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Introduction

The main topic treated in this memory is the study of some orthogonality types, with

emphasis mainly on the elements and linear operators in normed space. The theory of

Birkhoff-James orthogonality [6, 11] of elements in a normed linear space was introduced

by Birkhoff in [6], in order to generalize the concept of orthogonality in inner product

spaces. Over the years, Birkhoff-James orthogonality has been undoubtedly established

as an important concept in the study of geometry of normed linear spaces by virtue of

its rich connection with several geometric properties of the space, like strict convexity,

smoothness etc. [12, 11, 8]. Recently, a renewed interest has been generated towards

studying the Birkhoff-James orthogonality of elements in the space of bounded linear

operators between normed linear spaces [5, 20, 25]. While complete characterization

of Birkhoff-James orthogonality of bounded linear operators defined on a Hilbert space

[5, 18], or a finite dimensional real Banach space [24] has been obtained, the problem

of characterizing Birkhoff-James orthogonality of bounded linear operators on infinite

dimensional normed linear spaces remains unsolved.

This memory is organized as follows. In the preliminaries (Chapter 1) we establish

the swimming of the memory. We introduce basic notions in normed spaces, Hilbert

spaces, Banach spaces theory and we recall that main definition and properties of linear

operator that we will use later. In the second chapter of this memory we give some

orthogonality types in normed spaces, Birkhoff-James orthogonality Strongly Birkhoff-

James orthogonality and at last the isosceles orthogonality type. and we establish the

basics of the theory of this types of orthogonality. In the last chapter we called the

Birkhoff-James orthogonality of bounded linear operators, we mention the definition and
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properties of Birkhoff-James orthogonality of bounded linear operator, and we give the

important theorems with proof and different examples. At the end of the chapter, the

relation between the different types of orthogonality has been proven and revealed.
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Chapter 1
Preliminaries

1.1 Normed Spaces

Definition 1.1.1.

Let X be a linear space over the field K (K = R or C) , Then a norm on X is a map

∥ . ∥: X −→ R+ such that for all x, y ∈ X, λ ∈ K, the following properties are satisfied:

i) ∥x∥ ≥ 0, for all x ∈ X (Nonnegative),

ii) ∥λx∥ =| λ | ∥x∥, for all x ∈ X and λ ∈ R ( or C) (Homogeneous),

iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥, for all x, y ∈ X (Triangle inequality).

A norm on X is a semi-norm which also satisfies:

iv) ∥x∥ = 0 implies that x = 0 (strictly positive).

Definition 1.1.2.

Let ∥·∥ be a norm on X. Then the distance from x to y in X is d(x, y) = ∥x − y∥.

Example 1.1.1.

i) Let X = R, and ∥x∥ = |x|, the absolute value of x.

ii) Let X = C, and ∥x∥ = |z| , the modulus of z.

iii) Let X = Rn (or X = Cn). There are three standard norm.

For every (x1, · · · , xn) ∈ X, we have the 1-norm ∥x∥1, defined such that,

∥x∥1 = |x1| + · · · + |xn| ,

3
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the Euclidean norm ∥x∥2 , defined such that

∥x∥2 =
(
|x1|2 + · · · + |xn|2

) 1
2 ,

and the sup-norm ∥x∥∞ , defined such that

∥x∥∞ = max {|xi| 1 ≤ i ≤ n} .

More general, we define the lp-norm ( for p ≥ 1) by has a norm given by:

∥x∥p = (|x1|p + · · · + |xn|p)
1
p .

Definition 1.1.3.

The pair (X, ∥·∥) is called normed linear space where X is a linear space and ∥·∥ is a

norm on X.

Proposition 1.1.1.

Suppose that X is a normed linear space with respect to a norm ∥·∥1 and ∥·∥2. Then we

say that these norms are equivalent if there exist constants C1, C2 > 0, such that:

∀x ∈ X; C1 ∥x∥1 ≤ ∥x∥2 ≤ C2 ∥x∥1 . (1.1)

Observe that equation (1.1) can be rearranged to read:

∀x ∈ X; 1
C2

∥x∥2 ≤ ∥x∥1 ≤ 1
C1

∥x∥2 .

Definition 1.1.4.

Let X be a normed linear space.

i) The unit ball BX is defined by

BX = {x ∈ X : ∥x∥ ≤ 1}.

ii) The unit sphere is defined by

SX = {x ∈ X : ∥x∥ = 1}.

Example 1.1.2.

Let X = Rn with the Euclidean metric. Then

Bϵ(0) =

x ∈ X :
(

n∑
i=1

|xi|2
) 1

2

< ϵ

 ,

simply a ball of radius ϵ about the origin.
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Sequences provide a convenient tool for studying many properties of subsets of a

normed linear space X, including open and closed sets.

Definition 1.1.5.

Let X be a normed linear space.

i) A sequence {xn} in X converges to x ∈ X if ∥xn − x∥ → 0 as n → ∞.

ii) A sequence {xn} in X is Cauchy if ∥xn − xm∥ → 0 as n, m → ∞.

1.2 Banach spaces

Definition 1.2.1.

A normed linear space X is complete if every Cauchy sequence in X converges to an

element of X. A complete normed linear space is called a Banach space.

Remark 1.2.1.

Every finite-dimensional normed linear space is complete and hence a Banach space.

Example 1.2.1.

i) X = Rn with the Euclidean norm ∥·∥ is a Banach space.

ii) X = C([0, 1]) is complete with the sup-norm ∥·∥∞, but it is not complete with the

p-norm for 1 ≤ p < ∞, then is a Banach space with the sup-norm ∥·∥∞ .

ii) ℓp is a Banach space.

1.3 Hilbert spaces

Let H be a real vector space.

Definition 1.3.1.

An inner product ⟨·, ·⟩ in H is a mapping ⟨·, ·⟩ : H × H → R

with the following properties:

i) ⟨x, x⟩ ≥ 0 for all x ∈ H and ⟨x, x⟩ = 0 iff x = 0,

Univ BBA 5 2021/2022



1.3. HILBERT SPACES Laoubi Saadia

ii) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ H,

iii) ⟨x + λy, z⟩ = ⟨x, z⟩ + |λ| ⟨y, z⟩ for all x, y, z ∈ H and λ ∈ R.

A real pre-Hilbert space is a pair (H, ⟨·, ·⟩).

Example 1.3.1.

i) The Euclidean space is in particular real pre-Hilbertian space.

i) The real pre-Hilbert space is in particular complex pre-Hilbert space.

The following inequality is fundamental.

Proposition 1.3.1.

(Cauchy-Schwarz) Let (H, ⟨·, ·⟩) be a pre–Hilbert space. Then

| ⟨x, y⟩ | ≤ ∥x∥ ∥y∥ ∀x, y ∈ H. (1.2)

Moreover, equality holds iff x and y are linearly dependent.

