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Introduction

The radial basis function (RBFs) is one of the primary tools for interpolating multidimensional
scattered data. The methods ability to easily generalize to several spaces dimension, and pro-
vide spectral accuracy have made it particularly popular in several different type of applications
[17]. Some of the more recent applications of these functions include cartography, neural net-
works, medical imaging, and the numerical solution of partial differential equations. The RBF
interpolation matrix is very ill-conditioned to the average grid spacing h [1].
It was introduced in 1971 by Rolland Hardy [7]. He originally presented the method for the
multiquadric (MQ)radial function. The method emerged from a cartography problem, where a
bivariate interpolant of sparse and scattered data was needed to represent topography and pro-
duce contours. None of the existing interpolation methods (e.g. Fourier polynomial, bivariate
splines) were satisfactory because they were either too smooth or too oscillatory. Furthermore,
the non-singularity of their interpolation matrices was not guaranteed. In fact, Haar’s theorem
states the existence of a set of distinct nodes for which the interpolation matrix associated with
node-independent basis functions is singular in two or higher dimensions [11]. In 1982, Richard
Franke popularized the MQ method [6]. He subjected those methods to through tests, and
found the MQ method overall to be the best one. Franke also conjectured the unconditional
non-singularity of the interpolation matrix associated with the multiquadric radial function,
but it was not until a few years later, in 1986, that Chareles Micchelli [10] was able to prove it.
The main feature of the MQ method is that the interpolant is a linear combination of trans-
lations of basis function which only depends on the Euclidean distance from its center. This
basis function is therefore radially symmetric with respect to its center. The MQ method was
generalized to other "radial functions", such as the thin plate spline [3], the gaussian, the cubic,
etc, and the method was called the "Radial Basis Function" method. In the 1990s the RBF
was once egain brought to the spolight when Ed Kansa introduced a way to use it for solving
parabolic, elliptic, and hyperbolic PDEs[8, 9]. Skala in 2016, described novel approaches based
on RBFs for data interpolation and approximation generally in d-dimensional spaces [13].
The RBFs interpolation involves two stage. The first is fitting, solving a linear system corre-
sponding to the interpolation conditions. The second is evaluation. In this work, we have taken
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the direct approach of numerical expriments. First, we gives some numerical tests of RBFs for
solving some integral equations, the aim here is to give some remarks concerned the ill condi-
tioned problem of the interpolation matrix and if this depend on the numerical accuracy of the
approximations. Secondly, we examine if there is a relation between the shape parameter of
the RBF and the condition number. The results obtained by the authors in [1], concerned the
study of the matrix condition number K(N,α) and its asymptote function kasymp(α) which is
a function only of α and the RBF species, or to such a function multiplied by a power of N .
For some RBFs it is possible to make highly plausible conjectures about the analytical from of
kasymp(α).
The dissertation is organized as follows, chapter one is divided into two parts, in the first, we
introduce the problem of conditioning for a linear system or for problem in general, and we
gives interpolation problem in the second part.
In the second chapter, we will explain the problem of scattered data interpolation by the radial
basis functions.
The last chapter is consacred to: Firstly, we present the problem of interpolation by the RBF
function for solving nonlinear Volterra–Fredholm integral equations, and secondly throwgh some
numerical tests, we examine the condition number of some RBF functions. Finaly, a conclusion
is discussed in the last section of this dissertation.
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Chapter 1

Conditioning of problem and
interpolation

The subject of this chapter is to give some preliminary on the scattered data well conditioned
problem and interpolation.

1.1 Phenomena of condition of problem

The phenomena of condition problem is one of the important problem in numerical analysis.
We can view a problem as a function f : X −→ Y from a normed vector space X of data to a
normed vector space Y of solution. This function f is usually nonlinear, but most of the time
it is at least continuous. In generally, we shall be concerned with the behavior of a problem f

at a particular data point x ∈ X (the behavior may vary greatly from one point to another). A
well-conditioned problem is one with the property that all small perturbations of x lead to only
small changes in f(x). An ill-conditioned problem is one with the property that some small
perturbation of x leads to a large change in f(x).

Remark 1.1 So, we can describe the sensitivity of the solution to changes in the problem data
as follows

• Well-conditioned problem:
small changes in the data produce small changes in the solution.

• Ill-conditioned (badly conditioned) problem:
small changes in the data can produce large changes in the solution.

Example 1.1 Let given the polynomial

p(x) = (x− 1)(x− 2) · · · (x− 10) + δ.x10,

10



where δ is a paramater, we want to study the behavior of the roots of p for two values of δ. We

Figure 1.1: Roots of the polynomial p

can see from figure (1.1) that the problem is ill-conditioned.

1.1.1 Absolute and Relative condition

In this subsection,we give some properties of condition number of problem. Let δx denote a
small perturbation of the variable x, we have

δf = f(x+ δx)− f(x).

Definition 1.1
The absolute condition number κ = κ(x) of f at x is defined as

κ = lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

. (1.1)

The limit of the supremum in the formula (1.1) can be interpreted as a supremum over all small
perturbations δx. Generally, we can write

κ = sup
δx

‖δf‖
‖δx‖

. (1.2)

In the case where f is differentiable and from the definition of the derivative, we have δf ≈
J(x)δx, with equality in the limit ‖δx‖ −→ 0,

κ = ‖J(x)‖. (1.3)

where ‖J(x)‖ represents the norm of the jacobian J(x) induced by the norms on X and Y .

11



Definition 1.2 The relative condition number κx = κ(x) is defined by

κx = lim
δ→0

sup
‖δx‖≤δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
, (1.4)

or, again assuming δx and δf are infinitesimal, we get

κx = sup
δx

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
. (1.5)

If f is differentiable, we can express this quantity in terms of the jacobian as follows

κx = ‖J(x)‖
‖f(x)‖/‖x‖ . (1.6)

Remark 1.2 The problem is well-conditioned if k is "small" (e.g., 1, 10, 102), and ill-conditioned
if k is "large"(e.g., 106, 1016).

Example 1.2 Consider the problem of computing
√
x for x > 0. The jacobian of f : x 7→

√
x

is just the derivative J = f ′ = 1
2
√
x
, hence

κ = ‖J(x)‖
‖f(x)‖/‖x‖ = 1/(2

√
x)√

x/x
= 1

2 .

This problem is well-conditioned.

Example 1.3
Consider the trivial problem of obtaining the scalar x2 from x ∈ C. We have

κ = ‖J(x)‖
‖f(x)‖/‖x‖ = 1/2

(x/2)/x = 1.

This problem is well-conditioned.

Example 1.4
Consider the problem of obtaining the scalar f(x) = x1−x2 from the vector x = (x1, x2)t ∈ C2.
We use the infty -norm on the data space C2. The jacobian of f is

J =
[
∂f

∂x1
,

∂f

∂x2

]
=
[

1, −1
]
,

with ‖J‖∞ = 2, The condition number is given by

κ = ‖J(x)‖∞
‖f(x)‖/‖x‖ = 2

|x1 − x2|/max (|x1|, |x2|)
.
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This quantity is large if |x1 − x2| ≈ 0, so the problem is ill-conditioned when x1 ≈ x2.

1.1.2 Condition number of Matrix

Consider the problem of computing Ax from input x, we are going to determine the problem
of condition number corresponding to perturbations of x but not A. We have

κ = sup
δx

(
‖A(x+ δx)− Ax‖

‖Ax‖

/
‖δx‖
‖x‖

)
= sup

δx

‖Aδx‖
‖δx‖

/
‖Ax‖
‖x‖

, (1.7)

that is,

κ = ‖A‖ ‖x‖
‖Ax‖

. (1.8)

Suppose in the above calculation that A is square and nonsingular. Then, we get

κ ≤ ‖A‖‖A−1‖, (1.9)

or k = α‖A‖‖A−1‖, with

α = ‖x‖
‖Ax‖

/
‖A−1‖.

For some choices of x, we get α = 1 and

κ = ‖A‖‖A−1‖. (1.10)

Theorem 1.1 [14] Let A ∈ Cm×m be nonsingular and consider the equation Ax = b. The
problem of computing b, given x, has the condition number

κ = ‖A‖‖x‖
‖b‖
≤ ‖A‖‖A−1‖, (1.11)

with respect to perturbations of x. The problem of computing x, given b, has condition number

κ = ‖A−1‖ ‖b‖
‖x‖
≤ ‖A‖‖A−1‖, (1.12)

with respect to perturbation of b. If ‖.‖=‖.‖2, then equality holds in (1.11) if x is a multiple of
a right singular vector of A correponding to the minimale singular value σm, and equality holds
in (1.12) if b is a multiple of a left singular vector of A correspending to the maximal singular
value σ1.

13



Definition 1.3 The condition number of a matrix A, denoted by κ(A) is defined as follows

κ = ‖A‖‖A−1‖,

if κ(A) is small, A is said to be well-conditioned, if κ(A) is large, A is ill-conditioned. If A is
singular, it is customary to write κ(A) =∞.

Note that if ‖.‖ = ‖.‖2, then ‖A‖ = σ1 and ‖A−1‖ = 1/σm. Thus

κ(A) = σ1

σm
. (1.13)

For a rectangular matrix A ∈ Cm×n of full rank, m ≥ n. The condition number is defined in
terms of the pseudo-inverse( is a generalization of the matrix inverse when it is not inversible):
κ(A) = ‖A‖‖A+‖.

1.1.3 Condition number of a system of equations

Let us hold b fixed and consider the behavior of the problem A 7→ x = A−1b, when A is
perturbed by infinitesimal δA. Then x must change by infinitesimal δx. Let

(A+ δA)(x+ δx) = b.

Using the equality Ax = b and dropping the doubly infinitesimal term (δA)(δx). We obtain
(δA)x + A(δx) = 0, that is δx = −A−1(δA)x. This equation implies ‖δx‖ ≤ ‖A−1‖‖δA‖‖x‖.
or equivalently,

‖δx‖
‖x‖

/
‖δA‖
‖A‖

≤ ‖A−1‖‖A‖ = κ(A). (1.14)

Equality in this bound will hold whenever δA is such that

‖A−1(δA)x‖ = ‖A−1‖‖δA‖‖x‖, (1.15)

and it can be shown by the use of dual norms that for any A and b and norm ‖.‖, such
perturbation δA exist. This leads us to the following theorem.

