

 PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

University of Mohamed El-Bachir El-Ibrahimi - Bordj Bou Arreridj

 Faculity of science and rechnology

Electronic Department

 Memory

Presented to get

 The master’s diploma

Faculty : Electronic

Specialty : industrial electronics

By

⮚ Kerraiou Fath-allah
⮚ Belaiboud Abdelghani

Entitled

Supported on : …………………………

Before a jury composed of :

Nom & Prénom Grade Qualité Etablissement

Dr. BELHADAD Yahya Dr. Président Univ-BBA

Dr. SIDAHMED Soumia Dr. Encadreur Univ-BBA

Dr. AZOUG Seif Eddine Dr. Examinateur Univ-BBA

College year 2021/2022

Object Detection with Convolutional Neural Networks

Acknowledgements

First and foremost, we would like to praise Allah the Almighty, the Most Gracious, and
the Most Merciful for His blessing given to me during my study and in completing this thesis.

We would like to express my gratitude and sincere thanks to my principal supervisor

Dr.SID AHMED Soumia and co-supervisor Dr. BOUDECHICHE DjamelEddine, for their guidance,

advice, feedback and continuous support throughout the whole thing. I would also like to thank

my associate supervisor Prof MESSALI Zoubeida, for her guidance, and feedback on improving

my thesis.

We are very much grateful to all teachers of the University of Mohamed Elbachir El
Ibrahimi, who provided us with the tools necessary for the success of our university studies
during my course.

Last but not least, we would like to thank our families for supporting us throughout

our life. Without their love and encouragement, we would not have finished this thesis.

Table of Contents
Chapter 1: Deep learning

1.1 Introduction ... 1
1.2 Machine learning .. 1

1.2.1 Supervised learning ... 1
1.2.2 Unsupervised learning ... 2
1.2.3 Supervised learning methods ... 2

1.3 Datasets ... 3
1.4 Deep learning .. 3

1.4.1 Automate Feature Extraction using DL ... 4
1.4.2 Neural networks ... 5
1.4.3 The architecture of neural networks .. 6
1.4.4 Basic Principles of Neural Networks ... 7

1.4.5 Forward propagation.. 12
1.4.6 Loss function ... 14

1.4.7 Training the neural network .. 15
1.5 Convolutional Neural Network (CNN) ... 17

1.5.1 Architecture ... 17

1.5.2 CNN Components.. 18
1.5.3 Principle working of Convolutional Neural Networks .. 21

1.6 Conclusion .. 23

Chapter 2: Object detection

2.1 Introduction ... 26
2.2 Object Detection ... 26

2.3 Object detection, semantic segmentation, instance segmentation differences 27
2.3.1 Object detection ... 27
2.3.2 Semantic segmentation .. 28

2.3.3 Instance segmentation .. 28
2.4 Object Detection using Convolutional Neural Networks ... 29

2.4.1 Two-Stage Detector ... 30
2.4.2 One-stage Detector .. 31

2.5 Evaluation of Object Detection Model ... 35

2.5.1 Intersection over union (IOU) ... 35
2.5.2 Mean Average Precision – mAP ... 36

2.6 Conclusion .. 37

Chapter 3: Model implementation and experimental results

3.1 Introduction ... 39

3.2 Data ... 39
3.3 Preprocessing .. 42
3.4 Data augmentation .. 42

3.5 Construction of our proposed convolution neural network detector 44

3.6 Training ... 46
3.6.1 CNN model Training ... 46
3.6.2 YOLOv5 training ... 50

3.7 Results ... 52
3.7.1 CNN model Results ... 52

3.7.2 Evaluation of the CNN model on test data .. 55
3.7.3 YOLOv5 Results ... 56
3.7.4 Comparison of the result.. 57

3.8 Conclusion .. 58

List of Figures

Figure 1.1: Supervised Learning process .. 2

Figure 1.2: Hierarchy Machine Learning algorithms .. 3

Figure 1.3: The performance of deep learning vs. other learning algorithms 4

Figure 1.4: Simple Neural Network Architecture ... 6

Figure 1.5: Illustration of neural network architecture .. 6

Figure 1.6: multi-layer networks ... 7

Figure 1.7: illustration of a simple way to describe perceptron .. 7

Figure 1.8: schematic architecture of perceptron components .. 9

Figure 1.9: ReLu function graph ... 10

Figure 1.10: sigmoid function graph ... 11

Figure 1.11: Illustration of notation for the network's weights ... 11

Figure 1.12: Illustration of notation for the network's biases and activations 12

Figure 1.13: Illustration of neural network [8,6,6,1] shape ... 13

Figure 1.14: illustration of multiple minima for cost function .. 16

Figure 1.15: Structure of Convolutional Neural Network. .. 18

Figure 1.16: An illustration of the convolution of a 2 x 2 kernel moving over a 4 x 4 image,

resulting in a 3 x 3 feature map ... 19

Figure 1.17: Example for the max-pooling and the average-pooling with a filter size of 2×2 and a

stride of 2×2 ... 21

Figure 1.18: Architecture of CNN model (classification/localization ... 23

Figure 2.1:main process of object detection .. 27

Figure 2.2:Detect one single object(right), detect multiple objects (left). 28

Figure 2.3:Semantic detection ... 28

Figure 2.4:Instance segmentation. ... 29

Figure 2.5:R-CNN object detector. .. 31

Figure 2.6:Objects detected by YoloV4. ... 32

Figure 2.7:YoloV4 architecture. .. 33

Figure 2.8: YOLOv3 Network prediction process .. 34

Figure 2.9:Intersection over Union is used to measure the performance of detection 36

Figure 3.1: Sample from the dataset class brain tumor ... 40

Figure 3.2: Sample from the dataset class no brain tumor .. 40

Figure 3.3: Mark the location of the brain tumr in form of bounding box using labelImg 41

Figure 3.4: Xml file for the annotated image exported by labelImg tool 41

Figure 3.5: Image before and after contrast adjustment applied ... 42

Figure 3.6: sample from dataset after augmentation ... 43

Figure 3.7: show the architecture of the last combination of layers. ... 47

Figure 3.8: Training Convolutional neural network model organigram 48

Figure 3.9:Show the feature maps of the first convolution and max-pooling layer 49

Figure 3.10:Show the feature maps of the last convolutional and max-pooling layer 49

Figure 3.11:Graph of YOLOv5 training loss... 50

Figure 3.12:Graph of YOLOv5 metrics recall during training .. 51

Figure 3.13: Graph of YOLOv5 metrics precision during training ... 51

Figure 3.14:Graph of YOLOv5 mAP values during training .. 51

Figure 3.15: First combination layer prediction results ... 52

Figure 3.16:Sample from first combination test two results with bad prediction 52

Figure 3.17:Sample from first combination test two results with a good prediction 53

file:///C:/Users/ANG%20KID%20LAGUZA/Downloads/THESIS.docx%23_Toc106747523

Figure 3.18: Sample of second combination test one results .. 53

Figure 3.19: Sample from results of the second combination test two .. 54

Figure 3.20:Simple of results from third combination with class brain tumor.............................. 54

Figure 3.21:Sample from results of the last combination with class no brain tumor 55

Figure 3.22:Sample from the results of the YOLOv5 on test .. 56

Figure 3.23: Result that YOLOv5 wasn't able to detect the brain tumor 57

Figure 3.24:Graph show YOLOv5 and CNN Model Iou values on the test data 58

List of Equations

𝑜𝑢𝑡𝑝𝑢𝑡 = {
𝑜 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 ... 8

𝑜𝑢𝑡𝑝𝑢𝑡 = {
𝑜 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 1

 ... 8

𝜎(𝑧) =
1

1+𝑒−𝑧
 .. 8

𝑧 = ∑ 𝑤𝑗𝑥𝑗𝑗 + 𝑏 ... 8

𝑅(𝑧) = max{0, 𝑧} .. 10

𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘 ... 12

𝑎𝑗𝑘
𝑙 = 𝜎(𝑧𝑗

𝑙)... 12

𝑎𝑙 = 𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) ... 12

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 .. 12

𝑎𝑙 = 𝜎(𝑧𝑙) .. 12

𝑎0
(1) = 𝜎(𝑤00

1 𝑎0
(0) + 𝑤01

1 𝑎1
(0) + ∙ ∙ ∙ +𝑤07

1 𝑎7
(0) + 𝑏0

1 ... 13

𝐶 =
1

2𝑛
∑ ‖𝑦(𝑥) − 𝑎𝐿(𝑥)‖

2
𝑥 ... 14

𝐶 = −
1

𝑛
∑ [𝑦 ln 𝑎𝐿 + (1 − 𝑦) ln(1 − 𝑎𝐿)]𝑥 ... 14

𝑤 → 𝑤′ − 𝛼
𝜕𝐶

𝜕𝑤
 .. 15

𝑏 → 𝑏′ − 𝛼
𝜕𝐶

𝜕𝑏
 .. 15

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = [
(𝑤−𝑘+2𝑝)

𝑠
] + 1 ... 20

𝐼𝑜𝑈 =
𝐴∪𝐵

𝐴∩𝐵
…...……………………………………………………………………………………35

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
……………………………………………………………………………….36

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖𝑁
𝑖=1 ………………………………………………………………………………37

List of Acronyms

AI : Artificial Intelligence

ANN : Artificial Neural Network

ConvNets : Convolutional Networks

DL : Deep Learning

DNN : Deep Neural Network

FC : Fully Connected

GPU : Graphic Processor Unit

IoU : Intersection over Union

ML : Machine Learning

MLP : Multi-Layer Perceptrons

MSE: Mean Squared Error

NN : Neural Network

R-CNN: regios-based convolutional neural netwok

Relu : Rectified Linear Unit

RGB : Red Green Blue

RPN : Region Proposal Network

SVM: Support Vector Machine

VGG : Visual Geometry Group

XML : Extensible Markup Language

Yolo: You Only Look Once

GENERAL INTRODUCTION

In recent years, with the rapid development of Deep Learning, a number of research areas

have achieved good results, and accompanied by the continuous improvement of convolution

neural networks, Computer Vision has arrived at a new peak. the architecture of convolution neural

network is constantly improving. In addition, the return of the convolution neural network also

makes the application of Computer Vision greatly improve, such as face recognition, object

detection, object tracking, semantic segmentation, and so on. Object detection as one of the

important applications in the field of Computer Vision has been the focus of research, and

convolution neural network has made great progress in object detection [1].

