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INTRODUCTION

Over the past years, the flexible beam structure is widely used in modern engineering because
of its advantages (e.g. light weight, low energy consumption, etc.), and its control problem
becomes one of the hot research topics. A large number of systems can be modeled as
mechanical flexible systems such as telephone wires, conveyor belts, crane cables, helicopter
blades, robotic arms, mooring lines, marine risers, and so on.

However, unwanted vibrations due to the flexibility property and the time-varying
disturbances restrict the utility of these flexible systems in different engineering applications.
If the flexible beam system cannot be well controlled, the vibration will not only affect the
accuracy and efficiency of the system, but also accelerate the equipment fatigue damage,
seriously shorten the service life of the materials, and bring production safety risk and
economic loss. Therefore, it is very important to effectively control flexible beam systems.
Flexible beam systems and their vibration suppression have received great attention in the
literatures. Boundary control has several merits for vibration suppression of the flexible beam
systems. In this work we study the decay rates for the solutions to the mixed problem for
Euler-Bernoulli beam equation with memory term.

Yit + Yrwor — f(f 9(t — $)Ypuar(x,8)ds =0 in QxR
ymx(l, t) - f(f g(t - S)y:ca:a:(L s)ds =0

pYit (7, 1) + Elyppan(0,1) — Typa(,t) — EI [§ g(t — 8)Yae(,5)ds =0 in QxR
Yz (0,1) = Yo (L, 1) = y(0,8) =0 vt > 0,
—EIYpen(Lt) + Ty (L, t) + EI [5 g(t — 8)Yaua(L, s)ds = U(t) vt >0,
U(t) =0.
(2)
Since the pioneer works of Dafermos in 1970, where the general decay was discussed, problems
related to viscoelasticity have attracted a great deal of attention and many results of
existence and long-time behavior have been established. Global existence and uniform decay
of solutions have been discussed for similar problems by different authors. It seems that all
started with kernels of the form h(t) = e=#*, 3 > 0, then kernels satisfying
—&1h(t) < B (t) < —=&h(t), ¥t > 0 for some positive constants & and & together with some
conditions on the second derivative. Later these conditions have been relaxed to only
h'(t) < —&h(t), for all ¢ > 0 and some £ > 0. Recently, the constant £ has been replaced by a
function of time £(¢). This has allowed the authors to derive decay results of other types than



just exponential or polynomial type. In our work, we would like to prove that the energy

decays at a little bit slower rate than v(¢)~!. In this respect we recall that when v(¢) is a

polynomial this result is somehow in agreement with the finding of Fabrizio and Polidoro,
where the authors proved that the degree for the decay of the energy is smaller than or equal

to the degree of the decay of h(t). We mention here that a mere replacement of the
exponential function by an arbitrary function (t) does not prove the result without further
conditions on 7(t).
our work consists of two chapters:
Chapter 1:
this chapter presents the preliminary concepts(Inequalities of Cauchy schwartz, Young,
Holder’s and poincaré).

Chapter 2:present
On this chapter we study three problems: first one: Arbitrary decays in linear viscoelasticity,
the second one, Arbitrary decay for a Euler-Bernoulli Beam Equation with Memory |,
The third one, Stabilization of a viscoelastic Euler-Bernoulli beam .



CHAPTER 1
PRELIMINARY CONCEPTS

1.1 Inequalities

The Cauchy-Schwartz inequality is an elementary inequality and at the same time a powerful
inequality, which can be stated as follows:
Cauchy-Schwarz inequality :

eyl <llzllllyll,  (z,y € R")

Lemma 1 [5] Let p(x,t) € R be a function defined on z € [0, L] and t € [0,00) that satisfies
the boundary condition

©(0,t) = 0,Vt € [0, 00) (1.1)
then the following inequality holds
©*(x,t) < L/()L(gol(x,t))zdx Vo €0, L] (1.2)
If in addition to (1.1), the function @(x,t) satisfies the boundary condition
¢'(0,t) =0, Vtel0,00), (1.3)
then the following inequality also holds
(¢ (z,1))* < L/OL(cp”(x,t))2dx Vo € [0, L] (1.4)
Young inequality
Theorem 1.1.1

1 1
Let1 <p,g<oo, —+-=1,
p
then



1 1
Holder’s inequality: For (2 an open subset of R". Assume 1 < p,q < oo, —+ — = 1. Then,
P q
if ue LP(Q), v e LIQ)
[ T | da < Jull, ol

Poincaré inequality
Let I=(a,b) be an open interval, possibly unbounded, and let p € R with 1 < p < o0
The sobolev espace W1P(I) is defined to be

WHP(I) = {u € LP(I);3g € LP(I) suchthat /wp’ - —/gso Vo € Co(1)}
I I

We set
HY(I)=W"*(I)

For v € WHP(I) we denote v/
1

Given 1 < p < oo denote WP (1)

the closure of C}(I) in WP(I).Set

Hy(I) = Wy (1)

The space W, (I) is equipped with the norm of W'?(I), and the space H{ is equipped with
the scalar product of H!.

Theorem 1.1.2

Let p, so that 1 < p < oo and §2 is a bounded, open subset of R™ . Then, there exists a
constant ¢, depending only on Q2 and p, so that, for every function u of the sobolev space H}(€2)
of zero-trace functions,

[ull ooy < cl| Dul|Le(o-

for each q € [0,p'], such that ¢ < p’ the constant ¢ depending only on p,q,n and .
such that D 1is the differential of u .

1.2 Lyapunov Exponential stability theorem
Suppose there is a function V and constant o > 0 such that
e V is positive definite.
o V(2) < —aV(z) for all z
Then, there is an M > 0 such that every trajectory of & = f(z) satisfies
lz(6)]| < Me™% |(0)]]-

This is called Global Exponential Stability.

V(z) < —aV(z) gives guaranteed minimum dissipation rate, proportional to energy.



1.3 Converse Lyapunov global exponential stability
theorem

Suppose there is f > 0 and M > 0 such that each trajectory of & = f(z) satisfies

|z ()] < Me=Pt|z(0)] for all ¢ > 0.

Then, there is a Lyapunov function that proves the system is exponencially stable there is
function V : R™ — R and contant o > 0 such that

e V is positive definite.

e V(2) < —aV(z) for all z.



CHAPTER 2

STABILITY SOLUTIONS FOR A
EULER-BERNOULLI BEAM EQUATION

2.1 Arbitrary decays in linear viscoelasticity

We shall consider the following wave equation with a viscoelastic damping term:

— Ay + [5g(t — s)Ay(s)ds =0, in  Qx R*
y=0,on T xR" (2.1)
y(@,0) = yo(2), 4:(,0) = 1 (x), inQ

where € is a bounded domain in R" with smoth boundary I' = 0€2, such that Ay =37, %.

Theorem 2.1.1 Let (yo,y1) € H?*(Q)NH(Q)zHL(Q) and g(t) be a mnonnegative summable
kernel.
Then ther exists a unique regular solution y to problem (2.1) such that

y € Lis(0,00; H*(Q)(Hy (), y: € Li%.(0,00; Hy (), st € L. (0, 00; L*(€2))

If (yo,y1) € HF(Q)xL?(Q), then there exists a unique reqular solution y satisfying

y € C([0, 00); Hy (2)) (N € ([0, 00), L*(92)).