Theorem 1.2 [14] Let b be fixed and consider the problem of computing x = A−1b, where A is
square and nonsingular. The condition number of this problem with respect to perturbations in
A is

κ = ‖A‖‖A−1‖ = κ(A).

14



Remark 1.3 Theorem 1.1 and 1.2 are fundamental in numerical linear algebra, they determine
how accurately one can slove systems of equations.

Example 1.5
Le consider Ax = b with

A =

1.01 0.99
0.99 1.01

 , b =

2
2

,
where the exact solution is given by x = [1, 1]T .

• Let’s assume we computed a solution x̃ = [1.01, 1.01]T . Then the error

e = x− x̃ =

−0.01
−0.01

 ,
is small, and the residual

r = b− Ax =

2
2

−
2.02

2.02

 =

−0.02
−0.02

 ,
is also small.

• Now, let’s assume that we computed a solution x̃ = [2, 0]T . This “solutions” is obviously
not a good one. Its error is

e =

−1
1

 ,
which is quite large. However, the residual is

r =

2
2

−
2.02

1.98

 =

−0.02
0.02

 ,
which is still small. This is not good. This shows that the residual is not a reliable
indicator of the accuracy of the solution.

1.1.4 Effect of Changes in A on the relative error

In this subsection, let consider the linear system Ax = b. But now A may be perturbed to
Ã = A + δA. We suppose that x the exact solution of Ax = b, and x̃ the exact solution of
Ãx̃ = b, i.e., x̃ = x+ δx.

15



This implies

Ãx̃ = b⇐⇒ (A+ δA)(x+ δx) = b

⇐⇒ Ax− b︸ ︷︷ ︸
=0

+(δA)x+ A(δx) + (δA)(δx) = 0.

If we neglect the term with the product of the deltas then we get

(δA)x+ A(δx) = 0 or (δx) = −A−1(δA)x.

Taking norms this yields

‖δx‖ ≤ ‖A−1‖‖δA‖‖x‖ ⇐⇒ ‖δx‖ ≤ ‖A−1‖‖A‖‖δA‖
‖A‖

‖x‖,

or

‖x− x̃‖
‖x‖

≤ κ(A)‖A− Ã‖
‖A‖

.

The previous inequality can be interpreted as follows: For ill-conditioned matrices a small
perturbation of the entries can lead to large changes in the solution of the linear system. This
is a problem of an instability.

Example 1.6 We consider

A =

1.01 0.99
0.99 1.01

 with δA =

−0.01 0.01
0.01 −0.01

 .
Now

Ã = A+ δA =

1 1
1 1

 ,
which is even singular, so that Ãx̃ = b, with b = [2,−2]T has no solution at all.

1.1.5 Stability and Accuracy of a problem

The terms accuracy and precision are often confused or used interchangeably, but it is worth
making a distinction between them. Accuracy refers to the absolute or relative error of an
approximate quantity. Precision is the accuracy with which the basic arithmetic operations
are performed. The distinction between forward and backward error, forward error is the most
direct definition of error as the difference between the approximated and actual solution, but
it is not always computable. Contrastingly, backward error is a calculable proxy for error

16



correlated with forward error.

Definition 1.4 (Backward error). The backward error of an approximate solution to a numer-
ical problem is the amount by which the problem statement would have to change to make the
approximate solution exact.

Example 1.7 Suppose we write a function for finding square roots of positive numbers that
outputs

√
2 ≈ 1.4. The forward error is |1.4−

√
2| ≈ 0.0142. The backward error is |(1.4)2−2| =

0.04.

Remark 1.4 • The condition number of a problem can be seen as the ratio of how much
its solution changes to the amount its statement changes under small perturbations. Al-
ternatively, it is the ratio of forward to backward error for small changes in the problem
statement.

• So, a problem is insensitive or well-conditioned when small amounts of backward error im-
ply small amounts of forward error. In other words, a small perturbation to the statement
of a well-conditioned problem yields only a small perturbation of the true solution.

Definition 1.5 An algorithm f̃ for a problem f is stable if (for all x)

‖f̃(x)− f(x̃)‖
‖f(x̃)‖ = O(εmachine),

for some x̃ with
‖x̃− x‖
‖x‖

= O(εmachine).

Definition 1.6 An algorithm f̃ for a problem f is backward stable if (for all x)

f̃(x) = f(x̃) for some x̃ with ‖x̃− x‖
‖x‖

= O(εmachine).

Consider an algorithm f̃ for a problem f . A computation f̃(x) has absolute error ‖f̃(x)−f(x)‖
and relative error

‖f̃(x)− f(x)‖
‖f(x)‖ .

The algorithm is accurate if (for all x)

‖f̃(x)− f(x)‖
‖f(x)‖ = O(εmachine).
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1.2 Problem of interpolation

1.2.1 Polynomial interpolation

A fundamental mathematical technique is to approximate something complicated by some-
thing simple, or at least less complicated. This is the core idea of approximation with Taylor
polynomials. The subject of using Taylor polynomial is that it approximates a given function
well at a single point.

Definition 1.7 The Taylor polynomial of f of degree n at a is noted by Tn(f ; a) and satisfies
the conditions

Tn(f ; a)(i)(a) = f (i)(a), for i = 0, 1, · · · , n. (1.16)

The conditions in Taylor polynomial mean that Tn(f, a) and f have the same value and first n
derivatives at a. This makes it quite easy to derive an explicit formula for the Taylor polynomial.

Theorem 1.3 The Taylor polynomial of f of degree n at a is unique and can be written as

Tn(f ; a)(x) = f(a) + (x− a)f ′(a) + (x− a)2

2 f ′′(a) + · · ·+ (x− a)(n)

n! f (n)(a), (1.17)

Derivation of the Taylor formula

We are going to prove theorem 1.3 in the quadratic case. Let

p2(x) = c0 + c1x+ c2x
2. (1.18)

that satisfies the conditions

p2(a) = f(a), p′2(a) = f ′(a), p′′2(a) = f ′′(a). (1.19)

The derivatives of p2 are given by p′2(x) = c1 + 2c2x and p′′2(x) = 2c2. Then we obtain

p2(a) = c0 + c1a+ c2a
2 = f(a)

p′2(a) = c1 + 2c2a = f ′(a) (1.20)

p′′2(a) = 2c2 = f ′′(a).

18



This system is easy to solve. We have

c2 = f ′′(a)/2

c1 = f ′(a)− 2c2a = f ′(a)− f”(a)a

c0 = f(a)− c1a− c2a
2 = f(a)− (f ′(a)− f ′′(a)a)a− f ′′(a)a2/2,

and then

p2(x) = f(a)− (f ′(a)− f ′′(a)a)a− f ′′(a)a2/2 + (f ′(a)− f ′′(a)a)x+ f ′′(a)x2/2

= f(a) + (x− a)f ′(a) + (x2 − 2ax+ a2)f ′′(a)/2 = f(a) + (x− a)f ′(a) + (x− a)2f ′′(a)/2.

Remark 1.5 In the derivation of the Taylor polynomial of degree n, the manipulations can be
simplified if the polynomial is written as follows

pn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n.

Theorem 1.4 [5] Suppose that f is a function whose derivatives up to order n + 1 exist and
are continuous. Then the remainder in the Taylor expansion

Rn(f ; a)(x) = f(x)− Tn(f ; a)(x)

is given by
Rn(f ; a)(x) = 1

n!

∫ x

a
fn+1(t)(x− t)ndt. (1.21)

The remainder may also be written as

Rn(f ; a)(x) = (x− a)n+1

(n+ 1)! fn+1(ξ), (1.22)

where ξ is a number in the interval (a, x) (the interval (x, a) if x < a).

Example 1.8 We want to determine a polynomial approximation of the function sin x on the
interval [−1, 1] at point a = 0, with error smaller than 10−5. What we want to find is the
smallest n such that

| xn+1

(n+ 1)!f
(n+1)(ξ)| ≤ 10−5,

where the function f(x) = sin x in our case and ξ is a number in the interval (0, x). We want
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Figure 1.2: The Taylor polynomials of sin x (around a = 0) for degrees 1 to 17.

that the absolute value of the error should be smaller than 10−5. We have

|f (n+1)(ξ)| ≤ 1.

and then
| xn+1

(n+ 1)!f
(n+1)(ξ)| ≤ |x|n+1

(n+ 1)! ≤ 10−5,

Since x ∈ [−1, 1] we know that |x| ≤ 1 so this last inequality will be satisfied if

1
(n+ 1)! ≤ 10−5.

We find an n that satisfies this last inequality we see that.
When

n = 8, we have 1/8! ≈ 2.5× 10−5.

n = 9, we have 1/9! ≈ 2.8× 10−6.

This means that the smallest value of n is n = 8. Then the Taylor polynomial is given by

p8(x) = T8(sin x; 0) = x− x3

3 + x5

120 −
x7

5040 ,

since the term of degree 8 is zero. If we evaluate this we find p8(1) ≈ 0.841468 with error
roughly 2.73× 10−6 which is close to the estimate 1/9! which we computed above.
Figure (1.2) shows the Taylor polynomials of sin x about a = 0 of degree up to 17. In particular
we see that for degree 7, the approximation is indistinguishable from the original in the plot, at
least up to x = 2.
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Corollary 1.1
Any function f whose first n + 1 derivatives are continuous at x = a can be expanded in a
Taylor polynomial of degree n at x = a with a corresponding error term,

f(x) = f(a) + (x− a)f ′(a) + · · ·+ (x− a)n
n! fn(a) + (x− a)n+1

(n+ 1)! fn+1(ξx), (1.23)

where ξx is a number in the interval (a, x) (the interval (x, a) if x < a) that depends on x. This
is called a Taylor expansion of f .

Figure 1.3: Taylor polynomial of degree 4 about the point a = 1 for the function f(x) = exp(x).

Example 1.9 Figure (1.3) shows a plot of the Taylor polynomial of degree 4 for the exponential
functionf(x) = exp(x), expanded about the point a = 1. For this function it is easy to see that
the Taylor polynomials will converge to exp(x) on any interval as the degree tends to infinity.