So, we are going to implement deep learning and object detection concepts for brain tumor

classification and regression. nowadays patient diagnosis relies on a doctor’s manual evaluation of

a patient and his or her test results. With no automated tools to help with a doctor’s diagnosis and

limited number of available doctors, not only is there a higher risk of misdiagnosis but also an

increase in wait time for patients to be seen. Doctors must take the time to manually review test

results and images rather than spending time with the patient. In order to improve patient care,

enhanced medical technology in the form of automated tools is necessary to increase doctor

efficiency and decrease patient time in hospitals and time toward recovery. The purpose of this of

thesis is to develop automated methods to aid doctors in diagnosis in order to prevent misdiagnosis

and decrease patient wait time. In particular, this thesis achieves this automation through the

classification and regression (object detection) of brain tumor from patient brain images.

The structure of this thesis:

• On Chapter 1, focuses on the tools of deep learning, and its notions and terminology.

• On Chapter 2, present fundamentals of object detection, and its architectures and impact

of deep learning in object detection.

• On Chapter 3, implementation of deep learning and CNN to construct our model. Then,

perform a custom data training for a pre-trained model of object detection.

Chapter 1: Deep learning

Abstract

In this chapter, we did cover the key principles of deep learning, as well as basic and

advanced deep learning concepts, and took a deep dive into neural networks, how they adapt

and learn from any datasets, also we addressed convolutional neural network.

1.1 Introduction

1.2 Machine learning

1.3 Datasets

1.4 Deep learning

1.5 Neural networks

1.6 Convolutional neural network

1.7 Conclusion

Chapter 1 Deep learning

1

1.1 Introduction

 In this chapter, we will learn the core principles behind deep learning and the basic deep

learning concepts as well advanced. Deep learning is one of the widely common machine learning

subfield, so for the sake of better understanding we are going to start this chapter with approach on

machine learning and we’ll take a look into common machine learning methods of supervised and

unsupervised learning, and specifically supervised learning because this is what we are going to

use in our studies for this thesis. After that we are going in-depth into neural networks, how they

work and learn and cover up everything about them so this what gives us the foundation of deep

learning and makes things easier for us in next section, we will present most common deep neural

network architecture for image datasets. We will precise the neural network architecture considered

in our study to realize our project and provide solutions for our problems, once we picked our DNN

architecture, we’ll go in detail and touch everything related to it.

1.2 Machine learning

 Machine learning is a branch within artificial intelligence that has been a fundamental part

in modern digital solutions [2]. Machine learning refers to algorithms that computers use to learn

from data, allowing it to make predictions on future [3]. The purpose of machine learning

algorithms is to over time, learn during its execution from different pattern recognition methods.

These algorithms are able to extract features from input data that is used to make decisions based

on data of similar kind. Machine learning solutions are used in a large array of areas including

robotics, traffic prediction and product recommendation [1, 4, 5]

 For the sake of clarity, we need to understand how machine-learning algorithms work.

Machine learning algorithms can be broadly classified into two categories:

1.2.1 Supervised learning

Is the machine learning approach defined by its use of labeled datasets to train algorithms to

classify data and predict outcomes. Using labeled training data, the algorithm learns the rule for

mapping the input variables into the target variable. For example, a supervised learning algorithm

learns to predict whether there will be rain (the target variable) from input variables such as the

https://www.v7labs.com/training

Chapter 1 Deep learning

2

temperature, time, season, atmospheric pressure, and so on [3]. Figure 1.1 illustrates a supervised

learning process.

Figure 1.1: Supervised Learning process

1.2.2 Unsupervised learning

Using unlabeled training data, the algorithm learns associative rules for the data. The most

common use case for unsupervised learning algorithms is in clustering analysis, where the

algorithm learns hidden patterns and groups in data that are not explicitly labeled [3].

1.2.3 Supervised learning methods

 There are two main areas where supervised machine learning comes in handy: classification

problems and regression problems:

• Classification: To predict the outcome of a given sample where the output variable is

in the form of categories. Examples include labels such as male and female, sick and

healthy, etc.

• Regression: To predict the outcome of a given sample where the output variable is in

the form of real values. Examples include real-valued labels denoting the amount of

rainfall, height of a person, etc.

Chapter 1 Deep learning

3

Figure 1.2: Hierarchy Machine Learning algorithms

1.3 Datasets

A dataset can be defined as a collection of related data represented in columns and rows. If

D = {X, Y} is a dataset, it can be broken down into a set of input data (x, y). Where x ∈ X is a

vector containing features from the dataset D, and y ∈ Y is the correlated values from these features.

In the field of object detection, datasets that are appropriate and fit the recognition tasks at hand

are important. When developing an object detection system, datasets are a necessary component

for training as well as evaluating developed object detection model [6].

There are different types of data we can use to train prediction models, of course data type

selection depends on the model task:

Quantitative Data: Numerical. E.g. height, weight.

Categorical Data: Data that can be labeled or divided into groups. E.g. race, gender, hair

color.

1.4 Deep learning

 Deep learning attempts to imitate how the human brain can process light and sound stimuli

into vision and hearing. A deep learning architecture is inspired by biological neural networks and

consists of multiple layers in an artificial neural network, it has proven its usefulness in almost all

areas of science and engineering.

Chapter 1 Deep learning

4

 Deep learning uses a cascade of nonlinear processing unit layers in order to extract or

transform features (or representations) of the data. The output of one layer serves as the input of

the successive layer [7].

Deep Learning was first in the 1980s, but it has only become useful recently because:

• It requires large amounts of labeled data

• It requires significant computational power (high performing GPUs)

• Supervised Learning process the deep learning model maps the input and the output to

find a correlation between them. This correlation can be then used to cluster, predict,

classify, and even generate new samples of data.

• One needs to train a deep learning model to make it learn and produce accurate results.

1.4.1 Automate Feature Extraction using DL

 Deep Learning can essentially do everything that machine learning does, but not the other

way around. For instance, machine learning is useful when the dataset is small and well-curated,

which means that the data is carefully preprocessed [8].

 Data preprocessing requires human intervention. It also means that when the dataset is large

and complex, machine learning algorithms will fail to extract information, and it will underfit.

Generally, machine learning is alternatively termed shallow learning because it is very effective

for smaller datasets [8]. Figure 1.3 show the accuracy of Deep learning versus other ML algorithms.

Figure 1.3: The performance of deep learning vs. other learning algorithms

https://www.v7labs.com/blog/quality-training-data-for-machine-learning-guide

Chapter 1 Deep learning

5

 Deep learning, on the other hand, is extremely powerful when the dataset is large. It can

learn any complex patterns from the data and can draw accurate conclusions on its own. In fact,

deep learning is so powerful that it can even process unstructured data – data that is not adequately

arranged like text corpus, social media activity, etc. Furthermore, it can also generate new data

samples and find anomalies that machine learning algorithms and human eyes can miss [8].

 On the downside, deep learning is computationally expensive compared to machine

learning, which also means that it requires a lot of time to process. Deep Learning and Machine

Learning are both capable of different types of learning: Supervised Learning (labeled data),

Unsupervised Learning (unlabeled data), But their usefulness is usually determined by the size and

complexity of the data [8].

1.4.2 Neural networks

 Neural networks are the functional unit of deep learning and are known to mimic the

behavior of the human brain to solve complex data problems. So neural network is a tool that allow

us to do information processing paradigms inspired by the way biological neural systems process

data. Machine learning and deep learning try to simulate some properties of biological neural

networks. The input data is processed through different layers of artificial neurons stacked together

to produce the desired output as shown in Figure 1.4. From speech recognition and person

recognition to healthcare and marketing, Neural Networks have been used in a varied set of

domains.

 In more practical terms neural networks are non-linear statistical data modeling or decision-

making tools. They can be used to model complex relationships between inputs and outputs or to

find patterns in data.

Chapter 1 Deep learning

6

Figure 1.4: Simple Neural Network Architecture

1.4.3 The architecture of neural networks

 Let’s explain some terminology that lets us name different parts of a network. Suppose we

have the network in below (Figure 1.5):

Figure 1.5: Illustration of neural network architecture

 So, the leftmost layer in this network is called the input layer, and the neurons within the

layer are called input neurons. The rightmost or output layer contains the output neurons, or, as in

this case, a single output neuron. The middle layer is called a hidden layer. The network above

has just a single hidden layer, but some networks have multiple hidden layers. For example, in

Figure 1.6 four-layer network has two hidden layers:

Chapter 1 Deep learning

7

Figure 1.6: multi-layer networks

 Such multiple layer networks are sometimes called multilayer perceptrons or MLPs,

despite being made up of neurons, sigmoid neurons, ReLu neurons, not perceptrons.

 We will begin our discussion of NNs via one of the fundamental building block of deep

learning.

1.4.4 Basic Principles of Neural Networks

1.4.4.1 Perceptron:

 A perceptron takes several binary inputs, x1, x2, …, and produces a single binary output as

shown in Figure 1.7 [9]:

Figure 1.7: illustration of a simple way to describe perceptron

 In Figure 1.7 the perceptron has three inputs, x₁, x₂, x₃. In general, it could have more or

fewer inputs. Rosenblatt proposed a simple rule to compute the output. He introduced weights, w₁,

w₂, . . ., real numbers expressing the importance of the respective inputs to the output. The neuron’s

output, 0 or 1, is determined by whether the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗 is less than or greater than some

threshold value. Just like the weights, the threshold is a real number which is a parameter of the

neuron [9]. To put it in more precise algebraic terms:

Chapter 1 Deep learning

8

𝑜𝑢𝑡𝑝𝑢𝑡 =

{

 𝑜 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗
𝑗

 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗
𝑗

 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 1. 1

Furthermore, the output model is expressed by:

𝑜𝑢𝑡𝑝𝑢𝑡 = {
𝑜 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 1

 1. 2

Where: 𝑤 ∙ 𝑥 denote ∑ 𝑤𝑗𝑥𝑗𝑗 and 𝑏 denote the bias, 𝑏 ≡ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 the bias is a measure of how easy it is to get the perceptron to fire. For a perceptron with a

really big bias, it’s extremely easy for the perceptron to output a 1. But if the bias is very

negative, then it’s difficult for the perceptron to output a 1 [9].

