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Abstract 

   In this work, we use a metaheuristic method which depends on swarm intelligence called 

ant colony optimization to solve the multi objective combinatorial optimization problems. 

We will focus on the multi-objective travelling salesmen problem. 

Key words : 

   Ant colony optimization, Combinatorial optimization, Multi objective optimization, Multi 

objective Travelling Salesmen problem. 

Résumé  

    Dans ce travail, nous utilisons une méthode métaheuristique basée sur l'intelligence 

collective appelée optimisation de colonie de fourmis pour résoudre des problèmes 

d'optimisation combinatoire multi-objectifs. Nous nous concentrerons le problème du 

voyageur de commerce multi objectifs. 

Mots clés : 

 Optimisation par colonies de fourmis (OCF), optimisation Multi objectif, Optimisation 

combinatoire, Problème du voyageur de commerce multi -objectif. 

 الملخص
من  النمل اتمستعمر باستعمال تحسينالعلى ذكاء السرب وتسمى  تعتمدتقريبية  ان العمل المنجز يستخدم طريقة    

.المتعددةذو الأهداف  المتنقل البائع  على حل مشكلة سنركزحل مشاكل التحسين المركبة ذات الهدف المتعدد.  اجل  

 الكلمات الدالة 

خورازمية مستعمرة النمل  ,الأهدافمشكل التحسين متعدد  ,الأهدافمشكل البائع المتنقل متعدد   
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General Introduction 

  

   Operational research (OR)  is a discipline that employs mathematical modeling, statistical 

analysis, and optimization techniques to assist decision makers in solving complex problems 

and optimizing outcomes. By utilizing mathematical optimization methods, such as linear 

programming, integer programming, or dynamic programming, OR helps organizations to find 

the best possible solutions of intricate problems. These optimization techniques play a crucial 

role in improving efficiency, resource allocation, and decision-making processes [1]. 

   Optimization techniques find wide applications across various real-life domains. In 

transportation and logistics, optimization is used for route optimization, vehicle scheduling, and 

inventory management, leading to cost reduction and improved efficiency, In finance, 

optimization models aid in portfolio optimization, asset allocation, and risk management [2]. 

   However, most of these optimization problems are combinatorial optimization problems, 

Combinatorial optimization primarily deals with finding the best solution among a finite set of 

discrete options. It involves selecting a subset of elements or arranging them in a specific order 

to optimize a particular objective, such as minimizing costs or maximizing efficiency. the TSP is 

one of the combinatorial problems which will be the topic of this thesis [3]. 

   In This work. The TSP aims to find the shortest possible route that visits a set of cities and 

returns to the starting point. In practice, however, there may be additional objectives to 

consider, [such as minimizing travel time, reducing fuel consumption, or maximizing customer 

satisfaction]. Multi-objective optimization techniques can handle such scenarios, generating a 

set of trade-off solutions known as the Pareto frontier, which represents the best compromises 

between different objectives [4]. 

  Solving the Combinatorial optimization problems, is a challenge due to their discrete nature 

and the exponentially large search space. Various methods have been developed to tackle these 

problems .One of the resolution methods in the Bio-inspiration methods which  draws 

inspiration from biological systems to develop innovative solutions. By studying nature's 

mechanisms and processes, bio-inspired methods aim to solve complex engineering problems. 

These methods mimic biological structures, behaviors, and evolutionary processes to create 

efficient and adaptable designs. Examples include swarm intelligence algorithms inspired by ant 

colonies and genetic algorithms based on natural selection [5]. 

      In order to solve the multi objective (TSP) we will use approximate method which is based 

on the optimization of ant colonies or (Ant Colony Optimization). 

   This research looks at how well multi objective ant colony optimization algorithm (MOACO) 

performs in the case of multi objective travelling salesmen problem (MOTSP).  

   The Muli objective ant Colony Optimization (MOACO) algorithm encourages exploration of 

different paths, promoting a diverse set of optimal solutions. This is particularly useful in multi-

objective optimization problems where conflicting objectives exist. The MOACO algorithm 

helps in improving the quality and diversity of solutions obtained, making it valuable for solving 

complex optimization problems. 
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The ability of the MOACO algorithm is to detect the pareto front . 

The purpose of this dissertation is applying the ACO to solve the MOTSP . 

The organization of the work will be as follows :  

   Our work covers various aspects of combinatorial optimization problems. The first chapter 

introduces and explains these problems. Moving on to the second chapter, we explore multi-

objective optimization concepts and their applications in academia and real life. In the third 

chapter, we discuss how to solve combinatorial optimization problems. The fourth chapter 

focuses on Ant Colony Optimization (ACO) and its use in solving the Traveling Salesman 

Problem (TSP). In the fifth chapter, we delve into the Multi-Objective Traveling Salesman 

Problem and explore variants of the Multi-Objective Ant Colony Optimization (MOACO) 

approach. We also outline the steps and process of the PACO algorithm. Finally, in the sixth 

and final chapter, we detail the execution steps of the algorithm and analyze the results. Our 

work concludes with a summary and general conclusion of our findings. 
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Combinatorial optimization  

 
I. 1    Introduction  
 

   Combinatorial optimization theory has been a focus for researchers and practitioners. This 

field tackles problems with a large number of possible combinations, aiming to find the best 

solutions [3]. 

 

   One of the remarkable aspects of combinatorial optimization problems is their 

transformational nature. Many real-world problems can be formulated as combinatorial 

optimization problems, even if they initially have a finite or countably infinite number of 

alternative solutions [3]. 

 

   Lawler (1976) defines combinatorial optimization as the mathematical study of finding 

optimal arrangements, groupings, orderings, or selections of discrete objects. These problems 

are intriguing because they are easy to describe but notoriously challenging to solve[9]. 

 

   In practical applications, many of these problems are considered NP-hard. This classification 

implies that it is widely believed they cannot be solved optimally within a reasonable amount of 

time using polynomial-based algorithms[14]. 

 

   The examples of combinatorial optimization problems are diverse and impactful. They 

include determining the most cost-effective delivery plan, optimizing task assignments, 

designing efficient routing schemes, sequencing jobs in production lines, and allocating 

resources in various industries[5]. 

 

   In this chapter we will discuss the combinatorial optimization in details. 
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I.2   Combinatorial optimization problem 

 
   Combinatorial optimization is a branch of optimization that focuses on solving problems 

involving discrete decision variables and a finite set of feasible solutions. It deals with finding 

the best configuration or arrangement of elements from a given set to optimize a certain 

objective, subject to various constraints. In combinatorial optimization, the emphasis is on 

exploring the combinatorial structure of the problem to efficiently search for optimal or near-

optimal solutions [9]. 

   Combinatorial optimization problems arise in various domains, including operations 

research, logistics, network design, scheduling, and resource allocation. Prominent examples 

include the traveling salesman problem, which seeks the shortest route visiting multiple cities, 

and the knapsack problem, which aims to determine the most valuable combination of items 

that fit within a limited capacity [9].  

   A combinatorial problem is a computational problem that involves the exploration and 

analysis of combinatorial structures or configurations to determine the optimal arrangement, 

selection, or assignment of discrete objects based on predefined criteria. These problems often 

deal with discrete entities, such as graphs, permutations, subsets, or combinations, and require 

finding the most favorable or optimal configuration [3]   
 

I.3   Single-objective combinatorial optimization problem 
 

    The formulation of a single-objective combinatorial optimization problem involves defining 

the decision variables, the objective function, and the constraints. The goal is to find the 

optimal arrangement or combination of variables that minimizes or maximizes the objective 

function while satisfying the given constraints.  
 

Decision Variables  

 

    These are the variables that determine the solution. They represent the choices or decisions 

to be made in the problem. For example, in the traveling salesman problem, the decision 

variables could be the order in which cities are visited [10]. 

 

Objective Function  

 

    The objective function quantifies the quality or value of a solution. It assigns a numerical 

value to each possible solution, indicating how well it satisfies the problem's objective. The 

objective can be either to minimize or maximize a certain quantity. For example, in the 

knapsack problem, the objective function could be the total value of the selected items [10]. 

 

Constraints   

 

    Constraints are conditions or limitations that the solution must adhere to. They define the 

feasible region of the problem, ensuring that the solution satisfies specific requirements. 

Constraints can include limitations on variables, resource availability, logical conditions, and 

more. For example, in a scheduling problem, constraints could restrict the assignment of tasks 

to specific time slots [10]. 

 



ChaptreI   Combinatorial optimisation 

5 
 

   By formulating the decision variables, objective function, and constraints, the combinatorial 

optimization problem is defined, and various algorithms and techniques can be applied to 

search for the optimal solution [10]. 

