

Algerian Republic Democratic and Popular

Ministry of Higher Education and Scientific Research

University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj

Mathematics and Computer Science Faculty

Department of Computer Science

Specialization

Distributed Informatics and Decision-making

Thesis submitted in fulfillment of the requirements for the degree of

Third Cycle LMD Doctorate in Computer science

__

Conceptual Solutions of Modeling the Adaptive Aspect for

Context-Awareness in Ubiquitous Environments

__

Issues conceptuelles de modélisation de l’aspect adaptif pour

la sensibilité au contexte en environnement ubiquitaire

__

Presented by

Boudjemline Haïder

Committee:

Dr. Nouioua Farid University of Bordj Bou Arreridj President

Pr. Khababa Abdallah University of Setif Examiner

Dr. Alti Adel University of Setif Examiner

Dr. Akhrouf Samir University of M’sila Examiner

Pr. Touahria Mohamed University of Setif Supervisor

Pr. Boubetra Abdelhak University of Bordj Bou Arreridj Co-Supervisor

2018/2019

This thesis is dedicated to my parents,

to my brothers and sisters,

and to all those who believed in me,

without whose support during the hardest of times,

this work would not have been possible.

Acknowledgments
First and foremost, my truthful thankfulness goes to the most merciful ALLAH for all things

he blessed me with throughout my whole life. Without those blessings, I would not be in this

position at all.

During my doctoral study, I have been accompanied and supported by many people. It is a

pleasure that I have now the opportunity to express my gratitude to all of them.

I owe my most sincere gratitude to my supervisor Pr. Touahria Mohamed for his sym-

pathetic personality, enthusiasm, patience, engagement and for his countless hours of reading,

useful comments, numerous valuable advices and remarks.

I also feel honored and grateful to thank my co-supervisor Pr. Boubetra Abdelhak, who

has always kept an eye on the progress of my work and was always available when I needed his

advice. His encouragement and guidance were very valuable.

I would like to thank the members of the jury for accepting to evaluate my work: Dr.

Nouioua Farid, Pr. Khababa Abdallah, Dr. Alti Adel, and Dr. Akhrouf Samir, which

means a significant amount of work.

Special thanks to Kaabeche Hamza and Bounouni Mahdi who provided valuable inputs

about my work and encouraged the research collaboration.

Furthermore, I extend my sincere thanks to all my colleagues especially to Younes Chaouch

Islem and Loucif Hamza.

I would like to acknowledge and thank my faculty for allowing me to conduct my research

and providing any requested assistance.

Words cannot express how grateful I am to my parents for the sacrifices that they have made

on my behalf and their prayers since the day I was born. Also, all appreciation goes to my

brothers and sisters for their continuous support and their constant care.

I am also very grateful to all my friends, especially Yahia, Lokmane, Amine, Mounir, and

Hamza who have always been a constant source of encouragement during the hardest times.

Thank you all

i

Abstract
With the widespread use of mobile devices, a new generation of ubiquitous applications

has emerged in daily life activities, making information available everywhere and at any mo-

ment. Context-awareness is the feature that allows these applications to be smart, by enabling

them to continuously detect the user’s current situation and to assist him or her by adapting the

application’s behavior accordingly.

In the same vein, designing context-aware applications involves new challenges not present

in traditional ones, including the perpetual variations in contextual information and the different

interactions with sensors. This has propelled the software engineers to introduce additional

requirements analysis and enhanced modeling techniques capable of dealing with the different

contextual parameters that may affect the application’s behavior.

The Unified Modeling Language (UML) is the most commonly used language to specify,

visualize, and document the artifacts of software systems. Nevertheless, existing UML dia-

grams are too general to describe context-aware systems adequately, they do not offer suitable

notations to distinguish context-awareness from other system requirements.

This thesis proposes a new modeling approach called the Context Unified Modeling Lan-

guage (CUML), which is an extension of UML diagrams to cater for the specification, visual-

ization, and documentation of context-aware computing systems.

In this thesis, we present a number of contributions through which we have succeeded in (i)

A novel notion called ContextClass diagram, which extends the UML Class diagram to model

the structure of context-aware systems by monitoring the contextual aspects that characterize

them. (ii) A novel notion called ContextSequence diagram, which extends the UML Sequence

diagram to model the interactions as well as the adaptation behavior of context-aware systems.

(iii) A set of concrete modeling editors. (iv) A case study in the healthcare field to demonstrate

the pragmatics of the proposed approach.

Keywords: Context-aware Systems, Ubiquitous Environment, Adaptation, Context Modeling,

Requirements Analysis, Software Design.

