 4βB1δM1

+ 2
√

2βB1δM1 − 2
√

2βB1δA1 − 2
√

2βM1δM1 + 4βM1δM1 + 2
√

2βA1δA1

− 2
√

2δM2 + 4δM2 + 2
√

2δA2).
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Computing the function f3(r) we obtain

f3(r) =
1
32
πr(12π2α3

B1
+ 42π2α2

B1
αA1 + 32πα2

B1
βB1 − 16πα2

B1
βM1 + 32παB1αB2

+ 45π2αB1α
2
A1

+ 32παB1αA1βB1 − 32παB1αA1βM1 + 32παB1αA1βA1

+ 32παB1αA2 + 32αB1β
2
B1
− 32αB1βB1βM1 + 32αB1βB2 − 32αB1βM2

+ 32παB2αA1 + 32αB2βB1 − 32αB2βM1 + 32αB3 + 16αM3 + 15π2α3
A1

− 16πα2
A1
βM1 + 32πα2

A1
βA1 + 32παA1αA2 − 16αA1βM1βA1 − 16αA1βM2

+ 16αA1β
2
A1

+ 16αA1βA2 − 16αA2βM1 + 16αA2βA1 + 16αA3)

+
1
r2
γA1δA1(δM1 − δA1) +

1
8δ2

M1
r

(8παB1γ
2
B1
δ2
M1
− 10παB1γ

2
A1
δ2
A1

+ 16αB1γ
2
A1
δ2
A1
− 8παB1γA1δ

2
M1
δA1 + 2παB1δ

4
M1
− 16αB1δ

4
M1

+ 3παA1γ
2
A1
δ2
M1

+ 8αA1γ
2
A1
δ2
M1
− 5παA1γ

2
A1
δ2
A1

+ 8αA1γ
2
A1
δ2
A1
− 8παA1γA1δ

2
M1
δA1 + παA1δ

4
M1

− 8αA1δ
4
M1

+ παA1δ
2
M1
δ2
A1
− 8αA1δ

2
M1
δ2
A1
− 16βM1γA1δ

2
M1
δA1

+ 16βA1γA1δ
2
M1
δA1 − 8γM2δ

3
M1

+ 8γA1δ
2
M1
δA2 − 8γA1δM1δM2δA1 + 8γA2δ

2
M1
δA1)

−
1

4δM1

(−16
√

2πα2
B1
γA1δA1 + 16πα2

B1
γA1δA1 − 24

√
2α2

B1
δ2
M1

+ 48α2
B1
δ2
M1

− 8
√

2α2
B1
δM1δA1 − 4

√
2παB1αA1γA1δM1 − 20

√
2παB1αA1γA1δA1

+ 24παB1αA1γA1δA1 + π2αB1αA1δ
2
M1
− 32
√

2αB1αA1δ
2
M1

+ 64αB1αA1δ
2
M1

− π2αB1αA1δM1δA1 + 16αB1βB1γB1δM1 − 16
√

2αB1βM1γA1δA1

+ 3αB1βM1γA1δA1 + 2π
√

2αB1βM1δ
2
M1
− 2
√

2παB1βA1δM1δA1 + 16αB1γB2δM1

− 16
√

2αB1γM2δM1 + 32αB1γM2δM1 + 2π