1.4.4.2 Sigmoid neuron

 Just like a perceptron, the sigmoid neuron has inputs, x1, x2,, But instead of being just

0 or 1, these inputs can also take on any values between 0 and 1. So, for instance, 0.638 is a valid

input for a sigmoid neuron. Also just like a perceptron, the sigmoid neuron has weights for each

input, w1, w2, ..., and an overall bias, b. But the output is not 0 or 1. Instead, it’s 𝜎(𝑤𝑥 + 𝑏), where

𝜎 is called the sigmoid function [9], and is defined by:

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 1. 3

𝑧 =∑ 𝑤𝑗𝑥𝑗
𝑗

+ 𝑏 1. 4

So, what makes perceptron and sigmoid neuron dissimilar is the activation function of the

weighted input plus the bias, we going to understand more about activation function in next section.

To generalize, everything we going to use the word neuron to define a model that takes several

input data and produce an output, using weight, transfer function and any type of activation

function.

1.4.4.3 Neuron Components

 As we said The Neural Network architecture is made of individual units called neurons that

mimic the biological behavior of the brain.

Chapter 1 Deep learning

9

Here are the various components of a neuron:

Figure 1.8: schematic architecture of perceptron components

1.4.4.3.1 Input

 It is the set of features that are fed into the model for the learning process[10].

1.4.4.3.2 Weight

 Its main function is to give importance to those features that contribute more towards the

learning [11].

1.4.4.3.3 Transfer function

 The job of the transfer function is to combine multiple inputs into one output value so that

the activation function can be applied. It is done by a simple summation of all the inputs to the

transfer function [11].

1.4.4.3.4 Activation function

 Activation functions lie at the core of deep neural networks allowing them to learn

arbitrarily complex mappings. The functions are mathematical equations that determine the output

of a neural network. The function is attached to each neuron in the network, and determines whether

it should be activated fired or not.

 So, we know what Activation Function is and what it does. But, why do Neural Networks

need it? Well, the purpose of an activation function is to add non-linearity to the neural network.

Chapter 1 Deep learning

10

 Linear activation functions produce linear decisions no matter the network size, on the

other hand, non-linearities allow us to approximate arbitrarily complex function.

1.4.4.4 Type of activation function:

1.4.4.4.1 ReLu function

 The rectified linear activation function is a linear function that will output the input directly

if it is positive, otherwise, it will output zero [12].

It has the following properties:

• It does not Saturate.

• It converges faster than some other activation functions [13].

𝑅(𝑧) = max{0, 𝑧} 1. 5

Figure 1.9: ReLu function graph

1.4.4.4.2 Sigmoid function

 It’s non-linear function, its ranges from 0 to 1 having an S shape. Also known by the name

of the logistic or squashing function in some literature. The sigmoid function is used in output

layers of the DNN and is used for probability-based output.

𝜎(𝑧) =
1

1 + 𝑒−𝑧

Chapter 1 Deep learning

11

Figure 1.10: sigmoid function graph

 When multiple neurons are stacked together in a row, they constitute a layer, and multiple

layers piled next to each other are called a neural network or multi-layer neural network. We've

described the main components of this type of structure in Figure 1.11.

 We’ll use 𝑤𝑗𝑘
𝑙 to denote the weight for the connection from the 𝑘𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ

layer to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. So, for example, the diagram of Figure 1.11 below shows

the weight on a connection from the fourth neuron in the second layer to the second neuron in the

third layer of a network:

Figure 1.11: Illustration of notation for the network's weights

 We use a similar notation for the network’s biases and activations. Explicitly, we use 𝑏𝑗
𝑙 for

the bias of the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. And we use al j for the activation of the 𝑗𝑡ℎ neuron in the

𝑙𝑡ℎ layer. Figure 1.12 shows examples of these notations in use:

Chapter 1 Deep learning

12

Figure 1.12: Illustration of notation for the network's biases and activations

 Suppose we have sigmoid function as activation function. So, with these notations the

activation 𝑎𝑗
𝑙 of the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer is related to the activations in the (𝑙 − 1)𝑡ℎ layer by

the equation:

𝜎(𝑧) =
1

1 + 𝑒−𝑧

𝑧𝑗
𝑙 = ∑𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝑘

1. 6

𝑎𝑗𝑘
𝑙 = 𝜎(𝑧𝑗

𝑙) 1. 7

These equations can be rewritten in compact vectorized form:

𝑎𝑙 = 𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) 1. 8

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 1. 9

𝑎𝑙 = 𝜎(𝑧𝑙) 1. 10

1.4.5 Forward propagation

 So, to understand the forward propagation mechanism or process, let’s explain just

mechanism between two layers of neural network and we can apply the same procedure to previous

layers, we going to use sigmoid as activation function, as we can see in Figure 1.13, each of these

connections has a unique weight and every single neuron has a unique bias:

Chapter 1 Deep learning

13

Figure 1.13: Illustration of neural network [8,6,6,1] shape

 The actual function to get one neuron’s activation in terms of the activations in the first

hidden layer or any previous layer, for example let’s choose neuron 𝑎0
(1)

 just so we can demonstrate

how we can calculate neuron output value:

𝑎0
(1) = 𝜎(𝑤00

1 𝑎0
(0) + 𝑤01

1 𝑎1
(0) + ∙ ∙ ∙ +𝑤07

1 𝑎7
(0) + 𝑏0

1 1. 11

 we’ll use matrix multiplication to compute the activations of all the neurons in the next

layer simultaneously. you can communicate the full transition of activations from one layer to the

next in matrix form, we will have:

𝜎

(

[

𝑤00
1 𝑤01

1

𝑤10
1 𝑤11

1

…
…

𝑤07
1

𝑤17
1

⋮ ⋮ ⋱ ⋮
𝑤50
1 𝑤51

1 ⋯ 𝑤57
1]

[

 𝑎0
(0)

𝑎1
(0)

⋮

𝑎7
(0)
]

+

[

𝑏0
1

𝑏1
1

⋮
𝑏5
1]

)

=

[

 𝑎0
(1)

𝑎1
(1)

⋮

𝑎5
(1)
]

 We repeat the same process until we reach the output layer, just like this we going to get

our predicted value 𝑎𝐿(𝑥) = 𝑦(𝑥) for one data example x,

Chapter 1 Deep learning

14

1.4.6 Loss function

basically, the cost function measures how bad or good is the prediction. The final output

predictions compare the predicted values with the desired output:

𝐿𝑜𝑠𝑠(𝑦(𝑥), 𝑎𝐿(𝑥))

1.4.6.1 Types of Loss function

1.4.6.1.1 Regression Loss Function

 Regression models deals with predicting a continuous value for example given floor area,

number of rooms, size of rooms, predict the price of the room. One of the mostly used loss functions

in the regression problem is called “Mean Squared Error” and also known as “Quadratic Cost”:

𝐶 =
1

2𝑛
∑‖𝑦(𝑥) − 𝑎𝐿(𝑥)‖

2

𝑥

 1. 12

where: 𝑛 is the total number of training examples, the sum is over individual training examples 𝑥,

𝑦 = 𝑦(𝑥) is the corresponding desired output, 𝐿 denotes the number of layers in the network, and

𝑎𝐿 = 𝑎𝐿(𝑥) is the vector of activations output from the network when 𝑥 is input.

 Also, the quadratic cost function can be written as average 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥 over cost

functions 𝐶𝑥 for individual training examples, 𝑥. where the cost for a single training example is:

𝐶𝑥 =
1

2
 ‖𝑦(𝑥) − 𝑎𝐿‖2 1. 13

1.4.6.1.2 Classification loss function

 Classification problems involve predicting a discrete class output. It involves dividing the

dataset into different and unique classes based on different parameters so that a new and unseen

record can be put into one of the classes. The most widely used function for this type of learning

method is “Binary Cross Entropy” loss function:

𝐶 = −
1

𝑛
∑[𝑦 ln 𝑎𝐿 + (1 − 𝑦) ln(1 − 𝑎𝐿)]

𝑥

 1. 14

Chapter 1 Deep learning

15

where 𝑛 is the total number of items of training data, the sum is over all training inputs, 𝑥, and 𝑦

is the corresponding desired output, 𝐿 denotes the number of layers in the network.

1.4.7 Training the neural network

 Just telling the neural network model what a terrible job it’s doing isn’t very helpful. You

want to tell it how it should change those weights and biases so as to improve, and we have to make

sure that those changes should minimize the loss function. How do you find an input that minimizes

the value of this cost function? This is why we need to apply the gradient descent over the cost

function.

1.4.7.1 Gradient descent

 How can we apply gradient descent to learn in a neural network? The idea is to use

gradient descent to find the weights 𝑤𝑘 and biases 𝑏𝑙 which minimize the cost. To see how this

works, let’s introduce the gradient descent update rule for weights and biases:

𝑤 → 𝑤′ − 𝛼
𝜕𝐶

𝜕𝑤
 1. 15

𝑏 → 𝑏′ − 𝛼
𝜕𝐶

𝜕𝑏
 1. 16

where 𝛼 is a small, positive parameter (known as the learning rate),
𝜕𝐶

𝜕𝑤
 partial derivative with

respect to weight,
𝜕𝐶

𝜕𝑏
 partial derivative with respect to bias. Also 𝑤′ and 𝑏′represent old weight

and bias, 𝑤 and 𝑏 indicate updated weight and bias.

 there are many possible local minima you might land in. It depends on which random input

you start at, and there’s no guarantee that the local minimum you land in will be the smallest

possible value for the cost function.

Chapter 1 Deep learning

16

Figure 1.14: illustration of multiple minima for cost function

 Gradient descent algorithm:

1. Initialize weights and biases randomly

2. Loop until convergence:

3. Compute gradient
𝜕𝐶

𝜕𝑤
,
𝜕𝐶

𝜕𝑏

4. Update weights and biases 𝑤 ← 𝑤′ − 𝛼
𝜕𝐶

𝜕𝑤
, 𝑏 → 𝑏′ − 𝛼

𝜕𝐶

𝜕𝑏

5. Return weights and biases

1.4.7.2 Learning rate

 the learning rate is a tuning parameter in an optimization algorithm that determines the

step size at each iteration while moving toward a minimum of a loss function [14].

 In setting a learning rate, there is a trade-off between the rate of convergence and

overshooting. A too high learning rate will make the learning jump over minima but a too low

learning rate will either take too long to converge or get stuck in an undesirable local minimum

[15].

