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Introduction

In general, a dynamical system is everything changes over time, in mathematics is the formal-
ization of the general scientific concept of a deterministic process. The future and past states of
many physical, chemical, biological, ecological, economical, and even social systems can be predicted
to a certain extent by knowing their present state and the laws governing their evolution. On the
condition that these laws do not change in time, the behavior of such a system could be considered
as completely defined by its initial condition. Thus, the notion of a dynamical system includes a set
of its possible situations (state space) and a law of the evolution of the state in time.

Modelling dynamical systems by ordinary differential equations has a long history, see for in-
stance [1]. Over the last hundred years, many techniques have been developed for the solution of
ordinary differential equations but most of the non linear differential equations cannot be solved by
the calculus methods we know at present. The qualitative theory of differential equations is being
used to examine differential equations whose explicit solutions cannot be determined. These tools
are originated by Henri Poincaré in his work on differential equations at the end of the nineteenth
century [30, 31].

In this thesis, we use the qualitative theory of differential equations to study a differential system
in two-dimensional and we treat the most important solution of differential equations which is the
limit cycle introduced by H. Poincaré [31] and reported by his work the most sought solutions in the
modeling of physical systems in the plane.

Our first aim in this thesis is to study the integrability of ordinary differential equations or simply

differential systems in two real variables

&= P(z,y), v=Q(=,v),

where P and (@) are polynomials of degree two. The second aim is to determine the number of limit

cycles of the piecewise differential system of the form

T = gl(wa y)a

) H(z,y) <0,
Y = g2(x,y),

{ T = fi(x,y),

H(x, > 0, and
y:fZ(way)9 (w y) . {
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separated by ¥ = {(x,y) € R*/H (x,y) = 0}.

Now, we describe the structure of this thesis which is divided into three chapters, in the first one
we present the necessary definitions, lemmas and theorems used in our study as fixed points and
their nature, Hartman-Grobman theorem, Poincaré map, piecewise differential system, invariant,
first integral..., (see [22, 23]).

In chapter 2, we start to present our work by classifying quadratic differential systems having a
special invariant of the form ax?+bxy+cy?+dxr+ey+cit, we prove that there are 21 different
families of quadratic systems having invariants of this form. As far as we know this is the first time
that quadratic differential systems having an invariant different from a Darboux invariant have been
classified. In the second part of this chapter, we study the limit cycles of piecewise planar differential
systems formed by quadratic systems that have the first integral of the form ax? + bxy + cy?
and linear center. We prove that piecewise systems have a continuum of periodic orbits, so no limit
cycles.

In chapter 3, we tackle the number of limit cycles of the piecewise planar differential system
formed by the quadratic or cubic systems with uniform isochronous center and linear center
separated the straight-line @ = 0 by treating the two cases continuous and discontinuous. We prove
that piecewise systems have at most one limit cycle for discontinuous piecewise systems, we give an

example for the quadratic case and we show that no limit cycles for continuous piecewise systems.



Chapter 1

Preliminaries

In this chapter, we give some notations and definitions of the geometric theory of integrability of
planar differential system, and lemmas that are used along of the thesis.

By definition a planar differential system is:

{ & = P(z(t),y(t)), (1.1)

¥ = Q(z(t),y(1)),
be a two dimensional (real) differential systems where the dependent variables x and y are real,

P and Q are C" functions from an open subset U of R? in R. As usual we denote the vector field

associated to differential system as:

Pz, y) > + Qz,y) >
= P(x,y)— T,Yy)—-.
X V) 5s ¥,

If P and Q are polynomials then system (1) is called polynomial differential system, we denote by
m = max(deg(P), deg(Q)) the degree of the polynomial system, and we always assume that
the polynomials P and Q are relatively prime in the ring of complex polynomials in the variables x

andy.

1.1 Vector field

Definition 1.1. We call vector field a region of the plane in which exists in any point a vector V(M, t).
Suppose that we have a C* vector field in Q@ C R?, that is to say the application:



1.2. Phase portrait

— F
(") s vy = [BE@Y))
Yy F(x,y)
where Fy, Fy are C* in Q.

We consider the vector field x associated to the system (1.1)

which means that system (1.1) is equivalent to the vector field x (P, Q), we can also write:

= P( )3+Q( )g
X = T,y Y. T,Y 8y'

1.2 Phase portrait

Definition 1.2. A phase portrait is a geometric representation of the trajectories of a dynamic system in

phase space; to each set of initial conditions corresponds a curve or a point.

1.2.1 Fixed point

Definition 1.3. Let & = f(x) be a differential system, with f of class C* of E = R™ in it self, xo is a
fixed point (also called equilibrium point, stationary point, critical point ), if and only if f(xo) = 0. A
regular point 1 if it is not a fixed point i.e., f(x1) # 0.

Definition 1.4. We say that the point (x*; y™*) is a fixed point of the system (1.1), if it is a solution of
the following algebraic system

{ P(z,y) =0,
Q(CIJ, y) = 0.

1.2.2  Stability of fixed point

Definition 1.5. We say that (x*,y*) is stable if and only if
Ve >0,3n >0, | (z,y) — (z%y") | <d=Vt>0, [z(t) — x| <e.

The fixed point (x*, y*) is asymptotically stable if and only if is stable and lim;__,, ||z (t) —x*|| = 0.



1.2. Phase portrait

1.2.3 Classification of fixed point

The flow of (1.1) in the neighbourhood of a fixed point (x*, y*) is classified according to the
eigenvalues of the matrix A, ((«*, y*)) its determinant, as well as its trace. The eigenvalues of A,

are solutions of the characteristic equation

A2 —tr(A )X + det(A,) = 0,
with

tr(A,) = A1 + Az and det(A,) = A1 .
The nature of eigenvalues depends or the sign of the discriminant
A = (tr(A,))? — 4det(A)).

Three cases arise.
cas 1: A = 0. We then have A\; = Ao = A, that is to say

det(A,) = A? > 0andtr(A,) = 2.

Therefore, if the trace is positive A > 0, we have an unstable star node, if the trace is negative

A < 0, we have a stable star.
cas 2: A > 0. We then have two distinct real eigenvalues, so:

e det(A,) < 0, A\; and X, are of opposite sign, the origin is a saddle.
o det(Ay) > 0andtr(A,) > 0, Ay, Az > 0, the origin is an unstable node.
e det(Ay) > 0andtr(A,) < 0, A;, A2 < 0, the originis an stable node.
cas 3: A < 0. We then have two conjugate complex eigenvalues A\; 2 = a £ i3, so we get
det(A,) = a? + 52 > Oand tr(A,) = 2.
e tr(A,) < O the origin is a stable spiral.
e tr(A,) > 0 the origin is a unstable spiral.

e tr(A,) = O the origin is a centre.



1.3. Periodic orbits
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Figure 1.1: Classification of phase portraits in the (detA, trA).

1.3 Periodic orbits

Definition 1.6. We call periodic orbit of (1.1), any solution (x(t), y(t)) for which there exists a real
T > 0 such that:

Vt ER z(t+T) = x(t) andy(t + T) = y(t).

o The samallest number T' > 0 which is suitable, is then called period of this solution.

e To any periodic solution corresponds a closed orbit in phase space.

1.4 Hartman-Grobman theorem

The Hartman-Grobman Theorem shows that near a hyperbolic fixed point &, the non linear

system

z = f(x) (1.2)

has the same qualitative structure as the linear system

= A(x) (1.3)



1.5. Limit cycle

with A = D f(x¢): Throughout this section we shall assume that the fixed point &g has been

translated to the origin.

Definition 1.7. (Topologically equivalent) Two autonomous systems of differential equations are said
to be topologically equivalent in a neighbourhood Ns(0) or have the same qualitative structure near
the origin if there is a homeomorphism H mapping an open U containing the origin onto an open set
V' containing the origin which map trajectories of the first system in U to the second one in V' and

preserves their orientation by time, for more details see [29].

Theorem 1.1. Let E be an open sub set of IR™ containing the origin, let f € C*(E), and ¢, be the
flow of the non linear system (1.2). Suppose that the origin is an equilibrium point of (1.2) which
mean f(0) = 0 and that the matrix D f(0) has no eigenvalue with zero real part. Then there exists
H : U — V Homomorphism such that for allzy € U, there is an open interval Iy C R containing
zero such that forallzy € U andt € I

H o ¢(xzp) = eAtH(wO);

i.e., H maps trajectories of (1.2) near the origin onto trajectories of (1.3) near the origin and preserves

the parametrization by time.

1.5 Limit cycle

Definition 1.8. A limit cycle is an isolated closed trajectory ("isolated" means that neighbouring

trajectories are not closed).

Definition 1.9. We call limit cycle w -limit a periodic orbit v which is the limit set of at least one point

not belonging in -y, one calls cycle o - limit of the mirror system & = f(x) .

Example 1.1. A simple limit cycle consider

r=r(1—7r%) ,r>0
=1,

r = 0 is an unstable fixed point and r = 1 is a periodic orbit, hence all trajectories in the phase plane

(except = 0) approach to the unit circler = 1 monotonically.

10



1.5. Limit cycle

r g
)

)
L

Figure 1.2: Limit cycle.

