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GENERAL INTRODUCTION 

In recent years, with the rapid development of Deep Learning, a number of research areas 

have achieved good results, and accompanied by the continuous improvement of convolution 

neural networks, Computer Vision has arrived at a new peak. the architecture of convolution neural 

network is constantly improving. In addition, the return of the convolution neural network also 

makes the application of Computer Vision greatly improve, such as face recognition, object 

detection, object tracking, semantic segmentation, and so on. Object detection as one of the 

important applications in the field of Computer Vision has been the focus of research, and 

convolution neural network has made great progress in object detection [1]. 

So, we are going to implement deep learning and object detection concepts for brain tumor 

classification and regression. nowadays patient diagnosis relies on a doctor’s manual evaluation of 

a patient and his or her test results. With no automated tools to help with a doctor’s diagnosis and 

limited number of available doctors, not only is there a higher risk of misdiagnosis but also an 

increase in wait time for patients to be seen. Doctors must take the time to manually review test 

results and images rather than spending time with the patient. In order to improve patient care, 

enhanced medical technology in the form of automated tools is necessary to increase doctor 

efficiency and decrease patient time in hospitals and time toward recovery. The purpose of this of 

thesis is to develop automated methods to aid doctors in diagnosis in order to prevent misdiagnosis 

and decrease patient wait time. In particular, this thesis achieves this automation through the 

classification and regression (object detection) of brain tumor from patient brain images.  

The structure of this thesis: 

• On Chapter 1, focuses on the tools of deep learning, and its notions and terminology. 

• On Chapter 2, present fundamentals of object detection, and its architectures and impact 

of deep learning in object detection. 

• On Chapter 3, implementation of deep learning and CNN to construct our model. Then, 

perform a custom data training for a pre-trained model of object detection. 

 



 

 

Chapter 1: Deep learning 

 

Abstract 

In this chapter, we did cover the key principles of deep learning, as well as basic and 

advanced deep learning concepts, and took a deep dive into neural networks, how they adapt 

and learn from any datasets, also we addressed convolutional neural network. 

 

1.1 Introduction 

1.2 Machine learning 

1.3 Datasets 

1.4 Deep learning 

1.5 Neural networks 

1.6 Convolutional neural network 

1.7 Conclusion 
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1.1 Introduction 

 In this chapter, we will learn the core principles behind deep learning and the basic deep 

learning concepts as well advanced. Deep learning is one of the widely common machine learning 

subfield, so for the sake of better understanding we are going to start this chapter with approach on 

machine learning and we’ll take a look into common machine learning methods of supervised and 

unsupervised learning, and specifically supervised learning because this is what we are going to 

use in our studies for this thesis. After that we are going in-depth into neural networks, how they 

work and learn and cover up everything about them so this what gives us the foundation of deep 

learning and makes things easier for us in next section, we will present most common deep neural 

network architecture for image datasets. We will precise the neural network architecture considered 

in our study to realize our project and provide solutions for our problems, once we picked our DNN 

architecture, we’ll go in detail and touch everything related to it. 

1.2 Machine learning 

 Machine learning is a branch within artificial intelligence that has been a fundamental part 

in modern digital solutions [2]. Machine learning refers to algorithms that computers use to learn 

from data, allowing it to make predictions on future [3]. The purpose of machine learning 

algorithms is to over time, learn during its execution from different pattern recognition methods. 

These algorithms are able to extract features from input data that is used to make decisions based 

on data of similar kind. Machine learning solutions are used in a large array of areas including 

robotics, traffic prediction and product recommendation [1, 4, 5] 

 For the sake of clarity, we need to understand how machine-learning algorithms work. 

Machine learning algorithms can be broadly classified into two categories: 

1.2.1 Supervised learning 

Is the machine learning approach defined by its use of labeled datasets to train algorithms to 

classify data and predict outcomes. Using labeled training data, the algorithm learns the rule for 

mapping the input variables into the target variable. For example, a supervised learning algorithm 

learns to predict whether there will be rain (the target variable) from input variables such as the 

https://www.v7labs.com/training
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temperature, time, season, atmospheric pressure, and so on [3]. Figure 1.1 illustrates a supervised 

learning process. 

 

Figure 1.1: Supervised Learning process 

1.2.2 Unsupervised learning 

Using unlabeled training data, the algorithm learns associative rules for the data. The most 

common use case for unsupervised learning algorithms is in clustering analysis, where the 

algorithm learns hidden patterns and groups in data that are not explicitly labeled [3]. 

1.2.3 Supervised learning methods 

 There are two main areas where supervised machine learning comes in handy: classification 

problems and regression problems: 

• Classification: To predict the outcome of a given sample where the output variable is 

in the form of categories. Examples include labels such as male and female, sick and 

healthy, etc. 

• Regression: To predict the outcome of a given sample where the output variable is in 

the form of real values. Examples include real-valued labels denoting the amount of 

rainfall, height of a person, etc. 
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Figure 1.2: Hierarchy Machine Learning algorithms 

1.3 Datasets 

A dataset can be defined as a collection of related data represented in columns and rows. If 

D = {X, Y} is a dataset, it can be broken down into a set of input data (x, y). Where x ∈ X is a 

vector containing features from the dataset D, and y ∈ Y is the correlated values from these features. 

In the field of object detection, datasets that are appropriate and fit the recognition tasks at hand 

are important. When developing an object detection system, datasets are a necessary component 

for training as well as evaluating developed object detection model [6]. 

There are different types of data we can use to train prediction models, of course data type 

selection depends on the model task: 

Quantitative Data: Numerical. E.g. height, weight. 

Categorical Data: Data that can be labeled or divided into groups. E.g. race, gender, hair 

color. 

1.4 Deep learning 

 Deep learning attempts to imitate how the human brain can process light and sound stimuli 

into vision and hearing. A deep learning architecture is inspired by biological neural networks and 

consists of multiple layers in an artificial neural network, it has proven its usefulness in almost all 

areas of science and engineering.  
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 Deep learning uses a cascade of nonlinear processing unit layers in order to extract or 

transform features (or representations) of the data. The output of one layer serves as the input of 

the successive layer [7].  

Deep Learning was first in the 1980s, but it has only become useful recently because: 

• It requires large amounts of labeled data 

• It requires significant computational power (high performing GPUs) 

• Supervised Learning process the deep learning model maps the input and the output to 

find a correlation between them. This correlation can be then used to cluster, predict, 

classify, and even generate new samples of data. 

• One needs to train a deep learning model to make it learn and produce accurate results. 

1.4.1 Automate Feature Extraction using DL 

 Deep Learning can essentially do everything that machine learning does, but not the other 

way around. For instance, machine learning is useful when the dataset is small and well-curated, 

which means that the data is carefully preprocessed [8]. 

 Data preprocessing requires human intervention. It also means that when the dataset is large 

and complex, machine learning algorithms will fail to extract information, and it will underfit. 

Generally, machine learning is alternatively termed shallow learning because it is very effective 

for smaller datasets [8]. Figure 1.3 show the accuracy of Deep learning versus other ML algorithms. 

 

Figure 1.3: The performance of deep learning vs. other learning algorithms 

https://www.v7labs.com/blog/quality-training-data-for-machine-learning-guide
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 Deep learning, on the other hand, is extremely powerful when the dataset is large. It can 

learn any complex patterns from the data and can draw accurate conclusions on its own. In fact, 

deep learning is so powerful that it can even process unstructured data – data that is not adequately 

arranged like text corpus, social media activity, etc. Furthermore, it can also generate new data 

samples and find anomalies that machine learning algorithms and human eyes can miss [8]. 

 On the downside, deep learning is computationally expensive compared to machine 

learning, which also means that it requires a lot of time to process. Deep Learning and Machine 

Learning are both capable of different types of learning: Supervised Learning (labeled data), 

Unsupervised Learning (unlabeled data), But their usefulness is usually determined by the size and 

complexity of the data [8].  

1.4.2 Neural networks 

 Neural networks are the functional unit of deep learning and are known to mimic the 

behavior of the human brain to solve complex data problems. So neural network is a tool that allow 

us to do information processing paradigms inspired by the way biological neural systems process 

data. Machine learning and deep learning try to simulate some properties of biological neural 

networks. The input data is processed through different layers of artificial neurons stacked together 

to produce the desired output as shown in Figure 1.4. From speech recognition and person 

recognition to healthcare and marketing, Neural Networks have been used in a varied set of 

domains. 