Proof. The conclusion is trivial if y = 0. So, we will suppose y ̸= 0. In fact, to begin with,

let ∥y∥ = 1. Then,

0 ≤ ∥x − ⟨x, y⟩ y∥2 = ∥x∥2 − ⟨x, y⟩2 (1.3)

whence the conclusion follows. In the general case, it suffices to apply the above

inequality to y
∥y∥ .

If x and y are linearly dependent, then it is clear that |⟨x, y⟩| = ∥x∥ ∥y∥.

Conversely, if ⟨x, y⟩ = ± ∥x∥ ∥y∥ and y ̸= 0, then (1.3) implies that x and y are linear

dependent.

Corollary 1.3.1.

Let (H, ⟨·, ·⟩) be a pre-Hilbert space. Then the function ∥·∥ defined by |⟨x, x⟩| = ∥x∥2. has

the following properties:

1- ∥x∥ ≥ 0 for all x ∈ H and ∥x∥ = 0 iff x = 0,

2- ∥λx∥ = |λ| ∥x∥ for any x ∈ H and λ ∈ R,
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3- Triangle Inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ H.

If ⟨., .⟩ is an inner product on H then ∥.∥ is a norm on H, which means that in addition

to (1) and (3) above, we also have:

4- ∥x∥ = 0 ⇒ x = 0.

Proof. Let x ∈ H then ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0 what’s more

∥λx∥ = ⟨λx, λx⟩
1
2 =

(
λλ ⟨x, x⟩

) 1
2 =

(
|λ|2 ⟨x, x⟩

) 1
2

= |λ| (⟨x, x⟩)
1
2 = |λ| ∥ x ∥ .

Finally
∥x + y∥2 = ⟨x + y, x + y⟩ = ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨x, y⟩

= ∥x∥2 + ⟨x, y⟩ + ⟨x, y⟩ + ∥y∥2

= ∥x∥2 + 2Re ⟨x, y⟩ + ∥y∥2

= ∥x∥2 + 2 |⟨x, y⟩| + ∥y∥2

≤ ∥x∥2 + 2 ∥ x ∥∥ y ∥ + ∥y∥2

= (∥ x ∥ + ∥ y ∥)2 .

Moreover

∥x + y∥ ≤∥ x ∥ + ∥ y ∥ .

The norm ∥·∥ thus defined is called the norm induced by inner product.

Lemma 1.3.1.

If H is a pre-Hilbert space, its norm satisfies the equality of the parallelogram:

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2, ∀x, y ∈ H.

It’s a simple calculation:

∥x + y∥2 + ∥x − y∥2 = ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩ + ⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩ + ⟨y, y⟩.

Remark 1.3.1.

It is easy to see that, in a pre-Hilbert space (H, ⟨·, ·⟩), the function

d(x, y) = ∥x − y∥ ∀x, y ∈ H (1.4)

is a metric.

Univ BBA 7 2021/2022
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Definition 1.3.2.

A pre-Hilbert space (H, ⟨·, ·⟩) is called an Hilbert space if it is complete with respect to the

metric defined in (1.4).

Example 1.3.2.

1) R is a Hilbert, ⟨x, y⟩ = xy and ∥x∥ =| x | .

2) Cn equipped with the inner product: ⟨x, y⟩ = ∑n
i=1 xiyi is a Hilbert space.

3) RN is a Hilbert, ( ⟨x, y⟩ = ∑N
i=1 xiyi and ∥x∥ = (∑n

i=1 | xi |2) 1
2 ).

4) ℓ2 = {(xn)n∈N,
∑∞

0 | xn |2< ∞} is a Hilbert.

We have

⟨x, y⟩ =
∞∑
0

xiyi and ∥x∥ = (
∞∑
0

| xn |2)
1
2 .

5) L2(I) with I open is a Hilbert and

⟨f, g⟩ =
∫

I
f(t)g(t)dt.

6) The space C([0, 1]) with one of the norms:

∥f∥1 =
∫ 1

0
| f(t) | dt, ∥f∥∞ = sup

t∈[0,1]
| f(t) |,

is not a Hilbert space because the equality of the parallelogram is not true for these

norms.

1.4 Bounded linear operators

Definition 1.4.1.

Let X, Y be a linear spaces. Let T : X → Y be a mapping between X into Y . Then T is

linear if for every x, y ∈ X and λ ∈ K.
1− T (x + y) = Tx + Ty,

2− T (λx) = λTx.

The set of all linear maps T : X −→ Y is denoted by L(X, Y ). When the domain and

range spaces are the same, we write L(X, X) = L(X).

Univ BBA 8 2021/2022
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If X.Y are normed spaces, then we can define the notion of a bounded linear map. As

we will see, the boundedness of a linear map is equivalent to its continuity.

Definition 1.4.2.

Let X and Y be two normed linear spaces. A linear map T : X −→ Y is bounded if there

is a constant C ≥ 0 such that

∥ Tx ∥≤ C. ∥ x ∥ for all x ∈ X. (1.5)

If no such constant exists, then we say that T is unbounded. We denote the set of all

bounded linear mapping between X into Y by B(X, Y ).

- If X = Y then we write B(X) = B(X, X).

- If Y = K then we say that T is a functional. The set of all bounded linear functionals

on X is the dual space of X, and is denoted

X∗ = B(X,K) = {T : X → K : T is bounded and linear} .

Definition 1.4.3.

If T : X −→ Y is a bounded linear map, then we define the operator norm or uniform

norm ∥ T ∥ of T by

∥ T ∥= inf{C such that ∥ Tx ∥≤ C. ∥ x ∥} for all X; x ∈ C, (1.6)

Note that ∥Tx∥ is the norm of Tx in Y , while ∥x∥ is the norm of x in X.

The operator norm of T is ∥ T ∥= sup
∥x∥=1

∥ Tx ∥ is equivalent expressions for ∥ T ∥ are:

∥ T ∥= sup
∥x∦=0

∥ Tx ∥
∥x∥

; ∥ T ∥= sup
∥x∥≤1

∥ Tx ∥ . (1.7)

Note that since the norm on K is just absolute value, the operator norm of a linear

functional T ∈ X∗ = B(X,K) is:

∥T∥ = sup
∥x∥=1

|Tx| .

Univ BBA 9 2021/2022
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The next theorem shows that B(X, Y ) is a Banach space whenever Y is a Banach

space.

Theorem 1.4.1.

If X is a normed space and Y is a Banach space, then B(X, Y ) is a Banach space.

Definition 1.4.4.

Let X, Y be normed linear spaces, and let T : X → Y be a linear operator.

i) T is continuous at a point x ∈ X if xn → x in X implies Txn → Tx in Y .

ii) T is continuous if it is continuous at every point, i.e., if xn → x in X implies

Txn → Tx in Y for every x ∈ X.

For linear maps, boundedness is equivalent to continuity.

Theorem 1.4.2.

Let X, Y be normed linear spaces, and T : X → Y be a linear mapping. Then the following

statements are equivalent:

i) T is continuous at some x ∈ X.

ii) T is continuous at x = 0.

iii) T is continuous.

iv) T is bounded.