1.5.1 Classification of limit cycles

e Stable limit cycles i.e., all trajectories in the vicinity of the limit cycle converging to it as

t — o0.

e Unstable limit cycles i.e., all trajectories in the vicinity of the limit cycle diverging from it as

t — oo.

e Semi-stable limit cycles i.e., some of the trajectories in the vicinity converging to the limit

cycle while others diverging from itast — oo .

The most important kind of limit cycle is the stable limit cycle, where nearby curves spiral towards
I' on both sides.

stable limit cycle unstable limit cycle half-stable limit cycle

Figure 1.3: Classification of limit cycles



1.6. The Poincaré map

1.6 The Poincaré map

Probably the most basic tool for studying the stability and bifurcation of the periodic orbits is the
Poincaré map. The idea of the Poincaré map when I is a periodic orbit of the system (1.2) through
Tg, with 3 is a hyperplane perpendicular to I' at &, then for any point € ¥ sufficiently near
Xo the solution of (1.2) through x att = 0, ®,(x), will cross X again at P(x) near x ; cf.Figure
(1.2), the mapping * — P(x) is called the Poincaré map. The Poincaré map can also be defined

when X is a smooth surface.

P(x)

Figure 1.4: The Poincaré map.

Theorem 1.2 (The existence and continuity of the Poincaré map and its first derivative).  Let E
be an open subset of R™ and let f € C*(E). Suppose that ®;(xo) is a periodic solution of (1.2) of
period T' and that the cycle

F={xeR"| = P(xg), 0t T},
is contained in E. Let >~ be the hyperplane orthogonal to I' at xy; i.e., let
Y={z e R"| (z — z0) - f(®0) = 0},

then 36 > 0 and 3! function T(x) defined and continuously differentiable for x € Ns(x¢)
such that

T(x0) =T
{ By (2) € B forall * € Nj(x).

Proof. The proof of this theorem is an immediate application of the implicit function theorem, by the
supposition of

F(t,x) = (Pi(x) — x0) - f(x0), foragiven xg € T C E.
for more details see [29)].

12



1.6. The Poincaré map

Definition 1.10 (The Poincaré map). Let T, 3, 8, and () be defined as in theorem (1.1). Then, for
x € Ns(xo) N X, the function
P(m) - (I)T(w)a

is called the Poincaré map forI' at x¢.
Remark 1.1. It follows from theorem (1.1) that P € C*(U) where U = Nj(g) N 2.
1. If fanalyticin E = P analyticinU ,
2. Fixed points of the Poincaré map, i.e.,(pointsx € X : P(x) = x) are periodic orbits of (1.2),

3. By considering the system (1.2) witht — —t, we can show that the Poincaré map P has a
C'-inverse, P~'(x) = ®_, () (). Thus, P is a diffeomorphism; i.e., a smooth function with a

smooth inverse.

1.6.1 The Poincaré map of planar systems

Now, we are going to cite some specific results for the Poincaré map for planar systems. For
planar systems, if we translate the origin to the point g € ¥ N I'. The point 0 € I' N X divide X
on two open segments 31 A X~ ; cf. Figure (1.1) below. Let s be the signed distance along 3 with
s > 0 for points in 37 .

p(s)

Y

Figure 1.5: The straight line normal X to I" at 0

By theorem (1.3), the Poincaré map P(s) defined for |s| < 6 and we have P(0). In order
to see how the stability of the cycle I" is determined by P’(0), let us introduce the displacement
function, which defined for all |s| < & by

d(s) = P(s) — s. (1.4)

13



1.7. Integrability

with P(0) = 0and d'(s) = P’(s) — 1. From the mean value theorem, for |s| < §, 3 X €
[0, s] such that : d(s) = d'(X)s. Since d’'(s) is continuous, the sign of d’(s) will be the
same as d’(0) for |s| sufficiently small as long as d’(0) # 0. Thus, if d’(0) < O implie that
d(s) < Ofors > 0andd(s) > Ofors < 0andthat s < 0in X~;ie, the cycle I is a stable
limit cycle Cf. Figure (1.1). Similarly, if d’(0) > 0 then I' is an unstable limit cycle. So, we have
the corresponding results that if P(0) = 0and P’(0) < 1, then I is stable limit cycle and if
P(0) = 0and P’(0) > 1, then I is an unstable limit cycle.

1.7 Integrability

There is no general approach to obtain an explicit form for the solution of a system, furthermore, for
most system it can be shown that such forms do not exist, therefore, we lower our expectations and

attempt to identify global invariants.

1.7.1 Global invariant

Definition 1.11. let Q2 be an open and dense subset of R?, an invariant of system (1.1) in Q is a
non-contant C' function I in the variable x, y and t such that I(x(t),y(t),t) is constant on all
solution curves (x(t), y(t)) of system (1) contained in 2, ie:

8I Q BI
8 Bt

1.7.2  First integral

Definition 1.12. When I is independent of t we say I is first integral i,e I(x,y) = C on solution:

BI Q 8I
8:13

In the case of a two -dimensional system, having one first integral is enough to obtain a global picture of
the solution in the (x,y) phase space. Moreover, if I is time-independent, then the solution curves lie on

the level set I(x,y) = c. Furthermore I completely characterizes the phase portrait.

14



1.8. Piecewise linear differential system

1.7.3 Invariant algbraic curve

Definition 1.13. For f € C[x, y|, the curve f(x,y) = 0 is an invariant algebraic curve of system (1)
if there exists K € C|x,y], such that:

The polynomial K is called the cofactor of the real invariant algebraic curve f = 0.

1.8 Piecewise linear differential system

Definition 1.14 (Piecewise linear system). A differential system defined on an open region S C R? is
said to be a piecewise linear differential system (PWLS) on S if there exists a set of 3-tuplesm (A, b;, S;)
such that A; is a 2 X 2 real matrix, b; € R", S; C S is an open set in R™ satisfying that S;NS; = ¢
ift # j and U;er CU(S;) = S and A;x + b; is the vector field defined by the system when x € S;.
As usual Cl(S;) denotes the closure of S;.

Example 1.2.

x, x >0,
T = x| =
—x, x*<O0,

is (PWLS): {(Ai, biy s;)} = {(1,0, 81), (1,0, s2) } such that:

S ={x eR/xz > 0},
Sy ={x € R/x < 0},
Y ={xzeR/xz =0},

siNse2=¢,51Us={x eR/xz>0}U{xreR/xz<0} =R

Thus the vector field defined by a PWLS is a linear map on each of the disjoint regions .S;, but is not
globally linear on the whole S.

1.9 Linearisation method

From a given planar differential system = f () with a differentiable vector field f can construct
a set of different PWLS. For instance, let us suppose that p; and p, are two zeros of f, and let k be a
vector in R? such that: kTp; < 0, and kTp, > 0. The straight line ¥ = {x € R? : kT = 0}

15



1.10. Continuous and discontinuous piecewise linear differential system

divides R? into the two open regions: S; = {x € R? : kTx < 0} and Sy = {x € R? : kTx >
0}.

Denoting by D f(p;) the Jacobian matrix of the vector field f at the point p;, it follows that
{((Df(pi), —Df(p:i)pis Si)) }i=1,2 is a piecewise differential system on the whole R

1.10 Continuous and discontinuous piecewise linear differential

system

Definition 1.15. Let 3;; = 05; N 08, be the common boundary of the regions 8; and §;. If
A;p+b; = A;p + bj foreveryp € X, is said to be continuous, otherwise the piecewise linear
differential system is said to be discontinuous. In discontinuous piecewise linear differential system, two
different vector &, namely f;(x) and fj(x), can be associated to a point x € X;; . If the transversal
components of fi(x) and f;(x) have the same sign, the orbit crosses the boundary and has, at that
point, a discontinuity in its tangent vector. On the contrary, if the transversal components of f;(x) and
fi(x) are of opposite sign, i.e., if the two vector fields are "pushing" in opposite directions, the state of
the system is forced to remain on the boundary and slide on it. Although, in principle, motions on the

boundary could be defined in different ways, the most natural one is Filippov convex method.

1.11  Solution of continuous piecewise linear differential system

Since the piecewise linear differential system is formed by linear differential systems in each region

i, then the solution of linear differential system &; = A;x + b; starting at pg is given by
X (s,p0) = eAispo/ eti*="p,dr.
0

Since, for a continuous piecewise linear differential system we have A;p + b; = A;p + b; at
any point of the boundary X;; separating two adjacent regions S; and S;, then for these systems
the vector A;p + b; is uniquely defined at any point of the state space and the orbits in region
S; approaching transersely the boundary X;;, cross it and enter into the adjacent region S;. In

particular if the vector field

F2(X) = A X + by, ifH(z) < 0, '

with the boundary
¥ = {x € R?*: H(x) = 0},

16



1.12.  Solution of discontinuous piecewise linear differential system

and two regions
S, ={xeR?: H(x) >0}, S; = {x € R*: H(x) < 0},

is continuous Let (x1(t); y1(t)) and (x2(t);y2(t)) are solutions of system (1.5) on S; and
Sy respectively. Then, the trajectory corresponding to the initial condition X¢ = («o1, Yo1)
of the system (1.5) on S is crossed the curve H(x) = 0, at the instance t* in this case the
initial condition of the second system (on Sy ) is (o2, Yo2) = (x2(t*), y2(t*)). Furthermore, for

continuous piecewise linear differential system (1.5), we have if
X (s,p0) = e***pg / e ="y, dr,
0

is a solution of linear differential system piecewise linear differential system starting at pg in Sy;
then there exist a point ¢ = (@1;y1) € X and the finite time ¢* such that the orbit of linear
differential system in Sy starting at the point p is crossed the curve H (x) = 0, at the instance t* at

the point
t*
qo = (¢1,y1) = e po/ e " ""p, dr,
0

by the continuity of piecewise linear differential system, the solution of this system in S is

S
X (s,q90) = eA2sp0/O 2=y dr.