√

2αB1δM1δM2 − 2
√

2παB1δM1δA2

+ 16αB2γB1δM1 − 16
√

2αB2γA1δA1 + 32αB2γA1δA1 + 2π
√

2αB2δ
2
M1

− 2
√

2παB2δM1δA1 − 4πα2
A1
γA1δM1 − 8

√
2πα2

A1
γA1δA1 + 12πα2

A1
γA1δA1

+ π2α2
A1
δ2
M1
− 8
√

2α2
A1
δ2
M1

+ 16α2
A1
δ2
M1
− π2α2

A1
δM1δA1 + 8

√
2α2

A1
δM1δA1

+ 8
√

2αA1βB1γA1δM1 − 16αA1βB1γA1δA1 + 8
√

2αA1βB1γA1δA1 − 2παA1βB1δ
2
M1

+ 2παA1βB1δM1δA1 − 8
√

2αA1βM1γA1δA1 + 16αA1βM1γA1δA1 + 2παA1βM1δ
2
M1

− 16
√

2αA1βA1γA1δM1 − 8
√

2αA1βA1γA1δA1 + 16αA1βA1γA1δA1 + 2παA1βA1δ
2
M1

− 4παA1βA1δM1δA1 − 8
√

2αA1γM2δM1 + 16αA1γM2δM1 − 8
√

2αA1γA2δM1

+ 2παA1δM1δM2 − 2παA1δM1δA2 − 8
√

2αA2γA1δM1 − 8
√

2αA2γA1δA1

+ 16αA2γA1δA1 + 2παA2δ
2
M1
− 2παA2δM1δA1 − 4

√
2βB1βM1δ

2
M1

+ 8βB1βM1δ
2
M1

+ 4
√

2βB1βA1δM1δA1 − 4
√

2βB1δM1δM2 + 8βB1δM1δM2 + 4
√

2βB1δM1δA2

− 4
√

2βB2δ
2
M1

+ 8βB2δ
2
M1

+ 4
√

2βB2δM1δA1 − 8β2
M1
δ2
M1

+ 4
√

2β2
M1
δ2
M1

− 8βM1δM1δM2 + 4
√

2βM1δM1δM2 − 8βM2δ
2
M1

+ 4
√

2βM2δ
2
M1
− 4
√

2β2
A1
δM1δA1

− 4
√

2βA1δM1δA2 − 4
√

2βA2δM1δA1 + 8δB3δM1 − 8δM1δM3 + 4
√

2δM1δM3

− 4
√

2δM1δA3).

Then the polynomial f3(r) can have at most three positive real roots, and therefore provide when
ε is sufficiently small at most three limit cycles for the discontinuous piecewise differential systems
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2.2. Proof of Theorem 4

(2.1), (2.2) and (2.3).
In order to apply the averaging theory of fourth order we need that f3(r) ≡ 0. So we must take