1.2.2 Interpolation by Newton polynomial

A Taylor polynomial based at a point x = a usually provides a very good approximation near
a, but as we move away from this point, the error will increase. The aim here is to obtain a
good approximation to a function f across a whole interval, This is done by interpolation. We
approximate a function f by a polynomial p by forcing p to have the same function values as f
at a number of points. Suppose that we have n+ 1 distinct points (xi)ni=0 scattered throughout
the interval [a, b] where scattered f is defined. Since a polynomial of degree n has n + 1 free
coefficients it is natural to try and find a polynomial of degree n with the same values as f at
these points.
Let f be a given function defined on an interval [a, b], and let (xi)ni=0 be n + 1 distinct points
in [a, b]. The polynomial interpolation problem is to find a polynomial pn = P (f ;x0, · · · , xn)
of degree n that matches f at the given points,

pn(xi) = f(xi), for i = 0, 1, · · · , n. (1.24)
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The points (xi)ni=0 are called interpolation points, and the polynomial pn = P (f ;x0, · · · , xn) is
called a polynomial interpolant. One of the most known of polynomial interpolation is Newton
interpolation polynomial.

Newton form of the interpolating polynomial

Definition 1.8 Let (xi)ni=0 be n + 1 distinct real numbers. The Newton form of a polynomial
of degree n is given by

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1). (1.25)

Example 1.10 (Newton form for n = 0) Suppose we have only one interpolation point x0.
Then the Newton form is just p0(x) = c0. To interpolate f at x0, we have c0 = f(x0), and then
p0(x) = f(x0).

Example 1.11 (Newton form for n = 1) With two points x0 and x1 the Newton form is
p1(x) = c0 + c1(x− x0). Interpolation at x0 means that

f(x0) = p1(x0) = c0

and interpolate at x1, we get

f(x1) = p1(x1) = f(x0) + c1(x1 − x0),

which means that

c0 = f(x0), c1 = f(x1)− f(x0)
x1 − x0

. (1.26)

We note that c0 remains the same as in the case n = 0.

In general, we have

f(x0) = c0,

f(x1) = c0 + c1(x1 − x0),

f(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1),

f(x3) = c0 + c1(x3 − x0) + c2(x3 − x0)(x3 − x1) + c3(x3 − x0)(x3 − x1)(x3 − x2),
...

f(xk) = c0 + c1(xk − x0) + · · ·+ ck−1(xk − x0) · · · (xk − xk−2) + ck(xk − x0) · · · (xk − xk−1).
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This is an example of a triangular system, each coefficient ck only depends on the data
(x0, f(x0), (x1, f(x1)), · · · , (xk, f(xk)), and we have the folowing theorem.

Theorem 1.5 Let f be a given function and x0, · · · , xn are distinct interpolation points. There
is a unique polynomial of degree n which interpolates f at these points. If the interpolating
polynomial is expressed in Newton form,

pn(x) = c0 + c1(x− x0) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1), (1.27)

then ck depends only on (x0, f(x0)), (x1, f(x1)), · · · , (xk, f(xk)) which is indicated by the nota-
tion

ck = f [x0, · · · , xk], (1.28)

for k = 0, 1, · · · , n. The interpolating polynomials pn and pn−1 are related by

pn(x) = pn−1(x) + f [x0, · · · , xn](x− x0) · · · (x− xn−1).

Using (1.28) for the coefficients, the interpolation formula (1.27) becomes

pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, · · · , xn](x− x0) · · · (x− xn−1). (1.29)

Figure 1.4: The function f(x) =
√
x (solid) and its cubic interpolant at the four points 0, 1, 2,

and 3 (dashed).

Example 1.12 Suppose we have the four points xi = i, for i = 0, · · · , 3, and we want to
interpolate the function

√
x at these points. In this case the Newton form is given by

p3(x) = c0 + c1x+ c2x(x− 1) + c3x(x− 1)(x− 2).
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The interpolation conditions are as follows

0 = c0,

1 = c0 + c1,
√

2 = c0 + 2c1 + 2c2, (1.30)
√

3 = c0 + 3c1 + 6c2 + 6c3.

We solve the system (1.30), we obtain

c0 = 0, c1 = 1, c2 = −(1−
√

2/2), c3 = (3 +
√

3− 3
√

2)/6.

Figure (1.4) shows a plot of this interpolant.

Theorem 1.6 [2] Let ck = f [x0, · · · , xk], denote the leading coefficient of the interpolating
polynomial P (f, x0, · · · , xk). This is called a kth order divided difference of f and satisfies the
relations f [x0] = f(x0), and

f [x0, · · · , xk] = f [x1, · · · , xk]− f [x0, · · · , xk−1]
xk − x0

, (1.31)

for k > 0.

The divided differences can be given as follows

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
...

. (1.32)

Example 1.13 Suppose, we have the data

x 0 1 2 3

f(x) 0 1 1 2

Then
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x f(x)

0 0
1 1 1
2 1 0 -1/2
3 2 1 1/2 1/3

This means that the interpolating polynomial is

p3(x) = 0 + 1(x− 0)− 1
2(x− 0)(x− 1) + 1

3(x− 0)(x− 1)(x− 2)

= x− 1
2x(x− 1) + 1

3x(x− 1)(x− 2).

A plot of this polynomial with the interpolation points is shown in figure (1.5) .

Figure 1.5: The data points and the interpolant.

Theorem 1.7 [2] Let f be a function whose first k derivatives are continuous in the smallest
interval [a, b] that contains all the numbers x0, · · · , xk . Then

f [x0, · · · , xk] = f (k)(ξ)
k! , (1.33)

where ξ ∈ (a, b).

1.2.3 Interpolation error and Runge phenomena

Theorem 1.8 Suppose f is interpolated by a polynomial of degree n at n + 1 distinct points
x0, · · · , xn. Let [a, b] be the smallest interval that contains all the interpolation points as well
as the number x, and suppose that the function f has continuous derivatives up to order n+ 1
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in [a, b]. Then the error e(x) = f(x)− pn(x) is given by

e(x) = f [x0, · · · , xn, x](x− x0) · · · (x− xn) = f (n+1)(ξx)
(n+ 1)! (x− x0) · · · (x− xn), (1.34)

where ξx is a number in the interval (a, b) that depends on x.

Proof 1 First, we need to prove the first equality. For this we add the (arbitrary) number x
as an interpolation point and consider interpolation with a polynomial of degree n + 1 at the
points x0, · · · , xn, x. We have

pn+1(t) = pn(t) + f [x0, · · · , xn, x](t− x0) · · · (t− xn).

Since pn+1 interpolates f at t = x we have pn+1(x) = f(x) so

f(x) = pn(x) + f [x0, · · · , xn, x](x− x0) · · · (x− xn),

which proves the first relation in (1.34) and the prouve of the second inequality is given by
theorem 1.7.

Runge’s phenomenon

Runge’s phenomenon is a problem of oscillation at the edges of an interval that occurs when
using polynomial interpolation with polynomials of high degree over a set of equispaced inter-
polation points. It was discovered by Carl David Tolmé Runge when exploring the behavior
of errors when using polynomial interpolation to approximate certain functions. The discovery
was important because it shows that going to higher degrees does not always improve accuracy.
The Weierstrass approximation theorem confirm that every continuous function f(x) defined on
an interval [a, b] can be uniformly approximated by a polynomial function Pn(x) of sufficiently
large degree ≤ n, i.e.,

lim
n→∞

( max
a≤x≤b

|f(x)− Pn(x)|) = 0.

Runge’s phenomenon demonstrates, however, that interpolation can easily result in divergent
approximations.
The Runge phenomena is as follows, let consider the function:

f(x) = 1
1 + 25x2 .
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Figure 1.6: The red curve is the Runge function. The blue curve is a 5th-order interpolating
polynomial. The green curve is a 9th-order interpolating polynomial.

Runge show that if this function is interpolated at equidistant points xi between –1 and 1 such
that:

xi = 2i
n
− 1, i ∈ {0, 1, · · · , n}.

with a polynomial Pn(x) of degree ≤ n, the resulting interpolation oscillates toward the end
of the interval which is presented in figure (1.6). It can be proven that the interpolation error
increases when the degree of the polynomial is increased which signify that

lim
n→∞

( max
−1≤x≤1

|f(x)− Pn(x)|) = +∞.

The error between the generating function and the interpolating polynomial of order n is given
by

max
−1≤x≤1

|f(x)− Pn(x)| ≤ max
−1≤x≤1

|fn+1(x)|
n+ 1! max

−1≤x≤1

n∏
i=0
|x− xi|

For the case of the Runge function, interpolated at equidistant points, each of the two multipliers
in the upper bound for the approximation error grows to infinity with n.

Mitigations to the problem

• The oscillation can be minimized by using nodes that are distributed more densely towards
the edges of the interval, specifically, with asymptotic density (on the interval [–1,1]) given
by 1/

√
1− x2. A standard example of such a set of nodes is Chebyshev nodes, for which

the maximum error in approximating the Runge function is guaranted to diminish with
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increasing polynomial order. The phenomenon demonstrates that high degree polynomials
are generally unsuitable for interpolation with equidistant nodes.

• The problem can be avoided by using spline curves which are "piecewise polynomials".
When trying to decrease the interpolation error one can increase the number of polynomial
pieces which are used to construct the spline instead of increasing the degree of the
polynomials used.

• We can also use "fitting a polynomial" technique of lower degree using the method of least
squares. Generally, when using m equidistant points, if N < 2

√
m then least squares

approximation PN(x) is well-conditioned.
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Chapter 2

Interpolation with radial basis
functions

2.1 The Scattered Data Interpolation

In practical applications we have to face the problem of reconstructing an unknown function f
from a set (usually small) of data. These data consist of two sets: the data sites X = x1, · · · , xN
and the data values fj = f(xj), j = 1, . . . , N. The reconstruction has to approximate the data
values at the data sites. In practice we are looking for a function s that either interpolates
the data, i.e. it satisfes the conditions s(xj) = fj; 1 ≤ j ≤ N or approximate the data, i.e.
s(xj) ≈ fj.

