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Abstract

In this work, we use a metaheuristic method which depends on swarm intelligence called
ant colony optimization to solve the multi objective combinatorial optimization problems.
We will focus on the multi-objective travelling salesmen problem.

Key words :

Ant colony optimization, Combinatorial optimization, Multi objective optimization, Multi
objective Travelling Salesmen problem.

Résumé

Dans ce travail, nous utiisons une méthode métaheuristique basée sur l'intelligence
collective appelée optimisation de colonie de fourmis pour résoudre des problemes
d'optimisation combinatoire multi-objectifs. Nous nous concentrerons le probleme du
voyageur de commerce multi objectifs.

Mots clés :

Optimisation par colonies de fourmis (OCF), optimisation Multi objectif, Optimisation
combinatoire, Probleme du voyageur de commerce multi -objectif.
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ACO : Ant colony optimization

FSP : Flow shop problem

MOACO : Multi objective Ant colony optimzation
MOP : Multi objective optimization

MOTSP : Multi objective travelling salesmen problem
QAP : quadratic assignement problem

TSP : Travelling salesmen problem

'VRP : vehicle routing problem



General Introduction

Operational research (OR) 1s a discipline that employs mathematical modeling, statistical
analysis, and optimization techniques to assist decision makers in solving complex problems
and optimizing outcomes. By utilizing mathematical optimization methods, such as linear
programming, integer programming, or dynamic programming, OR helps organizations to find
the best possible solutions of intricate problems. These optimization techniques play a crucial
role in improving efficiency, resource allocation, and decision-making processes [1].

Optimization techniques find wide applications across various real-life domains. In
transportation and logistics, optimization is used for route optimization, vehicle scheduling, and
mventory management, leading to cost reduction and improved efficiency, In finance,
optimization models aid in portfolio optimization, asset allocation, and risk management [2].

However, most of these optimization problems are combinatorial optimization problems,
Combinatorial optimization primarily deals with finding the best solution among a finite set of
discrete options. It involves selecting a subset of elements or arranging them 1n a specific order
to optimize a particular objective, such as minimizing costs or maximizing efficiency. the TSP 1s
one of the combinatorial problems which will be the topic of this thesis [3].

In This work. The TSP aims to find the shortest possible route that visits a set of cities and
returns to the starting point. In practice, however, there may be additional objectives to
consider, [such as minimizing travel time, reducing fuel consumption, or maximizing customer
satisfaction]. Multi-objective optimization techniques can handle such scenarios, generating a
set of trade-off solutions known as the Pareto frontier, which represents the best compromises
between different objectives [4].

Solving the Combinatorial optimization problems, 1s a challenge due to their discrete nature
and the exponentially large search space. Various methods have been developed to tackle these
problems .One of the resolution methods in the Bio-inspiration methods which draws
mspiration from biological systems to develop innovative solutions. By studying nature's
mechanisms and processes, bio-inspired methods aim to solve complex engineering problems.
These methods mimic biological structures, behaviors, and evolutionary processes to create
efficient and adaptable designs. Examples include swarm intelligence algorithms mspired by ant
colonies and genetic algorithms based on natural selection [5].

In order to solve the multi objective (T'SP) we will use approximate method which 1s based
on the optimization of ant colonies or (Ant Colony Optimization).

This research looks at how well multi objective ant colony optimization algorithm (MOACO)
performs in the case of multi objective travelling salesmen problem (MOTSP).

The Muli objective ant Colony Optimization (MOACO) algorithm encourages exploration of
different paths, promoting a diverse set of optimal solutions. This 1s particularly useful in multi-
objective optimization problems where conflicting objectives exist. The MOACO algorithm
helps in improving the quality and diversity of solutions obtained, making it valuable for solving
complex optimization problems.



The ability of the MOACO algorithm 1s to detect the pareto front .
The purpose of this dissertation is applying the ACO to solve the MOTSP .
The organization of the work will be as follows :

Our work covers various aspects of combinatorial optimization problems. The first chapter
mtroduces and explains these problems. Moving on to the second chapter, we explore multi-
objective optimization concepts and their applications in academia and real life. In the third
chapter, we discuss how to solve combinatorial optimization problems. The fourth chapter
focuses on Ant Colony Optimization (ACO) and its use in solving the Traveling Salesman
Problem (TSP). In the fifth chapter, we delve into the Multi-Objective Traveling Salesman
Problem and explore variants of the Multi-Objective Ant Colony Optimization (MOACO)
approach. We also outline the steps and process of the PACO algorithm. Finally, in the sixth
and final chapter, we detail the execution steps of the algorithm and analyze the results. Our
work concludes with a summary and general conclusion of our findings.
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Combinatorial optimization

I.1 Introduction

Combinatorial optimization theory has been a focus for researchers and practitioners. This
field tackles problems with a large number of possible combinations, aiming to find the best
solutions [3].

One of the remarkable aspects of combinatorial optimization problems 1s their
transformational nature. Many real-world problems can be formulated as combinatorial
optimization problems, even if they nitially have a finite or countably infinite number of
alternative solutions [3].

Lawler (1976) defines combinatorial optimization as the mathematical study of finding
optimal arrangements, groupings, orderings, or selections of discrete objects. These problems
are intriguing because they are easy to describe but notoriously challenging to solve[9].

In practical applications, many of these problems are considered NP-hard. This classification
mmplies that it 1s widely believed they cannot be solved optimally within a reasonable amount of
time using polynomial-based algorithms[14].

The examples of combinatorial optimization problems are diverse and impactful. They
mclude determining the most cost-effective delivery plan, optimizing task assignments,
designing efficient routing schemes, sequencing jobs in production lines, and allocating
resources in various industries[5].

In this chapter we will discuss the combinatorial optimization in details.
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1.2 Combinatorial optimization problem

Combinatorial optimization is a branch of optimization that focuses on solving problems
mvolving discrete decision variables and a finite set of feasible solutions. It deals with finding
the best configuration or arrangement of elements from a given set to optimize a certain
objective, subject to various constraints. In combinatorial optimization, the emphasis is on
exploring the combinatorial structure of the problem to efficiently search for optimal or near-
optimal solutions [9].

Combinatorial optimization problems arise in various domains, including operations
research, logistics, network design, scheduling, and resource allocation. Prominent examples
mclude the traveling salesman problem, which seeks the shortest route visiting multiple cities,
and the knapsack problem, which aims to determine the most valuable combination of items
that fit within a limited capacity [9].

A combinatorial problem 1s a computational problem that involves the exploration and
analysis of combinatorial structures or configurations to determine the optimal arrangement,
selection, or assignment of discrete objects based on predefined criteria. These problems often
deal with discrete entities, such as graphs, permutations, subsets, or combinations, and require
finding the most favorable or optimal configuration [3]

1.3 Single-objective combinatorial optimization problem

The formulation of a single-objective combinatorial optimization problem mvolves defining
the decision variables, the objective function, and the constraints. The goal 1s to find the
optimal arrangement or combination of variables that minimizes or maximizes the objective
function while satisfying the given constraints.

Decision Variables

These are the variables that determine the solution. They represent the choices or decisions
to be made in the problem. For example, in the traveling salesman problem, the decision
variables could be the order in which cities are visited [10].

Objective Function

The objective function quantifies the quality or value of a solution. It assigns a numerical
value to each possible solution, indicating how well it satisfies the problem's objective. The
objective can be either to minimize or maximize a certain quantity. For example, in the
knapsack problem, the objective function could be the total value of the selected items [10].

Constraints

Constraints are conditions or limitations that the solution must adhere to. They define the
feasible region of the problem, ensuring that the solution satisfies specific requirements.
Constramnts can include limitations on variables, resource availability, logical conditions, and
more. For example, in a scheduling problem, constraints could restrict the assignment of tasks
to specific time slots [10].
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By formulating the decision variables, objective function, and constraints, the combinatorial
optimization problem is defined, and various algorithms and techniques can be applied to
search for the optimal solution [10].

The Mathematical formulation is :

( minf (x),
| Such That :
4 gix)<0/i=1,.....m (1.2)
Ik h](x)=0,]=1,,p
XESCR"

Where :

- f :is the function to minimize, called cost function or objective function;

- x : represents the vector of optimization variables;

- g; : the inequality constraints;

- h; : the equality constraints;

- S : the space of variables (also called search space). Note that the space of variables S
indicates what type of variables, namely: real, integer, mixed (real and integer in the same
problem), discrete, bounded, in the case of combinatorial optimization we deal with discrete
variables

A point x4 1s called an admissible pomnt if x4 € S and if the optimization constraints are
satisfied:

gilxy) £0,i=1,.,mand hj(x,)=0,j=1,..,p

1.4 Multi-objective combinatorial optimization problem

"A multi-objective combinatorial optimization problem 1s a computational problem in which
the objective 1s to find the optimal arrangement, selection, or assignment of discrete objects or
elements from a given set to simultaneously optimize multiple objective functions. These
objective functions represent different criteria or measures of performance, and the goal is to
find a set of solutions that achieve a trade-off between these objectives, known as the Pareto
front or Pareto set." [11]

Solving multi-objective combinatorial problems requires algorithms and techniques that can
explore the solution space, identify a diverse set of non-dominated solutions, and provide
decision-makers with a range of trade-off options

The Mathematical formulation is:

(min or max or the both f,,f,, ... ... fn

Such That
gi(x)<0,i=1,....m (I.3)
|k hi(x)=0,j=1,...,p
x ESCR"

5



Chaptrel Combinatorial optimisation

Solving a combinatorial optimization problem requires the study of three points:
1. The definition of all feasible solutions;

2. The expression of the objective to be optimized;

3. The choice of optimization method (exact or approximate) to use.

The first two points relate to the modeling of the problem and the third point to its resolution

1.5 Examples

- Job shop problem.

- Scheduling problems.

- Flow shop problem.