1.12  Solution of discontinuous piecewise linear differential sys-

tem
We consider planar Filippov systems and assume, for simplicity, that there are only two regions S;,

$ = fl(w)aaj € Sl, (1.6)

fz(w),flj S S2-

Moreover, the discontinuity boundary separating these two regions is described as

Y = {x € R?*: H(x) = 0},

where H is a smooth scalar function with non vanishing gradient VH (z) = (%)T on X, and

S; = {x € R?: H(x) > 0},

S, = {x € R?: H(x) < 0}.

17



1.13. Filippov method

The boundary is either closed or goes to infinity in both directions and f; # f2 on 3.

1.12.1 sliding solutions

The sliding solutions on 3 obtained with the well-known Filippov convex method.
Let

d(z) = (VH(z), Fi(x))(VH(z), F5(z)),
where (..) denotes the standard scalar product.

Definition 1.16. We define the crossing set 3. as
S.={xe€X:4(x) >0} C2>.

It is the set of all points x € X, where the two vectors f;(x) have non trivial normal components of the
same sign. By definition, at these points the orbit of (1.6) crosses 3.
We define the sliding set 34 as the complement to X in X,

S.={x € X:ix) <0} C
Remark 1.2. In general we define Escaping region (unstable sliding):
Yes ={x € X:(VH(x), fi(x)) > 0and (VH(x), f2(x)) < 0}.
Attractive sliding region (stable sliding):
Yos = {x € X : (VH(x), fi(z)) < 0and (VH(x), f2(x)) > 0}.
Then, the sliding set

Ss={x e X:d(x) <0}

={z € ¥:(VH(2), f1(z)) > 0 and (VH(z), f2(z)) < 0}
U{x € ¥ : (VH(x), fi(z)) < 0and (VH(x), f2(x)) > 0}
U{z € X: (VH(z), f1(2))(VH(z), f2(x)) = 0}.

1.13 Filippov method

Within the sliding set, the Filippov method can be used to construct solutions, to be considered as
extensions for solutions of (1.6). Such a method consists in defining a new vector field computed

from an adequate convex combination g(x) of the two original vector fields f;(x) to each non
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1.13. Filippov method

singular sliding point x € 3, namely
g(x) = Afi(z) + (1 = A) fa(@),

where for each € X the value of X is selected such that (VH (x), fa(x) — fi(x)) # 0 A simple

computation shows that

(VH (x), fa(x))

A=Y WHE) A@) - A@)

provided the above denominator does not vanish and then, by using the definition of 3, one

concludes that
0<A(x) £1.

Therefore, we have a explicit definition for the sliding vector field, namely

(VH(z), fi()) f2(z) — (VH(2), f2(2)) f1(®)

9(@) = (VH (@), f2@) — F1(@)) (.7

Figure 1.6: Filippov method

19



Chapter 2

Integrability of quadratic differential systems R?

In this chapter we shall work with polynomial differential systems

& = P(x,y), 9= Q(z,y), (2.1)

where P and @ are polynomials of degree 2, called simply quadratic systems.

Many natural phenomena in various branches of the sciences are modelized using quadratic systems.
We can find in the literature more than one thousand published papers studying the quadratic

systems.

Let U be an open and dense subset of IR?, an invariant of system (1) in U is a non-constant C*
function I : U X R — R depending on ¢ such that I(x(t),y(t),t) is constant on all the solution
curves (x(t), y(t)) of system (1.6.1) contained in U, i.e.

dI_8IP+8IQ+BI_O 2.2
dt O ox ot '

forall (z,y) € U.

The objective of this work is to classify all quadratic systems

T = ag + a1 + axy + asx? + asxy + asy?,

(2.3)
y = bO —|— bla: —|— bz’y —|— b3332 -|— b41,'y —|— b5y2,
having invariants of the form
I(z,y,t) = ax® + bxy + cy® + dx + ey + cit, (2.4)

with c1 # 0.

We note that many different classes of quadratic systems have been classified as the structurally
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stable, their centers, their isochronous centers, their Hopf bifurcations, their Lotka-Volterra, their
Bernoulli, their Abel, their quadratic-linear, their with a unique finite singularity, their having a
polynomial first integral, their having a Hamiltonian first integral, their homogeneous, ..., see [2].
But there are few works on the quadratic systems having invariants, see [5, 23, 24, 26, 27] and all
thiese invariants are Darboux invariants, i.e. invariants of the form f(z, y)e® with s € R\ {0}.
As far as we know this is the first time that quadratic systems having an invariant different from a

Darboux invariant are studied.

If the function I (x,y,t) = dx + ey + ax?® + bxy + cy? + c;t is an invariant of system (2.3),

we must verify that the equation (2.2). Thus the following polynomial must be the zero polynomial

aod + boe + ¢; + (a1d + 2aag + bie + bbg)x + (aogb + azd + 2boc + bse)y+

(aszd + 2aa; + bze + bby)x?® + (a1b + asd + 2aas + 2bic + bye + bbs)Ty+

+(azb + asd + 2byc + bse)y? + (2aasz + bbz)x3+

(asb + 2aay + 2bszc + bby)x%y + (asb + 2aas + 2bsc + bbs)xy? + (asb + 2bsc)y>.

(2.5)
Therefore we must solve the following algebraic system
aod + bge + ¢, = 0,
a,d + 2aaqg + bie + bby = 0,
aob 4+ asd + 2bgc + bse = 0,
asd + 2aa; + bze + bb, = 0,
a1b+ asd + 2aas + 2b,c + bye + bby = 0, (2.6)

a-b + asd + 2b,c + bse = 0,
2aaz + bbs = 0,

asb + 2aa4 + 2bsc + bby = 0,
asb + 2aas + 2bsc + bbs = 0,
asb + 2bsc = 0.

With the help of the Mathematica software we solved this algebraic system.

Then, the quadratic systems (2.3) admitting an invariant of the form (2.4) are one of the following 23

families of quadratic systems ( set of independent solutions with ¢; # 0 ):

T = ag + a1 + a2y + asz? + aszy + asy?,
d
Yy =by — g(alm + a2y + azx?® 4+ asry + asy?), (2.7)

I =dx + ey — (dag + eby)t,
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where e # 0. Sets of solutions yield this system are

S1 =

So =

Sg3 =

Sq4 =

Sy =

S¢g =

S7

S8

So9

S10

S14

S17

S18

d
{ by = ——a1, by = ——az, by = ——as, by = ——a4, by = ——a5, a =0,
€ e € e €

b = 0, Cc = 0, cip = —(da0+eb0)},

d d d d
az =0, by = ——ay, by =0, by = ——as, by = ——ay, bs = ——as,

e € e €
a=0,b=0,c=0, c; =—(dao+ eby)},
{b1:0, b2:0, b3:O, b4:0, b5:0, CLZO, b:(], CZO, d:(),

C1 = _ebO} ’

d d d
Ao = O, ay — 0, bl = ——a, b2 = O, b3 = ——ags, b4 — 0, b5 = ——as,
e e e
a=0,b=0,c=0, c; =—(dao + eby)},
d d d d
az =0, by = ——aq, by = ——az, b3 =0, by = ——a4, b5 = ——as,
e e e e

a=0,b=0,c=0, c; =—(dao+ eby)},

d d d
a; =0, a3 =0, by = _gala by =0, b3 =0, by = _gazl’ bs = _ECL.S’

a=0,b=0,c=0, c; =—(dag + eby), }
{03:0, b1:O, b2:0, b3:0, b4:O, b5:0,a:0,b:O, CZO,
d:O, 61:—€b0},

d
{al:O, a3 =0, a4 =0, b, =0, b =0, b3 =0, by =0, b5:_ga5a

a=0,b=0,c=0, c; =—(dao + eby)},
{b;=0,b,=0,b;=0,b,=0,b;=0,a=0,b=0,c=0,d=0,
c; = —ebp},
{a;=0,a,=0,a3=0,a,=0,a5=0,a=0,b=0,c=0,e =0,
c1 = —dag},
{a3=0,b,=0,b,=0,b;=0,bs=0,bs=0,a=0, b=0,
c=0,d=0, ¢, = —eby},

e d
{a2:_db29 a3 =0,a,=0, a5 =0, blz_ga’la bz = 0, by = 0,
bs =0,a=0,b=0,c=0, c; = —(dao +eby)},
{CL3:0, Cl,4:0, b1:0, b2:0, b3:O, b4:0, b5:0,a:0,b:0,

c=0,d=0, ¢, = —eby},

S19 = {b1:0, b2:O, b3:0, b4:0, b5:O,a:O, b:(), C:O, d:(),

C1 = —8b0} .
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1 2
= aog+ ax+ §(2bca1 + beay — 4ceas)y + asx?® + asxy + ﬁc(baél — 2cas)y?,

1
%b%
—z(beag + 2cdas — b*a; — bday)y — gaagacz + E((4ac — b%*)as — 2aba,y)Ty+

1
((bay — eas)(be — 2¢cd) — b3ay) — ﬁ(b%zl — beas + 2cdasz)r+
c

5(20(13 — bay)y?,

b? 1
I= dx+ey+ 4—:132 + bxy + cy® — ﬁ(bd — 2ae)(bag + e(easz — bay))t,
c
(2.8)

with ¢b # 0. This system is given by the set of solutions

2 b
s11 = {as = —(2bcay + beay — 4ceas), as = —c(bay — 2casz), b = ——ags,
b2 b2 2c

1 1
= ((bay — eas)(be — 2¢d) — b3ay), bs = —(2caz — bay),
2b%¢ b b

1
bl = —7(b20,1 — bea3 —|— 2cda3), b4 = ——Qy4,
b2 2bc 1 2c
a= ™ b, = E(beag + 2cdaz — b%*a; — bda,),

bo

(&1

= 2b2c(be — 2cd)(b%ag + e(eaz — bal))} .