 In more practical terms neural networks are non-linear statistical data modeling or decision-

making tools. They can be used to model complex relationships between inputs and outputs or to 

find patterns in data. 
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Figure 1.4: Simple Neural Network Architecture 

1.4.3 The architecture of neural networks  

 Let’s explain some terminology that lets us name different parts of a network. Suppose we 

have the network in below (Figure 1.5): 

 

Figure 1.5: Illustration of neural network architecture 

 So, the leftmost layer in this network is called the input layer, and the neurons within the 

layer are called input neurons. The rightmost or output layer contains the output neurons, or, as in 

this case, a single output neuron. The middle layer is called a hidden layer. The network above 

has just a single hidden layer, but some networks have multiple hidden layers. For example, in 

Figure 1.6 four-layer network has two hidden layers: 
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Figure 1.6: multi-layer networks 

 Such multiple layer networks are sometimes called multilayer perceptrons or MLPs, 

despite being made up of neurons, sigmoid neurons, ReLu neurons, not perceptrons. 

 We will begin our discussion of NNs via one of the fundamental building block of deep 

learning. 

1.4.4 Basic Principles of Neural Networks 

1.4.4.1 Perceptron: 

 A perceptron takes several binary inputs, x1, x2, …, and produces a single binary output as 

shown in Figure 1.7 [9]: 

 

Figure 1.7: illustration of a simple way to describe perceptron 

 In Figure 1.7 the perceptron has three inputs, x₁, x₂, x₃.   In general, it could have more or 

fewer inputs. Rosenblatt proposed a simple rule to compute the output. He introduced weights, w₁, 

w₂, . . ., real numbers expressing the importance of the respective inputs to the output. The neuron’s 

output, 0 or 1, is determined by whether the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗  is less than or greater than some 

threshold value.  Just like the weights, the threshold is a real number which is a parameter of the 

neuron [9].  To put it in more precise algebraic terms: 
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𝑜𝑢𝑡𝑝𝑢𝑡 =  

{
 

 𝑜    𝑖𝑓    ∑ 𝑤𝑗𝑥𝑗
𝑗

 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1    𝑖𝑓    ∑ 𝑤𝑗𝑥𝑗
𝑗

 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 1. 1 

Furthermore, the output model is expressed by: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  {
𝑜    𝑖𝑓    𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1    𝑖𝑓    𝑤 ∙ 𝑥 + 𝑏 > 1

 1. 2 

Where: 𝑤 ∙ 𝑥 denote ∑ 𝑤𝑗𝑥𝑗𝑗  and 𝑏 denote the bias, 𝑏 ≡  −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 the bias is a measure of how easy it is to get the perceptron to fire. For a perceptron with a 

really big bias, it’s extremely easy for the perceptron to output a 1. But if the bias is very 

negative, then it’s difficult for the perceptron to output a 1 [9]. 

1.4.4.2 Sigmoid neuron 

 Just like a perceptron, the sigmoid neuron has inputs, x1, x2, ...., But instead of being just 

0 or 1, these inputs can also take on any values between 0 and 1. So, for instance, 0.638 is a valid 

input for a sigmoid neuron. Also just like a perceptron, the sigmoid neuron has weights for each 

input, w1, w2, ..., and an overall bias, b. But the output is not 0 or 1. Instead, it’s 𝜎(𝑤𝑥 + 𝑏), where 

𝜎 is called the sigmoid function [9], and is defined by: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 1. 3 

𝑧 =∑ 𝑤𝑗𝑥𝑗
𝑗

+ 𝑏 1. 4 

So, what makes perceptron and sigmoid neuron dissimilar is the activation function of the 

weighted input plus the bias, we going to understand more about activation function in next section. 

To generalize, everything we going to use the word neuron to define a model that takes several 

input data and produce an output, using weight, transfer function and any type of activation 

function. 

1.4.4.3 Neuron Components 

 As we said The Neural Network architecture is made of individual units called neurons that 

mimic the biological behavior of the brain. 
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Here are the various components of a neuron: 

 

Figure 1.8: schematic architecture of perceptron components 

1.4.4.3.1  Input  

 It is the set of features that are fed into the model for the learning process[10]. 

1.4.4.3.2  Weight 

 Its main function is to give importance to those features that contribute more towards the 

learning [11]. 

1.4.4.3.3  Transfer function 

 The job of the transfer function is to combine multiple inputs into one output value so that 

the activation function can be applied. It is done by a simple summation of all the inputs to the 

transfer function [11]. 

1.4.4.3.4  Activation function 

 Activation functions lie at the core of deep neural networks allowing them to learn 

arbitrarily complex mappings. The functions are mathematical equations that determine the output 

of a neural network. The function is attached to each neuron in the network, and determines whether 

it should be activated fired or not. 

 So, we know what Activation Function is and what it does. But, why do Neural Networks 

need it? Well, the purpose of an activation function is to add non-linearity to the neural network.  
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 Linear activation functions produce linear decisions no matter the network size, on the 

other hand, non-linearities allow us to approximate arbitrarily complex function. 

1.4.4.4 Type of activation function: 

1.4.4.4.1  ReLu function 

 The rectified linear activation function is a linear function that will output the input directly 

if it is positive, otherwise, it will output zero [12].  

It has the following properties: 

• It does not Saturate. 

• It converges faster than some other activation functions [13]. 

𝑅(𝑧) = max{0, 𝑧} 1. 5 

 

Figure 1.9: ReLu function graph 

1.4.4.4.2  Sigmoid function 

 It’s non-linear function, its ranges from 0 to 1 having an S shape. Also known by the name 

of the logistic or squashing function in some literature. The sigmoid function is used in output 

layers of the DNN and is used for probability-based output. 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
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Figure 1.10: sigmoid function graph 

 When multiple neurons are stacked together in a row, they constitute a layer, and multiple 

layers piled next to each other are called a neural network or multi-layer neural network. We've 

described the main components of this type of structure in Figure 1.11. 

 We’ll use 𝑤𝑗𝑘
𝑙  to denote the weight for the connection from the 𝑘𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ 

layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. So, for example, the diagram of Figure 1.11 below shows 

the weight on a connection from the fourth neuron in the second layer to the second neuron in the 

third layer of a network: 

 

Figure 1.11: Illustration of notation for the network's weights 

 We use a similar notation for the network’s biases and activations. Explicitly, we use 𝑏𝑗
𝑙 for 

the bias of the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. And we use al j for the activation of the 𝑗𝑡ℎ neuron in the 

𝑙𝑡ℎ layer. Figure 1.12 shows examples of these notations in use: 
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Figure 1.12: Illustration of notation for the network's biases and activations 

 Suppose we have sigmoid function as activation function. So, with these notations the 

activation 𝑎𝑗
𝑙 of the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer is related to the activations in the (𝑙 − 1)𝑡ℎ layer by 

the equation: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

 

𝑧𝑗
𝑙 = ∑𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝑘

 
1. 6 

𝑎𝑗𝑘
𝑙 =  𝜎(𝑧𝑗

𝑙) 1. 7 

These equations can be rewritten in compact vectorized form: 

𝑎𝑙 = 𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) 1. 8 

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 1. 9 

𝑎𝑙 =  𝜎(𝑧𝑙) 1. 10 

1.4.5 Forward propagation  

 So, to understand the forward propagation mechanism or process, let’s explain just 

mechanism between two layers of neural network and we can apply the same procedure to previous 

layers, we going to use sigmoid as activation function, as we can see in Figure 1.13, each of these 

connections has a unique weight and every single neuron has a unique bias: 
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Figure 1.13: Illustration of neural network [8,6,6,1] shape 

 The actual function to get one neuron’s activation in terms of the activations in the first 

hidden layer or any previous layer, for example let’s choose neuron 𝑎0
(1)

 just so we can demonstrate 

how we can calculate neuron output value: 

𝑎0
(1) = 𝜎(𝑤00

1  𝑎0
(0) + 𝑤01

1  𝑎1
(0) + ∙ ∙ ∙  +𝑤07

1  𝑎7
(0) + 𝑏0

1 1. 11 

 we’ll use matrix multiplication to compute the activations of all the neurons in the next 

layer simultaneously. you can communicate the full transition of activations from one layer to the 

next in matrix form, we will have: 

𝜎

(

 
 

[
 
 
 
𝑤00
1 𝑤01

1

𝑤10
1 𝑤11

1

…
…

𝑤07
1

𝑤17
1

⋮       ⋮ ⋱ ⋮
𝑤50
1 𝑤51

1 ⋯ 𝑤57
1 ]
 