 

The Mathematical formulation is : 

 

 

{
 
 

 
 

𝒎𝒊𝒏𝒇(𝒙),
𝑺𝒖𝒄𝒉 𝑻𝒉𝒂𝒕 ∶ 

                                   𝒈𝒊(𝒙) ≤ 𝟎, 𝒊 = 𝟏,… . ,𝒎

                                𝒉𝒋(𝒙) = 𝟎, 𝒋 = 𝟏,… . , 𝒑

          𝒙 ∈ 𝑺 ∁ 𝑹𝒏

                                                      (I.2) 

 

Where : 

 

– 𝒇  : is the function to minimize, called cost function or objective function; 

– 𝒙 : represents the vector of optimization variables;  

– 𝒈𝒊 : the inequality constraints;  

– 𝒉𝒋 : the equality constraints;  

– 𝑺 : the space of variables (also called search space). Note that the space of variables S 

indicates what type of variables, namely: real, integer, mixed (real and integer in the same 

problem), discrete, bounded, in the case of combinatorial optimization we deal with discrete 

variables   

 

A point 𝑥𝐴 is called an admissible point if 𝑥𝐴 ∈ 𝑆 and if the optimization constraints are 

satisfied: 

 

   𝒈𝒊(𝒙𝑨) ≤ 𝟎, 𝒊 = 𝟏,...,𝒎 and 𝒉𝒋(𝒙𝑨) = 𝟎, 𝒋 = 𝟏,...,𝒑 

 

I.4   Multi-objective combinatorial optimization problem  
 

   "A multi-objective combinatorial optimization problem is a computational problem in which 

the objective is to find the optimal arrangement, selection, or assignment of discrete objects or 

elements from a given set to simultaneously optimize multiple objective functions. These 

objective functions represent different criteria or measures of performance, and the goal is to 

find a set of solutions that achieve a trade-off between these objectives, known as the Pareto 

front or Pareto set." [11] 

   Solving multi-objective combinatorial problems requires algorithms and techniques that can 

explore the solution space, identify a diverse set of non-dominated solutions, and provide 

decision-makers with a range of trade-off options 

 

The Mathematical formulation is: 

 

 

                          

{
 
 

 
 
𝒎𝒊𝒏 𝒐𝒓 𝒎𝒂𝒙 𝒐𝒓 𝒕𝒉𝒆 𝒃𝒐𝒕𝒉 𝒇𝟏,, 𝒇𝟐, …… , 𝒇𝒏

𝑺𝒖𝒄𝒉 𝑻𝒉𝒂𝒕
𝒈𝒊(𝒙) ≤ 𝟎, 𝒊 = 𝟏,… . ,𝒎

𝒉𝒋(𝒙) = 𝟎, 𝒋 = 𝟏,… . , 𝒑

𝒙 ∈ 𝑺 ∁ 𝑹𝒏

                         (I.3) 
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Solving a combinatorial optimization problem requires the study of three points: 

 

1. The definition of all feasible solutions; 

 

2. The expression of the objective to be optimized;  

 

3. The choice of optimization method (exact or approximate) to use. 

 

   The first two points relate to the modeling of the problem and the third point to its resolution 

 

I.5   Examples  
 

– Job shop problem.  

– Scheduling problems. 

– Flow shop problem. 

– Travelling salesmen problem.  

– vehicule routing problem. 

 

   We will take the traveling salesman problem (TSP), which is an example of combinatorial 

optimization problems and we will look of variant of (TSP) problem which is the (TSP) in the 

case of multi objective. 

 

I.6   Conclusion  
    

   In this chapter, we discussed the fundamental concept of optimization and optimization 

problem then we explained a type of optimization called combinatorial optimization then 

combinatorial optimization problem, we took a look to the classification of optimization 

problem and examples of combinatorial optimization problem, our focus is in the (TSP) 

or travelling salesmen problem, we will disscuss this problem solving but in the case of multi 

objective, the next chapter we will make view to the main concepts of multi objective 

optimization and how can we solve the multi objective travelling salesmen problem on the next 

chapters.  
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Multi Objective Optimization  

 
II.1   Introduction  

      
  The challenge of solving large and complex optimization problems with multiple factors to 

consider is a common issue faced by various industries. In practical scenarios, these problems 

rarely involve just one objective, as there are often conflicting objectives that need to be 

balanced. 

 

   To address these challenges, the field of multi-objective optimization has emerged. It has a 

rich historical background, with roots dating back to the 19th century in economics . Initially 

applied in economics and management science, multi-objective optimization has gradually 

found its way into engineering sciences and logistics[5]. 

 

   In today's world, multi-objective optimization has become a crucial field in science, 

engineering, and logistics. However, the complexity of these problems has increased 

significantly, with larger problem sizes, a greater number of objectives, and a wider search space 

to consider[5] . 

 

   To tackle these complex optimization problems effectively, extensive research has been 

conducted since the late 1980s, leading to the development of advanced techniques known as 

multi-objective metaheuristics. These techniques play a vital role in finding solutions within a 

reasonable timeframe for practical applications [5]. 

 

   In this chapter, we will discuss the notions of multi objective optimization and the features of 

metaheuristics for solving multi objective problems . 
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II.2    Multi objective optimization concepts  

 
   This section covers the main concepts of multi objective optimization, such as dominance, 

Pareto optimality, Pareto optimal set, and Pareto front. In these definitions, the minimization 

of all the objectives is assumed, without loss of generality, this concepts is from [5]. 

 

Multi objective optimization problem  

 
   A multi objective optimization problem can be defined as  

 

MOP = {   
𝒎𝒊𝒏 𝑭(𝒙)  =  (𝒇𝟏(𝒙), 𝒇𝟐(𝒙), . . . , 𝒇𝒏(𝒙))

𝒔. 𝒕. 𝒙 ∈  𝑺
                         (II.1) 

 

       Where n (n ≥ 2) is the number of objectives, 𝑥 = (𝑥1…𝑥𝑘) is the vector representing the 

decision variables, and S represents the set of feasible solutions associated with equality and 

inequality constraints and explicit bounds. 𝑭(𝒙) = (𝒇𝟏(𝒙),𝒇𝟐(𝒙), ...,𝒇𝒏(𝒙)) is the vector of 

objectives to be optimized. 

 

   The search space S represents the decision space or parameter space of the MOP. The space 

in which the objective vector belongs to is called the objective space.  The vector F can be 

defined as a cost function from the decision space in the objective Space that evaluates the 

quality of each solution (𝒙𝟏...𝒙𝒌) by assigning an objective vector (𝒚𝟏...𝒚𝒏), which represents 

the quality of the solution (or fitness) (Fig. II.1).  

 

   In the field of multi objective optimization, the decision maker uses it to work in terms of 

evaluation of a solution on each criterion, and is naturally placed in the objective space. 

 

 The set 𝒀 = 𝑭(𝑺) represents the feasible points in the objective space, and 

 𝒚 = 𝑭(𝒙) = (𝒚𝟏,𝒚𝟐,...,𝒚𝒏), Where 𝒚𝒊 = 𝒇𝒊(𝒙), is a point of the objective space. 

 

   In multi-objective optimization, the notion of an "optimal" solution is slightly different from 

traditional single-objective optimization. Instead of a single optimal solution, we have a set of 

solutions known as the Pareto optimal set. 

    

   The existence of optimal solutions in multi-objective optimization depends on the problem 

formulation, constraints, and the nature of the objectives. It is important to note that finding all 

Pareto optimal solutions can be a challenging task, and various algorithms and techniques are 

used to approximate the Pareto front and identify a diverse set of optimal solutions. 
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(𝒙𝟏, 𝒙𝟐, ..., 𝒙𝒌)      F             (𝒚𝟏, 𝒚𝟐, ..., 𝒚𝒏) 

Figure II.1  Decision space and objective space in a MOP [5] 
 

   It is not usual to have a solution 𝑥∗, associated with a decision variable vector, where 𝑥∗is 

optimal for all the objectives: 

 

∀  𝑥 ∈  𝑆  ,    𝑓𝑖(𝑥
∗)  ≤  𝑓𝑖(𝑥)   ,   𝑖 = 1,2,……..,𝑛                                                              (II.2) 

 

   Given that this situation is not usual in real-life MOPs where the criteria are in conflict, other 

concepts were established to consider optimality. A partial order relation could be defined, 

known as dominance relation. [5] 

 

Pareto dominance  
 

     An objective vector 𝑢 = (𝑢1…𝑢𝑛) is said to dominate 𝑣 = (𝑣1…𝑣𝑛) (denoted by 𝑢 ≺𝑣) if and 

only if no component of 𝑣 is smaller than the corresponding component of 𝑢 and at least one 

component of 𝑢 is strictly smaller, that is, 

 

∀  𝑖 ∈{1,…...,𝑛} :  𝑢𝑖 ≤ 𝑣𝑖   ∧    ∃  𝑖 ∈{1,...,𝑛} : 𝑢𝑖 < 𝑣𝑖                                                 

 

The generally used concept is Pareto optimality. Pareto optimality definition comes directly 

from the dominance concept. The concept was proposed initially by F.Y. Edgeworth in 1881 

and extended by W. Pareto in 1896. A Pareto optimal solution denotes that it is impossible to 

find a solution that improves the performances on a criterion without decreasing the quality of 

at least another criterion. [5] 

 

Pareto optimality  
 

     A solution 𝑥∗∈ S is Pareto optimal if for every 𝑥 ∈ S, 𝐹(𝑥) does not dominate 𝐹(𝑥∗), that is, 

𝐹(𝑥) ⊀   𝐹(𝑥∗). 

 

Graphically, a solution 𝑥∗ is Pareto optimal if there is no other solution x such that the point 

𝐹(𝑥) is in the dominance cone of 𝐹(𝑥∗) that is the box defined by 𝐹(𝑥), with its projections on 

the axes and the origin (Fig. II.2). In general, searching in a monoobjective problem leads to 

find a unique global optimal solution. A MOP may have a set of solutions known as the Pareto 

optimal set. The image of this set in the objective space is denoted as the Pareto front. [5] 

 

Pareto optimal set  
 

 For a given MOP (𝐹,𝑆), the Pareto optimal set is defined as   

    𝑃∗ = { 𝑥 ∈ 𝑆 / ∄ 𝑥′ ∈ 𝑆 ,   𝐹(𝑥′) ≺ 𝐹(𝑥) }.                                                                       

Decision space Objective space 

x2 y2 

y3 

x1 y1 
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Pareto solution 

Dominated 

solution 

FIGURE II.2 Nondominated solutions in the 
objective space.  [5] 

 

 

Pareto front  
 

      For a given MOP (𝐹,𝑆) and its Pareto optimal set i 𝑃∗, the Pareto front is defined as  

𝑃𝐹∗ = { 𝐹(𝑥)  ,  𝑥  ∈ 𝑃∗}.   

