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Introduction

In general, a dynamical system is everything changes over time, in mathematics is the formal-

ization of the general scientiVc concept of a deterministic process. The future and past states of

many physical, chemical, biological, ecological, economical, and even social systems can be predicted

to a certain extent by knowing their present state and the laws governing their evolution. On the

condition that these laws do not change in time, the behavior of such a system could be considered

as completely deVned by its initial condition. Thus, the notion of a dynamical system includes a set

of its possible situations (state space) and a law of the evolution of the state in time.

Modelling dynamical systems by ordinary diUerential equations has a long history, see for in-

stance [1]. Over the last hundred years, many techniques have been developed for the solution of

ordinary diUerential equations but most of the non linear diUerential equations cannot be solved by

the calculus methods we know at present. The qualitative theory of diUerential equations is being

used to examine diUerential equations whose explicit solutions cannot be determined.These tools

are originated by Henri Poincaré in his work on diUerential equations at the end of the nineteenth

century [30, 31].
In this thesis, we use the qualitative theory of diUerential equations to study a diUerential system

in two-dimensional and we treat the most important solution of diUerential equations which is the

limit cycle introduced by H. Poincaré [31] and reported by his work the most sought solutions in the

modeling of physical systems in the plane.

Our Vrst aim in this thesis is to study the integrability of ordinary diUerential equations or simply

diUerential systems in two real variables

ẋ = P (x, y), ẏ = Q(x, y),

where P andQ are polynomials of degree two. The second aim is to determine the number of limit

cycles of the piecewise diUerential system of the form

 ẋ = f1(x, y),
ẏ = f2(x, y),

H(x, y) > 0, and

 ẋ = g1(x, y),
ẏ = g2(x, y),

H(x, y) < 0,
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List of Figures

separated by Σ = {(x, y) ∈ R2/H(x, y) = 0}.

Now, we describe the structure of this thesis which is divided into three chapters, in the Vrst one

we present the necessary deVnitions, lemmas and theorems used in our study as Vxed points and

their nature, Hartman-Grobman theorem, Poincaré map, piecewise diUerential system, invariant,

Vrst integral..., (see [22, 23]).
In chapter 2, we start to present our work by classifying quadratic diUerential systems having a

special invariant of the form ax2 +bxy+cy2 +dx+ey+c1t, we prove that there are 21 diUerent

families of quadratic systems having invariants of this form. As far as we know this is the Vrst time

that quadratic diUerential systems having an invariant diUerent from a Darboux invariant have been

classiVed. In the second part of this chapter, we study the limit cycles of piecewise planar diUerential

systems formed by quadratic systems that have the Vrst integral of the form ax2 + bxy + cy2

and linear center. We prove that piecewise systems have a continuum of periodic orbits, so no limit

cycles.

In chapter 3, we tackle the number of limit cycles of the piecewise planar diUerential system

formed by the quadratic or cubic systems with uniform isochronous center and linear center

separated the straight-line x = 0 by treating the two cases continuous and discontinuous. We prove

that piecewise systems have at most one limit cycle for discontinuous piecewise systems, we give an

example for the quadratic case and we show that no limit cycles for continuous piecewise systems.
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Chapter 1

Preliminaries

In this chapter, we give some notations and deVnitions of the geometric theory of integrability of

planar diUerential system, and lemmas that are used along of the thesis.

By deVnition a planar diUerential system is:

 ẋ = P (x(t), y(t)),
ẏ = Q(x(t), y(t)),

(1.1)

be a two dimensional (real) diUerential systems where the dependent variables x and y are real,

P and Q are Cr functions from an open subset U of R2 in R. As usual we denote the vector Veld

associated to diUerential system as:

χ = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

If P and Q are polynomials then system (1) is called polynomial diUerential system, we denote by

m = max(deg(P ), deg(Q)) the degree of the polynomial system, and we always assume that

the polynomials P and Q are relatively prime in the ring of complex polynomials in the variables x

and y.

1.1 Vector Veld

DeVnition 1.1. We call vector Veld a region of the plane in which exists in any point a vector ~V (M, t).
Suppose that we have a C1 vector Veld in Ω ⊂ R2, that is to say the application:

6



1.2. Phase portrait

M:

x
y

 7−→ ~V (M) =

F1(x, y)
F2(x, y)

 ,
where F1, F2 are C1 in Ω.

We consider the vector Veld χ associated to the system (1.1)

~dM

dt
= ~V ⇔

 ẋ = P (x, y),
ẏ = Q(x, y),

which means that system (1.1) is equivalent to the vector Veld χ(P,Q), we can also write:

χ = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

1.2 Phase portrait

DeVnition 1.2. A phase portrait is a geometric representation of the trajectories of a dynamic system in

phase space; to each set of initial conditions corresponds a curve or a point.

1.2.1 Fixed point

DeVnition 1.3. Let ẋ = f(x) be a diUerential system, with f of class C1 of E = Rn in it self, x0 is a

Vxed point (also called equilibrium point, stationary point, critical point ), if and only if f(x0) = 0. A
regular point x1 if it is not a Vxed point i.e., f(x1) , 0.

DeVnition 1.4. We say that the point (x∗; y∗) is a Vxed point of the system (1.1), if it is a solution of

the following algebraic system  P (x, y) = 0,
Q(x, y) = 0.

1.2.2 Stability of Vxed point

DeVnition 1.5. We say that (x∗, y∗) is stable if and only if

∀ε > 0, ∃η > 0, ‖ (x, y)− (x∗, y∗) ‖ < δ ⇒∀t > 0, ‖x(t)− x∗‖ < ε.

The Vxed point (x∗, y∗) is asymptotically stable if and only if is stable and limt−→∞ ‖x(t)−x∗‖ = 0.

7



1.2. Phase portrait

1.2.3 ClassiVcation of Vxed point

The Wow of (1.1) in the neighbourhood of a Vxed point (x∗, y∗) is classiVed according to the

eigenvalues of the matrixAχ((x∗, y∗)) its determinant, as well as its trace. The eigenvalues ofAχ

are solutions of the characteristic equation

λ2 − tr(Aχ)λ+ det(Aχ) = 0,

with

tr(Aχ) = λ1 + λ2 and det(Aχ) = λ1λ2.

The nature of eigenvalues depends or the sign of the discriminant

∆ = (tr(Aχ))2 − 4det(Aχ).

Three cases arise.

cas 1: ∆ = 0. We then have λ1 = λ2 = λ, that is to say

det(Aχ) = λ2 > 0 and tr(Aχ) = 2λ.

Therefore, if the trace is positive λ > 0, we have an unstable star node, if the trace is negative

λ < 0, we have a stable star.

cas 2: ∆ > 0. We then have two distinct real eigenvalues, so:

• det(Aχ) < 0, λ1 and λ2 are of opposite sign, the origin is a saddle.

• det(Aχ) > 0 and tr(Aχ) > 0, λ1, λ2 > 0, the origin is an unstable node.

• det(Aχ) > 0 and tr(Aχ) < 0, λ1, λ2 < 0, the originis an stable node.

cas 3: ∆ < 0. We then have two conjugate complex eigenvalues λ1,2 = α ± iβ, so we get

det(Aχ) = α2 + β2 > 0 and tr(Aχ) = 2α.

• tr(Aχ) < 0 the origin is a stable spiral.

• tr(Aχ) > 0 the origin is a unstable spiral.

• tr(Aχ) = 0 the origin is a centre.
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1.3. Periodic orbits

Figure 1.1: ClassiVcation of phase portraits in the (detA, trA).

1.3 Periodic orbits

DeVnition 1.6. We call periodic orbit of (1.1), any solution (x(t), y(t)) for which there exists a real

T > 0 such that:

∀t ∈ R, x(t+ T ) = x(t) and y(t+ T ) = y(t).

• The samallest number T > 0 which is suitable, is then called period of this solution.

• To any periodic solution corresponds a closed orbit in phase space.

1.4 Hartman-Grobman theorem

The Hartman-Grobman Theorem shows that near a hyperbolic Vxed point x0, the non linear

system

ẋ = f(x) (1.2)

has the same qualitative structure as the linear system

ẋ = A(x) (1.3)

9



1.5. Limit cycle

with A = Df(x0): Throughout this section we shall assume that the Vxed point x0 has been

translated to the origin.

DeVnition 1.7. (Topologically equivalent) Two autonomous systems of diUerential equations are said

to be topologically equivalent in a neighbourhoodNδ(0) or have the same qualitative structure near

the origin if there is a homeomorphismH mapping an open U containing the origin onto an open set

V containing the origin which map trajectories of the Vrst system in U to the second one in V and

preserves their orientation by time, for more details see [29].

Theorem 1.1. Let E be an open sub set of Rn containing the origin, let f ∈ C1(E), and φt be the
Wow of the non linear system (1.2). Suppose that the origin is an equilibrium point of (1.2) which

mean f(0) = 0 and that the matrixDf(0) has no eigenvalue with zero real part. Then there exists

H : U −→ V Homomorphism such that for all x0 ∈ U , there is an open interval I0 ⊂ R containing

zero such that for all x0 ∈ U and t ∈ I0

H ◦ φ(x0) = eAtH(x0);

i.e.,H maps trajectories of (1.2) near the origin onto trajectories of (1.3) near the origin and preserves

the parametrization by time.

1.5 Limit cycle

DeVnition 1.8. A limit cycle is an isolated closed trajectory ("isolated" means that neighbouring

trajectories are not closed).

DeVnition 1.9. We call limit cycle ω -limit a periodic orbit γ which is the limit set of at least one point

not belonging in γ, one calls cycle α - limit of the mirror system ẋ = f(x) .

Example 1.1. A simple limit cycle consider

 ṙ = r(1− r2) , r > 0
θ̇ = 1,

r = 0 is an unstable Vxed point and r = 1 is a periodic orbit, hence all trajectories in the phase plane

(except r = 0) approach to the unit circle r = 1 monotonically.
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1.5. Limit cycle

Figure 1.2: Limit cycle.

1.5.1 ClassiVcation of limit cycles

• Stable limit cycles i.e., all trajectories in the vicinity of the limit cycle converging to it as

t −→∞ .

• Unstable limit cycles i.e., all trajectories in the vicinity of the limit cycle diverging from it as

t −→∞.

• Semi-stable limit cycles i.e., some of the trajectories in the vicinity converging to the limit

cycle while others diverging from it as t −→∞ .

The most important kind of limit cycle is the stable limit cycle, where nearby curves spiral towards

Γ on both sides.