ii

Contents

Acknowledgement i

Abstract ii

Table of Contents iii

Figure Index x

List of Tables xi

Glossary of Abbreviations xii

1 Introduction 1

1.1 Background . 2

1.2 Challenges . 2

1.3 Scopes and contributions . 3

1.4 Case study . 4

1.5 Evaluation criteria . 4

1.6 Structure of the thesis . 5

I STATE OF THE ART 7

2 Literature Review of Context-Aware Computing 8

2.1 Introduction . 9

2.2 Context and Context-awareness . 9

2.2.1 What is context? . 9

iii

2.2.2 Context-awareness . 11

2.3 Context categories and characteristics . 13

2.4 Adaptation to context . 14

2.4.1 Definition of adaptation . 15

2.4.2 Adaptation process . 15

2.4.3 Classifications of adaptation . 16

2.4.4 Utility of adaptation . 16

2.5 Context-awareness in ubiquitous environments 17

2.5.1 The origins of context-awareness in ubiquitous computing 17

2.5.2 Early context-aware ubiquitous applications 18

2.5.3 Context-awareness usage in ubiquitous applications 19

2.6 Common context-aware systems architecture 21

2.6.1 Context sensing layer . 22

2.6.2 Raw data retrieval layer . 23

2.6.3 Preprocessing layer . 23

2.6.4 Storage and Management layer . 23

2.6.5 Application layer . 24

2.7 Context-aware computing research areas . 24

2.8 Summary . 25

3 The Model Driven Engineering 26

3.1 Introduction . 27

3.2 The four-level architecture . 27

3.2.1 Basic concepts . 27

3.2.2 Why use metamodels? . 28

3.2.3 The Meta-Object Facility (MOF) . 28

3.2.4 The four-level architecture . 29

3.3 The Model-Driven Architecture (MDA) . 30

3.3.1 Principles of the MDA . 30

3.3.2 Models managed in the MDA . 31

3.3.3 MDA process . 31

3.3.4 Model transformation techniques in MDA 32

iv

3.3.4.1 The marking technique . 32

3.3.4.2 The model merging technique 33

3.4 The Unified Modeling Language (UML) . 33

3.4.1 Overview of the UML . 33

3.4.2 UML diagrams . 34

3.4.2.1 The UML Class diagram 35

3.4.2.2 The UML Sequence diagram 39

3.5 UML extension mechanisms . 42

3.5.1 When to extend UML? . 42

3.5.2 Lightweight extension (UML Profile) 43

3.5.3 Heavyweight extension (MOF-based metamodel) 44

3.5.4 Lightweight vs. Heavyweight . 45

3.6 Summary . 46

II CONTRIBUTIONS 47

4 Context Handling Approaches 48

4.1 Introduction . 49

4.2 Why is context difficult to handle? . 49

4.3 Handling context as a separated concern . 51

4.4 Context handling approaches . 52

4.4.1 The Context Toolkit . 52

4.4.2 Handling context using the MDA . 54

4.4.2.1 The marking technique . 54

4.4.2.2 The merging technique . 55

4.4.3 Handling context using UML Profiles 56

4.5 Discussion and evaluation of the existing approaches 58

4.6 Summary . 61

5 Overview of the Context Unified Modeling Language 62

5.1 Introduction . 63

5.2 Motivations . 63

v

5.3 Overview of the Context Unified Modelig Language 64

5.4 Our vision of context . 65

5.5 Implementation tools . 67

5.5.1 Eclipse Ecore tools . 67

5.5.2 The UMLet tool . 67

5.6 Summary . 68

6 Extending the Class Diagram to Model Context-Aware Systems: the ContextClass

Diagram 69

6.1 Introduction . 70

6.2 Limitations of the traditional UML Class diagram 70

6.3 Extension of the UML Class diagram: the ContextClass diagram 71

6.4 ContextClass diagram metamodel . 73

6.5 Ecore implementation: ContextClass hierarchical editor 76

6.6 ContextClass diagram graphical editor . 78

6.7 Summary . 79

7 Extending the Sequence Diagram to Model Context-Aware Systems: The Con-

textSequence Diagram 80

7.1 Introduction . 81

7.2 Limitations of the traditional UML Sequence diagram 81

7.3 Extension of the UML Sequence diagram: the ContextSequence diagram . . . 82

7.4 ContextSequence diagram metamodel . 86

7.5 Ecore implementation: ContextSequence hierarchical editor 88

7.6 ContextSequence diagram graphical editor . 91

7.7 Summary . 92

8 Case Study: a Smart Blood Pressure Tracker Application 93

8.1 Introduction . 94

8.2 Description of the Smart Blood Pressure Tracker 94

8.3 Utility of the Smart Blood Pressure Tracker 96

8.4 Requirements specification . 97

8.5 Contextual parameters of the SPBT system 98

vi

8.6 Modeling the SBPT with the ContextClass diagram 99

8.6.1 The SBPT system’s structure . 99

8.6.2 Modeling the SBPT with the ContextClass graphical editor 100

8.6.3 Modeling the SBPT with the ContextClass hierarchical editor 101

8.7 Modeling the SBPT with the ContextSequence diagram 104

8.7.1 The SBPT system’s behavior . 104

8.7.2 Modeling the SBPT with the ContextSequence graphical editor 105

8.7.3 Modeling the SBPT with the ContextSequence hierarchical editor . . . 107

8.8 Summary . 110

9 Conclusion and Future Perspectives 111

9.1 Research summary . 112

9.2 Evaluation criteria revisited . 113

9.3 Contribution to knowledge . 115

9.4 Future works . 116

Bibliography 117

Appendix A 130

Appendix B 132

List of Scientific Papers 138

vii

Figure Index

2.1 Context-awareness in the computing evolution chain [46] 18

2.2 A typical display of the Active Badge system [54] 19

2.3 Screenshots of the indoor Cyberguide [55] . 20

2.4 The outdoor Cyberguide with GPS unit [55] 21

2.5 Layered architecture of context-aware systems [60] 21

3.1 Relationships between system, model, and metamodel [71] 28

3.2 The four level architecture of MOF [75] . 29

3.3 Model transformation process [71] . 30

3.4 Models and transformation process in the MDA [71] 32

3.5 The organization of UML diagrams [71] . 34

3.6 UML Class diagram metamodel [74] . 37

3.7 An example of a typical UML Class diagram [74] 38

3.8 UML Sequence diagram metamodel [74] . 41

3.9 An example of a typical UML Sequence diagram [74] 42

3.10 Example of UML lightweight extension [75] 43

3.11 Example of UML heavyweight extension [75] 44

3.12 UML Lightweight vs. Heavyweight extensions mechanisms [84] 45

4.1 The Context Toolkit architecture [61] . 53

4.2 MDA architecture based on the marking technique [76] 54

4.3 MDA architecture based on the merging technique [76] 55

4.4 The Class stereotypes of the proposed Profile [101] 56

4.5 The Association stereotypes of the proposed Profile [101] 57

4.6 The timeline of the studied context handling approaches 58

viii

5.1 Overview of the Context Unified Modeling Language diagrams 64

5.2 Context and context-aware applications . 66

6.1 An example of the ContextClass "Tourist" . 72

6.2 ContextClass diagram metamodel definition 73

6.3 Classifier specialization: the ContextClass metaclass 73

6.4 Feature specialization: the ContextualFeature metaclass 74

6.5 ContextClass structure: the monitor metaclass 74

6.6 The metamodel of the ContextClass diagram 75

6.7 ContextClass metamodel implementation under Eclipse 77

6.8 Example of creating a new ContextClass model 78

6.9 The ContextClass diagram graphical editor interface 79

7.1 An example of an adapt combined fragment in a ContextSequence diagram . . 84

7.2 ContextSequence diagram for the Temperature Control System 85

7.3 ContextSequence diagram metamodel definition 86

7.4 Lifeline specialization: the SensorLifeline metaclass 87

7.5 InteractionFragment specialization: the AdaptationCombinedFragment metaclass 87

7.6 Constraint specialization: the ContextualConstraint metaclass 88

7.7 The metamodel of the ContextSequence diagram 89

7.8 ContextSequence metamodel implementation under Eclipse 90

7.9 Example of creating a new ContextSequence model 91

7.10 The ContextSequence diagram graphical editor interface 92

8.1 A smartwatch with a built-in heart rate sensor 95

8.2 The infrastructure of the Smart Blood Pressure Tracker system 95

8.3 The ContextClass graphical editor: Modeling the SBPT’s structure 101

8.4 The ContextClass Eclipse editor: creating new ContextClasses and associations 101

8.5 The ContextClass Eclipse editor: adding new properties and operations 102

8.6 The ContextClass Eclipse editor: defining the type of a new monitor 103

8.7 The ContextClass Eclipse editor: defining the influenced operations for a monitor103

8.8 The ContextSequence graphical editor: Modeling the SBPT’s behavior 106

8.9 The ContextSequence Eclipse editor: Defining message proprieties 107

ix

8.10 The ContextSequence Eclipse editor: Defining an adaptation combined fragment 108

8.11 The ContextSequence Eclipse editor: Modeling the hypertensive crisis scenario 109

x

List of Tables

2.1 The main physical sensor types [64] . 22

3.1 The types of relationships in UML Class diagrams [74] 38

4.1 Summary of the studied context handling approach 60

6.1 Recapitulation of the new metaclasses of the ContextClass Diagram 76

7.1 ContextSequence diagram interaction notations 83

7.2 Recapitulation of the new metaclasses of the ContextSequence Diagram 88

8.1 The monitors of each ContextClass of the SBPT system 100

8.2 Specification of the exchanged messages in the SBPT system 104

xi

Glossary of Abbreviations

3G 3rd Generation

4G 4th Generation

ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

CAMEL Context-Awareness ModEling Language

CAProf Context-Aware Profile

CIM Computation Independent Model

CM Context Model

CMP Context Modeling Profile

CSOA Context-aware Service Oriented Architecture

CUML Context Unified Modeling Language

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

ECA Enterprise Collaboration Architecture

EDOC External Document

EMF Eclipse Modeling Framework

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

ID Identifier

IR Infrared

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MDIA Model-Driven Integration Architecture

xii

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

OMT Object-Modeling Technique

OOSE Object-Oriented Software Engineering

PC Personal Computer

PDA Personal Digital Assistant

PDM Platform Description Model

PIM Platform Independent Model

PSM Platform Specific Model

RFID Radio Frequency Identification

SBPT Smart Blood Pressure Tracker

SP Smartphone

SW Smartwatch

SDLC Software Development Life Cycle

TCS Temperature Control System

UML Unified Modeling Language

UV Ultraviolet

WiFi Wireless Fidelity

xiii

Chapter 1

Introduction

"If we knew what it was we were doing,

it would not be called research, would it?"