Proof. (iii) ⇒ (iv). Suppose that T is continuous but unbounded. Then ∥T∥ = 1, so

there must exist xn ∈ X with ∥xn∥ = 1 such that ∥Txn∥ ≥ n. Set yn = xn/n . Then

∥yn − 0∥ = ∥yn∥ = ∥xn∥ /n → 0, so yn → 0. Since T is continuous and linear, this implies

Tyn → T0 = 0, and therefore ∥Tyn∥ → ∥T0∥ = 0.

But

∥Tyn∥ = 1
n

∥Txn∥ ≥ 1
n

.n = 1,

for all n, which is a contradiction. Hence T must be bounded.

(iv) ⇒ (iii). Suppose that T is bounded, so ∥T∥ < 1. Let x ∈ X and xn → x. Then

∥Txn − Tx∥ = ∥T (xn − x)∥ ≤ ∥T∥ ∥xn − x∥ → 0,i.e., Txn − Tx. Thus T is continuous.

Univ BBA 10 2021/2022
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Definition 1.4.5.

Let T : X → Y a linear operator

i) The kernel of T denoted by N (T ),is the set defined by

N (T ) = {x ∈ X : Tx = 0} .

ii) The range (image) of T denoted by R(T ),is the set defined by

R(T ) = {Tx : x ∈ X} .

Now, we recall some definitions and propositions of matrix operators. Consider the

linear space Mn (K) (K = R or C) of square n × n matrices

Definition 1.4.6. A matrix norm ∥·∥ on the space of square n×n matrices in Mn (K) (K = R or C)

is a norm on the linear space Mn (K) with the additional property that

∥AB∥ ≤ ∥A∥ ∥B∥ , for all A, B ∈ Mn (K) .

Since I2 = I, from ∥I∥ = ∥I2∥ ≤ ∥I∥2 , we get ∥I∥ ≥ 1.

Proposition 1.4.1. Let a matrix A ∈ Mn (K) (K = R or C), then for every x ∈ Kn,

there is a real constant CA, such that

∥Ax∥ ≤ CA ∥x∥ ,

Definition 1.4.7. If ∥·∥ is any norm on K (K = R or C), we define the function ∥·∥ on

K by

∥A∥ = sup
x∈Kn

∥x∥≠0

∥Ax∥
∥x∥ = sup

x∈Kn

∥x∥=1

∥Ax∥ .

Proposition 1.4.2. For every square matrix A = (aij) ∈ Mn (K), we have

∥A∥1 = sup
x∈Kn

∥x∥1=1

∥Ax∥1 = max
j

n∑
i=1

|aij| ,

∥A∥∞ = sup
x∈Kn

∥x∥∞=1

∥Ax∥∞ = max
i

n∑
j=1

|aij| .

New, we give the definition of linear compact operator and the attain its norm.
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Definition 1.4.8.

A linear operator u : X −→ Y is said to be compact if u(B) is a precompact subset of Y for

every bounded subset B of X. An equivalent formulation is that u is compact if and only

if every bounded sequence (xi)∞
i=1 in X has a subsequence (xik

)∞
k=1 such that (u (xik

))∞
k=1

converges in Y .

We denote by K(X, Y ) the linear space of all compact linear operators from X into Y .

Proposition 1.4.3. [22]

The classes K is closed Banach space.

Definition 1.4.9. [26]

Let X be a normed linear space and let T ∈ B(X, Y ), T is said to attain its norm at

x0 ∈ SX if ∥Tx0∥ = ∥T∥.

We let MT denote the set of all unit vectors in SX at which T attains norm, i.e.,

MT = {x ∈ SX : ∥Tx∥ = ∥T∥}.
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Chapter 2
Some orthogonality types

2.1 Orthogonality in Hilbert spaces

Definition 2.1.1.

Let H be a Hilbert space and let x, y ∈ H. We say that x is orthogonal to y, written as

x ⊥ y, if ⟨x, y⟩ = 0.

Remark 2.1.1.

The orthogonality relation has the following properties:

i) 0H ⊥ x for any x ∈ H.

ii) x ⊥ y ⇒ y ⊥ x.

iii) x ⊥ x ⇒ x = 0H.

iv) x ⊥ xn, n ∈ N, and lim
n→∞

∥xn − x∥ = 0 ⇒ xn ⊥ x.

Definition 2.1.2.

Consider non-empty sets A and B of Hilbert space H. We say A is orthogonal to B,

denoted A ⊥ B, if for all x ∈ A and for all y ∈ B on x ⊥ y.

Theorem 2.1.1.

If A is non-empty sets of a Hilbert space H, then

A⊥ = {x, x ∈ H, and x ⊥ A}

is a closed linear subspaces of H.

A⊥ is called the orthogonal complement of A.

13
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Proof. First observe that A⊥ ̸= ∅, because 0H ∈ A⊥. Let x1, x2 ∈ A⊥, λ1, λ2 ∈ K and

y ∈ A, then

⟨λ1x1 + λ2x2, y⟩ = λ1 ⟨x1, y⟩ + λ2 ⟨x2, y⟩ = 0,

so λ1x1 + λ2x2 ∈ A⊥ and A⊥ is a linear subspace of H.

Let x0 ∈ A⊥ then there is a sequence {xn; n ∈ N} ⊂ A⊥ such as lim
n→∞

∥xn − x0∥ = 0.

We have for everything

y ∈ A : ⟨x0, y⟩ = lim
n→∞

⟨xn, y⟩ = 0.

So x0 ∈ A⊥ and A⊥ is a closed linear subspace.

Definition 2.1.3.

A non-empty set A of a Hilbert space H is a orthogonal system if : for every x, y ∈ A, x ̸=

y, we have x ⊥ y.

Definition 2.1.4.

A set E = {ei; i ∈ I} of a Hilbert space H is a orthonormal system if:

⟨ei, ej⟩ =


1, if i = j

0, if i ̸= j.

Example 2.1.1.

Cn = {(z1, z2, · · · , zn) : zj ∈ C, j = 1, 2, · · · , n}

⟨(z1, z2, · · · , zn), (w1, w2, · · · , zn)⟩ =
n∑

k=1
zkwk,

is a inner product

ei = (0, · · · , 0, 1, 0, · · · , 0), e1 = (1, · · · , 0, 0, · · · , 0), en = (0, · · · , 0, 0, · · · , 1),

{ei}i is an orthogonal system, effect

⟨ei, ej⟩ = ⟨(0, · · · , 0, 1, 0, · · · , 0), (0, · · · , 0, 1, 0, · · · , 0)⟩

=


1, if i = j

0, if i ̸= j.
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2.2 Birkhoff -Jamse orthogonality

The first orthogonality type that was defined for general normed linear spaces is probably

the one called Roberts orthogonality introduced by Roberts in 1934 see[23].

Definition 2.2.1. (Roberts)

Let X be a normed linear space, we say that a vector x is said to be Roberts orthogonal

to a vector y (x ⊥R y) if the equality ∥ x + αy ∥=∥ x − αy ∥ holds for any scalar α.