- Travelling salesmen problem.
- vehicule routing problem.

We will take the traveling salesman problem (T'SP), which is an example of combinatorial
optimization problems and we will look of variant of (T'SP) problem which 1s the (T'SP) in the
case of multi objective.

1.6 Conclusion

In this chapter, we discussed the fundamental concept of optimization and optimization
problem then we explained a type of optimization called combinatorial optimization then
combinatorial optimization problem, we took a look to the classification of optimization
problem and examples of combinatorial optimization problem, our focus 1s in the (TSP)
or travelling salesmen problem, we will disscuss this problem solving but in the case of multi
objective, the next chapter we will make view to the main concepts of multi objective
optimization and how can we solve the multi objective travelling salesmen problem on the next
chapters.
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Mult1 Objective Optimization

II.1 Introduction

The challenge of solving large and complex optimization problems with multiple factors to
consider 1s a common issue faced by various industries. In practical scenarios, these problems
rarely involve just one objective, as there are often conflicting objectives that need to be
balanced.

To address these challenges, the field of multi-objective optimization has emerged. It has a
rich historical background, with roots dating back to the 19th century in economics . Initially
applied in economics and management science, multi-objective optimization has gradually
found its way into engineering sciences and logistics[5].

In today's world, multi-objective optimization has become a crucial field i science,
engineering, and logistics. However, the complexity of these problems has increased
significantly, with larger problem sizes, a greater number of objectives, and a wider search space
to consider[5] .

To tackle these complex optimization problems effectively, extensive research has been
conducted since the late 1980s, leading to the development of advanced techniques known as
multi-objective metaheuristics. These techniques play a vital role in finding solutions within a
reasonable timeframe for practical applications [5].

In this chapter, we will discuss the notions of multi objective optimization and the features of
metaheuristics for solving multi objective problems .
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I1.2 Multi objective optimization concepts

This section covers the main concepts of multi objective optimization, such as dominance,
Pareto optimality, Pareto optimal set, and Pareto front. In these definitions, the minimization
of all the objectives 1s assumed, without loss of generality, this concepts is from [5].

Multi objective optimization problem

A multi objective optimization problem can be defined as

MOP={ min F(x) = (f1(x),f2(x),..., fa(x)) (IL1)
s.tx€ES

Where n (n > 2) is the number of objectives, X = (xl...x k) 1s the vector representing the
decision variables, and S represents the set of feasible solutions associated with equality and
mequality constraints and explicit bounds. F(x) = (f{(x),f2(x), ....fn(x)) is the vector of
objectives to be optimized.

The search space S represents the decision space or parameter space of the MOP. The space
i which the objective vector belongs to 1s called the objective space. The vector F can be
defined as a cost function from the decision space in the objective Space that evaluates the
quality of each solution (x1...x)) by assigning an objective vector (¥1...y¥,), which represents
the quality of the solution (or fitness) (Fig. I1.1).

In the field of multi objective optimization, the decision maker uses it to work in terms of
evaluation of a solution on each criterion, and 1s naturally placed in the objective space.

The set Y = F(S) represents the feasible points in the objective space, and
y=F(x) = (¥1,Y2,--Yn), Where y; = fi(x), 1s a point of the objective space.

In mult-objective optimization, the notion of an "optimal" solution 1s shightly different from
traditional single-objective optimization. Instead of a single optimal solution, we have a set of
solutions known as the Pareto optimal set.

The existence of optimal solutions in multi-objective optimization depends on the problem
formulation, constraints, and the nature of the objectives. It 1s important to note that finding all
Pareto optimal solutions can be a challenging task, and various algorithms and techniques are
used to approximate the Pareto front and identify a diverse set of optimal solutions.
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Decision space Objective space

X2

J

X1 V1

(xla X725 eues xk) > F > (}’1, Y25 oo yn)
Figure Il.1 Decision space and objective space in a MOP [5]

It 1s not usual to have a solution x*, associated with a decision variable vector, where x*1s
optimal for all the objectives:

VvxeS, fix’) < fix , i-1.2,.... n (I1.2)

Given that this situation is not usual in real-life MOPs where the criteria are in conflict, other
concepts were established to consider optimality. A partial order relation could be defined,
known as dominance relation. [5]

Pareto dominance

An objective vector U = (Uy...Uy) 1s said to dominate v = (v4...1,,) (denoted by u <v) if and
only if no component of v 1s smaller than the corresponding component of u and at least one
component of u 1s strictly smaller, that 1s,

Vie{l,...n}:uy;<v; A Ji€{l,..n}:u <y

The generally used concept 1s Pareto optimality. Pareto optimality definition comes directly
from the dominance concept. The concept was proposed mitially by F.Y. Edgeworth in 1881
and extended by W. Pareto in 1896. A Pareto optimal solution denotes that it 1s impossible to
find a solution that improves the performances on a criterion without decreasing the quality of
at least another criterion. [5]

Pareto optimality

A solution x*€ S 1s Pareto optimal if for every x € S, F(x) does not dominate F(x*), that is,
F(x) <« F(x%).

Graphically, a solution x* 1s Pareto optimal if there 1s no other solution x such that the point
F(x) 1s in the dominance cone of F(x*) that 1s the box defined by F(x), with its projections on
the axes and the origin (Fig. I1.2). In general, searching in a monoobjective problem leads to
find a unique global optimal solution. A MOP may have a set of solutions known as the Pareto
optimal set. The mmage of this set in the objective space 1s denoted as the Pareto front. [5]

Pareto optimal set

For a given MOP (F,S), the Pareto optimal set 1s defined as
Pr={xeS/Ax'e€S, Fix')<Fx)}
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Pareto front

For a given MOP (F,S) and its Pareto optimal set 1 P*, the Pareto front is defined as
PF*={F(x) , x € P*}.

The Pareto front i1s the 1mage of the Pareto optimal set in the objective space, obtaining the
Pareto front of a MOP 1s the main goal of multi objective optimization.
However, given that a Pareto front can contain a large number of points, a good approximation
of the Pareto front may contain a limited number of Pareto solutions, which should be as close
as possible to the exact Pareto front, as well as they should be uniformly spread over the Pareto
front. Otherwise, the obtained approximation of the Pareto front would not be very useful to
the decision maker who should have a complete information on the Pareto front.

Let us notice that depending on the considered space (decision space or objective space), the
number of Pareto solutions may be different. In the objective space, two solutions having the
same objective vector will be considered as a single point, whereas they represent two different
solutions in the decision space.

The Pareto optimal set in the objective space 1s called the minimal complete Pareto set,
whereas it 1s the maximal complete Pareto set in the decision space. It 1s worth to point out that
1deally one would like to obtain a solution minimizing all the objectives. Let us suppose that the
optimum for each objective function 1s known, the objective functions being separately
optimized

fZ “
®
A
% Pareto solution
.44 Domi-nated
® solution
[ J
A
AU
e
® ol
%y

h

FIGURE 1.2 Nondominated solutions in the
objective space. [5]

Ideal vector

A pomt y*= (y1" Yo" eeees ¥ ) 1s an 1deal vector if it minimizes each objective function f; in
F(x), thatis, ;"= min (f;(x)),x €S, i € [1,n].

10
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The 1deal vector is generally an utopian solution in the sense that it is not a feasible solution in
the decision space. In certain cases, the decision maker defines a reference vector, expressing
the goal to reach for each objective. This generalizes the concept of ideal vector. The decision
maker may specify some aspiration levels Z, i € [1,n] to attain for each objective function f;.
Aspiration levels represent acceptable or desirable levels in the objective space. A Pareto
optimal solution satisfying all aspiration levels 1s called a satisficing solution.

Reference point

A reference point z*= [ z1,25,.....,Z, | 1s a vector that defines the aspiration level (or goal) z;
to reach for each objective f;.

Nadir point
A pomty* = (y1",¥2" e, ¥ ) 1s the nadir point if it maximizes each objective function f; of

F over the Pareto set, that is, y;* = max (f;(x)),x € P;", i € [1,n].

The 1deal and nadir points give some information on the ranges of the Pareto optimal front
(Fig. I11.3)

A f2

Paretn front

Ideal point

fi'
FIGURE 1.3 Nadir and ideal points in a MOP

[5].

In multi objective optimization, the concept of local minima can be generalized to the locally
Pareto optimal solution. This notion is related to the concept of neighborhood, usually applied
to S-metaheuristics.

Locally Pareto optimal solution

A solution x 1s locally Pareto optimal if and only if V w € N(x), F(w) does not dominate
F(x), and N (x) represents the neighborhood of the solution x.

Some Pareto optimal solutions may be obtained by the resolution of the following
mathematical program:

11
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min F(x) = X4 4;f:(x) (
MOPA{ s.t.x € ;' (L3

With A; = 0 for i=1,.....,n,and X1, A; =1

Such solutions are known as supported solutions. Supported solutions are generated by the
resolution of (MOP,) for various values of the weight vector A.

The complexity of (MOP;) 1s equivalent to the subjacent mono objective optimization
problems.