Albert EINSTEIN

Contents
1.1 Background . 2

1.2 Challenges . 2

1.3 Scopes and contributions . 3

1.4 Case study . 4

1.5 Evaluation criteria . 4

1.6 Structure of the thesis . 5

1

Chapter 1 Introduction

1.1 Background

The last few years have shown a growing evolution in mobile technologies, the prolifer-

ation of smartphones and other handheld devices has prominently led to the emergence of a

new commonly acknowledged research field called ubiquitous computing. Indeed, the future

of computer science was marked by Mark Weiser’s vision [1] who defines a new technology

that can help people over the course of the day in a graceful and a transparent way: "The most

profound technologies are those that disappear. They weave themselves into the fabric of ev-

eryday life until they are indistinguishable from it". Still today, this vision has bred the seed of

an overwhelming number of research studies with the aim of realizing Weiser’s vision, by dint

of new applications that can take advantage of the emerging mobile technologies.

Given the particularity of ubiquitous environments which are often characterized by dy-

namicity and users’ mobility, a noteworthy way to provide enhanced functioning of ubiquitous

applications is to make them "context-aware" by attributing them capacities to gather informa-

tion about their environments and to react according to the collected information.

The first generations of ubiquitous applications were just location-aware, they detect the

user’s current location and provide adapted services accordingly. Subsequently, recent years

have seen many applications coming to perceive a huge amount of data about the user’s context

and use it to make improved adaptations in response.

1.2 Challenges

Adapting applications to contextual variations leads to an enhancement of the user’s satis-

faction. With this in mind, many software designers and developers are skeptical and concerned

because of the challenges that exacerbate the development of applications with such feature.

Over the last years, meaningful effort has been devoted to the handling of the contextual ele-

ments of which the changes may require the application to adapt itself accordingly.

Regarding the software development lifecycle, early solutions applied the notion of context

on finished applications, by trying to continuously adapt them to new contextual situations,

whereas other approaches tended to introduce context during the development phase using a set

of specific development techniques.

2

Chapter 1 Introduction

Meanwhile, to the authors’ best knowledge, few publications which get into the issue of

considering context since earlier stages of the software development lifecycle. In connection

therewith, software requirements analysis and modeling are mandatory in application develop-

ment process, they play a crucial role in preventing software projects from failure by simulating

and capturing complete description about how systems are expected to perform.

To a great extent, advances in the field of software engineering offered a variety of mod-

eling languages to design systems. The Unified Modeling Language (UML) is a graphical

language commonly used to specify, visualize, and document the artifacts of software systems;

in spite of that, UML is an all-purpose modeling language, which means that the current form of

its diagrams is sufficient to represent traditional systems concerns, but does not have notations

to specify context-awareness requirements conveniently.

1.3 Scopes and contributions

This thesis focuses on an increasingly common challenge of requirements engineering and

modeling of context-aware systems. Our key purpose is to provide a novel approach for design-

ing self-adaptive applications by extending the Unified Modeling Language with new notations

to cater for the specification, visualization and documentation of context-aware systems.

After discussing the limitations of the existing context handling approaches, we present

our proposal that we called Context Unified Modeling Language (CUML), and which consists

in extending the UML Class and Sequence diagrams for context-aware applications modeling.

By extending the existing notations of the UML Class diagram, we aim to support the de-

sign of context-aware systems’ structure and prepare the context-awareness requirements for the

implementation stage. Hence, the novel graphical notations help to clarify the structural mod-

eling of context-aware applications by highlighting how these are linked to context parameters

and how may the values of those parameters affect the application.

Extending UML notations for the traditional Sequence diagram aims to increase design-

ers’ attention towards context-awareness through two concepts: the first one offers dedicated

notations to model the different interactions that convey contextual information from sensors;

the second one concerns the adaptation behavioral aspect, it depicts the automatic adaptation

actions to be performed depending on context variations.

3

Chapter 1 Introduction

Another advantageous contribution of this thesis is the implementation of the proposed

modeling approaches by creating hierarchical and graphical modeling tools. This may enable

exploiting the expressiveness of our modeling approach by simulating and documenting the

structure and behavior of context-aware systems.

1.4 Case study

To better illustrate the purpose of this thesis work, we rely on an application example

in the healthcare field. Healthcare applications have become popular around the world, the

shift towards them can improve the management of hospital workflows and support clinical

communication between providers and patients.

Our case study is of interest to hypertensive patients and is presented as a Smart Blood

Pressure Tracker. Hypertension, also known as the silent killer, it has no symptoms, but it’s

a major risk for heart disease and stroke, for this, the application is able of screening blood

pressure values regularly to decrease hypertension crisis damage probabilities. Also, the Smart

Blood Pressure Tracker is purposefully intended to provide an automatic system for the daily

measurement and surveillance of the patient’s blood pressure and also to enhance the monitoring

and the reporting of hypertensive patients records, everywhere and at any time.

We chose this example because it expresses the main characteristics of a context-aware

system in a ubiquitous environment, also, it shows the necessity and the interest of having

automatic adaptation reactions to new contextual situations, and which should better be taken

into account at the design stage of the development lifecycle.

Exploiting the proposed CUML diagrams, we aim to demonstrate our modeling approach

in rich scenarios by modeling the various application needs, and show how to apply the novel

diagram notations in practical ways.

1.5 Evaluation criteria

In light of the above objectives, this research sets out to answer the following questions

which stand for its measures of success:

Q1. What is the originality of the CUML proposal and what contributions does it afford over

the existing context handling approaches?

4

Chapter 1 Introduction

Q2. How can software designers achieve efficient translation of context into models using

CUML diagrams?

Q3. How to use CUML to properly integrate the contextual parameters and their influence on

applications when modeling context-aware systems’ structure?

Q4. How does CUML enable software designers to effectively specify details about context

changes events and interactions methods between applications and context sensors?

Q5. How can CUML diagrams be used to describe autonomous adaptation behavior of context-

aware applications?

Q6. How is it possible for applications modelers to concretely build and share their models

using CUML tools?

Q7. Are the resulting models conform to specific syntax rules? How to ensure that?

1.6 Structure of the thesis

This thesis is organized into nine chapters with the following objectives:

The introduction is Chapter 1, it gives some hints to the readers by presenting an overview

of the document. The remainder of this document has two parts. The first one comprises the

state of the art, it includes basic concepts and terminology used throughout this manuscript, as

well as related approaches. It is divided into three chapters:

• Chapter 2 introduces the reader to context, context-awareness, and adaptation, starting

from a historical perspective. The chapter then outlines some fundamental properties

in the domain, such as the possible categorizations of context as well as the common

architecture of context-aware systems.

• Chapter 3 concentrates on introducing some modeling concepts which are requisite to

understand the rest of the thesis, it focuses on standards proposed by the OMG (Object

Management Group) such as the Model-Driven Architecture and the Unified Modeling

Language.