Figure 1.3: ClassiVcation of limit cycles
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1.6. The Poincaré map

1.6 The Poincaré map

Probably the most basic tool for studying the stability and bifurcation of the periodic orbits is the

Poincaré map. The idea of the Poincaré map when Γ is a periodic orbit of the system (1.2) through
x0, with Σ is a hyperplane perpendicular to Γ at x0, then for any point x ∈ Σ suXciently near

x0 the solution of (1.2) through x at t = 0, Φt(x), will cross Σ again at P (x) near x0 ; cf.Figure

(1.2), the mapping x→ P (x) is called the Poincaré map. The Poincaré map can also be deVned

when Σ is a smooth surface.

P(x)

x

x0

Figure 1.4: The Poincaré map.

Theorem 1.2 (The existence and continuity of the Poincaré map and its Vrst derivative). Let E

be an open subset of Rn and let f ∈ C1(E). Suppose that Φt(x0) is a periodic solution of (1.2) of
period T and that the cycle

Γ = {x ∈ Rn | x = Φt(x0), 0 ≤ t ≤ T} ,

is contained in E. Let
∑

be the hyperplane orthogonal to Γ at x0; i.e., let

Σ = {x ∈ Rn | (x− x0) · f(x0) = 0} ,

then ∃δ > 0 and ∃! function τ (x) deVned and continuously diUerentiable for x ∈ Nδ(x0)
such that  τ (x0) = T

Φτ(x)(x) ∈ Σ
for all x ∈ Nδ(x0).

Proof. The proof of this theorem is an immediate application of the implicit function theorem, by the

supposition of

F (t, x) = (Φt(x)− x0) · f(x0), for a given x0 ∈ Γ ⊂ E.

for more details see [29].
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1.6. The Poincaré map

DeVnition 1.10 (The Poincaré map). Let Γ, Σ, δ, and τ (x) be deVned as in theorem (1.1). Then, for
x ∈ Nδ(x0) ∩ Σ, the function

P (x) = Φτ(x),

is called the Poincaré map for Γ at x0.

Remark 1.1. It follows from theorem (1.1) that P ∈ C1(U) where U = Nδ(x0) ∩ Σ.

1. If fanalytic in E ⇒ P analytic in U ,

2. Fixed points of the Poincaré map, i.e.,(points x ∈ Σ : P (x) = x) are periodic orbits of (1.2),

3. By considering the system (1.2) with t → −t, we can show that the Poincaré map P has a

C1-inverse, P−1(x) = Φ−τ(x)(x). Thus, P is a diUeomorphism; i.e., a smooth function with a

smooth inverse.

1.6.1 The Poincaré map of planar systems

Now, we are going to cite some speciVc results for the Poincaré map for planar systems. For

planar systems, if we translate the origin to the point x0 ∈ Σ ∩ Γ. The point 0 ∈ Γ ∩ Σ divide Σ
on two open segments Σ+ ∧Σ− ; cf. Figure (1.1) below. Let s be the signed distance along Σ with

s > 0 for points in Σ+ .

Figure 1.5: The straight line normal Σ to Γ at 0

By theorem (1.3), the Poincaré map P (s) deVned for |s| < δ and we have P (0). In order

to see how the stability of the cycle Γ is determined by P ′(0), let us introduce the displacement

function, which deVned for all |s| < δ by

d(s) = P (s)− s. (1.4)
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1.7. Integrability

with P (0) = 0 and d′(s) = P ′(s) − 1. From the mean value theorem, for |s| < δ, ∃ Σ ∈
[0, s] such that : d(s) = d′(Σ)s. Since d′(s) is continuous, the sign of d′(s) will be the

same as d′(0) for |s| suXciently small as long as d′(0) , 0. Thus, if d′(0) < 0 implie that

d(s) < 0 for s > 0 and d(s) > 0 for s < 0 and that s < 0 in Σ−; i.e., the cycle Γ is a stable

limit cycle Cf. Figure (1.1). Similarly, if d′(0) > 0 then Γ is an unstable limit cycle. So, we have

the corresponding results that if P (0) = 0 and P ′(0) < 1, then Γ is stable limit cycle and if

P (0) = 0 and P ′(0) > 1, then Γ is an unstable limit cycle.

1.7 Integrability

There is no general approach to obtain an explicit form for the solution of a system, furthermore, for

most system it can be shown that such forms do not exist, therefore, we lower our expectations and

attempt to identify global invariants.

1.7.1 Global invariant

DeVnition 1.11. let Ω be an open and dense subset of R2, an invariant of system (1.1) in Ω is a

non-contant C1 function I in the variable x, y and t such that I(x(t), y(t), t) is constant on all

solution curves (x(t), y(t)) of system (1) contained in Ω, i,e:

P
∂I

∂x
+Q

∂I

ðy
+
∂I

∂t
= 0.

1.7.2 First integral

DeVnition 1.12. When I is independent of t we say I is Vrst integral i,e I(x, y) = C on solution:

P
∂I

∂x
+Q

∂I

∂y
= 0

In the case of a two -dimensional system, having one Vrst integral is enough to obtain a global picture of

the solution in the (x, y) phase space. Moreover, if I is time-independent, then the solution curves lie on

the level set I(x, y) = c. Furthermore I completely characterizes the phase portrait.
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1.8. Piecewise linear diUerential system

1.7.3 Invariant algbraic curve

DeVnition 1.13. For f ∈ C[x, y], the curve f(x, y) = 0 is an invariant algebraic curve of system (1)

if there existsK ∈ C[x, y], such that:

P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the real invariant algebraic curve f = 0.

1.8 Piecewise linear diUerential system

DeVnition 1.14 (Piecewise linear system). A diUerential system deVned on an open region S ⊆ R2 is

said to be a piecewise linear diUerential system (PWLS) on S if there exists a set of 3-tuplesm (Ai, bi, Si)
such thatAi is a 2×2 real matrix, bi ∈ Rn, Si ⊆ S is an open set in Rn satisfying that Si∩Sj = φ

if i , j and ∪i∈I Cl(Si) = S andAix+ bi is the vector Veld deVned by the system when x ∈ Si.
As usual Cl(Si) denotes the closure of Si.

Example 1.2.

ẋ = |x| =


x, x > 0,

−x, x < 0,

is (PWLS): {(Ai, bi, si)} = {(1, 0, s1), (1, 0, s2)} such that:

S1 = {x ∈ R/x > 0} ,

S2 = {x ∈ R/x < 0} ,

Σ = {x ∈ R/x = 0} ,

s1
⋂
s2 = φ, s̄1 ∪ s̄2 = {x ∈ R/x ≥ 0} ∪ {x ∈ R/x 6 0} = R.

Thus the vector Veld deVned by a PWLS is a linear map on each of the disjoint regions Si, but is not

globally linear on the whole S.

1.9 Linearisation method

From a given planar diUerential system
.
x= f(x) with a diUerentiable vector Veld f can construct

a set of diUerent PWLS. For instance, let us suppose that p1 and p2 are two zeros of f , and let k be a

vector in R2 such that: kTp1 < 0, and kTp2 > 0. The straight line Σ = {x ∈ R2 : kTx = 0}
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1.10. Continuous and discontinuous piecewise linear diUerential system

divides R2 into the two open regions: S1 = {x ∈ R2 : kTx < 0} and S2 = {x ∈ R2 : kTx >
0}.
Denoting by Df(pi) the Jacobian matrix of the vector Veld f at the point pi, it follows that

{((Df(pi),−Df(pi)pi, Si))}i=1,2 is a piecewise diUerential system on the whole R2.

1.10 Continuous and discontinuous piecewise linear diUerential

system

DeVnition 1.15. Let Σij = ∂s̄i ∩ ∂s̄j be the common boundary of the regions s̄i and s̄j . If

Aip + bi = Ajp + bj for every p ∈ Σij , is said to be continuous, otherwise the piecewise linear

diUerential system is said to be discontinuous. In discontinuous piecewise linear diUerential system, two

diUerent vector ẋ, namely fi(x) and fj(x), can be associated to a point x ∈ Σij . If the transversal

components of fi(x) and fj(x) have the same sign, the orbit crosses the boundary and has, at that

point, a discontinuity in its tangent vector. On the contrary, if the transversal components of fi(x) and
fj(x) are of opposite sign, i.e., if the two vector Velds are "pushing" in opposite directions, the state of

the system is forced to remain on the boundary and slide on it. Although, in principle, motions on the

boundary could be deVned in diUerent ways, the most natural one is Filippov convex method.

1.11 Solution of continuous piecewise linear diUerential system

Since the piecewise linear diUerential system is formed by linear diUerential systems in each region

s̄i, then the solution of linear diUerential system ẋi = Aix+ bi starting at p0 is given by

X(s, p0) = eAisp0

∫ s

0
eAi(s−r)bidr.

Since, for a continuous piecewise linear diUerential system we have Aip + bi = Ajp + bj at

any point of the boundary Σij separating two adjacent regions Si and Sj , then for these systems

the vector Aip + bi is uniquely deVned at any point of the state space and the orbits in region

Si approaching transersely the boundary Σij , cross it and enter into the adjacent region Sj . In

particular if the vector Veld

Ẋ =


f1(X) = A1X + b1, ifH(x) > 0,

f2(X) = A2X + b2, ifH(x) < 0,
(1.5)

with the boundary

Σ = {x ∈ R2 : H(x) = 0},
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1.12. Solution of discontinuous piecewise linear diUerential system

and two regions

S1 = {x ∈ R2 : H(x) > 0}, S2 = {x ∈ R2 : H(x) < 0},

is continuous Let (x1(t); y1(t)) and (x2(t); y2(t)) are solutions of system (1.5) on S1 and

S2 respectively. Then, the trajectory corresponding to the initial condition X0 = (x01, y01)
of the system (1.5) on S1 is crossed the curve H(x) = 0, at the instance t∗ in this case the

initial condition of the second system (on S2 ) is (x02, y02) = (x2(t∗), y2(t∗)). Furthermore, for

continuous piecewise linear diUerential system (1.5), we have if

X(s, p0) = eA1sp0

∫ s

0
eA1(s−r)b1dr,

is a solution of linear diUerential system piecewise linear diUerential system starting at p0 in S1;

then there exist a point q = (x1; y1) ∈ Σ and the Vnite time t∗ such that the orbit of linear

diUerential system in S1 starting at the point p is crossed the curveH(x) = 0, at the instance t∗ at
the point

q0 = (x1, y1) = eA1t
∗
p0

∫ t∗

0
eA1(t∗−r)b1dr,

by the continuity of piecewise linear diUerential system, the solution of this system in S2 is

X(s, q0) = eA2sp0

∫ s

0
eA2(s−r)b2dr.