If the subjacent optimization problems are polynomial, it will be relatively easy to generate
the supported solutions. Nevertheless, there exists other Pareto optimal solutions that cannot
be obtained by the resolution of a (M O P;) mathematical program. Indeed, these solutions,
known as non-supported solutions, are dominated by convex combinations of supported
solutions, that 1s, points of the convex hull of Y = F(S)

Other types of domination definitions exist, such as the concept of weak dominance And strict
dominance.
Weak dominance

An objective vector u = (Uy...uy,) 1s said to weakly dominate v = (v;...1,)

(Denoted by u < v) if all components of u are smaller than or equal to the corresponding
components of v, thatis, Vi € { 1,.n }, u; < v;

strict dominance

An objective vector u = (Uy...uy,) 1s said to strictly dominate v = (v4...v,)
(Denoted by u << v) if all components of u are smaller than the corresponding components
of v, thatis, Vi € { 1,...n }, ;< v;

f ® supported solutions £,
O Nonsupported solutions \ B
_________ _? ,’;
—— P
.\_0: __:T_____?v, :
\
i R =t
M |
- o
‘\_\ @) |T —_'+ u : I :
\\\OI : | : |
|
\‘ ___:_____¢ v : :
' |
' | ! |

f1 f1
Figure 1.4 : Supported and nonsupported solutions in a MOP.
Weak dominance and strict dominance concepts. Solution u
weakly dominate solution v; solution u’ weakly dominates
solution v’; solution u strictly dominates solutions v/ and v"'.
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Chapter Il Multi Objective Optimization concepts

I1.3 Multi objective optimization problems

Similar to mono-objective optimization, multi-objective optimization problems (MOPs) can
be categorized into two main types based on the type of variables used to encode the solutions.
These categories are continuous MOPs, where solutions are represented by real-valued
variables, and combinatorial MOPs, where solutions are represented by discrete variables.

Over the last four decades, a significant focus in multi-objective optimization research has
been on multi-objective continuous linear programming problems. This emphasis can be
attributed to two main factors: the advancements made in mono-objective linear programming
within the field of operations research and the relative ease of handling such problem:s.

Most of metaheuristics for solving MOPs are designed to deal with continuous MOPs. One
of the reasons of this development is the availability of “standard” benchmarks for continuous
MOPs. However, since the last decade, there 1s also a growing interest in solving combinatorial
MOPs. Indeed, many real-life and well-known academic problems (e.g., TSP, QAP, VRP,
knapsack, scheduling) have been modeled as combinatorial MOPs. In the following sections,
some academic examples of MOPs as well as real-life ones are presented, we will take this
application from [5]

I1.3.1 Academic applications

The majority of the benchmarks used in the comparison of multiobjective metaheuristics
were carried out on academic problems. Let us point out that, in many cases, continuous
functions are used to perform the first experimentations of a new multiobjective metaheuristic ,
For combinatorial MOPs, there 1s a lack of “standard” benchmarks even if recently there 1s an
mterest in providing test instances for classical combinatorial MOPs.

11.3.1.1 Multi objective combinatorial problems
Classical combinatorial MOPs that can be classified into two complexity classes:

* Polynomial problems: Many multiobjective models of polynomially solvable optimization
problems have been tackled: shortest path problems, spanning tree problems, assignment
problems, and so on.

* NP-hard problems: Most of the multiobjective models concern NP-hard optimization
problems: scheduling problems, routing problems, quadratic assignment problems, and so on

An increasing number of combinatorial multiobjective test functions are available in the
literature. However, in most of the cases, they are biobjective optimization problems. Globally,
there 1s also a lack of test functions for real-life combinatorial MOPs, especially problems that
are subject to many objectives, uncertainty, and dynamicity.
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Example Multi objective scheduling problems

The permutation flow-shop scheduling problem (FSP) is one of the most well-known
scheduling problems. The problem can be presented as a set of n jobs J;,/2,......,J, to be
scheduled on m machines. Machines are critical resources: one machine cannot be assigned to
two jobs

Simultaneously. Each job J; is composed of m consecutive tasks t;q,......,t;m, where t;;
represents the j**  task of the job J; requiring the machine M;.

To each task t;; 1s associated a processing time p;;, and to each job J; a release time 7; and a
due date d;(deadline of the job) are given.

In permutation flow-shop problems, the jobs must be scheduled in the same order on all the
machines.

Many objectives may be used in scheduling tasks on different machines. These objectives
vary according to the particularities of the treated problem:

Cnax: Make span (total completion time): max { C; |i € [1....n] }
C: Mean value of jobs completion time

Tnax: Maximum tardiness: max {{max (0, C;—d;) ||i € [1....n] }
T: Total tardiness: 2,7-;[max(0,C; — d;)]

U Number of jobs delayed with regard to their due date d;
Fnax : Maximum job flow-time: max {C; — ;| i € [1....n]}

F : Mean job flow-time

where s;; represents the time at which the task t;; 1s scheduled and C; = s;, + pimm represents

the completion time of job J; ./ The size of the Pareto front 1s not very important as the
correlation of the two objectives 1s positively important that restricts the number of Pareto
solutions .

N B I T I

b Pas | 3% |3

Figure 1.5 A permutation flow-shop scheduling problem.[5]
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I1.3.2 Real-life applications

A huge number of works dealing with MOPs are dedicated to real-life applications . Two key
aspects are responsible for this interest: many real-life applications involve various conflicting
objectives, and efficient multiobjective metaheuristics have been developed (e.g., evolutionary
multiobjective algorithms). Indeed, multiobjective metaheuristics have been applied to real-life
applications since 1960. Moreover, several domains were dealt with various multiobjective
applications:

e Engineering design

In the past 30 years, the development of multi objective metaheuristics has greatly influenced
the design of systems in various engineering fields such as mechanics, aeronautics, and
chemustry. This approach has proven highly valuable in tackling design challenges, including
those related to airplane wings and car engines. The use of multi objective formulation in
engineering design problems has been widely successful and well-received [5].

¢ Environment and energetics

In the research literature, there has been significant attention given to the multiobjective
modeling of optimization problems related to environmental and energy domains. These
mclude areas such as water distribution management and air quality management. As our
environment faces increasing challenges and the availability of energy resources, such as water
and nonrenewable fuels like petrol, becomes more limited, this field of study becomes
mcreasingly crucial for addressing future concerns[)].

¢ Telecommunications

In the past decade, the field of telecommunications has emerged as an exciting domain for
the application of multiobjective metaheuristics. Various areas within telecommunications, such
as antenna design, cellular network design, satellite constellation design, and frequency
assignment, have benefited from these techniques. The continuous evolution of network
technologies, including sensor networks, ad hoc networks, and cognitive networks, ensures that
this domain will continue to be dynamic and full of opportunities for further exploration and
optimization[5].

¢ Control

Multiobjective modeling and optimization techniques are widely applied mn the field of
optimal control design. This field focuses on finding the best controller designs that achieve
optimal performance. By considering multiple objectives simultaneously, these approaches
help create controllers that effectively balance various performance criteria. The active research
and development in this area highlight the significance of using multiobjective modeling and
optimization methods in the design of optimal controllers [5].
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* Computational biology and bioinformatics

Many important problems in computational biology and bioinformatics can be expressed as
Multiobjective Optimization Problems (MOPs). The application of multiobjective optimization
i this domain 1s still in its early stages, leaving ample room for further exploration. Various
challenging tasks, including classification, feature selection, clustering, association rules, gene
regulatory network modeling, phylogenetic inference, sequence and structure alignment,
protein identification, protein structure prediction, and molecular docking, require
multiobjective optimization approaches to address them effectively. There 1s significant
potential for future research and advancements in this fascinating area [5].

* Transportation and logistics

Nowadays, this domain generates a large number of MOP applications (e.g. Containers
management, design of grid systems, traced motorway)[5].

Example Multi objective routing problems

Routing problems such as the traveling salesman and the vehicle routing problems are widely
studied because of their numerous real-life applications (e.g., logistics, transportation). The
most common objectives include miimizing the total distance traveled, the total ime required,
the total tour cost, and/or the fleet size, and maximizing the quality of the service and/or the
collected profit. Numerous other aspects such as balancing of workloads (e.g., ime, distance)
can be taken into account.

Our works focus on Multi objective travelling salesmen problem.

1.4 Conclusion

In this chapter, we discussed the fundamental concepts of multi objective optimization and
then we took academic and real life applications of multi objective problems, in the next
chapter we will take a knowledge about the metaheuristics and the resolution methods in
general as our study focus on metaheuristics and an algorithm based on swarm mtelligence
which 1s the ant colony optimization .
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Chapter Il

Methods for combinatorial optimization
problem

1.1 Introduction

As we discussed earlier, when dealing with combinatorial optimization problems, the main
objective 1s to uncover the optimal solution, also known as the global optimal solution or global
optimum. In simple terms, the goal 1s to find the very best outcome or result that outperforms
all other alternatives. This involves thoroughly exploring and evaluating different possibilities in
order to 1dentify the solution that excels beyond any other choice [5].

Combinatorial problems in resolution are challenging to solve due to the fact that the
number of viable solutions typically increases as the problem size and complexity grow. In
simpler terms, as the problem becomes larger and more intricate, the available solution options
become increasingly numerous, making it harder to find the best solution [14].

Hence, researchers have proposed resolution methods and mvested considerable effort in
enhancing their performance in terms of both computation time and the quality of the
proposed solutions. In simpler terms, scientists have put forward approaches to solve these
problems and dedicated their efforts to make them faster and produce better solutions [5].

Opver the years, numerous methods have been proposed to address problems of varying
complexity. These methods exhibit a wide range of approaches, each with its own distinct
principles, strategies, and performance characteristics. In simpler terms, there 1s a rich variety
of methods available for solving different problems, and they differ significantly in how they
operate, the strategies they employ, and their overall effectiveness [14].

Resolution methods can be broadly categorized mto two main types: exact (or complete)
methods and approximate (or incomplete) methods. Exact methods ensure the completeness
of the solution process, meaning they guarantee finding the optimal solution. On the other
hand, approximate methods sacrifice completeness to achieve greater efficiency, prioritizing
faster computation even if the solution obtained 1s not guaranteed to be optimal[5].

The combination of techniques from these two classes resulted in a new class known as
hybrid methods, which not only achieve an optimal solution but also significantly reduce the
computational time required. Another way to express this idea 1s that the hybridization of these
methods brings together the best aspects of both classes, allowing for efficient and effective
solutions to be obtained n a shorter period[5].
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II1.2 Resolution methods

The resolution methods are schematized as follows

[ Resolution methods ]
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Figure Ill.1- Schema of the Resolution Methods [12]

II1.2.1 The exact methods

Exact methods in computational algorithms aim to explore the entire search space of a
problem to find the optimal solution. The search space refers to the set of all possible
configurations or combinations that satisty the problem constraints. The goal of exact methods
1s to systematically examine this search space and identify the best solution, ensuring
optimality[13].