• Chapter 4 provides an overview of the importance of requirements engineering in context-

aware systems development, presents concepts around the separation of concerns, and in-

vestigates some previous works on handling context, by standing out the advantages and

the weaknesses of each approach.

5

Chapter 1 Introduction

The second part of the manuscript presents our contributions, it is divided into four chapters:

• Chapter 5 gives an overview of the CUML modeling approach by presenting our vision

of context, the general methodology in which we proceeded, as well as the tools we used

to elaborate modeling editors of our proposal.

• In Chapter 6, we start by addressing the limitations of the traditional UML Class dia-

gram, afterward, we present the concept of ContextClass diagram to model the structure

of context-aware applications.

• Chapter 7 presents the limitations of the existing UML Sequence diagram, before defin-

ing the concept of the ContextSequence diagram to model the behavior of context-aware

applications.

• Chapter 8 demonstrates the expressiveness of the proposed extensions using a real-world

case study of a Smart Blood Pressure Tracker, we describe its different contextual aspects

using the CUML diagrams.

• Summary of contributions, thesis’s findings, along with some possible directions for fu-

ture research are drawn in Chapter 9.

6

Part I

STATE OF THE ART

7

Chapter 2

Literature Review of Context-Aware

Computing

"The science of today is the technology of tomorrow"

Edward TELLER

Contents
2.1 Introduction . 9

2.2 Context and Context-awareness . 9

2.3 Context categories and characteristics . 13

2.4 Adaptation to context . 14

2.5 Context-awareness in ubiquitous environments 17

2.6 Common context-aware systems architecture 21

2.7 Context-aware computing research areas 24

2.8 Summary . 25

8

Chapter 2 Literature Review of Context-Aware Computing

2.1 Introduction

The continuous process of hardware miniaturization together with the improvements in

the field of software engineering is leading to the birth of smart environments in which users

can search for, access, and exchange information whenever and wherever. Context-awareness

enables these applications to assist the user by adjusting their behavior every time when the

context of use changes. Grasping context characteristics is thus crucial in developing self-

adaptive applications.

This chapter lays the groundwork for the thesis by examining the main properties of

context-awareness in ubiquitous environments, it starts by defining the terms of context, context-

awareness, and adaptation, then explores some fundamentals of the domain, including the com-

mon architecture of context-aware systems and some possible categorizations of context.

2.2 Context and Context-awareness

Throughout this thesis, we will make use of a set of recurrent terms to discuss related works

and to describe novel concepts as well. This section analyses what the community understands

by the terms context and context-awareness.

2.2.1 What is context?

The Oxford Dictionary1 gives a general definition for context as "The circumstances that

form the setting for an event, statement, or idea, and in terms of which it can be fully under-

stood".

According to the Cambridge Dictionary2, context is defined as "The situation within which

something exists or happens, and that can help explain it".

When browsing through the scientific literature from a span of disciplines, we realize that

many definitions were given to the term context, researchers in diverse domains tried to define

it in their own way depending on the necessities and the investigated field. In the following, we

present a non-exhaustive list of context definition proposals ordered chronologically:

1https://en.oxforddictionaries.com
2https://dictionary.cambridge.org

9

Chapter 2 Literature Review of Context-Aware Computing

• Schilit and Theimer [2] were the first to define context by describing it as "locations,

identities of nearby people, objects, and changes to those objects over time".

• Schilit et al. [3] considered context as "the constantly changing execution environment".

• More precisely, Brown et al. [4] enumerated context as "location, identities of the people

around the user, the time of day, season, temperature, etc.".

• Pascoe [5] defined context as "the subset of physical and conceptual states of interest to a

particular entity".

• Brézillon and Pomerol [6] referred to context as "all the knowledge that constrains a

problem solving at a given step without intervening in it explicitly".

• Schmidt [7] considered context as "the knowledge about the state of the user and device,

including surroundings, situation and tasks", he emphasized on the fact that context is

more than location.

• An interesting approach has been proposed by Dix et al. [8] in which context is divided

into four dimensions: system, infrastructure, domain, and physical context.

• One of the most complete definitions was given by Dey and Abowd [9], they describe it

as "any information that can be used to characterize the situation of an entity. An entity

should be treated as anything relevant to the interaction between a user and an application,

such as a person, a place, or an object, including the user and the application themselves".

• By contrast, Winograd [10] saw the definition of Dey and Abowd as too general, so he

specified context as an operational term: "something is context because of the way it is

used in interpretation, not due to its inherent properties".

• In agreement with Mostéfaoui et al. [11], context generally refers to what surrounds the

center of interest, provides additional sources of information "where, who, what" and

increases understanding.

• Lemlouma [12] viewed context as "the set of all environment’s information that can in-

fluence on the process of adaptation and content transmission to the end user".

• Chaari et al. [13] considered that the definition given by Dey may be a source of conflicts

since it does not distinguish what exactly belongs to context from the application’s inter-

nal elements, they proposed to define context as "the set of parameters which are external

to the application and which can influence on its behavior by defining new views on its

data and its services. These parameters have a dynamic aspects that allows them to evolve

during the execution time".

10

Chapter 2 Literature Review of Context-Aware Computing

• Strassner et al. [14] used the following definition of context: "is a collection of measured

(the facts as perceived) and inferred knowledge (resulting from a learning and computa-

tional reasoning applied to past and present contexts) that describe the state and environ-

ment in which an entity exists or has existed".

By analyzing the previous definitions of the term context, one can notice that its meaning

has drastically evolved following the advances in application development, after being related

to location and identity of users and objects, the term has expanded later to include more envi-

ronmental information such as the computing and the physical environment.

2.2.2 Context-awareness

Since the term context-awareness highly depends on context, context-awareness definitions

can therefore be diverse. In the following, we are interested in presenting the foremost defini-

tions given to the terms context-awareness, context-aware computing, context-aware systems,

and context-aware applications.

• The originators of the term context-awareness are Schilit and Theimer [2] who in 1994

defined it as "the ability of a mobile user’s applications to discover and react to changes

in the environment they are situated in".

• Next, Schilit et al. [3] stated that context-awareness enables systems to adapt themselves

according to the location of use, the collection of nearby people, hosts, accessible devices,

as well as to changes to such things over time. A system with these capabilities can

examine the computing environment and react to changes in it.

• Brown et al. [4] defined context-aware applications as those that change their behavior

according to the user’s context.

• As reported by Ryan et al. [15], context-awareness is a term that describes the ability of

the computer to sense and act upon information about its environment, such as location,

time, temperature or user’s identity.

• Salber et al. [16] defined context-awareness to be "the ability to provide maximum flexi-

bility of a computational service based on real-time sensing of context".

• Lieberman and Selker [17] indicated that, unlike traditional applications which acquire

explicit input data (from the user) to produce explicit output, a context-aware application

also takes into account implicit data (generally sensed by its self).

11

Chapter 2 Literature Review of Context-Aware Computing

• Korkea-Aho [18] argue that "a system is context-aware if it can extract, interpret and use

context information and adapt its functionality to the current context of use".

• Dey [19] developed another definition by stating that "a system is context-aware if it

uses context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task".

• Burrell and Gay [20] gave another definition stating that "context-aware computing is the

use of environmental characteristics such as the user’s location, time, identity, and activity

to inform the computing device so that it may provide information to the user relevantly

to the current context".

• In [21] it was shown that "applications are context-aware if they are able to use context to

adapt the presentation of hypermedia".