1
= ap+ ———(db(2aas + bby) + (easz — bby)(bd — 2ae))x + ay + azx*+
b(bd — 2ae)
20,0,2 + bbz

2a(2 bb 2ae — bd _ 242
2a(2ae — bd)( a(2aaz + bby) + (2ae Jas)zy 2a(bd — 2ae) Y

(4a®(dasy + ebs) + bd?az — 2adeas)x+
20,0,2 + bb2 b
bd — 2ae

2
j= ——a(b d4eby) +
Y pz 1 (0ao +azd +eba) + o0

2 1
boy — —aazx® + ———(2a(2aay + bby) — (bd — 2ae)as)ry +
b bd — 2ae

b2 1
I= dz+ey+ ax?+ bry + 4—y2 — ﬁ((bd — 2ae)bag — 2ae(das + ebs))t,
a
(2.9)

where ab(bd — 2ae) # 0. This system is given by the sets
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12 = {al ~ b2d — 2abe

2
(bdeas + 2abday + 2abebs — 2ae?a3), by = —3a4s;
b

= 4a’a, — bd 2 bb
a, 2a(2ae bd)( a’as as + 2a(eas + bbs)),
2
bo = ——(bag + das + ebs)a, by = ———(bdaz — 4a’a> — 2a(eas + bby)),
b2 2ae — bd
by = ;(_4012 (daz + ebz) + 2adeas — bd?a3)
b(bd — 2ae) . ’
b
= 2 bb =—,bs=——-(2 bb
s 2a(2ae — bd)( aasz +bbs), ¢ 4a’ ° " bd — 2ae( aaz + bbs),

1
c = ﬁ((Zae — bd)bag + 2(das + ebg)ae)} .

T =ap+ ar1x + axy + gcalwy - &cb2y2,

, 1 d

Yy = ——(a2d + bye) — —arx + bay, (2.10)
2c e

1
I=dz+ey+cy?+ 2—(e(da2 + eby) — 2cday)t,
c

with ced # 0. Sets of solutions provide this system are

S13 =

S15 =

S16 —

S32 —

2 2 d 1
az =0, ay = —cay, a5 = ——cby, by = ——aq, by = ——(daz + eb,),
e d e 2c
e
b3:O, b4:0, b5:O, CLZO, b:O, 01:2(da2—|—eb2)—da0},
C
2 1
a; =0, a3 =0, ag =0, as = ——bac, bp = ——(daz + eby),
d 2¢c
d
b1 = —gal, b3:0, b4:0, b5:0, CL:O, b:(), C; = —(da0—|—eb0)},
2
{CL3 =0, ayg = —cay, a5 =0, bg = ——asz, b =0, by = ——a,, bz =0,
e 2c e
d
b4:O, b5:0, a:O, bZO, clz2ea2—da0},
C

d
{alzoa 0,320,0,4:0, 0,5:0, bOZ_%aQ’ b1:O7 b2:07 b3:0’

d
by=0, b5 =0,a=0,b=0, clzda0—26a2,}.
c

e
T = ag— —bsx + azxy,
2a
2

Y= by — 2aca (4(aap)?® + e%bybs)x + bay — gaaza}y + bgx?, (2.11)

e e
I= ——byx+ey+ ax?+ (—agbs — eby)t,

(0] asz
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where azae # 0. This system is given by the set

(€2b3b2 + 4(1,2(12(10),

e
S20 = {al:—b37 az =0,a,=0,a5=0, by = —
2a

2aeas
2 e e
by =——aaz, b5 =0, b=0,c=0,d= ——by, c; = —aobs — ebg ;.
e (25 az
. e
T =ag— %bg;:c,
1
Y = by + T(deb:; — 4a’%ag)x + bzx?, (2.12)
ae

I = dx + ey + ax? — (dag + eby)t,

with ae # 0. The set give this system is

e 1
891 = (a3 = ———bs, a2 =0, a3 =0, a, =0, as =0, by = —(dbz — 402ao)a
2a 2ae

bz = O, b4 = O, b5 = 0, Ci = —(dao + ebg)} .

bd — 2 (2a(daz + eb)x + (bd — 2ae)azy — b(2aa; + bba)ry—

T = ao+
b2
—(2aaz + bbs)y?),
2a

)= —2 (bao + das + eby) (2a2(das + eby)a + (bd — 2ae)byy-+

Yy = b2 QAo a9 €eoq2)a bd — 2ae ba (03] €02 )T ae)oy
2a(2aasy + bbz)xy + b(2aas + bbs)y?),

b? 1
I= dz+ey+ ax?+ bxy + 4—y2 + ﬁ(b(2ae — bd)ag + 2ae(day + eby))t,
a
(2.13)
where ab(bd — 2ae) # 0. This system is given by the sets

So2 = { a; = bdiazae(daz + eby), a3 =0, a4 = —bd_bm(Zaaz + bb,),
as = _2a(bdbi 2a0) (2aas + bby), by = —;(bao + dasy + eby)a, by = 0,
b, = —maz(daz + eby), by = mu(Zaaz + bby), ¢ = 4:,
bs = bd — 200 (2aas + bby), ¢ = blz(b(Za,e — bd)ao + 2ae(da; + ebz))} ’
Sa3 = {al = Zaa2, a3 =0,a4=0, a5 =0, by = b13(4azea,2 — 2ab(bag + das)),
b, = —:zazaz, b, = —Zaaz, bs =0,b, =0, c = b—z, bs = 0,

1
1 = g(Zae — bd)(b*ag — 2aea2)} .
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2 1
= ag+ gaazm + asy + aszx?® + ﬂ(bdag — 4a%ay — 2baby)xy—
a

b
ﬁ@aaz + bby)y?,

, 2 1, 2
Y= —ﬁ(bag + daz)a — §(4a as + bdas)x + byy — 5 2asT + (2.14)
1 1
@(4a2a2 — bdas + 2abby)xy + E(2aa2 + bb2)y?,
2
I= dx+ ax®+ bxy + Eyz — dayt,

with bad # 0. The set provide this system is

2
Soq = {al = Baag, ay, = %(ba?, — 2CLCL2 — be), as = —g(2aag + bbz),

2 1 2
bo = ——(bag + das)a, by = ——(4a%as + bdas), b3 = ——aas,
b2 b2 b

1 1
by, = Q(4a2a2 + 2abb, — bdas), bs = 3(20/012 + bby), ¢ = 1a’ e =0,

Ci1 = —dag} .
T = ag+ —aa:x + axy + azx® + —aszzy,
b 2a
, 2 1, 2 2,
Yy = —ﬁ(bao + daz)a — §(4a as + bdas)x — gaazy — gaaga: — azxy, (2.15)

2
I = dx+ ax®+ bxy + Qyz — dayt,

where ba # 0. This system is given by the sets

2 b 2
So5 = {al = gaaz, ay, = %ag, as = O, b() = —ﬁ(bao + dag)a,

1
b, = —§(4a2a2 + bdas), by = —gaaz, bz = —EGGJS, by = —as, bs =0,

b2
c=—,e=0, Clz_daan}’
4a
2 2
S26 = a; = gaaza a3 =0, ag =0, a5 =0, by = —ﬁ(bao + das)a,
4 2 b
blz—ﬁa as, b2:—gaaz, b3:0, b4:0, b5:O, CZE, 620,
¢y = —dag}.
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b 2
&= ag+ 2—ca2w + azy + asx?® + aszy + ﬁ(baél — 2caz)cy?,