δM1 =δA1, δA2 =
1

8γA1δ
2
M1

(−8παB1γ
2
B1
δ2
M1

+ 10παB1γ
2
A1
δ2
A1
− 16αB1γ

2
A1
δ2
A1

+ 8παB1γA1δ
2
M1
δA1 − 2παB1δ

4
M1

+ 16αB1δ
4
M1
− 3παA1γ

2
A1
δ2
M1

− 8αA1γ
2
A1
δ2
M1

+ 5παA1γ
2
A1
δ2
A1
− 8αA1γ

2
A1
δ2
A1

+ 8παA1γA1δ
2
M1
δA1

− παA1δ
4
M1

+ 8αA1δ
4
M1
− παA1δ

2
M1
δ2
A1

+ 8αA1δ
2
M1
δ2
A1

+ 16βM1γA1δ
2
M1
δA1

− 16βA1γA1δ
2
M1
δA1 + 8γM2δ

3
M1

+ 8γA1δM1δM2δA1 − 8γA2δ
2
M1
δA1),

αl2 =
1

32(παB1 + παA1 + βB1 − βM1)
(−12π2α3

B1
− 42π2α2

B1
αA1 − 32πα2

B1
βB1

+ 16πα2
B1
βM1 − 45π2αB1α

2
A1
− 32παB1αA1βB1 + 32παB1αA1βM1

− 32παB1αA1βA1 − 32παB1αA2 − 32αB1β
2
B1

+ 32αB1βB1βM1 − 32αB1βB2

+ 32αB1βM2 − 32αB3 − 16αM3 − 15π2α3
A1

+ 16πα2
A1
βM1 − 32πα2

A1
βA1

− 32παA1αA2 + 16αA1βM1βA1 + 16αA1βM2 − 16αA1β
2
A1
− 16αA1βA2

+ 16αA2βM1 − 16αA2βA1 − 16αA3),

δM3 =
1

4(
√

2− 2)δM1

(−16πα2
B1
γA1δA1 + 16π

√
2α2

B1
γA1δA1 − 48α2

B1
δ2
M1

+ 24
√

2α2
B1
δ2
M1

+ 8
√

2α2
B1
δM1δA1 + 4π

√
2αB1αA1γA1δM1 − 24παB1αA1γA1δA1

+ 20π
√

2αB1αA1γA1δA1 − π2αB1αA1δ
2
M1
− 64αB1αA1δ

2
M1

+ 32
√

2αB1αA1δ
2
M1

+ π2αB1αA1δM1δA1 − 16αB1βB1γB1δM1 − 32αB1βM1γA1δA1

+ 16
√

2αB1βM1γA1δA1 − 2
√

2παB1βM1δ
2
M1

+ 2π
√

2αB1βA1δM1δA1 − 16αB1γB2δM1

− 32αB1γM2δM1 + 16
√

2αB1γM2δM1 − 2
√

2παB1δM1δM2 + 2π
√

2αB1δM1δA2

− 16αB2γB1δM1 − 32αB2γA1δA1 + 16
√

2αB2γA1δA1 − 2
√

2παB2δ
2
M1

+ 2π
√

2αB2δM1δA1 + 4πα2
A1
γA1δM1 − 12πα2

A1
γA1δA1 + 8π

√
2α2

A1
γA1δA1

− π2α2
A1
δ2
M1
− 16α2

A1
δ2
M1

+ 8
√

2α2
A1
δ2
M1

+ π2α2
A1
δM1δA1 − 8

√
2α2

A1
δM1δA1

− 8
√

2αA1βB1γA1δM1 − 8
√

2αA1βB1γA1δA1 + 16αA1βB1γA1δA1 + 2παA1βB1δ
2
M1

− 2παA1βB1δM1δA1 − 16αA1βM1γA1δA1 + 8
√

2αA1βM1γA1δA1

− 2παA1βM1δ
2
M1

+ 16
√

2αA1βA1γA1δM1 − 16αA1βA1γA1δA1 + 8
√

2αA1βA1γA1δA1

− 2παA1βA1δ
2
M1

+ 4παA1βA1δM1δA1 − 16αA1γM2δM1 + 8
√

2αA1γM2δM1

+ 8
√

2αA1γA2δM1 − 2παA1δM1δM2 + 2παA1δM1δA2 + 8
√

2αA2γA1δM1

− 16αA2γA1δA1 + 8
√

2αA2γA1δA1 − 2παA2δ
2
M1

+ 2παA2δM1δA1 − 8βB1βM1δ
2
M1

+ 4
√

2βB1βM1δ
2
M1
− 4
√

2βB1βA1δM1δA1 − 8βB1δM1δM2 + 4
√

2βB1δM1δM2

− 4
√

2βB1δM1δA2 − 8βB2δ
2
M1

+ 4
√

2βB2δ
2
M1
− 4
√

2βB2δM1δA1 − 4
√

2β2
M1
δ2
M1

+ 8β2
M1
δ2
M1
− 4
√

2βM1δM1δM2 + 8βM1δM1δM2 − 4
√

2βM2δ
2
M1

+ 8βM2δ
2
M1

+ 4
√

2β2
A1
δM1δA1 + 4

√
2βA1δM1δA2 + 4

√
2βA2δM1δA1 − 8δB3δM1 + 4

√
2δM1δA3).

Unluckily, the explicit expressions of f j4 , j ∈ Ω are extremely large, for that we omit them.

25



2.2. Proof of Theorem 4

However, as we can see in Mathematics, these polynomials can only have five roots. As a result, for
the discontinuous piecewise differential systems (2.1), (2.2) and (2.3), the averaging theory up to 4
can only give five limit cycles.
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Chapitre 3
Piecewise differential system in the plane with
four zones

In this chapter, we will focus on a specific type of piecewise differential system in the plane by
dividing the plane into four quadrants, each containing a linear Hamiltonian system, to determine
the maximum number of limit cycles in these systems.