The primary advantage of exact methods 1s their ability to provide provably optimal
solutions. By exhaustively exploring all possibilities or utilizing systematic techniques, these
methods guarantee finding the best solution within the given constraints. This makes them
particularly valuable when precision and optimality are crucial[13].

However, exact methods also have some disadvantages. One significant drawback 1s their
computational complexity. As the search space grows exponentially with problem size,
exploring all possibilities can become computationally infeasible or time-consuming, especially
for large-scale problems. The running time of exact methods can quickly become prohibitive,
making them less suitable for real-time or ime-sensitive applications[13].

Some commonly used exact methods include brute force, dynamic programming,
backtracking, branch and bound, and integer linear programming[13].
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I11.2.2 Approximate methods

Approximate methods for combinatorial optimization are employed when finding an exact
optimal solution 1s computationally infeasible, time-consuming, or when facing large-scale or
mtractable problems. They are particularly useful in scenarios where time constraints exist, and
near-optimal solutions are sufficient. These methods are applied to explore problem domains,
conduct preliminary analysis, and handle complex optimization problems with limited
resources. Approximate methods strike a balance between solution quality and computational
efficiency, providing good-quality solutions within reasonable timeframes|[5].

These approaches can be divided into two categories: specific heuristics and metaheuristics.
Specific heuristics are designed for solving a particular problem or mstance. metaheuristics, on
the other hand, are general-purpose algorithms that can be used to tackle almost any
optimization problem. They can be seen as higher-level strategies that guide the creation of
specialized heuristics for solving specific optimization problems [5].

II1.2.2.1 Heuristics

In simpler terms, even if we had incredibly powerful computational abilities, there are certain
problems with algorithms that are too complex to be solved within a reasonable timeframe. In
such cases, we have to resort to a experimentation approach to find a solution that comes as
close to the optimal answer as possible. Since it 1s impractical to test all possible combinations,
we have to make strategic decisions. These decisions, known as heuristics, are highly
dependent on the specific situation at hand. The goal of using heuristics is to 1dentify an
acceptable approximate solution within a reasonable amount of time, rather than exhaustively
testing all potential combinations. Heuristics are employed 1n algorithms that require analyzing
a large number of cases in order to solve problems and make decisions. They help us reduce
the overall complexity of the algorithm by prioritizing the situations that are most likely to yield
the solution [13].

I11.2.2.2 Metaheurnstics

In alternative terms, metaheuristics are advanced techniques used to solve complex
optimization problems that cannot be effectively addressed by traditional heuristics or standard
optimization methods. A metaheuristic 1s an iterative procedure that guides a subordinate
heuristic by intelligently combining various concepts to explore and exploit the search space. It
also mcorporates learning strategies to organize information and discover efficient solutions that
closely approximate the optimal solution. Metaheuristics represent the culmination of extensive
research and development in the field of combinatorial optimization[5].
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In designing a metaheuristic, two contradictory criteria must be taken into account:
exploration of the search space (diversification) and exploitation of the best solutions found
(intensification).

The metaheuristics divided into two main categories Population-based search and single-
solution based search[5].

I11.2.2.2.1 Methods with a single-solution

While solving optimization problems, single-solution based metaheuristics improve a single
solution. They could be viewed as “walks” through neighborhoods or search trajectories
through the search space of the problem at hand . The walks (or trajectories) are performed by
iterative procedures that move from the current solution to another one in the search space. S-
metaheuristics show their efficiency in tackling various optimization problems in different
domains [5].

I11.2.2.2.2 Methods with a population of solutions

In alternative terms, population-based metaheuristics (P-metaheuristics) share common
principles and can be seen as a continuous improvement process within a population of
solutions. The process starts with the mitialization of the population, followed by the generation
of a new population of solutions. This new population 1s then integrated into the existing one
using selection procedures. The search process continues until a specific condition, known as
the stopping criterion, 1s satisfied. Several algorithms, such as evolutionary algorithms (EAs),
scatter search (SS), estimation of distribution algorithms (EDAs), particle swarm optimization
(PSO), Ant colony optimization (ACO), and artificial immune systems (AISs), fall into this
category of metaheuristics [5].

I11.2.2.2.3 Algonthms based on swarm mtelligence

Swarm intelligence-based algorithms are a class of algorithms that draw mspiration from
natural phenomena. These algorithms are specifically designed to emulate the collective
behaviors observed in certain species when they solve problems, with the aim of developing
powerful metaheuristics for solving various optimization problems[13].

The term "swarm" typically refers to a finite collection of particles or interacting entities.
These swarms can encompass diverse groups such as flocks of birds, colonies of ants, colonies
of bees, and even immune systems. In bird flocks, the particles are individual birds; in ant
colonies, the particles are ants; in bee colonies, the particles are bees; and in the immune
system, the particles are specialized cells responsible for recognition and protection[13].

By mimicking the social behavior of particles within these swarms, which exhibit remarkable
self-organization capabilities, researchers have proposed several algorithms in recent decades.
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Some notable examples include Particle Swarm Optimization (PSO), Artificial Immune
Systems (AIS), Artificial Ant Colony Optimization, Artificial Bee Colony Optimization,
Cuckoo Search, and Cuckoo Optimization Algorithm. These algorithms leverage the principles
of swarm intelligence to address complex optimization problems effectively[13].

I11.2.2.2.4 Ant colony optimization

Ant Colony Optimization (ACO) 1s a metaheuristic approach that employs a colony of
artificial ants to find effective solutions for challenging discrete optimization problems. The
fundamental aspect of ACO algorithms 1s cooperation, where computational resources are
allocated to a group of relatively simple agents, known as artificial ants. These ants
communicate indirectly through a mechanism called stigmergy, which involves indirect
communication mediated by the environment itself [14].

The cooperative mteraction among the ants leads to the emergence of good solutions to the
problem at hand. ACO algorithms are capable of tackling both static and dynamic
combinatorial optimization problems. Static problems refer to situations where the problem
characteristics are defined once and remain constant throughout the problem-solving process.
A classic example of a static problem 1s the Traveling Salesman Problem (I'SP), where the city
locations and their relative distances are predetermined and do not change during the problem-
solving phase [14].

I1.2.3 Hybrid methods

Hybrid methods are becoming popular because they consistently give the best results for
many different optimization problems. These methods combine two or more search
techniques to take advantage of their strengths and work together effectively.

They leverage the strengths of multiple algorithms to improve solution quality and search
efficiency. By integrating algorithms with complementary abilities, such as exploration,
exploitation, and constraint handling, hybrid methods provide a flexible and adaptable
approach to tackle diverse problem types. They can enhance solution quality, speed up
convergence, explore trade-offs between conflicting objectives, leverage problem-specific
knowledge, and increase robustness against variations. Hybrid methods offer a powerful and
versatile strategy for addressing challenging combinatorial optimization problems [5].
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II1.3 Conclusion

In this chapter, we explored different approaches to problem-solving, including exact
methods, approximate methods, and hybrid methods. However, our primary focus was on
approximate methods, particularly metaheuristics, as our work heavily relies on them.
Specifically, we will delve mnto one specific algorithm based on swarm intelligence called ant
colony optimization.
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Chapter IV

Ant Colony Optimization

IV.l] Introduction

Ant colonies and other social insect societies are characterized by their impressive
organizational abilities, despite the simplicity of their individual members. This structured
social organization enables them to tackle complex tasks that surpass the capabilities of a single
ant. Through cooperation and collective efforts, ants are able to accomplish remarkable feats
that would be unattainable for them individually. [14]

The field of "ant algorithms" focuses on studying models inspired by the behavior of real ants
and utilizes these models to create inovative algorithms for solving optimization and
distributed control problems. By observing and understanding how ants behave in their natural
environment, researchers draw mspiration to design new algorithms that can effectively tackle
various optimization and control challenges. These ant-inspired algorithms offer fresh
approaches and strategies for solving complex problems in fields such as operations research,
swarm intelligence, and distributed systems. [14]

The main 1dea 1s that the self-organizing principles that allow real ants to work together can
be used to coordinate groups of artificial agents to solve computational problems.

Different aspects of ant colony behavior have inspired various types of algorithms. By
mimicking the cooperative and adaptable behaviors seen in ant colonies, researchers have
created algorithms that help artificial agents collaborate effectively. [14]

These ant-inspired algorithms offer new ways to solve complex problems by coordinating
the actions of multiple agents.

We will discuss ant colony optimization in this chapter with details.

IV.2 From real to artificial ants
IV.2.1 Ants’ foraging behavior and optimization

Many species of ants possess only rudimentary visual sensory capabilities, indicating limited
development in their visual perception abilities, Some types of ants have very weak eyesight or
are completely blind, in the early stages of studying ants' behavior, researchers made a key
discovery 1s that most of the communication among ants, both with each other and with their
surroundings, relies on chemicals produced by the ants themselves.

These substances are known as pheromones, which distinguishes them from how
communication takes place in humans and other higher species is their distinct method of
communication. The trail pheromone plays a vital role in the social behavior of specific ant
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species. It’s used by ants to mark pathways on the ground, such as the paths from food sources
to the nest. By detecting these pheromone trails, foraging ants can effectively track the route to
food that has been previously discovered by their fellow ants.

The fascinating behavior of ants, where they collectively lay and follow chemical trails left by

their fellow ants, serves as the fundamental inspiration for Ant Colony Optimization (ACO)
[14] .