In many cases the data are scattered, that is they have no special structure. Moreover in
several applications the data sites are considered in high dimension. Hence, for a unifying
approach, methods have been developed in the last decades with the aim to meet all these
(new) situations. We suppose that the data sites are ordered as follows:

X : a < x1 < x2 < · · · < xN < b, (2.1)

with corresponding data values f1, . . . fN to be interpolated at the data set X. The problem
is to find s : [a; b] −→ R with the property s(xj) = fj for all j = 1, . . . , N. In the univariate
setting, a simple solution of the above problem consists in taking s as polynomial p of degree
at most N − 1, but solution is not working in higher dimensions. The main reasons why we are
interested on such a problem in our setting are:

• Scattered data fitting is a fundamental problem in approximation theory and data mod-
eling in general.

• Mathematical challenge: we want a well-posed problem formulation.
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• This will naturally lead to distance matrices

• Later we generalize to radial basis functions or positive defnite kernels

In the univariate setting it is well known that one can interpolate to arbitrary data at N distinct
data sites using a polynomial of degree N − 1. For the multivariate setting, however, there is
the following negative result (see [Mairhuber (1956); Curtis (1959)]).

Definition 2.1 Haar space Suppose that Ω ⊆ Rd contains at least N points. Let V ⊆ C(Ω)
can be an N-dimensional linear space. Then V is called a Haar space of dimension N on Ω if for
arbitrary distinct points x1, · · · , xN and arbitrary f1, · · · , fN there exists exactly one function
s ∈ V with s(xi) = fi, 1 ≤ i ≤ N .

Theorem 2.1 Under the conditions of definition 2.1 the following statements are equiva lent.

1. V is an N-dimensional Haar space.

2. Every u ∈ V \ {0} has at most N − 1 zeros.

3. For any distinct points x1, · · · , xN ∈ Ω and any basis u1, · · · , uN of V we have that

det(uj(xi)) 6= 0.

Proof 2 Suppose that V is an N-dimensional Haar space and u ∈ V \ {0} has Nzeros, say
x1, · · · , xN . In this case u and the zero function both interpolate zero on these N points. From
the uniqueness we can conclude that u ≡ 0 in contrast with our assumption.

Next, let us assume that the second property is satisfied. If detA = 0 with A = (uj(xi)) then
there exists a vector α ∈ RN \ {0} with Aα = 0, i.e.

N∑
j=1

αjuj(xi) = 0, for 1 ≤ i ≤ N.

This means that the function u = ∑
αjuj, has N zeros and must therefore be identically zeros.

This is impossible since α 6= 0.
Finally, if the third property is satisfied then we can make u = ∑

αjuj, for the interpolant.
Obviously, the interpolation conditions become

N∑
j=1

αjuj(xi) = fi, 1 ≤ i ≤ N.

Now the coefficient vector, and hence u, is uniquely determined because A = uj(xi) is nonsin-
gular.
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Theorem 2.2 Mairhuber-Curtis
Suppose that Ω ⊆ Rd, d ≥ 2, contains an interior point. Then there exists no Haar space on Ω
of dimension N ≥ 2.

Proof 3 Suppose that U = span{u1, · · · , uN} is a Haar space on Ω. As Ω contains an inte-
rior point there exists a ball B(x0, δ) ⊆ Ω with radius δ > 0 and we can fix pairwise distinct
x3, · · · , xN ∈ B(x0, δ). Next we choose two continuous curves x1(t), x2(t), t ∈ [0, 1] such that
x1(0) = x2(1), x1(1) = x2(0) and such that the curves neither have any other points of inter-
section nor have any common points with {x3, · · · , xN}. This is possible since d ≥ 2. Then on
the one hand, since U is assumed to be a Haar space on Ω, the function

D(t) := det((uj(xk))1≤j,k≤N),

is continuous and does not change sign. On the other hand D(1) = −D(0) because only the
first two rows of the involved matrices are exchanged. Thus D must change signs, which is a
contradiction.

Note that existence of a Haar space guarantees invertibility of the interpolation matrix A, i.e.,
existence and uniqueness of an interpolant. As mentioned above, univariate polynomials of
degree N − 1 form an N-dimensional Haar space for data given at x1, · · · , xN .

Mairhuber-Curtis theorem tells us that if we want to have a well-posed multivariate scat-
tered data interpolation problem we can no longer fix in advance the set of basis functions for
arbitrary scattered data. For example, it is not possible to perform unique interpolation with
(multivariate) polynomials of degree N to data given at arbitrary locations in R2. Instead, the
basis should depend on the data locations.
Indeed it is a well-established fact that a large data set is better dealt with splines than by
polynomials. The accuracy of the interpolation process using splines is not on the polynomial
degree but on the spacing of the data sites. The set of cubic splines corresponding to the
subdivision (2.1) is the space

S3(X) = {s ∈ C2[a, b] : s[xi,xi+1] ∈ P3 ∈ (R), 0 ≤ i ≤ N}, (2.2)

with a = x0 and xN+1 = b. The space S3(x) has dimension N + 4 and hence the interpolation
condition (s(xi) = fi, 1 ≤ i ≤ N )not sufficient to guarantee a unique interpolant. To enforce
uniqueness, in the case of natural splines, i.e. the set

N3(X) = {s ∈ S3(x) : s|[a,x1], s|[xN ,b] ∈ P1(R)}, (2.3)
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that consists of all cubic splines that are linear polynomials on the outer intervals [a, x] and
[xN , b]. It come easy to see that a cubic spline s is a natural spline if and only if it satisfies
s′′(x1) = s(3)(x1) = 0 and s′′(xN) = s(3)(xN) = 0.With this choice we have imposed 4 additional
conditions to the space, so it is natural to assume that the dim(N3(X)) = N. So, the initial
interpolation problem has a unique solution in N3(X). This approach has allowed to develop
a beautiful theory where all space dimensions can be handled in the same way. The resulting
approximation spaces no longer consist of piecewise polynomials, so they can not be called
splines. The new functions are known Radial Basis Functions (RBF).

2.1.1 Cubic splines to RBF

To get a good idea, let the set S3(X) has the basis of truncated powers (x − xj)3
+, 1 ≤ j ≤ N

plus an arbitrary basis for P3(R). Hence every s ∈ N3(X) can be represented in the form

s(x) =
N∑
j=1

aj(x− xj)3
+ +

3∑
j=0

bjx
j, x ∈ [a, b]. (2.4)

Because s is a natural spline we have the additional information that s is linear on the two
outer intervals. That is on [a, x1] the spline is simply s(x) = b0 + b1x (since b2 = b3 = 0).
Thus (2.4) becomes

s(x) =
N∑
j=1

aj(x− xj)3
+ + b0 + b1x, x ∈ [a, x1] (2.5)

To derive the representation of s in [xN ; b] we have simply to remove all subscripts + on the
functions (x− xj)3

+ in (2.5). Expanding these cubics and rearranging the sums we get

s(x) =
3∑

k=0

3
k

 (−1)3−k

 N∑
j=1

ajx
3−k
j

xk + b0 + b1x, x ∈ [xN , b]. (2.6)

Thus, for s to be a natural spline, the coefficients of s have to satisfy

N∑
j=1

aj =
N∑
j=1

ajxj = 0. (2.7)
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This is a first characterization of natural cubic splines.
One more step. Using the identity x3

+ = (|x|3+x3)
2 , and the relation (2.4), get

s(x) =
N∑
j=1

aj
2 |x− xj|

3 +
N∑
j=1

aj
2 (x− xj)3 + b0 + b1x

=
N∑
j=1

aj
2 |x− xj|

3 +
3∑

k=0

3
k

 (−1)3−k

 N∑
j=1

ajx
3−k
j )xk

+ b0 + b1x

=
N∑
j=1

âj|x− xj|3 + b̂0 + b̂1x,

where âj = aj/2, 1 ≤ j ≤ N, b̂0 = b0 −
1
2
∑N
j=1 ajx

3
j and b̂1 = b1 + 3

2
∑N
j=1 ajx

2
j .

Proposition 2.1 Every natural spline s has the representation

s(x) =
N∑
j=1

ajφ(|x− xj|) + p(x), x ∈ R, (2.8)

where φ(r) = r3, r ≥ 0 and p ∈ P1(R). On the contrary, for every set X = {x1, . . . , xN} of
pairwise distinct points and for every f ∈ R there exists a function s of the form (2.4), which
interpolates the data, i.e. s(xj) = f(xj), 1 ≤ j ≤ N .

The generalization to Rd is straightforward where the name "radial" becomes even more evident.
In fact

s(x) =
N∑
j=1

ajφ(‖x− xj‖2) + p(x), x ∈ Rd, (2.9)

where φ : [0;∞) −→ R is a univariate fixed function and p ∈ Pm−1(Rd) is a low degree
polynomial. The additional conditions on the coeffcients become

N∑
j=1

ajq(xj) = 0,∀q ∈ Pm−1(Rd). (2.10)

In many cases, we can avoid the condition (2.10), in these cases the interpolation problem has
solution if

Aφ,X := (φ‖xi − xj‖2)1≤i,j≤N ,

is invertible. We can ask the question: Does there exist a function φ : [0;∞) −→ R such that
for all d;N ∈ N and all pairwise distrinct x1, · · · , xn ∈ Rd, the matrix Aφ,X is nonsingular?.
The answer is affirmative. Examples of functions that allow to build matrices nonsingular
are: the gaussians φ(r) = e−αr

2
, α > 0, the inverse multiquadric φ(r) = (c2 + r2)−1/2 and the
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multiquadric φ(r) = (c2 + r2)1/2; c > 0. In the two first cases it is even true that the matrix
Aφ,X is always positive defnite (and so invertible).

Definition 2.2 A function φ : Rd −→ R is called radial provided there exists a univariate
function Φ : [0,∞) −→ R such that

φ(x) = Φ(r),

where r = ‖x‖, and ‖.‖is some norm on Rd usually the Euclidean norm. Some radial basis
functions are given in table (2.1)and figures (2.1)-(2.2).