We consider a piecewise differential system in the plane formed by four pieces separated by the
axes of coordinates having in each quadrant a linear Hamiltonian systems ẋ = −a2 − a4x− 2a5y,

ẏ = a1 + 2a3x+ a4y,
Ω1 = {(x; y) ∈ R2/ x > 0, y > 0},

 ẋ = −b2 − b4x− 2b5y,

ẏ = b1 + 2b3x+ b4y,
Ω2 = {(x; y) ∈ R2/ x < 0, y > 0},

 ẋ = −c2 − c4x− 2c5y,

ẏ = c1 + 2c3x+ c4y,
Ω3 = {(x; y) ∈ R2/ x < 0, y < 0},

 ẋ = −d2 − d4x− 2d5y,

ẏ = d1 + 2d3x+ d4y,
Ω4 = {(x; y) ∈ R2/ x > 0, y < 0},

such that the piecewise differential system is continuous on the x- axis and discontinuous on the y -
axis . The Hamiltonian in the nth-quadrant for n = 1, 2, 3, 4 of the previous Hamiltonian systems
are

H1 = a1x+ a2y + a3x
2 + a4xy + a5y2,

H2 = b1x+ b2y + b3x
2 + b4xy + b5y

2,

H3 = c1x+ c2y + c3x
2 + c4xy + c5y

2,

H4 = d1x+ d2y + d3x
2 + d4xy + d5y

2,

respectively.
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We impose that on the x - axis the piecewise differential system be continuous for that we must
have

ẋΩ1 − ẋΩ4 = 0,
ẏΩ1 − ẏΩ4 = 0,
ẋΩ2 − ẋΩ3 = 0,
ẏΩ2 − ẏΩ3 = 0,

which give
−a2 − a4x+ d2 + d4x = 0,
a1 + 2a3x− d1 − 2d3x = 0,
−b2 − b4x+ c2 + c4x = 0,
b1 + 2b3x− c1 − 2c3x = 0,

to verify these equations we must take

c1 = b1, c2 = b2, c3 = b3, c4 = b4, d1 = a1, d2 = a2, d3 = a3, d4 = a4.

So the continuous - discontinuous piecewise differential system is formed by the four linear Hamil-
tonian systems

ẋ = −a2 − a4x− 2a5y, ẏ = a1 + 2a3x+ a4y,

ẋ = −b2 − b4x− 2b5y, ẏ = b1 + 2b3x+ b4y,

ẋ = −b2 − b4x− 2c5y, ẏ = b1 + 2b3x+ b4y, and

ẋ = −a2 − a4x− 2d5y, ẏ = a1 + 2a3x+ a4y.

The Hamiltonians of these last Hamiltonian systems are

H1 =a1x+ a2y + a3x
2 + a4xy + a5y

2,

H2 =b1x+ b2y + b3x
2 + b4xy + b5y

2,

H3 =b1x+ b2y + b3x
2 + b4xy + c5y

2,

H4 =a1x+ a2y + a3x
2 + a4xy + d5y

2.

Now we study the limit cycles of these continuous - discontinuous piecewise differential systems
which intersect the positive and negative x and y axes in points of the form (α, 0), (0, β), (δ, 0)
and (0, γ) with α, β > 0 and δ, γ < 0. If there exists a such limit cycle these four points must
satisfy the following equations 

H1(α, 0)−H1(0, β) = 0,
H2(0, β)−H2(δ, 0) = 0,
H3(δ, 0)−H3(0, γ) = 0,
H4(0, γ)−H4(α, 0) = 0

From where 
αa1 − a2β + α2a3 − a5β

2 = 0,
−b1δ + βb2 − b3δ

2 + β2b5 = 0,
b1δ − b2γ + b3δ

2 − γ2c5 = 0,
αa1 + a2γ − α2a3 + γ2d5 = 0.
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By solving this algebraic system we get the following sets of solutions