Later, in 1935, Birkhoff introduced Birkhoff orthogonality [6], which was revealed to

be the most important orthogonality defined for normed linear spaces.

In [10],[6],[12] James studied many important properties related to the notion of orthog-

onality. The notion of orthogonality has been studied by many mathematicians over the

time, a few of them are Alonso and Soriano [1], Benítez et. al. [4], Kapoor and Prasad

[15] and Partington [17].

Definition 2.2.2. (Birkhoff)

Let X be a normed linear space, we say that a vector x is said to be Birkhoff-James

orthogonal to a vector y (x ⊥B y) if the inequality ∥ x + αy ∥≥∥ x ∥ holds for any scalar

α.

Example 2.2.1.

Concider in ℓ2(R2) the vectors (1, 0),(0, 1) and (1, 1) then (1, 0)⊥B(0, 1) but (1, 1) ̸⊥B

(0, 1), whereas in ℓ∞(R2) the vectors (1, 1), (1, 0) and (0, 1) then (1, 1)⊥B(1, 0) and (1, 1)⊥B(0, 1).

Proposition 2.2.1.

Let X be a normed linear space, x, y be a vectors in X and λ, µ be a scalars, then the

following holds

▶ Non-degeneracy: λx ⊥B µx if and only if ∥ λµx ∥= 0.

▶ Homogeneity: If λx ⊥B y, then λx ⊥B µy for any scalar λ.

▶ Continuity: Let {xi}∞
i=1 , {yi}∞

i=1 be two sequences such that x = lim
i−→∞

xi and y =

lim
i−→∞

yi. If xi ⊥B yi, for each i ∈ N then x ⊥B y.
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Definition 2.2.3. [28]

For any two elements x, y in a real normed linear space X, let us say that y ∈ x+ if

∥x + λy∥ ≥ ∥x∥ for all λ ≥ 0. Accordingly, we say that y ∈ x− if ∥x + λy∥ ≥ ∥x∥ for all

λ ≤ 0.

Proposition 2.2.2. [24]

Let X be a real normed linear space and x, y ∈ X. Then the following are true:

1- Either y ∈ x+ or y ∈ x−.

2- x⊥By if and only if y ∈ x+ and y ∈ x−.

Characterizations. We start this section with the following important characteriza-

tion of Birkhoff orthogonality.

Theorem 2.2.1. [9, Corollary 2.2]

Let x and y two elements of a normed linear space X, then x ⊥B (αx + y) if and only if,

there exists f ∈ X∗ satisfying | f(x) |=∥ f ∥∥ x ∥ such that α = − f(y)
f(x) .

The above theorem immediately yields the following corollary.

Corollary 2.2.1.

Let x and y two elements of a normed linear space X, then x ⊥B (αx + y) if and only if

there existe a non-zero f ∈ X∗ such that | f(x) |=∥ f ∥∥ x ∥ and f(y) = 0.

Homogeneity. The homogeneity of Birkhoff orthogonality follows from the absolute

homogeneity of the norm

Theorem 2.2.2.

Birkhoff orthogonality is homogeneous in any normed linear space.

Existence. Concerning existence properties of Birkhoff orthogonality we have the

following results.

Theorem 2.2.3. (Right existence)[9]

Let X be a normed linear space. For any x, y ∈ X, there exists a real number α such that

x ⊥B (αx + y).

Moreover, for all number α satisfies α ≤ ∥y∥
∥x∥ . If x ⊥B (αx + y) and x ⊥B (βx + y) we

have x ⊥B (γx + y) for all number γ lying between α and β.
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A result similar to the one in Theorem 2.2.3 holds for the left existence.

Theorem 2.2.4. (Left existence)

Let X be a normed linear space and x, y ∈ X. Then there exists a real number α such

that (αx + y) ⊥B x. Moreover

∥ αx + y ∥= inf{∥ βx + y ∥: β ∈ R}.

If (αx + y) ⊥B x and (βx + y) ⊥B x then (γx + y) ⊥B x for any real number γ lying

between α and β

Additivity. Now, we give the definition of the right additivity and the left additivity

of Birkhoff-James orthogonality.

Definition 2.2.4. (Right additivity)

Let X be a normed linear space. We say that Birkhoff-James orthogonality is right additive

in X if for any x, y, z ∈ X, x⊥By, x⊥Bz implies that x⊥B(y + z).

Definition 2.2.5. (Left additivity)

Let X be a normed linear space. We say that Birkhoff-James orthogonality is left additive

in X if for any x, y, z ∈ Xx ⊥B z, y ⊥B z implies that (x + y) ⊥B z.

Remark 2.2.1.

In general Birkhoff-James orthogonality is not right additive, i.e., x⊥By and x⊥Bz may

not imply that x⊥B(y + z)

Example 2.2.2.

Let (1, 1), (1, 0) and (1, 0) in ℓ∞(R2), then (1, 1)⊥B(1, 0) and (1, 1)⊥B(0, 1) but (1, 1) ̸⊥B

(1, 1).

Symmetry. Birkhoff-James orthogonality is not symmetric in general i.e., x ⊥B y

does not imply y ⊥B x. In fact, we have the following theorem that characterizes inner

product spaces among normed linear spaces in terms of the symmetry of Birkhoff- James

orthogonality.

Theorem 2.2.5.

Let X be a normed linear space . X is an inner product space if and only if Birkhoff-James

orthogonality is symmetric in X i.e., for any x, y ∈ X x ⊥B y implies that y ⊥B x.
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The following theorem follows easily from the Hahn-Banach theorem.

Theorem 2.2.6.

Let X be a normed linear space, then for any vector x ∈ X there exists a hy-perplane

H ⊂ X such that x⊥BH i.e., x⊥By ∀y ∈ H.

2.3 Strongly Birkhoff-James orthogonality

Definition 2.3.1. [19, 27]

Let X be a normed linear space and let x, y ∈ X. We say that x is strongly orthogonal to

y in the sense of Birkhoff-James, written as x ⊥SB y, if ∥x + λy∥ > ∥x∥ for all λ ̸= 0.

Remark 2.3.1.

If x ⊥SB y then x ⊥B y but the converse is not true.

Example 2.3.1.

In ℓ∞(R2) the element (1, 0) is orthogonal to (0, 1) in the sense of Birkhoff-James but not

strongly orthogonal.

Definition 2.3.2.

A finite set of elements {x1, x2, . . . , xn} in a normed linear space X is said to be a strongly

orthogonal set in the sense of Birkhoff-James iff for each i ∈ {1, 2, . . . , n},

∥xi∥ <

∥∥∥∥∥∥xi +
n∑

j=1,j ̸=i

λixj

∥∥∥∥∥∥ ,

whenever not all λj’s are 0.

In addition if ∥xi∥ = 1, for each i, then the set is called strongly orthonormal set in the

sense of Birkhoff-James.