Multiplying (2.1) by y; and integrating ouver 2 , we get

¢
/ytyttdx_/ ytAydx—F/ yt/ g(t — s)Ay(s)ds =
Q Q o’ Jo

I, = /ytyttd$
Q

Lpd, o
- - = 2.2



I, = —/ytAydx
Q

1d
= /QVytVydx: 2

S Il
o= [ [ ot —s)ay(s)s
= — [ Vu [ gft - 9)Vy(s)ds

Combining (2.2),(2.3) and (2.4), the result will be

Sl + 19913} = [ Ve [ gt = 5)Vy(s)dsda

We define the (classical) energy by

1 2 2
E(t) = {llwllz + Vyll3}
Then by equation (2.1) it is easy to see that

E'(t) = /Q Vi /Otg(t — 5)Vy(s)dsdx

Observe that E’(t) is of an unknown sign and that

2 [V [ gl = ) Vy(s)dsde = [ ¢OTy(0)d — g(0) |Vl

S OVt — ([ gls)as) V)
where

g0u(0) = [ glt = )lult) — v(s)*ds

and |.|| denotes the norm in L?(Q).Therefore,if we modify E(t) to

c(t) i= S {lull3 + (0 = [ go)ds)IVyl3+ [ OVy(e)ar)

we obtain

“(0) = 5 ([ 9OV — )y l2).
We assume that the kernel is such that
+oo
1—/0 g(s)ds=1—Fk>0.
Hence,if ¢’ < 0,it follows that () is nonincreasing and bounded above uniformly by

£(0) = E(0).
Next, we define the standard functionals,

D (t) = /Q yyd,
8

(2.3)

(2.4)

(2.5)

(2.6)



valt) o= = [ [ gft = 5)(u(t) — y(s))dsd,
and the new one
walt) = [ [ Gt = 5)|Vy(s) s,

where

Go(t) =20 [ gls)(s)ds.

A similar functional to G, (¢) has been used in the theory of population dynamics where the
problems are of Volterra type.The modified energy we will work with is

L(t) = e(t) + T Ahi() (2.9)

for some \; > 0,7 =1,2,3 to be determined.

2.1.1 Equivalence between L(t) and E(t) 4 13(t)
The first result tells us that L(t) and () + v3(t) are equivalent.
Proposition 1 There exist p; > 0,1 = 1,2 such that

prle(t) + ds(t)] < L(t) < pale(t) + (1))
for allt >0 and small \;;1 =1,2.

proof 1 By the inequalities
Applying Cauchy Schwartz, Young’s inequality and Poincare we get

i) = /Q Yy

(] (w)*de)
yell2llyll2

1 2, % 2

slvellz + S IVyllz (2.10)

N |=
N|=

Y1 (t)

IA

(| (wda)

IN

IA

and

walt) = = [ [ ot = 9)0tt) - y)dsds

Il ot = 9)((0) = yls)ds)2do)?

/Q( /Otg(t—s)(y(t)—y(s))ds)gd:r < /Q ( /Otg(t—s)ds)( /Otg(t—s)(y(t)—y(s))2d5)dx
cp/O g(s)ds(/Q/O gt — )(Vy(t) = Vy)*ds)dx

cpk /Q gUOVydx

IN

IN

IN



we get
Ualt) < lluill(ke, | gOVyda)'?
1 c
< Slwld+ 2k [ (gOVy)da (2.11)
where ¢, is the poincare constant, we have
1, 5 1 t , 1 1,
L) < Sl + 500 = [ g(s)ds)IVyll3 + 5 [ gOVy()de + Al Il
2 2 0 2 Ja 2
c 1 c
+29y13) + Ao Gl + 2k | (90Vy)d) + Aay
simplicity, we have

1 t
L(t) < 50+ M+ M)l + 51— [ g(s)ds + X)Wyl

2

N —

1
+5 (L4 dacyk) /Q (gOVy)da + Agiis(t)
On the other hand,

t
2L(t) > lluill; + (1= | 9(s)ds)IVyll3 + | g0Vy(E)dz = ha(lull

el V9l3) = Nalll3 + ek | (909y)de) + 2Asts

simplicity, we have
2L(t) = (1= A = M)yl + (1 = & = \igy)[[Vyl3

(1 = Aacyk) /Q (gOVy)dz + 22g105(1)

Therefore, p1[e(t) + ¥3(t)] < L(t) < pale(t) + 3(t)] for some constantn p; > 0,i = 1,2 and
small A\;,i = 1,2 such that

1= =X >0 Ay <1 —A 1
! 2 = 2 1 ! :>)\2<min{—,1—)\1}
1—>\2Cpk>0 )\2 < 6177 Cpkf
1—Fk— A\cyk 1—
1 >0 i{)\1< 17k)\1<1 ¢/\1<min{1,( k)}
1—X1 >0 K Cp

The following inequality will be used repeatedly in the sequal.

Lemma 2 )

b
< da® + — :
ab < da +46,a,bER,5>O

Our next result is a simple identity which gives a better estimate for

/QVy /Otg(t — 5)Vy(s)dsdx

10



Lemma 3 We have, fort > 0,

/QVy /Otg(t — $)Vy(s)dsdx

1

= ([ 9Tyl + 5 [ ot = )IVyls)lids - 5 [(0OVy)dr (212

The proof is straightforward.
This identity is better in our case than the following ones:

/QVy /Ot g(t — s)Vy(s)dsdx

1t t
< 24— — 2 >
< 3|9yl + 55 als)ds) [ gt = )| Vy(s)l3ds.t > 0,6 >0

or
[y [ ot =) 7 yls)dsds
Q 0
t t
=— [ vy [ gt =s)(wu(t) = wy(s)dsdr + [ vy [ gt = s)(vy(®)dsde
t t 9
—— [y [ gt =)@yt = vy())dsdz + ([ gls)ds)]| 7 vl
Q 0 0
t 1 ¢
< +— =z
<@+( 9Dl vyl + ([ 9(5)ds) [(@Ovyda 120,60
Which were used in almost all the previous works to estimate the term

/QV?J /Otg(t —5) vV y(s)dsdx

that appears in the proofs (see the first relation in the proof of Theorem 2.1 below).our rela-
tion (2.12) provides us with the negative term % Jo(¢O 7 y)dx which will be of great help in
canceling a similar undesirable term

2.1.2 Asymptotic Behavior

In this section we state and prove our result.But first we introduce the following notation .
For every measurable set A C R ,we define the probability measure § by

1
9(A) = k/Ag(s)ds (2.13)
The flatness set and the flatness rate of g are defined by
Fyi=s€R":g(s) >0andg'(s) =0 (2.14)
and
7?’g = g(fg)a



respetively.

Our assumptions on the kernel g(t) are the following:
(Hl)g(t) <Oforallt <0and 0 < k= [ g(s)ds < 1.
(H2)g¢'(t) < 0 for almost all ¢ > 0.
(H3)There exists a nondecreasing function ~(t) > 0 such that % ((t)) =:n(t) is a decreasing func-
tion and [;° g(s)v(s)ds < o0
Let t, > 0 be a number such that [;* g(s)ds = g. > 0.For simplicity,we consider kernels contin-
uous and differentiable a.e

Theorem 2.1.2 Assume that the hypotheses (H1)-(H3)and Ry < ; hold.

If G,(0) < [(8 —k)g. — 3k]/4, g. > (8 k then, there exist positive constants C and v such that
E(t)<Cy(®)™", t>0

proof 2 The methode of proof consists in showing an inequality of the form

L'(t) < =Cn(t)L(t), t > 0 for some positive constant C' . An integration of this inequality

gives us the decay for L(t) .