• For Rohn [22], "a system is context-aware if it can extract, interpret and use context

information and adapt its functionality to the current context of use".

• Barkhuus [23] claims that "context-awareness is the application’s ability to detect and

react to environment variables autonomously".

• Chaari et al. [13] characterized context-aware systems by their capacity to sense the

user’s situation in his environment, and to consequently adapt all the system’s behavior to

the related situation, in terms of services, data, and interfaces, and without explicit user

intervention.

• According to Abbas and his colleagues [24], context-aware systems are capable of re-

turning the user with information relevant and adapted to his needs and his context that

influences his behavior during its interaction with information systems.

• Christopoulou [25] stated that a mobile application is context-aware if it uses context to

provide relevant information to users or to enable services for them, relevancy depends

on a user’s current task and profile.

• Sindico [26] defined context-awareness as "the ability of a system to change its behaviors

depending on the characteristics of the environment".

Throughout the previous definitions, we notice that the context-awareness can be charac-

terized by two common aspects, the ability to sense context and the ability to exploit the sensed

context; in other words, a context-aware system does not solely sense the environment, it is also

able to react to environmental changes.

12

Chapter 2 Literature Review of Context-Aware Computing

Along with that, the term context-aware has become somewhat synonymous with other

terms such as: adaptive [27], reactive [28], responsive [29], situated [30], context-sensitive

[31] and environment-directed [32].

2.3 Context categories and characteristics

Not only is difficult to reach an agreement in what context is, but also on how can it be

categorized. A clear and accurate classification of context is highly needed to sort out a variety

of contexts, to enable application designers to choose what context to use in their applications,

and to determine what context-aware behaviors to support [9].

The context of use can be classified from different perspectives, the list below summarizes

a few well-known forms of context categorization given in the current literature:

• Bill Schilit [3] divided context into three categories: computing context (computing and

network situation), user context (user’s location and other user related situations), and

physical context (physical environment situation).

• Chen and Kotz [33] elaborated two categories: active context which directly influences

on the application behavior, and passive context which is necessary but not critical for the

application, the latter presents it to an interested user to retrieve later.

• Petrelli et al. [34] defined the material context (location, machine, existing platform), and

the social context (social aspects) such as the relationship between the individuals.

• Gwizdka [35] presented two categories: internal context which represents the user’s state,

and the external context which contains the state of the environment.

• Dey [19] classified context into two categories: primary context which encompasses loca-

tion, identity, time and activity information, and secondary context which can be derived

from the former one.

• Hofer et al. [36] established two categories for context: physical context which can be

retrieved with physical sensors, and logical context that contains interaction information

(emotional state of the user, his objectives, etc.).

• Henricksen [37] has shown that context can be categorized as:

– Sensed context is directly detected by sensors such as temperature, humidity, etc.

– Static context is the information that does not change over time such as the identifi-

13

Chapter 2 Literature Review of Context-Aware Computing

cation of sensors from the manufacturer, person identification, etc.

– Profiles context means the information that can evolve over time with low frequency

such as the location of the sensor, the status of the person, etc.

– Derived context means the information that is computed by using primary context

such as the distance between two sensors.

• Razzaque et al. [38] proposed a six categories classification:

– User context: allows getting user’s information, such as his profile. It encompasses

information on his identity, his relationships with other users, etc.

– Physical context: allows to embed physical environment information, such as loca-

tion, humidity, temperature, noise level, etc.

– Network context: provides the relevant network information, such as: network con-

nectivity, bandwidth, protocols.

– Activity context: repertories the events which occurred in the environment, such as

a user movement or a temperature variation.

– Device context: allows identifying the usable devices as well as their information

(ID, location, battery level, available resources, etc.)

– Service context: holds information about the functionalities offered by the system.

• Authors in [39] gave a more detailed classification by identifying several parameters that

may affect the current situation of a user: environment (time, location, etc.), application

(software, hardware, etc.), and the user himself (identity, preferences, etc.).

• Geihs and Wagner [40] indicate that contextual information includes the state of the exe-

cution environment, the state of the computing device, and the user preferences.

• Sánchez-Pi et al. [41] considered that context parameters include physical location, de-

vice type, user role, time, temperature and available battery.

None of those presented types of classification can be considered as the best since each

one is suitable and reasonable in a specific situation. Hence, context can be handled from the

desired perspective using a certain classification scheme.

2.4 Adaptation to context

The concept of adaptation was and still is a subject of numerous studies. This section sets

forth the attention that has been paid to put the adaptation forward in context-aware systems.

14

Chapter 2 Literature Review of Context-Aware Computing

2.4.1 Definition of adaptation

Generally, adaptation equals the ability of systems to use context for providing appropriate

responses to users, in the following we present the most interesting definitions of this term:

• Dey et al. [42] introduced the notion of adaptation to be the work leading to the automa-

tion of a software system based on knowledge of the user’s context.

• Layaïda [43] referred the adaptation to the automatic or semi-automatic means that allow

content to be usable on devices with various characteristics and resources.

• According to Dey and Abowd [9], the adaptation of an application to a particular context

is the activity or process that the application needs to perform in order to satisfy the

requirements posed by the context.

• Satyanarayanan has shown the importance of adaptation in ubiquitous computing in [44]

by stating that "the adaptation is necessary when there is a significant mismatch between

the supply and demand of a resource".

• Capra et al. [45] defined adaptation as "the ability of the application to alter and recon-

figure itself as a result of context changes, to deliver the same service in different ways

when requested in different contexts and at different points in time".

2.4.2 Adaptation process

To accomplish the objective of providing efficient adaptations and maintaining the execu-

tion in diverse situations, the context-aware system must [46]:

• Perceive the necessary contextual information using various sensors.

• Translate this sensed information into an adequate format.

• Interpret and aggregate low-level context information to generate a high-level one (e.g.,

conversion of geographic coordinates into street names).

• Automatically trigger adaptation actions based on the context information and the moni-

toring of actions.

• Make the information accessible to other applications, the context management model

should therefore handle context in a reusable manner.

15

Chapter 2 Literature Review of Context-Aware Computing

2.4.3 Classifications of adaptation

In this passage, readers can explore the essence of the classification of the existing adap-

tation works elaborated by Chassot [47] and summarized by Chaari [48]. This classification

depends on the way in which it is applied, and how resources are utilized, as an instance of the

authors’ study, the resource may be a document, an image, a video or even an application.

• Static (manual) vs. dynamic (automatic): static or manual adaptation consists in

preparing several versions of the same resource so that it can be directly used in its new

context, this strategy presents a simple and effective solution but has the drawback of the

inability to support new contexts. Dynamic adaptation performs transformations on the

resource following the current context, although, adaptation problems may arise when

providing a result which may not be relevant for the related context.

• Vertical (centralized) vs. horizontal (distributed): the adaptation can concern a re-

source which is local to a machine, or distributed on several ones. In the case where the

resource is distributed, the adaptation process can be centralized or distributed over the

different peers where the parts of the resource have been stored. The centralized solution

is easier to implement and gives better performances in terms of access time.

• Behavioral vs. architectural: adaptation can be described as behavioral when it alters

the behavior of the resource without affecting its internal structure, the new resource re-

mains directly exploitable and does not require reevaluations since the structure is the

same. In contrast, adaptation is architectural when the internal structure of the resource

can be adapted according to the users’ needs, this solution offers a high degree of adapt-

ability, but remains difficult to implement.