Recall that a normed linear space X is said to be uniformly convex iff given ϵ > 0

there exists δ > 0 such that whenever x, y ∈ SX and ∥x − y∥ ≥ ϵ then
∥∥∥x+y

2

∥∥∥ ≤ 1 − δ.

The number δ(ϵ) = inf{1 −
∥∥∥x+y

2

∥∥∥ : x, y ∈ SX , ∥x − y∥ ≥ ϵ} is called the modulus of

convexity of X. A space X is strictly convex iff δ(2) = 1.

The concept of strictly convex and uniformly convex spaces have been extremely useful

in the studies of the geometry of Banach Spaces. One may go through [3],[16],[14],[10],[11],[21],[29],

for more information related to strictly convex spaces.
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In this theorem given the characterization of strictly convex spaces and strongly or-

thogonality of th sense of Birkhoff-James.

Theorem 2.3.1.

Let X be a real normed linear space. If for x, y ∈ X − {0}, x ⊥B y implies x ⊥SB y then

X is strictly convex.

Proof. Let the unit sphere SX contains a straight line segment i.e., there exists ∥u∥ =

∥v∥ = 1 with ∥tu + (1 − t)v∥ = 1 ∀t ∈ [0, 1].

Let x = 1
2u + 1

2v, y = v − u. Consider x + λy.

If −1
2 ≤ λ ≤ 1

2 then ∥x + λy∥ = ∥tu + (1 − t)v∥ = 1 where t = 1
2 − λ. If λ < −1

2 then
1
2 − λ > 1 and so we can write 1

2 − λ = tα for some t ∈ (0, 1) and α > 1. In this case

∥x + λy∥ = ∥tαu + (1 − tα)v∥

= ∥tαu + (α − tα)v + (1 − α)v∥

≥ |∥tαu + (α − tα)v∥ − ∥(α − 1)v∥|

= ||α| − |α − 1||

= 1

If λ > 1
2 then 1

2 + λ > 1 and so we can write 1
2 + λ = tα for some t ∈ (0, 1) and α > 1. In

this case

∥x + λy∥ = ∥(1 − tα)u + tαv∥

= ∥(α − tα)u + tαv + (1 − α)u∥

≥ |∥(α − tα)u + tαv∥ − ∥(α − 1)u∥|

= ||α| − |α − 1||

= 1

Thus ∥x + λy∥ ≤ ∥x∥ ∀λ but ∥x + λ0y∥ = ∥x∥, for λ0 ∈ [−1
2 , 1

2 ]. This is a contradiction

to our hypothesis and so X is strictly convex.

Conversely we have the following theorem
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Theorem 2.3.2. [27]

Let X a normed linear space. Suppose X is a strictly convex space and x, y ∈ X − {0}

with x ⊥B y, then x ⊥SB y.

Proof. Without loss of generality we assume that there exists x, y ∈ X, ∥x∥ = 1 such that

∥x + λy∥ ≥ 1 ∀λ but ∥x + λ0y∥ = 1 for some λ0 ̸= 0.

Let 0 < t < 1, then

1 = t ∥x∥ + (1 − t) ∥x + λ0y∥ ≥ ∥tx + (1 − t) (x + λ0y)∥

1 ≥ ∥tx + (1 − t) (x + λ0y)∥ = ∥x + (1 − t)λ0y∥ ≥ 1

Thus ∥tx + (1 − t) (x + λ0y)∥ = 1, which contradicts the fact that X is strictly convex.

Characterization of a real strictly convex space.

Theorem 2.3.3. [27] A real normed linear space X is strictly convex iff x, y ∈ SX and

x ⊥B y ⇒ x ⊥SB y.

2.4 Isosceles orthogonality

In 1945, James. introduced in [10] the definition of isosceles orthogonality in normed

linear spaces.

Definition 2.4.1. [10]

Let X be a normed linear space, we say that a vector x is said to be isosceles orthogonal

to a vector y (x ⊥I y) if the inequality ∥x + y∥ = ∥x − y∥ holds.

Homogeneity.

One of the most important properties of isosceles orthogonality is that it is homogenous

only in inner product spaces. We see now the origin of this result.

Theorem 2.4.1.

A normed linear space X is an inner product space if and only if, for any x, y ∈ SX and

any number α, the identity ∥αx + y∥ = ∥x + αy∥ holds.
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Assume that isosceles orthogonality is homogeneous.

Let x, y ∈ SX and α ∈ R . Since x + y ⊥I x − y, then (1 + α)(x + y) ⊥I (1 − α)(x − y),

i.e., ∥αx + y∥ = ∥x + αy∥.

Theorem 2.4.2.

Isosceles orthogonality is homogeneous in a normed linear space if and only if this space

is an inner product space.

Theorem 2.4.3.

A normed linear space X is an inner product space if and only if there exists a number

α ̸= {0, −1, 1} such that the implication

x, y ∈ X, x ⊥I y =⇒ x ⊥I αy

holds.

Additivity.

From the continuity of the norm it follows easily that if isosceles orthogonality is addi-

tive then it is also homogeneous. Thus, the next theorem follows directly from Theorem

2.4.2.

Theorem 2.4.4.

The Isosceles orthogonality is additive in a normed linear space if and only if this space is

an inner product space.

New, we give the differences between Birkhoff orthogonality and isosceles orthogonal-

ity.

Theorem 2.4.5. [2, Chapter 4 and Chapter 10]

Let X be a normed linear space with unit sphere SX . Then the following properties are

equivalent:

i) x, y ∈ X, x ⊥I y ⇒ x ⊥B y,

ii) x, y ∈ X, x ⊥B y ⇒ x ⊥I y,

iii) x, y ∈ SX , x ⊥I y ⇒ x ⊥B y,
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iv) x, y ∈ SX , x ⊥B y ⇒ x ⊥I y,

v) x, y ∈ SX , x ⊥I y ⇒ x + y ⊥B x − y,

vi) X is an inner product space.
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Chapter 3
Characterization of orthogonality of bounded

linear operators

3.1 Birkhoff-James orthogonality of linear operators

Definition 3.1.1.

Let X be a finite dimensional real normed space , for any two element T, A ∈ L(X) , T is

said to be orthogonal to A in the sense of Birkhoff-James , written as T⊥BA if and only

if

∥T∥ ≤ ∥T + λA∥ ∀λ ∈ R

.

Example 3.1.1.

In B(ℓ2(R2)) Consider two operators T such that T (0, 1) = (0, 0), and the identity operator

I .

Then I⊥BT because: I + λT = (1, 0) then, ∥I + λT∥ = 1 and ∥I∥ = 1. Moreover,

∥I + λT∥ ≥ ∥I∥ for all λ ∈ R.

Proposition 3.1.1.

Let X is a finite dimensional normed linear space and T, A ∈ L(X) is such that T ⊥B A

then there exists x ∈ X with ∥x∥ = 1 such that ∥Tx∥ = ∥T∥ and Tx ⊥B Ax.