Then an application of Proposition 1 implie the sought relation for e(t) and thereafter for E(t).
A differentiation of 11 (t) with respect to t along trajectoires of (2.1) gives

t) :/ytydx
Q

U0 = [ yuyda + [l

replacing yu by other terms in problem we get

i) = [ ayydr— [y [ gt —s) &yl s)dsdr + |y

¢
W) =l + I vyl = [ oy [ o(t=s) 7 y(s)dsda
and by Lemma 3 (identify (2.12)) we obtain

U0 < Il = = DI 7ol +5 [ o= vuNPds — 3 [@Ovwyde  (215)

For 1)s(t) we have

- /Q Ytt /Otg(t —s)(y(t) — y(s))dsdx

— [l [ =90 — yls)ds +u [ gls)dsle

or

) == (0= [ o(s)ds) &g+ [ (e = 5)(Dylt) - Ayls)as)

12



t

x [ g(t = $)(w(0) = yls)dsde — ([ g()ds) P

[ [ 9= $)w(0) — y(s)dsds

Therefore,

) = (- [ g)ds) [ vy / (t = $)(y(t) = Vy(s))dsda
b [0 [ e =)yt — ay(o)ds 2 dz — ([ gl)ds)ludl?
- /Qyt/o gt —9)(y(t) — y(s))dsdz (2.16)

Now we proceed to estimate three terms in the right hand side of (2.16).For all measurable sets

A and F such that A =RT\F,we have

Loy [ ot = 9)(wu(t) = wy(s)dsds

= v [, 9t =)v) = Ty)dsds
+ /va /mO , 9= $)(Vy(t) = 7y(s))dsdz (2.17)
< /Q /Am g(t — s)(y(t) — vy(s))dsdx

[y 98 1 7 1P - /Q vy [ gt =) v yls)dsda

F[0,4]

To simplify notation let us denote By == BN [0,t] . Using the Lemma 2 ,it is easy to see
that for 61 > 0

v [ ot = $)(wu(t) = Tu(s)dsda
<l vul+ g5 [, [ 9t =) 1 9u(®) - wuts) P dsda
and
S, v [ 9t =) v y(s)dsda
< 5L ae)as) [ P+ 5 [ gt =)l v yis)lds

Therefore, (2.17) becomes

13



[ 9w [ ot = 9)(w(t) = wy(s)dsds
<l vl + g5 [ [ att=9) | y(0) - (o) P dsds (2.18)

3. 1
kI TYlE+5 [ gt =9l v y(s)l*ds
Fi

Where § is defined in (2.13 ). The second term in the right hand side of (2.16) satisfies the

relation

L1 [ ot = s)(0tt) - w()is o
<k [ [ at=9) | vy(o) - vy(s) [ dsdo (219
HUF8)R(F) [ [ ot =) | 7u(t) = 7u(s) [* dsd, 5, > 0

The third term s istimated using Lemma 2 as follows:

L= [ [ 9= 9)0tt) - yls)dsda

Applying Poincaré’s inequality , there exist ¢, > 0, such that

t
< [ wlen [ 9/t =9)(vu(t) = Ty(s)ds)de (2:20)
Appliying Cauchy Schwartz and Young’s inequality, we get

2 3

o< (et [ ([ o= (o) ~ va(s)ds)
= ([ w)do)
< (f (wrdr)

D=
N[

e [ ([ 1914615 0(0) — uts))ds) de)

D=
-

2

(e [ [ 1g1as [ 191(9u(0) = () dsdr) (221)

N

< ([ w) )5 (6000) [ 19107 yao)

t
< 2 Cp / /
<ol + g5 ([ 1) 1ds) [0 D7 vy

C
< Bl ~ §£0(0) [ (/O 7 v)da (222)

for any 63 > 0.Taking into account (2.17)-(2.22) in (2.16) we obtain

14



1) < (0= g+ kN7 P+ (55 — gl
k

(=g g+ 0k M [ [ glt=) | 99(e) = Tuls) P dsdo

+ 5=g) [t = 9l vyl - Le(0) [ (07 s

- (+akg(F) [ [ glt =) [ Vy(t) = y(s) [ dsda

Further,a differentiation of 13(t) yields

W) = ([ [ =919yl Pasday
- e o\vysr2+/tG't—s>rvy<s>r2dsdw
= /G ) y(s) /
— [ [ ot =) v o) s

= GO~ [ e 9l v el

— [ ot =9l 7 ys) s

G, (t = )| v y(s)|dsd

(2.23)

< GO Tyl =) [ Gt =)l uls)lids — [ gl = )] 7 y(s)l3ds220

Where we have used the fact that % = n(t) is a nonincreasing function, and we define

GL(t—s)=— Gy(t—s)—g(t—s)

Taking into account the estimations E'(t),2.15,(2.23) and (2.24) ,we see that

P < (- 2ol0%) [T e+ D+ (6 - g Al

2 4657
Dol 00+ SRIF)] + M H(0) = Ml = D} 7l
+ <§—A3> ot =017 Ol 25— 2L [ (07 y)dr

451 "+ 14— // (t—s) | vy(t) — vy(s) |* dsdx
+ (L4 B)kh(F Ag/Q/ﬂgt—s>|vy<>—vy<s> * dsda

W
+ 20— ) [ o= ) v y(s)Pds = Xan(0)s(0)

93
We select v, < o(®) 50 that

(2.25)



and introduce the sets
A, ={seR":ng'(s)+g(s) <0},neN.
Observe that
L#An = RN\{FL,UN,},

Where N, is the nullset where ¢' is not defined and Fy, is as in (2.34) .
Furthermore, if we denote F,, :== Rt\A,,, then lim, o §(F,) = §(Fn) because F,i1 C Fy
for alln and N = F, UNy.In 2.25,we take A := A, and F := F, and\; = (g« — €)\a for some

small € > ().Itnfollows that

D) < Ml — )l
Dol = g)(0 4 Ska(F) + M (0) — (9. — Dol — S]] 7

TG A31/ ot~ 7 s~ 2029 [ g9 g
+ Dokl 4519 +1+ ) //A (t — ) ) vy(s)) dsda
+ (L + 8)kg(F, // (t — ) (Ty(t) — Ty(s)) dsdz
20 g ) s = (o) [ Gte— ) s (2:26)
We have
55— e <0 (2.27)
No(1 = g.)(61 + ;’kg<fn)) + 3G (0) = (g2 — A6 + (1 — 8))(1 — ’;) <0 (2.28)
» Az(g*;e)—AﬁMl;g*) <0 (2.29)
No(1+ 8k (F) — (9*2_ ) ro < 0 (2.30)
AQk;(14619* +1+512)—41n<0 (2.31)

from the relatin (2.27) we choose 03, € small
03 —e<0=d3<ce¢

and from (2.28) for a small € and large values of n and t, we see that if §(F,) < f, we have

(= g3 ~ (g, — (1~ 5) <0

2
;’k(l — g)3(Fn) < (g —€)(1 - /;) < (1 ;;)
3k§(F)
6> (1- g*)m

3k(1—g.)1  3k(1—g.)
g.2—k) 4 4g.2—k)

16



~ 3k(1—gs)

C 4g.(2-k)

Note that 6 < 1. For the remaining 1 — 0 we require that Ay and A3 satisfy
1 — g. 1 1
Mk(——+1+—) < —
2 ( 461 Tt 52) < 4n