                                                                                            

   The Pareto front is the image of the Pareto optimal set in the objective space, obtaining the 

Pareto front of a MOP is the main goal of multi objective optimization.                              

However, given that a Pareto front can contain a large number of points, a good approximation 

of the Pareto front may contain a limited number of Pareto solutions, which should be as close 

as possible to the exact Pareto front, as well as they should be uniformly spread over the Pareto 

front. Otherwise, the obtained approximation of the Pareto front would not be very useful to 

the decision maker who should have a complete information on the Pareto front.  

 

   Let us notice that depending on the considered space (decision space or objective space), the 

number of Pareto solutions may be different. In the objective space, two solutions having the 

same objective vector will be considered as a single point, whereas they represent two different 

solutions in the decision space. 

 

   The Pareto optimal set in the objective space is called the minimal complete Pareto set, 

whereas it is the maximal complete Pareto set in the decision space. It is worth to point out that 

ideally one would like to obtain a solution minimizing all the objectives. Let us suppose that the 

optimum for each objective function is known, the objective functions being separately 

optimized 

 

 

                             𝒇𝟐                             

 

 
 
 
 
 
 
 
 
 
                                                                                                             𝑓1 
 

 

 

 

Ideal vector  

 
       A point 𝑦∗= (𝑦1

∗ ,𝑦2
∗,…..,𝑦𝑛

∗) is an ideal vector if it minimizes each objective function 𝑓𝑖 in 

𝐹(𝑥), that is, 𝑦𝑖
∗= min (𝑓𝑖(𝑥)), 𝑥 ∈ 𝑆 ,  𝑖 ∈ [1,𝑛]. 
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The ideal vector is generally an utopian solution in the sense that it is not a feasible solution in 

the decision space. In certain cases, the decision maker defines a reference vector, expressing 

the goal to reach for each objective. This generalizes the concept of ideal vector. The decision 

maker may specify some aspiration levels 𝑧𝑖̅, 𝑖 ∈ [1,𝑛] to attain for each objective function 𝑓𝑖 . 

Aspiration levels represent acceptable or desirable levels in the objective space. A Pareto 

optimal solution satisfying all aspiration levels is called a satisficing solution. 

 

Reference point  

 
   A reference point 𝑧∗= [ 𝑧1,𝑧2,…..,𝑧𝑛 ] is a vector that defines the aspiration level (or goal) 𝑧𝑖 

to reach for each objective 𝑓𝑖 . 

 

Nadir point  
 

   A point 𝑦∗ = (𝑦1
∗,𝑦2

∗,......,𝑦𝑛
∗) is the nadir point if it maximizes each objective function 𝑓𝑖 of 

𝐹 over the Pareto set, that is, 𝑦𝑖
∗ = max (𝑓𝑖(𝑥)), 𝑥 ∈ 𝑃𝑖

∗
, 𝑖 ∈ [ 1, 𝑛 ]. 

The ideal and nadir points give some information on the ranges of the Pareto optimal front 

(Fig. II.3) 

 

     

 

 

 

 

 

 

 

 

 

 

 
                                                                                                 𝑓1  

 

 

 

 

 

 

   In multi objective optimization, the concept of local minima can be generalized to the locally 

Pareto optimal solution. This notion is related to the concept of neighborhood, usually applied 

to S-metaheuristics.  

 

Locally Pareto optimal solution  
      

   A solution 𝑥 is locally Pareto optimal if and only if ∀ 𝑤 ∈  𝑁(𝑥), 𝐹(𝑤) does not dominate 

𝐹(𝑥), and 𝑁(𝑥) represents the neighborhood of the solution 𝑥. 

  

   Some Pareto optimal solutions may be obtained by the resolution of the following 

mathematical program: 

 

 

f2 
Nadir 
point 

 
Pareto front 

Ideal point 

FIGURE II.3 Nadir and ideal points in a MOP 

[5]. 
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f2 Supported solutions 

Nonsupported solutions 
𝑣⬚ 
˝  

 

 
 
 
 

 

 

Figure II.4 : Supported and nonsupported solutions in a MOP. 
Weak dominance and strict dominance concepts. Solution u 
weakly dominate solution v; solution u′ weakly dominates 
solution v′; solution u strictly dominates solutions v′ and v′′. 
[5] 

𝑴𝑶𝑷𝝀 {
 𝒎𝒊𝒏 𝑭(𝒙) = ∑ 𝝀𝒊𝒇𝒊(𝒙)𝒏

𝒊=𝟏

𝒔. 𝒕. 𝒙 ∈  𝑺
                                                                (II.3)  

 

 

With λi ≥ 0 for 𝑖=1,…...,n, and  ∑  λi = 1n
i=1  

 

   Such solutions are known as supported solutions. Supported solutions are generated by the 

resolution of (𝑀𝑂𝑃𝜆) for various values of the weight vector λ.  

 

   The complexity of (𝑀𝑂𝑃𝜆) is equivalent to the subjacent mono objective optimization 

problems.  

 

   If the subjacent optimization problems are polynomial, it will be relatively easy to generate 

the supported solutions. Nevertheless, there exists other Pareto optimal solutions that cannot 

be obtained by the resolution of a (𝑀𝑂𝑃𝜆) mathematical program. Indeed, these solutions, 

known as non-supported solutions, are dominated by convex combinations of supported 

solutions, that is, points of the convex hull of 𝑌 = 𝐹(𝑆) 

 

    

 Other types of domination definitions exist, such as the concept of weak dominance And strict 

dominance.  

 

Weak dominance  
 

    An objective vector 𝑢 = (𝑢1...𝑢𝑛) is said to weakly dominate 𝑣 = (𝑣1…𝑣𝑛) 

(Denoted by 𝑢 ≤ 𝑣) if all components of 𝑢 are smaller than or equal to the corresponding 

components of 𝑣, that is, ∀ 𝑖 ∈ { 1,...,𝑛 }, 𝑢𝑖 ≤ 𝑣𝑖 

 

   strict dominance  
 

    An objective vector 𝑢 = (𝑢1...𝑢𝑛) is said to strictly dominate 𝑣 = (𝑣1…𝑣𝑛)  

(Denoted by 𝑢 ≺≺ 𝑣) if all components of 𝑢 are smaller than the corresponding components 

of 𝑣, that is, ∀ 𝑖 ∈ { 1,...,𝑛 }, 𝑢𝑖< 𝑣𝑖  

                        
                                                                               𝒇𝟐                                                            

 

 

 

 

  

 

 

 

 
                                                                  𝒇𝟏                                                                        𝒇𝟏 
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II.3   Multi objective optimization problems 
 

   Similar to mono-objective optimization, multi-objective optimization problems (MOPs) can 

be categorized into two main types based on the type of variables used to encode the solutions.  

These categories are continuous MOPs, where solutions are represented by real-valued 

variables, and combinatorial MOPs, where solutions are represented by discrete variables. 

 

   Over the last four decades, a significant focus in multi-objective optimization research has 

been on multi-objective continuous linear programming problems. This emphasis can be 

attributed to two main factors: the advancements made in mono-objective linear programming 

within the field of operations research and the relative ease of handling such problems. 

 

   Most of metaheuristics for solving MOPs are designed to deal with continuous MOPs. One 

of the reasons of this development is the availability of “standard” benchmarks for continuous 

MOPs. However, since the last decade, there is also a growing interest in solving combinatorial 

MOPs. Indeed, many real-life and well-known academic problems (e.g., TSP, QAP, VRP, 

knapsack, scheduling) have been modeled as combinatorial MOPs. In the following sections, 

some academic examples of MOPs as well as real-life ones are presented, we will take this 

application from [5] 

 

II.3.1   Academic applications 
 

   The majority of the benchmarks used in the comparison of multiobjective metaheuristics 

were carried out on academic problems. Let us point out that, in many cases, continuous 

functions are used to perform the first experimentations of a new multiobjective metaheuristic , 

For combinatorial MOPs, there is a lack of “standard” benchmarks even if recently there is an 

interest in providing test instances for classical combinatorial MOPs. 

 

II.3.1.1   Multi objective combinatorial problems 

 

   Classical combinatorial MOPs that can be classified into two complexity classes: 

 

• Polynomial problems: Many multiobjective models of polynomially solvable optimization 

problems have been tackled: shortest path problems, spanning tree problems, assignment 

problems, and so on.  

• NP-hard problems: Most of the multiobjective models concern NP-hard optimization 

problems: scheduling problems, routing problems, quadratic assignment problems, and so on 

 

   An increasing number of combinatorial multiobjective test functions are available in the 

literature. However, in most of the cases, they are biobjective optimization problems. Globally, 

there is also a lack of test functions for real-life combinatorial MOPs, especially problems that 

are subject to many objectives, uncertainty, and dynamicity. 
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Example   Multi objective scheduling problems   

 

   The permutation flow-shop scheduling problem (FSP) is one of the most well-known 

scheduling problems. The problem can be presented as a set of n jobs 𝐽1,𝐽2,…...,𝐽𝑛 to be 

scheduled on m machines. Machines are critical resources: one machine cannot be assigned to 

two jobs 

   Simultaneously. Each job 𝐽𝑖 is composed of m consecutive tasks  𝑡𝑖1,…...,𝑡𝑖𝑚, where 𝑡𝑖𝑗 

represents the 𝑗𝑡ℎ  task of the job 𝐽𝑖 requiring the machine 𝑀𝑗.  