2.4.4 Utility of adaptation

When environments are dynamically changing, often unavoidably, the adaptation becomes

an attractive option, if not a requirement. Amidst the elementary services that context-aware

systems provide to users are [46]:

• Context triggered action: triggers are set up on certain events to enable context-aware

systems taking automatic actions in response to these events, e.g., given that a user is in a

meeting and there is a phone call for him/her, then the call should be routed to voicemail.

16

Chapter 2 Literature Review of Context-Aware Computing

• Multi-facet command processing: commands issued by the user can produce different re-

sults depending upon the context in which they were issued. For instance, a web browser

responds according to the context of use (available resources: memory, screen size, and

resolution).

• Location-based proximity: information about the location of the user and objects located

nearby can be given high priority, this would be particularly useful when using specific

devices with limited resources. For example, when the user wishes to print something, a

nearby printer would be proposed.

• Metadata tagging: context information can be attached to existing information as meta-

data about physical and virtual objects to give descriptive information. For instance, when

a user records an audio clip on a handheld device, the system can attach the current con-

text (date, time, current activity, etc.) to the recorded clip for easy retrieval and indexing.

• Collaborative computing: voluntary based mission-oriented context-aware and dynamic

communities of computing entities that perform tasks on behalf of users autonomously.

This kind of applications exists in many domains such as campus management, health

care, telemedicine, and crisis management.

2.5 Context-awareness in ubiquitous environments

The aim behind the taking into account of the context of use is to improve the quality of

the provided services by adjusting them relevantly to the user’s current context. The context-

awareness feature has been integrated into various computing domains namely the cloud com-

puting [49], the internet of things [50], in healthcare [51], and in web service systems as well

[52]. In this thesis, we are interested in one of the foremost application fields that takes advan-

tage of context-awareness which is the ubiquitous computing.

2.5.1 The origins of context-awareness in ubiquitous computing

Traditional applications are unaware of the context of execution, they do not discern what

the user is doing, where is he, who is nearby and other information related to the user’s envi-

ronment, they just take the explicit input from the user (e.g., pointing to a menu item), process

it, and then output the result [38].

17

Chapter 2 Literature Review of Context-Aware Computing

In the article "The computer of the 21st century" [1], Mark Weiser shaped the vision of

ubiquitous computing as an omnipresent infrastructure for information and communication

technologies of which the purpose is to create a device-rich computing environment able to

orchestrate devices and provide services to users at anytime and anywhere. Context-awareness

thus seems to be one of the main ingredients to realize the idea of ubiquitous computing.

Deemed as computing of the next generation, ubiquitous computing is aimed to change

the way mobile devices behave. The basic idea is to instrument the physical world around us

with various kinds of sensors, actuators, and tiny computers, the massive amount of information

can then be collected and processed by computer systems, enabling them to deduce the user’s

situation and act correspondingly [38], as a result, mobile users need to keep accessing the

different information and services while moving from one location to another. Figure 2.1 shows

the flow in the evolution chain from centralized computing as presented in [44], [46], [53].

Centralized

computing

Distributed

computing

Mobile

computing

Ubiquitous

computing

Remote communication

Fault tolerance & availability

Mobile networks

Mobile information access

Context-awareness

Smart sensors & devices

+++

Figure 2.1. Context-awareness in the computing evolution chain [46]

2.5.2 Early context-aware ubiquitous applications

Admittedly, first context-aware applications were office and meeting tools; the reason is

that most computers were used in an office environment, also, because it was easier to obtain

context information (location) in a limited and controllable area (an office).

In accordance with several studies, researchers agree that the first work in the domain of

ubiquitous context-awareness computing was the Olivetti’s Active Badge system [54], devel-

oped in 1992, just one year after Weiser’s vision of "The Computer for the 21st century" [1].

With the Active Badge system, employees could be located inside an office building, and phone

calls could be directed to the closest phone to the called person. To meet this objective, each

employee wore a badge that periodically transmitted infrared signals. A network of sensors

placed around the building picked up the signals, and a central location server polled the sen-

sors. In this way, the telephone receptionist could easily find out in which room a person was

located and forward the call to that room’s phone, such cases are shown in Figure 2.2 below.

18

Chapter 2 Literature Review of Context-Aware Computing

Figure 2.2. A typical display of the Active Badge system [54]

The Georgia Tech Cyberguide project [55], [56] was built in the mid-nineties as a mobile

context-aware tour guide to help tourists with information based on their position and orien-

tation. Initial prototypes of the Cyberguide were designed to assist visitors on a tour of the

Graphics, Visualization and Usability Center during monthly open house sessions. The proto-

types worked on an Apple MessagePad and used infrared beacons for user positioning, whereas

location sensing in the outdoor version was based on GPS coordinates. Both Cyberguide indoor

and outdoor systems make use of users’ environment context data: in the indoor application,

users are associated with areas inside the building, while in the outdoor one, the user position is

described through GPS coordinates. Figure 2.3 and Figure 2.4 depict respectively a screenshot

of the indoor Cyberguide and the outdoor version with GPS unit.

2.5.3 Context-awareness usage in ubiquitous applications

Context-aware applications have been making major technological advances with smart

mobile devices that help users to achieve many business processes, Schilit [57] listed few ex-

amples of basic ubiquitous application uses:

• Helping to navigate the computerized world by displaying the interesting objects, both

nearby and far away.

19

Chapter 2 Literature Review of Context-Aware Computing

Figure 2.3. Screenshots of the indoor Cyberguide [55]

• Keeping a record of objects and persons, for use by applications such as activity-based

information retrieval.

• Detecting specific information, for example, electronic messages left for the user or public

perusal.

• Keeping a lookout for nearby devices that can be used opportunistically by applications,

such as additional display terminals in a room.

• Detecting nearby people, objects, or services that are relevant to reminders or actions set

to be triggered by their presence.

• Tracking a particular object as it moves around a region, examples include tracking a

co-worker we wish to talk to or tracking the office coffee cart.

• Tracking objects with a specified set of attributes in a particular region, an example is

tracking all members of a workgroup.

• Finding the nearest object to a specified location that meets specific constraints, examples

include finding the nearest printer or administrator.

• Monitoring the activity at a particular location, a typical example is keeping track of

available terminals at one’s current location.

The reader is referred to [18] for more details about different ubiquitous applications.

20

Chapter 2 Literature Review of Context-Aware Computing

Figure 2.4. The outdoor Cyberguide with GPS unit [55]

2.6 Common context-aware systems architecture

Generally speaking, the architecture is required for systems representation and implemen-

tation, it is an abstraction used for generalizing systems without showing the implementation’s

details [58]. Regarding context-aware systems, many layered-architectures have been proposed

during the last years, they differ in functional range, location and naming of layers [59].

A common architecture in modern context-aware systems is identifiable when analyzing

the various design approaches. The layered architecture, as depicted in Figure 2.5, is primarily

based on five main layers, and augments layers for detecting and using context functionalities

by adding other interpreting and storage layers [60]-[62].

Application

Storage/Management

Preprocessing

Raw data retrieval

Sensors

Figure 2.5. Layered architecture of context-aware systems [60]

21

Chapter 2 Literature Review of Context-Aware Computing

2.6.1 Context sensing layer

Consists of a set of sensors, it is worth to note that a sensor does not only refer to hardware

sensing device but also to any source which may provide useful context information. Regarding

the way data is captured, sensors can be classified into three groups: physical, logical, and

virtual [63].