" 1 (1-8)(5. 92— b
gx — € — Gx — O0)\gx — €){4 —
A < A3 <A
e L B 2G.,(0)

We have g, — 9 < g« so

)\2(% 41 _29*) << Al _25();};((02; k)
3k(1— g,
NPT L (EP
49,2 k) — 3k(1 - g.)
49.(2 — k)
So, we get
(8 —k)g. — 3k

Ao
Tl —0)— < A3 < A
(9« + 9)2 3 3G-.(0) 9

This is possible if G,(0) < [g+(8 — k) — 3k]/4and g. > 3k/(8 — k).
Finally, we choose 41, € small and d3 < €
These choices together with (2.26) lead to

L'(t) < =Che(t) — Asn(t)ds(t), t = t.

for some positive constant Cy.As n(t) is decreasing, we have n(t) < Cy after some t > t,. The
right hand side inequality in Proposition 1 implies that

L'(t) < —Con(t)L(t),t >t (2.32)
for some positive constant Cy. An integration of (2.32) yields

L (s)
i L(s)

¢
dsg/ —Con(s)ds
i

t
InL(t) — InL(t) < /t —Con(s)ds
L(t) < e i s [y ¢ > §.
and the left hand side inequality in Proposition 1 gives
prlE(t) + 6a(t)] < eI L(E) ¢ > ¢

Therefore by the definitions of E(t) and e(t),the continuity of E(t) and boundedness of the
interval[0,t] we infer that E(t) < C/y(t)?,t >0
for some positive constants C and 9

17



2.2 Arbitrary decay for a Euler-Bernoulli Beam Equa-
tion with Memory

The main purpose of this work is to study the asymptotic behavior of the solutions of vis-
coelastic Euler-Bernoulli Beam Equation with boundary condition of memory type. For this,
we consider the following initial boundary- value problem:

Yt + Yzzzz — f(f g(t - S)ya:mac;t(xa S)ds = O m [Oa 1] X RJF
y(0,8) =0 ,  4u(0,8) = 1yu(1,6) =0 ¥Vt >0 (2.33)

yxzx(lat) - fg g(t - S)y:m:x(L S)dS = O

we note ||.|| the L?([0, 1]) norme .

Multiplying (2.33) by y; and integrating over [0, 1] yield

1 1
/0 ytyttdx—i_/o ytymzxx / yt/ ymm T S)deQ? =0
For the first integral we have
1 1 /1d
dr = - / Ly
YtYuax 5 )y d@t (y)"dz
1d 9
- 2.34
ol (234
Integration by parts the second integral we obtain
1 1
1

2dt

For the last integral we have

—/ yt/ $)Ypzzz (T, 8)dsdxr = —yi(1,1) /tg(t— $)Yaaz(1, 8)ds

+ / ytx yxxa; € S)deiL‘
= —y(1, t)/ g(t — $)Yuua(1, $)ds
- / Ytxx yxm x S)deiL’

— (10 /O Gt — 8)ynan(1, 5)ds
1 L / 1 2
- */ gDyzm(-r t>dx+§g(t>”yza:||
t
b gt Ot 0z — [ g()dsllyuel} (236)
2 dt 0
combining (2.34), (2.35) and (2.36), the result will be
t
S+ el + [ 60clr, 10— ([ 953}
t 1
+yt(17t)[y;txx(17t) - /D g(t - S)ya::r:x(L S)ds] - 5_/0 g'ljym(x,t)dx + Eg(t)”yacxHQ =0

18



Taking into account the boundary conditions, it results that

Ld

t 1
(ol + (= [ g()as)gaell® + [ 900u(a, )d)
2dt 0 0

1/t 1
=5 [ 900w, )z = Sg(0) 1y
2 Jo 2
We define the energy E(t) of problem (2.33) by

B(t) = 5yl + (1= [ g5)as) el + [ 90pue e )

Then, the derivative of the energy is given by

/ 1 ! / 1
E(t) =5 | 9000 = Sg(0) g (2:37)
We then define the modified energy by
L(t) = E(t) + M¢1(t) + Aaoha(t) + A33(t) (2.38)

where

61(t) = [ s
P2(t) = — /01 Yt /Otg(t —5)(y(t) — y(s))dsdx

65(0) = [ [ Gt = 9)lyesls) P
with G (t) = A(t)" [ g(s)7(s)ds

2.2.1 Equivalence between L(t) and E(t) + ¢3(t) :

We have the following lemma:

Lemma 4 There exist p; > 0, ¢+ = 1,2 such that

pilE(t) + ¢3(t)] < L(t) < p2l E(t) 4 ¢5(1)] (2.39)
for allt > 0 and small X\;,i =1,2.

proof 3 Applying Cauchy Schwartz, Young and Poincaré’s inequality we get

1
o(t) = [ ywds
1
< | lullylda
1 1
< <= 2 L2
< <5l + Syl
1 1
ai(t) < lul”+ 50 vl (2.40)

19



Po(t) = — /01 Yt /Otg(t —8)(y(t) — y(s))dsdz

< Nl ([ gt = )00 — y(s))ds o)
([ ot =) —y(sDds® < [ gls)ds [ (e = $)(u(0) — y(s)ds
L[ ot =)0 yndspar < €2 [ gt)ds [ [ glt = 9)(pwa(t) — yur)dsia
< C’;k /Olgl:lymda:.
oo(t) < Sl + 52 [ oy (241)

where C,, is the Poincaré constant.

Replacing (2.40), (2.41) in the modified energy (2.38) we get

1 1 ¢ 1 1
L(t) < 51+ A+ 2) [yl 4+ 5 (1= [ gls)ds+ MOyl P+ 5 (14 02C2K) [ 0yada+Nads(t)
On the other hand,

1
(1= = M)yl + (1 =k = MO |y + (1 = >\2C§k5)/0 90Yzedr + 203¢5(t) < 2L(t)

1— X\ — ) AL <1—=A
{ 1 2 >0 { ! 2 we get >\1<mm{1_/\2’1572k}

1—k—M\C2 >0 M <G

1 — XC2k > 0 Ao < o _
= b we get Ay < min{l, =
{1—)\2>O g th o)

Therefore

pr(E(t) + ¢3(t)) < L(t) < po( E(L) + 05(1))

for some constant py > 0,i =1,2

2.2.2 Asymptotyc Behavior

In this section we state and prove our result. To this end we need some notation. For every
measurable set A C R", we define g by

1
3(A) = [ a(s)ds (242)
where A; = AN[0,¢]. The flatness set and the flatness rate of g are defined by
Fy,={s€R":g(s) > 0andg'(s) =0} (2.43)

and

Rg = :q\(fg)v



respectively.
For relaxation function g, we assume the following:
(A1) g :[0,+00) — R are nonincreasing C'! functions satisfying

“+o0o
g(0)>0,0<k:/ g(s)ds < 1
0
(A2) ¢'(t) < 0 for almost ¢ > 0.

v'(t)
v(t)

(A3) There exists a nondecreasing function «(¢) > 0 such that =: 1n(t) is a decreasing

function and [;"*°y(s)g(s)ds < +o0.
Let t, > 0 be a number such that [;" g(s)ds = g,.

Theorem 2.2.1 Assume that the hypotheses (A1)-(A3) and Ry, < % hold.

If G,(0) < W , g« > 3k/4(2 — k) , then, there exist positive constants C' and v such
that
E(t)<Cy(t)™", t>0.