   To each task 𝑡𝑖𝑗 is associated a processing time 𝑝𝑖𝑗 , and to each job 𝐽𝑖  a release time 𝑟𝑖 and a 

due date 𝑑𝑖(deadline of the job) are given. 

   In permutation flow-shop problems, the jobs must be scheduled in the same order on all the 

machines. 

 

    Many objectives may be used in scheduling tasks on different machines. These objectives 

vary according to the particularities of the treated problem: 

 

 

𝐶𝑚𝑎𝑥:   Make span (total completion time): max { 𝐶𝑖 |𝑖 ∈ [1…..𝑛] }  

𝐶 :        Mean value of jobs completion time 

𝑇𝑚𝑎𝑥:    Maximum tardiness:  max {[max (0 , 𝐶𝑖− 𝑑𝑖) ]|𝑖 ∈ [1…..𝑛] } 

𝑇 :        Total tardiness: ∑ [𝑚𝑎𝑥(0, 𝐶𝑖  −  𝑑𝑖)]𝑛
𝑖=1   

U   :      Number of jobs delayed with regard to their due date 𝑑𝑖 

 𝐹𝑚𝑎𝑥 :  Maximum job flow-time: max {𝐶𝑖 − 𝑟𝑖|𝑖 ∈ [1…..𝑛]}  

𝐹   :       Mean job flow-time 

 

where 𝑠𝑖𝑗  represents the time at which the task 𝑡𝑖𝑗 is scheduled and 𝐶𝑖 = 𝑠𝑖𝑚 + 𝑝𝑖𝑚  represents 

the completion time of job 𝐽𝑖 .The size of the Pareto front  is not very important as the 

correlation of the two objectives is positively important that restricts the number of Pareto 

solutions . 

 

 

 

 

 

  

 

 

J2 J4 J5 J1 J6 J3  

 J2 J4 J5  J1 J6 J3  

 J2 J4 J5 J1  J6 J3  

  

Figure II.5 A permutation flow-shop scheduling problem.[5] 
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II.3.2   Real-life applications 
 

   A huge number of works dealing with MOPs are dedicated to real-life applications .Two key 

aspects are responsible for this interest: many real-life applications involve various conflicting 

objectives, and efficient multiobjective metaheuristics have been developed (e.g., evolutionary 

multiobjective algorithms). Indeed, multiobjective metaheuristics have been applied to real-life 

applications since 1960. Moreover, several domains were dealt with various multiobjective 

applications: 

 

 

• Engineering design   

 

   In the past 30 years, the development of multi objective metaheuristics has greatly influenced 

the design of systems in various engineering fields such as mechanics, aeronautics, and 

chemistry. This approach has proven highly valuable in tackling design challenges, including 

those related to airplane wings and car engines. The use of multi objective formulation in 

engineering design problems has been widely successful and well-received [5]. 

 

• Environment and energetics  

 

   In the research literature, there has been significant attention given to the multiobjective 

modeling of optimization problems related to environmental and energy domains. These 

include areas such as water distribution management and air quality management. As our 

environment faces increasing challenges and the availability of energy resources, such as water 

and nonrenewable fuels like petrol, becomes more limited, this field of study becomes 

increasingly crucial for addressing future concerns[5]. 

 

• Telecommunications  

 

   In the past decade, the field of telecommunications has emerged as an exciting domain for 

the application of multiobjective metaheuristics. Various areas within telecommunications, such 

as antenna design, cellular network design, satellite constellation design, and frequency 

assignment, have benefited from these techniques. The continuous evolution of network 

technologies, including sensor networks, ad hoc networks, and cognitive networks, ensures that 

this domain will continue to be dynamic and full of opportunities for further exploration and 

optimization[5]. 

 

• Control  

 

   Multiobjective modeling and optimization techniques are widely applied in the field of 

optimal control design. This field focuses on finding the best controller designs that achieve 

optimal performance. By considering multiple objectives simultaneously, these approaches 

help create controllers that effectively balance various performance criteria. The active research 

and development in this area highlight the significance of using multiobjective modeling and 

optimization methods in the design of optimal controllers [5]. 
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• Computational biology and bioinformatics   

 

   Many important problems in computational biology and bioinformatics can be expressed as 

Multiobjective Optimization Problems (MOPs). The application of multiobjective optimization 

in this domain is still in its early stages, leaving ample room for further exploration. Various 

challenging tasks, including classification, feature selection, clustering, association rules, gene 

regulatory network modeling, phylogenetic inference, sequence and structure alignment, 

protein identification, protein structure prediction, and molecular docking, require 

multiobjective optimization approaches to address them effectively. There is significant 

potential for future research and advancements in this fascinating area [5]. 

 

 

• Transportation and logistics  

 

   Nowadays, this domain generates a large number of MOP applications (e.g. Containers 

management, design of grid systems, traced motorway)[5]. 

 

Example Multi objective routing problems  

 

   Routing problems such as the traveling salesman and the vehicle routing problems are widely 

studied because of their numerous real-life applications (e.g., logistics, transportation). The 

most common objectives include minimizing the total distance traveled, the total time required, 

the total tour cost, and/or the fleet size, and maximizing the quality of the service and/or the 

collected profit. Numerous other aspects such as balancing of workloads (e.g., time, distance) 

can be taken into account. 

 

   Our works focus on Multi objective travelling salesmen problem. 

 

II.4   Conclusion  
 

   In this chapter, we discussed the fundamental concepts of multi objective optimization and 

then we took academic and real life applications of multi objective problems, in the next 

chapter we will take a knowledge  about the metaheuristics and the resolution methods in 

general as our study focus on metaheuristics and an algorithm based on swarm intelligence 

which is the ant colony optimization .   
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Chapter III 

Methods for combinatorial optimization 

problem 

   

III.1    Introduction  

   As we discussed earlier, when dealing with combinatorial optimization problems, the main 

objective is to uncover the optimal solution, also known as the global optimal solution or global 

optimum. In simple terms, the goal is to find the very best outcome or result that outperforms 

all other alternatives. This involves thoroughly exploring and evaluating different possibilities in 

order to identify the solution that excels beyond any other choice [5]. 

   Combinatorial problems in resolution are challenging to solve due to the fact that the 

number of viable solutions typically increases as the problem size and complexity grow. In 

simpler terms, as the problem becomes larger and more intricate, the available solution options 

become increasingly numerous, making it harder to find the best solution [14]. 

   Hence, researchers have proposed resolution methods and invested considerable effort in 

enhancing their performance in terms of both computation time and the quality of the 

proposed solutions. In simpler terms, scientists have put forward approaches to solve these 

problems and dedicated their efforts to make them faster and produce better solutions [5]. 

   Over the years, numerous methods have been proposed to address problems of varying 

complexity. These methods exhibit a wide range of approaches, each with its own distinct 

principles, strategies, and performance characteristics. In simpler terms, there is a rich variety 

of methods available for solving different problems, and they differ significantly in how they 

operate, the strategies they employ, and their overall effectiveness [14]. 

   Resolution methods can be broadly categorized into two main types: exact (or complete) 

methods and approximate (or incomplete) methods. Exact methods ensure the completeness 

of the solution process, meaning they guarantee finding the optimal solution. On the other 

hand, approximate methods sacrifice completeness to achieve greater efficiency, prioritizing 

faster computation even if the solution obtained is not guaranteed to be optimal[5]. 

   The combination of techniques from these two classes resulted in a new class known as 

hybrid methods, which not only achieve an optimal solution but also significantly reduce the 

computational time required. Another way to express this idea is that the hybridization of these 

methods brings together the best aspects of both classes, allowing for efficient and effective 

solutions to be obtained in a shorter period[5]. 
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III.2   Resolution methods 

      The resolution methods are schematized as follows  

 

 

 

Figure III.1- Schema of the Resolution Methods [12] 

III.2.1   The exact methods 

   Exact methods in computational algorithms aim to explore the entire search space of a 

problem to find the optimal solution. The search space refers to the set of all possible 

configurations or combinations that satisfy the problem constraints. The goal of exact methods 

is to systematically examine this search space and identify the best solution, ensuring 

optimality[13]. 

   The primary advantage of exact methods is their ability to provide provably optimal 

solutions. By exhaustively exploring all possibilities or utilizing systematic techniques, these 

methods guarantee finding the best solution within the given constraints. This makes them 

particularly valuable when precision and optimality are crucial[13]. 

   However, exact methods also have some disadvantages. One significant drawback is their 

computational complexity. As the search space grows exponentially with problem size, 

exploring all possibilities can become computationally infeasible or time-consuming, especially 

for large-scale problems. The running time of exact methods can quickly become prohibitive, 

making them less suitable for real-time or time-sensitive applications[13].  

   Some commonly used exact methods include brute force, dynamic programming, 

backtracking, branch and bound, and integer linear programming[13]. 
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III.2.2   Approximate methods 

   Approximate methods for combinatorial optimization are employed when finding an exact 

optimal solution is computationally infeasible, time-consuming, or when facing large-scale or 

intractable problems. They are particularly useful in scenarios where time constraints exist, and 

near-optimal solutions are sufficient. These methods are applied to explore problem domains, 

conduct preliminary analysis, and handle complex optimization problems with limited 

resources. Approximate methods strike a balance between solution quality and computational 

efficiency, providing good-quality solutions within reasonable timeframes[5]. 

   These approaches can be divided into two categories: specific heuristics and metaheuristics. 