 
 

[
 
 
 
 𝑎0
(0)

𝑎1
(0)

⋮

𝑎7
(0)
]
 
 
 
 

+

[
 
 
 
𝑏0
1

𝑏1
1

⋮
𝑏5
1]
 
 
 

)

 
 
=

[
 
 
 
 𝑎0
(1)

𝑎1
(1)

⋮

𝑎5
(1)
]
 
 
 
 

 

 We repeat the same process until we reach the output layer, just like this we going to get 

our predicted value 𝑎𝐿(𝑥) = 𝑦(𝑥) for one data example x,  
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1.4.6 Loss function 

basically, the cost function measures how bad or good is the prediction. The final output 

predictions compare the predicted values with the desired output: 

𝐿𝑜𝑠𝑠(𝑦(𝑥), 𝑎𝐿(𝑥)) 

1.4.6.1 Types of Loss function 

1.4.6.1.1  Regression Loss Function 

 Regression models deals with predicting a continuous value for example given floor area, 

number of rooms, size of rooms, predict the price of the room. One of the mostly used loss functions 

in the regression problem is called “Mean Squared Error” and also known as “Quadratic Cost”: 

𝐶 =
1

2𝑛
∑‖𝑦(𝑥) − 𝑎𝐿(𝑥)‖

2

𝑥

 1. 12 

where: 𝑛 is the total number of training examples, the sum is over individual training examples 𝑥, 

𝑦 = 𝑦(𝑥) is the corresponding desired output, 𝐿 denotes the number of layers in the network, and 

𝑎𝐿 = 𝑎𝐿(𝑥) is the vector of activations output from the network when 𝑥 is input. 

 Also, the quadratic cost function can be written as average 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥  over cost 

functions 𝐶𝑥 for individual training examples, 𝑥. where the cost for a single training example is: 

𝐶𝑥 =
1

2
 ‖𝑦(𝑥) − 𝑎𝐿‖2 1. 13 

1.4.6.1.2  Classification loss function 

 Classification problems involve predicting a discrete class output. It involves dividing the 

dataset into different and unique classes based on different parameters so that a new and unseen 

record can be put into one of the classes. The most widely used function for this type of learning 

method is “Binary Cross Entropy” loss function: 

𝐶 = −
1

𝑛
∑[𝑦 ln 𝑎𝐿 + (1 − 𝑦) ln(1 − 𝑎𝐿)]

𝑥

 1. 14 
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where 𝑛 is the total number of items of training data, the sum is over all training inputs, 𝑥, and 𝑦 

is the corresponding desired output, 𝐿 denotes the number of layers in the network. 

1.4.7 Training the neural network 

 Just telling the neural network model what a terrible job it’s doing isn’t very helpful. You 

want to tell it how it should change those weights and biases so as to improve, and we have to make 

sure that those changes should minimize the loss function. How do you find an input that minimizes 

the value of this cost function? This is why we need to apply the gradient descent over the cost 

function. 

1.4.7.1 Gradient descent 

 How can we apply gradient descent to learn in a neural network? The idea is to use 

gradient descent to find the weights 𝑤𝑘 and biases 𝑏𝑙 which minimize the cost. To see how this 

works, let’s introduce the gradient descent update rule for weights and biases: 

𝑤 → 𝑤′ − 𝛼
𝜕𝐶

𝜕𝑤
 1. 15 

𝑏 → 𝑏′ − 𝛼
𝜕𝐶

𝜕𝑏
 1. 16 

where 𝛼 is a small, positive parameter (known as the learning rate),  
𝜕𝐶

𝜕𝑤
 partial derivative with 

respect to weight, 
𝜕𝐶

𝜕𝑏
 partial derivative with respect to bias. Also 𝑤′ and 𝑏′represent old weight 

and bias, 𝑤 and 𝑏 indicate updated weight and bias.  

 there are many possible local minima you might land in. It depends on which random input 

you start at, and there’s no guarantee that the local minimum you land in will be the smallest 

possible value for the cost function. 
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Figure 1.14: illustration of multiple minima for cost function 

 Gradient descent algorithm: 

1. Initialize weights and biases randomly 

2. Loop until convergence: 

3.  Compute gradient 
𝜕𝐶

𝜕𝑤
, 
𝜕𝐶

𝜕𝑏
 

4.  Update weights and biases 𝑤 ← 𝑤′ − 𝛼
𝜕𝐶

𝜕𝑤
, 𝑏 → 𝑏′ − 𝛼

𝜕𝐶

𝜕𝑏
  

5. Return weights and biases 

1.4.7.2 Learning rate 

 the learning rate is a tuning parameter in an optimization algorithm that determines the 

step size at each iteration while moving toward a minimum of a loss function [14].  

 In setting a learning rate, there is a trade-off between the rate of convergence and 

overshooting. A too high learning rate will make the learning jump over minima but a too low 

learning rate will either take too long to converge or get stuck in an undesirable local minimum 

[15]. 

1.4.7.3 Back-propagation 

 Backpropagation, is an algorithm for computing that derivative of the loss function with 

respect to the neuron weights 
𝜕𝐶

𝜕𝑤
 and for biases 

𝜕𝐶

𝜕𝑏
. 
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When training a neural net, the goal is to find neuron parameters (weights) that cause the 

output of the NN to best fit the data, the back-propagation is the way the NN can “connect” the 

loss function and outputs with the weight parametrization. 

• If the loss function is less than the previous value using the current weights, then the 

gradient is in a good direction. 

• If the loss function is more than the previous, it goes in the opposite direction. 

• Repeat until the loss function is zero or cannot make it lower (convergence). 

 When the Neural Network converged, it found a spot in the loss function that increasing or 

decreasing the weight values makes the loss function increasing. 

1.5 Convolutional Neural Network (CNN) 

 A Convolutional Neural Network (CNN) is a specialized type of deep neural network which 

includes many different deep learning algorithms. CNNs are regularized versions of multilayer 

perceptron with some extra layer to minimize data size and parameters number. CNNs are widely 

used in areas such as object detection, image classification and regression for feature extraction. 

CNNs have the advantage of being able to convolve over large datasets with high speed as part of 

the training process [16]. 

 In the next elements we’ll describe convolutional neural networks. Also, interpret every 

component relate to CNN structure like convolutional layer, pooling and fully connected. These 

networks use a special architecture which is particularly well-adapted to classify images. Using 

this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, many-

layer networks, which are very good at classifying images. 

1.5.1 Architecture 

A convolutional neural network consists of an input layer, hidden layers and an output layer. 

In any feed-forward neural network, any middle layers are called hidden because their inputs and 

outputs are masked by the activation function and final convolution. In a convolutional neural 

network, the hidden layers include layers that perform convolutions. Typically, this includes a layer 

that performs a dot product of the convolution kernel with the layer's input matrix, and its activation 

function is commonly ReLu or Sigmoid. As the convolution kernel slides along the input matrix 
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for the layer, the convolution operation generates a feature map, which in turn contributes to the 

input of the next layer. This is followed by other layers such as pooling layers, fully connected 

layers [17]. 

 

Figure 1.15: Structure of Convolutional Neural Network. 

1.5.2 CNN Components  

1.5.2.1 Kernels and Filters 

 A grid of discrete numbers or values describes the kernel. Each value is called the kernel 

weight. Random numbers are assigned to act as the weights of the kernel at the beginning of the 

CNN training process. In addition, there are several different methods used to initialize the weights. 

Next, these weights are adjusted at each training iteration. thus, the kernel learns to extract 

significant features [18]. 

 The local receptive field: is a defined segmented area that is occupied by the content of 

input data that a neuron within a convolutional layer is exposed to during the process of convolution 

[18]. 

 Shared weights and bias: In CNNs, each filter is replicated across the entire visual field. 

These replicated units share the same parameterization (weight vector and bias) and form a feature 

map [18]. The shared weights and bias are often said to define a kernel or filter. 

https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-:5-61
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1.5.2.2 Convolutional Layer 

 One typical layer of CNN is a convolutional layer that uses mathematical convolution to 

process the data.  The main purpose for a convolutional layer is to detect features such as edges, 

lines, blobs of color and other visual elements. To detect these features, the convolutional layer 

uses filters that are square-shaped objects that scan over the image. The more filters we give to a 

convolutional layer, the more features it can detect. 

The hyperparameters are as follows: 

•  The number of filters or depth: It has an impact on the output’s depth. Three distinct filters, 

for example, would result in three different feature maps, resulting in a depth of three [19].  