1
= / yydx
0

A differentiation of ¢1(t) with respect to t gives

1
(0= [ yuyde + ]

proof 4

Using (2.33) we get

40) =~ [ vzt [y [ gft = yeanel, s + ]
= —ymx(l,t)y(l,t)—i-/o ymzymdaf—i-y(l,t)/o g(t — $)Yuua(1, 8)ds
— [ e [0 = Yanals)dsde +

) < 1t el + P

1 /¢ 1 rt
+ 5/ g(t—s)||ym(s)||2d3— f/ gy, dx (2.44)
0 2 Jo

— [ o [ 9t =) w0~ yls)dsde
) =~ [ [ ot =)t~ ylsdsde ~ [y jt</tg<t—s><y<t>—y<s>>ds>dx

= —/ ytt/ (t—s)(y(t) —y(s dsdx—/ yt/ (t —s)( —y(s))dsdz
/0 yt/o g(t — s)dsdx (2.45)

Replacing yy by other terms in problem (2.33) we get

= [ e [ 96— )l0) -

(
[ 0t = et )ds) [ gtt = s)u(e) — (s))dsd (2.46)

s))dsdx
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/ Yarsa / (t = $)(y(t) — y(s))dsda

Integrating by parts and using the boundary condtions we get

A

B
B2

B

Yrwe (1, 1) /Ot g(t —s)(y(1,t) —y(1,s))ds — /01 Yo /Otg(t — $)(yu(t) — yz(s))dsdx
(1) [ 90 = )01,1) = y(L N + [ [ 90t = ) 0uelt) = ()

e (118) [ 90t = 9)(1.6) = y(L5))ds + (824 Sk(F))

o 00t = 9 aat) = i) s 5 [ gt 9las) P

= —/ / (t — 8)Ypzae (T, 8)ds) /Ot g(t —s)(y(t) — y(s))dsdx
= = [ ot = 151 [ gt = $)(1,1) — y(1,9)ds
+ /01(/0t 9(t — $)Yper(, 5)ds) /Ot g(t — 8)(yx(t) — y.(s))dsdx

= - Otg yxzx 1 S dS /Ot (t - S)(y(Lt) B y(175>>d8
— /()1(/0tg(t — 8)Yue(, 8)ds) /0 9(t = 8)(Yrz(t) — Yuu(s))dsd
= - Otg ym:m 1 5 dS /Ot g(t - S)(y(Lt) - y(17s>>d8

b L 00 1) (e, 9)s)
= [ o= e, S [ 0 = ) (0a0) = ()
= = [ ot = a1 [ gt = 5)(w(1,8) - y(1.5))ds
o [ = Y lt) = g (s)) o
[ 96 el + k[ gat) [ 9t~ S)yn(s)dsr
< [ gt = el 9)ds /t (t = 9)(y(1,6) ~ y(1.)ds

+ (1+— k/ / (t — 8)(Yuu(t ym(s))2dsda:

(2.47)

bR [ [ o= 5) 0t) = pials)) sl — gl 3 K]

k> gt 24
—+ 4—54 ) g(t_5>||y:ca:($)||2 S

22
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Using the boundary conditions, taking account (2.47) and (2.48), the result will be

I < k<452+1+53>//At (t = 5) (Yaa(t) = Yuu(s)) dsd

3,
b GROF) + ka4 )l + 5 [ glt =) el

+ (1+)kg(F) /0 ], 9t = 9)(Waelt) = ves(5))d

kK2t
+ | gt = 5)|lyaa(s)|*ds. (2.49)
454 0
We have
I, = / / (t — s)dsdx
= [ gts)as
T (2.50)
and

- /01 % /Ot g'(t = 5)(y(t) — y(s))dsdx

Appliying Cauchy Schwartz, Poincaré and Young’s inequalities, we obtain

2 3

I (o) @7 [ ([ 9= 9)malt) ~ yeals))ds) do)

N

2

([ ) 6 [ 1 ) — v )s) )
< ([ o) @ [ [100s [ 1910m0) — vuals) s
< (f <—yt>2dx>§<cp2g 0) [ 19 D)’

Ssllyl — 9(0) [ o Oead (2.51)

=

IN

Taking account (2.49), (2.50) and (2.51)

B0 < (=g + )l + (52 + SKICF) + K60)) e
e D) [ ] 0= 9)0alt) = o) s 4 5 [ (e = 5yl s
b 0k [ [ gt~ 5)0malt) — van(o) e+ [ gtt — 5) )P
. 455 / ¢ Oynd, (2.52)
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Further, a differentiation of ¢3(t) yields

WO = [ GOl dr+ [ / G/ (t = ) lyee () s
= /G Yo (t)]*d —/ t_s G (t = 9)|Yaa(s)|*dsdz
= j/ j/ (t = 8)|yna(s) 3| dsdz
= GOl ~ [ TG = sl s

- /0 9(t = ) gza(s) | ds
< G’Y(())HywaQ - n(t)/o G’Y(t - S)||ymx(5)||2d8 - /Otg<t - S)||y:m?<5)H2dS (253)

Where we have used the fact that U] ) =n(t) is a nonincreasing function.
Therefore, by gathering (2.37), (2. 44) (2.52) and (2.53), we obtain

L'(t)

IN

E'(t) + M@ (t) + Ao (t) + Xas(t)

1/, 1 1 A [t

5 [ 9T = S0 el = M (1= SRl + 2 [ 90t = ) aa(s)] s
0 2 2 2 Jo

Mo 21
- ?1/0 90awdz + Myl + Aa(—gs + 05) [yl > + Ao (S2 + §kg(]:) + k) [y ||

g+ (1 ) [ gl ) @eal®) — a9+ 32 [ gt = 9)ats) s

46

IN

Ko

4 o1+ 6)kg(F // (t — 8) (yaa(t) — ym(s))stdx—l—)\gﬁ/og(t—s)Hym(s)Hst
4

N 0) [ O 0G0l = Ast0) [ G )nals) P

= o [ gt = )l s
(2.54)

After some simplification, we get

1 c,? 1
/ < [Z _ P / . 2
() < (5= doggO] [ 6 Tpesde + N+ da(=g. + )] e
A 3. .
+ A+ §k+>\2(52 + ikg(}—) + k64) + A3Go (0)]|ya
)\1 ]{?2 t 2 1
+ [2+>\2464—)\3]/0 Gt — ) ||ywe(s)||*ds — 5/0 g yaadz
k ! 2 A2 2
 hllge 0 R[] gt = ) waa0) = es) s + 5[ gt = 8) s (5) s

+ o1+ 03)kg(F) /01 /Ft 9t = 8)(Yaa(t) = Yaa(s)) dsd

= dnlt) [ Gt = ) lynals) s (2.55)

We select Ay < ﬁ so that
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and introduce the sets
A, ={seR":ng(s)+g(s) <0},neN.
Observe that
UAu = B \(F,UN;

Where Ny is the nullset where ¢' is not defined and F, is as in. Furthermore, if we denote

Fn = RT\A,, then lim,, o §(F,) = §(F,) because Fi1 C Fp for alln and N = F,UN,.