Example 3.1.2. 1- Let T, A : (R3, ∥.∥∞) → (R3, ∥.∥∞) be given by

23
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T =


1 4 −2

3 1 0

2 2 2

 and A =


3 2 5

1 1 0

0 8 3

 .

Then T ⊥B A and there exists x = (1, 1, −1) ∈ R3 with ∥x∥∞ = 1 such that

∥Tx∥∞ = ∥T∥∞ and Tx ⊥B Ax.

2- Let T, A : (R3, ∥.∥∞) → (R3, ∥.∥∞) be given by

T =


0 1 2

1 0 1

−2 0 0

 and A =


3 0 0

1 0 1

1 1 1

 .

Then T ⊥B A and there exists x = (0, 1, 1) ∈ R3 with ∥x∥ = 1 such that ∥Tx∥∞ =

∥T∥∞ and Tx ⊥B Ax.

In this theorem we give Birkhoff-James orthogonality of linear operators defined on a

finite dimensional real Banach space.

Theorem 3.1.1. [24]

Let X be a finite dimensional real Banach space. Let T, A ∈ L(X). Then T⊥BA if and

only if there exists x, y ∈ MT such that Ax ∈ Tx+ and Ay ∈ Ty−.

Now we give the Birkhoff-James orthogonality of compact linear operators defined on

a reflexive Banach spaces.

Theorem 3.1.2. [28]

Let X be a reflexive Banach space and Y be any normed linear space. Then for any

T, A ∈ K(X, Y ), T⊥BA if and only if there exists x, y ∈ MT such that Ax ∈ (Tx)+ and

Ay ∈ (Ty)−.

Proof. Let us first prove the easier sufficient part.

Since A ∈ (Tx)+, ∥T + λA∥ ≥ ∥Tx + λAx∥ ≥ ∥Tx∥ = ∥T∥ for all λ ≥ 0.

Similarly Ay ∈ (Ty)− implies that ∥T + λA∥ ≥ ∥Ty + λAy∥ ≥ ∥Ty∥ = ∥T∥ for all λ ≤ 0.

This completes the proof of the sufficient part.

Let us now prove the necessary part.
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Since T and A are compact linear operators, (T + 1
n
A) is also a compact linear operator

for each n ∈ N. Since X is reflexive, (T + 1
n
A) attains norm for each n ∈ N.

Therefore, for each n ∈ N, there exists xn ∈ SX such that
∥∥∥(T + 1

n
A)xn

∥∥∥ =
∥∥∥T + 1

n
A
∥∥∥ .

Since X is reflexive, BX is weakly compact. Therefore {xn} has a weakly convergent

subsequence. Without loss of generality we may assume that {xn} weakly converges to x.

Since T and A are compact linear operators, Txn −→ Tx and Axn −→ Ax.

Since T⊥BA we have
∥∥∥T + 1

n
A
∥∥∥ ≥ ∥T∥ for all n ∈ N.

Therefore, ∥∥∥∥(T + 1
n

A)xn

∥∥∥∥ =
∥∥∥∥T + 1

n
A

∥∥∥∥ ≥ ∥T∥ ≥ ∥Txn∥ for all n ∈ N.

Letting n −→ ∞, we see that, ∥Tx∥ ≥ ∥T∥ ≥ ∥Tx∥ . This proves that ∥Tx∥ = ∥T∥, i.e.,

x ∈ MT .

Know,we show that Ax ∈ (Tx)+.

For any λ ≥ 1
n

, we claim that ∥Txn + λAxn∥ ≥ ∥Txn∥.

Otherwise, Txn + 1
n
Axn = (1 − 1

nλ
)Txn + 1

nλ
(Txn + λAxn) gives that,

∥∥∥T + 1
n
A
∥∥∥ =

∥∥∥Txn + 1
n
Axn

∥∥∥
≥ (1 − 1

nλ
) ∥|Txn∥ + 1

nλ
∥(Txn + λAxn)∥

≥ (1 − 1
nλ

) ∥Txn∥ + 1
nλ

∥Txn∥

= ∥Txn∥ ≥ ∥T∥ ,

a contradiction.

This completes the proof of our claim.

Now for any λ > 0, there exists n0 ∈ N such that λ > 1
n0

. So for all n ≥ n0,

∥Txn + λAxn∥ ≥ ∥Txn∥. Therefore, letting n −→ ∞, we have, ∥Tx + λAx∥ ≥ ∥Tx∥ .

This completes the proof of the fact that Ax ∈ (Tx)+.

Similarly, considering the compact operators T − 1
n
A, it is now easy to see that there

exists y ∈ MT such that Ay ∈ (Ty)−.

This completes the proof.

For bounded linear operators defined on a normed linear space, the situation is far more

complicated since in this case the norm attainment set exemple. In the next proposition,

we give a sufficient condition for Birkhoff-James orthogonality of bounded linear operators.
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Proposition 3.1.2. [28]

Let X and Y be normed linear spaces. Let T, A ∈ B(X, Y ). Suppose there exists two

sequences {xn} and {yn} in SX satisfying the following two conditions:

(i) ∥Txn∥ −→ ∥T∥ and ∥Tyn∥ −→ ∥T∥, as n −→ ∞

(ii) Axn ∈ (Txn)+ and Ayn ∈ (Tyn)− for all n ∈ N.

Then T⊥BA.

Proof. Since Axn ∈ (Txn)+, for any λ ≥ 0 we have,

∥T + λA∥ ≥ ∥Txn + λAxn∥ ≥ ∥Txn∥

for all n ∈ N. Therefore letting n → ∞, we have, ∥T + λA∥ ≥ ∥T∥, since ∥Txn∥ −→ ∥T∥

as n −→ ∞.

Similarly, Ayn ∈ (Tyn)− implies that, for any λ ≤ 0,

∥T + λA∥ ≥ ∥Tyn + λAyn∥ ≥ ∥Tyn∥

for all n ∈ N . Therefore letting n −→ ∞, we have, ∥T + λA∥ ≥ ∥T∥, since ∥Tyn∥ −→

∥T∥ as n −→ ∞. This completes the proof of the fact that T ⊥B A.

3.2 Strongly Birkhoff-James orthogonality of linear

operators

Definition 3.2.1.

Let X be a finite dimensional real normed space , for any two element T, A ∈ L(X) , T is

said to be orthogonal to A in the sense of Birkhoff-James , written as T⊥BA if and only

if

∥T∥ ≤ ∥T + λA∥ ∀λ ∈ R∗

Theorem 3.2.1. [13]

Let X be a real reflexive strictly convex Banach space and A ∈ K(X) be injective. Then

for any T ∈ K(X),

T ⊥B A =⇒ T ⊥SB A.
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Theorem 3.2.2. [13]

Let X be a real reflexive strictly convex Banach space. Then for any T, A ∈ K(X),

T ⊥B A =⇒ T ⊥SB A or Ax = 0 for some x ∈ MT .

Proof. Let T, A ∈ K(X) such that T⊥BA. If Ax = 0 for some x ∈ MT then we are done.