IV.2.2 Double bridge experiments
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FIGURE IV.1 EXPERIMENTAL SETUP FOR THE DOUBLE BRIDGE EXPERIMENT. (A) BRANCHES HAVE EQUAL LENGTH.
(B) BRANCHES HAVE DIXERENT LENGTH. MODIfiED FROM GOSS ET AL. (1989). [15]

The pheromone trail-laying and -following behavior of some ant species has been investigated
mn controlled experiments by several researchers. One particularly brilliant experiment was
designed and run by Deneubourg and colleagues, who used a double bridge connecting a nest
of ants of the Argentine ant species.

The results of this experiment showed that over time, the ants in experiment tends to choose
the shortest path, which 1s characterized by a high concentration of pheromones. Meanwhile,
some ants remain on the longer path, but in a small proportion.

In our case the convergence of the ants’ paths to one branch represents the macroscopic
collective behavior, which can be explained by the microscopic activity of the ants, that 1s, by
the local interactions among the individuals of the colony. It 1s also an example of stigmergic
communication, ants coordinate their activities, exploiting indirect communication mediated by
modifications of the environment in which they move.

The stigmergic communication is the tool to mimic the real ants behaviors to artificial ones
when they searching for optimal path to obtain food and back to the nest [14] .
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FIGURE IV.2 THE RESULTS OF THE EXPERIMENT [16]

IV.2.3 The comparison between artificial ants and real ants

Aspects

Real Ants

Artificial Ants in Aco

Nature

Living organisms

Algorithmic constructs

Physical Characteristics

Small size, segmented body,
multiple legs

No physical presence, exist
as virtual entities

through mating and breeding

Communication Pheromone trails and direct | Updating pheromone trails
physical interactions m the algorithm based on
problem-specific rules
Adaptability Can adapt to environmental | Adaptability 1s achieved
changes and learn from through parameter tuning
experience and algorithm design
Decision Making Decisions are based on Decisions are based on
mstinct and pheromone probabilistic rules and
signals pheromone trails
Complexity Complex biological systems | Simplified computational
representations
Reproduction Reproduce and multiply Reproduction 1s not

applicable

Table IV.1 : Artificial Ants VS Real Ants[8]
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IV.3 Ant colony optimization (ACO) algorithm

Ant Colony Optimization (ACO) 1s a metaheuristic algorithm inspired by the foraging
behavior of ants. It 1s used to solve optimization problems, especially those related to graph
theory and combinatorial optimization. ACO mimics the behavior of ants as they search for the
shortest path between their nest and food sources.

The basic idea behind ACO 1s to simulate the way ants communicate through the deposition
and following of pheromone trails. Ants leave pheromone trails on the paths they explore, and
these trails attract other ants to follow the paths with stronger pheromone concentrations. In the
context of optimization, the pheromone trails represent the accumulated knowledge of the
colony about good solutions to the problem.

The ACO algorithm starts by mitializing a population of artificial ants. Each ant traverses the
problem space by probabilistically selecting the next step based on the pheromone levels and
heuristic information. The heuristic information guides the ants to explore promising regions of
the problem space. As ants move, they deposit pheromone along their paths, and the
pheromone evaporates over time to prevent the system from getting trapped in suboptimal
solutions.

The pheromone update rule 1s a crucial aspect of ACO. When an ant completes its tour or
finds a good solution, it updates the pheromone levels on the visited edges based on the quality
of the solution. Better solutions lead to higher pheromone concentrations, reinforcing the paths
that contribute to those solutions. The pheromone levels are also subject to evaporation, which
allows the algorithm to explore new paths and prevents stagnation.

ACO has been successfully applied to various optimization problems, including the traveling
salesman problem, vehicle routing problem, scheduling problems, and many more. It has
shown its effectiveness in finding high-quality solutions and has become a popular choice 1n the
field of optimization. [14]

Algorithm 1 The ACO procedure [14]

1: Inmtialize parameters

2: For t=1 to iteration number do

3: Fork-=1toldo

4 Reapeat until ant k has completed a tour
5 Select the city j to be visited next

6: with probability p;; given by (IV.1)

7: Calculate L

8:  Update the trail levels according to (IV.3)-(IV.4)
9: End
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IV.8.1 Steps of ACO algorithm
1. Initialization:
Set the parameters such as the number of ants, the number of iterations, pheromone
evaporation rate, alpha value, beta value,ect
Initialize the pheromone levels on edges of the problem graph.
2. Ant Movement:
Each ant starts from a random mitial node.

At each step, an ant probabilistically selects the next node to move to based on a
combination of pheromone levels and heuristic information.

The selection 1s typically guided by a pheromone trail update rule, such as the probability of
choosing an edge being proportional to its pheromone level.

3. Pheromone Update:
After all ants complete their tours, the pheromone levels on the edges are updated.

Evaporate the existing pheromone trails by applying an evaporation rate to reduce their
ntensity.

Apply pheromone deposit rule to reinforce the pheromone levels of edges visited by the ants,
typically based on the quality of the solution found.

4. Tteration:

Repeat steps 2 and 3 for a specified number of iterations or until a termination condition 1s
met.

5. Termination:

Terminate the algorithm based on a predefined stopping criterion, such as a maximum
number of iterations or reaching a satisfactory solution.

6. Output:

After the algorithm terminates, the best solution found by any ant throughout the iterations 1s
returned as the final solution.

27



Chapter IV Ant Colony Optimization

The Flow above describe Aco process [17]
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FIGURE IV.3: A FLOW DESCRIBE ACO PROCESS [17]

IV.3.2 Ant colony optimization algorithms for the traveling salesman problem
IV.3.2.1 The significance of the traveling salesman problem (T'SP)

The traveling salesman problem (TSP) has been extensively studied in the research
community and has received significant attention over the years. It has played a crucial role in
the advancement of ant colony optimization (ACO) research. The initial ACO algorithm,
known as Ant System, as well as subsequent ACO algorithms, were first tested and evaluated

using the TSP.

There are several reasons why the TSP is often chosen as the problem to demonstrate the
effectiveness of ACO algorithms. Firstly, the TSP 1s a well-known and important optimization
problem that 1s classified as NP-hard and is encountered in various practical applications.
Secondly, ACO algorithms can be readily applied to the TSP, making it a suitable problem for
showcasing their functionality.
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Moreover, the T'SP 1s easily understandable, allowing researchers to analyze the algorithm's
behavior without being hindered by excessive technical complexities. Additionally, the T'SP
serves as a standard benchmark for evaluating new algorithmic ideas. Achieving high
performance on the TSP 1s often considered as evidence of the usefulness and effectiveness of
novel approaches.

Furthermore, the history of ACO research has shown that the most efficient ACO algorithms
for the TSP have also demonstrated exceptional performance for a wide range of other
optimization problems. This further highlights the significance of the TSP as a test bed for
evaluating and comparing the efficiency and effectiveness of ACO algorithms.

In simpler terms, the TSP 1s a well-known problem that has received extensive research
attention. It serves as an important test case for ACO algorithms due to its significance,
suitability for ACO application, understandability, and benchmarking capabilities. Success in
solving the T'SP often indicates the usefulness and efficiency of ACO algorithms, and the best-
performing ACO algorithms for the TSP have shown effectiveness for various other problems
as well, To enhance the understanding of the ACO algorithm, we will apply it to the Traveling
Salesman Problem (T'SP) [14] .

)
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FIGURE IV.4: AN ANT ARRIVING IN CITY I CHOOSES THE NEXT CITY J TO MOVE TO AS A
FUNCTION OF THE PHEROMONE VALUES t; | AND OF THE HEURISTIC VALULSn;, | ON THE
ARCS CONNECTING CITY I TO THE CITIES J THE ANT HAS NOT VISITED YET. [14]

1V.3.2.2 Tour construction

In the ant system (AS) algorithm, a group of artificial ants simultaneously constructs a tour for
the traveling salesman problem (TSP). To begin, the ants are placed on randomly selected
cities. During each construction step, an ant (let's call it ant "k") utilizes a probabilistic action
choice rule known as the random proportional rule to determine its next city visit.

The random proportional rule involves assigning probabilities to different cities based on
certain criteria. Specifically, when ant "k" 1s currently located at city "," it calculates the
probability of choosing city ")" as its next destination. This probability 1s determined by a

nn nn

combination of factors, such as the pheromone trail intensity on the path from city 1" to city "]

nn

and the desirability of visiting city ")" based on some heuristic information.

Essentially, the random proportional rule allows ant "k" to make a decision on which city to
visit next by considering both the attractiveness of the city based on the pheromone trail and
the heuristic knowledge. The higher the probability assigned to a city, the more likely it 1s for
the ant to choose that city as its next stop.
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Chapter IV Ant Colony Optimization

In simpler terms, in the AS algorithm, each ant uses a rule to decide which city to visit next.

This rule takes into account the pheromone trail intensity and some heuristic information to
calculate the probability of choosing a particular city. The ant then selects its next city based on
these probabilities, guiding the construction of a tour for the TSP.

This process 1s based on this equation above
a B
k _ [Ti]'] *[ni]']
Py~ = P
2y elmal“*ma ]

if j eN* (IV.1)

In ACO, the probability of an ant choosing a particular node as the next node to visit 1s
calculated relative to the other available nodes. The numerator of the probability formula,

[Tii]a * [’1ii ]ﬂ

However, to ensure that the probabilities sum up to 1, the contribution of each edge 1s divided

, represents the contribution of the specific edge (1, j) to the overall probability.

by the sum of the contributions of all available edges.