1.12 Solution of discontinuous piecewise linear diUerential sys-

tem

We consider planar Filippov systems and assume, for simplicity, that there are only two regions Si,

ẋ =


f1(x), x ∈ S1,

f2(x), x ∈ S2.
(1.6)

Moreover, the discontinuity boundary separating these two regions is described as

Σ = {x ∈ R2 : H(x) = 0},

where H is a smooth scalar function with non vanishing gradient∇H(x) = ( ∂H
∂Xi

)T on Σ , and

S1 = {x ∈ R2 : H(x) > 0},

S2 = {x ∈ R2 : H(x) < 0}.
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1.13. Filippov method

The boundary is either closed or goes to inVnity in both directions and f1 , f2 on Σ.

1.12.1 sliding solutions

The sliding solutions on Σ obtained with the well-known Filippov convex method.

Let

δ(x) = 〈∇H(x), F1(x)〉〈∇H(x), F2(x)〉,

where 〈..〉 denotes the standard scalar product.

DeVnition 1.16. We deVne the crossing set Σc as

Σc = {x ∈ Σ : δ(x) > 0} ⊂ Σ.

It is the set of all points x ∈ Σ, where the two vectors fi(x) have non trivial normal components of the

same sign. By deVnition, at these points the orbit of (1.6) crosses Σ.
We deVne the sliding set Σs as the complement to Σc in Σ,

Σs = {x ∈ Σ : δ(x) ≤ 0} ⊂ Σ.

Remark 1.2. In general we deVne Escaping region (unstable sliding):

Σes = {x ∈ Σ : 〈∇H(x), f1(x)〉 > 0 and 〈∇H(x), f2(x)〉 < 0}.

Attractive sliding region (stable sliding):

Σas = {x ∈ Σ : 〈∇H(x), f1(x)〉 < 0 and 〈∇H(x), f2(x)〉 > 0}.

Then, the sliding set

Σs = {x ∈ Σ : δ(x) 6 0}
= {x ∈ Σ : 〈∇H(x), f1(x)〉 > 0 and 〈∇H(x), f2(x)〉 < 0}
∪{x ∈ Σ : 〈∇H(x), f1(x)〉 < 0 and 〈∇H(x), f2(x)〉 > 0}
∪{x ∈ Σ : 〈∇H(x), f1(x)〉〈∇H(x), f2(x)〉 = 0}.

1.13 Filippov method

Within the sliding set, the Filippov method can be used to construct solutions, to be considered as

extensions for solutions of (1.6). Such a method consists in deVning a new vector Veld computed

from an adequate convex combination g(x) of the two original vector Velds fi(x) to each non
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1.13. Filippov method

singular sliding point x ∈ Σs, namely

g(x) = λf1(x) + (1− λ)f2(x),

where for each x ∈ Σ the value of λ is selected such that 〈∇H(x), f2(x)− f1(x)〉 , 0 A simple

computation shows that

λ = λ(x) =
〈∇H(x), f2(x)〉

〈∇H(x), f2(x)− f1(x)〉
,

provided the above denominator does not vanish and then, by using the deVnition of Σs, one

concludes that

0 6 λ(x) 6 1.

Therefore, we have a explicit deVnition for the sliding vector Veld, namely

g(x) =
〈∇H(x), f1(x)〉f2(x)− 〈∇H(x), f2(x)〉f1(x)

〈∇H(x), f2(x)− f1(x)〉
. (1.7)

Figure 1.6: Filippov method
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Chapter 2

Integrability of quadratic diUerential systems R2

In this chapter we shall work with polynomial diUerential systems

ẋ = P (x, y), ẏ = Q(x, y), (2.1)

where P andQ are polynomials of degree 2, called simply quadratic systems.

Many natural phenomena in various branches of the sciences are modelized using quadratic systems.

We can Vnd in the literature more than one thousand published papers studying the quadratic

systems.

Let U be an open and dense subset of R2, an invariant of system (1) in U is a non-constant C1

function I : U × R→ R depending on t such that I(x(t), y(t), t) is constant on all the solution

curves (x(t), y(t)) of system (1.6.1) contained in U , i.e.

dI

dt
=
∂I

∂x
P +

∂I

∂x
Q+

∂I

∂t
= 0, (2.2)

for all (x, y) ∈ U .

The objective of this work is to classify all quadratic systems

ẋ = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2,

ẏ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2,
(2.3)

having invariants of the form

I(x, y, t) = ax2 + bxy + cy2 + dx+ ey + c1t, (2.4)

with c1 , 0.

We note that many diUerent classes of quadratic systems have been classiVed as the structurally
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stable, their centers, their isochronous centers, their Hopf bifurcations, their Lotka-Volterra, their

Bernoulli, their Abel, their quadratic-linear, their with a unique Vnite singularity, their having a

polynomial Vrst integral, their having a Hamiltonian Vrst integral, their homogeneous, ..., see [2].
But there are few works on the quadratic systems having invariants, see [5, 23, 24, 26, 27] and all

thiese invariants are Darboux invariants, i.e. invariants of the form f(x, y)est with s ∈ R \ {0}.
As far as we know this is the Vrst time that quadratic systems having an invariant diUerent from a

Darboux invariant are studied.

If the function I(x, y, t) = dx+ ey + ax2 + bxy + cy2 + c1t is an invariant of system (2.3),

we must verify that the equation (2.2). Thus the following polynomial must be the zero polynomial

a0d+ b0e+ c1 + (a1d+ 2aa0 + b1e+ bb0)x+ (a0b+ a2d+ 2b0c+ b2e)y+
(a3d+ 2aa1 + b3e+ bb1)x2 + (a1b+ a4d+ 2aa2 + 2b1c+ b4e+ bb2)xy+
+(a2b+ a5d+ 2b2c+ b5e)y2 + (2aa3 + bb3)x3+
(a3b+ 2aa4 + 2b3c+ bb4)x2y + (a4b+ 2aa5 + 2b4c+ bb5)xy2 + (a5b+ 2b5c)y3.

(2.5)

Therefore we must solve the following algebraic system

a0d+ b0e+ c1 = 0,
a1d+ 2aa0 + b1e+ bb0 = 0,
a0b+ a2d+ 2b0c+ b2e = 0,
a3d+ 2aa1 + b3e+ bb1 = 0,
a1b+ a4d+ 2aa2 + 2b1c+ b4e+ bb2 = 0,
a2b+ a5d+ 2b2c+ b5e = 0,
2aa3 + bb3 = 0,
a3b+ 2aa4 + 2b3c+ bb4 = 0,
a4b+ 2aa5 + 2b4c+ bb5 = 0,
a5b+ 2b5c = 0.

(2.6)

With the help of the Mathematica software we solved this algebraic system.

Then, the quadratic systems (2.3) admitting an invariant of the form (2.4) are one of the following 23
families of quadratic systems ( set of independent solutions with c1 , 0 ):

ẋ = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2,

ẏ = b0 −
d

e
(a1x+ a2y + a3x

2 + a4xy + a5y
2),

I = dx+ ey − (da0 + eb0)t,

(2.7)
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where e , 0. Sets of solutions yield this system are

s1 =
{
b1 = −

d

e
a1, b2 = −

d

e
a2, b3 = −

d

e
a3, b4 = −

d

e
a4, b5 = −

d

e
a5, a = 0,

b = 0, c = 0, c1 = −(da0 + eb0)} ,

s2 =
{
a2 = 0, b1 = −

d

e
a1, b2 = 0, b3 = −

d

e
a3, b4 = −

d

e
a4, b5 = −

d

e
a5,

a = 0, b = 0, c = 0, c1 = −(da0 + eb0)} ,
s3 = {b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c = 0, d = 0,

c1 = −eb0} ,

s4 =
{
a2 = 0, a4 = 0, b1 = −

d

e
a1, b2 = 0, b3 = −

d

e
a3, b4 = 0, b5 = −

d

e
a5,

a = 0, b = 0, c = 0, c1 = −(da0 + eb0)} ,

s5 =
{
a3 = 0, b1 = −

d

e
a1, b2 = −

d

e
a2, b3 = 0, b4 = −

d

e
a4, b5 = −

d

e
a5,

a = 0, b = 0, c = 0, c1 = −(da0 + eb0)} ,

s6 =
{
a2 = 0, a3 = 0, b1 = −

d

e
a1, b2 = 0, b3 = 0, b4 = −

d

e
a4, b5 = −

d

e
a5,

a = 0, b = 0, c = 0, c1 = −(da0 + eb0), }
s7 = {a3 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c = 0,

d = 0, c1 = −eb0} ,

s8 =
{
a1 = 0, a3 = 0, a4 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = −

d

e
a5,

a = 0, b = 0, c = 0, c1 = −(da0 + eb0)} ,
s9 = {b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c = 0, d = 0,

c1 = −eb0} ,
s10 = { a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, a = 0, b = 0, c = 0, e = 0,

c1 = −da0} ,
s14 = {a3 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0,

c = 0, d = 0, c1 = −eb0} ,

s17 =
{
a2 = −

e

d
b2, a3 = 0, a4 = 0, a5 = 0, b1 = −

d

e
a1, b3 = 0, b4 = 0,

b5 = 0, a = 0, b = 0, c = 0, c1 = −(da0 + eb0)} ,
s18 = {a3 = 0, a4 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0,

c = 0, d = 0, c1 = −eb0} ,
s19 = {b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c = 0, d = 0,

c1 = −eb0} .
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ẋ = a0 + a1x+
1
b2

(2bca1 + bea4 − 4cea3)y + a3x
2 + a4xy +

2
b2
c(ba4 − 2ca3)y2,

ẏ =
1

2b2c
((ba1 − ea3)(be− 2cd)− b3a0)−

1
2bc

(b2a1 − bea3 + 2cda3)x+
1
b2

(bea3 + 2cda3 − b2a1 − bda4)y −
2
b
aa3x

2 +
1
b2

((4ac− b2)a3 − 2aba4)xy+
1
b

(2ca3 − ba4)y2,

I = dx+ ey +
b2

4c
x2 + bxy + cy2 −

1
b3

(bd− 2ae)(b2a0 + e(ea3 − ba1))t,
(2.8)

with cb , 0. This system is given by the set of solutions

s11 =
{
a2 =

1
b2

(2bca1 + bea4 − 4cea3), a5 =
2
b2
c(ba4 − 2ca3), b3 = −

b

2c
a3,

b0 =
1

2b2c
((ba1 − ea3)(be− 2cd)− b3a0), b5 =

1
b

(2ca3 − ba4),

b1 = −
1

2bc
(b2a1 − bea3 + 2cda3), b4 = −

b

2c
a4,

a =
b2

4c
, b2 =

1
b2

(bea3 + 2cda3 − b2a1 − bda4),

c1 =
1

2b2c
(be− 2cd)(b2a0 + e(ea3 − ba1))

}
.