•  Stride: It refers to the distance, or the number of pixels, that the kernel travels across the input 

matrix, a bigger stride results in a lesser output [19]. 

•  Zero-padding: When the filters don’t fit the input image, it’s frequently utilized. All 

parameters outside of the input matrix are set to zero, resulting in a larger or equal-sized output 

[19]. 

 

Figure 1.16: An illustration of the convolution of a 2 x 2 kernel moving over a 4 x 4 image, resulting in a 3 x 3 

feature map 

 Convolutional Operation: Initially, the CNN input format is described. The vector format 

is the input of the traditional neural network, while the multi-channeled image is the input of the 

CNN. For instance, single channel is the format of the gray-scale image, while the RGB image 

format is three-channeled. To understand the convolutional operation, let us take an example of a 

4x4 gray-scale image with a 2x2 random weight-initialize kernel (Figure 1.16). First, the kernel 

slides over the whole image horizontally and vertically. In addition, the dot product between the 
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input image and the kernel is determined, where their corresponding values are multiplied and then 

summed up to create a single scalar value, calculated concurrently. The whole process is then 

repeated until no further sliding is possible. Note that the calculated dot product values represent 

the feature map of the output, we can calculate the convolution layer output by using equation 

below: 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 =  [
(𝑤 − 𝑘 + 2𝑝)

𝑠
] + 1 1. 17 

Where: 𝑤 is the input volume, 𝑘 is the kernel size, 𝑝 is the padding, 𝑠 is the stride 

 The feature map: is the output of one filter applied to the image data. Basically, the feature 

map represents the result of convolution operation between filter and image data. 

 Activation function:  is the last component of the convolutional layer to increase the non-

linearity in the output. Generally, ReLu function is used as an activation function in a convolution 

layer. ReLu function allows us to replace every negative value in feature map from the 

convolutional layer with zero, this is will help us to prevent the values from summing up to zero. 

1.5.2.3 Pool layer  

 The main task of the pooling layer is the sub-sampling of the feature maps. These maps are 

generated by following the convolutional layer. In other words, this approach shrinks large-size 

feature maps to create smaller feature maps. It maintains the majority of the dominant information 

(or features) in every step of the pooling stage. The most familiar and frequently pooling types 

utilized pooling methods are the max and average pooling. 

 Max-pool: Calculate the maximum value for each patch of the feature map. Thus, the 

output after max-pooling layer would be a feature map containing the most prominent features of 

the previous feature map. 

 Average pooling: computes the average of the elements present in the region of feature 

map covered by the filter. 
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Figure 1.17: Example for the max-pooling and the average-pooling with a filter size of 2×2 and a stride of 2×2 

1.5.2.4 Flattening 

 When we have the pooling layers with many pooled feature maps and then you flatten them. 

So, you put them into this one long column sequentially one after the other. And you get one huge 

vector of inputs for an artificial neural network or FC. 

 So, to sum all this up, we’ve got an input image. We apply a convolution layer, then we 

apply pooling, and then we flatten everything into a long vector which will be our input layer for 

the fully connected layer or ANN. 

1.5.2.5 Fully Connected Layer 

 So, the fully connected layer collects the resulting data from the convolutional and pooling 

layer, analyzes the data from the layers independently and makes the final classification or 

localization decision. 

1.5.3 Principle working of Convolutional Neural Networks 

 A CNN has hidden layers of convolution layers that form the base of ConvNets. Like any 

other layer, a convolutional layer receives input volume, performs mathematical scalar product 

with the feature matrix (filter), and outputs the feature maps. Features refer to details in the image 

data like edges, shapes, textures, objects, circles, etc [20]. 

 At a higher level, convolutional layers detect these patterns in the image data with the help 

of filters. The higher-level details are taken care of by the first few convolutional layers. The deeper 

the network goes, the more sophisticated the pattern searching becomes. For example, in later 

layers rather than edges and simple shapes, filters may detect specific objects like eyes or ears, and 

eventually a cat and a dog [20]. 
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 The first hidden layer in the network dealing with images is usually a convolutional layer. 

When adding a convolutional layer to a network, we need to specify the number of filters we want 

the layer to have. A filter can be thought of as a relatively small matrix for which we decide the 

number of rows and columns this matrix has. The value of this feature matrix is initialized with 

random numbers. When this convolutional layer receives pixel values of input data, the filter will 

convolve over each patch of the input matrix. The output of the convolutional layer is usually 

passed through the ReLu activation function to bring non-linearity to the model. It takes the feature 

map and replaces all the negative values with zero [20]. 

 The pooling layer is added in succession to the convolutional layer to reduce the 

dimensions. We take a window of say 2x2 and select either the maximum pixel value or the average 

of all pixels in the window and continue sliding the window. So, we take the feature map, perform 

a pooling operation, and generate a new feature map reduced in size. Pooling is a very important 

step in the ConvNet as reduces the computation and makes the model tolerant towards distortions 

and variations [20]. 

The convolutional layer was responsible for the feature extraction. But, What about the 

final prediction? A fully connected dense neural network would use a flattened feature matrix and 

predict according to the use case [20]. 
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Figure 1.18: Architecture of CNN model (classification/localization 

1.6 Conclusion  

As shown above in this chapter we presented a brief approach about machine learning to 

set up the plate for our interest in most common ML subfield. In this case is deep learning. Then, 

we started deal with the fundamental’s studies of deep learning field including neural network 

concepts (neural network algorithms: forward-propagation, back-propagation), perceptron 

components. Also, we addressed one of the most widely used deep neural networks CNN, we did 

envelop every CNN component and layer from convolutional layer to the last layer known as FC. 

All these notions let us proceed towards the next chapters, where we going to implement all these 

theorical notions to construction prediction model.



 

 

Chapter 2: Object detection 

 

Abstract 

Object detection has been attracting a lot of interest, and recently a lot of various 

computational models have been designed. In this chapter, we explained various object 

detection models including RCNN, FAST RCNN, FASTER RCNN and YOLO. 

 

2.1 Introduction 

2.2 Object Detection 

2.3 Object detection, semantic segmentation, instance segmentation differences 

2.4 Object detection using convolutional neural networks 

2.5 How to evaluate object detection model 

2.6 Conclusion 
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2.1 Introduction 

When carefully observing the brain, multiple processing levels can be identified. It is 

understood that at each level the brain can learn features or representations at escalating heights of 

abstraction. For instance, the typical design of the visual cortex suggests that (roughly speaking) 

the brain initially extracts edges followed by patches, then surfaces, then objects, and so on. This 

is one of the fundamental ways in which the brain performs vision [21]. 

Convolutional Neural Networks (CNNs) emerged from the study of the brain’s visual 

cortex, and they have been used in image recognition since the 1980s. In the last few years, CNNs 

have managed to achieve superhuman performance on some complex visual tasks. 

In this chapter we will discuss one of the most important visual tasks which is object 

detection, the application of this latter is used in many domains such as in the field of military, 

security, medical and augmented reality. We will first, understand what is exactly object detection 

(Classifying multiple objects in an image and placing bounding boxes around them), then we will 

discuss some of the best CNN architectures in this regard. 

2.2 Object Detection  

Object detection is an automated computer vision technique for locating instances of objects 

in digital photographs or videos. Specifically, object detection draws bounding boxes around one 

or more effective targets located in a still image or video data. An effective target is the object of 

interest in the image or video data that is being investigated. The effective target (or targets) should 

be known at the beginning of the task [22].  

Object detection can be categorized into two research topics: 

• Detection of specific instance  

• General object detection  

The first type aims towards the detection of a particular object while the second type gives 

the exact locations and classifying all the elements in the vision, The main process of object 

detection is shown in Figure2.1, this process localizes and classifies the target. In supervised 



Chapter 2  Object detection 

27 

 

learning, the effective targets should be known at the beginning of the task; the effective target in 

this case is the object of interest in the image or video data that is being investigated. 

Before we start setting the main techniques used in recent years for object detection, we need to 

differentiate between object detection, semantic segmentation and instance segmentation, as these 

terms can be confusing for anyone new to the field. 

2.3 Object detection, semantic segmentation, instance segmentation differences  

2.3.1 Object detection   

In object detection, each image pixel is classified whether it belongs to a particular class (e.g. 

face) or not It refers to the method of identifying and correctly labelling all the objects present in 

the image frame. In practice, this consists of two steps: 

• Object Localization: Here, a bounding box or enclosing region is predicted in the 

tightest possible manner in order to locate the exact position of the object in the image. 