1.4.7.3 Back-propagation

 Backpropagation, is an algorithm for computing that derivative of the loss function with

respect to the neuron weights
𝜕𝐶

𝜕𝑤
 and for biases

𝜕𝐶

𝜕𝑏
.

Chapter 1 Deep learning

17

When training a neural net, the goal is to find neuron parameters (weights) that cause the

output of the NN to best fit the data, the back-propagation is the way the NN can “connect” the

loss function and outputs with the weight parametrization.

• If the loss function is less than the previous value using the current weights, then the

gradient is in a good direction.

• If the loss function is more than the previous, it goes in the opposite direction.

• Repeat until the loss function is zero or cannot make it lower (convergence).

 When the Neural Network converged, it found a spot in the loss function that increasing or

decreasing the weight values makes the loss function increasing.

1.5 Convolutional Neural Network (CNN)

 A Convolutional Neural Network (CNN) is a specialized type of deep neural network which

includes many different deep learning algorithms. CNNs are regularized versions of multilayer

perceptron with some extra layer to minimize data size and parameters number. CNNs are widely

used in areas such as object detection, image classification and regression for feature extraction.

CNNs have the advantage of being able to convolve over large datasets with high speed as part of

the training process [16].

 In the next elements we’ll describe convolutional neural networks. Also, interpret every

component relate to CNN structure like convolutional layer, pooling and fully connected. These

networks use a special architecture which is particularly well-adapted to classify images. Using

this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, many-

layer networks, which are very good at classifying images.

1.5.1 Architecture

A convolutional neural network consists of an input layer, hidden layers and an output layer.

In any feed-forward neural network, any middle layers are called hidden because their inputs and

outputs are masked by the activation function and final convolution. In a convolutional neural

network, the hidden layers include layers that perform convolutions. Typically, this includes a layer

that performs a dot product of the convolution kernel with the layer's input matrix, and its activation

function is commonly ReLu or Sigmoid. As the convolution kernel slides along the input matrix

Chapter 1 Deep learning

18

for the layer, the convolution operation generates a feature map, which in turn contributes to the

input of the next layer. This is followed by other layers such as pooling layers, fully connected

layers [17].

Figure 1.15: Structure of Convolutional Neural Network.

1.5.2 CNN Components

1.5.2.1 Kernels and Filters

 A grid of discrete numbers or values describes the kernel. Each value is called the kernel

weight. Random numbers are assigned to act as the weights of the kernel at the beginning of the

CNN training process. In addition, there are several different methods used to initialize the weights.

Next, these weights are adjusted at each training iteration. thus, the kernel learns to extract

significant features [18].

 The local receptive field: is a defined segmented area that is occupied by the content of

input data that a neuron within a convolutional layer is exposed to during the process of convolution

[18].

 Shared weights and bias: In CNNs, each filter is replicated across the entire visual field.

These replicated units share the same parameterization (weight vector and bias) and form a feature

map [18]. The shared weights and bias are often said to define a kernel or filter.

https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-:5-61

Chapter 1 Deep learning

19

1.5.2.2 Convolutional Layer

 One typical layer of CNN is a convolutional layer that uses mathematical convolution to

process the data. The main purpose for a convolutional layer is to detect features such as edges,

lines, blobs of color and other visual elements. To detect these features, the convolutional layer

uses filters that are square-shaped objects that scan over the image. The more filters we give to a

convolutional layer, the more features it can detect.

The hyperparameters are as follows:

• The number of filters or depth: It has an impact on the output’s depth. Three distinct filters,

for example, would result in three different feature maps, resulting in a depth of three [19].

• Stride: It refers to the distance, or the number of pixels, that the kernel travels across the input

matrix, a bigger stride results in a lesser output [19].

• Zero-padding: When the filters don’t fit the input image, it’s frequently utilized. All

parameters outside of the input matrix are set to zero, resulting in a larger or equal-sized output

[19].

Figure 1.16: An illustration of the convolution of a 2 x 2 kernel moving over a 4 x 4 image, resulting in a 3 x 3

feature map

 Convolutional Operation: Initially, the CNN input format is described. The vector format

is the input of the traditional neural network, while the multi-channeled image is the input of the

CNN. For instance, single channel is the format of the gray-scale image, while the RGB image

format is three-channeled. To understand the convolutional operation, let us take an example of a

4x4 gray-scale image with a 2x2 random weight-initialize kernel (Figure 1.16). First, the kernel

slides over the whole image horizontally and vertically. In addition, the dot product between the

Chapter 1 Deep learning

20

input image and the kernel is determined, where their corresponding values are multiplied and then

summed up to create a single scalar value, calculated concurrently. The whole process is then

repeated until no further sliding is possible. Note that the calculated dot product values represent

the feature map of the output, we can calculate the convolution layer output by using equation

below:

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = [
(𝑤 − 𝑘 + 2𝑝)

𝑠
] + 1 1. 17

Where: 𝑤 is the input volume, 𝑘 is the kernel size, 𝑝 is the padding, 𝑠 is the stride

 The feature map: is the output of one filter applied to the image data. Basically, the feature

map represents the result of convolution operation between filter and image data.

 Activation function: is the last component of the convolutional layer to increase the non-

linearity in the output. Generally, ReLu function is used as an activation function in a convolution

layer. ReLu function allows us to replace every negative value in feature map from the

convolutional layer with zero, this is will help us to prevent the values from summing up to zero.

1.5.2.3 Pool layer

 The main task of the pooling layer is the sub-sampling of the feature maps. These maps are

generated by following the convolutional layer. In other words, this approach shrinks large-size

feature maps to create smaller feature maps. It maintains the majority of the dominant information

(or features) in every step of the pooling stage. The most familiar and frequently pooling types

utilized pooling methods are the max and average pooling.

 Max-pool: Calculate the maximum value for each patch of the feature map. Thus, the

output after max-pooling layer would be a feature map containing the most prominent features of

the previous feature map.

 Average pooling: computes the average of the elements present in the region of feature

map covered by the filter.

Chapter 1 Deep learning

21

Figure 1.17: Example for the max-pooling and the average-pooling with a filter size of 2×2 and a stride of 2×2

1.5.2.4 Flattening

 When we have the pooling layers with many pooled feature maps and then you flatten them.

So, you put them into this one long column sequentially one after the other. And you get one huge

vector of inputs for an artificial neural network or FC.

 So, to sum all this up, we’ve got an input image. We apply a convolution layer, then we

apply pooling, and then we flatten everything into a long vector which will be our input layer for

the fully connected layer or ANN.

1.5.2.5 Fully Connected Layer

 So, the fully connected layer collects the resulting data from the convolutional and pooling

layer, analyzes the data from the layers independently and makes the final classification or

localization decision.

1.5.3 Principle working of Convolutional Neural Networks

 A CNN has hidden layers of convolution layers that form the base of ConvNets. Like any

other layer, a convolutional layer receives input volume, performs mathematical scalar product

with the feature matrix (filter), and outputs the feature maps. Features refer to details in the image

data like edges, shapes, textures, objects, circles, etc [20].

 At a higher level, convolutional layers detect these patterns in the image data with the help

of filters. The higher-level details are taken care of by the first few convolutional layers. The deeper

the network goes, the more sophisticated the pattern searching becomes. For example, in later

layers rather than edges and simple shapes, filters may detect specific objects like eyes or ears, and

eventually a cat and a dog [20].

Chapter 1 Deep learning

22

 The first hidden layer in the network dealing with images is usually a convolutional layer.

When adding a convolutional layer to a network, we need to specify the number of filters we want

the layer to have. A filter can be thought of as a relatively small matrix for which we decide the

number of rows and columns this matrix has. The value of this feature matrix is initialized with

random numbers. When this convolutional layer receives pixel values of input data, the filter will

convolve over each patch of the input matrix. The output of the convolutional layer is usually

passed through the ReLu activation function to bring non-linearity to the model. It takes the feature

map and replaces all the negative values with zero [20].

 The pooling layer is added in succession to the convolutional layer to reduce the

dimensions. We take a window of say 2x2 and select either the maximum pixel value or the average

of all pixels in the window and continue sliding the window. So, we take the feature map, perform

a pooling operation, and generate a new feature map reduced in size. Pooling is a very important

step in the ConvNet as reduces the computation and makes the model tolerant towards distortions

and variations [20].

The convolutional layer was responsible for the feature extraction. But, What about the

final prediction? A fully connected dense neural network would use a flattened feature matrix and

predict according to the use case [20].

Chapter 1 Deep learning

23

Figure 1.18: Architecture of CNN model (classification/localization

1.6 Conclusion

As shown above in this chapter we presented a brief approach about machine learning to

set up the plate for our interest in most common ML subfield. In this case is deep learning. Then,

we started deal with the fundamental’s studies of deep learning field including neural network

concepts (neural network algorithms: forward-propagation, back-propagation), perceptron

components. Also, we addressed one of the most widely used deep neural networks CNN, we did

envelop every CNN component and layer from convolutional layer to the last layer known as FC.

All these notions let us proceed towards the next chapters, where we going to implement all these

theorical notions to construction prediction model.

Chapter 2: Object detection

Abstract

Object detection has been attracting a lot of interest, and recently a lot of various

computational models have been designed. In this chapter, we explained various object

detection models including RCNN, FAST RCNN, FASTER RCNN and YOLO.

2.1 Introduction

2.2 Object Detection

2.3 Object detection, semantic segmentation, instance segmentation differences

2.4 Object detection using convolutional neural networks

2.5 How to evaluate object detection model

2.6 Conclusion

Chapter 2 Object detection

26

2.1 Introduction

When carefully observing the brain, multiple processing levels can be identified. It is

understood that at each level the brain can learn features or representations at escalating heights of

abstraction. For instance, the typical design of the visual cortex suggests that (roughly speaking)

the brain initially extracts edges followed by patches, then surfaces, then objects, and so on. This

is one of the fundamental ways in which the brain performs vision [21].

Convolutional Neural Networks (CNNs) emerged from the study of the brain’s visual

cortex, and they have been used in image recognition since the 1980s. In the last few years, CNNs

have managed to achieve superhuman performance on some complex visual tasks.

In this chapter we will discuss one of the most important visual tasks which is object

detection, the application of this latter is used in many domains such as in the field of military,

security, medical and augmented reality. We will first, understand what is exactly object detection

(Classifying multiple objects in an image and placing bounding boxes around them), then we will

discuss some of the best CNN architectures in this regard.