1 1 1
9= ——((bag + das) + — (b3as + 4cdas)x + —(2(bay — 2casz)dc + b az)y+
2¢c 2bc b?
bazx? + basxy) + g(ang, — bay)y?,

b2
I= dz+ 4—:1:2 + bxy + cy? — daot,
c

(2.16)
where cb # 0. This system is given by the sets
b 2 1
Sor = aqp = %az, as = ﬁ(baél — 2cag)c, by = —%(bao + das),
1 b 2
b, = ——(b3a2 + 402da3)a b3 = ——as, by = ——ay, bs = —caz — ay,
4c2 2 b
d b b?
by = —ﬁ(ba4 — 2caz) — %ag, a= 1’ e=0,c = —dag,,
2 d
S28 = qa1 =0, a2 =0, a5 = ﬁ(ba4 — 2cas)c, by = 5000 b, = s
b d(b 2cas), b b b b 2
= ——(bay, — 2ca = ——a = ——aQa = —-Ccagz — a
2 b2b2 4 3/ U3 2 3y Y4 2 4y Yb b 3 49
a:4—c, e =0, clz—dao}.
& = ag + a2y + asxy + asy®,
d
¥y =——(az + asx + asy), (2.17)
2c
I = dzx + cy? — dayt,
where ¢ # 0. This system is given by the sets
d d
S29 = (a3 =0,a3=0,bp=——az, bp = ——ay, bo = ——as, b3 =0,
2c 2c 2c
by =0,b5=0,a=0,b=0,e=0, ¢c; = —dag},
830 = {CL1:0, az =0, a3 =0,a4 =0, a5 =0, b3 =0, by =0, bs =0,
a=0,b=0,c=0,e=0,c; = —dag}.
. b b? .
T = ao+ a2y + —axxy + ——a2y”,
e 2e
2 a
Y= —5aa0 — f(dy + 2axy + by?), (2.18)

2

b (o))
I= dz+ey+ azx®+ bxy + 4—y2 — ?(db — 2ae)t,
a
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where eab # 0. The sets of solutions provide this system are

b b?
833 = (a1 =0, a3 =0, ag = —aq, as = —agz, by = ——-aag, by =0, bg =0,
2ae b
d 2 b b2 2
by = ——asz, by = ——aasz, bs = ——Q2, C= —, C1 = aO(*ae - d) ’
e e e 4a b

S34 = {61:0, az =0, a3 =0, a4 =0, as =0, boz—gaam b, =0, by =0,

b? 2
b3:0, b4:0, b5:O, C:@, clzao(bae—d)},

2
S31 = {Ch:oa az = 0, a4:0,a5:—acb2, by, =0, b3 =0, by =0, bs =0,

1 bo
a=0,b=0, e = —b—(daz + 2¢by), 1 = b—(da2 4 2¢bg) — dag ¢ .
2 2

. b
= ag— ﬁbzmawy + by?),

2 b
= —aao+—(dy + 2azy + by?), (2.19)

2
I = dx+ax?+bxy + gyz — dayt,

where dab # 0. The set of solutions provide this system are

2

S35 = {al =0,a2=0,a3 =0, ay = —Ebza as = _%lba bo = — a0
2 b b?
b1:0, b3:0, b4=&ab2, b5:&b2,C:£,€:O, clz—dao .

, 2 1 b \
T = ag+ —aaxx + axy — —(2aas + bby)ry — ——(2aas + bb2)y?,
b d 2ad

) = ——(bag + daz)a — —a? + —(2 + bbs)axy + —(2 + bb2)y?+
= a az)a a“asx aa ax aa
Yy pz V0 2 b2 2 bd 2 2 d 2 2
by,
2

I = dx+ ax®+bxy + 4—y2 — dayt,
a
(2.20)

where bda # 0. The sets of solutions provide this system are

2 1 b

S36 — {Cl,l = gaaz, asz = 0, a, = —E(Zaaz —|— bbz), as = —Q(Zaaz —|— bbz),
2 2

by = —ﬁa(bao + daz), by = —§a2a2, bs =0, by = ﬁa(2aa2 + bb2),

1 b2
b5 = *(2&0,2 —|— bbz), e = O, c=—,c = —da() ,
d 4a
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S37 — {al - 03 az = 07 az = 09 ayg = _Eb2a as — _gb2a bO - _gaaﬂa

d
2 b b?
b1:09b3:09b4:aab29b5:&b2ac:E7620701:_da0 ’
2 2
S3g = a; — —aasz, a4=0, 0,3:0, CL5:O, boz—ﬁa(bao—l—dcm),
4, 2 b2
b1 = —Ea az, b2 = —gaaz, b3 = 0, b4 = O, b5 = 0, C = @,6 = O,
clz—dao}.
b 2
P = 24 " (das — 2abs)zy — ——boy?
T ap + azx” + 2ad( as aby)Ty 2ad 2Y~,
; 2 d +b 2 2 1(d 2ab,) +bb 2 (2.21)
= ——Qadagp — —Aasx — —aasxr”- — — asg — 44 i — .
Yy b 0 b 3 2Y b 3 d 3 2)TY dzy,

2
I = dx+ ax®+ bxy + Eyz — dayt,

where adb # 0. The sets of solutions provide this system are

2

b
839 = a1 =0, a, =0, ay = ——(das — 2ab as = ——by, by = ——aa
39 { 1 9 2 9 4 2ad( 3 2)? 5 2ad 2y YO b 0
d 2 2 b b?
by = ——as, bg = —gaasa by = Eabz —as, bs = EbZ’ Cc = @’e =0,
C1 = _dao}a
S40 = a; =0, az =0, ay = —az, as = 0, bo = ——aaop, by = 0,
2a b

d b?
by = ——a3, b3 = ——aaz, by = —az, bs =0, c= —, e =0,c; = —day ;.
b 4a

2 2
&= a0+ mz+ ey + awy + gca4y2,
1 b 1 b
y= ———(b%ap + 2cda,) — —ayx — —(ba; + day)y — —asxy — asy?, (2.22)
2cb 2c b 2c

2

b
I= dx+ 4—:02 + bxy + cy? — daot,
c

where be # 0. This system is given by the set

2 2 1
S41 = as = —cay, as = 0, as = —cay, by = ———(b%a 2cday), by = ——a
a1 { 2 pcar as y As p s Do ZCb( ot 1), b1 Pyt
1 b2
by = _*(bal + da4)a b3 =0, by = ——ay, bs = —ay, a=-—, e=0,
b 2c 4c
C1 = —dao} .
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2
T = ao+ asx®+ asxy + ﬁ(baz; — 2cas)y?,

. b d d (® 2cas) b b + 1(2 bas)
= —_—ao— ~azr — —(bay — 2ca — —azr? — —ayux cas — ba
Yy 200 T 98 b2 4 3)Y 203 2c4y 3 1)y,
b2
I = dx+ 4—:62 + bxy + cy? — dagt,
c
(2.23)
where bc # 0. Set of solutions yield this system are
d
S42 = a; =0, a; =0, a5 = ﬁ(ba4 - 2003)C, bo = —%00, b, = —gas,
b 2
by = —(bas — 2cas), by = 5008 by = a0 bs = 508 — Qas

b2
a:4—,e:0, clz—dao}.
c

_ bda2 + 2¢(day + bby))x2+
. a c(da T
b2a; 4 2cday + 2bcb,  2c : ' 2
asTy — E(baz + 2Cb2)y27
d(b? day + bb 1
= ( a + C( as + 2)) (b2a2 + cday + be2)33+

c(bzaz —|— 2¢c(day + bbz))  2¢2
b

+ 2¢(day + bby))x? — 2—a4azy—i—
c

@(bzag + 2¢(day + bby) — 2cday)y?,

7 d + b? 2 by 4+ cy? bd*a?
= dxr+ —= T cy? —
4c Y Y b2a, + 2cda4 + 2bcb2

(2.24)

where cd(b?as + 2cday + 2beby) # 0. Set of solutions yield this system are

bd
S43 = agp = a2 (b2a2 + 20(d0,4 + bbz)),
b20,2 + 2c(da4 —|— bbg) 4 c2d

b as 2a,a2
a; = ——az, a5 — ——(baz + 2¢b2), bo = d( - —
2c d 2c

b%az + 2c(das + bbz))’

1 1
bl = —(20,0/2 - 7(b2a2 + 26(dCL4 + be)))’ a=—,e= 0,
2 2c 4c

4
by = 4c2 az + 2¢(day + be))(EaC -1) - gaazu ¢, = —day,

1
(03] + 2c(da4 + bb2))a, b5 = %(b2a2 + 2c(da,4 + bbz)) — CL4} .

" 4c2d
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2
T = ag+ asxy + —casy?,
b
. b d b )
y= ——ao—as(-y+ —xy + y?), (2.25)
2c 2 2c

b
I = dx+ 4—:132 + bxy + cy? — daot
c

where be # 0. This system is given by the sets

2
y C1 = _daﬂ} ’
d

2
S44 = {al =0 as — 0 as = 0 as = ECCL4, bO ——Aag, bl =0 bz = ——Qy,
C
= _gazh

b
b3—0 b4=——a4, b5=—a4,e—0 a =

S49 = {al =0 Ao = 0 as = 0, as = ECCL4, bO ——Aag, b1 0 b2 =
b? ©
, e =0, clz—dag}.

b
Qy, bs = —ay, @ =

b3 = 0, b4 = —
bda?
°= 2¢(day + bby))x?
v b2a, + 2cday + 2bcb,  2c as + 2c(day + bby))z*+
asxy — E(baz + 2¢bs)y?,
1 b2
— 5 (das+ bby)z — 57 (b7az + 2¢(das + bbz)) 2+
c

daz (da4 + bbz)

v= b%2as + 2c(day + bbs) 2c
b 1
boy — —aysry + —— (b%az + 2¢(day + bby) — 2cday)y?,

bd2
(2.26)

b2
d 2 b 2 _
z+ 4cw +bry +cy b2a, + 2cda4 + 2bcb2

I =

where cd(b?as + 2cday + 2bceby) # 0. The sets of solutions provide this system are

4
= ao+/as, by = (—a,c —1)as — gaam

bda2
2
—c(bay — 2caz), by =

- b2a, + 2dcay + 2bcbsy’
_gaa37

S45 = {ao
as = 4f2d(b2a2 + 2¢(day + bbs)), a 1:
= ——(d‘/ Vas + 2aap), by = g(dag + 2a y/ag v/a3),
2 b?
bs = —cazg —ag4, a=—,e=0 clz—dao},

4c

2

= — (bas — 2cas)c,

a1 = 4/Qp /a3, A2 = 0, asz = 0 as
b() = —g(d\/_\/_—F 20,010), bl = ——(da,3 + 20,\/_\/_), b2 = —Ea4,
2
= ——aag, by = (a3(4ac — b%) — 2abay), bs = —cas — ay,
b2
—, e =0, clz—dao}.

a=
4c
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2.1. Linear centers

r = bb b* byy?