ẋ = a0 +
1

b(bd− 2ae)
(db(2aa2 + bb2) + (ea3 − bb2)(bd− 2ae))x+ a2y + a3x

2+

b

2a(2ae− bd)
(2a(2aa2 + bb2) + (2ae− bd)a3)xy −

2aa2 + bb2

2a(bd− 2ae)
b2y2,

ẏ = −
2
b2
a(ba0 + a2d+ eb2) +

1
b(bd− 2ae)

(4a2(da2 + eb2) + bd2a3 − 2adea3)x+

b2y −
2
b
aa3x

2 +
1

bd− 2ae
(2a(2aa2 + bb2)− (bd− 2ae)a3)xy +

2aa2 + bb2

bd− 2ae
by2,

I = dx+ ey + ax2 + bxy +
b2

4a
y2 −

1
b2

((bd− 2ae)ba0 − 2ae(da2 + eb2))t,
(2.9)

where ab(bd− 2ae) , 0. This system is given by the sets
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s12 =
{
a1 =

1
b2d− 2abe

(bdea3 + 2abda2 + 2abeb2 − 2ae2a3), b3 = −
2
b
aa3,

a4 =
b

2a(2ae− bd)
(4a2a2 − bda3 + 2a(ea3 + bb2)),

b0 = −
2
b2

(ba0 + da2 + eb2)a, b4 =
1

2ae− bd
(bda3 − 4a2a2 − 2a(ea3 + bb2)),

b1 =
1

b(bd− 2ae)
(−4a2(da2 + eb2) + 2adea3 − bd2a3),

a5 =
b2

2a(2ae− bd)
(2aa2 + bb2), c =

b2

4a
, b5 =

b

bd− 2ae
(2aa2 + bb2),

c1 =
1
b2

((2ae− bd)ba0 + 2(da2 + eb2)ae)
}
.

ẋ = a0 + a1x+ a2y +
2
e
ca1xy −

2
d
cb2y

2,

ẏ = −
1
2c

(a2d+ b2e)−
d

e
a1x+ b2y,

I = dx+ ey + cy2 +
1
2c

(e(da2 + eb2)− 2cda0)t,

(2.10)

with ced , 0. Sets of solutions provide this system are

s13 =
{
a3 = 0, a4 =

2
e
ca1, a5 = −

2
d
cb2, b1 = −

d

e
a1, b0 = −

1
2c

(da2 + eb2),

b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c1 =
e

2c
(da2 + eb2)− da0

}
,

s15 =
{
a1 = 0, a3 = 0, a4 = 0, a5 = −

2
d
b2c, b0 = −

1
2c

(da2 + eb2),

b1 = −
d

e
a1, b3 = 0, b4 = 0, b5 = 0, a = 0, b = 0, c1 = −(da0 + eb0)

}
,

s16 =
{
a3 = 0, a4 =

2
e
ca1, a5 = 0, b0 = −

d

2c
a2, b2 = 0, b1 = −

d

e
a1, b3 = 0,

b4 = 0, b5 = 0, a = 0, b = 0, c1 =
d

2c
ea2 − da0

}
,

s32 =
{
a1 = 0, a3 = 0, a4 = 0, a5 = 0, b0 = −

d

2c
a2, b1 = 0, b2 = 0, b3 = 0,

b4 = 0, b5 = 0, a = 0, b = 0, c1 = da0 −
d

2c
ea2,

}
.

ẋ = a0 −
e

2a
b3x+ a2y,

ẏ = b0 −
1

2aea2
(4(aa0)2 + e2b2b3)x+ b2y −

2
e
aa2xy + b3x

2,

I = −
e

a2
b2x+ ey + ax2 + (

e

a2
a0b2 − eb0)t,

(2.11)
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where a2ae , 0. This system is given by the set

s20 =
{
a1 = −

e

2a
b3, a3 = 0, a4 = 0, a5 = 0, b1 = −

1
2aea2

(e2b3b2 + 4a2a2a0),

b4 = −
2
e
aa2, b5 = 0, b = 0, c = 0, d = −

e

a2
b2, c1 =

e

a2
a0b2 − eb0

}
.

ẋ = a0 −
e

2a
b3x,

ẏ = b0 +
1

2ae
(deb3 − 4a2a0)x+ b3x

2,

I = dx+ ey + ax2 − (da0 + eb0)t,

(2.12)

with ae , 0. The set give this system is

s21 =
{
a1 = −

e

2a
b3, a2 = 0, a3 = 0, a4 = 0, a5 = 0, b1 =

1
2ae

(db3 − 4a2a0),

b2 = 0, b4 = 0, b5 = 0, c1 = −(da0 + eb0)} .

ẋ = a0 +
1

bd− 2ae
(2a(da2 + eb2)x+ (bd− 2ae)a2y − b(2aa2 + bb2)xy−

b2

2a
(2aa2 + bb2)y2),

ẏ = −
2
b2

(ba0 + da2 + eb2)a−
1

bd− 2ae
(
4
b
a2(da2 + eb2)x+ (bd− 2ae)b2y+

2a(2aa2 + bb2)xy + b(2aa2 + bb2)y2),

I = dx+ ey + ax2 + bxy +
b2

4a
y2 +

1
b2

(b(2ae− bd)a0 + 2ae(da2 + eb2))t,
(2.13)

where ab(bd− 2ae) , 0. This system is given by the sets

s22 =
{
a1 =

2a
bd− 2ae

(da2 + eb2), a3 = 0, a4 = −
b

bd− 2ae
(2aa2 + bb2),

a5 = −
b2

2a(bd− 2ae)
(2aa2 + bb2), b0 = −

2
b2

(ba0 + da2 + eb2)a, b3 = 0,

b1 = −
4

b(bd− 2ae)
a2(da2 + eb2), b4 =

2
bd− 2ae

a(2aa2 + bb2), c =
b2

4a
,

b5 =
b

bd− 2ae
(2aa2 + bb2), c1 =

1
b2

(b(2ae− bd)a0 + 2ae(da2 + eb2))
}
,

s23 =
{
a1 =

2
b
aa2, a3 = 0, a4 = 0, a5 = 0, b0 =

1
b3

(4a2ea2 − 2ab(ba0 + da2)),

b1 = −
4
b2
a2a2, b2 = −

2
b
aa2, b3 = 0, b4 = 0, c =

b2

4a
, b5 = 0,

c1 =
1
b3

(2ae− bd)(b2a0 − 2aea2)
}
.
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ẋ = a0 +
2
b
aa2x+ a2y + a3x

2 +
1

2ad
(bda3 − 4a2a2 − 2bab2)xy−

b

2ad
(2aa2 + bb2)y2,

ẏ = −
2
b2

(ba0 + da2)a−
1
b2

(4a2a2 + bda3)x+ b2y −
2
b
aa3x

2+
1
bd

(4a2a2 − bda3 + 2abb2)xy +
1
d

(2aa2 + bb2)y2,

I = dx+ ax2 + bxy +
b2

4a
y2 − da0t,

(2.14)

with bad , 0. The set provide this system is

s24 =
{
a1 =

2
b
aa2, a4 =

1
2ad

(ba3 − 2aa2 − bb2), a5 = −
b

2ad
(2aa2 + bb2),

b0 = −
2
b2

(ba0 + da2)a, b1 = −
1
b2

(4a2a2 + bda3), b3 = −
2
b
aa3,

b4 =
1
bd

(4a2a2 + 2abb2 − bda3), b5 =
1
d

(2aa2 + bb2), c =
b2

4a
, e = 0,

c1 = −da0} .

ẋ = a0 +
2
b
aa2x+ a2y + a3x

2 +
b

2a
a3xy,

ẏ = −
2
b2

(ba0 + da2)a−
1
b2

(4a2a2 + bda3)x−
2
b
aa2y −

2
b
aa3x

2 − a3xy,

I = dx+ ax2 + bxy +
b2

4a
y2 − da0t,

(2.15)

where ba , 0. This system is given by the sets

s25 =
{
a1 =

2
b
aa2, a4 =

b

2a
a3, a5 = 0, b0 = −

2
b2

(ba0 + da2)a,

b1 = −
1
b2

(4a2a2 + bda3), b2 = −
2
b
aa2, b3 = −

2
b
aa3, b4 = −a3, b5 = 0,

c =
b2

4a
, e = 0, c1 = −da0,

}
,

s26 =
{
a1 =

2
b
aa2, a3 = 0, a4 = 0, a5 = 0, b0 = −

2
b2

(ba0 + da2)a,

b1 = −
4
b2
a2a2, b2 = −

2
b
aa2, b3 = 0, b4 = 0, b5 = 0, c =

b2

4a
, e = 0,

c1 = −da0} .
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ẋ = a0 +
b

2c
a2x+ a2y + a3x

2 + a4xy +
2
b2

(ba4 − 2ca3)cy2,

ẏ = −
1
2c

((ba0 + da2) +
1

2bc
(b3a2 + 4c2da3)x+

1
b2

(2(ba4 − 2ca3)dc+ b3a2)y+

ba3x
2 + ba4xy) +

1
b

(2ca3 − ba4)y2,

I = dx+
b2

4c
x2 + bxy + cy2 − da0t,

(2.16)

where cb , 0. This system is given by the sets

s27 =
{
a1 =

b

2c
a2, a5 =

2
b2

(ba4 − 2ca3)c, b0 = −
1
2c

(ba0 + da2),

b1 = −
1

4c2
(b3a2 + 4c2da3), b3 = −

b

2c
a3, b4 = −

b

2c
a4, b5 =

2
b
ca3 − a4,

b2 = −
d

b2
(ba4 − 2ca3)−

b

2c
a2, a =

b2

4c
, e = 0, c1 = −da0

}
,

s28 =
{
a1 = 0, a2 = 0, a5 =

2
b2

(ba4 − 2ca3)c, b0 = −
b

2c
a0, b1 = −

d

b
a3,

b2 = −
d

b2
(ba4 − 2ca3), b3 = −

b

2c
a3, b4 = −

b

2c
a4, b5 =

2
b
ca3 − a4,

a =
b2

4c
, e = 0, c1 = −da0

}
.