φ(r) Name Abbreviation Polynomial part√
1 + ε2r2 Multiquadrics MQ None

(1 + ε2r2)m/2 Generalized MQ GMQ Degree (m− 2)
1/
√
ε2r2 + 1 Inverse multiquadrics IMQ None

(ε2r2 + 1)−m/2 Generalized IMQ GIMQ None
1/(1 + ε2r2) Inverse quadratic IQ None
exp(−ε2r2) Gaussians GA None
sech(εr) Sech SH None
r2 log(r) Thin plate splines TPS2 Linear
r4 log(r) Thin plate splines TPS4 Quadratic
r2m log(r) Thin plate splines TPS Degree m

r3 Cubic MN3 Linear
r5 Quintic MN5 Quadratic

r2m+1 Monomial MN Degree m

Table 2.1: Radial basis functions: definitions and polynomial augmentation.

Figure 2.1: Gaussian RBF (left ), Multiquadric (right), Inverse multiquadric (left), Quadric
(right) for the center x=1/2.
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Figure 2.2: Gaussian RBF (left ), Multiquadric (right), Inverse multiquadric (left), Quadric
(right) for the center (1/4,1/2).

2.2 Interpolation by RBF

The theory of multivariable interpolation in high-dimensional space has a long history [15, 4].

Definition 2.3
Given a set of n distinct data points {xj}nj=1 and correspending data values {fj}nj=1, the radial
basis function interpolant is given by

s(x) =
n∑
j=1

λjφ(‖x− xj‖), (2.11)

where φ(r), r ≥ 0, is some radial functions. The expension coefficients λj are determined from
the interpolation conditions

s(xj) = fj, j = 1, · · · , n, (2.12)

which leads to the following symmetric linear system:

[
A

] [
λ

]
=
[
f

]
,

where the entries of A are given by aj,k = φ(‖xj − xk‖).

2.2.1 Multivariate Interpolation and Positive Definiteness

The simplest case of reconstruction of a d-variate unknown function f from data occurs when
only a finite number of data in the form of values f(x1), . . . , f(xm) at arbitrary locations
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x1, · · · , xm in Rd forming a set X := {x1, · · · , xm} are known. To calculate a trial function f
which reproduces the data f(x1), . . . , f(xm) well, we have to solve the m× n linear system

n∑
k=1

αkφ(‖xi − yk‖2) ≈ f(xi), 1 ≤ i ≤ m, (2.13)

for the n coefficients α1, · · · , αn. The matrice with entries φ(‖xi−yk‖2), is called "kernel matrices
in machine learning". We can take m ≥ n or the centers yk of trial functions are chosen to be
identical to the data locations xj for 1 ≤ j ≤ m = n. By enforcing the exact interpolation
conditions

f(xj) =
n∑
k=1

αjφ(‖xj − xk‖2), 1 ≤ j ≤ m = n. (2.14)

This is a system of m linear equations with unknowns α1, . . . , αn with a symmetric coefficients
matrix

AX := (φ‖xj − xk‖2)1≤j≤m=n. (2.15)

In general, solvability of such a system is a serious problem.

Definition 2.4 A radial basis function φ on [0;∞) is "positive definite" on Rd, if for all choices
of sets {X := x1, · · · , xm} of finitely many points x1, · · · , xm ∈ Rd and arbitrary m the sym-
metric m× n symmetric matrices AX of (2.15) are positive definite.

2.2.2 Piecewise polynomial functions with local support

A compactly supported radial basis function are introduced first by Wu [18] and after by
Wendland [15]. Several function spaces used for approximations possess locally supported basis
functions. A local support of the basis function is only one step on the way to an efficient
numerical approximation scheme. So, we are interested to functions of the form

φ(r) =

 p(r) 0 ≤ r ≤ 1
0 r > 1,

(2.16)

where p denotes a univariate polynomial. Of course, these functions are extended to the whole
real line, again by even extension. We can restrict ourselves to functions with support in [0, 1] or
[−1, 1], respectively. Other intervals can be obtained by scaling, because this does not change
a function from being positive definite. The d-variate Fourier transform of φ(./δ), δ > 0, is
δd(Fdφ)(δ.), which is nonnegative if and only if the Fourier transform of φ is nonnegative. The
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function

φl(r) = (1− r)l+, (2.17)

is positive definite on Rd provided that [l ≥ [d/2] + 1].
These functions, when seen as even functions, are only continuous, even for large l. Since

the basis function determines the smoothness of the approximant, it is necessary to have
smoother functions of the form (2.16) as well. Numerical considerations, however, ask for
a polynomial of the lowest possible degree. Hence it is quite natural to look for a function of
the form (2.16) with a polynomial of minimal degree, if its smoothness and space dimension
are prescribed. Some compactly supported radial basis functions are summarized in table (2.2)

Theorem 2.3 [16] The functions φd,k are positive definite on Rd and are of the form

φd,k(r) =

 pd,k(r) 0 ≤ r ≤ 1,
0 r > 1,

with a univariate polynomial pd,k of degree [d/2] + 3k + 1. They possess continuous derivatives
up to order 2k. They are of minimal degree for given space dimension d and smoothness 2k
and are up to a constant factor uniquely determined by this setting.

Space dimension Function Smoothness
φ1,0(r) = (1− r)+ C0

d = 1 φ1,1(r) = (1− r)3
+(3r + 1) C2

φ1,2(r) = (1− r)5
+(8r2 + 5r + 1) C4

φ3,0(r) = (1− r)2
+ C0

φ3,1(r) = (1− r)4
+(4r + 1) C2

d ≤ 3 φ3,2(r) = (1− r)6
+(35r2 + 18r + 3) C4

φ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1) C6

φ5,0(r) = (1− r)3
+ C0

d ≤ 5 φ5,1(r) = (1− r)5
+(5r + 1) C2

φ5,2(r) = (1− r)7
+(16r2 + 7r + 1) C4

Table 2.2: Compactly supported functions of minimal degree

2.2.3 Error estimate for RBFs

Here, we want to represent the error estimate of RBFs interpolation in terms of the fill distance
parameter. All radial basis and strictly positive-definite functions give rise to reproducing
kernels with respect to some Hilbert space which are named native Hilbert spaces.
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Definition 2.5 Suppose φ ∈ C(Rd)∩L1(Rd) is a real-valued strictly positive definite function.
Then the real native Hilbert space respect to reproducing kernel φ(.− .) is

Nφ(Rd) =

f ∈ C(Rd ∩ L2(Rd) : f̂√
φ̂
∈ L2(Rd)

 . (2.18)

with inner product

〈f, g〉Nφ(Rd) = 1√
2π

〈
f̂√
φ̂
,
ĝ√
φ̂

〉
L2(Rd)

= 1√
2π

∫
Rd

f̂(w)ĝ(w)√
φ̂

dw. (2.19)

where f̂ denotes Fourier transform of f .

We concluded that the native spaces can be regarded as an extension of the standard Sobolev
spaces. In other words, if the Fourier transform of strictly positive-definite function φ decays
only algebraically, then the function φ has a corresponding Sobolev space as its native space.
Now, we present some definitions, that are important to measure the quality of data points and
to estimate the error of RBF interpolation method.

Definition 2.6 The fill distance of a set of points X = {x1, · · · , xN} ⊆ D for a bounded
domain D is defined by

hX,D = sup
x∈D

min
0≤j≤N

‖x− xj‖2.

Definition 2.7 The separation distance of X = {x1, · · · , xN} is defined by

qx = 1
2 min

i 6=j
‖xi − xj‖2.

The set X is said to be quasi-uniform with respect to a constant c > 0 if qx ≤ hX,D ≤ cqx.

Now, we give the convergence theorem for approximating a function u ∈ Nφ(D) by the strictly
positive-definite function. Before that we define the interior cone condition as follows:

Definition 2.8 A set D ⊂ Rd is said to satisfy an interior cone condition if there exists an
angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ D a unit vector ξ(x) exists such
that the cone

C(x, ξ(x), θ, r) =
{
x+ λy : y ∈ Rd, ‖y‖2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]

}
, (2.20)

is contained in D.

Theorem 2.4 [16] Let φ be positive-definite RBF with infinitely smoothness. Suppose that
D ⊂ Rd is open and bounded, satisfying an interior cone condition. Denote the interpolant of a
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function u ∈ Nφ(D) based on the RBF φ and the distinct set X = {x1, · · · , xN} by PNu. Then
for every l ∈ N there exist constants h0(l) and Cl such that

‖u− Pnu‖L∞(D) ≤ Clh
l
X,D|u|NΦ(D) , (2.21)

for all x ∈ D, provided hX,D ≤ h0(l).

Remark 2.1 As a conclusion from theorem 2.4, for the sufficiently small hX,D, some positive
constant c and u ∈ Nφ(D), we list the error bound as follows:
For Gaussians φ(x) = exp(−α‖x‖2), α > 0, we have

‖u− PNu‖L∞(D) ≤ exp
(
−c|log hX,D|

hX,D

)
|u|NΦ(D). (2.22)

For inverse multiquadrics

φ(x) = (‖x‖2 + α2)β, α > 0, β < 0, or β > 0 and β 6= N,

we have

‖u− PNu‖L∞(D) ≤ exp( −c
hX,D

)|u|Nφ(D). (2.23)

Therefore the convergence rates will be arbitrarily high algebraic for infinitely smooth RBFs
such as GAs, MQs and IMQs and for RBFs with limited smoothness, the approximation order
of the method is limited by the degree of smoothness.
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Chapter 3

Some numerical treatement on the
interpolation by RBF

This chapter is divided in two parts, in the first part, we use radial basis functions for solv-
ing Volterra-Fredholm integral equations, such equations have numerous applications in many
problems in the applied sciences to model dynamical systems. The RBFs can be of various
types, for example: polynomials of any chosen degree such as linear, cubic, thin plate spline
(TPS), multiquadrics (MQ), inverse multiquadrics (IMQ), Gaussian forms (GA), hyperbolic
secant (sech) form etc. In the cases of inverse quadratic, inverse multiquadric (IMQ), hyper-
bolic secant (sech) and Gaussian (GA), the coefficient matrix of RBFs interpolating is positive
definite. A numerical technique based on the spectral method is presented for the solution
of linear and nonlinear Volterra–Fredholm-Hammmerstein (VFH) integral equations and by
using zeros of the shifted Legendre polynomial as the collocation points, different applications
of RBFs are used for this purpose. The integral involved in the formulation of the problem is
approximated by Legendre–Gauss–Lobatto integration rule. Different choices of the chape pa-
rameter are given randomly, because the optimal choice of shape parameter is an open problem
which is still under intensive investigation. In general, as the value of the shape parameter c
increases, the matrix of the system to be solved becomes highly ill-conditioned and hence the
condition number can be used in determining the critical value of the shape parameter for an
accurate solution. Some numerical test are given to describe this problem. In the second parts,
we present some numerical treatement of the condition number which can be used to some
theoretical effort to bound the condition number of the interpolation matrix.
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3.1 Some application of RBF for solving VFH

Consider the nonlinear Volterra–Fredholm–Hammerstein integral equations

y(x) = f(x) + λ1

∫ x

0
K1(x, t)G1(t, y(t))dt+ λ2

∫ 1

0
K2(x, t)G2(t, y(t))dt 0 ≤ x ≤ 1, (3.1)

where λ1 and λ2 are constants, f(x) and the kernels G1(x, t) and G2(x, t) are given functions
for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. In order to solve (3.1), we use a spectral method based on radial
basis functions and the Gauss- Legendre rules to approximate the integrals.