T = ao d 2LY 2ad 2Y~,

_ 2 2 b,

Y= —aa + by + gabzwy + Ebw , (2.27)

2
I = dz+azx?+ bxy + 4—y2 — aodt,
a

where dab # 0. The sets of solutions provide this system are
2

Sar = {01 =0,a2=0,a3 =0, ay = —abza as = _%b% bo = 5 200

2 b b?
by =0, b3 =0, b4=gab2> b5=gb2, ngaezoa ¢y = —dag ¢,
S48 = {01:07 a2 =0, a3 =0, ay =0, a5 =0, boz—gaam by =0,
b2
b2:0, b3:O, b4:0, b5=0,c=4—,e=0, clz—dao}.

a

2.1 Linear centers

It is well known that the linear differential centers are isochronous and that the general expression

of such centers is as follows proved by J. Llibre and M.A. Teixeira work [28].

Lemma 2.1. A linear differential system having a center can be in the following form written below

4[62 _|_ w2

y+ 59 Y =aoar+ By + v, (2-28)
4o

T = —px
witha > 0 andw > 0.

The linear differential system (2.28) has the first integral

Hi(z,y) = 4(az + By)* + 8a(yz — dy) + w’y’.

2.1.1 Quadratic system with first integral ax? + bxy + cy?
The aim is to study the periodic orbits of continuous and discontinuous piecewise differential systems

formed by the following quadratic system and the linear isochronous center (2.28).

(2.29)

T = ag + a1 + axy + azx® + asxy + asy?,
y. = bO + bla: + b2y + b3$2 + b4$y + b5y2,
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2.1. Linear centers

we want to integrate this system by the following quadratic function
H = ax? + bxy + cy2,

so we must verify the algebraic equation H,& + H,y = 0, which gives the following sets of

solutions
_ — __bbo — _bby — __bbs — __bby — __bbs — __bbs _ b
Sql—{ag— 2¢° A1 = 2q° 43 = 2a’a2_ 2@,&4— 2q° 45 = 2a’c_4a, ’
— — _ _ __ 2ab __ 2abs—bb __ 2(abby—2a’bg
qu—{ao—o, bo—O,al——b2, bl— b2’ 0,3—%, b3_(b72’
— 2b2€ _ 4ab5c—bzb5—2bb4c - 2b5C
az = — b ay — b2 s 5 — — b 9

Sq3:{a0:0a bo =0, a; =0, blz_%a a3 =0, b3 = =%, by =0, by = —*=

c’ c’
b5:O, bZO},

where abe # 0. Therefore, we have three cases.

Case 1: The set of solutions s4; gives the following system

I N I S (2:30)
yl = bo -|— bla: -|— b3332 + bz’y —|— b4213y -|— b5y2,

the first integral of this system is

b2
H, = —yz + ax?® + bxy,
4a

and the first integral of linear system in this case becomes. To obtain a continuous piecewise
differential system formed by this quadratic system and linear center (2.28) we must verify the
following algebraic system

.’151 —ID'l =0andy'1 _yl :O,
the solutions of this algebraic system are

s1 = {bs =0, vy = bo,b2 = 3, b =0, a = 0},
32={b5=O,'y=bo, 6= —"to, a:7G(4522b;w2), b2=,3},
s3=4{bs=0,vy=0,by=0, b, =0, 8=0, a =0},

84 ={bs=0,vy=0,bp=0, «a =0, by =3, a =0},
55:{b5:077:b0a b2:03b:0aB:0aa:0}7

s¢ ={bs =0, vy =bg, d =0, by =3, w=—2i8, b =0},
sy =4{bs =0, vy =bg, d =0, by =3, w=2i83, b =0},
ss={bs =0, 7y=bg, 6 = =20, b, =0, w =0, § =0},

The only solution verify the all conditions (abc # 0 and w > 0, a > 0) is s».
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2.1. Linear centers

The system concerning the solution s; is

I (2.31)
U1 = bp + by + bsx? + byxy,
and its first integral is
v 2
H, = —y° + ax” + bxy.
4a
The first integral of linear system becomes
da (48 + w?) (%2y + box) ax (482 + w?) :
H, = a 4 2,2,
z b3 + ( 265 + By) +yw
To have periodic orbits we must verify the following algebraic system
H,(0,y) — H,(0,Y) = 0and H,;(0,y) — H;(0,Y) = 0,
then we get
Vly—-Y)y+Y) . @B+ (y—Y)(2bo+ By +FY) _
4a B '
We have three solutiony = Y,y = —Y or Y = —2%F8Y thig piecewise system has a continuum

B
of periodic orbits. So, no limit cycle.

To obtain a periodic orbit discontinuous piecewise differential system formed by this quadratic

system and linear center (2.28) we must verify the following algebraic system
H,(0,y) — H:(0,Y) = 0and H;(0,y) — H;(0,Y) = 0,

then we get

b*(y—Y)(y+Y)
4a

=0and(y —Y) (—Saé + 48%y + yw? + 4B8%Y + sz) = 0.

_ —8ad+48%y+yw?
w24432

We have three solutionsy =Y,y = —-Y orY = , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.

Case 2: The set of solutions s42 gives the following system

bsc—b2bg —2bb _
) — (4absc b25 2bbac) Ty + (2ab5b bba) 1,2 _ 2[;2cy _ 21;75cy2 _ by, 32
. Z(abb4—2a2b5) 2 2abs 2 '
Y=——"—"p Z —|—Tm—|—b2y—|—b4azy+b5y ’
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2.1. Linear centers

the first integral of this system is
H, = ax?® + bxy + cy2,

To get a continuous piecewise differential system formed by this quadratic system and linear center

(2.28) we should satisfy the following algebraic system
& — @ = Oand gy — g = O,
which gives the following solutions

31:{b5:0,7:0,5:0,c:;ﬁ, bzzﬁ},

s ={bs=0,vy=0,=0,b=0,b=0, B8 =0},
s3={bs=0,v=0, =0,bp =0, w=0, =0},
s84={bs=0,vy=0,=0,c=0, bo =3, b =0},

ss ={bs=0,vy=0,0=0,c=0, by =3, w=—2i8},
s¢ ={bs =0, v=0,9)0, c=0, by =B, w=2i6},
sr={bs=0,vy=0,=0,a=0,by=75,b=0},
sg={bs=0,vy=0,=0, a =0, by =38, w=—2i08},
sSg={bs=0,vy=0,0=0, a=0, by =, w=2i0},

the unique solution satisfy the all conditions (abc # 0 and w > 0, & > 0) is s,. Then the system
provided by this solution is

. 2 4+w? ba(462%+w?))
(4a) (4aB) ?
{ (2aby) (233)

yl - bw2+b4my + (2Zﬁ)w + By7

thus its first integral is
b(48% + w?)
Y

H,=az?2+b
1 = ax” + bxy + 80

9

the first integral of linear system is
H, = 4(ax + By)? + y*w?
To have periodic orbits we must verify the following algebraic system

H1(09 y) - HI(O’ Y) = 0 and Hl(Oa y) - Hl(OaY) =0,
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2.1. Linear centers

which yield

b4 +w?)(y—Y)(y+Y)
8af

=0and (48 +w?) (y—Y)(y+Y) =0.

We have two solutions y = Y, y = —Y , then this piecewise system has a continuum of periodic

orbits. So, no limit cycle.

To preform a periodic orbit of discontinuous piecewise differential system formed by this quadratic

system and linear center (2.28) the following algebraic system must be verified
H,(0,y) — H,(0,Y) = 0and H,;(0,y) — H;(0,Y) =0,
thus,
c(y—Y)(y+Y)and (y — Y) (—8046 + 4P%y + yw? 4+ 4B8%Y + w2Y> .

_ —8ad+4p%y+yw?
w2 +4ﬁ2

which gives three solutiony =Y,y = —Y orY = , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.

Case 3: The set of solutions s43 gives the following system

04,2 (2.34)

1 = a2y + asxy + asy?,
z* — Sy,

. — —aa2 .
Y1 = cm c

where the first integral of this system is
H, = az?® + cy?,

To obtain a continuous piecewise differential system formed by this quadratic system and linear

center (2.28) we must verify the following algebraic system
1 — % =0andyy — 4y = 0,
the solutions of this algebraic system are

31:{a5:0,7:0,6:0, a2:—%,5:0},
s={a5=0,v=0,d=0,a=0, w=0, 8 =0},

The only solution verify the all conditions (abc # 0 and w > 0, a > 0) is s3.