ẋ = a0 + a2y + a4xy + a5y
2,

ẏ = −
d

2c
(a2 + a4x+ a5y),

I = dx+ cy2 − da0t,

(2.17)

where c , 0. This system is given by the sets

s29 =
{
a1 = 0, a3 = 0, b0 = −

d

2c
a2, b1 = −

d

2c
a4, b2 = −

d

2c
a5, b3 = 0,

b4 = 0, b5 = 0, a = 0, b = 0, e = 0, c1 = −da0} ,
s30 = {a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, b3 = 0, b4 = 0, b5 = 0,

a = 0, b = 0, c = 0, e = 0, c1 = −da0} .

ẋ = a0 + a2y +
b

e
a2xy +

b2

2e
a2y

2,

ẏ = −
2
b
aa0 −

a2

e
(dy + 2axy + by2),

I = dx+ ey + ax2 + bxy +
b2

4a
y2 −

a0

b
(db− 2ae)t,

(2.18)
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where eab , 0. The sets of solutions provide this system are

s33 =
{
a1 = 0, a3 = 0, a4 =

b

e
a2, a5 =

b2

2ae
a2, b0 = −

2
b
aa0, b1 = 0, b3 = 0,

b2 = −
d

e
a2, b4 = −

2
e
aa2, b5 = −

b

e
a2, c =

b2

4a
, c1 = a0(

2
b
ae− d)

}
,

s34 =
{
a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, b0 = −

2
b
aa0, b1 = 0, b2 = 0,

b3 = 0, b4 = 0, b5 = 0, c =
b2

4a
, c1 = a0(

2
b
ae− d)

}
,

s31 =
{
a1 = 0, a3 = 0, a4 = 0, a5 = −

2
d
cb2, b1 = 0, b3 = 0, b4 = 0, b5 = 0,

a = 0, b = 0, e = −
1
b2

(da2 + 2cb0), c1 =
b0

b2
(da2 + 2cb0)− da0

}
.

ẋ = a0 −
b

2ad
b2(2axy + by2),

ẏ = −
2
b
aa0 +

b2

d
(dy + 2axy + by2),

I = dx+ ax2 + bxy +
b2

4a
y2 − da0t,

(2.19)

where dab , 0. The set of solutions provide this system are

s35 =
{
a1 = 0, a2 = 0, a3 = 0, a4 = −

b

d
b2, a5 = −

b2

2ad
b2, b0 = −

2
b
aa0,

b1 = 0, b3 = 0, b4 =
2
d
ab2, b5 =

b

d
b2, c =

b2

4a
, e = 0, c1 = −da0

}
.

ẋ = a0 +
2
b
aa2x+ a2y −

1
d

(2aa2 + bb2)xy −
b

2ad
(2aa2 + bb2)y2,

ẏ = −
2
b2

(ba0 + da2)a−
4
b2
a2a2x+

2
bd

(2aa2 + bb2)axy +
1
d

(2aa2 + bb2)y2+

b2y,

I = dx+ ax2 + bxy +
b2

4a
y2 − da0t,

(2.20)

where bda , 0. The sets of solutions provide this system are

s36 =
{
a1 =

2
b
aa2, a3 = 0, a4 = −

1
d

(2aa2 + bb2), a5 = −
b

2ad
(2aa2 + bb2),

b0 = −
2
b2
a(ba0 + da2), b1 = −

4
b2
a2a2, b3 = 0, b4 =

2
bd
a(2aa2 + bb2),

b5 =
1
d

(2aa2 + bb2), e = 0, c =
b2

4a
, c1 = −da0

}
,
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s37 =
{
a1 = 0, a2 = 0, a3 = 0, a4 = −

b

d
b2, a5 = −

b2

2ad
b2, b0 = −

2
b
aa0,

b1 = 0, b3 = 0, b4 =
2
d
ab2, b5 =

b

d
b2, c =

b2

4a
, e = 0, c1 = −da0

}
,

s38 =
{
a1 =

2
b
aa2, a4 = 0, a3 = 0, a5 = 0, b0 = −

2
b2
a(ba0 + da2),

b1 = −
4
b2
a2a2, b2 = −

2
b
aa2, b3 = 0, b4 = 0, b5 = 0, c =

b2

4a
, e = 0,

c1 = −da0} .

ẋ = a0 + a3x
2 +

b

2ad
(da3 − 2ab2)xy −

b2

2ad
b2y

2,

ẏ = −
2
b
aa0 −

d

b
a3x+ b2y −

2
b
aa3x

2 −
1
d

(da3 − 2ab2)xy +
b

d
b2y

2,

I = dx+ ax2 + bxy +
b2

4a
y2 − da0t,

(2.21)

where adb , 0. The sets of solutions provide this system are

s39 =
{
a1 = 0, a2 = 0, a4 =

b

2ad
(da3 − 2ab2), a5 = −

b2

2ad
b2, b0 = −

2
b
aa0,

b1 = −
d

b
a3, b3 = −

2
b
aa3, b4 =

2
d
ab2 − a3, b5 =

b

d
b2, c =

b2

4a
, e = 0,

c1 = −da0} ,

s40 =
{
a1 = 0, a2 = 0, a4 =

b

2a
a3, a5 = 0, b0 = −

2
b
aa0, b2 = 0,

b1 = −
d

b
a3, b3 = −

2
b
aa3, b4 = −a3, b5 = 0, c =

b2

4a
, e = 0, c1 = −da0

}
.

ẋ = a0 + a1x+
2
b
ca1y + a4xy +

2
b
ca4y

2,

ẏ = −
1

2cb
(b2a0 + 2cda1)−

b

2c
a1x−

1
b

(ba1 + da4)y −
b

2c
a4xy − a4y

2,

I = dx+
b2

4c
x2 + bxy + cy2 − da0t,

(2.22)

where bc , 0. This system is given by the set

s41 =
{
a2 =

2
b
ca1, a3 = 0, a5 =

2
b
ca4, b0 = −

1
2cb

(b2a0 + 2cda1), b1 = −
b

2c
a1,

b2 = −
1
b

(ba1 + da4), b3 = 0, b4 = −
b

2c
a4, b5 = −a4, a =

b2

4c
, e = 0,

c1 = −da0} .
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ẋ = a0 + a3x
2 + a4xy +

2
b2

(ba4 − 2ca3)y2,

ẏ = −
b

2c
a0 −

d

b
a3x−

d

b2
(ba4 − 2ca3)y −

b

2c
a3x

2 −
b

2c
a4xy +

1
b

(2ca3 − ba4)y2,

I = dx+
b2

4c
x2 + bxy + cy2 − da0t,

(2.23)

where bc , 0. Set of solutions yield this system are

s42 =
{
a1 = 0, a2 = 0, a5 =

2
b2

(ba4 − 2ca3)c, b0 = −
b

2c
a0, b1 = −

d

b
a3,

b2 = −
d

b2
(ba4 − 2ca3), b3 = −

b

2c
a3, b4 = −

b

2c
a4, b5 =

2
b
ca3 − a4,

a =
b2

4c
, e = 0, c1 = −da0

}
.

ẋ =
bda2

2

b2a2 + 2cda4 + 2bcb2
−

b

2c
a2x+ a2y +

b

4c2d
(b2a2 + 2c(da4 + bb2))x2+

a4xy −
b

d
(ba2 + 2cb2)y2,

ẏ = −
d(b2a2 + c(da4 + bb2))
c(b2a2 + 2c(da4 + bb2))

a2 −
1

2c2
(b2a2 + cda4 + bcb2)x+

b2y −
b2

8c3d
(a2b

2 + 2c(da4 + bb2))x2 −
b

2c
a4xy+

1
2cd

(b2a2 + 2c(da4 + bb2)− 2cda4)y2,

I = dx+
b2

4c
x2 + bxy + cy2 −

bd2a2
2

b2a2 + 2cda4 + 2bcb2
t,

(2.24)

where cd(b2a2 + 2cda4 + 2bcb2) , 0. Set of solutions yield this system are

s43 =
{
a0 =

bda2
2

b2a2 + 2c(da4 + bb2)
, a3 =

b

4c2d
(b2a2 + 2c(da4 + bb2)),

a1 = −
b

2c
a2, a5 = −

1
d

(ba2 + 2cb2), b0 = d(
a2

2c
−

2aa2
2

b2a2 + 2c(da4 + bb2)
),

b1 =
1
2c

(2aa2 −
1
2c

(b2a2 + 2c(da4 + bb2))), a =
b2

4c
, e = 0,

b4 =
b

4c2d
(b2a2 + 2c(da4 + bb2))(

4
b2
ac− 1)−

2
b
aa4, c1 = −da0,

b3 = −
2

4c2d
(b2a2 + 2c(da4 + bb2))a, b5 =

1
2cd

(b2a2 + 2c(da4 + bb2))− a4

}
.
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ẋ = a0 + a4xy +
2
b
ca4y

2,

ẏ = −
b

2c
a0 − a4(

d

b
y +

b

2c
xy + y2),

I = dx+
b2

4c
x2 + bxy + cy2 − da0t,

(2.25)

where bc , 0. This system is given by the sets

s44 =
{
a1 = 0, a2 = 0, a3 = 0, a5 =

2
b
ca4, b0 = −

b

2c
a0, b1 = 0, b2 = −

d

b
a4,

b3 = 0, b4 = −
b

2c
a4, b5 = −a4, e = 0, a =

b2

4c
, c1 = −da0

}
,

s49 =
{
a1 = 0, a2 = 0, a3 = 0, a5 =

2
b
ca4, b0 = −

b

2c
a0, b1 = 0, b2 = −

d

b
a4,

b3 = 0, b4 = −
b

2c
a4, b5 = −a4, a =

b2

4c
, e = 0, c1 = −da0

}
.