S1 ={a5 =
αa1 − a2β + α2a3

β2
, b5 =

b1δ − βb2 + b3δ
2

β2
, c5 =

b1δ − b2γ + b3δ
2

γ2
,

d5 =
αa1 − a2γ + α2a3

γ2
},

S2 ={a1 = −αa3, b1 = −b3δ , β = 0, γ = 0},
S3 ={b1 = −b3δ, α = 0, β = 0, γ = 0},
S4 ={a1 = −αa3, β = 0, γ = 0, δ = 0},
S5 ={α = 0, β = 0, γ = 0, δ = 0},

S6 ={a5 =
αa1 − a2β + α2a3

β2
, b2 =

δ(β + γ)(b1 + b3δ)
βγ

, b5 =
−b1δ − b3δ

2

βγ
,

c5 =
−b1δ − b3δ

2

βγ
, d5 =

αa1 − a2γ + α2a3

γ2
},

S7 ={a1 = −αa3, b1 = −b3δ, c5 = −
b2

γ
, d5 = −

a2

γ
, β = 0},

S8 ={b1 = −b3δ, c5 = −
b2

γ
, d5 = −

a2

γ
, α = 0, β = 0},

S9 ={a1 = −αa3, c5 = −
b2

γ
, d5 = −

a2

γ
, β = 0, δ = 0},

S10 ={c5 = −
b2

γ
, d5 = −

a2

γ
, α = 0, β = 0, δ = 0},

S11 ={a1 = −αa3, a5 = −
a2

β
, b1 = −b3δ, b5 = −

b2

β
, γ = 0},

S12 ={a5 = −
a2

β
, b1 = −b3δ, b5 = −

b2

β
, α = 0, γ = 0},

S13 ={a1 = −αa3, a5 = −
a2

β
, b5 = −

b2

β
, γ = 0, δ = 0},

S14 ={a5 = −
a2

β
, b5 = −

b2

β
, α = 0, γ = 0, δ = 0},

S15 ={a1 = −αa3, b1 = −b3δ, b2 = 0, c5 = 0, d5 = −
a2

γ
, β = 0},

S16 =
{
b1 = −b3δ, b2 = 0, c5 = 0, d5 = −

a2

γ
, α = 0, β = 0

}
,

S17 ={a1 = −αa3, b2 = 0, c5 = 0, d5 = −
a2

γ
, β = 0, δ = 0},

S18 ={b2 = 0, c5 = 0, d5 = −
a2

γ
, α = 0, β = 0, δ = 0},

S19 ={a5 =
αa1 + a2γ + α2a3

γ2
, b2 = 0, b5 =

δ(b1 + b3δ)
γ2

, c5 =
δ(b1 + b3δ)

γ2
,

d5 =
αa1 − a2γ + α2a3

γ2
, β = −γ},

S20 ={a1 = −αa3, a2 = 0, a5 = 0, b1 = −b3δ, b5 = −
b2

β
, γ = 0},
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S21 ={a2 = 0, a5 = 0, b1 = −b3δ, b5 = −
b2

β
, α = 0, γ = 0},

S22 ={a1 = −αa3, a2 = 0, a5 = 0, b5 = −
b2

β
, γ = 0, δ = 0},

S23 ={a2 = 0, a5 = 0, b5 = −
b2

β
, α = 0, γ = 0, δ = 0},

S24 ={a1 = −αa3, a5 =
a2

γ
, b2 = 0, b5 =

δ(b1 + b3δ)
γ2

, c5 =
δ(b1 + b3δ)

γ2
,

d5 = −
a2

γ
, β = −γ},

S25 ={a5 =
a2

γ
, b2 = 0, b5 =

δ(b1 + b3δ)
γ2

, c5 =
δ(b1 + b3δ)

γ2
, d5 = −

a2

γ
, α = 0,

β = −γ}.

From the previous sets of solutions the only which satisfy that α, β > 0 and δ, γ < 0 are the
following four sets S1, S6, S19, S24. From these sets of solutions a piecewise system with at most
two limit cycles is possible. However, we have not found any examples of the case when we have
two limit cycles. Here is an illustration of a piecewise system with one limit cycle.