In (2.53), we take A = A, and F := F, and \y = (g« — €)\y for some small € > 0.
It follows that

L'(t) < (05— helyl®
Dol + SRGE) + ) + 2 (0) — (9 — Mol — 1)l

gy —€  k? A2 (g —
+—w<2+¢ﬂ M/(t$MMd =
1
+ [Agk(@ +1+ — 63 / /Ant (t — 8) (Yaa(t) — Yua(s)) dsdz
+ 5 / (t — 8)|| Yz )|| ds + Xo(1 4 83)kg(F, / /; (t — 8)(Yuu(t) — ym(s))2dsdx
— Dt /c: ) 1yas (5) 1 7ds (2.56)
We have
55 — € < 0 (2.57)
3 k
Ska(Fa) < (g —e)(1-3) (2.58)
k
(*) g« — € ki &
Aoyt g5~ At 5 <0 (2.60)
(14 63)kg(F,) — (9*2_ ) <o (2.61)
1 1 1
Aok(— +1 - — 2.62
2(452+ +53) 47’L<0 (6)

from the relatin (2.57) we deduce

0s —e< 0= d5<e

and from (2.58) for a small € and large values of n and t, we see that if §(F,) < i, we have

3. k

SF(Fn) = 6(ge —e)(1 = 5) <0

. k
Sk9(Fn) <0(ge — )1 = 3)
with
S
49.(2—k)



Note that 6 < 1. For the remaining 1 — 0 we require that Ay and A3 satisfy

1 1 1
and 2o (1=8)(g. — )2 — k)
gx — € - gx — € -
A — 4+ = A A
(T g ) s 2G..(0)
g- K 1 (1-0)g.(2 k)
Ao(=+—+— A A
25+, T << RTa )
3 k
1—6)=1-"—"7—
=9 49.(2—k)
49,2 k) — 3k
42— k)
So, we get
)\2 k’2 /\2 4g* (2 — k’) — 3k
— s+ 1)—= <A A
2<(g+254—|—)2<3< 16, (0) 2

This is possible if G (0) < W and g, > 3k/4(2 — k).
These choices together with (2.55) lead to

for some positive constant Cy. As n(t) is decreasing, we have n(t) < Cy for all t > t,. The
right hand side inequality in Lemma 4 implies that

L'(t) < =Con(t)L(t),t > T (2.63)
for some positive constant Cy. An integration of (2.63) yields

tL(s)
i L(s)

t
dsg/ —Con(s)ds
t

InL(t) — InL(t) < /; —Cyn(s)ds

L(t) < e @i ms () ¢ > 1.

Then using the left hand side inequality in (1.7), we get
prle(®) + 6a(t)] < e TONL@), 1 2
By virtue of the continuity and boundedness of E(t) in the interval [0,1], we conclude that
E(t) < Cy(t)™"(t),t = 0

for some positive constants C' and v .
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2.3 Stabilization of a viscoelasic Euler-Bernoulli beam

The third problem that we have stadied in the following form

Pyt (2, t) + ElYpuge(, ) — Tyuu(x,t) — EI f§ g(t — 8)Yuuze(z, s)ds = 0 in QxR
ymz(ovt) = yzz(Lvt) = y(ovt) =0 vt > 0,
—ElYyuu(L,t) + Tyu(L,t) + EI [§ g(t — 8)Yuaa(L, s)ds = U(t) vt >0,
U(t) =0.
(2.64)
Where Q = [0, L], ||.|| is the norme of L?(2) and p, EI and T are positive constants .

Multiplying (2.64) by y; and integrating ouver 2, we get

L L L L t
p/O ytyttd$+EI/0 ytyxxxxdz_T/O yty:cxdl'—E]/O yt/o g(t — S)ymm(:l?,s)dsdx =0

I 1P I3 Iy

L L1 d
I = p/o Yyudr = P/ th 2
_ 2d
- th/o Y o
pd 2
= 5@”%” (2.65)

L
[2 = EI/ ytyzzx:rdx
0
L
0
L

EId

L
]3 = _T/ ytyxxdx
0
L
= —Tyt(L,t)yz(L,t)—i—T/ YizYzdx

I, = —EI/ yt/ 8)Yzzae (T, §)dsdz
L ¢
= —E[yt(L,t)/ g(t — 8)Yupue(L, s)ds —l—EI/ ym/ (t — $)Ypue(x, s)dsdx

= —Ely(L, t)/ g(t — 8)Yuee(L, s)ds — E]/ ytac;r/ (t — 8)Ype(z, s)dsdz,

Using the equation (2.6) we get

! EI (L EI
I = —EIp(L) [ glt = 9)nae(Ls)ds = 2 79 Oyuat+ (0l
Eld EId )
- 7dt/ gt = = dt(/ 9(5)ds)|| Yz | (2.68)
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Combining (2.65), (2.66), (2.67) and (2.68), we obtain

1d 2 ¢ 2 2 L
5 5 lll? + B1 (1= [ g()ds ) el + Tl + EI [ g0padr}
El, &, 2

t
_Ely(L, 1) /O 9t — 8)yuua(L, 5)ds = 0,

Then

Ld

t L
s ol + BT (1= [ g(5)ds) lyael® + Tl + EI [ g0ruda)

EIL, L, 2
= (" 9 0yardz = g(0)lal®) + (L, U ()
We define the energy E(t) of problem (2.64) by
1 2 ! 2 2 L
£t = 5 ol + B (1= [ g(s)ds ) lyeal® + Tl + E1 [~ g0y,
The derivation of the energy is given by
Bl L
E(t) = 1 [ 9 Opads = g(8) lgasl*) + (LU )
where
t 2
900 = [ 9t = 8)(0a(t) = ()"
and
t
900z = [ 9/t = 8)(aalt) — vas(s))ds.
We assume that the kernel is such that
+oo
1—/ g(s)ds=1—k > 0.
0
Next, we define the standard functionals

L
o1(t) =p /0 yryda,

ealt) ==p [ i [ ot = $)(u(t) — y(s)dsd,
and the new one
ost) = [ [ Gt = )(BTyaalo) + Tlye(s) s
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where

The modified energy we will work with is

3
L(t) = E(t) + >_ Aipi(t)
i=1
for some \; > 0,i = 1,2, 3 to be determined.

2.3.1 Equivalence between L(t) and E(t) + ¢3():
The first result tells us that L(¢) and E(t) 4+ ¢3(t) are equivalent

Proposition 2 There exist ¢; > 0, i = 1,2 such that

a[B(t) + @s(t] < L(t) < o[ E() + ws(t]

for allt > 0 and small X\;,i =1,2.

proof 5
L
p1(t) = P/O Yrydx

R
sﬁl(t)ép(/0 ye~dx) (/0 y-dx)
< pllyellllyll

2 P 2
< Sl +§|Iy||

N

Using poincare’s inequality, we get

2 C 2

ei1(t) < Sllwell” + 52 el
2 C 2

< Sllyell” + 2 5 e

pr(t) < Cul8llyell® + Fllyell”)

with Cy = max (1, Z2) . For ¢s(t)

a(t) = —p /OL Yt /Otg(t —s)(y(t) — y(s))dsdx
< ol ([ ate = 00t0) - onasrae

1
2

?