Assuming Ax = 0 for any x ∈ MT we show that T⊥SBA.

We consider the following two cases:

Case 1. There exists x ∈ MT such that Tx⊥BAx.

Since X is strictly convex, by Theorem 1.3.20 of Sain et al [27]. we get Tx⊥SBAx.

Then for all real scalar λ ̸= 0, we have

∥T + λA∥ ≥ ∥Tx + λAx∥ > ∥Tx∥ = ∥T∥

which implies T⊥SBA.

Case 2. There exists no x ∈ MT such that Tx⊥BAx.

For any x ∈ MT , we first show that either

∥Tx + λAx∥ ≥ ∥Tx∥ ∀λ ≥ 0 or ∥Tx + λAx∥ ≥ ∥Tx∥ ∀λ ≤ 0

.

If possible let there exist λ1 > 0 and λ2 < 0 such that

∥Tx + λ1Ax∥ < ∥T∥ and ∥Tx + λ2Ax∥ < ∥T∥ .

Now Tx = (1 − t)(Tx + λ1Ax) + t(Tx + λ2Ax) where t = λ1
λ1−λ2

∈ (0, 1).

This shows that

∥Tx∥ ≤ ∥(1 − t)(Tx + λ1Ax)∥ + ∥t(Tx + λ2Ax)∥ < ∥T∥

a contradiction to the fact that x ∈ MT .

Thus for each x ∈ MT either

∥Tx + λAx∥ ≥ ∥T∥ ∀λ ≥ 0, or ∥Tx + λAx∥ ≥ ∥T∥ ∀λ ≤ 0.

Conversely, suppose that there exists x1, x2 ∈ MT such that

∥Tx1 + λAx1∥ ≥ ∥T∥ ∀λ ≥ 0 and ∥Tx2 + λAx2∥ ≥ ∥T∥ ∀λ ≤ 0.
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If not, without loss of generality we may assume that

∀x ∈ MT , ∥Tx + λAx∥ ≥ ∥T∥ ∀λ ≤ 0.

For each n ∈ N, the operator (T + 1
n
A), being compact on a reflexive normed space

attains its norm. So there exists xn ∈ SX such that
∥∥∥T + 1

n
A
∥∥∥ =

∥∥∥(T + 1
n
A)xn

∥∥∥.
Using reflexivity of X and we can find a subsequence {xnk} of {xn} such that

xnk
⇀ x0 (say) in BX weakly. Without loss of generality we assume that xn ⇀ x0

weakly. Then T, A being compact, Txn −→ Tx0, Axn −→ Ax0. As T⊥BA we have∥∥∥T + 1
n
A
∥∥∥ ≥ ∥T∥ ∀n ∈ N and so

∥∥∥∥Txn + 1
n

Axn

∥∥∥∥ ≥ ∥T∥ ≥ ∥Txn∥ ∀n ∈ N.

Letting n −→ ∞ we get ∥Tx0∥ ≥ ∥T∥ ≥ ∥Tx0∥. So x0 ∈ MT . For any λ > 1
n

, we

claim that ∥Txn + λAxn∥ ≥ ∥Txn∥.

Otherwise

Txn + 1
n

Axn = (1 − 1
nλ

)Txn + 1
nλ

(Txn + λAxn)

=⇒
∥∥∥∥Txn + 1

n
Axn

∥∥∥∥ ≤ (1 − 1
nλ

) ∥Txn∥ + 1
nλ

∥Txn + λAxn∥

=⇒
∥∥∥∥Txn + 1

n
Axn

∥∥∥∥ < ∥Txn∥ , a contradiction.

Choose λ > 0. Then there exists n0 ∈ N such that λ > 1
n0

and so for all n ≥ n0 we get,

∥Txn + λAxn∥ ≥ ∥Txn∥.

Letting n −→ ∞ we get ∥Tx0 + λAx0∥ ≥ ∥Tx0∥ which holds for any λ ≥ 0. This along

with shows that Tx0⊥BAx0, which violates hypothesis of Case 2. Hence there exists

x1, x2 ∈ MT such that ∥Tx1 + λAx1∥ ≥ ∥T∥ ∀λ ≥ 0 and ∥Tx2 + λAx2∥ ≥ ∥T∥ ∀λ ≤ 0.

As X is strictly convex, we have

∥Tx1 + λAx1∥ > ∥T∥ ∀λ > 0 and ∥Tx2 + λAx2∥ > ∥T∥ ∀λ < 0.

For λ > 0,

∥T + λA∥ ≥ ∥(T + λA)x1∥ > ∥T∥

and for λ < 0,

∥T + λA∥ ≥ ∥(T + λA)x2∥ > ∥T∥ .
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So T⊥SBA.

This completes the proof.

Theorem 3.2.3. [13]

Let X be a real normed linear space and for any T, A ∈ K(X), T ⊥B A =⇒ T ⊥SB A or

Ax = 0 for some x ∈ MT . Then X is strictly convex.

Combining Theorem 3.2.2 and Theorem 3.2.3, we get the following result:

Theorem 3.2.4. [13]

Let X be a real reflexive Banach space. Then X is strictly convex if and only if for any

T, A ∈ K(X), T ⊥B A =⇒ T ⊥SB A or Ax = 0 for some x ∈ MT .

Corollary 3.2.1. [13]

Let X be a real finite dimensional normed linear space. Then X is strictly convex if and

only if for any T, A ∈ B(X), T ⊥B A =⇒ T ⊥SB A or Ax = 0 for some x ∈ MT .

3.3 Orthogonality in B(H)

As discussed earlier, for any two bounded linear operators T, A on a Hilbert space H,

A ⊥B T may not imply T ⊥B A and conversely. We begin with finite dimensional Hilbert

space and characterize those T ∈ B(H) for which A ⊥B T =⇒ T ⊥B A for all A ∈ B(H).

Theorem 3.3.1. [13]

Let H be a finite dimensional real inner-product space and T ∈ B(H). Then for all

A ∈ B(H), A ⊥B T =⇒ T ⊥B A if and only if MT = SH.

Corollary 3.3.1. [7]

Let H be a real finite dimensional inner-product space and T ∈ L(H).

Then for all A ∈ B(H), T ⊥B A =⇒ A ⊥B T if and only if T is the zero operator.

Theorem 3.3.2. [13]

Let H be a real infinite dimensional Hilbert space and T ∈ K(H). Then for all A ∈

B(H), A ⊥B T =⇒ T ⊥B A if and only if T is the zero operator.
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Likewise of isosceles orthogonality of two element we give the definition of isosceles

orthogonality of two operators.

Definition 3.3.1.

Let X be a normed space , for any two element T, A ∈ L(X) , T is said to be isosceles

orthogonal to A , written as T⊥IA if and only if

∥T + A∥ = ∥T − A∥

The study of orthogonality of bounded linear operators is also related to the following

notion of operators having disjoint support.

Definition 3.3.2.