2.2 Object Detection

Object detection is an automated computer vision technique for locating instances of objects

in digital photographs or videos. Specifically, object detection draws bounding boxes around one

or more effective targets located in a still image or video data. An effective target is the object of

interest in the image or video data that is being investigated. The effective target (or targets) should

be known at the beginning of the task [22].

Object detection can be categorized into two research topics:

• Detection of specific instance

• General object detection

The first type aims towards the detection of a particular object while the second type gives

the exact locations and classifying all the elements in the vision, The main process of object

detection is shown in Figure2.1, this process localizes and classifies the target. In supervised

Chapter 2 Object detection

27

learning, the effective targets should be known at the beginning of the task; the effective target in

this case is the object of interest in the image or video data that is being investigated.

Before we start setting the main techniques used in recent years for object detection, we need to

differentiate between object detection, semantic segmentation and instance segmentation, as these

terms can be confusing for anyone new to the field.

2.3 Object detection, semantic segmentation, instance segmentation differences

2.3.1 Object detection

In object detection, each image pixel is classified whether it belongs to a particular class (e.g.

face) or not It refers to the method of identifying and correctly labelling all the objects present in

the image frame. In practice, this consists of two steps:

• Object Localization: Here, a bounding box or enclosing region is predicted in the

tightest possible manner in order to locate the exact position of the object in the image.

• Image Classification: The localized object is then fed to a classifier which labels the

object.

The figure below shows the output for object detection applied on a real image of sheep,

where on the left it shows one box determining the sheep and classifying it, and on the right each

sheep is localized and classified.

Image

Feature
Extraction

Regional

Proposal
Classification

Bounding - Box

Regression

Figure 2.1:main process of object detection

Chapter 2 Object detection

28

Figure 2.2:Detect one single object(right), detect multiple objects (left).

2.3.2 Semantic segmentation

If you are familiar with the term segmentation, you already know it is just simply linking pixels

to determine objects and does not differentiate any instance inside of it. Same for semantic

segmentation, it refers to the process of linking each pixel in the given image to a particular class

label. For example, in the figure 2.3 the pixels are labelled as road, sheep and grass.

Figure 2.3:Semantic detection

2.3.3 Instance segmentation

Instance Segmentation is one step ahead of semantic segmentation. Instead of assigning same

pixel values to all objects of same class, it associates a class label to each pixel similar to the

semantic segmentation, except that it treats multiple objects of the same class as individual objects

separate entities.

the end result will have an image where all the objects are separated by pixel boundaries. For

example, in the figure2.4 below we can differentiate each sheep zone.

Chapter 2 Object detection

29

Figure 2.4:Instance segmentation.

In our project we will focus on object detection, which have been for a long time an interesting

field for researchers, but significant results were only produced in the recent years owing to the

rise of Convnets as feature extractors and Transfer Learning as method of passing on previous

knowledge. There are multiple deep detection models, it won’t possible for us to cover up all of

them, we will therefore detail some recent techniques that exist for this matter, and we will focus

on the CNN as this is the technique, we will adopt to achieve our object detection objective.

2.4 Object Detection using Convolutional Neural Networks

In recent years, the research community invented the (CNN), Deep Neural-Networks, CNN’s

(Convolutional Neural Network) different models had attained amazingly accurate results for

object detection.

The CNN architecture of object detection is based on two different methods, the methods can

be divided into two main classes:

• Two-stage methods

• One-stage methods

Two-stage methods firstly generate some candidate object proposals and then classify those

proposals into the specific categories while one-stage methods simultaneously extract and classify

all the object proposals. Generally speaking, two stage methods have a relatively slower detection

speed and higher detection accuracy, while one-stage methods have a much faster detection speed

Chapter 2 Object detection

30

and comparable detection accuracy. Later we will introduce you the metrics used to evaluate the

accuracy of object detection detectors.

In the following part of this section, two-stage methods and one-stage methods are introduced,

respectively [23].

2.4.1 Two-Stage Detector

Two-stage frameworks divide the detection process into the region proposal and the

classification stage. These models first propose several object candidates, known as regions of

interest (RoI), using reference boxes (anchors). In the second step, the proposals are classified and

their localization is refined. Will take R-CNN, or Region-based Convolutional Neural Network.

2.4.1.1 Two-Stage Detector

Two-stage frameworks divide the detection process into the region proposal and the

classification stage. These models first propose several object candidates, known as regions of

interest (RoI), using reference boxes (anchors). In the second step, the proposals are classified and

their localization is refined. Will take R-CNN [22], or Region-based Convolutional Neural

Network, as an example of two-stage methods.

2.4.1.1.1 R-CNN for object detection

R-CNN consists of 3 simple steps:

1. An algorithm called Selective Search used to generate proposals.

2. Run a convolutional Neural Net (CNN) on top of each of these region proposals.

3. Take the output of each CNN and feed it into an SVM to classify the region and to a

linear regressor to tighten the bounding box of the object, if such an object exists.

These 3 steps are illustrated in the image below:

Chapter 2 Object detection

31

Figure 2.5:R-CNN object detector.

To sum it up; in this technique we first propose regions, second extract features, and finally

classify those regions based on their features. This method turns object detection into an image

classification problem. Knowing that R-CNN is a very intuitive method, but at the same time it is

very slow.

Later, Faster-RCNN proposed a scheme in which features are shared between both stages,

achieving a significant efficiency improvement. The main insight of Faster R-CNN was to replace

the slow selective search algorithm with a fast neural net. Specifically, it introduced the region

proposal network (RPN). Faster R-CNN uses a convolutional backbone network, such as VGG or

ResNet, which outputs global feature maps. These convolutional maps are shared between the

Region Proposal Network (RPN) and the detection network, which reduces the cost of generating

proposals externally.

2.4.2 One-stage Detector

On the other hand, one-stage detectors contain a single feed-forward fully convolutional

network that directly provides the bounding boxes and the object classification. The Single Shot

MultiBox Detector (SSD) and You Only Look Once (YOLO) were among the first to propose a

single unified architecture, without requiring a per-proposal computation. Single-Shot Multibox

Detector (SSD) was the first one-stage detector to achieve an accuracy reasonably close to the two-

stage detectors while still retaining the ability to work in real-time. We will take YOLO [24].

Chapter 2 Object detection

32

2.4.2.1 You Only Look Once (YOLO)

YOLO detectors are another anchor-based alternative that divides the image into regions

and predict bounding boxes and probabilities for each region. It is one of the faster object detection

algorithms which make it a very good choice when we need real-time detection, without loss of

too much accuracy. This technique uses Convolutional Neural Networks for object detection.

The YOLO model was first described by Joseph Redmon, et al. in the 2015 paper titled You Only

Look Once: Unified, Real-Time Object Detection [24].

The first three YOLO versions have been released in 2016, 2017 and 2018 respectively.

However, in 2020, within a period of only few months, three major versions of YOLO have been

released named YOLO v4, YOLO v5 and PP-YOLO.

YOLO involves a single neural network trained end-to-end that takes a picture as input and

predicts bounding boxes and class labels for each bounding box directly. Let’s look up close at the

general architecture of an YoloV4 detector to understand.

The figure2.6 below shows an example of an output image of YoloV4.

Figure 2.6:Objects detected by YoloV4.

2.4.2.1.1 YoloV4 architecture

First, Let's take a look at the main components of a modern one-stage object detector. The

figure 2.7 is taken from YOLO v4 [25] paper It represents the general architecture of YoloV4 which

is a one-stage detector.

Chapter 2 Object detection

33

As you can see in the figure 2.7, YOLOv4 consists of:

Figure 2.7:YoloV4 architecture.

1. Backbone;

2. Neck;

3. Head.

A. The Backbone:

Refers to the feature-extraction architecture. They are pre-trained on image classification

datasets, like ImageNet, and then fine-tuned on the detection dataset. In YOLOv4, backbones can

be VGG, ResNet, SpineNet, EfficientNet, ResNeXt, or Darknet5. Tiny YOLO has only 9

convolutional layers, so it’s less accurate but faster and better suited for mobile and embedded

projects. Darknet53 (The backbone used in YOLOV3) has 53 convolutional layers, so it’s more

accurate but slower. Later we will introduce you the metrics use to evaluate the accuracy of object

detection detectors.

B. The Neck:

These are extra layers that go in between the backbone and head. They are used to extract

different feature maps of different stages of the backbone, in other terms its purpose is to add extra

information in the layers. (Feature Pyramid Networks, Path Aggregation Network ...).

Chapter 2 Object detection

34

C. Head.

This is a network in charge of actually doing the detection part (classification and regression)

of the bounding boxes.

2.4.2.1.2 Interpreting the YOLO Output

Input to the network is a batch of images, and the features learned by the convolutional layers

are passed onto a classifier/regressor which makes the detection prediction. And the output is a list

of bounding boxes along with recognized classes.

To understand the whole process let’s assume that we have an input image. First, we divide it

into a grid of dimensions equal to that of the final feature map. For example, if the input image is

of 416 x 416 cells and stride is 32, then the feature map will be of 13 x 13 cells. Then we divide

the input image into 13 x 13 cells. The input to the network is a batch of images, and the features

learned by the convolutional layers are passed onto a classifier/regressor which makes the detection

prediction.

Instead of predicting the absolute size of boxes with regard to the entire image, YOLO

introduces what is known as an Anchor Box, a list of predefined boxes that best match the

desired objects, which are calculated using k-mean clustering. Yolo V3 uses three anchor boxes,

each of the 13 x 13 cells thus encodes information about three boxes.

Figure 2.8: YOLOv3 Network prediction process

Chapter 2 Object detection

35

The output is a list of bounding boxes along with the recognized classes. Each bounding box is

represented by 6 numbers (𝑝𝑐, 𝑏𝑥, 𝑏𝑦, 𝑏ℎ, 𝑏𝑊, 𝑐). where 𝑝𝑐 is the probability that it belongs to a

particular class, 𝑏𝑥 and 𝑏𝑦 are the centre of the bounding box, 𝑏ℎ and 𝑏𝑊 are the height and width

of the bounding box respectively, and 𝑐 is the available total number of classes. If we expand 𝑐 into

an 80-dimensional vector (The number of classes), each bounding box is then represented by 85

numbers.

The algorithm may find multiple detections of the same object. Non-max suppression is a

technique by which the algorithm detects the object only once. To remove the duplicates, the

bounding boxes that have the class probability above a threshold value are selected and used to

locate the object within the image.