Specific heuristics are designed for solving a particular problem or instance. metaheuristics, on 

the other hand, are general-purpose algorithms that can be used to tackle almost any 

optimization problem. They can be seen as higher-level strategies that guide the creation of 

specialized heuristics for solving specific optimization problems [5]. 

 

III.2.2.1   Heuristics   

   In simpler terms, even if we had incredibly powerful computational abilities, there are certain 

problems with algorithms that are too complex to be solved within a reasonable timeframe. In 

such cases, we have to resort to a experimentation approach to find a solution that comes as 

close to the optimal answer as possible. Since it is impractical to test all possible combinations, 

we have to make strategic decisions. These decisions, known as heuristics, are highly 

dependent on the specific situation at hand. The goal of using heuristics is to identify an 

acceptable approximate solution within a reasonable amount of time, rather than exhaustively 

testing all potential combinations. Heuristics are employed in algorithms that require analyzing 

a large number of cases in order to solve problems and make decisions. They help us reduce 

the overall complexity of the algorithm by prioritizing the situations that are most likely to yield 

the solution [13].  

 

III.2.2.2   Metaheuristics   

   In alternative terms, metaheuristics are advanced techniques used to solve complex 

optimization problems that cannot be effectively addressed by traditional heuristics or standard 

optimization methods. A metaheuristic is an iterative procedure that guides a subordinate 

heuristic by intelligently combining various concepts to explore and exploit the search space. It 

also incorporates learning strategies to organize information and discover efficient solutions that 

closely approximate the optimal solution. Metaheuristics represent the culmination of extensive 

research and development in the field of combinatorial optimization[5]. 
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   In designing a metaheuristic, two contradictory criteria must be taken into account: 

exploration of the search space (diversification) and exploitation of the best solutions found 

(intensification).            

   The metaheuristics divided into two main categories Population-based search and single-

solution based search[5].  

 

III.2.2.2.1   Methods with a single-solution   

   While solving optimization problems, single-solution based metaheuristics improve a single 

solution. They could be viewed as “walks” through neighborhoods or search trajectories 

through the search space of the problem at hand . The walks (or trajectories) are performed by 

iterative procedures that move from the current solution to another one in the search space. S-

metaheuristics show their efficiency in tackling various optimization problems in different 

domains [5].  

 

III.2.2.2.2   Methods with a population of solutions  

   In alternative terms, population-based metaheuristics (P-metaheuristics) share common 

principles and can be seen as a continuous improvement process within a population of 

solutions. The process starts with the initialization of the population, followed by the generation 

of a new population of solutions. This new population is then integrated into the existing one 

using selection procedures. The search process continues until a specific condition, known as 

the stopping criterion, is satisfied. Several algorithms, such as evolutionary algorithms (EAs), 

scatter search (SS), estimation of distribution algorithms (EDAs), particle swarm optimization 

(PSO), Ant colony optimization (ACO), and artificial immune systems (AISs), fall into this 

category of metaheuristics [5].  

 

 III.2.2.2.3   Algorithms based on swarm intelligence  

   Swarm intelligence-based algorithms are a class of algorithms that draw inspiration from 

natural phenomena. These algorithms are specifically designed to emulate the collective 

behaviors observed in certain species when they solve problems, with the aim of developing 

powerful metaheuristics for solving various optimization problems[13]. 

   The term "swarm" typically refers to a finite collection of particles or interacting entities. 

These swarms can encompass diverse groups such as flocks of birds, colonies of ants, colonies 

of bees, and even immune systems. In bird flocks, the particles are individual birds; in ant 

colonies, the particles are ants; in bee colonies, the particles are bees; and in the immune 

system, the particles are specialized cells responsible for recognition and protection[13]. 

 

   By mimicking the social behavior of particles within these swarms, which exhibit remarkable 

self-organization capabilities, researchers have proposed several algorithms in recent decades. 
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Some notable examples include Particle Swarm Optimization (PSO), Artificial Immune 

Systems (AIS), Artificial Ant Colony Optimization, Artificial Bee Colony Optimization, 

Cuckoo Search, and Cuckoo Optimization Algorithm. These algorithms leverage the principles 

of swarm intelligence to address complex optimization problems effectively[13].  

 

III.2.2.2.4   Ant colony optimization  

   Ant Colony Optimization (ACO) is a metaheuristic approach that employs a colony of 

artificial ants to find effective solutions for challenging discrete optimization problems. The 

fundamental aspect of ACO algorithms is cooperation, where computational resources are 

allocated to a group of relatively simple agents, known as artificial ants. These ants 

communicate indirectly through a mechanism called stigmergy, which involves indirect 

communication mediated by the environment itself [14]. 

   The cooperative interaction among the ants leads to the emergence of good solutions to the 

problem at hand. ACO algorithms are capable of tackling both static and dynamic 

combinatorial optimization problems. Static problems refer to situations where the problem 

characteristics are defined once and remain constant throughout the problem-solving process. 

A classic example of a static problem is the Traveling Salesman Problem (TSP), where the city 

locations and their relative distances are predetermined and do not change during the problem-

solving phase [14].  

 

III.2.3   Hybrid methods  

   Hybrid methods are becoming popular because they consistently give the best results for 

many different optimization problems. These methods combine two or more search 

techniques to take advantage of their strengths and work together effectively. 

   They leverage the strengths of multiple algorithms to improve solution quality and search 

efficiency. By integrating algorithms with complementary abilities, such as exploration, 

exploitation, and constraint handling, hybrid methods provide a flexible and adaptable 

approach to tackle diverse problem types. They can enhance solution quality, speed up 

convergence, explore trade-offs between conflicting objectives, leverage problem-specific 

knowledge, and increase robustness against variations. Hybrid methods offer a powerful and 

versatile strategy for addressing challenging combinatorial optimization problems [5].  
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III.3   Conclusion  

   In this chapter, we explored different approaches to problem-solving, including exact 

methods, approximate methods, and hybrid methods. However, our primary focus was on 

approximate methods, particularly metaheuristics, as our work heavily relies on them. 

Specifically, we will delve into one specific algorithm based on swarm intelligence called ant 

colony optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

   

 

  

 

 

 

 

 

 



Chapter IV Ant Colony Optimization 
 

23 
 

Chapter IV  

Ant Colony Optimization   
 

 

IV.1   Introduction 

   Ant colonies and other social insect societies are characterized by their impressive 

organizational abilities, despite the simplicity of their individual members. This structured 

social organization enables them to tackle complex tasks that surpass the capabilities of a single 

ant. Through cooperation and collective efforts, ants are able to accomplish remarkable feats 

that would be unattainable for them individually. [14] 

   The field of "ant algorithms" focuses on studying models inspired by the behavior of real ants 

and utilizes these models to create innovative algorithms for solving optimization and 

distributed control problems. By observing and understanding how ants behave in their natural 

environment, researchers draw inspiration to design new algorithms that can effectively tackle 

various optimization and control challenges. These ant-inspired algorithms offer fresh 

approaches and strategies for solving complex problems in fields such as operations research, 

swarm intelligence, and distributed systems. [14] 

   The main idea is that the self-organizing principles that allow real ants to work together can 

be used to coordinate groups of artificial agents to solve computational problems. 

   Different aspects of ant colony behavior have inspired various types of algorithms. By 

mimicking the cooperative and adaptable behaviors seen in ant colonies, researchers have 

created algorithms that help artificial agents collaborate effectively. [14] 

   These ant-inspired algorithms offer new ways to solve complex problems by coordinating 

the actions of multiple agents. 

   We will discuss ant colony optimization in this chapter with details. 

 

IV.2   From real to artificial ants 

IV.2.1   Ants’ foraging behavior and optimization 

   Many species of ants possess only rudimentary visual sensory capabilities, indicating limited 

development in their visual perception abilities, Some types of ants have very weak eyesight or 

are completely blind, in the early stages of studying ants' behavior, researchers made a key 

discovery is that most of the communication among ants, both with each other and with their 

surroundings, relies on chemicals produced by the ants themselves.      

   These substances are known as pheromones, which distinguishes them from how 

communication takes place in humans and other higher species is their distinct method of 

communication. The trail pheromone plays a vital role in the social behavior of specific ant  
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species. It’s used by ants to mark pathways on the ground, such as the paths from food sources 

to the nest. By detecting these pheromone trails, foraging ants can effectively track the route to 

food that has been previously discovered by their fellow ants. 

   The fascinating behavior of ants, where they collectively lay and follow chemical trails left by 

their fellow ants, serves as the fundamental inspiration for Ant Colony Optimization (ACO) 

[14] . 

 

IV.2.2   Double bridge experiments 

 
 

FIGURE IV.1 EXPERIMENTAL SETUP FOR THE DOUBLE BRIDGE EXPERIMENT. (A) BRANCHES HAVE EQUAL LENGTH. 
(B) BRANCHES HAVE DI¤ERENT LENGTH. MODIfiED FROM GOSS ET AL. (1989). [15] 

 

   The pheromone trail-laying and -following behavior of some ant species has been investigated 

in controlled experiments by several researchers. One particularly brilliant experiment was 

designed and run by Deneubourg and colleagues, who used a double bridge connecting a nest 

of ants of the Argentine ant species. 

   The results of this experiment showed that over time, the ants in experiment tends to choose 

the shortest path, which is characterized by a high concentration of pheromones. Meanwhile, 

some ants remain on the longer path, but in a small proportion. 

   In our case the convergence of the ants’ paths to one branch represents the macroscopic 

collective behavior, which can be explained by the microscopic activity of the ants, that is, by 

the local interactions among the individuals of the colony. It is also an example of stigmergic 

communication, ants coordinate their activities, exploiting indirect communication mediated by 

modifications of the environment in which they move. 