The denominator in the probability formula, 3, le[‘ril]“ * [ 18, represents the sum of the
probabilities for all possible moves from node 1. This summation 1s necessary to ensure that the

probabilities of all potential choices from node 1 sum up to 1, forming a valid probability
distribution.

where 7;; =1/ d;; is a heuristic value that is available a priori, a and f are two parameters
which determine the relative influence of the pheromone trail and the heuristic information,
and Nl-k 1s the feasible neighborhood of ant k when being at city i, that is, the set of cities that
ant k has not visited yet (the probability of choosing a city outside Nl-k 1s 0). By this probabilistic
rule, the probability of choosing a particular arc (i, j) increases with the value of the associated
pheromone trail 7;; and of the heuristic nformation value 1;;. The role of the parameters «
and [ 1s the following. If o = 0, the closest cities are more likely to be selected: this corresponds
to a classic stochastic greedy algorithm (with multiple starting points since ants are mitially
randomly distributed over the cities). If § = 0, only pheromone amplification 1s at work, that 1s,
only pheromone 1s used, without any heuristic bias. This generally leads to rather poor results
and, in particular, for values of a > 1 it leads to the rapid emergence of a stagnation
situation[14] .

1V.3.2.3 Update of pheromone trails

After all the ants have constructed their tours, the pheromone trails are updated. This 1s
done by first lowering the pheromone value on all arcs by a constant factor, and then adding
pheromone on the arcs the ants have crossed i their tours. Pheromone evaporation 1s
implemented by
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Chapter IV Ant Colony Optimization

Where 0 < p< 1 1s the pheromone evaporation rate. The parameter pis used to avoid
unlimited accumulation of the pheromone trails and it enables the algorithm to “forget” bad
decisions previously taken. In fact, if an arc 1s not chosen by the ants, its associated pheromone
value decreases exponentially in the number of iterations. After evaporation, all ants deposit
pheromone on the arcs they have crossed in their tour:

T T + XPAS V(i j) €L (IV.3)

Where A; jk 1s the amount of pheromone ant k deposits on the arcs it has visited. It 1s

defined as follows:

A;k=

{1/6‘" ,if arc (i,j) belongs To TX;
ij

0, other wise

Where C¥, the length of the tour T¥ built by the k — th ant, is computed as the sum of the
lengths of the arcs belonging to T ¥. The better an ant’s tour is, the more pheromone the arcs
belonging to this tour receive. In general, arcs that are used by many ants and which are part of
short tours, receive more pheromone and are therefore more likely to be chosen by ants in
future iterations of the algorithm. As we said, the relative performance of AS when compared
to other metaheuristics tends to decrease dramatically as the size of the test-instance increases.
Therefore, a substantial amount of research on ACO has focused on how to improve AS [14].

IV.4 Conclusion

In this chapter, our focus encompassed the broader concept of the ant colony and its
significance. We then delved into a comprehensive exploration of the ACO algorithm,
providing detailed msights and illustrating its application to the traveling salesman problem

(T'SP).
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Chapter V. MOACO For MOTSP

Ant Colony Optimization Algorithms for Multi
Objective Travelling Salesmen Problem

V.1 Introduction

Multi objective combinatorial optimization have been solved by many algorithms especially
ant inspired algorithms, in the case of multi objective a lot of ant inspired algorithms have been
proposed to solve multi objective Combinatorial optimization problems especially to multi
objective travelling Salesmen problem , there exist many variants to solve MOTSP, the decision
maker have to choose one of them according to their interests and results.

V.2 Mult objective travelling salesmen problem

"T’he multi-objective traveling salesperson problem (MOTSP) is a combinatorial optimization
problem that involves finding a set of Pareto-optimal solutions for a traveling salesperson to
visit a set of cities, such that multiple conflicting objectives, such as minimizing total distance,
minimizing travel time, or maximizing visitation of certain cities, are simultaneously optimized."

[20]
The mathematical formulation of MOTSP can be expressed as follows:
Where:

- N be the set of cities, |N | = n.

- d;j be the distance between cities i and j.

- X;j be a binary decision variable that takes value 1 if the path includes the edge
(i, /), and 0 otherwise.

- fi(x) be the k-th objective function to be minimized, representing a specific aspect of
the problem (e.g., total distance, travel time, cost).

The MOTSP can then be formulated as a multi-objective optimization problem:
Cost function :

Multi-Objective TSP with Distance and Time:

Minimize : f(x) = [f; (%), f2(%)]

Minimize: f; = X (distance(i,j) * x;;) (for alli,j)

Minimize: f, = X.(time(i,j) * x;;) (for all i, j)

Subject to:

FEach city must be visited exactly once:
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Chapter V. MOACO For MOTSP

Yicyxij =1,fori,j € Nandi # j

jo1Xij =1, fori,j € Nandi # j

No subcycles are allowed (eliminating subtours):

Yiesjesy Xij < |S| — 1, for all non-empty subsets S < N, |S| = 2

Binary decision variable constraints:

xl-]-E {0,1},fora]li,j € N,l ?‘:]

V.3 Multi objective ant colony optimization

V.3.1 varants

ACO for multi-objective optimization has various variants. In the Single Colony and Single
Pheromone Matrix approach, a single colony of ants explores the solution space, and a single
pheromone matrix is updated based on objective values. The Single Colony and Multiple
Pheromone Matrices variant uses multiple pheromone matrices to consider multiple objectives
simultaneously. In the Multi-Colony and Single Pheromone Matrix approach, multiple
colonies explore independently with a shared pheromone matrix. The Multi-Colony and
Multiple Pheromone Matrices variant combines multiple colonies with individual pheromone
matrices for decentralized exploration. These varants offer different ways to tackle multi-
objective optimization problems, balancing exploration and exploitation|[23] [26] [27].

V.3.2 Single colony and single pheromone matrix

In the Single Colony and Single Pheromone Matrix variant of Ant Colony Optimization
(ACO) for multi-objective optimization, a single colony of ants explores the solution space, and
a single pheromone matrix 1s used to update the solution information. This variant 1s based on
the principle that ants communicate through pheromone trails, which represent the quality of
the solutions they find.

During the exploration process, the ants move through the solution space, building and
updating the pheromone trails based on the objective values of the solutions they encounter.
The pheromone values on the trails guide the subsequent ants in their search for better
solutions. Through iteration, the pheromone matrix 1s updated to reflect the knowledge
accumulated by the ants and guide the search towards promising areas of the solution space.

The Single Colony and Single Pheromone Matrix approach offers a straightforward
mmplementation and can effectively explore the solution space. However, it may face challenges
when dealing with complex multi-objective problems that require balancing conflicting
objectives. The ants may struggle to converge on a diverse set of Pareto-optimal solutions due
to the lack of explicit consideration for multiple objectives [23] [25].
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V.3.3 Single colony and multiple pheromone matrix

In the Single Colony and Multiple Pheromone Matrices variant of Ant Colony Optimization
(ACO) for multi-objective optimization, a single colony of ants explores the solution space, but
multiple pheromone matrices are utilized. Each pheromone matrix corresponds to a specific
objective, allowing the ants to independently update the pheromone information for each
objective.

The ants evaluate the quality of solutions based on multiple objectives and deposit
pheromone on the respective matrices accordingly. This approach enables the ants to consider
the trade-offs between different objectives and promotes a more comprehensive search of the
solution space. The multiple pheromone matrices provide a mechanism to guide the search
towards a diverse set of Pareto-optimal solutions.

By using multiple pheromone matrices, the Single Colony and Multiple Pheromone Matrices
approach enhances the exploration capabilities of the algorithm and helps in obtaining a well-
distributed set of solutions along the Pareto front [24].

V.3.4 Mult colony and single pheromone matrix

In the Multi-Colony and Single Pheromone Matrix variant of Ant Colony Optimization
(ACO) for multi-objective optimization, multiple colonies of ants are employed, but only a
single pheromone matrix is used to update the solution information.

Each colony operates independently, with its own set of ants exploring the solution space.
The ants within each colony build and update pheromone trails based on the objective values
of the solutions they encounter. However, the pheromone information is shared among all
colonies through periodic information exchange. This exchange allows the colonies to
mfluence each other's exploration, promoting exploration of different regions of the solution
space and facilitating knowledge sharing.

By employing multiple colonies, the algorithm benefits from increased diversity and parallel
exploration capabilities. Different colonies may converge on different regions of the Pareto
front, leading to a more comprehensive search and a wider coverage of the optimal trade-off
solutions.

Despite using a single pheromone matrix, the Multi-Colony and Single Pheromone Matrix
approach effectively combines the exploration power of multiple colonies, making it suitable
for solving multi-objective optimization problems [26].

V.3.5 Mult colony and multt pheromone matrix

In the Multi-Colony and Multiple Pheromone Matrices variant of Ant Colony Optimization
(ACO) for multi-objective optimization, multiple colonies of ants are utilized, and each colony
has its own set of pheromone matrices.

Each colony operates independently, exploring the solution space and updating its own set of
pheromone matrices. The pheromone values are updated based on the quality of solutions
encountered by the ants within each colony. Information exchange occurs between colonies
periodically, allowing them to share knowledge and coordiate their exploration efforts.
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With multiple pheromone matrices, each representing a specific objective, the ants can
imdependently update the pheromone information for each objective. This decentralized
exploration allows for a more comprehensive search of the solution space and facilitates the
exploration of diverse regions of the Pareto front.

The Multi-Colony and Multiple Pheromone Matrices approach promotes both exploration
and exploitation by leveraging the diversity of multiple colonies and the ability to consider
multiple objectives simultaneously. This variant offers an effective way to tackle multi-objective
optimization problems and can lead to a well-distributed set of Pareto-optimal solutions.

Among the previous variants, we have chosen PACO (Population based Ant Colony
Optimization) for further elaboration [27].

V.4 PACO for multiple objective optimization
V.4.1 Algorithm of PACO

When applied to multi-objective problems PACO maintains a different pheromone matrix
for each objective. For each iteration of the algorithm, where iteration refers to every artificial
ant creating a complete solution, a random ant 1s selected from the population (Q) along with
its k closest neighbors to form a sub-population P [18].