ẋ =
bda2

2

b2a2 + 2cda4 + 2bcb2
−

b

2c
a2x+ a2y +

b

4c2d
(b2a2 + 2c(da4 + bb2))x2+

a4xy −
1
d

(ba2 + 2cb2)y2,

ẏ =
da2(da4 + bb2)

b2a2 + 2c(da4 + bb2)
−

1
2c

(da4 + bb2)x−
b2

8c3d
(b2a2 + 2c(da4 + bb2))x2+

b2y −
b

2c
a4xy +

1
2cd

(b2a2 + 2c(da4 + bb2)− 2cda4)y2,

I = dx+
b2

4c
x2 + bxy + cy2 −

bd2a2
2

b2a2 + 2cda4 + 2bcb2
t,

(2.26)

where cd(b2a2 + 2cda4 + 2bcb2) , 0. The sets of solutions provide this system are

s45 =
{
a0 =

bda2
2

b2a2 + 2dca4 + 2bcb2
, a1 = √a0

√
a3, b4 = (

4
b2
ac− 1)a3 −

2
b
aa4,

a3 =
b

4c2d
(b2a2 + 2c(da4 + bb2)), a5 =

2
b2
c(ba4 − 2ca3), b3 = −

2
b
aa3,

b0 = −
1
b

(d√a0
√
a3 + 2aa0), b1 = −

1
b

(da3 + 2a√a0
√
a3),

b5 =
2
b
ca3 − a4, a =

b2

4c
, e = 0, c1 = −da0

}
,

s46 =
{
a1 = √a0

√
a3, a2 = 0, a3 = 0, a5 =

2
b2

(ba4 − 2ca3)c,

b0 = −
1
b

(d√a0
√
a3 + 2aa0), b1 = −

1
b

(da3 + 2a√a0
√
a3), b2 = −

d

b
a4,

b3 = −
2
b
aa3, b4 =

1
b2

(a3(4ac− b2)− 2aba4), b5 =
2
b
ca3 − a4,

a =
b2

4c
, e = 0, c1 = −da0

}
.
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2.1. Linear centers

ẋ = a0 −
b

d
b2xy −

b2

2ad
b2y

2,

ẏ = −
2
b
aa0 + b2y +

2
d
ab2xy +

b

d
b2y

2,

I = dx+ ax2 + bxy +
b2

4a
y2 − a0dt,

(2.27)

where dab , 0. The sets of solutions provide this system are

s47 =
{
a1 = 0, a2 = 0, a3 = 0, a4 = −

b

d
b2, a5 = −

b2

2ad
b2, b0 = −

2
b
aa0,

b1 = 0, b3 = 0, b4 =
2
d
ab2, b5 =

b

d
b2, c =

b2

4a
, e = 0, c1 = −da0

}
,

s48 =
{
a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, b0 = −

2
b
aa0, b1 = 0,

b2 = 0, b3 = 0, b4 = 0, b5 = 0, c =
b2

4a
, e = 0, c1 = −da0

}
.

2.1 Linear centers

It is well known that the linear diUerential centers are isochronous and that the general expression

of such centers is as follows proved by J. Llibre and M.A. Teixeira work [28].

Lemma 2.1. A linear diUerential system having a center can be in the following form written below

ẋ = −βx−
4β2 + ω2

4α
y + δ, ẏ = αx+ βy + γ, (2.28)

with α > 0 and ω > 0.

The linear diUerential system (2.28) has the Vrst integral

HL(x, y) = 4(αx+ βy)2 + 8α(γx− δy) + ω2y2.

2.1.1 Quadratic system with Vrst integral ax2 + bxy + cy2

The aim is to study the periodic orbits of continuous and discontinuous piecewise diUerential systems

formed by the following quadratic system and the linear isochronous center (2.28).

 ẋ = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2,

ẏ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2,
(2.29)
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2.1. Linear centers

we want to integrate this system by the following quadratic function

H = ax2 + bxy + cy2,

so we must verify the algebraic equation Hxẋ + Hyẏ = 0, which gives the following sets of

solutions

sq1 =
{
a0 = −bb0

2a , a1 = −bb1
2a , a3 = −bb3

2a , a2 = −bb2
2a , a4 = −bb4

2a , a5 = −bb5
2a , c = b2

4a

}
,

sq2 =
{
a0 = 0, b0 = 0, a1 = −b2, b1 = 2ab2

b
, a3 = 2ab5−bb4

b
, b3 = 2(abb4−2a2b5

b2 ,

a2 = −2b2c
b
, a4 = 4ab5c−b2b5−2bb4c

b2 , a5 = −2b5c
b

}
,

sq3 =
{
a0 = 0, b0 = 0, a1 = 0, b1 = −aa2

c
, a3 = 0, b3 = −aa4

c
, b2 = 0, b4 = −aa5

c
,

b5 = 0, b = 0} ,

where abc , 0. Therefore, we have three cases.

Case 1: The set of solutions sq1 gives the following system

 ẋ1 = −bb0
2a −

bb1
2a x−

bb3
2a x

2 − bb2
2a y −

bb4
2a xy −

bb5
2a y

2,

ẏ1 = b0 + b1x+ b3x
2 + b2y + b4xy + b5y

2,
(2.30)

the Vrst integral of this system is

H1 =
b2

4a
y2 + ax2 + bxy,

and the Vrst integral of linear system in this case becomes. To obtain a continuous piecewise

diUerential system formed by this quadratic system and linear center (2.28) we must verify the

following algebraic system

ẋ1 − ẋl = 0 and ẏ1 − ẏl = 0,

the solutions of this algebraic system are

s1 = {b5 = 0, γ = b0, b2 = β, b = 0, a = 0},

s2 =
{
b5 = 0, γ = b0, δ = −bb0

2a , α = a(4β2+ω2)
2bβ , b2 = β

}
,

s3 = {b5 = 0, γ = 0, b0 = 0, b2 = 0, β = 0, a = 0},
s4 = {b5 = 0, γ = 0, b0 = 0, α = 0, b2 = β, a = 0},
s5 = {b5 = 0, γ = b0, b2 = 0, b = 0, β = 0, a = 0},
s6 = {b5 = 0, γ = b0, δ = 0, b2 = β, ω = −2iβ, b = 0},
s7 = {b5 = 0, γ = b0, δ = 0, b2 = β, ω = 2iβ, b = 0},
s8 =

{
b5 = 0, γ = b0, δ = −bb0

2a , b2 = 0, ω = 0, β = 0
}
,

The only solution verify the all conditions (abc , 0 and ω > 0, α > 0) is s2.
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2.1. Linear centers

The system concerning the solution s2 is

 ẋl = −bb0
2a −

bb1
2a x−

bb3
2a x

2 − bb4
2a xy,

ẏl = b0 + b1x+ b3x
2 + b4xy,

(2.31)

and its Vrst integral is

H1 =
b2

4a
y2 + ax2 + bxy.

The Vrst integral of linear system becomes

Hl =
4a (4β2 + ω2)

(
bb0
2a y + b0x

)
bβ

+ 4
(
ax (4β2 + ω2)

2bβ
+ βy

)2

+ y2ω2.

To have periodic orbits we must verify the following algebraic system

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,

then we get

b2(y − Y )(y + Y )
4a

= 0 and
(4β2 + ω2) (y − Y )(2b0 + βy + βY )

β
= 0.

We have three solution y = Y, y = −Y or Y = −2b0+βy
β

, this piecewise system has a continuum

of periodic orbits. So, no limit cycle.

To obtain a periodic orbit discontinuous piecewise diUerential system formed by this quadratic

system and linear center (2.28) we must verify the following algebraic system

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,

then we get

b2(y − Y )(y + Y )
4a

= 0 and (y − Y )
(
−8αδ + 4β2y + yω2 + 4β2Y + ω2Y

)
= 0.

We have three solutions y = Y, y = −Y or Y = −−8αδ+4β2y+yω2

ω2+4β2 , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.

Case 2: The set of solutions sq2 gives the following system

 ẋl = (4ab5c−b2b5−2bb4c)
b2 xy + (2ab5−bb4)

b
x2 − 2b2c

b
y − 2b5c

b
y2 − b2x,

ẏl = 2(abb4−2a2b5)
b2 x2 + 2ab2

b
x+ b2y + b4xy + b5y

2,
(2.32)
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2.1. Linear centers

the Vrst integral of this system is

H1 = ax2 + bxy + cy2,

To get a continuous piecewise diUerential system formed by this quadratic system and linear center

(2.28) we should satisfy the following algebraic system

ẋ1 − ẋl = 0 and ẏ1 − ẏl = 0,

which gives the following solutions

s1 =
{
b5 = 0, γ = 0, δ = 0, c = b(4β2+ω2)

8αβ , b2 = β
}
,

s2 = {b5 = 0, γ = 0, δ = 0, b2 = 0, b = 0, β = 0} ,
s3 = {b5 = 0, γ = 0, δ = 0, b2 = 0, ω = 0, β = 0} ,
s4 = {b5 = 0, γ = 0, δ = 0, c = 0, b2 = β, b = 0} ,
s5 = {b5 = 0, γ = 0, δ = 0, c = 0, b2 = β, ω = −2iβ} ,
s6 = {b5 = 0, γ = 0, δ)0, c = 0, b2 = β, ω = 2iβ} ,
s7 = {b5 = 0, γ = 0, δ = 0, α = 0, b2 = β, b = 0} ,
s8 = {b5 = 0, γ = 0, δ = 0, α = 0, b2 = β, ω = −2iβ} ,
s9 = {b5 = 0, γ = 0, δ = 0, α = 0, b2 = β, ω = 2iβ} ,

the unique solution satisfy the all conditions (abc , 0 and ω > 0, α > 0) is s2. Then the system

provided by this solution is

 ẋ1 = −b4x
2 − βx− ((4β2+ω2))

(4α) y − (b4(4β2+ω2))
(4αβ) xy,

ẏ1 = (2ab4)
bx2+b4

xy + (2aβ)
b
x+ βy,

(2.33)

thus its Vrst integral is

H1 = ax2 + bxy +
b (4β2 + ω2)

8αβ
y2,

the Vrst integral of linear system is

Hl = 4(αx+ βy)2 + y2ω2

To have periodic orbits we must verify the following algebraic system

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,
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2.1. Linear centers

which yield

b (4β2 + ω2) (y − Y )(y + Y )
8αβ

= 0 and
(
4β2 + ω2

)
(y − Y )(y + Y ) = 0.

We have two solutions y = Y, y = −Y , then this piecewise system has a continuum of periodic

orbits. So, no limit cycle.

To preform a periodic orbit of discontinuous piecewise diUerential system formed by this quadratic

system and linear center (2.28) the following algebraic system must be veriVed

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,

thus,

c(y − Y )(y + Y ) and (y − Y )
(
−8αδ + 4β2y + yω2 + 4β2Y + ω2Y

)
.

which gives three solution y = Y, y = −Y or Y = −−8αδ+4β2y+yω2

ω2+4β2 , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.