• Image Classification: The localized object is then fed to a classifier which labels the 

object. 

The figure below shows the output for object detection applied on a real image of sheep, 

where on the left it shows one box determining the sheep and classifying it, and on the right each 

sheep is localized and classified. 

  

      

  

       

Image 
  

Feature  
Extraction   

Regional  

Proposal   
Classification 

  

Bounding -  Box  

Regression   

Figure 2.1:main process of object detection 
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Figure 2.2:Detect one single object(right), detect multiple objects (left). 

2.3.2 Semantic segmentation 

If you are familiar with the term segmentation, you already know it is just simply linking pixels 

to determine objects and does not differentiate any instance inside of it. Same for semantic 

segmentation, it refers to the process of linking each pixel in the given image to a particular class 

label. For example, in the figure 2.3 the pixels are labelled as road, sheep and grass.  

 

Figure 2.3:Semantic detection 

2.3.3 Instance segmentation 

Instance Segmentation is one step ahead of semantic segmentation. Instead of assigning same 

pixel values to all objects of same class, it associates a class label to each pixel similar to the 

semantic segmentation, except that it treats multiple objects of the same class as individual objects 

separate entities. 

the end result will have an image where all the objects are separated by pixel boundaries. For 

example, in the figure2.4 below we can differentiate each sheep zone. 
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Figure 2.4:Instance segmentation. 

In our project we will focus on object detection, which have been for a long time an interesting 

field for researchers, but significant results were only produced in the recent years owing to the 

rise of Convnets as feature extractors and Transfer Learning as method of passing on previous 

knowledge. There are multiple deep detection models, it won’t possible for us to cover up all of 

them, we will therefore detail some recent techniques that exist for this matter, and we will focus 

on the CNN as this is the technique, we will adopt to achieve our object detection objective.  

2.4 Object Detection using Convolutional Neural Networks  

In recent years, the research community invented the (CNN), Deep Neural-Networks, CNN’s 

(Convolutional Neural Network) different models had attained amazingly accurate results for 

object detection. 

The CNN architecture of object detection is based on two different methods, the methods can 

be divided into two main classes:  

• Two-stage methods  

• One-stage methods  

Two-stage methods firstly generate some candidate object proposals and then classify those 

proposals into the specific categories while one-stage methods simultaneously extract and classify 

all the object proposals. Generally speaking, two stage methods have a relatively slower detection 

speed and higher detection accuracy, while one-stage methods have a much faster detection speed 
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and comparable detection accuracy. Later we will introduce you the metrics used to evaluate the 

accuracy of object detection detectors. 

In the following part of this section, two-stage methods and one-stage methods are introduced, 

respectively [23]. 

2.4.1 Two-Stage Detector  

Two-stage frameworks divide the detection process into the region proposal and the 

classification stage. These models first propose several object candidates, known as regions of 

interest (RoI), using reference boxes (anchors). In the second step, the proposals are classified and 

their localization is refined. Will take R-CNN, or Region-based Convolutional Neural Network. 

2.4.1.1 Two-Stage Detector 

Two-stage frameworks divide the detection process into the region proposal and the 

classification stage. These models first propose several object candidates, known as regions of 

interest (RoI), using reference boxes (anchors). In the second step, the proposals are classified and 

their localization is refined. Will take R-CNN [22], or Region-based Convolutional Neural 

Network, as an example of two-stage methods.  

2.4.1.1.1  R-CNN for object detection 

R-CNN consists of 3 simple steps: 

1. An algorithm called Selective Search used to generate proposals.  

2. Run a convolutional Neural Net (CNN) on top of each of these region proposals.  

3. Take the output of each CNN and feed it into an SVM to classify the region and to a 

linear regressor to tighten the bounding box of the object, if such an object exists. 

These 3 steps are illustrated in the image below: 
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Figure 2.5:R-CNN object detector. 

To sum it up; in this technique we first propose regions, second extract features, and finally 

classify those regions based on their features. This method turns object detection into an image 

classification problem. Knowing that R-CNN is a very intuitive method, but at the same time it is 

very slow. 

Later, Faster-RCNN proposed a scheme in which features are shared between both stages, 

achieving a significant efficiency improvement. The main insight of Faster R-CNN was to replace 

the slow selective search algorithm with a fast neural net. Specifically, it introduced the region 

proposal network (RPN). Faster R-CNN uses a convolutional backbone network, such as VGG or 

ResNet, which outputs global feature maps. These convolutional maps are shared between the 

Region Proposal Network (RPN) and the detection network, which reduces the cost of generating 

proposals externally.  

2.4.2 One-stage Detector 

On the other hand, one-stage detectors contain a single feed-forward fully convolutional 

network that directly provides the bounding boxes and the object classification. The Single Shot 

MultiBox Detector (SSD) and You Only Look Once (YOLO) were among the first to propose a 

single unified architecture, without requiring a per-proposal computation. Single-Shot Multibox 

Detector (SSD) was the first one-stage detector to achieve an accuracy reasonably close to the two-

stage detectors while still retaining the ability to work in real-time. We will take YOLO [24]. 
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2.4.2.1 You Only Look Once (YOLO) 

YOLO detectors are another anchor-based alternative that divides the image into regions 

and predict bounding boxes and probabilities for each region. It is one of the faster object detection 

algorithms which make it a very good choice when we need real-time detection, without loss of 

too much accuracy. This technique uses Convolutional Neural Networks for object detection. 

The YOLO model was first described by Joseph Redmon, et al. in the 2015 paper titled You Only 

Look Once: Unified, Real-Time Object Detection [24]. 

The first three YOLO versions have been released in 2016, 2017 and 2018 respectively. 

However, in 2020, within a period of only few months, three major versions of YOLO have been 

released named YOLO v4, YOLO v5 and PP-YOLO. 

YOLO involves a single neural network trained end-to-end that takes a picture as input and 

predicts bounding boxes and class labels for each bounding box directly. Let’s look up close at the 

general architecture of an YoloV4 detector to understand.  

The figure2.6 below shows an example of an output image of YoloV4. 

 

Figure 2.6:Objects detected by YoloV4. 

2.4.2.1.1  YoloV4 architecture 

First, Let's take a look at the main components of a modern one-stage object detector. The 

figure 2.7 is taken from YOLO v4 [25] paper It represents the general architecture of YoloV4 which 

is a one-stage detector. 
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As you can see in the figure 2.7, YOLOv4 consists of: 

 

Figure 2.7:YoloV4 architecture. 

1. Backbone; 

2. Neck; 

3. Head. 

A. The Backbone: 

Refers to the feature-extraction architecture. They are pre-trained on image classification 

datasets, like ImageNet, and then fine-tuned on the detection dataset. In YOLOv4, backbones can 

be VGG, ResNet, SpineNet, EfficientNet, ResNeXt, or Darknet5. Tiny YOLO has only 9 

convolutional layers, so it’s less accurate but faster and better suited for mobile and embedded 

projects. Darknet53 (The backbone used in YOLOV3) has 53 convolutional layers, so it’s more 

accurate but slower. Later we will introduce you the metrics use to evaluate the accuracy of object 

detection detectors. 

B. The Neck: 

These are extra layers that go in between the backbone and head. They are used to extract 

different feature maps of different stages of the backbone, in other terms its purpose is to add extra 

information in the layers. (Feature Pyramid Networks, Path Aggregation Network ...).     
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C. Head. 

This is a network in charge of actually doing the detection part (classification and regression) 

of the bounding boxes.  

2.4.2.1.2  Interpreting the YOLO Output 

Input to the network is a batch of images, and the features learned by the convolutional layers 

are passed onto a classifier/regressor which makes the detection prediction. And the output is a list 

of bounding boxes along with recognized classes. 

To understand the whole process let’s assume that we have an input image. First, we divide it 

into a grid of dimensions equal to that of the final feature map. For example, if the input image is 

of 416 x 416 cells and stride is 32, then the feature map will be of 13 x 13 cells. Then we divide 

the input image into 13 x 13 cells. The input to the network is a batch of images, and the features 

learned by the convolutional layers are passed onto a classifier/regressor which makes the detection 

prediction.  

Instead of predicting the absolute size of boxes with regard to the entire image, YOLO 

introduces what is known as an Anchor Box, a list of predefined boxes that best match the 

desired objects, which are calculated using k-mean clustering. Yolo V3 uses three anchor boxes, 

each of the 13 x 13 cells thus encodes information about three boxes. 