At any time Q will contain the complete set of non-dominated solutions found to date. The
ants 1n P are then used to update the individual pheromone matrix for each objective. When
available a separate heuristic matrix 1s used for each objective; in the case of the TSP these
heuristic matrices are simply the corresponding edge weights for each individually defined TSP
as 1s the case for most ACO algorithms applied to the TSP [18].

PACO uses an average-rank-weight method to weight the importance of each objective.
These weightings (w) are used to bias the solution construction towards satisfying specific
objectives over others. Briefly, the average-rank-weight method measures how well each
solution in P satisfies each individual objective. Objectives which are better satisfied by the
solutions 1n P relative to the entire population Q are given a higher rank and a subsequently
larger weighting [18].

Once the pheromone matrices have been created and the objective weightings defined the
transition probabilities are calculated using (1), where h 1s the total number of objectives. The
Ant Colony Systems greedy transition rule 1s then used to create one or more new solutions

[18].

_vh [7;;4% [ni;4P
pl] Zd=1(wd' ZleNik[Tijd]a -[nij
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Where :

- h : 1s the total number of objectives;

- P;; 1 1s the probability of moving from 1 to j;
- Wy :1s the weight of d (d=1 up to d=h);

2: is the pheromone trace between i and j;

- a: 1s the pheromone coefficient;

- B : is the heuristic information coefficient.

The steps :

1. Each new solution (s) is evaluated for each objective;

2. It must be tested for dominance against the full population Q before s can be mtroduced

mto Q;

3. If all members of Q agree that s is non-dominated, that is, no solution in Q is better in all

objectives than s;

4. Then s 1s placed mto Q. If s 1s placed nto Q, s’ dominance over Q must be confirmed;

5. The existing solutions 1n Q are deleted 1if they are dominated by s.

V.5 Conclusion

In this chapter we discussed the multi objective travelling salesmen problem and the variants

of multi objective ant colony optimization, then we took every variant in detail, finally we took a

choice of PACO algorithm and explained it .
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Chapter VI

Implementation

VI.1 Introduction

In this chapter, we will apply the MOACO algorithm to solve the multi-objective travelling
salesmen problem (MOTSP) , we will apply this algorithm by many phases , first we will take a
data of b1 objective TSP and pass it to the MOACO algorithm which give us the solutions of
multi objective TSP then we pass it into dominance check algorithm to extract the non-
dominated, to apply the MOACO algorithm we use the language MATLAB And C to
mmplements the results.

V1.2 Steps of execution

Unfortunately because of errors in compilation we didn’t get the results, in this section we will
take a knowledge about approximate results and what we must get in and after compilation.

The diagram of execution steps:

Data of MOTSP problem

MOACO algorithm

Multi objective solutions

Dominance check algorithm

Set of Non Dominated
solutions(pareto front)

Diagramm of exucution steps
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VI.2.1 Data structure

In the travelling salesmen problem our data 1s visualize as a square matrix, the matrix contain
the distances between each pair of cities, in the case of symmetric TSP we will get symmetric

matrix our work focus on the symmetric T'SP.

Data 1s represented by two matrices because we solve a bi objective TSP.

[otit x|
[EH 40x40 double
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

1 E 0.2246 03314 0.4091 0.9452) 0.5395 0.4193 0.4982 0.6770 0.5004, 0.5812) 0.6635| 0.3547 01715, 0.9410 0.2703 061 ~
2 0.2246 0 0.3235 04881 0.7430, 0.4893 0.4356 0.4558 0.4340 0.4088 0.4186 0.5204 0.1403 0.2875) 0.7366 0.2449 045
3 0.5314 03235 0 0.6076, 0.6480, 0.7037| 0.4974 0.6834 0.1880 0.5965 0.1334 0.2926, 0.2732 10,6096 0.6210 0.5325 0.221
4 0.4091 04881 0.6076 0 1.2075| 0.9365| 0.1268 0.8967 0.7953 0.8786, 0.5243 0.5365| 06151 0.5793 1.1885 0.6638, 0.52:
5 0.9492 0.7480 0.6480 1.2075, 0 0.6504, 11181 0.6705, 0.4899 0.5714, 0.8197, 09128 0.6089 0.9001 0.0384, 0.7430| 0.85°
6 0.5395| 04893 0.7037, 0.9365| 0.6504, 0 09124 0.0422 0.7133 0.1120 0.8616 0.9733 0.4405 0.3944 0.6643 0.2728) 0.90!
7 04193 04356 04974 0.1268 11181 09124, 0 0.8750 0.6852 0.8418 0.4000| 0.4099| 0.5469 0.5892 1.0966 0.6443 039!
8 0.4982 04558 10,6834, 0.8967| 0.6705| 0.0422 0.8750, 0 0.7036, 0.1082) 0.8368 0.5478 0.4160 0.3522 0.6825 0.2330| 0.881
9 0.6770 0.4540 0.1880 0.7953) 0.4899 0.7133 0.6852 0.7036, 0 0.6013 0.3350| 04231 03512 0.7205, 0.4585) 0.6096, 036!
10| 0.5004 0.4088 0.5965 0.8786, 0.5714, 0.1120| 0.8418 0.1092 0.6013 0 0.7591 0.8715 0.3402 0.3816 0.5808 0.2322) 0.80:
" 0.5812 0.4186 0.1834 0.5243 0.8197, 0.8616 0.4000 0.8368 0.3350 0.7591 0| 0.1129| 0421 10,6988 0.7903 0.6569| 0.04
12 0.6635 0.5204 0.2926, 0.5365 09128 0.9733 0.4099 0.9478 04231 0.8715| 0.1129) 0 0.5328 0.7933 0.8816 0.7623 0.06°
13| 0.3547 0.1403 0.2732) 0.6151 0.6089| 0.4405 0.5469 0.4160 0.3512 0.3402 0421 0.5328 0 03701 0.5963 0.2644, 0.46!
14 01715 0.2875 10,6096 0.5793 0.5001 0.3944 0.5892 0.3522 0.7205, 0.3816, 0.6988 0.7933 03701 0 0.8987 0.1590| 0.73
13| 0.8410 0.7366 0.6210 1.1885 0.0384, 0.6643 1.0966 0.6825) 0.4585 0.5808 0.7903 0.8816 0.5963 0.8987 0 0.7430| 082
16 0.2703 0.2448 0.5325, 0.6638 0.7430| 0.2728 0.6445 0.2330 0.6096 0.2322) 0.6569| 0.7623 0.2644 0.1590 0.7430 0| 0.69
7| 06117 04579 0.2268 0.5247 0.8572| 0.9058 0.3986 0.8807 0.3696 0.8038 0.0450| 0.0679| 04653 0.7349 0.8270 0.6981

18 0.4406 03192 04991 0.7992| 0.5566 0.2043 0.7547 0.1891 0.5153 0.0988 0.6604, 0.7728 0.2416 0.3504, 0.5595) 01914, 0.70!
19| 0.8402 0.6330 0.3101 0.8467, 0.6676, 0.9550| 0.7225| 0.9432 0.2443 0.8431 03226, 0.3455| 0.5628 04173 0.6310 0.8272) 032
20| 0.7733 0.5557 0.2481 0.8379, 0.5563 0.8393 0.7193 0.8297 0.1261 0.7273 03312 0.3906 04671 0.8322 0.5209 0.7284, 035 v

< >
Figure VI.1 Distance Matrix of data TSP [21]
IEE
EH 40x40 double
1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 7

1 E 0.1047| 0.7766| 0.5925 04042 0.5869, 0.0437 0.5633 0.4659 0.0273 01710 03162 0.6925 06331 03415 0.7728 045 A
2 0.1047 0 06719 0.4878, 0.2995 0.4822) 0.0611 0.4585 03611 0.1321 0.0663 0.2113 0.5878, 0.5284 0.2369 0.6681 034
3 0.7766 0.6719| 0 0.1841 0.3724 0.1897, 0.7330 02134 03108, 0.8040 0.6056 0.4604, 0.0841 0.1435 0.4350| 0.0038 032
4 0.5925, 0.4878| 01841 0 0.1883 0.0056 0.5489 0.0293 0.1267, 0.6199 04215 0.2763 0.0999 0.0406 0.2509| 0.1803 014
5 0.4042 0.2995| 03724, 0.1883 0 0.1827, 0.3606 0.1590 0.0616 04316, 0.2332 0.0880| 0.2882 0.2289 0.0626 0.3686) 0.04°
6 0.5860 0.4822| 0.1897, 0.0056 0.1827 0 0.5433 0.0237 01211 0.6143 0.4159 0.2707, 0.1056, 0.0462 0.2453 0.1859) 013!
7 0.0437 0.0611 07330, 0.5483 0.3606 0.5433 0 0.519 04222 00710 0.1274 02723 0.6488 0.5804 0.2980, 0.7292 040
8 0.5633 0.4385| 0.2134 0.0293 0.1590 00237 0.5196 0 0.0974 0.5908 03922 0.2470, 0.1292 0.0899 0.2216 0.2096 0n
9 0.4653 03611 0.3108, 0.1267 0.0616 01211 0.4222 0.0974 0 0.4932 0.2948 0.1436, 0.2266 0.1673 0.1242 0.3070 0.0
10| 0.0273 01321 0.8040| 0.6199, 0.4316 0.6143 0.0710 0.5906 0.4932) 0 0.1984 0.3435 0.7198, 0.6604 0.3690| 0.8002 047
n 0.1710 0.0663 0.6056 04215 0.2332 0.4159 0.1274 0.3922 0.2943 0.1984 0 0.1452 0.5214 0.4621 0.1706 0.6018, 0.28
12| 0.3162 0.2115| 0.4604, 0.2763 0.0880 0.2707, 0.2725, 0.2470 0.1436, 0.3433 0.1452 0 0.3763 03169 0.0254, 0.4566 013
13| 0.6925, 0.5878)| 0.0841 0.0999 0.2882 0.1056, 0.6488 0.1292 0.2266, 0.7198, 05214 03763 0 0.0594 0.3509| 0.0803 0.24
14 0.6331 0.5284) 01433 0.0406 0.2289 0.0462 0.5894 0.0699 01673 0.6604 04621 03169, 0.0594 0 0.2813 0.1397 0.8
15| 0.3416, 0.2369| 04350, 0.2509 0.0626 0.2453 0.2980 0.2216 01242 0.3690 0.1706 0.0254 0.3509) 0.2915 0 04312 0.0
16| 0.7728 0.6681 0.0038 0.1803 0.3686 0.1859| 0.7292 0.2096 0.3070| 0.8002 0.6018 0.4566 0.0803 0.1397 04312 0 032
17| 04513 10,3465/ 03254 0.1413 0.0470 0.1357, 0.4076 0.1120 0.0146, 0.4786, 0.2802 0.1350| 0.2412 0.1818 0.1096, 0.3216