So, we saw how YOLO learns and how it is able to detect all the images in a single go. Now,

we will introduce you to the metrics used to evaluate the accuracy of our proposed object detection

detector in the practical part.

2.5 Evaluation of Object Detection Model

The MSE often works fairly well as a cost function to train the model, but it is not a great metric

to evaluate how well the model can predict bounding boxes. The most common metric for object

detection is IoU which stands for Intersection over Union.

2.5.1 Intersection over union (IOU)

We have explained above some of the methods for object detection but still, we didn’t

clarify how to determine the accuracy of these methods. Intersection over Union is a test to

ascertain how close is the prediction to the actual truth. The IOU is calculated using this equation:

𝐼𝑜𝑈 =
𝐴 ∪ 𝐵

𝐴 ∩ 𝐵
 2. 1

The figure below represents two overlapped boxes (red and blue empty boxes), The

overlapping region is the region marked with a black pen over the combination of both.

Chapter 2 Object detection

36

Figure 2.9:Intersection over Union is used to measure the performance of detection

It is obvious that IoU loss, only works when the predicted bounding boxes overlap with the

ground truth box. IOU loss would not provide any moving gradient for non-overlapping cases.

So, if we get a higher value of Intersection over Union, it means the overlap is better. Hence,

the prediction is more accurate and better as depicted below.

We can say that the Intersection over Union allows us to measure and compare the

performance of various solutions. It also makes it easier for us to distinguish between useful

bounding boxes and not-so-important ones [26].

2.5.2 Mean Average Precision – mAP

Mean Average Precision (mAP) is one of the most comm only used evaluation metrics

for object detection models, mAP is a metric based on Average Precision (AP) which is used to

calculate the precision and recall of a model. This is done using the following formulas

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 2. 2

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2. 3

Precision in equation 2.2 is defined as the ability for an object detection model to identify

objects, this is represented in percentage. Recall in equation 2.3 is defined as the ability for an

object detection model to identify all objects in sample data, this is also represented in percentage.

To determine TP (True Positive), FP (False Positive) and FN (False Negative) and also define when

Chapter 2 Object detection

37

a correct or incorrect detection is made, Intersection Over Union (IoU) is needed. A threshold is

also predefined to determine if the object was actually detected, this threshold is often 50%.

If the object detection system detects an object within the IoU threshold it is seen as a True

Positive, else it is seen as a False Positive. False Negatives occurs when an object detection system

fails to detect an object that is present in an image. AP is used to calculate the mAP of an object

detection model and is the average AP for all different classes of objects that the model is designed

to detect, given by equation 2.4 where N represents the total number of classes and APi is the

average precision for each class [27].

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 2. 4

2.6 Conclusion

In recent years, with the development of Deep Learning in object detection, multiple deep

detection models are proposed. Throughout this chapter we have discussed one of the most

important visual tasks which is the object detection, where we have focused on the CNN

architecture of object detection and its two main classes: the two-stage and one-stage methods.

It should be noted that object detection has not been used much in various areas where it

could be of great help. In the next chapter we will propose and implement our object detector on

real medical images, we will also apply Yolo5 and compare them.

Chapter 3: Model implementation and

experimental results

Abstract

Early diagnosis of brain tumors plays an important role in a patient’s treatment and makes it

easy easier to save his or her life. A major challenge in brain tumor treatment planning and

quantitative evaluation is the determination of the tumor extent. In this chapter we have

implemented two different neural network-based object detection models that include our

constructed CNN model and pre-trained YOLOV5 model. Then, we have evaluated and

compared the experimental results of these models.

3.1 Introduction

3.2 Data

3.3 Data preprocessing

3.4 Data augmentation

3.5 Convolutional neural network construction

3.6 Training

3.7 CNN model evaluation

3.7 Results

3.9 Conclusion

Chapter 3 Model implementation and experimental results

39

3.1 Introduction

In this chapter, we propose an efficient and skillful method which helps in the detection of

the brain tumor without any human assistance based on both Convolutional Neural Network and

YOLOV5. First, we will describe the brain image dataset we have used to train our constructed

convolutional neural network. Then detail the various CNN architectures that we have

reconstructed to enhance the results each time. Lastly, we have applied YOLOv5 on our dataset to

see how is efficient our method compared to YOLOv5; which is a family of object detection

architectures and models pretrained on the COCO dataset (COCO is a well-known large-scale

object detection, segmentation, and captioning dataset.) and at the same time learning how to apply

a pretrained model on a real dataset and do retrain it on costume data.

3.2 Data

The dataset that we used for training our model was published in Kaggle website by

Navoneel Chakarabarty [28], it contains 253 brain tumor images of two classes images with brain

tumor and images with no brain tumor as shown in Table 3.1. Also, each image in the dataset had

a different size.

Table 3.1: Number of images per classes

Classes Number of images Total

Brain tumor 98
253

No brain tumor 155

These images dataset is generated through the scans, and they are examined by the

radiologist. A manual examination can be error-prone due to the level of complexities involved in

brain tumors and their properties. Figure 3.1 shows sample from the dataset class brain tumor.

Chapter 3 Model implementation and experimental results

40

Figure 3.1: Sample from the dataset class brain tumor

Figure 3.2: Sample from the dataset class no brain tumor

The dataset does not have bounding boxes around the objects. So, we had to label it

manually using LabelImg, a graphical image annotation tool, this creates XML files in PASCAL

VOC format. We should mention that this task was one of the hardest and most time consuming

part; we have spent time to choose the right tool since there are many open-source image labeling

tools, and then more extra time to get the labeled

We marked the location of the brain tumor by drawing a bounding box around the tumor to

be detected (Figure 3.3).

Chapter 3 Model implementation and experimental results

41

Figure 3.3: Mark the location of the brain tumr in form of bounding box using labelImg

These annotated images are saved in xml format Figure 3.4 show an xml file structure

generated by LabelImg tool The XML file contains information about the image including the

name of the image and the name of the dataset. The size and depth of the image are recorded

under the ‘size” tab. The information under the ‘object’ tab is the content we marked before.

Then ‘name’ tab records the class of the object. And ‘bndbox’ tab records the specific location of

the object.

Figure 3.4: Xml file for the annotated image exported by labelImg tool

Chapter 3 Model implementation and experimental results

42

3.3 Preprocessing

 For the preprocessing we uploaded our dataset and annotations XML files to Roboflow.

Roboflow is a Computer Vision development framework for better data collection to

preprocessing, and model training techniques. Roboflow has public datasets readily available to

users and has access for users to upload their own custom data also. Roboflow accepts various

annotation formats. In data pre-processing, there are steps involved such as image orientations,

resizing, contrasting, and data augmentations [43].

 As we have said before our dataset has different sizes, so we won’t be able to feed them

directly to the network. In addition, large image sizes have implications towards not only neural

network training time but also memory issues. We resized the images to 300𝑥300 pixels smaller

which in turn make the training step faster.

 We also adjusted the contrast of the images in order to improve the normalization and line

detection in varying lighting conditions, and make our model better at edges detection.

Figure 3.5: Image before and after contrast adjustment applied

3.4 Data augmentation

We know previously mentioned that overfitting can happen when neural networks weights

memorize training data rather than generalize the input to discover patterns in the data. This is

usually the case in small datasets. So, it was obvious to us that 253 images was too small an amount

of data if we really wanted to have good training results. With this limited dataset brain tumor

Chapter 3 Model implementation and experimental results

43

images, our neural networks will be for sure at a high risk of overfitting. To avoid this, we needed

to apply data augmentation.

We implemented a several forms of data augmentation:

• Rotation: Between - 45º and 45º

• Horizontal-flip: -180º or 180º

• Vertical-flip: -180º or 180º

• Outputs per training example: 3

• Brightness: between 0% and + 54

• Noise: up to 10% of pixels

• Bounding box exposure: Between -8% and +8%

After we applied data augmentation process, we have obtained 1256 images of brain tumor;

which is still not enough but acceptable. Figure 3.6 show sample from dataset after augmentation.

Figure 3.6: sample from dataset after augmentation

 Roboflow gives you the ability to split your dataset to whatever we want, so after we did

the data augmentation, we split our data 80% for training, 10% for validation and 10% for testing.

Table 3.2 show on number and percentage our split dataset.

Chapter 3 Model implementation and experimental results

44

Table 3.2: Number of training image, validation and testing

 Datasets

Training Validation Testing Total

Percentage 80% 10% 10% 100%

Number 1004 126 126 1256

 After that, we exported our augmented dataset into two versions with different formats, first

version had CSV format so we can use it for train our constructed model and the second version is

TXT annotationis and YAML config that we will use later to train YOLOv5 on our custom

dataset.Table 3.3 shows the content of the CSV file.

Table 3.3:Content of CSV file

Filename Width height class xmin ymin xmax ymax

aug_Y154_0_1224.jpg 300 300 BRAIN_TUMOR 1 160 47 213

aug_Y19_0_1106.jpg 300 300 BRAIN_TUMOR 57 81 128 137

38 no.jpg 300 300 NO_BRAIN_TUMOR 0 0 0 0

41 no.jpg 300 300 NO_BRAIN_TUMOR 0 0 0 0

aug_Y37_0_5320.jpg 300 300 BRAIN_TUMOR 157 95 235 169

aug_Y77_0_390.jpg 300 300 BRAIN_TUMOR 83 143 202 221

 Each XML file contain annotation parameters of one single image, so we converted all the

XML files into one CSV file that gathers all the annotation parameters of the whole dataset. Now,

our file is organized and ready for use.

3.5 Construction of our proposed convolution neural network detector

For our implementation, we reconstructed the convolution neural network that we have

introduced in chapter 1 using Keras as it is an effective high-level neural network, Application

Programming Interface (API) written in Python to create our CNN model. We have used Google

Collaboratory platform to execute our code due to the performance of GPU that saved for us so

much time. In the next section, we are going to describe the architecture of our CNN detector in

detail

Chapter 3 Model implementation and experimental results

45

In the experimental part, we have tested three combinations of layers as our first

combination of layer used to construct the CNN model was really terrible at prediction. So, we had

to try other combinations in order improve the results.