 

Figure 2.8: YOLOv3 Network prediction process 
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The output is a list of bounding boxes along with the recognized classes. Each bounding box is 

represented by 6 numbers (𝑝𝑐, 𝑏𝑥, 𝑏𝑦, 𝑏ℎ, 𝑏𝑊, 𝑐). where 𝑝𝑐 is the probability that it belongs to a 

particular class, 𝑏𝑥 and 𝑏𝑦 are the centre of the bounding box, 𝑏ℎ and 𝑏𝑊 are the height and width 

of the bounding box respectively, and 𝑐 is the available total number of classes. If we expand 𝑐 into 

an 80-dimensional vector (The number of classes), each bounding box is then represented by 85 

numbers. 

The algorithm may find multiple detections of the same object. Non-max suppression is a 

technique by which the algorithm detects the object only once. To remove the duplicates, the 

bounding boxes that have the class probability above a threshold value are selected and used to 

locate the object within the image. 

So, we saw how YOLO learns and how it is able to detect all the images in a single go. Now, 

we will introduce you to the metrics used to evaluate the accuracy of our proposed object detection 

detector in the practical part. 

2.5 Evaluation of Object Detection Model 

The MSE often works fairly well as a cost function to train the model, but it is not a great metric 

to evaluate how well the model can predict bounding boxes. The most common metric for object 

detection is IoU which stands for Intersection over Union. 

2.5.1 Intersection over union (IOU) 

We have explained above some of the methods for object detection but still, we didn’t 

clarify how to determine the accuracy of these methods. Intersection over Union is a test to 

ascertain how close is the prediction to the actual truth. The IOU is calculated using this equation: 

𝐼𝑜𝑈 =
𝐴 ∪ 𝐵

𝐴 ∩ 𝐵
 2. 1 

The figure below represents two overlapped boxes (red and blue empty boxes), The 

overlapping region is the region marked with a black pen over the combination of both.  
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Figure 2.9:Intersection over Union is used to measure the performance of detection 

It is obvious that IoU loss, only works when the predicted bounding boxes overlap with the 

ground truth box. IOU loss would not provide any moving gradient for non-overlapping cases. 

So, if we get a higher value of Intersection over Union, it means the overlap is better. Hence, 

the prediction is more accurate and better as depicted below. 

We can say that the Intersection over Union allows us to measure and compare the 

performance of various solutions. It also makes it easier for us to distinguish between useful 

bounding boxes and not-so-important ones [26].  

2.5.2 Mean Average Precision – mAP 

Mean Average Precision (mAP) is one of the most comm only used evaluation metrics 

for object detection models, mAP is a metric based on Average Precision (AP) which is used to 

calculate the precision and recall of a model. This is done using the following formulas  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 2. 2 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2. 3 

Precision in equation 2.2 is defined as the ability for an object detection model to identify 

objects, this is represented in percentage. Recall in equation 2.3 is defined as the ability for an 

object detection model to identify all objects in sample data, this is also represented in percentage. 

To determine TP (True Positive), FP (False Positive) and FN (False Negative) and also define when 
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a correct or incorrect detection is made, Intersection Over Union (IoU) is needed. A threshold is 

also predefined to determine if the object was actually detected, this threshold is often 50%. 

If the object detection system detects an object within the IoU threshold it is seen as a True 

Positive, else it is seen as a False Positive. False Negatives occurs when an object detection system 

fails to detect an object that is present in an image. AP is used to calculate the mAP of an object 

detection model and is the average AP for all different classes of objects that the model is designed 

to detect, given by equation 2.4 where N represents the total number of classes and APi is the 

average precision for each class [27]. 

𝑚𝐴𝑃 =  
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 2. 4 

2.6 Conclusion  

In recent years, with the development of Deep Learning in object detection, multiple deep 

detection models are proposed. Throughout this chapter we have discussed one of the most 

important visual tasks which is the object detection, where we have focused on the CNN 

architecture of object detection and its two main classes: the two-stage and one-stage methods.  

It should be noted that object detection has not been used much in various areas where it 

could be of great help. In the next chapter we will propose and implement our object detector on 

real medical images, we will also apply Yolo5 and compare them. 



 

 

Chapter 3: Model implementation and 

experimental results 

 

Abstract 

Early diagnosis of brain tumors plays an important role in a patient’s treatment and makes it 

easy easier to save his or her life. A major challenge in brain tumor treatment planning and 

quantitative evaluation is the determination of the tumor extent. In this chapter we have 

implemented two different neural network-based object detection models that include our 

constructed CNN model and pre-trained YOLOV5 model. Then, we have evaluated and 

compared the experimental results of these models. 

 

3.1 Introduction 

3.2 Data 

3.3 Data preprocessing 

3.4 Data augmentation 

3.5 Convolutional neural network construction 

3.6 Training 

3.7 CNN model evaluation 

3.7 Results 

3.9 Conclusion 
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3.1 Introduction 

In this chapter, we propose an efficient and skillful method which helps in the detection of 

the brain tumor without any human assistance based on both Convolutional Neural Network and 

YOLOV5. First, we will describe the brain image dataset we have used to train our constructed 

convolutional neural network. Then detail the various CNN architectures that we have 

reconstructed to enhance the results each time. Lastly, we have applied YOLOv5 on our dataset to 

see how is efficient our method compared to YOLOv5; which is a family of object detection 

architectures and models pretrained on the COCO dataset (COCO is a well-known large-scale 

object detection, segmentation, and captioning dataset.) and at the same time learning how to apply 

a pretrained model on a real dataset and do retrain it on costume data. 

3.2 Data 

The dataset that we used for training our model was published in Kaggle website by 

Navoneel Chakarabarty [28], it contains 253 brain tumor images of two classes images with brain 

tumor and images with no brain tumor as shown in Table 3.1. Also, each image in the dataset had 

a different size. 

Table 3.1: Number of images per classes 

Classes Number of images Total 

Brain tumor 98 
253 

No brain tumor 155 

 

These images dataset is generated through the scans, and they are examined by the 

radiologist. A manual examination can be error-prone due to the level of complexities involved in 

brain tumors and their properties. Figure 3.1 shows sample from the dataset class brain tumor. 
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Figure 3.1: Sample from the dataset class brain tumor 

   

Figure 3.2: Sample from the dataset class no brain tumor 

The dataset does not have bounding boxes around the objects. So, we had to label it 

manually using LabelImg, a graphical image annotation tool, this creates XML files in PASCAL 

VOC format. We should mention that this task was one of the hardest and most time consuming 

part; we have spent time to choose the right tool since there are many open-source image labeling 

tools, and then more extra time to get the labeled 

We marked the location of the brain tumor by drawing a bounding box around the tumor to 

be detected (Figure 3.3). 
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Figure 3.3: Mark the location of the brain tumr in form of bounding box using labelImg 

These annotated images are saved in xml format Figure 3.4 show an xml file structure 

generated by LabelImg tool The XML file contains information about the image including the 

name of the image and the name of the dataset. The size and depth of the image are recorded 

under the ‘size” tab. The information under the ‘object’ tab is the content we marked before. 

Then ‘name’ tab records the class of the object. And ‘bndbox’ tab records the specific location of 

the object. 

 

Figure 3.4: Xml file for the annotated image exported by labelImg tool 
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3.3 Preprocessing 

  For the preprocessing we uploaded our dataset and annotations XML files to Roboflow. 

Roboflow is a Computer Vision development framework for better data collection to 

preprocessing, and model training techniques. Roboflow has public datasets readily available to 

users and has access for users to upload their own custom data also. Roboflow accepts various 

annotation formats. In data pre-processing, there are steps involved such as image orientations, 

resizing, contrasting, and data augmentations [43]. 

 As we have said before our dataset has different sizes, so we won’t be able to feed them 

directly to the network. In addition, large image sizes have implications towards not only neural 

network training time but also memory issues. We resized the images to 300𝑥300 pixels smaller 

which in turn make the training step faster. 

 We also adjusted the contrast of the images in order to improve the normalization and line 

detection in varying lighting conditions, and make our model better at edges detection. 

  

Figure 3.5: Image before and after contrast adjustment applied 

3.4 Data augmentation 

We know previously mentioned that overfitting can happen when neural networks weights 

memorize training data rather than generalize the input to discover patterns in the data. This is 

usually the case in small datasets. So, it was obvious to us that 253 images was too small an amount 

of data if we really wanted to have good training results. With this limited dataset brain tumor 
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images, our neural networks will be for sure at a high risk of overfitting. To avoid this, we needed 

to apply data augmentation. 