3.1.1 Legendre–Gauss–Lobatto nodes and weights

LetHN [−1, 1] denote the space of algebraic polynomials of degree ≤ N . Let 〈., .〉 represents
the usual L2[−1, 1] inner product and {Pi}i≥0 are the well-known Legendre polynomials of order
i which are orthogonal with respect to the weight function w(x) = 1 on the interval [−1, 1],
and satisfy the following formula,

1. 〈Pi, Pj〉 = 2
2j+1δij,

2. P0(x) = 1 P1(x) = x,

3. Pi+1(x) = (2i+ 1
i+ 1 )xPi(x)− ( i

i+ 1)Pi−1(x) i = 1, 2, 3, . . . .

Let {xj}Nj=0 the points such that
(1− x2

j)P ′(xj) = 0,

−1 = x0 < x1 < x2 < · · · < xN = 1,

where P ′(x) is the derivative of P (x). The points {xj}Nj=0 can be computed numerically [12].
Assume that f ∈ H2N−1[−1, 1], we have

∫ 1

−1
f(x)dx ≈

N∑
j=0

ωjf(xj) = IG(f), (3.2)

where ωj are the Legendre–Gauss–Lobatto weights given by

ωj = 2
N(N + 1) ×

1
(PN(xj))2 . (3.3)
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3.1.2 Numerical technique for solving VFH integral equation

In order to get a numerical approximation of the solution of equation (3.1) by radial basis
functions, we first approximate y(x) as

y(x) ≈ yN(x) =
N+1∑
i=1

ciφi(x) = ΦT (x)C, (3.4)

where ΦT (x) = [φ1(x), φ2(x), . . . , φN+1(x)]t and C = [c1, c2, . . . , cN+1]t. Then, substituting
equation (3.4) into equation (3.1), we get

ΦT (x)C = f(x) + λ1

∫ x

0
K1(x, t)G1(t,ΦT (t)C)dt+ λ2

∫ 1

0
K2(x, t)G2(t,ΦT (t)C)dt. (3.5)

We collocate equation (3.5) at points {xi}Ni=1, we have

ΦT (xi)C = f(xi) + λ1

∫ xi

0
K1(xi, t)G1(t,ΦT (t)C)dt+ λ2

∫ 1

0
K2(xi, t)G2(t,ΦT (t)C)dt. (3.6)

In order to use the Legendre–Gauss–Lobatto integration on the interval [−1, 1], we use the
change of variables σ1 = 2

xi
t−1, σ2 = 2t−1, then, the intervals [0, xi] and [0, 1] are transformed

to the interval [−1, 1], respectively. Let

H1(xi, t) = K1(xi, t)G1(t,ΦT (t)C), H2(xi, t) = K2(xi, t)G2(t,ΦT (t)C), (3.7)

then, equation (3.6) may then be restated as

ΦT (xi)C = f(xi) + λ1
xi
2

∫ 1

−1
H1(xi,

xi
2 (σ1 + 1))dσ1 + λ2

2

∫ 1

−1
H2(xi,

1
2(σ2 + 1))dσ2, (3.8)

to approximate the integrals oppeared in equation (3.8), we use Legendre–Gauss–Lobatto in-
tegration formula. Then the corresponding residual function Res(x) is given by

Res(xi) = −ΦT (xi)C + f(xi) + λ1
xi
2

r1∑
j=0

W1jH1(xi,
xi
2 (σ1j + 1)) + λ2

2

r2∑
j=0

W2jH2(xi,
1
2(σ2j + 1)),

(3.9)

for i = 1 . . . N + 1. Equation (3.9) generates an N + 1 set of nonlinear equations which can be
solved by iterative method for the unknown C.
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3.1.3 Numerical tests

This section investigates the obtained results of the presented approach on some test problems.
The error norms and condition numbers are computed.

Example 3.1
Consider the following Hammerstein integral equation [12].

y(x) = ex − 1
3e

3x + 1
3 +

∫ x

0
y3(t)dt, (3.10)

with the exact solution
y(x) = ex.

We solve equation (3.10) with different values of N . Table (3.1)and (3.2) shows the absolute
error between the exact solution and different RBFs approximations, for ε = 1.8

N = 6 N = 4
x IMQ MQ GA IMQ MQ GA
0 2.5757e-14 5.6843e-14 1.3531e-16 8.8818e-15 9.0949e-13 3.4694e-18
0.1 1.6043e-4 6.9611e-5 1.5628e-3 2.9712e-3 6.4130e-1 1.6402e-2
0.2 7.1137e-5 2.5950e-5 1.0591e-3 4.4858e-3 1.4081 2.8516e-2
0.3 6.7777e-4 2.6953e-4 8.5471e-3 3.4612e-3 2.1824 2.5491e-2
0.4 1.2932e-3 5.1070e-4 1.6536e-2 4.6833e-4 2.8228 1.2730e-3
0.5 1.3204e-3 5.1786e-4 1.6886e-2 6.4655e-3 3.1802 3.9247e-2
0.6 3.2382e-4 1.2618e-4 3.8582e-3 1.2101e-2 3.1146 7.6842e-2
0.7 1.3480e-3 5.2868e-4 1.6876e-2 1.3147e-2 2.5101 7.9285e-2
0.8 1.8521e-3 7.2899e-4 2.1406e-2 3.6037e-3 1.2864 7.6792e-3
0.9 2.7464e-3 1.0994e-3 3.1824e-2 2.4031e-2 5.9554e-1 1.7389e-1
1 1.8770e-2 7.5968e-3 1.9207e-1 7.8306e-2 3.1322 4.8857e-1

cond2 2.5823e+5 2.1109e+6 1.0153e+002 3.7264e+3 1.9497e+4 6.9461
cond∞ 3.1932e+5 2.4581e+6 1.3916e+002 4.5170e+3 2.3943e+4 8.2390

Table 3.1: Comparison between exact and approximate solutions for different values of N .

Example 3.2 Consider the nonlinear Volterra–Fredholm–Hammerstein integral equation of the
form [12].

y(x) = g(x) +
∫ x

0
(x− t)y2(t)dt+

∫ 1

0
(x+ t)y(t)dt, (3.11)

where

g(x) = 1
30x

6 + 1
3x

4 − x2 + 5
3x−

5
4 , (3.12)

which has the exact solution y(x) = x2 − 2. We applied the RBFs approach to solve equation
(3.11), for ε = 0.2. The numerical results are represented in table (3.3) and (3.4).
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N = 6 N = 4
x IMQ MQ GA IMQ MQ GA
x1 1.9583e− 14 4.3422e− 22 4.4109e− 17 1.7020e− 23 1.3126e− 23 1.0591e− 16
x2 0.0013204 5.1786e− 4 0.016886 6.4655e− 3 3.1802 0.039247
x3 0.0042477 1.7015e− 3 0.04799 1.8059e− 3 8.3808e− 001 0.02974
x4 0.001804 7.0817e− 4 0.022056 4.2873e− 3 1.1923 0.026283
x5 0.00015754 6.8414e− 5 0.0015264 7.8306e− 2 3.1322 0.48857
x6 0.00044228 1.7573e− 4 0.0055791
x7 0.01877 7.5968e− 3 0.19207

L2(norm) 1.9380e-2 7.8366e-3 1.9999e-1 7.8710e-2 4.6955 4.9175e-1
L∞(norm) 1.8770e-2 7.5968e-3 1.9207e-1 7.8306e-2 3.1802 4.8857e-1

Table 3.2: Comparison between exact and approximate solutions at collocation points for
different values of N .

N=3
x IMQ MQ
0 6.2263e-001 1.8764e+000
0.1 5.8198e-001 2.2178e+000
0.2 4.4076e-001 2.5472e+000
0.3 1.9596e-001 2.8726e+000
0.4 7.5512e-002 3.2113e+000
0.5 1.5195e-001 3.5848e+000
0.6 4.6589e-002 3.9893e+000
0.7 1.6778e-002 4.3958e+000
0.8 3.4032e-002 4.7744e+000
0.9 1.8041e-001 5.0906e+000
1 3.3271e-001 5.2932e+000

cond2 2.6054e+000 1.6234e+001
cond∞ 3.0314e+000 2.1376e+001

Table 3.3: Comparison between exact and approximate solutions for different values of x for
N = 3.

N=3
x IMQ MQ
x1 6.2263e− 001 1.8764
x2 1.5243e− 002 4.4887
x3 2.6168 2.7954
x4 3.3271e− 001 5.2932

L2(norm) 7.5304e-001 7.7138e+000
L∞(norm) 6.2263e-001 5.2932e+000

Table 3.4: Comparison between exact and approximate solutions at collocation points for
N = 3.
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Example 3.3
Let given the nonlinear Volterra-Hammerstein integral equation

y(x) = sin(πx) +
∫ 1

0
sin(πt) cos(πx)y3(t)dt, (3.13)

where the exact solution is given by

y(x) = sin(πx) + 20−
√

391
3 cos(πx) x ∈ [0, 1]. (3.14)

We take ε = 1. The numerical results are summarized in tables (3.5) and (3.6).