Case 3: The set of solutions sq3 gives the following system

 ẋ1 = a2y + a4xy + a5y
2,

ẏ1 = −aa2
c
x− aa4

c
x2 − aa5

c
xy,

(2.34)

where the Vrst integral of this system is

H1 = ax2 + cy2,

To obtain a continuous piecewise diUerential system formed by this quadratic system and linear

center (2.28) we must verify the following algebraic system

ẋ1 − ẋl = 0 and ẏ1 − ẏl = 0,

the solutions of this algebraic system are

s1 =
{
a5 = 0, γ = 0, δ = 0, a2 = −ω2

4α , β = 0
}
,

s2 = {a5 = 0, γ = 0, δ = 0, α = 0, ω = 0, β = 0} ,

The only solution verify the all conditions (abc , 0 and ω > 0, α > 0) is s1.
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2.1. Linear centers

This solution gives the following system

 ẋl = a4xy − ω2

4αy,

ẏl = aω2

4αcx−
aa4
c
x2,

(2.35)

and its Vrst integral is

H1 = ax2 + cy2.

the Vrst integral of system linear is

Hl = 4α2x2 + y2ω2.

To have periodic orbits we must verify the following algebraic system

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,

then we get

c(y − Y )(y + Y ) = 0 and ω2(y − Y )(y + Y ) = 0,

we have two solution y = Y, y = −Y , then this piecewise system has a continuum of periodic

orbits. So, no limit cycle.

To obtain a periodic orbit discontinuous piecewise diUerential system formed by this quadratic

system and linear center (2.28) we must verify the following algebraic system

H1(0, y)−H1(0, Y ) = 0 andHl(0, y)−Hl(0, Y ) = 0,

then we get

c(y − Y )(y + Y ) = 0 and (y − Y )
(
−8αδ + 4β2y + yω2 + 4β2Y + ω2Y

)
We have three solution y = Y, y = −Y or Y = −−8αδ+4β2y+yω2

ω2+4β2 , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.
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Chapter 3

Continuous and discontinuous piecewise isochronous

centers

In the theory of limit cycles in planar diUerential systems, most of the Vrst examples were usually

related to practical problems with mechanical and electronic systems, then appeared the periodic

behavior in all Velds of science. So, proving the existence or non-existence of this problem became

one of the most diXcult goal in the qualitative theory of planar diUerential equations.

Piecewise diUerential systems are provided as one of the most remarkable non-smooth dynamical

systems and widely applied in various scientiVc domains of studies such as engineering, electronics,

and physics [7, ?, 14, 20]. Since the 1930s, many books discussed the extension study of limit

cycles [3, 4, 33] due to the applications such as mechanics and electrical circuits. This notion

became important in the continuous and discontinuous piecewise diUerential systems separated by a

straight-line.

We could say that the singular point p ∈ R2 is a center of a planar diUerential system if there is

only a neighborhood U of p where all the orbits of U \ {p} are periodic. When all the periodic

orbits surrounding a center have the same period, this center is called isochronous. p is called a

uniform isochronous center or rigid center, only when the angular velocity is constant. The centers

had been Vrstly studied by Poincaré [30] and Dulac [11], and the notion of isochronocity was reported

by Huygens [16] in 1673.

In our present work, we focused on continuous and discontinuous piecewise diUerential systems

formed by the linear isochronous center and the quadratic or cubic uniform isochronous center

separated by the straight-line x = 0 to study the non-existence and the existence of crossing

periodic orbits and crossing limit cycles deVning the maximum number of crossing limit cycles for

these systems.

It is well-known that a crossing periodic orbit or a crossing limit cycle is deVned as a periodic

orbit or a limit cycle that intersects the discontinuity line x = 0 in two diUerent points.
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3.1. Quadratic and cubic uniform isochronous centers

The meaning of the continuity of a piecewise diUerential system separated by the straight-line

x = 0 formed by two centers is that the vector Velds deVned by these two centers (linear, quadratic

or cubic) coincide on the discontinuity line x = 0. We can conclude that a continuous piecewise

diUerential system is both continuous in R2 and analytic in R2/{x = 0}.

3.1 Quadratic and cubic uniform isochronous centers

The objective to accomplish is to study the periodic orbits of continuous and discontinuous

piecewise diUerential systems formed by the following quadratic or cubic uniform isochronous

centers (3.1), (3.2), and the linear isochronous center (2.28).

ẋ = −y + x2, ẏ = x+ xy, (3.1)

ẋ = −y + x2y, ẏ = x+ xy2. (3.2)

System (3.1) is the unique quadratic uniform isochronous center [21, 10] and system (3.2) is the

easiest cubic uniform isochronous center [8, 18].

For getting the general expressions of the quadratic and cubic uniform isochronous centers, we

transform the normal forms (3.1) and (3.2) by the following general aXne change of variables for a

continuous piecewise diUerential system

(x, y)→ (a1x+ b1y + c1, a2x+ b2y + c2), (3.3)

considering

a1b2 − a2b1 , 0. (3.4)

Generalized uniform isochronous system (3.1). Doing the change of variables (3.3) the quadratic

system (3.1) becomes

ẋ =
−b2c

2
1 + b1c1 + b1c2c1 + b2c2

a2b1 − a1b2
+

(
b2

1c2 − b2b1c1 + b2
1 + b2

2

)
a2b1 − a1b2

y

+
a2b1c1 + a1b1c2 − 2a1b2c1 + a1b1 + a2b2

a2b1 − a1b2
x+ b1yx+ a1x

2,

ẏ =
a2c

2
1 − a1c1 − a1c2c1 − a2c2

a2b1 − a1b2
−
a2

1c2 − a2a1c1 + a2
1 + a2

2

a2b1 − a1b2
x+

2a2b1c1 − a1b1c2 − a1b2c1 − a1b1 − a2b2

a2b1 − a1b2
y + a1xy + b1y

2.

(3.5)
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3.2. Statement of the main results

After changing the variables (3.3) and knowing that−(1 + y)/(x2 + y2)1/2 is the Vrst integral

of the system (3.1), we were able to obtain the following Vrst integral of the generalized isochronous

quadratic system (3.5).

HGQ(x, y) =
−a2x− b2y − c2 − 1√

(a1x+ b1y + c1) 2 + (a2x+ b2y + c2) 2
.

Generalized uniform isochronous system (3.2).

After the linear change of variables (3.3) is done, system (3.2) becomes equivalent to the following

generalized isochronous system.

ẋ =
b2c2c

2
1 − b1c

2
2c1 − b1c1 − b2c2

a1b2 − a2b1
+
−b2

1c
2
2 + b2

2c
2
1 − b2

1 − b2
2

a1b2 − a2b1
y+

a2b2c
2
1 − 2a2b1c2c1 + 2a1b2c2c1 − a1b1c

2
2 − a1b1 − a2b2

a1b2 − a2b1
x+

a2
1b2c2 + 2a2a1b2c1 − 2a2a1b1c2 − a2

2b1c1

a1b2 − a2b1
x2 +

2a1b
2
2c1 − 2a2b

2
1c2

a1b2 − a2b1
xy+

b1b
2
2c1 − b2

1b2c2

a1b2 − a2b1
y2 +

a2
1a2b2 − a1a

2
2b1

a1b2 − a2b1
x3 +

a2
1b

2
2 − a2

2b
2
1

a1b2 − a2b1
x2y +

a1b1b
2
2 − a2b

2
1b2

a1b2 − a2b1
xy2,

ẏ =
a2c2c

2
1 − a1c

2
2c1 − a1c1 − a2c2

a2b1 − a1b2
+
−a2

1c
2
2 + a2

2c
2
1 − a2

1 − a2
2

a2b1 − a1b2
x+

a2b2c
2
1 + 2a2b1c2c1 − 2a1b2c2c1 − a1b1c

2
2 − a1b1 − a2b2

a2b1 − a1b2
y +

a1a2 (a2c1 − a1c2)
a2b1 − a1b2

x2

+
2
(
a2

2b1c1 − a2
1b2c2

)
a2b1 − a1b2

xy +
a2b

2
1c2 + 2a2b2b1c1 − 2a1b2b1c2 − a1b

2
2c1

a2b1 − a1b2
y2+

+ a1a2x
2y + (a2b1 + a1b2) y2x+ b1b2y

3.

(3.6)

The cubic system (3.2) has the Vrst integral (x2 − 1)/2 (x2 + y2). Thus, the Vrst integral of
system (3.6) will be

HGC(x, y) =
(a1x+ b1y + c1) 2 − 1

2 (a1x+ b1y + c1) 2 + 2 (a2x+ b2y + c2) 2
.

3.2 Statement of the main results

In a study of J. Itikawa and his collaborators [18] for the bifurcation of limit cycles from the

periodic orbits of the uniform isochronous center of the diUerential systems (3.1) and (3.2), the

authors applied the averaging method of the Vrst order for discontinuous diUerential systems, when
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3.3. Proof of Theorem 3.1

they were perturbed inside the class of all discontinuous quadratic and cubic polynomials diUerential

systems with four zones separated by the axes of coordinates. In our work, we studied two cases at

the same time: the continuous and the discontinuous of the same system but without perturbation

and separated by the line x = 0.

Know, we expose our Vrst main results characterizing the existence and non-existence of crossing

periodic orbits and crossing limit cycles for continuous and discontinuous piecewise diUerential

systems formed by the linear isochronous center and the uniform isochronous quadratic or cubic

center.

Theorem 3.1. The continuous piecewise diUerential systems formed by the linear diUerential center

(which is isochronous) and the uniform isochronous quadratic and cubic center separated by the straight-

line x = 0 have no crossing limit cycles.

3.3 Proof of Theorem 3.1

Our Vrst objective is to study limit cycles of continuous piecewise diUerential systems formed by the

linear center (2.28) and the generalized quadratic system (3.5) or the generalized cubic system (3.6).

The study of an existing crossing periodic orbits of such piecewise diUerential systems it need the

following algebraic system must be satisVed.

H(x1, y1)−H(x2, y2) = 0, HL(x1, y1)−HL(x2, y2) = 0, (3.7)

It should be noted thatH(x, y) is the Vrst integral of the uniform isochronous quadratic or cubic

system andHL(x, y) is the Vrst integral of the linear center. The two intersection points (x1, y1)
and (x2, y2) with y1 , y2 are the crossing periodic orbits with the straight-line x = 0.

In order that the piecewise diUerential system formed by systems (2.28) and (3.5) to be continuous,

we had to impose that

• both systems coincide on x = 0,

• both systems must verify the following algebraic system

ẋGQ − ẋL|x=0 = 0, ẏGQ − ẏL|x=0 = 0, (3.8)

where ẋL, ẏL, ẋGQ and ẏGQ are the derivatives respecting time t of x and y for linear system and
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3.3. Proof of Theorem 3.1

quadratic system, respectively. Thus, the algebraic system will be as follows

−a2b1δ + a1b2δ − b2c
2
1 + b1c1 + b1c2c1 + b2c2 = 0,

4a2b1β
2 − 4a1b2β

2 + a2b1ω
2 − a1b2ω

2 + 4αb2
1 + 4αb2

2 − 4αb1b2c1 + 4αb2
1c2 = 0,

−a2b1γ + a1b2γ + a2c
2
1 − a1c1 − a1c2c1 − a2c2 = 0,

−a2βb1 + a1βb2 + 2a2b1c1 − a1b1c2 − a1b2c1 − a1b1 − a2b2 = 0,

b1 = 0.