In the first combination of layers, we have dealt with the problem of detection as a regression

task so we did not include an output for classification. The output of the CNN had just four neurons

to give us the bounding box annotations parameters (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥). To construct the

CNN, we used Keras sequential model, which is a linear stack of layers:

• Convolutional layer with 64 filters of size 5 x 5 and stride of 1

• Max-pooling layer with pool size 2 x 2

• Convolutional layer with 128 filters of size 5 x 5 and stride of 1

• Max-pooling layer with pool size 2 x 2

• Convolutional layer with 256 filters of size 5 x 5 and stride of 1

• Max-pooling layer with pool size 2 x 2

• Fully Connected layer with 100 neurons, in form of three dense layers: input dense layer

with 64 neurons, hidden dense layer 32 neurons, output dense layer 4 neurons, all FC layer

neurons have ReLu as activation function.

In the second combination of layers, we added another convolutional layer with 32 filters of

size 5 x 5 and stride of 1 as input layer of the model and another dense layer with 128 neurons as

input for the fully connected layer. Also, we changed the activation function for the output dense

layer to sigmoid function.

The last combination of layers, was the same as the second combination but we added another

fully connected layer for classification of 2 output neurons for classified image if they contain brain

tumor or not with SoftMax as activation function for the last layer. In order to apply this

combination we needed to use Keras functional API because in this case our model has multi-

output. In other words a double fully connected layer, we need these two fully connected layers to

be trained at the same time and get their inputs from the same source. In Figure 3.7 we can see two

main outputs one for the bounding box named “box_output” with 4 neurons, and the other one for

Chapter 3 Model implementation and experimental results

46

the classification of the brain tumor; if it exists or not in the images named “class_output” with 2

neurons. We added a couple of dropout layers to the FC to help in the regularization and over fitting

Figure 3.7 illustrates the architecture of the last combination of layers.

3.6 Training

3.6.1 CNN model Training

We already split our data into training, validation and testing data. We used validation

data for updating weights while it gave a glimpse into how the neural network was improving

over time. After the training phase was completed, the test data was then used to see how well the

neural networks predicted tumors from new images.

A variety of hyperparameters are available to alter. We list the hyperparameters that

produced the highest accuracies.

• Learning rate: 0.001

• Adam optimizer: beta1=0.9, beta2=0.999

• Batch size and epochs we tried different value during the testing the models

• First and second combination layers: we used Mean Square Error as Loss function

• Third combination layers: we used Mean Square Error loss function for bounding-box

output and Categorical Cross Entropy for classification output.

Chapter 3 Model implementation and experimental results

47

Figure 3.7: show the architecture of the last combination of layers.

Chapter 3 Model implementation and experimental results

48

Table 3.4: The total number of params in each combination

Combination layers Total params

First 22,983,398

Second 11,135,398

Third 22,505,160

Table 3.5: show batch size and epochs value that we tried during each test

Combination layers Test Batch size Epochs

First
1 50 10

2 32 30

Second
1 32 10

2 32 100

Third 1 16 100

To avoid neglecting any detail you may be interested in knowing, Figure 3.8 shows an

organigram of the whole process of training our convolutional neural network detector.

Figure 3.8: Training Convolutional neural network model organigram

Chapter 3 Model implementation and experimental results

49

 Keras library gave us the ability to see the feature maps of the convolutional neural network,

and the ability to see what your model tries to focus on learning. Figure 3.9 shows our model feature

maps in the first layer.

Figure 3.9:Show the feature maps of the first convolution and max-pooling layer

 As we can see each feature maps from first convolutional layer focuses on different

regions in the image, there is a feature map that concentrates on the brain edge, others focus in

brain tumor and some of them focus on the whole brain texture and so on. Also, we have the

ability to see a scale displayed in the figure so we can observe that max-pooling layer decreased

the size of the data. Figure 3.10 Show the feature maps of the last convolutional and max-pooling

layer

Figure 3.10:Show the feature maps of the last convolutional and max-pooling layer

Chapter 3 Model implementation and experimental results

50

 Figure 3.10, we can see the last layer detected way more details in images if we compare

it to first layer. Also, we can see the difference in size in the max pooling.

After constructing our detector, next we will see how to train YOLOv5

3.6.2 YOLOv5 training

we know that YOLOv5 is already trained on COCO dataset, but we need to train it our brain

tumor dataset to predict a new object. Table 3.6 shows batch size and epoch values of YOLOv5

training on our custom dataset also the model summary.

Table 3.6: Shows batch size, epoch values and layers, parameters number

 Model summary Batch size Epoch

Layers Parameters

YOLOv5 232 7246518 16 100

We plotted Graph of YOLOv5 training loss, recall and precision metrics and mAP, using

TensorBoard, TensorBoard is a Tensorflow library for providing the measurements and

visualizations needed during model training.

Figure 3.11:Graph of YOLOv5 training loss

L
o
s
s

Epoch

Chapter 3 Model implementation and experimental results

51

Figure 3.12:Graph of YOLOv5 metrics recall during training

Figure 3.13: Graph of YOLOv5 metrics precision during training

Figure 3.14:Graph of YOLOv5 mAP values during training

R
e

c
a
ll

Epoch

P
re

c
is

io
n

Epoch

m
A

P

Epoch

Chapter 3 Model implementation and experimental results

52

3.7 Results

3.7.1 CNN model Results

In this section we going to see our different results for each combination. You can refer

directly to Table 3.5 to be able to follow our results analysis.

3.7.1.1 First combination (Test one) results:

As can be seen in the figure 3.15 below, the first combination outputs unacceptable results

since there is no overlapping between the red box which represents the model prediction and the

green box which represents the real box which means all IoU values are equal to 0 as shown in the

figure 3.15 , above the red boxes.

Figure 3.15: First combination layer prediction results

3.7.1.2 First combination (Test two) results

Figure 3.16:Sample from first combination test two results with bad prediction

Chapter 3 Model implementation and experimental results

53

Figure 3.17:Sample from first combination test two results with a good prediction

 By analyzing these images, we can notice that our model gave a good prediction in the

images where the brain tumor localization was near to left side, that means when 𝑥𝑚𝑖𝑛 (parameter

of brain tumor localization) almost equals zero our model gave us really good results as we can see

in figure 3.17. On the other hand, when brain tumor localization was far from left side our model

couldn’t predict the location of the green box, figure 3.16. To overcome this problem, we have

proposed another combination and did further test on it. The IoU values can be seen above the red

boxes

3.7.1.3 Second combination (Test one) results

Figure 3.18: Sample of second combination test one results

 As can be observed, there is a big difference between the second and first combination

results. We can see that the obtained results are better, The IoU obtained are higher. The multiple

red bounding boxes are due to the execution of our code multiple times without restarting the

Chapter 3 Model implementation and experimental results

54

runtime in Google Collaboratory. Google Collaboratory saved any previous executions so when

we re-executed the code it was going to plot new results over the last results.

3.7.1.4 Second combination (Test two) results

Figure 3.19: Sample from results of the second combination test two

 This is the best result so far in comparison to the previous results, In this case the model

was be able to detect even small brain tumor and gave higher IoU number.

3.7.1.5 Third combination results

 The last combination was designed to predict the bounding-box annotations and classified

the input:

Figure 3.20:Simple of results from third combination with class brain tumor

Chapter 3 Model implementation and experimental results

55

 Figure 3.20 shows the results of our third model combination on images that contain brain

tumor. The model did really good at classification, as we can see on the top of each image there

are two outputs. First, brain tumor probability we have gotten 0.99 means that these two images

were classified as brain tumor images. Second, no brain tumor probability equals to 0.00 and 3.00

meaning that no brain tumor exists. Also, the model did really good at bounding-box annotations

prediction.

Figure 3.21:Sample from results of the last combination with class no brain tumor

 The Figure 3.21 shows sample from results of the last combination with class no brain

tumor, and this model did really good also at no brain tumor class.

3.7.2 Evaluation of the CNN model on test data

We evaluated the different combinations with testing dataset. So, we can see how it going

to perform with unseen data. Table 3.7 show MSE calculated in each test:

Chapter 3 Model implementation and experimental results

56

Table 3.7: MSE calculated in each test for the first and the second combination

Combination layers Test
Evaluation

[Metrics=Mse]

First
1 0.16479593515396118

2 0.10943473875522614

Second
1 0.09307263180613518

2 0.03434731811285019

For The third combinations we did one test, the Table 3.8 of evaluation is bet different:

Table 3.8:Third combination evaluation

Evaluation

Total loss Classification loss Bounding-box

[Metrics=Mse]

Classification

[Metrics=Accuracy}

Third 7.6591e-04 2.4991e-05 1.4092e-04 1.0

3.7.3 YOLOv5 Results

After we trained the YOLOv5 on our brain tumor dataset, we tested the performance on the

unseen data (test dataset). Figure 3.22 shows the results of the YOLOv5 on test data:

Figure 3.22:Sample from the results of the YOLOv5 on test

 We can see in figure 3.22 that YoloV5 gave a high IoU values. In each image we have

printed the Intersection Over Union value in purple.

Chapter 3 Model implementation and experimental results

57

After completing the test task, we observed that even strong models such as YOLOv5 can

fail sometimes. Figure 3.23 shows a couple of results where YOLOv5 wasn’t be able to detect the

brain tumor in them.

Figure 3.23: Result that YOLOv5 wasn't able to detect the brain tumor

3.7.4 Comparison of the result

Before we do the comparison, we need to clarify that our goal from this comparison isn’t

really to compete YoloV5 detector, but to understand this pretrained model’s efficiency in object

detection. By comparing the intersection values of the YOLOv5 model and our detector (third

combination), we have seen that YOLOv5 was way better at detecting big and small tumors. It was

able to localize the tumor with high accuracy, as demonstrated in the IoU values. Although, our

model didn’t give comparable results due to many factors, but it was acceptable for us as it is our

first try to construct an object detection detector. Our third combination succeeded in detecting the

tumor and classifying the images.

Chapter 3 Model implementation and experimental results

58

Figure 3.24 shows a comparison between YOLOv5 and our CNN model in terms of IoU

values.

Figure 3.24:Graph show YOLOv5 and CNN Model IoU values on the test data

3.8 Conclusion

Considering the needs to detect brain tumor, along this chapter we have explained all the

steps that we have followed to develop our CNN model for tumor detection. First, we have applied

data preprocessing and data augmentation, then we detailed the different CNN models we have

used. We have proposed three combinations, the first one failed in detecting the tumor, so it was

necessary to enhance the results, the third was be able to detect the tumor, it gave us acceptable

IoU values. Also, we trained YoloV5 detector on the same dataset to see how approximate our

model performs to the YoloV5 detector.