N=8
x IMQ MQ GA
0 4.2013e-005 9.1202e-005 1.3118e-005
0.1 1.1104e-003 1.4392e-003 2.1034e-004
0.2 1.3670e-003 1.9115e-003 2.7602e-004
0.3 6.5179e-004 9.7613e-004 1.4000e-004
0.4 3.7246e-004 6.2169e-004 8.9210e-005
0.5 8.5551e-004 1.5576e-003 2.2547e-004
0.6 5.0241e-004 1.0341e-003 1.5270e-004
0.7 1.5268e-004 3.6455e-004 5.5021e-005
0.8 3.4254e-004 1.0142e-003 1.5991e-004
0.9 3.9223e-005 8.3622e-005 1.1954e-005
1 4.2013e-005 9.1202e-005 1.3118e-005

cond2 6.7171e+004 6.8750e+005 4.1378e+006
cond∞ 1.0022e+005 1.0140e+006 5.5492e+006

Table 3.5: Comparison between exact and approximate solutions at different points x forN = 8.

N=8
x IMQ MQ GA
x1 0.000042013 0.000091202 0.000013118
x2 0.00085551 0.0015576 0.00022547
x3 0.000046278 0.00037908 0.000068128
x4 0.00061016 0.00074759 0.00011022
x5 0.00024936 0.00080444 0.0001288
x6 0.000048997 0.00011102 0.000016421
x7 0.0013981 0.0019012 0.00027565
x8 0.00045883 0.00069411 0.000099493
x9 0.000042013 0.000091202 0.000013118

L2(norm) 1.8274e-003 2.8109e-003 4.1317e-004
L∞(norm) 1.3981e-003 1.9012e-003 2.7565e-004

Table 3.6: Comparison between exact and approximate solutions at collocation points for
N = 8.
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Example 3.4 Let consider the linear integral equation

y(x) = cos x− sin x exp(x) +
∫ x

0
exp(x)y(t)dt x ∈ [0, 1]. (3.15)

The exact solution is given by
y(x) = cos x.

We take ε = 0.2. The obtained numerical results are presented in tables (3.7) and (3.8).

N=5
x IMQ MQ GA
0 0.1872 0.0145 6.6321e-006
0.1 0.1631 0.0134 6.3520e-006
0.2 0.0872 0.0085 4.4467e-006
0.3 0.0494 0.0035 1.5250e-006
0.4 0.1133 0.0008 1.4584e-006
0.5 0.1859 0.0014 3.4142e-006
0.6 0.2097 0.0036 3.4169e-006
0.7 0.2114 0.0014 1.0899e-006
0.8 0.2905 0.0123 2.9286e-006
0.9 0.4708 0.0301 6.4428e-006
1 0.5912 0.0227 5.0853e-006

cond2 7.0106 8.1566e+001 1.1176e+010
cond∞ 8.5266 1.1793e+002 1.3622e+010

Table 3.7: Comparison between exact and approximate solutions at different points x forN = 5.

N=5
x IMQ MQ GA
x1 0.18722 0.014531 6.6321e− 006
x2 0.20872 0.0037066 6.024e− 006
x3 0.43783 0.027825 2.7019e− 006
x4 0.078168 0.0017566 6.1246e− 006
x5 0.15224 0.012709 2.4933e− 007
x6 0.59116 0.022695 5.0853e− 006

L2(norm) 0.8057 0.0410 1.2288e-005
L∞(norm) 0.5912 0.0278 6.6321e-006

Table 3.8: Comparison between exact and approximate solutions at collocation points for
N = 5.

From, the previous tests and through the comparison with exact solutions we show that the
RBFs methods have good reliability and efficiency. Also, we can see that the accuracy depend
on the choose of radial basis functions and the shape parameter. We can remark also in some
examples the ill-conditioned problems and the independence between the accuracy and the
condition number.

46



3.2 Numerical test of condition number by RBF

One of the serious problems is that when the RBFs are wide compared to the average
grid spacing h, the RBF interpolation matrix is very ill-conditioned. This is very unfortunate
because it is known that RBF accuracy generally increases in the “flat” limit and is unreservedly
awrful in the opposite limit of RBFs. This has inspired some theoretical effort to bound the
condition number of the interpolation matrix. However, it is very difficult to obtain sharp
bounds and the estimates cataloged in "Wendland’s book [16]" are wildly pessimistic, at least
for a uniform grid. Through some numerical tests, we examine the condition numbers of
the interpolation matrix for some kind of RBF, we give some relation between the condition
number and the shape paramater and if it depend on the number N of interpolation points. The
shape paramater ε is the “absolute inverse width”, a user-choosable parameter often replaced
in applications by the “relative inverse width” α where ε = α/h with h as the average grid
spacing, for this a radial basis function can be written in the following form

f(x) ≈ fRBF (x,N) =
N∑
j=1

λjφ([α/h]‖x− xj‖2), x ∈ Rd, (3.16)

for some function φ(r) and some set of N points xj, which are called the “centers”. Here h is
the grid spacing (for a uniform grid) or the average grid spacing (for a non-uniform grid) and
α is the “relative inverse width parameter”. Many species of φ(r). The RBF coefficients λj
are usually found by interpolation at a set of points yk that may or may not coincide with the
centers. The interpolation condition is

f(xj) = fRBF (xj, N), j = 1, 2, · · · , N. (3.17)

These can be organized into a matrix system. The interpolation matrix, which is also known
as the “generalized Vandermonde matrix”, is a symmetric matrix (for coincident centers and
interpolation points) with the elements

Aij = φ([α/h]‖xi − xj‖2). (3.18)

On a uniform grid with spacing h, the elements of the interpolation matrix are independent of
h and depend only on α:

Aij = φ(α‖Si − Sj‖2), (3.19)
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where the Si = xi/h are the points on a grid rescaled to have unit grid spacing. Consequently,
the condition number of the matrix is a function only of N , the size of the matrix, and of α.

The condition number κ(α,N) is given by

κ = ‖A‖∞‖A−1‖∞. (3.20)

We can analysis the problem of condition number in some steps. First, we plotted the condition
number versus N for several α. Secondly, we graphed the condition number for a fixed large
N versus α and versus α2. All these steps are done for some radial basis functions such that
Gaussian, multiquadric and inverse multiquadric. For radial basis function methods, it is far
better to choose sufficiently large α so that the condition number is not too a big.
The following program indicate the relation between the number N of interpolation points and
condition number.
Program

• Digits = 25;

• alpha=1 ; ncase=100;

• C=[]; d=[];

• for j=1:ncase

• N=2+2*(j-1); h=2/(N-1); epsilon=(alpha/h);

• xgrid=zeros(N,1);

• d=[d;N]

• for j = 1:1: N

• xgrid(j)=-1+2*(j-1)/(N-1);

• end

• G=zeros(N,N);

• for i=1:N

• for j=1:N

• rsq = (xgrid(i)− xgrid(j))2;

• G(i, j) = (1/sqrt(1 + (epsilon2) ∗ rsq));
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• end

• end

• C=[C; norm(G,inf)*norm(inv(G), inf)];

• end

• plot(d, C)

3.2.1 Multiquadrics (MQ) on one dimension

For this radial basis function, it can be shown that the condition number for fixed α grows
quadratically with the number of points N , which can be seen in figures (3.4)-(3.7) and ap-
proximatively, we have

κ(α,N) = 0.363N2 exp(3.07/α) [1]. (3.21)

The plot of this function is given in figure (3.17) and has approximately the same plot with the
figure (3.18). Table (3.9) show that the condition number is independent of matrix size N for
large N .

Multiquadric
N α = 1/8 α = 1/4 α = 1/2 α = 1

2000 5.3684e+016 2.1504e+011 5.5290e+008 3.2172e+007
2002 5.2154e+016 2.1547e+011 5.5401e+008 3.2236e+007
2004 5.2683e+016 2.1590e+011 5.5512e+008 3.2300e+007
2006 5.4672e+016 2.1633e+011 5.5623e+008 3.2365e+007
2008 5.2861e+016 2.1677e+011 5.5734e+008 3.2429e+007
2010 5.2889e+016 2.1720e+011 5.5845e+008 3.2494e+007
2012 5.3862e+016 2.1763e+011 5.5956e+008 3.2559e+007
2014 5.3816e+016 2.1806e+011 5.6067e+008 3.2624e+007
2016 5.4317e+016 2.1850e+011 5.6179e+008 3.2688e+007
2018 5.2739e+016 2.1893e+011 5.6290e+008 3.2753e+007

Table 3.9: Condition number versus N for different values of alpha for multiquadric.

3.2.2 Gaussian RBFs on one-dimension with uniform grid

On a uniform one-dimensional grid of spacing h, Gaussian RBFs are of the form

Φ(x, α, h) = exp (−[α2/h2]x2). (3.22)
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We can normalize the interpolation interval to x ∈ [−1, 1] without loss of generality, the uniform
grid spacing is h = 2/(N − 1) and the grid points xj = −1 + (j − 1)h. The elements of the
interpolation matrix are

Aij(α) = exp (−α2(i− j)2). (3.23)

We analyzed the condition number in two stages.

• First, we graphed κ(α,N) versus N for several α. This showed that the condition number
is independent of matrix size N for large N as illustrated in figures(3.8)-(3.10) and table
(3.10).

• Secondly, we plotted the condition number for a fixed large N versus α2, as presented in
figure(3.12).

Some numerical tests gives the analytic approximation [1],

κGaussanal (α) = (1/2) exp(π2/(4α2)), (3.24)

and this is represented in figure (3.15)and it is similar to figure (3.12). Because this formula was
derived by numerical experimentation and not a deductive proof, we shall regard the statement

lim
N−→∞

κ(α) = κGaussanal (α). (3.25)

is a highly probable conjecture.