Let H be a real Hilbert space. Two operators A, B ∈ B(H) have disjoint support if and

only if AB∗ = B∗A = 0.

We give the relation between disjoint support, Birkhoff-James orthogonality and isosce-

les orthogonality in the context of bounded linear operators on a Hilbert space,

Proposition 3.3.1. [7]

Let A, B ∈ B(H), where H is a real or complex Hilbert space, such that AB∗ = B∗A = 0

( disjoint support), then the following holds:

1. A⊥BB and B⊥BA.

2. A⊥IB.

Proof. 1. Consider h ∈ SH. Then for any ∈ K

∥(A + λB)h∥2 = ∥Ah∥2 + ∥λBh∥2 + 2|λ|2Re⟨B∗Ah, h⟩ = ∥Ah∥2 + ∥λBh∥2 ,

where Re(z) denotes the usual real part of z ∈ K. Therefore,

∥A + λB∥2 ≥ ∥(A + λB)h∥2 ≥ ∥Ah∥2

for all h ∈ SH,

which implies that ∥A + λB∥ ≥ ∥A∥ for any λ ∈ K.

Interchanging the roles of A and B, we can obtain in a similar way that B⊥BA.

Univ BBA 30 2021/2022



CHAPTER 3. CHARACTERIZATION OF ORTHOGONALITY OF BOUNDED
LINEAR OPERATORS Laoubi Saadia

2. If A, B ∈ B(H) satisfy B∗A = 0, then for any λ ∈ K , we have,

∥A + λB∥2 = sup
{
∥(A + λB)h∥2 : h ∈ SH

}
= sup

{
∥Ah∥2 + ∥λBh∥2 : h ∈ SH

}
= ∥A − λB∥2 .

This completes the proof of the second part of the proposition and establishes it

completely.

However, not every pair of operators A, B ∈ B(H), such that A⊥BB or A⊥IB, have

disjoint support. This idea can be illustrated in the next example.

Example 3.3.1.

Let H be the two-dimensional real Hilbert space. We consider Let A =

4 0

0 3

 and

B =

0 0

0 1

 Then,

1- ∥A + B∥ = ∥A − B∥ = 4 and

2- A∗B =

0 0

0 3


which implies that A, B do not have disjoint support.

Theorem 3.3.3. [7]

Let A, B ∈ B(H) and suppose that there exists h0, k0 ∈ H such that h0 ∈ MA+B and

k0 ∈ MA−B . Then the following assertions are true.

(i) If ⟨Ah0, Bh0⟩ ≤ 0 and ⟨Ak0, Bk0⟩ ≥ 0, then A⊥IB.

(ii) If A⊥IB then ⟨Ah0, Bh0⟩ ≥ 0 and ⟨Ak0, Bk0⟩ ≤ 0.

Proof. 1. Assume that all the conditions of the statement are satisfied. Let f, g : H −→ R

be given by

f(h) = ∥(A + B)h∥2 = ∥Ah∥2 + ∥Bh∥2 + 2⟨Ah, Bh⟩ and

g(h) = ∥(AB)h∥2 = ∥Ah∥2 + ∥Bh∥2 − 2⟨Ah, Bh⟩.
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Then, f(h) − g(h) = 4⟨Ah, Bh⟩. Suppose that

g(k0) = ∥A − B∥2 < ∥A + B∥2 = f(h0) =⇒ g(h0) ≤ g(k0) < f(h0).

Thus, 0< f(h0) − g(h0) = 4⟨Ah0, Bh0⟩, which is a contradiction. Hence, g(k0) ≥ f(h0).

Analogously, it can be proved that f(h0) ≥ g(k0). Finally,

∥A + B∥2 = f(h0) = g(k0) = ∥AB∥2 ,

which implies A⊥IB.

2. We only prove the first inequality, the other can be obtained with a similar argument.

By the real polarization formula we get

⟨Ah0, Bh0⟩ = 1
4

[∥(A + B)h0∥2 − ∥(A − B)h0∥2]

≥ 1
4

[∥A + B∥2 − ∥AB∥2] = 0.

Remark 3.3.1.

Suppose that in Theorem 3.3.3, h0 and k0 also satisfy

⟨Ah0, Bh0⟩ = ⟨Ak0, Bk0⟩ = 0.

Then, there exists h1 ∈ SH such that ∥(A + B)h1∥ = ∥(A − B)h1∥.

It can be easily proved using polarization formula and hypothesis,

0 = ⟨Ah0, Bh0⟩ = 1
4

[∥(A + B)h0∥2 ∥(A − B)h0∥2]

and this implies ∥(A − B)h0∥ = ∥(A + B)h0∥ = ∥(A − B)k0∥, where last equality is due

to isosceles orthogonality between A and B previously proved.

By a similar argument, it can be proved that ∥(A + B)k0∥ = ∥(A + B)h0∥.

The proof is completed by taking h1 ∈ {h0; k0}.

The following result combines Theorem 3.2.2 and last remark.

Corollary 3.3.2. [7]

Let A, B ∈ B(H) and suppose that there exists h1 ∈ MA+B ∩MA−B such that ⟨Ah1, Bh1⟩ =

0. Then A⊥IB,

∥A∥2 + ∥B∥2 ≤ ∥A + B∥2 + ∥AB∥2 ≤ 2
(
⟩ ∥A∥2 + ∥B∥2

)
,
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and if h1 /∈ N(A) ∪ N(B) then ∥A + B∥2 = ∥A − B∥2 = 2.

Proof. It was proved in Theorem 3.3.3 that, under these hypothesis, A⊥IB. Moreover,

∥A + B∥2 = ∥(A + B)h1∥2 = ∥Ah1∥2 + ∥Bh1∥2 ≥ ∥A∥2 + ∥B∥2 and

∥A − B∥2 = ∥(A − B)h1∥2 = ∥Ah1∥2 + ∥Bh1∥2 ≥ ∥A∥2 + ∥B∥2 .

Then

∥A + B∥2 + ∥A − B∥2 ≥ 2
(
⟨∥A∥2 + ∥B∥2

)
.

On the other hand,

∥A∥2 + ∥B∥ 2 ≥ 2 max(∥A∥2 ; ∥B∥2) ≥ ∥A + B∥2 + ∥A − B∥2 ,

∥(A + B)h1∥2 ∥Bh1∥2 ∥Ah1∥2 ∥Bh1∥2 = |⟨(A + B)h1, Bh1⟩|2|⟨Ah1, Bh1⟩|2.

If we assume that h1 ̸= N(A) ∪ N(B), then ∥A + B∥2 = 1 + ∥Ah1∥2. By symmetry we

obtain that ∥A + B∥2 = 1 + ∥Bh1∥2.

Now, by the Parallelogram law we get

∥A + B∥2 + ∥A − B∥2 = ∥(A + B)h1∥2 + ∥(AB)h1∥2 = 2(∥Ah1∥2 + ∥Bh1∥2).

It follows that ∥Bh1∥ = 1 and ∥A + B∥2 = 2.
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