All real solutions for this algebraic system are

s1 = {b1 = 0, b2 = 0, c2 =
a2c

2
1 − a1c1

a1c1 + a2
},

s2 = {a1 = 0, a2 = 0, b1 = 0, b2 = 0},

s3 = {a2 = 0, b1 = 0, b2 = 0, c1 = 0},

s4 = {a1 = 0, a2 = 0, b1 = 0, c2 = c2
1, α = 0},

s5 = {b1 = 0, α =
4a2

1c
2
1 + 8a2a1c1 + a2

1ω
2 + 4a2

2

4a1b2
, β =

a1c1 + a2

a1
,

γ =
−a2c

2
1 + a1c1 + a1c2c1 + a2c2

a1b2
, δ =

c2
1 − c2

a1
}.

s5 is the unique set of solutions that verify the conditions a2b1 − a1b2 , 0, α > 0 and ω > 0,
therefore, in this case, we have a continuous piecewise diUerential system.

In order to obtain crossing periodic orbits, the algebraic system (3.7) must be solved and becomes

b2

(
y2
√

(b2y1+c2)2+c2
1−y1
√

(b2y2+c2)2+c2
1

)
+(c2+1)

(√
(b2y1+c2)2+c2

1−
√

(b2y2+c2)2+c2
1

)
√

(b2y1+c2)2+c2
1

√
(b2y2+c2)2+c2

1
= 0,

(y1−y2)(4(a1c1+a2)2+a2
1ω

2)(b2(y1+y2)−2c2
1+2c2)

a2
1b2

= 0,

by solving this algebraic system, we get

y1 = y2 =
c1

2 − c2

b2
.

Consequently, this piecewise diUerential system has no periodic orbits and then no limit cycles.

To obtain a continuous piecewise diUerential system formed by systems (2.28) and (3.6), both systems

must coincide on x = 0, which induces the veriVcation of the following algebraic system

ẋGC − ẋL|x=0 = 0, ẏGC − ẏL|x=0 = 0. (3.9)
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3.3. Proof of Theorem 3.1

Once done, we get the following algebraic system

−a2b1δ + a1b2δ − b2c2c
2
1 + b1c

2
2c1 + b1c1 + b2c2 = 0,

4a2b1β
2 − 4a1b2β

2 + a2b1ω
2 − a1b2ω

2 + 4αb2
1 + 4αb2

2 − 4αb2
2c

2
1 + 4αb2

1c
2
2 = 0,

b1b2 (b1c2 − b2c1) = 0,
−a2b1γ + a1b2γ + a2c2c

2
1 − a1c

2
2c1 − a1c1 − a2c2 = 0,

−a2βb1 + a1βb2 + a2b2c
2
1 + 2a2b1c2c1 − 2a1b2c2c1 − a1b1c

2
2 − a1b1 − a2b2 = 0,

a2b
2
1c2 + 2a2b2b1c1 − 2a1b2b1c2 − a1b

2
2c1 = 0,

b1b2 = 0,

and by solving it, we get one of the following sets of real solutions

s1 = {a2 = a1c1(c2
2+1)

(c2
1−1)c2

, b1 = 0, b2 = 0},

s2 = {a1 = 0, b1 = 0, c1 = −1},

s3 = {a1 = 0, b1 = 0, c1 = 1},

s4 = {a1 = 0, b1 = 0, b2 = 0, c1 = −1},

s5 = {b1 = 0, b2 = 0, c1 = 0, c2 = 0},

s6 = {a1 = 0, b1 = 0, b2 = 0, c1 = 1},

s7 = {a1 = 0, b1 = 0, b2 = 0, c2 = 0},

s8 = {a1 = 0, a2 = 0, b1 = 0, c2 = 0, α = 0},

s9 = {a1 = 0, a2 = 0, b2 = 0, c1 = 0, α = 0},

s10 = {a1 = 0, a2 = 0, b1 = 0, c1 = 0, c2 = 0, α = 0},

s11 = {b1 = 0, c1 = 0, β = a2
a1
, γ = a2c2

a1b2
, δ = − c2

a1
, ω = −2

√
αa1b2−a2

2
a1

},

s12 = {b1 = 0, c1 = 0, β = a2
a1
, γ = a2c2

a1b2
, δ = − c2

a1
, ω = 2

√
αa1b2−a2

2
a1

},

s13 = {a1 = 0, a2 = 0, b2 = 0, c1 = 0, c2 = 0, α = 0},

s14 = {b2 = 0, c2 = 0, β = −a1
a2
, γ = −a1c1

a2b1
, δ = c1

a2
, ω = −2

√
−αa2b1−a2

1
a2

},

s15 = {b2 = 0, c2 = 0, β = −a1
a2
, γ = −a1c1

a2b1
, δ = c1

a2
, ω = 2

√
−αa2b1−a2

1
a2

},

s16 = {b2 = 0, c1 = 0, c2 = 0, β = −a1
a2
, γ = 0, δ = 0, ω = −2

√
−αa2b1−a2

1
a2

},

s17 = {b2 = 0, c1 = 0, c2 = 0, β = −a1
a2
, γ = 0, δ = 0, ω = 2

√
−αa2b1−a2

1
a2

},

s18 = {a1 = 0, b2 = 0, c2 = 0, β = 0, γ = 0, δ = c1
a2
, ω = −2

√
α
√
− b1
a2
},

s19 = {a1 = 0, b2 = 0, c2 = 0, β = 0, γ = 0, δ = c1
a2
, ω = 2

√
α
√
− b1
a2
},

s20 = {a1 = 0, b2 = 0, c1 = 0, c2 = 0, β = 0, γ = 0, δ = 0, ω = −2
√
α
√
− b1
a2
},

s21 = {a1 = 0, b2 = 0, c1 = 0, c2 = 0, β = 0, γ = 0, δ = 0, ω = 2
√
α
√
− b1
a2
}.
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3.4. Proof of Theorem 3.2

The sets of solutions verifying the conditions a2b1−a1b2 , 0, α > 0 and ω > 0 are s11, s12, s14,

s15, s16, s17, s18, s19, s20, and s21. It should be pointed out that we have a continuous piecewise

diUerential system in these cases where we must study a crossing periodic orbit in all these ones.

A crossing periodic orbit is obtained by solving the algebraic system (3.7). For the cases s11 and s12,

the algebraic system becomes

b2(y1 − y2) (b2y1 + b2y2 + 2c2)
2 (b2y1 + c2) 2 (b2y2 + c2) 2

= 0,
4α(y1 − y2) (b2y1 + b2y2 + 2c2)

a1
= 0,

by solving this system, we get the trivial solution y1 = y2 and y1 = −2c2−b2y2
b2

, y2 ∈ R.
Furthermore, for the cases s14, s15, s18, s19, s20, and s21, system (3.7) becomes

b1(y1 − y2) (b1y1 + b1y2 + 2c1)
2 (b1y1 + c1) 2 (b1y2 + c1) 2

= 0, −
4α(y1 − y2) (b1y1 + b1y2 + 2c1)

a2
= 0,

and also by solving this algebraic system, we obtain the trivial solution y1 = y2 and y1 =
−b1y2−2c1

b1
, y2 ∈ R. Finally for the cases s16 and s17 the algebraic system (3.7) will become

(y1 − y2)(y1 + y2)
2b2

1y
2
1y

2
2

= 0, −
4αb1(y1 − y2)(y1 + y2)

a2
= 0,

indeed, we get the solutions y1 = y2 and y1 = −y2.

Concluding that in all these cases, the continuous piecewise diUerential systems formed by a linear

center (2.28) and a generalized cubic system (3.6) has a continuum of periodic orbits, so, no limit

cycles.

Theorem 3.2. The discontinuous piecewise diUerential systems formed by the linear diUerential isochronous

center and the uniform isochronous quadratic and cubic center separated by the straight-line x = 0
have at most one crossing limit cycles.

3.4 Proof of Theorem 3.2

In this part, we study the crossing limit cycles for discontinuous piecewise diUerential systems

formed by the isochronous linear center (2.1) and the uniform isochronous quadratic system (3.1) or

cubic system (3.2). To simplify the calculations, we used another way a little diUerent from that used

in the proof of theorem 3.1, but the idea remains the same.

We start Vrst by the quadratic system, by replacing in the Vrst integral H(x, y) = (−y −
1)/(
√
x2 + y2) = k1 of system (3.1) x by 0 and we solved the result equation for y, getting

yQ =
1±

√
k2

1

k2
1 − 1

,
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3.4. Proof of Theorem 3.2

and doing the same computation for the Vrst integral of system (2.28), we get

yL = 8αδ±
√

64α2δ2+4k2(4β2+ω2)
2(4β2+ω2) ,

To obtain a crossing periodic orbit, yL of linear center must coincide with yQ of quadratic system,

by solving the equation yL − yQ = 0 we get

k1 = −
√

4αδ+4β2+ω2

2
√
α
√
δ

,

k2 = 4αδ.

Then, the discontinuous piecewise diUerential systems formed by the isochronous linear center (2.1)

and the uniform isochronous quadratic system (3.1) have one limit cycle. A example is shown in

Vgure 3.1.

-2 -1 1 2
x

-2

-1

1

2

3

4

y

Figure 3.1: Limit cycle for a = δ = 2, b = α = β = γ = ω = 1.
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Conclusion

In this thesis, we have Vrst given essential information as deVnitions, lemmas, and theorems used

in our study. Second, we have classiVed quadratic diUerential systems having a special invariant of

the form ax2 + bxy + cy2 + dx+ ey + c1t and we proved that there are 21 diUerent families

of quadratic systems having invariants of this form.

Next, we have studied the limit cycles of planar piecewise diUerential systems formed by quadratic

systems that have the Vrst integral of the form ax2 + bxy + cy2 and linear center. We proved that

these piecewise systems have a continuum of periodic orbits and no limit cycles.

Finally, we have tackled the number of limit cycles of the piecewise planar diUerential system

formed by the quadratic or cubic systems with uniform isochronous center and linear center

separated the straight-line x = 0 by treating the two cases continuous and discontinuous.

We proved that piecewise systems have at most one limit cycle for discontinuous piecewise

systems and we give an example for the quadratic case and no limit cycles for continuous piecewise

systems.
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