Gaussian
N α = 1/8 α = 1/4 α = 1/2 α = 1

2000 7.7592e+018 3.1075e+018 9.6664e+003 5.8965e+000
2002 1.8057e+019 5.5745e+018 9.6664e+003 5.8965e+000
2004 1.4973e+019 4.8513e+017 9.6664e+003 5.8965e+000
2006 2.5782e+019 3.2542e+016 9.6664e+003 5.8965e+000
2008 1.0722e+020 1.7157e+018 9.6664e+003 5.8965e+000
2010 3.3639e+019 5.1259e+018 9.6664e+003 5.8965e+000
2012 9.7390e+019 1.8654e+019 9.6664e+003 5.8965e+000
2014 7.8975e+018 7.3806e+018 9.6664e+003 5.8965e+000
2016 1.6104e+019 3.2207e+019 9.6664e+003 5.8965e+000
2018 2.8240e+020 5.2742e+018 9.6664e+003 5.8965e+000

Table 3.10: Condition number versus N for different values of alpha for gaussian.
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3.2.3 Inverse quadratics on one dimension

Inverse multiquadric RBFs is defined by

φ(r, α, h) = 1
1 + [α/h]2r2 . (3.26)

Like Gaussians, inverse quadratic RBFs can yield an exponential rate of convergence if the
function f(x) being approximated is analytic on the approximation interval. The condition
number κ(N) asymptotes to an α-dependent number as N −→ ∞ for fixed α. The figures
(3.1)- (3.3) shows the plot of condition number versus N for different values of α. Figures
(3.11)-(3.19) shows the plot of the condition number versus α for N = 200. The plot of the
condition number versus α2 is represented in figure (3.14). It is known that the saturation error
for IQ functions is proportional to exp(−π/α), but the numerical results suggested that the
asymptote is roughly [1]

κIQanal(α) = (1/2) exp(π/α). (3.27)

The figures(3.16) gives the plot of this function, and it is similar to the figure (3.19) for inverse
multiquadric condition number. When we plotted the difference between κ(N,α) and κIQanal(α)
on both log–linear and log–log axes, we found the curves on the log–linear scale became flatter
as N increased whereas the difference curves were nearly linear on the log–log plate. This
implies that the IQ conditions are not asymptoting exponentially as true of Gaussians but
rather as 1/N . Some numerical tests are summarized in table (3.11), and it showed that the
condition number is independent of N with N sufficiently large. Some good numerical results
given by some researchers are collected in table (3.12) for different radial basis functions [1].

Inverse multiquadric
N α = 1/8 α = 1/4 α = 1/2 α = 1

2000 8.7400e+011 2.4491e+006 3.6411e+003 1.2473e+002
2002 8.7416e+011 2.4495e+006 3.6416e+003 1.2475e+002
2004 8.7433e+011 2.4499e+006 3.6421e+003 1.2477e+002
2006 8.7449e+011 2.4503e+006 3.6427e+003 1.2478e+002
2008 8.7466e+011 2.4507e+006 3.6432e+003 1.2480e+002
2010 8.7483e+011 2.4511e+006 3.6438e+003 1.2482e+002
2012 8.7499e+011 2.4515e+006 3.6443e+003 1.2484e+002
2014 8.7515e+011 2.4519e+006 3.6449e+003 1.2485e+002
2016 8.7531e+011 2.4523e+006 3.6454e+003 1.2487e+002
2018 8.7548e+011 2.4527e+006 3.6459e+003 1.2489e+002

Table 3.11: Condition number versus N for different values of alpha for inverse multiquadric.
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Figure 3.1: The matrix condition number for the interpolation Matrix of IMQ RBF on one
dimensional uniforme grid.

Name κ
Gaussian 1D (1/2) exp(π2/[4α2])
Gaussian 2D (1/4) exp(π2/[2α2])

sech 1D (1/4) exp(π2/(2α))
sech 2D 0.26 exp(7.20/α)
IQ 1D (1/2) exp(π/α)
MQ 1D 0.363N2 exp(3.07/α)

Cubic MN3 (2
√

3− 3)N5

Quintic MN5 0.112322124N8

Thin-plate splines TPS2 0.1198139997N4

Thin-plate splines TPS4 (r4 log(r)) 0.05304350371N7

Table 3.12: Condition number: uniform grid.

Figure 3.2: The matrix condition number for the interpolation Matrix of IMQ RBF on one
dimensional uniforme grid.
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Figure 3.3: The matrix condition number for the interpolation Matrix of IMQ RBF on one
dimensional uniforme grid.

Figure 3.4: The matrix condition number for the interpolation Matrix of MQ RBF on one
dimensional uniforme grid.

Figure 3.5: The matrix condition number for the interpolation Matrix of MQ RBF on one
dimensional uniforme grid.
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Figure 3.6: The matrix condition number for the interpolation Matrix of MQ RBF on one
dimensional uniforme grid.

Figure 3.7: The matrix condition number for the interpolation Matrix of MQ RBF on one
dimensional uniforme grid.

Figure 3.8: The matrix condition number for the interpolation Matrix of Gaussian RBF on one
dimensional uniforme grid.
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Figure 3.9: The matrix condition number for the interpolation Matrix of Gaussian RBF on one
dimensional uniforme grid.

Figure 3.10: The matrix condition number for the interpolation Matrix of Gaussian RBF on
one dimensional uniforme grid.

Figure 3.11: Condition number of IMQ RBFs for different values of alpha for N = 200.
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Figure 3.12: Condition number of Gaussian RBFs for different values of alpha for N = 200.

Figure 3.13: Condition number of MQ RBFs for different values of alpha for N = 200.

Figure 3.14: Condition number of IMQ RBFs for different values of alpha for N = 200.
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Figure 3.15: The graph of the functions y = 1/2 exp(π2/4α2).

Figure 3.16: The graph of the functions y = 1/2 exp(π/α).

Figure 3.17: The graph of the functions y = 0.363N2 exp(3.07/α).
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Figure 3.18: Condition number of MQ RBFs for different values of alpha for N = 200.

Figure 3.19: Condition number of IMQ RBFs for different values of alpha for N = 200.
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Conclusion

Radial basis functions have proved very useful in computer graphicx and neutral networks and
are growing in popularity for solving partial differential equations. A small shape parameter and
a small fill distance are both desirable for accuracy, but both cause ill conditioned problems. The
accuracy of RBFs meshless greatly depends on the user defined radial basis centers and the shape
parameter. The researchers are confirmed that even when circumventing the ill conditioning
of the system matrix there usually is a value of the shape parameter which results in optimal
approximation errors. So it is necessary to find a strategy between the good accuracy and the
well posed interpolation problem and therefore looks for a good balance between accuracy and
stability.
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Abstract 
Radial basis functions have proved  very useful in computer graphics and neural 
networks  and are growing in popularity for solving  partial differential equations.  It 
is known  that  the RBF matrix  interpolation is very ill-conditioned. This is very   
unfortunate because it is known that RBF accuracy generally increases in the “flat” 
limit  and is unreservedly awful in the opposite limit of RBFs. The subject   of this 
dissertation is to review some essential preliminaries on the scattered data 
interpolation by  RBFs.  We also present a numerical method to solve nonlinear 
Fredholm Volterra integral equations . The method is based on the approximation of 
the solutions of these equations by using RBFs.  For this aim,  we take the Gaussian , 
Multiquadric and inverse multiquadric RBFs to approximate the solution . One of the 
subject is  to see the  effect of the  shape parameter on the condition number of 
matrix interpolation for some   species of radial basis functions (RBFs), mostly on 
uniform grids. 

Key-Words : Radial basis function, shape parameter,  Volterra Fredholm integral 

equation, condition number,  interpolation. 

Résumé 
Les fonctions de base radiales ont montrées leurs utilisations  dans le domaine de 
l'infographie et des réseaux neuronaux  et  il  sont très populaire  pour la résolution 
des équations aux dérivées partielles.  Il est connu que la  matrice  d’interpolation 
par RBF est très mal conditionnée.  Ceci est très regrettable car il est connu que la 
précision des RBFs augmente généralement dans la limite "plate" et est sans réserve 
dans la limite opposée des RBFs. L’objectif de ce mémoire  est de revoir quelques 
préliminaires essentiels sur l'interpolation de données dispersées par les RBFs. On  
présentons  aussi  une méthode numérique pour résoudre les équations intégrales 
non linéaires de Fredholm  Volterra. La méthode est basée sur l'approximation des 
solutions de ces équations en utilisant des RBFs. Pour  cet objectif,  en prenant la 
gaussienne,  multi-quadrique et multi-quadrique inverse pour approximer la 
solution.  L’un  des objectives est de voir l'effet du paramètre de base radial  sur le 
conditionnement de la matrice d’interpolation pour certaines espèces de fonctions 
de base radiales (RBF),  principalement sur des grilles uniformes. 

Mots-Clés : Fonction de base radiale, paramètre de forme, équation intégrale de 

Volterra-Fredholm, nombre de conditions, interpolation. 

 ملخص
 في شعبيتها زايدوتت العصبية والشبكات الكمبيوتر رسومات في جدًا مفيدة أنها الشعاعي الأساس وظائف أثبتت 

ء للغاية.شرطها سي مصفوفة استقطاب الاساس الشعاعي   أن المعروف من الجزئية. التفاضلية المعادلات حل  
ه من من المعروف  ان مصفوفة  الاستقطاب باستعمال الاساس الشعاعي تقترب من ان تكون منفردة , لان

هو   موضوع هذه المذكرة اختيار اساس شعاعي واسع .ب الاساس الشعاعي تزداد عمومادقة المعروف ان 
ريقة عددية مراجعة بعض الاساسيات حول استقطاب البيانات المبعثرة باستعمال الاساس الشعاعي , وتقديم ط

مد على تقريب  عت. الفكرة الاساسية  للطريقة تفولتيرا بهدف حل االمعادلات التكاملية الغير خطية لفريدهولم
نواع من اجل هذه  الغاية استخدمنا االحلول المظبوطة  لهذا النوع  من المعادلات باستخدام الاساس الشعاعي . 

 دافمن بين الاه مختلفة من الاساس الشعاعي منها  الاساس المحوري والمعاكس له . والاساس الاسي. وايضا
ي الاخير شكل على رقم الشرط لمصفوفة  الاساس الشعاعي . فير معامل الالتي تمت مناقشتها رؤية مدى تاث 

الشعاعي  من خلال التجارب العددية المتنوعة نمتحن قيمة الشرط لمصفوفة الاستقطاب لبعض انواع الاساس
على شبكات موحدة.والتي تكون معظمها   

،رقم  ةالمتكامل فريدهولم فولتيرا   معادلة ، الشكل إعدادات ، الشعاعي الأساس دالة: المفتاحية الكلمات

.الاستقطاب ، الشرط  
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