We implemented a several forms of data augmentation: 

• Rotation: Between - 45º and 45º 

• Horizontal-flip: -180º or 180º 

• Vertical-flip: -180º or 180º 

• Outputs per training example: 3 

• Brightness: between 0% and + 54 

• Noise: up to 10% of pixels 

• Bounding box exposure: Between -8% and +8% 

After we applied data augmentation process, we have obtained 1256 images of brain tumor; 

which is still not enough but acceptable. Figure 3.6 show sample from dataset after augmentation. 

   

Figure 3.6: sample from dataset after augmentation 

 Roboflow gives you the ability to split your dataset to whatever we want, so after we did 

the data augmentation, we split our data 80% for training, 10% for validation and 10% for testing. 

Table 3.2 show on number and percentage our split dataset.  
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Table 3.2: Number of training image, validation and testing 

 Datasets 

Training Validation Testing Total 

Percentage 80% 10% 10% 100% 

Number 1004 126 126 1256 

 

 After that, we exported our augmented dataset into two versions with different formats, first 

version had CSV format so we can use it for train our constructed model and the second version is 

TXT annotationis and YAML config that we will use later to train YOLOv5 on our custom 

dataset.Table 3.3 shows the content of the CSV file. 

Table 3.3:Content of CSV file 

Filename Width height class xmin ymin xmax ymax 

aug_Y154_0_1224.jpg 300 300 BRAIN_TUMOR 1 160 47 213 

aug_Y19_0_1106.jpg 300 300 BRAIN_TUMOR 57 81 128 137 

38 no.jpg 300 300 NO_BRAIN_TUMOR 0 0 0 0 

41 no.jpg 300 300 NO_BRAIN_TUMOR 0 0 0 0 

aug_Y37_0_5320.jpg 300 300 BRAIN_TUMOR 157 95 235 169 

aug_Y77_0_390.jpg 300 300 BRAIN_TUMOR 83 143 202 221 

 

 Each XML file contain annotation parameters of one single image, so we converted all the 

XML files into one CSV file that gathers all the annotation parameters of the whole dataset. Now, 

our file is organized and ready for use. 

3.5 Construction of our proposed convolution neural network detector 

For our implementation, we reconstructed the convolution neural network that we have 

introduced in chapter 1 using Keras as it is an effective high-level neural network, Application 

Programming Interface (API) written in Python to create our CNN model. We have used Google 

Collaboratory platform to execute our code due to the performance of GPU that saved for us so 

much time. In the next section, we are going to describe the architecture of our CNN detector in 

detail 
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In the experimental part, we have tested three combinations of layers as our first 

combination of layer used to construct the CNN model was really terrible at prediction. So, we had 

to try other combinations in order improve the results. 

In the first combination of layers, we have dealt with the problem of detection as a regression 

task so we did not include an output for classification. The output of the CNN had just four neurons 

to give us the bounding box annotations parameters (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥). To construct the 

CNN, we used Keras sequential model, which is a linear stack of layers: 

• Convolutional layer with 64 filters of size 5 x 5 and stride of 1  

• Max-pooling layer with pool size 2 x 2  

• Convolutional layer with 128 filters of size 5 x 5 and stride of 1  

• Max-pooling layer with pool size 2 x 2  

• Convolutional layer with 256 filters of size 5 x 5 and stride of 1  

• Max-pooling layer with pool size 2 x 2  

• Fully Connected layer with 100 neurons, in form of three dense layers: input dense layer 

with 64 neurons, hidden dense layer 32 neurons, output dense layer 4 neurons, all FC layer 

neurons have ReLu as activation function. 

In the second combination of layers, we added another convolutional layer with 32 filters of 

size 5 x 5 and stride of 1 as input layer of the model and another dense layer with 128 neurons as 

input for the fully connected layer. Also, we changed the activation function for the output dense 

layer to sigmoid function. 

The last combination of layers, was the same as the second combination but we added another 

fully connected layer for classification of 2 output neurons for classified image if they contain brain 

tumor or not with SoftMax as activation function for the last layer. In order to apply this 

combination we needed to use Keras functional API because in this case our model has multi-

output. In other words a double fully connected layer, we need these two fully connected layers to 

be trained at the same time and get their inputs from the same source. In Figure 3.7 we can see two 

main outputs one for the bounding box named “box_output” with 4 neurons, and the other one for 
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the classification of the brain tumor; if it exists or not in the images named “class_output” with 2 

neurons. We added a couple of dropout layers to the FC to help in the regularization and over fitting 

Figure 3.7 illustrates the architecture of the last combination of layers. 

3.6 Training 

3.6.1 CNN model Training 

We already split our data into training, validation and testing data. We used validation 

data for updating weights while it gave a glimpse into how the neural network was improving 

over time. After the training phase was completed, the test data was then used to see how well the 

neural networks predicted tumors from new images. 

A variety of hyperparameters are available to alter. We list the hyperparameters that 

produced the highest accuracies. 

• Learning rate: 0.001 

• Adam optimizer: beta1=0.9, beta2=0.999  

• Batch size and epochs we tried different value during the testing the models 

• First and second combination layers: we used Mean Square Error as Loss function 

• Third combination layers: we used Mean Square Error loss function for bounding-box 

output and Categorical Cross Entropy for classification output. 
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Figure 3.7: show the architecture of the last combination of layers. 



Chapter 3                                                                Model implementation and experimental results 

48 

 

Table 3.4: The total number of params in each combination 

Combination layers Total params 

First 22,983,398 

Second 11,135,398 

Third 22,505,160 

 

Table 3.5: show batch size and epochs value that we tried during each test 

Combination layers Test Batch size Epochs 

First 
1 50 10 

2 32 30 

Second 
1 32 10 

2 32 100 

Third 1 16 100 

 

To avoid neglecting any detail you may be interested in knowing, Figure 3.8 shows an 

organigram of the whole process of training our convolutional neural network detector. 

 

Figure 3.8: Training Convolutional neural network model organigram 
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 Keras library gave us the ability to see the feature maps of the convolutional neural network, 

and the ability to see what your model tries to focus on learning. Figure 3.9 shows our model feature 

maps in the first layer. 

 

 

Figure 3.9:Show the feature maps of the first convolution and max-pooling layer 

 As we can see each feature maps from first convolutional layer focuses on different 

regions in the image, there is a feature map that concentrates on the brain edge, others focus in 

brain tumor and some of them focus on the whole brain texture and so on. Also, we have the 

ability to see a scale displayed in the figure so we can observe that max-pooling layer decreased 

the size of the data. Figure 3.10 Show the feature maps of the last convolutional and max-pooling 

layer 

 

 
 

 

 
Figure 3.10:Show the feature maps of the last convolutional and max-pooling layer 
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 Figure 3.10, we can see the last layer detected way more details in images if we compare 

it to first layer. Also, we can see the difference in size in the max pooling. 

After constructing our detector, next we will see how to train YOLOv5 

3.6.2 YOLOv5 training 

we know that YOLOv5 is already trained on COCO dataset, but we need to train it our brain 

tumor dataset to predict a new object. Table 3.6 shows batch size and epoch values of YOLOv5 

training on our custom dataset also the model summary. 

Table 3.6: Shows batch size, epoch values and layers, parameters number 

 Model summary Batch size Epoch 

Layers Parameters 

YOLOv5 232 7246518 16 100 

 

We plotted Graph of YOLOv5 training loss, recall and precision metrics and mAP, using 

TensorBoard, TensorBoard is a Tensorflow library for providing the measurements and 

visualizations needed during model training. 

 

Figure 3.11:Graph of YOLOv5 training loss 
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Figure 3.12:Graph of YOLOv5 metrics recall during training 

 

Figure 3.13: Graph of YOLOv5 metrics precision during training 

 

Figure 3.14:Graph of YOLOv5 mAP values during training 
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3.7 Results 

3.7.1 CNN model Results 

In this section we going to see our different results for each combination. You can refer 

directly to Table 3.5 to be able to follow our results analysis. 

3.7.1.1 First combination (Test one) results: 

As can be seen in the figure 3.15 below, the first combination outputs unacceptable results 

since there is no overlapping between the red box which represents the model prediction and the 

green box which represents the real box which means all IoU values are equal to 0 as shown in the 

figure 3.15 , above the red boxes. 