(2.69)

/{)L(/Otg(t—s)(y(t)—y(s))ds)de < /Otg(t—s)ds/OL(/Otg(t—s)(y(t)—y(s))st)dx

IN

IN

L
cf,k:/o gUy,dx
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Then

SIS

IN

L
ol (ke [~ g0y,ada)

P 2 20 [F
Pllyel® + ke2? [ g0ysada

pk’cﬁ ET /L
2T 0yd
EI 2 Jo 9-9=0

El L
ol + = [ 90yaada) (2.70)

Pa(t)

IN

IN

P
©a(t) §Hyt||2 +

VAN

with Co = max(1, pg”; k)

where ¢, is the poincaré constant, we have

ET

P 2 t 2 T o, BT F p 2

T EIl L
+ Alclguyznz+A202§||yt||2+A2027/0 I awd + Agips(t)

h
=
IN

T EI t
g(l + M C + AaCo)|lyel|” + 5(1 + MOyl + (1 - /0 9(8)ds) ||yl

2
ET L

h
=
IA

On the other hand,

2L(t) = p(1 = MOy = XCo)llysll” + T(L = MO [lgel* + EI(L = k) lyze
L
v OEI(1— )02) / gOyeeda + 22305(2). (2.72)
0
Therefore, C1[E(t) 4+ ¢3(t)] < L(t) < Co[E(t) + ¢3(t)] for some constant C; > 0,7 = 1,2 and
small A\;, 1 = 1,2 such that

1—)\101>0
1—)\202>0

1-\Cq

1— )\101 — )\202 >0
j {
Cs

1 1
Al<CT )\1<Cf1
Ay < C%Zcmd Ay < % Ao :min{c%z,

2.3.2 Asymptotic Behavior

In this section we state and prove our result. But first we introduce the following notation.
For every measurable set A C R™, we define the probability measure § by

o) = ¢ [ o)

The flatness set and the flatness rate of g are defined by

Fy={seR":g(s)>0andg'(s) =0}
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and

Rg = g(]:g>7

respectively.

Our assumptions on the kernel g(t) are the following:

(Hy)g(t) >0forallt >0and 0 < k = [;7* g(s)ds < 1.

(H3)g'(t) <0 for all t;0.

(Hs3) There exists a nondecreasing function v(t) > 0 such that 28 = 5(¢) is a decreasing

function and [;"° g(s)y(s)ds < +o0.
Let t, > 0 be a number such that [;* g(s)ds = g. > 0. For simplicity, we consider kernels
continuous everywhere and differentiable.

y(t)

A differentiation of o (¢) with respect to t. Applying Cauchy Schwartz, Young’s inequality,
Poincare and lemma 3 gives

/

L
At = (] puryda)
/ L L 2
@y (t) = p/o Yuydr + p/o yodx

L
At = | yuyde -+l

Replacing y;; by other terms in problem (2.64) we get

(t)

L L L t
BI [ Yowoyde + T [ yrayde+ B [y [ gt = 9)ynaa(a, s)dsdz + pllyl)
L L
~Elyara(L YL 1) + BT [ Ypuatiede + Ty L Oy(Lt) = T [y 2da
0 0

¢ L ¢
Ely(L, t)/o g(t — 8)Ypze(L, s)ds — EI/O yx/o 9(t — 8)Ypze (2, s)dsdz + ,0||y,5||2
— ElYaua(L, )y (L, t) — ET||ysal® + Tyu (L, t)y(L, t) — Ty

t L t
EIY(L,t) | 9t = $)yaaa(Lo5)ds+ BT |y [ 90t = 8)yac(e, s)dsda + plly

k EI (L ET t
E](§ . 1)Hy:ca:||2 o T“ngHQ + p||yt||2 — 7/0 gDyaBzdl’ + 7/0 g(t — S)ny$<8)||2d8

ElYpua(L, t)y(L,t) + Ty, (L, t)y(L,t) + ETy(L,t) /Ot g(t = 8)Yuwu(L, 5)ds (2.73)

At = (o [ [ ot = 5)(u0) - y(s) Vs
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Ji

Ji

A0 = =0 [ [ 9t =560 = u(sDdsdz = p [l [ ot = 5)(wl0) ~ y(s))ds)do

= —P/ ytt/ (t—s)(y(t) —y(s dsd:t—p/ yt/ (t —s)( y(s))dsdz
- p/ yt/ g(t — s)dsdx (2.74)
0 0

replacing y;; by other terms in problem (2.64) we get

L t
90/2(t) = E]/ ywmom/ (t - 3)( - y deIE T/ y:cx/ t_ S )deJZ

—EI/ / (t — $)Yzwae(, 5)ds) /Otg(t —5)(y(t) —y(s ))dsdx

J3

= B[ enen [ 9l 9)(000) — y(s))dsd

= Elya(L,8) [ gl = ) @(Lot) — y(L s = BT [ s [ glt = $)(0al6) = uu(s))dsde
= Blya(L1) [ g0 = 5)(Lt) — y(L N s+ BT [ i [ 900 = 9)(0nal0) = pua(s))dsds
< Blyaan(L1) [ gt = 9)(u(L,0) = y(L,9))ds + BT

3
v BIE / [, 9t = 9 (0ealt) = yia(5)) s + EISG(F) yaa(5)*

40,
EI
+ 5 9(t = ) |yaz(s)||*ds (2.75)
Fi
JQ = —T/ yzx/ t— 8 )del‘

= —Tu(Lt) [ gl = )L 0) = y(L.9)ds + T [ gs)ds]

— T/ yz/gt—symsdsdx
0 0

T £ =Ty(Lt) [ gl = 9)p(L.t) = y(Los)ds + T( [ gls)ds +8) P

k t
+ TE g(t — 3)||lya(s)*ds (2.76)
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J3 <

BT [([ 9t = $)prnelr,5)ds) [ gl — 5)((t) — y(s))dsda
=1 [ gft — (L, 5)ds [ g(t = 5)(y(L,0) — y(L. 5))ds
BI[7([ gt = $)pean(e,9)ds) [ gt = 5)(0(6) ~ o()dsda
1 [ gft = Syara(L,5)ds [ g(t = 5)((L, 1) — y(L, 5))ds
BI [ gt = sl )ds) [ 90t = 9)(3eet) — ol s
1 [ gl = )L 5)ds [ gt = 5)(u(L.0) ~ y(L,5))ds
EI/ / (t = ) (Yaa (2, 1) = Yaa(, 5))ds)
BI [ gt~ e, 05 [ (2 = )3 (1) = gals)) sl
B [t = 9une(Lo5)ds [ g(t = 9)(9(L1) ~ y(L.5))ds
B[ ([ ot~ 5)0a(t) ~ el e — E1([ g(5)d)?
Elkr/O Yua(t /Otg( — 8)Yau(s)dsdz
=BT [ g(t = )L 5)ds [t = 9)g(L.1) — y(L,9)ds
BI04 5k [ [ 00t = 5)(0®) — yoa(s) s

FU+ R [ 900 = 9)0an(t) = pouts) sl + BTG g

k 2
Bl ). gt = ) laa(5)]%ds

Jy = —p/ yt/ (t—s)( y(s))dsdzx,

Appliying Cauchy Schwartz inequality, we get

=

2

s o[ wran) [T - - ys)ds) dr)

by Poincaré’s inequality, there exist ¢, > 0 such that

Ja

< o[ - >dx>%<cp2 /(f</tg<t—s><ym<t> o) 1)

1
2 2

o[ p/ (14101 et) — ia(9)ds) )

o[ e @7 [ [ 100 [ 1910ma0) — piuts) Psir)

p</0L< W) (@200) [ 19100e)

L
posluel* = p=9(0) [ g Oyt
455 0

IN IN

IN

IN
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Then

L ¢
Js = —p/ yf/ g(t — s)dsdx
0 0
t L
= —p/ S ds/ y2dx

= —p/ s)ds||ye]|* (2.79)