• Physical sensors: the most frequent type of sensors, many hardware devices are available

nowadays and are capable of providing contextual information by capturing almost any

physical data (e.g., location, acceleration, temperature, and much more). Table 2.1 shows

some examples of physical sensors.

Table 2.1. The main physical sensor types [64]

Type of context Available sensors

Light Photodiodes, color sensors, IR and UV sensors

Visual context Various cameras

Audio Microphones

Motion, acceleration Mercury switches, angular sensors, accelerometers, motion detectors,

magnetic fields

Location Outdoor: Global Positioning System (GPS), Global System for Mobile

Communications (GSM); Indoor: Active Badge system

Touch Touch sensors implemented in mobile devices

Temperature Thermometers

Physical attributes Biosensors to measure skin resistance, blood pressure

• Virtual sensors: provide contextual information through software applications or services,

for instance, we can determine an employee’s location using a virtual sensor by browsing

an electronic calendar, a travel-booking system, or emails, etc.. Also, the user’s activity

can be sensed by checking for mouse-movement and keyboard input.

• Logical sensors: use several information sources, and combine physical and virtual sen-

sors with additional information from databases or various other sources, for example, a

logical sensor can be constructed to detect an employee’s current position by analyzing

logins at desktop PCs and a database mapping of devices to location information.

22

Chapter 2 Literature Review of Context-Aware Computing

2.6.2 Raw data retrieval layer

This layer is dedicated to the retrieval of raw context data; it is based on a set of drivers

(for physical sensors) and APIs (for virtual and logical sensors). By using interfaces, sensors

perceiving the same type of context become exchangeable, for instance, it becomes possible to

replace an RFID (Radio Frequency Identification) system by a GPS (Global Positioning System)

without any major modification in the current and upper layers.

2.6.3 Preprocessing layer

The preprocessing layer is responsible for interpreting sensed contextual information. Usu-

ally, sensors return technical data that are not appropriate to be directly used by applications,

hence, this layer includes transformation operations (extraction and quantization) to raise the

abstraction level, this can be seen when the name of the room the person is in may be more

significant and used than the exact GPS coordinates.

Also, this layer includes another process called aggregation or composition, which consists

in combining single sensed context atoms into meaningful high-level information. For instance,

a system is capable of determining whether a client is situated indoor or outdoor by analyzing

temperature and light, or whether a person is currently attending a meeting by capturing noise

level and location.

2.6.4 Storage and Management layer

The fourth layer is responsible for organizing the stored data in a specific structure, Strang

and Linnhoff-Popien [53] summarized the most relevant data structure approaches in the lit-

erature. This layer also allows clients to access contextual information in two different ways,

synchronous and asynchronous. In the synchronous method, the client side is polling the server

for context changes via remote method calls; it sends a message requesting some data and waits

until it receives the server’s answer. The asynchronous mode works via subscriptions; each

client subscribes to specific events it is interested in, on the occurrence of one of these events,

the client is simply notified. Generally, the asynchronous approach is more suitable due to rapid

changes in the underlying context; the polling technique is more resource intensive as context

data has to be requested quite often [60].

23

Chapter 2 Literature Review of Context-Aware Computing

2.6.5 Application layer

The client is realized in the fifth layer, reactions to different events and context changes

are implemented in this layer depending on the related application’s nature. For example, if

the light sensor of the user’s mobile devices detects bad illumination, text may be displayed in

higher color contrast.

2.7 Context-aware computing research areas

Context-aware computing implicates various concerns that need separate attention. Major

difficulties exacerbating the development of context-aware applications are briefly discussed

below [46], [65].

• Context acquisition and management: context data obtained from diverse sources may

be uncertain, ambiguous or imperfect. In most cases, sensor error or out of date data gives

rise to some uncertainty about sensed context, handling this uncertainty problem before

using the context data is thus needed.

• Context modeling: existing models to represent context vary in many aspects such as

the expressiveness, the scalability, and the ease with which real-world concepts can be

captured. It is important to have a standardized context model to facilitate context inter-

pretation, sharing, and semantic interoperability.

• Context repository: there exist two approaches for storing context data, centralized and

distributed. The centralized one guarantees the integrity of context but suffers from the

traditional problem of centralized data repositories like a single point of failure. A dis-

tributed strategy gives autonomy and allows mobility, although, in this approach, context

repositories should provide a solution to merge interrelated information and enables fur-

ther data retrieval.

• Context query: to explore stored context data across context repositories, we need a

high-level mechanism to issue queries transparently to end users. Context query poses

design issues such as context query language and event notification.

• Context aggregation: composite context is a high-level context that aggregates multiple

atomic contexts. Hence, a context aggregator is needed to retrieve meta-information from

the repository about the specific context providing a related composite context.

24

Chapter 2 Literature Review of Context-Aware Computing

• Context reasoning/inferring: the context interpretation leverages reasoning/learning

techniques to deduce implicit high-level context from explicit low-level one. Intelligent

systems can learn the pattern of users’ actions from historical sequences of context data

and then use this pattern to predict next event.

• Context discovery and delivery: context discovery aims to locate and access context

sources. Issues of context discovery include service description, advertisement and event

subscription. Context delivery performs the job of delivering appropriate context to the

applications; it includes registration, query and notification services.

• Security and privacy: context-aware systems security challenges in the form of privacy,

integrity, and trust. Privacy enables protecting context resources from unauthorized enti-

ties. Integrity focuses on guaranteeing that the provided context information has not been

corrupted by a third party. Trust deals with a respect for common security policy and a

common goal.

Amongst the mentioned challenges, this thesis addresses the issue of context modeling,

apart from the existing models of context, the lack of formalism for the taking into account of

context-awareness and context handling persists.

2.8 Summary

By and large, from the previous definitions of context and for our observation of this new

dimension, context-aware computing is an environment in which applications can sense and

take advantage of a variety of contextual information. Context-awareness in ubiquitous envi-

ronments allows not only to take account of the users’ requests but also to adapt the applications’

behavior according to the variations in the parameters that compose the context of execution.

Adaptation of applications can be a reality if context modeling and management were prop-

erly put in place, for this purpose, meaningful research efforts have been devoted to introducing

methods for sensing, representing, and interpreting contextual information. Nevertheless, we

still need to improve the handling of context, and therefore, to provide a more efficient adapta-

tion of applications.

25

Chapter 3

The Model Driven Engineering

"software is a great combination between artistry and engineering"

Bill GATES

Contents
3.1 Introduction . 27

3.2 The four-level architecture . 27

3.3 The Model-Driven Architecture (MDA) 30

3.4 The Unified Modeling Language (UML) 33

3.5 UML extension mechanisms . 42

3.6 Summary . 46

26

Chapter 3 The Model Driven Engineering

3.1 Introduction

Assuredly, designing complex systems urged the software engineering community to in-

troduce sophisticated paradigms and languages to deal with the different design difficulties.

Indeed, the Model Driven Engineering (MDE) [66] has emerged as a software paradigm which

relies on models to cope with the increasing complexity of software design and development.

In this vein, the Object Management Group (OMG) is famous for its running activities

in diverse domains linked to modeling. The outcomes of these activities have already gained

important notoriety; they serve as the foundation for a lot of forthcoming normative recom-

mendations for products and processes [67]. The interest of this chapter is to walk the reader

through some fundamental OMG’s standards.