   The stigmergic communication is the tool to mimic the real ants behaviors to artificial ones 

when they searching for optimal path to obtain food and back to the nest  [14] . 
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FIGURE IV.2   THE RESULTS OF THE EXPERIMENT  [16] 

 

IV.2.3   The comparison between artificial ants and real ants  

Table IV.1   : Artificial Ants VS Real Ants[8] 

Aspects  Real Ants  Artificial Ants in Aco  

Nature  Living organisms Algorithmic constructs 

Physical Characteristics Small size, segmented body, 

multiple legs 

No physical presence, exist 

as virtual entities 

Communication Pheromone trails and direct 

physical interactions 

Updating pheromone trails 

in the algorithm based on 

problem-specific rules 

Adaptability  Can adapt to environmental 

changes and learn from 

experience 

Adaptability is achieved 

through parameter tuning 

and algorithm design 

Decision Making Decisions are based on 

instinct and pheromone 

signals 

Decisions are based on 

probabilistic rules and 

pheromone trails 

Complexity  Complex biological systems Simplified computational 

representations 

Reproduction Reproduce and multiply 

through mating and breeding 

Reproduction is not 

applicable 
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IV.3   Ant colony optimization (ACO) algorithm 

   Ant Colony Optimization (ACO) is a metaheuristic algorithm inspired by the foraging 

behavior of ants. It is used to solve optimization problems, especially those related to graph 

theory and combinatorial optimization. ACO mimics the behavior of ants as they search for the 

shortest path between their nest and food sources. 

   The basic idea behind ACO is to simulate the way ants communicate through the deposition 

and following of pheromone trails. Ants leave pheromone trails on the paths they explore, and 

these trails attract other ants to follow the paths with stronger pheromone concentrations. In the 

context of optimization, the pheromone trails represent the accumulated knowledge of the 

colony about good solutions to the problem. 

   The ACO algorithm starts by initializing a population of artificial ants. Each ant traverses the 

problem space by probabilistically selecting the next step based on the pheromone levels and 

heuristic information. The heuristic information guides the ants to explore promising regions of 

the problem space. As ants move, they deposit pheromone along their paths, and the 

pheromone evaporates over time to prevent the system from getting trapped in suboptimal 

solutions. 

   The pheromone update rule is a crucial aspect of ACO. When an ant completes its tour or 

finds a good solution, it updates the pheromone levels on the visited edges based on the quality 

of the solution. Better solutions lead to higher pheromone concentrations, reinforcing the paths 

that contribute to those solutions. The pheromone levels are also subject to evaporation, which 

allows the algorithm to explore new paths and prevents stagnation. 

   ACO has been successfully applied to various optimization problems, including the traveling 

salesman problem, vehicle routing problem, scheduling problems, and many more. It has 

shown its effectiveness in finding high-quality solutions and has become a popular choice in the 

field of optimization. [14] 

Algorithm 1 The ACO procedure [14]

 

1:  Initialize parameters  

2:  For 𝑡=1 to iteration number do  

3:     For 𝑘=1 to 𝑙 do  

4:       Reapeat until ant k has completed a tour  

5:         Select the city j to be visited next  

6:         with probability 𝑝𝑖𝑗  given by  (IV.1) 

7:       Calculate 𝐿 𝑘 

8:     Update the trail levels according to (IV.3)-(IV.4) 

9:   End
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IV.3.1   Steps of ACO algorithm 

1.  Initialization: 

   Set the parameters such as the number of ants, the number of iterations, pheromone 

evaporation rate, alpha value, beta value,ect  

   Initialize the pheromone levels on edges of the problem graph. 

2.  Ant Movement: 

   Each ant starts from a random initial node. 

   At each step, an ant probabilistically selects the next node to move to based on a         

combination of pheromone levels and heuristic information. 

   The selection is typically guided by a pheromone trail update rule, such as the probability of 

choosing an edge being proportional to its pheromone level. 

3.  Pheromone Update: 

   After all ants complete their tours, the pheromone levels on the edges are updated. 

   Evaporate the existing pheromone trails by applying an evaporation rate to reduce their 

intensity. 

   Apply pheromone deposit rule to reinforce the pheromone levels of edges visited by the ants, 

typically based on the quality of the solution found. 

4.   Iteration: 

   Repeat steps 2 and 3 for a specified number of iterations or until a termination condition is 

met. 

5.   Termination: 

   Terminate the algorithm based on a predefined stopping criterion, such as a maximum 

number of iterations or reaching a satisfactory solution. 

6.   Output: 

   After the algorithm terminates, the best solution found by any ant throughout the iterations is 

returned as the final solution. 
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The Flow above describe Aco process [17] 

 

 

FIGURE IV.3: A FLOW DESCRIBE ACO PROCESS [17] 

 

IV.3.2    Ant colony optimization algorithms for the traveling salesman problem 

IV.3.2.1   The significance of the traveling salesman problem (TSP) 

   The traveling salesman problem (TSP) has been extensively studied in the research 

community and has received significant attention over the years. It has played a crucial role in 

the advancement of ant colony optimization (ACO) research. The initial ACO algorithm, 

known as Ant System, as well as subsequent ACO algorithms, were first tested and evaluated 

using the TSP. 

   There are several reasons why the TSP is often chosen as the problem to demonstrate the 

effectiveness of ACO algorithms. Firstly, the TSP is a well-known and important optimization 

problem that is classified as NP-hard and is encountered in various practical applications.              

Secondly, ACO algorithms can be readily applied to the TSP, making it a suitable problem for 

showcasing their functionality. 
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   Moreover, the TSP is easily understandable, allowing researchers to analyze the algorithm's 

behavior without being hindered by excessive technical complexities. Additionally, the TSP 

serves as a standard benchmark for evaluating new algorithmic ideas. Achieving high 

performance on the TSP is often considered as evidence of the usefulness and effectiveness of 

novel approaches. 

   Furthermore, the history of ACO research has shown that the most efficient ACO algorithms 

for the TSP have also demonstrated exceptional performance for a wide range of other 

optimization problems. This further highlights the significance of the TSP as a test bed for 

evaluating and comparing the efficiency and effectiveness of ACO algorithms. 

   In simpler terms, the TSP is a well-known problem that has received extensive research 

attention. It serves as an important test case for ACO algorithms due to its significance, 

suitability for ACO application, understandability, and benchmarking capabilities. Success in 

solving the TSP often indicates the usefulness and efficiency of ACO algorithms, and the best-

performing ACO algorithms for the TSP have shown effectiveness for various other problems 

as well, To enhance the understanding of the ACO algorithm, we will apply it to the Traveling 

Salesman Problem (TSP) [14] . 

 

 

FIGURE IV.4: AN ANT ARRIVING IN CITY I CHOOSES THE NEXT CITY J TO MOVE TO AS A 

FUNCTION OF THE PHEROMONE VALUES τ 𝑖𝑗  AND OF THE HEURISTIC VALUES𝜂𝑖𝑗 ON THE 

ARCS CONNECTING CITY I TO THE CITIES J THE ANT HAS NOT VISITED YET. [14] 

IV.3.2.2   Tour construction  

   In the ant system (AS) algorithm, a group of artificial ants simultaneously constructs a tour for 

the traveling salesman problem (TSP). To begin, the ants are placed on randomly selected 

cities. During each construction step, an ant (let's call it ant "𝑘") utilizes a probabilistic action 

choice rule known as the random proportional rule to determine its next city visit.  

   The random proportional rule involves assigning probabilities to different cities based on 

certain criteria. Specifically, when ant "k" is currently located at city "i," it calculates the 

probability of choosing city "j" as its next destination. This probability is determined by a 

combination of factors, such as the pheromone trail intensity on the path from city "i" to city "j" 

and the desirability of visiting city "j" based on some heuristic information. 

   Essentially, the random proportional rule allows ant "k" to make a decision on which city to 

visit next by considering both the attractiveness of the city based on the pheromone trail and 

the heuristic knowledge. The higher the probability assigned to a city, the more likely it is for 

the ant to choose that city as its next stop. 
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   In simpler terms, in the AS algorithm, each ant uses a rule to decide which city to visit next. 

   This rule takes into account the pheromone trail intensity and some heuristic information to 

calculate the probability of choosing a particular city. The ant then selects its next city based on 

these probabilities, guiding the construction of a tour for the TSP.  

   This process is based on this equation above  

                                                                

𝑷𝒊𝒋
𝒌 =  

[𝝉𝒊𝒋]
𝜶

∗[𝜼𝒊𝒋 ]
𝜷

∑ [𝝉𝒊𝒍]𝜶∗[𝜼𝒊𝒍 ]𝜷
𝒍∈𝑵𝒍

𝒌
 ,   if  𝒋 ∈ 𝑵𝒍

𝒌                                                              (IV.1)  

 

   In ACO, the probability of an ant choosing a particular node as the next node to visit is 

calculated relative to the other available nodes. The numerator of the probability formula, 

[𝝉𝒊𝒋]
𝜶

∗ [𝜼𝒊𝒋 ]
𝜷

, represents the contribution of the specific edge (i, j) to the overall probability.      

However, to ensure that the probabilities sum up to 1, the contribution of each edge is divided 

by the sum of the contributions of all available edges. 