18| 0.0450 0.0597| 0.7316, 0.5475 0.3592 0.5419| 0.0014, 0.5182 04208 0.0724 0.1260 0.2712) 0.6475 0.5881 0.2966 0.7278, 0.40
19| 0.0163 0.1210| 0.7929| 0.6088 0.4205 0.6032) 0.0600 0.5795 0.4821 o011 0.1873 0.3325 0.7088 0.6494 0.3579| 0.7891 0.46°
20 0.1378 0.0331 0.6388 04547 0.2664 0.4431 0.0041 04255 03281 0.1651 0.0332) 01784 0.5547 04933 0.2038 0.6350 031w

<

Command Window

aa to move the document tabs...

Figure VI.2 Cost Matrix of data TSP [21]
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VI1.2.2 MOACO algorithm

The role of this algorithm 1s to give solutions of the multi objective ACO problem according
to the given data, our goal 1s to look on Pareto front which represent the non-dominated
solutions which are the best solutions we can get, in this area the dominance check step playing
a vital importance to identify the Pareto front.

The solutions are a set of two outputs as we have two objective.
This algorithm 1s taken from [22]

The algorithm 1s below:

Fublic License as published by the Free Software Foundation.

This program is distributed in the hope that it will be
useful, but

WITHOUT ANY WARRRNTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A FPARTICULAER PURFOSE. See the
GNT

General Public License for more details.

You should have received a copy of the GNU General Bubklic
License
along with this program; if not, you can cobtain a copy of
the GNU
General Public License at:
http://www.gnu.org/copyleft/gpl.html
or by writing to:
Free Software Foundation, Inc., 5% Temple Place,
Suite 330, Boston, M2 02111-1307 uUsz

FIGURE VI.3 reources for MOACO psuedocode

The first part of this algorithm 1s the mitialization of parameters such as the pheromone
matrices, the heuristic matrices, alpha (the coeficient of pheromone value concentration),

Beta (the coeficient of heuristic value information), number of iterations, number of ants we
use 1n a single colony, number of colonies, the weight for each objective , number of objetives
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typedef t solution * dl solution node t;
typedef struct {
dl solution node t * node;
int (*cmp) (const wvoid*, const void¥);
int size;
int max size;
} dl_solution_t;

typedef struct {
int num ants;
int *num ants per weight;
t solution **ants;
pheromone_t phl;
phercmone t ph2;
pheromone t tau total;
pheromone t dtaul;
pheromone t dtaul;
int *weights;
t Pareto “*pareto set;
dl solution_t **iteration bestl;
dl solution t **iteration best2;
dl solution t **best so farl;
dl_solution_t **best_so far2;
dl solution t **update bestl;
dl_solution_t **update best2;

} ant_colony t;

double * FloatWeights;
ant colony t * Colonies;

Figure V1.4 prototypes of MOACO parameters

The second part is the part of algorithm procees which contains of updating pheromones, selection
the next city for each ant by the probability ,local search , pareto dominance selection, selection
solutions generated by ants, selection the best solutions

// Selection Method Options
enum {
SELECT BY DOMINAMNCE = 0,
SELECT_BY OBJECTIVE = 1,
SELECT_BY WEIGHT = 2,
i
static const param_select type
SELECT_EBY ATTERNATIVES[] = {
{ "dominance", SELECT BY DOMINANCE },
{ "objective", SELECT BY OBJECTIVE },
[ "weight", SELECT BY WEIGHT I,
{ NULL, -1 }

enum Update best ants t Update best ants;
/* enum Update best_ants_t [ */

P UPDATE ANTS ITERATION BEST = 0, */
T UPDATE_ANTS BEST_SO_FAR, */
T UPDATE ANTS MIXED SCHEDULE */

/* 1 Update best ants; */

Figure VI.5 prototypes of MOACO process
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/* Parameters “/
int Num ants, /* per colony */
Num colonies,
Num Weights,
Number Trials,
Number Iterations,

hnts_candlist size, /* number of elements in the candidate

list for construction */

LS _candlist_size, /* number of elements in the candidate

list for local search */
Num update, /* number of solutions used for update.
AllWeights flag,
SelectMethod, UpdateMethod,
Quiet;

bool MultipleFPheromone flag,
MultipleHeuristic_flag,
LocalSearch flag;

wf

Figure V1.6 prototypes of MOACO process

bool ParetolocalSearch flag;
bool ePFL5_flag;

double Allowable Tolerance;
bool WROTS_ flag;

int TabooSearch Length;

bool Weighted local search flag;
int LocalSearch type;

double Rho, Time Limit, Prob_best, g _0;

double Alpha, Beta;

extern double phl min, phl max, phl 0, ph2 min, ph2 max,
0;

/* Candidate List */
extern int **Ants candlist;
int Ants candlist size;

int LS _candlist_size;

fdefine PARETO SIZE 1000

t_Pareto * BestSoFarPareto;
t_Pareto “ TterationParsto;
//t_Pareto * RestartPareto;

ph2

Figure V1.7 prototypes of MOACO process
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Chapter VI Implementation and results

FILE “Report;
FILE *Trace;

int Iteration, Trial;
double time_localsearch;

static inline void
trace header (int current_ trial)
{
DEBUG2_PRINT ("start_trial(%d) :\n", current_trial);

if (Trace) {
fprintf (Trace,
"§ start_trial(%d) :\n"
"} Iterat Add Emv Size Time'n",
current_trial);
}
}
static inline void
trace print (int iteration found best, int added, int removed,
int size,
double time)
{
DEBUGZ FUNPRINT ("iteration found best = %6d, added = %4d,
removed = %4d,"
" size bf = %4d, time = %8.8g\n",
iteration found best, added, removed,
size, time);

Figure VI.8 prototypes of MOACO process

static inline woid
trace_print (int iteration found best, int added, int removed,
int size,

double time)

DEBUGZ FUNPRINT ("iteration found best = %6d, added = %4d,
removed = %44, "
" zize bf = %4d, time = %8.8g\n",
iteration_ found best, added, removed,
size, time);
if (Trace && Iteration % 100) {
fprintf (Trace, " %6d %4d %4d %4d %8.8g\n",
iteration found best, added, removed, size,
time) ;
1
t

void dl solution clear (dl solution t * list);

Figure V1.9 prototypes of MOACO process

void dl solution clear (dl solution t * list);

/* moaco io.c ¥/

void parameter_ defaults (void);

volid read_parameters{int arge, char *Yargwv);

void write parameters (FILE *stream, const char *str, int arge,
char *argv[]):

void setup weights(int *¥candlist, int candlist size);
void report print_header (int argc, char *argv[]);

void start trial( int actual trial );

void end_trial( int actual_trial, int actual_ iteration );
void end program (void);

fendif

Figure VI.10 prototypes of end MOACO process and visualize solutions
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Chapter VI Implementation and results

The solutions of MOACO is a set of solutions because we are in multi objective problem, we
will pass this solutions to dominance check algorithm to get the non dominated solutions.

VI.2.3 Dominance check algorithm

This algorithm provide the non dominated solutions and 1dentify pareto front

The algorithm 1s below:

&anction out = nondominate (x)
inds = []:
for i=1:length(x)
flag = 1:
for j=l:length (x)
if x(i,1)>»x(3,1) && ®(1,2)>x(3,2)

flag = 0O;
break
end
end
if flag
inds = [inds, 1i]:
end
end
out = x({inds,:):
end

FIGURE VI.11 domiance check algorithm [21]

The results of MOTSP is visualized in the objective space by the pareto front (Figure VI1.12)

Pareto Front
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Figure VI.12 parto front in MOP
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Chapter VI Implementation and results

VI.3 Conclusion

In this chapter we discussed the execution steps , unfortunately because of errors in
compilation we didn’t get the results, this research have been studied by many researchers and
they get good results when applying MOACO for multi objective Travelling salesmen problem.
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General Conclusion

In this work, we are exploring the concepts of optimization and combinatorial
optimization. We are discussing various approaches to solving combinatorial
optimization problems, with a particular focus on approximate methods.
Additionally, we are delving into multi-objective optimization and 1its practical
applications, as well as the utilization of metaheuristics for solving multi-objective
problems. The ant colony optimization algorithm 1s being introduced and its role
in solving optimization problems 1s being explained. Furthermore, we are
examining the MOACO algorithm and one of its variants, PACO, which are
metaheuristic approaches for tackling combinatorial optimization with multiple
objectives.

The PACO algorithm for the multi-objective TSP 1s being presented 1 this work.
Previous studies have confirmed the quality of the solutions obtained using this
algorithm. Unfortunately, in our research, we encountered errors while trying to
compile and implement the algorithm. Successful implementation requires a
coding background to adjust the parameters of the pseudocode, as well as a
background mn operational research to fully comprehend the research findings.

Future research 1s likely to focus on the pheromone update and use of
historical data , the PACO algorithm 1s expected to be used in variety of future
projects, Including :

- PACO combined with local search methods to improve the quality of
solutions.
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