Combining (2.75), (2.76), (2.77), (2.78), and (2.79), we obtain

©o'(t) <
_|._
_|_

+

_|_

t 3 R t
o | <s>ds+55>uytuz+EI<51+fkg<J-“>+k:54>uymn2+T< | as)ds +6) .|

k 2
E'J(4—51 +(1 —|— / / (t — 3)(Yuz(t) — Yuu(s)) dsdx
I(1+83)k / / (t — 8)(Yuu(t) — ym(s))2dsdx

k 2 EI 2
75 [ ot = o)l ()ds % 0) [ Oz + 2 [ gt = )la()lds

t
2

B [ gtt = lna(s) s = U00) [ glt = 9ol )~ (L s (2.80)

Further, a differentiation of 3(t) yields

3 (t)

[ GO Eyes) + Tlyalo)) + [ G t—S)[E1|ym( ) + Ty (s) Pdsd
[ G OB + Tl [ [

T|ym(5)|2]dsdx—/0L /Ot Gy(t—s)[EI|ym(s)| +T|ym(5)|2]dsda:
Ly (t

v( — 8)[EI|yza(s)|’

G ()[BTl gall? + Tlya]?] - %)t = ) Bl gaa () > + Tl () [Pl

/Otg(t — $)[EI|[yea(5)]1* + Ty (s)||*]ds

BIG, (0) e | + TG O) . = BIn(e) [ Gyt = 9)llan(s) s
7o) [ Gt = 5)le(s) s = B1 [ gt = 9)llyus(s)|ds
7 [ gt = 9)luas)|'ds (281)

Where we have used the fact that % n(t) is a nonincreasing function, and we define

Gt —s) = —

TELGL (=) —g(t—9)
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Taking into account the estimations E'(t), (2.73), (2.80) and (2.81), we see that

L'(t)

< E'(t) + M (t) 4+ Aah () + Ass(t)

< (L) + Ny(Lt) = [ gt = 9)(L, 1) — y(L sl (1)

EIE 1= Lo(0) + Xalos + 2RA(F) + 818] 4+ 0 (O] e

T[=A1 + Aok + 85) + \sG ()]Hygall2
A ak?

+ 4

t
oD da(0s = gl + B+ S5 = %) [t 8) el s

k
+ T(Ao—

i) [ ot = lulo)Pds = 05 [ gDy

ET 02

LAY
+ (2 2P459

. L 2
+ XNEI(1+03)kg(F) / / 9(t — 8)(Yuu(t) — Yuu(s)) dsdx

ET
O) [ 9 Tyaad + 2T [ gt = )llyeals) s
0 2 Fi

k
EI(-- 4 (1 // (t — 5) (s - (s))2dsd
+ Ao (451+ + Y 8) (Y2 () = Yau(s)) dsdx

t
— BN [ 6t~ s~ Tr) [} Gt = 9)luals) s

After some simplification, we get

L'(t)

IN

We select Ay <

ET C? L El b
(5 = Map29(0) [ g Oyrada = M- [ gy

EI[[s — 1]+ Ml + SKIF) + k] £ 3G (0)] s

T[- >\1+A2(/€+52)+A3 H(O)llyall* + oA + A2(d5 — g )]llell”
Aok? A

(2.82)

Bl =t 5 ]/ 9t = ) ||yaa(s )I\stJrEI); /f gt — 8)[|yea(s)||?ds

TOags = %) [ ot = 5)lue(o)ds

Ao EI(1 + 63)ki(F) /0 ’ /f gt = ) (1) = yia(5)) "
MBI+ (k0 [ [ gt = 5)0ee®) = galo) s

t 9 t 9
NETN(E) [ Gt = 5)aals)Pds = Tan(t) [ Gt = ) (s)]*ds

so that
g(

EI 2 —p+2EI
5 = 590)pry > =

and introduce the sets

Observe that

A, ={seR":ng(s)+g(s) <0},neN.

LrgAn = R+\{Fg UNg}v
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Where N, is the nullset where ¢’ is not defined and F, is as in. Furthermore, if we denote
Fn =R nA,, then lim,_,o §(F,) = §(F,) because F, 1 C F, for all n and N = F,UN,.

In (2.53), we take A := A,, and F := F,, and \; = (g« — €)\y for some small ¢ > 0. It follows
that

L'ty < p(0s—e)Xallyl’
3 . k
+ T[~(g —e)Az+A2(k+62)+A3 (0)]||yx||2
Aok’ (g« —€) 2 A2 2
—%Enm b2 ) [ alo)ds + B [ gt = 9)leats) s
_ k ¢ ,
B / gDymdx+T()\QE =) [ gt = 9)lyals)|*ds
1 2
+ [)\ngI(Zl—(sl +1 + 3 / /Am (t = 8) (Y (t) — Yua(s)) dsdx
+ MNEI(1+03)kg(F, / / (t — 8)(You(t) — ym(s))stdx
t
NI [ G- s~ Trn) [ Ctt - o) s (284
We have
55— e <0 (2.85)
3. . k
§kg(}"n) +0(g. —e)(—1+ 5) <0 (2.86)
1 1 1
—+1 - — 2.
ARBI (g 1+ 2) = 2 <0 (2.87)
k
A3G4(0) — Ao[—01 — Koy — (1 — 0)(g. — e)(§ -1)] <0 (2.88)
(+) 1k
gs — €)
— — 2.
Ao(= —1—454—1— i )— A3 <0 (2.89)
(g* — 6)/\2 + )\g(k’ + 52) + )\3G7(O) <0 (290)
k
NEI : (9. =)
2EI[(1+ 03)kg(Fp) — 5] <0 (2.92)

from the relatin (2.85) we deduce
0 —e< 0= 05 < ¢

and from (2.86) for a small € and large values of n and ¢, we see that if §(F,,) < i, we have

3 . k
SKO(F) < 8o, — (1~ 3)
with
_3 Kk
C4g.(2-k)

Note that < 1. For the remaining 1 — § we require that Ay and A3 satisfy

1 1 1
MEET 1 —
1 (451+ +53)<

36



and from (2.88) and (2.90)

K (ge—e) 1 (1=0)(g- —e)(1 %)
)\2(4755 + 5 + 5) < A3 < A G,Y(O)
3 k
1-0)=1——-—————
~ 49.(2—k) - 3k
4.2 k)
so, we get
Ao K 1 g.—¢ 49.(2 — k) — 3k
2<>\2(455+2+ 5 ) < Az < SCL0) Ao
This is possible if
49,2 — k) —
6 0) < B2 =

and g. > 3k/4(2 — k). These choices together with (2.83) lead to
L'(t) < =C1E(t) — Asn(t)ps(t), t > L.

for some positive constant Cy. As 5(t) is decreasing, we have n(t) < C; for all £ > t,. The right
hand side inequality in Lemma 4 implies that

L'(t) < =Con(t)L(t),t > T (2.93)
for some positive constant Cy. An integration of (2.93) yields

tL(s)
i L(s)

t
dsg/ —Con(s)ds
t

InL(t) — InL(t) < /; —Con(s)ds

L(t) < e @ linesp@y ¢ > ¢,

Then using the left hand side inequality in (1.7), we get

PIE®) + ds(t)] < @ JmOB L) ¢ >
By virtue of the continuity and boundedness of E(t) in the interval [0, ], we conclude that
E(t) < Cy()™(t),t =0

for some positive constants C' and v .
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