   The denominator in the probability formula, ∑ [𝝉𝒊𝒍]𝜶 ∗ [𝜼𝒊𝒍 ]
𝜷

𝒍∈𝑵𝒍
𝒌 , represents the sum of the 

probabilities for all possible moves from node i. This summation is necessary to ensure that the 

probabilities of all potential choices from node i sum up to 1, forming a valid probability 

distribution. 

   where   𝜂𝑖𝑗 = 1 ∕ 𝑑𝑖𝑗  is a heuristic value that is available a priori, α and β are two parameters 

which determine the relative influence of the pheromone trail and the heuristic information, 

and 𝑁𝑖
𝑘
 is the feasible neighborhood of ant 𝑘 when being at city 𝑖, that is, the set of cities that 

ant k has not visited yet (the probability of choosing a city outside 𝑁𝑖
𝑘
 is 0). By this probabilistic 

rule, the probability of choosing a particular arc (𝑖, 𝑗) increases with the value of the associated 

pheromone trail 𝜏𝑖𝑗 and of the heuristic information value 𝜂𝑖𝑗 . The role of the parameters α 

and β is the following. If α = 0, the closest cities are more likely to be selected: this corresponds 

to a classic stochastic greedy algorithm (with multiple starting points since ants are initially 

randomly distributed over the cities). If β = 0, only pheromone amplification is at work, that is, 

only pheromone is used, without any heuristic bias. This generally leads to rather poor results 

and, in particular, for values of α > 1 it leads to the rapid emergence of a stagnation 

situation[14] . 

 

IV.3.2.3   Update of pheromone trails 

     After all the ants have constructed their tours, the pheromone trails are updated. This is 

done by first lowering the pheromone value on all arcs by a constant factor, and then adding 

pheromone on the arcs the ants have crossed in their tours. Pheromone evaporation is 

implemented by 

       𝝉𝒊𝒋  ⇽  (𝟏 − 𝝆) 𝝉𝒊𝒋 , ∀ (𝒊, 𝒋)  ∈  𝑳                                                                                            (IV.2) 
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    Where 0 < ρ ≤ 1 is the pheromone evaporation rate. The parameter ρ is used to avoid 

unlimited accumulation of the pheromone trails and it enables the algorithm to ‘‘forget’’ bad 

decisions previously taken. In fact, if an arc is not chosen by the ants, its associated pheromone 

value decreases exponentially in the number of iterations. After evaporation, all ants deposit 

pheromone on the arcs they have crossed in their tour:  

    𝝉𝒊𝒋 ⇽  𝝉𝒊𝒋 +  ∑ ∆𝒊𝒋
𝒌𝒎

𝟏   , ∀ (𝒊, 𝒋)  ∈  𝑳                                                                          (IV.3) 

 

   Where ∆𝑖𝑗
𝑘
 is the amount of pheromone ant k deposits on the arcs it has visited. It is 

defined as follows: 

 

       ∆𝒊𝒋
𝒌
=  {

𝟏 𝑪𝒌⁄ , 𝐢𝐟  𝐚𝐫𝐜 (𝐢, 𝐣) 𝐛𝐞𝐥𝐨𝐧𝐠𝐬 𝐓𝐨  𝐓𝐤; 
𝟎, 𝐨𝐭𝐡𝐞𝐫 𝐰𝐢𝐬𝐞 

                                 (IV.4) 

 

   Where 𝐶𝑘, the length of the tour 𝑇𝑘 built by the 𝑘 − 𝑡ℎ ant, is computed as the sum of the 

lengths of the arcs belonging to 𝑇 𝑘. The better an ant’s tour is, the more pheromone the arcs 

belonging to this tour receive. In general, arcs that are used by many ants and which are part of 

short tours, receive more pheromone and are therefore more likely to be chosen by ants in 

future iterations of the algorithm. As we said, the relative performance of AS when compared 

to other metaheuristics tends to decrease dramatically as the size of the test-instance increases. 

Therefore, a substantial amount of research on ACO has focused on how to improve AS [14]. 

 

IV.4     Conclusion 

   In this chapter, our focus encompassed the broader concept of the ant colony and its 

significance. We then delved into a comprehensive exploration of the ACO algorithm, 

providing detailed insights and illustrating its application to the traveling salesman problem 

(TSP). 
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Ant Colony Optimization Algorithms for Multi 

Objective Travelling Salesmen Problem 

 

V.1   Introduction  

   Multi objective combinatorial optimization have been solved by many algorithms especially 

ant inspired algorithms, in the case of multi objective a lot of ant inspired algorithms have been 

proposed to solve multi objective Combinatorial optimization problems especially to multi 

objective travelling Salesmen problem , there exist many variants to solve MOTSP, the decision 

maker have to choose one of them according to their interests and results. 

 

V.2   Multi objective travelling salesmen problem 

   "The multi-objective traveling salesperson problem (MOTSP) is a combinatorial optimization 

problem that involves finding a set of Pareto-optimal solutions for a traveling salesperson to 

visit a set of cities, such that multiple conflicting objectives, such as minimizing total distance, 

minimizing travel time, or maximizing visitation of certain cities, are simultaneously optimized." 

[20] 

The mathematical formulation of MOTSP can be expressed as follows: 

Where: 

- 𝑁 be the set of cities, |𝑁| = 𝑛. 

- 𝑑𝑖𝑗 be the distance between cities 𝑖 and 𝑗. 

- 𝑥𝑖𝑗 be a binary decision variable that takes value 1 if the path includes the edge  

(𝑖, 𝑗), and 0 otherwise. 

- 𝑓𝑘(𝑥) be the k-th objective function to be minimized, representing a specific aspect of 

the problem (e.g., total distance, travel time, cost). 

The MOTSP can then be formulated as a multi-objective optimization problem: 

Cost function : 

Multi-Objective TSP with Distance and Time: 

Minimize : 𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥)] 

Minimize: 𝑓1 = ∑(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)  ∗  𝑥𝑖𝑗  ) (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗) 

Minimize: 𝑓2 = ∑(𝑡𝑖𝑚𝑒(𝑖, 𝑗)  ∗  𝑥𝑖𝑗) (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗) 

Subject to: 

Each city must be visited exactly once: 
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∑ 𝒙𝒊𝒋 𝒏
𝒊=𝟏  = 𝟏, for 𝒊, 𝒋 ∈  𝑵 and 𝒊 ≠  𝒋 

∑ 𝒙𝒊𝒋
𝒏
𝒋=𝟏   = 𝟏, for 𝒊, 𝒋 ∈  𝑵 and 𝒊 ≠  𝒋 

 

No subcycles are allowed (eliminating subtours): 

∑ 𝒙𝒊𝒋{𝒊∈𝑺,𝒋∈𝑺}  ≤  |𝑺|  −  𝟏, for all non-empty subsets 𝑺 ⊂  𝑵, |𝑺|  ≥  𝟐 

 

Binary decision variable constraints: 

𝒙𝒊𝒋 ∈  {𝟎, 𝟏}, for all 𝒊, 𝒋 ∈  𝑵, 𝒊 ≠  𝒋 

 

V.3   Multi objective ant colony optimization 

V.3.1   variants  

      ACO for multi-objective optimization has various variants. In the Single Colony and Single 

Pheromone Matrix approach, a single colony of ants explores the solution space, and a single 

pheromone matrix is updated based on objective values. The Single Colony and Multiple 

Pheromone Matrices variant uses multiple pheromone matrices to consider multiple objectives 

simultaneously. In the Multi-Colony and Single Pheromone Matrix approach, multiple 

colonies explore independently with a shared pheromone matrix. The Multi-Colony and 

Multiple Pheromone Matrices variant combines multiple colonies with individual pheromone 

matrices for decentralized exploration. These variants offer different ways to tackle multi-

objective optimization problems, balancing exploration and exploitation[23] [26] [27]. 

V.3.2   Single colony and single pheromone matrix 

   In the Single Colony and Single Pheromone Matrix variant of Ant Colony Optimization 

(ACO) for multi-objective optimization, a single colony of ants explores the solution space, and 

a single pheromone matrix is used to update the solution information. This variant is based on 

the principle that ants communicate through pheromone trails, which represent the quality of 

the solutions they find. 

  During the exploration process, the ants move through the solution space, building and 

updating the pheromone trails based on the objective values of the solutions they encounter. 

The pheromone values on the trails guide the subsequent ants in their search for better 

solutions. Through iteration, the pheromone matrix is updated to reflect the knowledge 

accumulated by the ants and guide the search towards promising areas of the solution space. 

  The Single Colony and Single Pheromone Matrix approach offers a straightforward 

implementation and can effectively explore the solution space. However, it may face challenges 

when dealing with complex multi-objective problems that require balancing conflicting 

objectives. The ants may struggle to converge on a diverse set of Pareto-optimal solutions due 

to the lack of explicit consideration for multiple objectives [23] [25]. 
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V.3.3   Single colony and multiple pheromone matrix 

   In the Single Colony and Multiple Pheromone Matrices variant of Ant Colony Optimization 

(ACO) for multi-objective optimization, a single colony of ants explores the solution space, but 

multiple pheromone matrices are utilized. Each pheromone matrix corresponds to a specific 

objective, allowing the ants to independently update the pheromone information for each 

objective. 

   The ants evaluate the quality of solutions based on multiple objectives and deposit 

pheromone on the respective matrices accordingly. This approach enables the ants to consider 

the trade-offs between different objectives and promotes a more comprehensive search of the 

solution space. The multiple pheromone matrices provide a mechanism to guide the search 

towards a diverse set of Pareto-optimal solutions. 

   By using multiple pheromone matrices, the Single Colony and Multiple Pheromone Matrices 

approach enhances the exploration capabilities of the algorithm and helps in obtaining a well-

distributed set of solutions along the Pareto front [24]. 

V.3.4   Multi colony and single pheromone matrix 

   In the Multi-Colony and Single Pheromone Matrix variant of Ant Colony Optimization 

(ACO) for multi-objective optimization, multiple colonies of ants are employed, but only a 

single pheromone matrix is used to update the solution information. 