36



2.1. Linear centers

This solution gives the following system

2
T = adxy — %=
s 239
Y= GacT— 0%
and its first integral is
H, = ax® + cyz.
the first integral of system linear is
H, = 40%x? + 4?2
To have periodic orbits we must verify the following algebraic system
H,(0,y) — H,(0,Y) = 0 and H;(0,y) — H;(0,Y) = 0,
then we get
c(y—Y)(y+Y)=0andw’(y - Y)(y+Y) =0,
we have two solution y = Y, y = —Y , then this piecewise system has a continuum of periodic

orbits. So, no limit cycle.

To obtain a periodic orbit discontinuous piecewise differential system formed by this quadratic

system and linear center (2.28) we must verify the following algebraic system
H,(0,y) — H,(0,Y) = 0 and H;(0,y) — H;(0,Y) = 0,
then we get

c(y—Y)(y+Y)=0and(y —Y) (—8046 + 482y + yw? + 48%Y + sz)

_ —8ad+4B%y+yw?
w24-432

We have three solutiony = Y,y = —Y orY = , then this piecewise system

has a continuum of periodic orbits. So, no limit cycle.
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Chapter 3

Continuous and discontinuous piecewise isochronous

centers

In the theory of limit cycles in planar differential systems, most of the first examples were usually
related to practical problems with mechanical and electronic systems, then appeared the periodic
behavior in all fields of science. So, proving the existence or non-existence of this problem became
one of the most difficult goal in the qualitative theory of planar differential equations.

Piecewise differential systems are provided as one of the most remarkable non-smooth dynamical
systems and widely applied in various scientific domains of studies such as engineering, electronics,
and physics [7, ?, 14, 20]. Since the 1930s, many books discussed the extension study of limit
cycles [3, 4, 33] due to the applications such as mechanics and electrical circuits. This notion
became important in the continuous and discontinuous piecewise differential systems separated by a
straight-line.

We could say that the singular point p € R? is a center of a planar differential system if there is
only a neighborhood U of p where all the orbits of U \ {p} are periodic. When all the periodic
orbits surrounding a center have the same period, this center is called isochronous. p is called a
uniform isochronous center or rigid center, only when the angular velocity is constant. The centers
had been firstly studied by Poincaré [30] and Dulac [11], and the notion of isochronocity was reported
by Huygens [16] in 1673.

In our present work, we focused on continuous and discontinuous piecewise differential systems
formed by the linear isochronous center and the quadratic or cubic uniform isochronous center
separated by the straight-line * = 0 to study the non-existence and the existence of crossing
periodic orbits and crossing limit cycles defining the maximum number of crossing limit cycles for
these systems.

It is well-known that a crossing periodic orbit or a crossing limit cycle is defined as a periodic

orbit or a limit cycle that intersects the discontinuity line £ = 0 in two different points.
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3.1. Quadratic and cubic uniform isochronous centers

The meaning of the continuity of a piecewise differential system separated by the straight-line
x = 0 formed by two centers is that the vector fields defined by these two centers (linear, quadratic
or cubic) coincide on the discontinuity line x = 0. We can conclude that a continuous piecewise

differential system is both continuous in R? and analytic in R? /{x = 0}.

3.1 Quadratic and cubic uniform isochronous centers

The objective to accomplish is to study the periodic orbits of continuous and discontinuous
piecewise differential systems formed by the following quadratic or cubic uniform isochronous

centers (3.1), (3.2), and the linear isochronous center (2.28).

m.:_y+x27 y=z+ zy, (3.1)

& =—y+ 2%y, y=2x+ xy’. (3.2)

System (3.1) is the unique quadratic uniform isochronous center [21, 10] and system (3.2) is the
easiest cubic uniform isochronous center [8, 18].

For getting the general expressions of the quadratic and cubic uniform isochronous centers, we
transform the normal forms (3.1) and (3.2) by the following general affine change of variables for a

continuous piecewise differential system

(z,y) = (a1 + biy + 1, axx + by + c2), (3.3)

considering

a1b2 — CL2b1 # 0. (34)

Generalized uniform isochronous system (3.1). Doing the change of variables (3.3) the quadratic

system (3.1) becomes

. —bzc% —|— b1C1 —+— blczcl —|— szz (biCZ - b2blcl + b% + bg)
T = + Yy
azb, — a,b; azb; — a,b;
azbici; + a1bica — 2a1b2¢1 4 a1by 4 aqb,

x + biyx + a2,
Clgbl — albz

(3.5)

2 2 2 2
. Q2C] — @a1C1 — a1C2C1 — A2C2 ajce — aza;c1 + aj + a; n
Y= - Z

azb; — a1b; azb; — a1b;
2a2b161 — alblcz — a1b201 — Cl,lbl — a2b2

y + arzy + by’
azbl — a1b2
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3.2. Statement of the main results

After changing the variables (3.3) and knowing that — (1 + y) /(2% + y?)/2 is the first integral
of the system (3.1), we were able to obtain the following first integral of the generalized isochronous

quadratic system (3.5).

—asx — by —cy — 1

V(@1 + by + 1) 2 + (a2 + bay + c2)?

HGQ(CI:’ y) =

Generalized uniform isochronous system (3.2).

After the linear change of variables (3.3) is done, system (3.2) becomes equivalent to the following

generalized isochronous system.

” :bchCﬁ — blcgcl — blcl — szz 4 —bfcg + bgcf — b% — bgy+
a by — azb; a by — azb;

aszC% — 2(1;2()1(32(31 + 2&1()20201 — alblcg — a1b1 — a2b2

ai1by — azb,
aszcz —|— 2&2&11)201 — 2a2a1blc2 — a%blcl 2 2CL1b§Cl — 2a2b§02
x° +

a1by — azby a1bz — azb,
2 2 2 2 21,2 212 2 2
b1b201 — b1b2C2 2 a1a2b2 — a1a2b1 3 a1b2 — a2b1 2 a1b1b2 — a2b1b2 wyz
9
a1bz — azb, a1bz — azb; a1by — azb; a1bz — azb,
2 2 2.2 2.2 2 2
. CL2C2C1 — alc2cl — A1C1 — A2C2 —a102 —l- CL2(31 — a,l — a2
azb; — a1 by azb; — a1b;
2 2
a2b201 + 2&2()10201 — 2a1b20201 — alblcz — a1b1 — a2b2 ajas (azcl — alcz)w2
azb; — a1b; azb; — a1 b,
2 2
2 (a2b101 - a1b2c2> agb%c2 + 2a2b2b1c1 — 2a1b2b102 — albgcl 2
+ Y
azb; — a by azb; — a1b;
2 2 3
+ aia2x”y + (a2b1 + a1b2) y*x + b1b2y”.
(3.6)

The cubic system (3.2) has the first integral (* — 1)/2 (?® + y?). Thus, the first integral of
system (3.6) will be

(a1 +biy+c)?2—1
2 (a1 + b1y + ¢1) 2 + 2 (a2x + by + c2) 2’

HGC(wa y) =

3.2 Statement of the main results

In a study of J. Itikawa and his collaborators [18] for the bifurcation of limit cycles from the
periodic orbits of the uniform isochronous center of the differential systems (3.1) and (3.2), the

authors applied the averaging method of the first order for discontinuous differential systems, when
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3.3. Proof of Theorem 3.1

they were perturbed inside the class of all discontinuous quadratic and cubic polynomials differential
systems with four zones separated by the axes of coordinates. In our work, we studied two cases at
the same time: the continuous and the discontinuous of the same system but without perturbation

and separated by the line z = 0.

Know, we expose our first main results characterizing the existence and non-existence of crossing
periodic orbits and crossing limit cycles for continuous and discontinuous piecewise differential
systems formed by the linear isochronous center and the uniform isochronous quadratic or cubic

center.

Theorem 3.1. The continuous piecewise differential systems formed by the linear differential center
(which is isochronous) and the uniform isochronous quadratic and cubic center separated by the straight-

linex = 0 have no crossing limit cycles.

3.3 Proof of Theorem 3.1

Our first objective is to study limit cycles of continuous piecewise differential systems formed by the
linear center (2.28) and the generalized quadratic system (3.5) or the generalized cubic system (3.6).
The study of an existing crossing periodic orbits of such piecewise differential systems it need the

following algebraic system must be satisfied.
H(z1,y:) — H(x2,y2) = 0, Hy(x1,y1) — Hi(x2,y2) = 0, (3.7)

It should be noted that H (x, y) is the first integral of the uniform isochronous quadratic or cubic
system and Hp (x, y) is the first integral of the linear center. The two intersection points (1, y1)

and (xa, y2) with y; # ys are the crossing periodic orbits with the straight-line = 0.