   

Figure 3.15: First combination layer prediction results 

3.7.1.2 First combination (Test two) results 

   

Figure 3.16:Sample from first combination test two results with bad prediction 
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Figure 3.17:Sample from first combination test two results with a good prediction 

 By analyzing these images, we can notice that our model gave a good prediction in the 

images where the brain tumor localization was near to left side, that means when 𝑥𝑚𝑖𝑛 (parameter 

of brain tumor localization) almost equals zero our model gave us really good results as we can see 

in figure 3.17. On the other hand, when brain tumor localization was far from left side our model 

couldn’t predict the location of the green box, figure 3.16. To overcome this problem, we have 

proposed another combination and did further test on it. The IoU values can be seen above the red 

boxes 

3.7.1.3 Second combination (Test one) results 

   

Figure 3.18: Sample of second combination test one results 

 As can be observed, there is a big difference between the second and first combination 

results. We can see that the obtained results are better, The IoU obtained are higher. The multiple 

red bounding boxes are due to the execution of our code multiple times without restarting the 
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runtime in Google Collaboratory. Google Collaboratory saved any previous executions so when 

we re-executed the code it was going to plot new results over the last results. 

3.7.1.4 Second combination (Test two) results 

   

Figure 3.19: Sample from results of the second combination test two 

 This is the best result so far in comparison to the previous results, In this case the model 

was be able to detect even small brain tumor and gave higher IoU number. 

3.7.1.5 Third combination results 

 The last combination was designed to predict the bounding-box annotations and classified 

the input: 

  

Figure 3.20:Simple of results from third combination with class brain tumor 
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 Figure 3.20 shows the results of our third model combination on images that contain brain 

tumor. The model did really good at classification, as we can see on the top of each image there 

are two outputs. First, brain tumor probability we have gotten 0.99 means that these two images 

were classified as brain tumor images. Second, no brain tumor probability equals to 0.00 and 3.00 

meaning that no brain tumor exists. Also, the model did really good at bounding-box annotations 

prediction. 

  

Figure 3.21:Sample from results of the last combination with class no brain tumor 

 The Figure 3.21 shows sample from results of the last combination with class no brain 

tumor, and this model did really good also at no brain tumor class. 

3.7.2 Evaluation of the CNN model on test data 

We evaluated the different combinations with testing dataset. So, we can see how it going 

to perform with unseen data. Table 3.7 show MSE calculated in each test: 
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Table 3.7: MSE calculated in each test for the first and the second combination 

Combination layers Test 
Evaluation 

[Metrics=Mse] 

First 
1 0.16479593515396118 

2 0.10943473875522614 

Second 
1 0.09307263180613518 

2 0.03434731811285019 

 

For The third combinations we did one test, the Table 3.8 of evaluation is bet different: 

Table 3.8:Third combination evaluation 

 

Evaluation 

Total loss Classification loss Bounding-box 

[Metrics=Mse] 

Classification 

[Metrics=Accuracy} 

Third 7.6591e-04 2.4991e-05 1.4092e-04 1.0 

3.7.3 YOLOv5 Results 

After we trained the YOLOv5 on our brain tumor dataset, we tested the performance on the 

unseen data (test dataset). Figure 3.22 shows the results of the YOLOv5 on test data: 

 
  

Figure 3.22:Sample from the results of the YOLOv5 on test 

 We can see in figure 3.22 that YoloV5 gave a high IoU values. In each image we have 

printed the Intersection Over Union value in purple.  
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After completing the test task, we observed that even strong models such as YOLOv5 can 

fail sometimes. Figure 3.23 shows a couple of results where YOLOv5 wasn’t be able to detect the 

brain tumor in them. 

  

Figure 3.23: Result that YOLOv5 wasn't able to detect the brain tumor 

3.7.4 Comparison of the result  

Before we do the comparison, we need to clarify that our goal from this comparison isn’t 

really to compete YoloV5 detector, but to understand this pretrained model’s efficiency in object 

detection. By comparing the intersection values of the YOLOv5 model and our detector (third 

combination), we have seen that YOLOv5 was way better at detecting big and small tumors. It was 

able to localize the tumor with high accuracy, as demonstrated in the IoU values. Although, our 

model didn’t give comparable results due to many factors, but it was acceptable for us as it is our 

first try to construct an object detection detector. Our third combination succeeded in detecting the 

tumor and classifying the images. 
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Figure 3.24 shows a comparison between YOLOv5 and our CNN model in terms of IoU 

values. 

 

Figure 3.24:Graph show YOLOv5 and CNN Model IoU values on the test data 

3.8 Conclusion 

Considering the needs to detect brain tumor, along this chapter we have explained all the 

steps that we have followed to develop our CNN model for tumor detection. First, we have applied 

data preprocessing and data augmentation, then we detailed the different CNN models we have 

used. We have proposed three combinations, the first one failed in detecting the tumor, so it was 

necessary to enhance the results, the third was be able to detect the tumor, it gave us acceptable 

IoU values. Also, we trained YoloV5 detector on the same dataset to see how approximate our 

model performs to the YoloV5 detector.
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GENERAL CONCLUSION 

 We have come a long way since chapter 1, where we managed to build our own 

object detector with convolutional neural networks. 

 To recap, in chapter 1, we introduced the domain of machine learning, deep learning neural 

networks, and convolutional neural networks. We have focused on CNNs as they are widely used 

in object detection application.  

In chapter 2, we have understood what is exactly object detection (Classifying multiple objects 

in an image and placing bounding boxes around them). We have clarified the main differences 

between object detection, semantic segmentation and instance segmentation. We also gave an 

example of the two main classes method of object detection: R-CNN and YOLO for the two-stage 

and one-stage methods respectively. Finally, we explained the metrics used to evaluate the 

accuracy of our proposed object detection detector in the practical part. 

In chapter 3, we have implemented an object detection model able to localize and classify 

brain tumors on real medical images. We have explained all the steps we followed throughout this 

experimental part starting from data preprocessing and data augmentation and ending with the 

implementation of our detector. We have also trained YoloV5 detector on the same dataset to see 

how approximately our model performs compared to it.  

This work has introduced us to a new field of Deep Learning which is a very large and promising 

specialty to us as students who want to pursuit our studies as researchers.    
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Abstract 

This master's thesis tackles the problem of Object Detection which is one of the most 

famous and extensively researched topics in the field of Computer Vision. There are two main 

methods for object detection using convolutional neural networks: two stage and one stage 

methods. We explain two examples of object detection architectures R-CNN, 

and YOLOv5 respectively. We propose in this thesis our CNN architecture to detect tumors in a 

real MRI dataset and compare our results to YOLOv5 model. 

Keywords: Deep Learning, Deep Neural Network, CNN, Computer Vision, Object detection, R-

CNN, YOLOv5 

 

 Résume 

Ce mémoire de maîtrise aborde le problème de la détection d'objets qui est l'un des sujets 

les plus célèbres et les plus étudiés dans le domaine de la vision par ordinateur. Il existe deux 

méthodes principales pour la détection d'objets à l'aide de réseaux de neurones convolutifs : les 

méthodes à deux étapes et à une étape. Nous expliquons deux exemples d'architectures de détection 

d'objets R-CNN et YOLOv5 respectivement. Nous proposons dans cette thèse notre architecture 

CNN pour détecter les tumeurs dans un jeu de données IRM réel et comparer nos résultats au 

modèle YOLOv5. 

Mots-clés : Apprentissage profond, Neurones Profonds, Réseau de Neurones profond, CNN, 

Détection Objets, R-CNN, YOLOv5, Vision par ordinateur. 

 ملخص 

وحة الماجستير هذه مشكلة اكتشاف الأشياء التي تعد واحدة من أشهر الموضوعات التي تم بحثها على  تتناول أطر

نطاق واسع في مجال رؤية الكمبيوتر. هناك طريقتان رئيسيتان لاكتشاف الأشياء باستخدام الشبكات العصبية التلافيفية: طريقتان  

على التوالي. نقترح في هذه   YOLOv5و  R-CNNالكائنات  وطريقة مرحلة واحدة. نفسر مثالين على بنيات اكتشاف 

الخاصة بنا لاكتشاف الأورام في مجموعة بيانات التصوير بالرنين المغناطيسي الحقيقية ومقارنة نتائجنا   CNNالأطروحة بنية 

 . YOLOv5بنموذج 

،   R-CNNكمبيوتر ، كشف الأشياء ، التعلم العميق ، الشبكة العصبية العميقة ، سي إن إن ، رؤية ال كلمات مفتاحية:

YOLOv5 