   Each colony operates independently, with its own set of ants exploring the solution space. 

The ants within each colony build and update pheromone trails based on the objective values 

of the solutions they encounter. However, the pheromone information is shared among all 

colonies through periodic information exchange. This exchange allows the colonies to 

influence each other's exploration, promoting exploration of different regions of the solution 

space and facilitating knowledge sharing. 

   By employing multiple colonies, the algorithm benefits from increased diversity and parallel 

exploration capabilities. Different colonies may converge on different regions of the Pareto 

front, leading to a more comprehensive search and a wider coverage of the optimal trade-off 

solutions. 

   Despite using a single pheromone matrix, the Multi-Colony and Single Pheromone Matrix 

approach effectively combines the exploration power of multiple colonies, making it suitable 

for solving multi-objective optimization problems [26]. 

V.3.5   Multi colony and multi pheromone matrix 

   In the Multi-Colony and Multiple Pheromone Matrices variant of Ant Colony Optimization 

(ACO) for multi-objective optimization, multiple colonies of ants are utilized, and each colony 

has its own set of pheromone matrices. 

   Each colony operates independently, exploring the solution space and updating its own set of 

pheromone matrices. The pheromone values are updated based on the quality of solutions 

encountered by the ants within each colony. Information exchange occurs between colonies 

periodically, allowing them to share knowledge and coordinate their exploration efforts. 
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   With multiple pheromone matrices, each representing a specific objective, the ants can 

independently update the pheromone information for each objective. This decentralized 

exploration allows for a more comprehensive search of the solution space and facilitates the 

exploration of diverse regions of the Pareto front. 

   The Multi-Colony and Multiple Pheromone Matrices approach promotes both exploration 

and exploitation by leveraging the diversity of multiple colonies and the ability to consider 

multiple objectives simultaneously. This variant offers an effective way to tackle multi-objective 

optimization problems and can lead to a well-distributed set of Pareto-optimal solutions. 

Among the previous variants, we have chosen PACO (Population based Ant Colony 

Optimization) for further elaboration [27]. 

 

V.4  PACO for multiple objective optimization 

V.4.1  Algorithm of PACO  

   When applied to multi-objective problems PACO maintains a different pheromone matrix 

for each objective. For each iteration of the algorithm, where iteration refers to every artificial 

ant creating a complete solution, a random ant is selected from the population (Q) along with 

its k closest neighbors to form a sub-population P [18].  

   At any time Q will contain the complete set of non-dominated solutions found to date. The 

ants in P are then used to update the individual pheromone matrix for each objective. When 

available a separate heuristic matrix is used for each objective; in the case of the TSP these 

heuristic matrices are simply the corresponding edge weights for each individually defined TSP 

as is the case for most ACO algorithms applied to the TSP [18]. 

   PACO uses an average-rank-weight method to weight the importance of each objective. 

These weightings (w) are used to bias the solution construction towards satisfying specific 

objectives over others. Briefly, the average-rank-weight method measures how well each 

solution in P satisfies each individual objective. Objectives which are better satisfied by the 

solutions in P relative to the entire population Q are given a higher rank and a subsequently 

larger weighting [18].  

   Once the pheromone matrices have been created and the objective weightings defined the 

transition probabilities are calculated using (1), where h is the total number of objectives. The 

Ant Colony Systems greedy transition rule is then used to create one or more new solutions 

[18]. 

 

𝑝𝑖𝑗 = ∑ (𝑤𝑑.
[𝜏𝑖𝑗

𝑑]𝛼 .[𝜂𝑖𝑗
𝑑]𝛽

∑ [𝜏𝑖𝑗
𝑑]𝛼 .[𝜂𝑖𝑗

𝑑]𝛽 
𝑙∈𝑁𝑖

𝑘

ℎ
𝑑=1 )                                               (V.2) 
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Where : 

– ℎ : is the total number of objectives;  

– 𝑃𝑖𝑗 : is the probability of moving from i to j; 

– 𝑤𝑑 : is the weight of d (d=1 up to d=h);  

– 𝜏𝑖𝑗
𝑑: is the pheromone trace between i and j; 

– α : is the pheromone coefficient; 

– β : is the heuristic information coefficient. 

 

The steps : 

1. Each new solution (s) is evaluated for each objective; 

2. It must be tested for dominance against the full population Q before s can be introduced 

into Q; 

3. If all members of Q agree that s is non-dominated, that is, no solution in Q is better in all 

objectives than s; 

4. Then s is placed into Q. If s is placed into Q, s’ dominance over Q must be confirmed;  

5. The existing solutions in Q are deleted if they are dominated by s. 

 

V.5   Conclusion  

   In this chapter we discussed the multi objective travelling salesmen problem and the variants 

of multi objective ant colony optimization, then we took every variant in detail, finally we took a 

choice of PACO algorithm and explained it . 
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Chapter VI 

Implementation   

 

VI.1   Introduction  

   In this chapter, we will apply the MOACO algorithm to solve the multi-objective travelling 

salesmen problem (MOTSP) , we will apply this algorithm by many phases , first we will take a 

data of bi objective TSP and pass it to the MOACO algorithm which give us the solutions of 

multi objective TSP then we pass it into dominance check algorithm to extract the non-

dominated, to apply the MOACO algorithm we use the language  MATLAB And C to 

implements the results. 

 

VI.2   Steps of execution 

   Unfortunately because of errors in compilation we didn’t get the results, in this section we will 

take a knowledge about approximate results and what we must get in and after compilation. 

The diagram of execution steps: 

 

                                                         

                                                                                       

                                                                                                                                                        

                                                      MOACO algorithm 

 

                                                                                 

                                                                                 Dominance check algorithm 

 

 

 

 

 

 

Data of MOTSP problem  

Multi objective solutions 

Set of Non Dominated 

solutions(pareto front)  

       Diagramm of exucution steps 
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VI.2.1   Data structure 

   In the travelling salesmen problem our data is visualize as a square matrix, the matrix contain  

the distances between each pair of cities, in the case of symmetric TSP we will get symmetric 

matrix our work focus on the symmetric TSP. 

   Data is represented by two matrices because we solve a bi objective TSP. 

 

Figure VI.1  Distance Matrix  of data TSP [21] 
 

 

Figure VI.2 Cost Matrix of data TSP [21] 
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 VI.2.2   MOACO algorithm 

   The role of this algorithm is to give solutions of the multi objective ACO problem according 

to the given data, our goal is to look on Pareto front which represent the non-dominated 

solutions which are the best solutions we can get, in this area the dominance check step playing 

a vital importance to identify the Pareto front. 

   The solutions are a set of two outputs as we have two objective. 

This algorithm is taken from [22] 

The algorithm is below:   

 

FIGURE VI.3   reources for MOACO psuedocode  
 

The first part of this algorithm is the initialization of parameters such as the pheromone 

matrices, the heuristic matrices, alpha (the coeficient of pheromone value concentration), 

Beta (the coeficient of heuristic value information), number of iterations, number of ants we 

use in a single colony, number of colonies, the weight for each objective , number of objetives  
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Figure VI.4  prototypes of MOACO parameters  
 

The second part is the part of algorithm procees which contains of updating pheromones, selection 

the next city for each ant by the probability ,local search , pareto dominance selection , selection 

solutions generated by ants, selection the best solutions  

 

Figure VI.5  prototypes of MOACO process 
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Figure VI.6  prototypes of  MOACO process 
 

 

Figure VI.7 prototypes of  MOACO process 
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Figure VI.8  prototypes of  MOACO process 

 

 

Figure VI.9 prototypes of  MOACO process 
 

 

Figure VI.10  prototypes of end MOACO process and visualize solutions  
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   The solutions of MOACO is a set of solutions because we are in multi objective problem, we 

will pass this solutions to dominance check algorithm to get the non dominated solutions. 

 

VI.2.3   Dominance check algorithm 

     This algorithm provide the non dominated solutions and identify pareto front  

   The algorithm is below: 

 

 

FIGURE  VI.11 domiance check algorithm [21] 
  

 

The results of MOTSP is visualized in the objective space by the pareto front (Figure VI.12) 

 

 

Figure VI.12 parto front in MOP 
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VI.3   Conclusion 

   In this chapter we discussed the execution steps , unfortunately because of errors in 

compilation we didn’t get the results, this research have been studied by many researchers and 

they get good results when applying MOACO for multi objective Travelling salesmen problem.  
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General Conclusion  

 

   In this work, we are exploring the concepts of optimization and combinatorial 

optimization. We are discussing various approaches to solving combinatorial 

optimization problems, with a particular focus on approximate methods. 

Additionally, we are delving into multi-objective optimization and its practical 

applications, as well as the utilization of metaheuristics for solving multi-objective 

problems. The ant colony optimization algorithm is being introduced and its role 

in solving optimization problems is being explained. Furthermore, we are 

examining the MOACO algorithm and one of its variants, PACO, which are 

metaheuristic approaches for tackling combinatorial optimization with multiple 

objectives. 

The PACO algorithm for the multi-objective TSP is being presented in this work. 

Previous studies have confirmed the quality of the solutions obtained using this 

algorithm. Unfortunately, in our research, we encountered errors while trying to 

compile and implement the algorithm. Successful implementation requires a 

coding background to adjust the parameters of the pseudocode, as well as a 

background in operational research to fully comprehend the research findings. 

   Future research is likely to focus on the pheromone update and use of 

historical data , the PACO algorithm is expected to be used in variety of future 

projects, Including :  

-  PACO combined with local search methods to improve the quality of 

solutions. 
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