In order that the piecewise differential system formed by systems (2.28) and (3.5) to be continuous,

we had to impose that

e both systems coincide on = 0,

e both systems must verify the following algebraic system
£GQ — Trle=0 = 0,  Yg@ — YLlz=0 = 0, (3.8)

where &1, Y1, e and Ygq are the derivatives respecting time ¢ of « and y for linear system and
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3.3. Proof of Theorem 3.1

quadratic system, respectively. Thus, the algebraic system will be as follows

—a2b10 4+ a1b20 — bac? + bicy + bicacy + bacy = 0,

4asb1 8% — 4a1b38% 4 asb1w? — a1bow? + 4ab? + 4ab2 — 4abibacy + 4abic, = 0,
—asbi1y + a1byy + a2cf — a;cy — aijcac; — ascy = 0,

—azPb; + a18bz + 2a3bic; — arbicz — arbae; — arby — azxb; = 0,

b, = 0.

All real solutions for this algebraic system are

azc? — aic

S1 — {b1:0’b2:0,c2: }’
a;ci + az
Sg = {a1=0,a2=O,b1=0,b2=O},
83 — {a2:03b1207b220301:0}a
s4 = {a1=0,a2=0,b; =0, c; =c?, a =0},
4a?c? + 8asaqc a’w? + 4a? a;c a
55 = {b1=0, a= 1¢] + 8aza;c; + ajw” + 2 :L—Fz,
4a1b2 ax
—asc® + aqc aicsc asc cc—c¢
Y= 2C] + ai1c1 + a1c2c + 22’5: 1 2}.
albz 23]

S5 is the unique set of solutions that verify the conditions asb; — a1b2 # 0, > 0 and w > 0,

therefore, in this case, we have a continuous piecewise differential system.

In order to obtain crossing periodic orbits, the algebraic system (3.7) must be solved and becomes

b2 (yz \/(b2y1+02)2+03—y1 \/(b2y2+62)2+Cf> +(c2+1) ( \/(b2y1+62)2+cf— \/(b2y2+cz)2+cf>

V/ (b2y1+c2)2+c2 4/ (bayz+ca)2+c3
(y1—y2) (4(a1c1+a2)?+a2w?) (b2 (y1+y2)—2c3+2c2) 0
2 - 9
albg

b

by solving this algebraic system, we get
012 — Co

Y1 = Y2 = by

Consequently, this piecewise differential system has no periodic orbits and then no limit cycles.

To obtain a continuous piecewise differential system formed by systems (2.28) and (3.6), both systems

must coincide on & = 0, which induces the verification of the following algebraic system

Tee — &p|e=0 = 0, Yec — Yr|z=0 = 0. (3.9)
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3.3. Proof of Theorem 3.1

Once done, we get the following algebraic system

—a2b10 + a1b20 — bacac? + bicier + bicy + bacs = 0,

4a2b1 8% — 4a1b:8% + azbiw? — ar1baw? + 4ab? 4 4ab2 — 4abic? 4 4abici = 0,
b1b, (blc2 - b2¢1) =0,

—asb1y + a1bay + azeac? — a1cier — ajcp — azcr =0,

—azBby + a18bs + a2b2cf + 2asbicacqy — 2a1bac2c; — alblc§ — aib; — axby; =0,
azbics + 2a2b2bic1 — 2a1babicy — arbie; =0,

bybs = 0,

and by solving it, we get one of the following sets of real solutions
slz{azzm(z(_cf)j:), b; = 0, by = 0},

sy ={a; =0,b; =0, ¢, = —1},

s3={a; =0, b, =0, ¢, =1},

s4 ={a; =0,b; =0, by =0, ¢; = —1},

ss ={b; =0, b =0, ¢c; =0, c; = 0},

s¢ ={a; =0,b; =0, by =0, ¢c; =1},

sy ={a; =0, by =0, by =0, co = 0},

sg ={a; =0, a; =0, by =0, cc =0, a = 0},

s9 ={a; =0, a; =0, by =0, ¢c; =0, a = 0},
sio={a;=0,a;=0,b; =0, c; =0, coc =0, a =0},

2 aaibz—a2
—_ P — _ a2 —_ a2c¢2 — Cc2 R 2
s1=1{b1=0,¢c,=0, =2, y=22 §=_2 = _2Vilihu,}

ajl b2 ’ al ’

2\/aa1b2—a2
— — — — a2 — a2c¢2 — Cc2 I 2
812—{b1—0, 01—0,5—(11,‘)’— 6__70,1’('0_7}

a1b2’

813:{a1:0, CL2:O, b2:0, 61:0,02:0,06:0},

24/ —aazb; —a?
— — — — ai — ajici ) - 1
814—{b2—0, 62—0,,3——(12,‘)’—— é—az,w ——}

azb; ’ a2 ’

2\/—aa2b1—a2
— — — — ai — ajici ) —_ 1
815—{b2—0,C2—0,,B——a2,‘)’—— (S—az,QJ——}

azb; ’ az ’

/— )
316:{b2:07 c; = 0, C2:0aﬁz_ﬂ’7:0’6:0?w:_2 aazby al}

a2 a2 ’

_ a2
s17={by=0,c1=0,c,=0,8=—%, y=0,6 =0, w= Y onhruy

a2 a2 ’

318:{0’1:0’b2:0762:05/620a7:076:%9&’:—2\/& _%}7
819:{0’1:07()2:09C2:03B2077:075:¢%’WI2\/E _z%}a
820:{0,1:0,b2:0,C]_:O,62:0,16:0’7:0’5:0,60:_2\/5 _%}’
_ _ _ _ _ _ _ _ _ b1
821 ={a; =0, by =0, ¢; =0, 62_0’6_0’7_0’5_0"'0_2\/&\/%}‘
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3.4. Proof of Theorem 3.2

The sets of solutions verifying the conditions asb; — a1b2 # 0, « > 0 and w > 0 are S11, S12, S14,
S15, S165 S17> S18> S19, S20, and So3. It should be pointed out that we have a continuous piecewise

differential system in these cases where we must study a crossing periodic orbit in all these ones.

A crossing periodic orbit is obtained by solving the algebraic system (3.7). For the cases s11 and s12,

the algebraic system becomes

b2(y1 — y2) (b2y1 + b2y + 2¢2) 0 da(y1 — y2) (bays + bay2 + 2¢c2) 0
2 (bayy + c2) 2 (bayz + c2) 2 ’ a; ’
by solving this system, we get the trivial solution y; = y3 and y; = _zczbi;bm, Y2 € R.

Furthermore, for the cases s14, S15, S18, S19, S20, and Sa1, system (3.7) becomes

bi(y1 — y2) (b1y1 + biy2 + 2¢1) 0 4oy — y2) (brys + bryz + 2¢1) 0
2(biy1 +c1) 2 (bry2 + ¢1) 2 ’ as ’
and also by solving this algebraic system, we obtain the trivial solution y; = y2 and y; =
_"1y+1_2‘31, Y2 € R Finally for the cases s1¢ and s17 the algebraic system (3.7) will become
(y1 —y2)(y1 +y2) 5 _dabi(yr —y2) (Y1 +92) 5
2b2y2y2 ’ as ’
indeed, we get the solutions y; = y3 and y; = —ya.

Concluding that in all these cases, the continuous piecewise differential systems formed by a linear
center (2.28) and a generalized cubic system (3.6) has a continuum of periodic orbits, so, no limit

cycles.

Theorem 3.2. The discontinuous piecewise differential systems formed by the linear differential isochronous
center and the uniform isochronous quadratic and cubic center separated by the straight-linex = 0

have at most one crossing limit cycles.

3.4 Proof of Theorem 3.2

In this part, we study the crossing limit cycles for discontinuous piecewise differential systems
formed by the isochronous linear center (2.1) and the uniform isochronous quadratic system (3.1) or
cubic system (3.2). To simplify the calculations, we used another way a little different from that used

in the proof of theorem 3.1, but the idea remains the same.

We start first by the quadratic system, by replacing in the first integral H(x,y) = (—y —
1)/(Vx% 4+ y?) = k; of system (3.1) « by 0 and we solved the result equation for y, getting

1k R

Yg = k%—l )
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3.4. Proof of Theorem 3.2

and doing the same computation for the first integral of system (2.28), we get

_ 8adt 4/640252+4k2(462+w?)
yL - 2(452+w2) 9

To obtain a crossing periodic orbit, yz, of linear center must coincide with y¢ of quadratic system,

by solving the equation y;, — yo = 0 we get

k _ vV 4ad+4p24w?
1 = 2vave

kz = 4ad.

Then, the discontinuous piecewise differential systems formed by the isochronous linear center (2.1)
and the uniform isochronous quadratic system (3.1) have one limit cycle. A example is shown in

figure 3.1.

Figure 3.1: Limitcyclefora =60 =2, b=a==v=w = 1.

45



Conclusion

In this thesis, we have first given essential information as definitions, lemmas, and theorems used
in our study. Second, we have classified quadratic differential systems having a special invariant of
the form ax? 4 bxy + cy? + dx + ey + c1t and we proved that there are 21 different families
of quadratic systems having invariants of this form.

Next, we have studied the limit cycles of planar piecewise differential systems formed by quadratic
systems that have the first integral of the form ax? + bxy + cy? and linear center. We proved that
these piecewise systems have a continuum of periodic orbits and no limit cycles.

Finally, we have tackled the number of limit cycles of the piecewise planar differential system
formed by the quadratic or cubic systems with uniform isochronous center and linear center
separated the straight-line = 0 by treating the two cases continuous and discontinuous.

We proved that piecewise systems have at most one limit cycle for discontinuous piecewise
systems and we give an example for the quadratic case and no limit cycles for continuous piecewise

systems.
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