0

0.2

0.4

0.6

0.8

1

1.2

IO
U

Test data Nº

YOLOv5

CNN

59

GENERAL CONCLUSION

 We have come a long way since chapter 1, where we managed to build our own

object detector with convolutional neural networks.

 To recap, in chapter 1, we introduced the domain of machine learning, deep learning neural

networks, and convolutional neural networks. We have focused on CNNs as they are widely used

in object detection application.

In chapter 2, we have understood what is exactly object detection (Classifying multiple objects

in an image and placing bounding boxes around them). We have clarified the main differences

between object detection, semantic segmentation and instance segmentation. We also gave an

example of the two main classes method of object detection: R-CNN and YOLO for the two-stage

and one-stage methods respectively. Finally, we explained the metrics used to evaluate the

accuracy of our proposed object detection detector in the practical part.

In chapter 3, we have implemented an object detection model able to localize and classify

brain tumors on real medical images. We have explained all the steps we followed throughout this

experimental part starting from data preprocessing and data augmentation and ending with the

implementation of our detector. We have also trained YoloV5 detector on the same dataset to see

how approximately our model performs compared to it.

This work has introduced us to a new field of Deep Learning which is a very large and promising

specialty to us as students who want to pursuit our studies as researchers.

REFERENCES

[1] Xinyi Zhou, Wei Gong, WenLong Fu, Fengtong Du, “Application of Deep Learning in Object

Detection”, 2007, IEEE article

[2] S. Ray. “A Quick Review of Machine Learning Algorithms”. In: 2019 International Conference

on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). 2019, pp. 35–39.

doi: 10.1109/COMITCon.2019.8862451.

[3] James Loy, “Neural Network Projects with Python: The ultimate guide to using Python to

explore the true power of neural networks through six projects” 1st Edición, Edición Kindle

[4] Ye, Ning Zhang, Yingya Wang, Ruchuan Malekian, Reza. “Vehicle trajectory prediction

based on hidden Markov model”, Research article, 2016-07

[5] Arnav Thakur ,Reza Malekian. “Fog Computing for Detecting Vehicular Congestion, an

Internet of Vehicles Based Approach: A Review”. In: IEEE Intelligent Transportation Systems

Magazine 11.2 (2019), pp. 8–16. doi: 10. 1109/MITS.2019.2903551.

[6] Bojan Furundzic, Fabian Mathisson, “Dataset Evaluation Method for Vehicle Detection Using

TensorFlow Object Detection API”, Malmo University Faculty of Technology and Society

Computer Engineering Bachelor Thesis.

[9] Michael A.Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015

[12] Mohit Goyal, Rajan Goyal, Brejesh Lall, Studies in Computational Intelligence (2020)

[14] Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge: MIT

Press. p. 247. ISBN 978-0-262-01802-9.

[15] Buduma, Nikhil; Locascio, Nicholas (2017). Fundamentals of Deep Learning : Designing

Next-Generation Machine Intelligence Algorithms. O'Reilly. p. 21. ISBN 978-1-4919-2558-4.

[16] R.C Joshi Rahul Chauhan Kamal Kumar Ghanshala. “Convolutional Neural Network (CNN)

for Image Detection and Recognition”. In: 2018 First International Conference on Secure Cyber

Computing and Communication (ICSCCC). 2018.

https://www.google.com/books/edition/Machine_Learning/NZP6AQAAQBAJ?hl=en&gbpv=1&kptab=sideways&pg=PA247
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-01802-9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4919-2558-4

[18] Azulay, Aharon; Weiss, Yair (2019). "Why do deep convolutional networks generalize so

poorly to small image transformations?". Journal of Machine Learning Research. 20 (184): 1–25.

ISSN 1533-7928.

[21] Katleho L Masita, Ali N Hasan, ThokozaniShongwe, Deep Learning in Object Detection:

[22] Paper, D. (2021). Deep Learning with TensorFlow Datasets. In: State-of-the-Art Deep

Learning Models in TensorFlow. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-

7341-8_4

[23] Aneela Aslam, Aun Irtaza, Nudrat Nida, Object Detection and Localization in Natural

Scenes Through Single-Step and Two-Step Models (IEEE article) Published: 2020

[25] Bochkovkly, A., Wang, C.Y., & Liao.H.Y.M. (2020), Yolov4 : Optimal speed and accuracy

of object detection arXiv preprint arXiv:2004.10934

[26] Himanshu Singh,” Practical Machine Learning and Image Processing: For Facial

Recognition, Object Detection, and Pattern Recognition Using Python ” Apress; 1st ed. édition

(26 février 2019)

[27] Xiaoyue Jiang • Abdenour Hadid • Yanwei Pang Eric Granger • Xiaoyi Feng Editors “deep

learning in object detection and recognition “Springer Verlag, Singapore; 1st ed. 2019 édition (27

novembre 2019)

[37] Di Feng et al. “Deep Multi-Modal Object Detection and Semantic Segmentation for

Autonomous Driving: Datasets, Methods, and Challenges”. In: IEEE Transactions on Intelligent

Transportation Systems 22.3 (2021), pp. 1341–1360. doi: 10.1109/TITS.2020.2972974

https://www.google.com/search?rlz=1C1GCEA_enDZ976DZ976&sxsrf=ALiCzsZ_hZfmA759xWknS39VrDk7n8aUAQ:1655788677573&q=Himanshu+Singh&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEzLNkrLKUwzV4Jw03OTK3Iq4421ZLKTrfST8vOz9cuLMktKUvPiy_OLsq0SS0sy8osWsfJ5ZOYm5hVnlCoEZ-alZ-xgZdzFzsTBAAD8hZhcVwAAAA&sa=X&ved=2ahUKEwilqMy_5b34AhVMQEEAHSxgBVAQmxMoAXoECEUQAw

WEBOGRAPHY

[7] Lisa Tagliaferri, “An Introduction to Machine Learning”, https://www.digitalocean.com/

community/tutorials/an-introduction-to-machine-learning#deep-learning, September 28, 2017

[8] Nilesh Barla, A Gentle Introduction to Deep Learning—the ELI5 Way, https://www.v7l

abs.com/blog/deep-learning-guide, June 20, 2022

[10] Pragati Baheti, “Neural Network Architectures”, https://www.v7labs.com/blog/neural-

network-architectures, June 20, 2022

[11] Pragati Baheti, “The Essential Guide to Neural Network Architectures”,

https://www.v7labs.com/blog/neural-network-architectures-guide, June 20, 2022

[13] Shruti Jadon, "Introduction to Different Activation Functions for Deep Learning",

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-

9689331ba092. Mar 16, 2018

[17] From Wikipedia, the free encyclopedia,

“en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-:5-61”

[19] Nitish Kumar, “Understanding The Concept Of Convolutional Neural Networks (CNNs)”,

https://www.marktechpost.com/2022/01/24/a-detailed-understanding-of-convolutional-neural-

networks/, January 24, 2022.

[20] Pragati Baheti, “A Comprehensive Guide to Convolutional Neural Networks”,

https://www.v7labs.com/blog/convolutional-neural-networks-guide, June 20, 2022.

[24] Nirmala Murali, ‘Image Classification vs Semantic Segmentation vs Instance

Segmentation’,https://nirmalamurali.medium.com/image-classification-vs-semantic-

segmentation-vs-instance-segmentation-625c33a08d50, Apr 29, 2021

[28] NAVONEEL CHAKRABARTY, https://www.kaggle.com/datasets/navoneel/brain-mri-

images-for-brain-tumor-detection, 2019

https://www.digitalocean.com/%20community/tutorials/an-introduction-to-machine-learning#deep-learning
https://www.digitalocean.com/%20community/tutorials/an-introduction-to-machine-learning#deep-learning
https://www.v7labs.com/blog/neural-network-architectures-guide
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-:5-61
https://www.marktechpost.com/2022/01/24/a-detailed-understanding-of-convolutional-neural-networks/
https://www.marktechpost.com/2022/01/24/a-detailed-understanding-of-convolutional-neural-networks/
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Abstract

This master's thesis tackles the problem of Object Detection which is one of the most

famous and extensively researched topics in the field of Computer Vision. There are two main

methods for object detection using convolutional neural networks: two stage and one stage

methods. We explain two examples of object detection architectures R-CNN,

and YOLOv5 respectively. We propose in this thesis our CNN architecture to detect tumors in a

real MRI dataset and compare our results to YOLOv5 model.

Keywords: Deep Learning, Deep Neural Network, CNN, Computer Vision, Object detection, R-

CNN, YOLOv5

 Résume

Ce mémoire de maîtrise aborde le problème de la détection d'objets qui est l'un des sujets

les plus célèbres et les plus étudiés dans le domaine de la vision par ordinateur. Il existe deux

méthodes principales pour la détection d'objets à l'aide de réseaux de neurones convolutifs : les

méthodes à deux étapes et à une étape. Nous expliquons deux exemples d'architectures de détection

d'objets R-CNN et YOLOv5 respectivement. Nous proposons dans cette thèse notre architecture

CNN pour détecter les tumeurs dans un jeu de données IRM réel et comparer nos résultats au

modèle YOLOv5.

Mots-clés : Apprentissage profond, Neurones Profonds, Réseau de Neurones profond, CNN,

Détection Objets, R-CNN, YOLOv5, Vision par ordinateur.

 ملخص

وحة الماجستير هذه مشكلة اكتشاف الأشياء التي تعد واحدة من أشهر الموضوعات التي تم بحثها على تتناول أطر

نطاق واسع في مجال رؤية الكمبيوتر. هناك طريقتان رئيسيتان لاكتشاف الأشياء باستخدام الشبكات العصبية التلافيفية: طريقتان

على التوالي. نقترح في هذه YOLOv5و R-CNNالكائنات وطريقة مرحلة واحدة. نفسر مثالين على بنيات اكتشاف

الخاصة بنا لاكتشاف الأورام في مجموعة بيانات التصوير بالرنين المغناطيسي الحقيقية ومقارنة نتائجنا CNNالأطروحة بنية

 . YOLOv5بنموذج

، R-CNNكمبيوتر ، كشف الأشياء ، التعلم العميق ، الشبكة العصبية العميقة ، سي إن إن ، رؤية ال كلمات مفتاحية:

YOLOv5