Example 5. The continuous - discontinuous piecewise differential systems formed by the Hamilto-
nian systems associated to the following for Hamiltonians have a unique limit cycle that intersects
the axes at the points (1, 0), (0, 2), (−2, 0) and (0,−3).

We take a1 = 12, a2 = −2, a3 = 11, a4 = 0, a5 = 27
4 , b1 = −2, b2 = 11, b3 =

5, b4 = −3, b5 = 1
2 , c5 = 19

3 , and d5 = 17
9 . Which give the continuous - discontinuous

piecewise differential system formed by the four linear Hamiltonian systems

f1(x, y) =

 ẋ = 2− 27y
2 ,

ẏ = 22x+ 12,
Ω1 = {(x; y) ∈ R2/ x > 0, y > 0},

f2(x, y) =

 ẋ = 3x− y − 11,
ẏ = 10x− 3y − 2,

Ω2 = {(x; y) ∈ R2/ x < 0, y > 0},

∑
12 = {X ∈ R2 : L(X) = 0} = {X ∈ R2 : x = 0};

f3(x, y) =

 ẋ = 3x− 38y
3 − 11,

ẏ = 10x− 3y − 2,
Ω3 = {(x; y) ∈ R2/ x < 0, y < 0},

f4(x, y) =

 ẋ = 2− 34y
9 ,

ẏ = 22x+ 12,
Ω4 = {(x; y) ∈ R2/ x > 0, y < 0},

∑
34 = {X ∈ R2 : L(X) = 0} = {X ∈ R2 : x = 0};
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we have

LX(X) = (
∂L

∂x
,
∂L

∂y
)T = (1 0)T

The crossing set
∑

c = {X ∈
∑

12 : 〈LX(X), f1(X)〉〈LX(X), f2(X)〉 > 0},

〈LX(X), f1(X)〉 = (1 0)

 2− 27y
2

12

 = (2− 27y
2 ),

〈LX(X), f2(X)〉 = (1 0)

 −y − 11
−3y − 2

 = (−y − 11),

from it ∑
c = {X ∈

∑
12 : (2−

27y
2

)(−y − 11) > 0},

∑
c = {X ∈

∑
12 : y ∈]−∞,−11[

⋃
]

4
24
,+∞[ },

the point (0, 2) ∈ ∑ c

The crossing set
∑

c = {X ∈
∑

34 : 〈LX(X), f3(X)〉〈LX(X), f4(X)〉 > 0},

〈LX(X), f3(X)〉 = (1 0)

 −38y
3 − 11
−3y − 2

 = (−38y
3 − 11),

〈LX(X), f4(X)〉 = (1 0)

 2− 34y
9

12

 = (2− 34y
9 )

from it ∑
c = {X ∈

∑
34 : (−

38y
3
− 11)(2−

34y
9

) > 0},

∑
c = {X ∈

∑
12 : y ∈]−∞,−

33
31

[
⋃

]
18
34
,+∞[ },

the point (0,−3) ∈ ∑ c

The Hamiltonians of these last Hamiltonian systems are

H1 =11x2 + 12x+
27y2

4
− 2y,

H2 =5x2 − 3xy − 2x+
y2

2
+ 11y,

H3 =5x2 − 3xy − 2x+
19y2

3
+ 11y,

H4 =11x2 + 12x+
17y2

9
− 2y.
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FIGURE 3.1 – continuous-discontinuous piecewise differential systems with one limit cycle.
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Conclusion

The thesis is a study of a special type of piecewise differential systems. Which start by intro-
duce an essential mathematical concepts for differential systems, including periodic orbits, avera-
ging theory, first integrals, Hamiltonian systems, and Filippov systems. Second, we investigate the
limit cycles that arise from perturbations of the periodic orbits of the linear differential center. Fi-
nally, we have focused on a specific type of piecewise differential system in the plane by dividing
the plane into four quadrants, each of which contains a linear Hamiltonian system. Our investigation
includes determining the maximum number of limit cycles that can occur in these systems.
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