3.2 The four-level architecture

Models play a crucial role in the MDE, as in all engineering. This section clarifies basic

terms including models and metamodels as used throughout this manuscript [68]-[70].

3.2.1 Basic concepts

• A system: a collection of parts and relationships among them organized to accomplish

some purpose. It may include software, enterprises, a computer program, etc.

• A model: an information selectively representing some aspect of a system based on a

specific set of concerns. It may represent business, software, or domain-specific aspects

of a system.

• Model-driven: an approach which relies on models to develop a system, it supports the

design, the construction, and the deployment of systems.

• Modeling language: any model needs to be expressed in a way that communicates sys-

tem’s information among involved stakeholders. Achieving this implies that the structure,

terms, notations, syntax, and semantics are well defined and consistently represented.

• Metamodel: there is a certain circularity to models and modeling languages. The best way

to express a modeling language is as a model, this is called a metamodel. A metamodel

is, therefore, a model that defines a modeling language and is in turn expressed using a

modeling language.

27

Chapter 3 The Model Driven Engineering

3.2.2 Why use metamodels?

If a given model is understandable by who created it, it should also be interpretable by the

machine that executes it; therefore, the model must conform to a clearly defined set of rules to

verify its consistency and to automate its interpretation, these rules are called the metamodel.

In other words, if modeling is a technique for designing systems using some predefined

concepts, then metamodeling is a technique for defining the concepts to be used for modeling

systems. Metamodeling, therefore, enables the flexibility needed to provide the indispensable

means for designing applications. It is important to understand that there is no universal meta-

model which can describe all systems, a metamodel is defined for a specific purpose, and so,

that there exist a multitude of metamodels. Figure 3.1 illustrates the relationships between

system, model, and metamodel.

Metamodel

Model System

defines

describes

Figure 3.1. Relationships between system, model, and metamodel [71]

3.2.3 The Meta-Object Facility (MOF)

Not solely models, metamodels are in turn conform to a meta-metamodel, and so forth.

To stop this infinitely recursive scheme, a meta-metamodel which defines itself is needed, such

language is the Meta-Object Facility (MOF) standardized by the OMG [72], it includes basic

concepts such as Class and Relationship that support the definition of many concepts including

the definition concepts themselves.

The Meta Object Facility (MOF) [72], [73] represents the core of metamodeling aspects at

the OMG. The UML (Unified Modeling Language) [74], for example, is definable as a meta-

model based on MOF concepts.

28

Chapter 3 The Model Driven Engineering

3.2.4 The four-level architecture

The principle of metamodeling is based on the architecture given in Figure 3.2, in which

we distinguish four modeling levels successively labeled from M0 to M3 [75]:

• M0 (instances level): this level corresponds to the information of the described real-world

system. It contains class instances, such as instances of people (Amine). This model is

consistent with the M1 model.

• M1 (model level): includes the description of the real-world information grouped as a

model, it encompasses the definition of classes, a class Person with a name attribute of

String type in our example. This model is consistent with the M2 metamodel level.

• M2 (metamodel level): holds the description of the structure and semantics of the M1

level grouped within metamodels. In our example, this level contains the definition of

Class, Attribute, and Type.

• M3 (meta-metamodel level): is the level describing the structure and semantics of the

M2 level grouped into a meta-metamodel. It includes the concepts of Metaclass and

Metarelationship and thus can be self-defining.

M3 level: meta-metamodel

M2 level: metamodel

M1 level: model

M0 level: real world

MetarelationshipMetaclass

Class Attribute Type

Person

name: string

Amine

is

is

is

is

is consistent with

is consistent with

describes

is is
is

is

is

is
is

is

is

source
target

is consistent with

Figure 3.2. The four level architecture of MOF [75]

29

Chapter 3 The Model Driven Engineering

3.3 The Model-Driven Architecture (MDA)

The importance of model engineering in software development projects is rapidly growing;

this is a reason why the OMG is now centering its activities on providing suitable solutions for

software developers, they launched the Model-Driven Architecture (MDA) [70] to support the

model-driven engineering of software systems.

3.3.1 Principles of the MDA

The OMG introduced the MDA approach [70] as a new paradigm to support the develop-

ment of software systems. It relies on an automatic process carried out by a succession of model

transformations to generate elements of the system from these models. Figure 3.3 illustrates

the process of model transformation.

consistent with consistent with

consistent with

uses uses

Target model

Source metamodel

Source model

Target metamodel

Transformation

metamodel

Transformation

model

Figure 3.3. Model transformation process [71]

The MDA relies also on the notion of the separation of concerns between the business logic

(system’s functionalities) and the implementation logic (development platform constraints).

This can be achieved by creating system models separately from the execution platforms, this

separation automates the process of models manipulation and leads to the automatic generation

of the application’s code.

30

Chapter 3 The Model Driven Engineering

3.3.2 Models managed in the MDA

The types of the models manipulated in the MDA are the following [70]:

1. Computation Independent Model (CIM): this model shows neither the details of the

system’s structure nor its implementation, it just highlights information about the environ-

ment and the system’s requirements. This model helps to reduce the system’s complexity

and gives a vision about the requirements of a particular environment.

2. Platform Independent Model (PIM): includes only information about the system’s

functionalities without implementation’s technical details, consequently, a PIM model

must be platform-independent so that it can be used later by different platforms.

3. Platform Description Model (PDM): information related to the execution platform are

described in this model, it provides the technical concepts and the services provided by

the target platform.

4. Platform Specific Model (PSM): this model combines the specifications of the PIM

model and the details which specify how a system uses a particular platform. It corre-

sponds to a phase of design and implementation.

3.3.3 MDA process

The development process in the MDA can be recapped in the following steps [70], [71]:

1. Generation of the CIM model: this phase corresponds to a requirement gathering phase

while ignoring the structure and the functionalities of the system.

2. Construction of the PIM model: a phase of analysis and design, in which we use the UML

to express the PIM model independently of any execution platform details.

3. Enriching the PIM model: with successive refinement, by incrementally detailing the

system’s behavior, while eliminating the platform related details.

4. Transformation of the PIM into PSM: choosing the appropriate execution platform, then

generating the corresponding PSM model using specific transformation techniques. A

single PIM can be used to provide multiple PSM models for different execution platforms.

5. Code generation: there are several detail levels of the PSM model. The first level results

from the transformation of the PIM and the PDM models. The most detailed level is a

generated code in a specific language such as Java, C ++, to name but a few.

31

Chapter 3 The Model Driven Engineering

Figure 3.4 summarizes the above process. Model transformations of the same type (e.g.,

from CIM to CIM) are intended to refine the model by completing, specializing, or filtering it.

The CIM to PIM transformation is used to move from the requirement view to a preliminary

functional view independently of any implementation details. The transformation of the PIM

to PSM allows specializing the former model in accordance with the target execution platform

based on the information provided by the PDM model. The transformation of the PSM into

code allows generating the executable code of the application after compilation.

CIM

Computation

Independent

Model

PIM

Platform

Independent

Model

PSM

Platform

Specific

ModelTransformation

Refinement Refinement Refinement

Transformation Code generation

C ++

Java

PIM

Platform

Dependent

Model

Figure 3.4. Models and transformation process in the MDA [71]

3.3.4 Model transformation techniques in MDA

Among the different model transformation techniques proposed by the OMG, we would

like to explain these which we judge necessary to understand the remainder of this thesis [70],

[76], [77].

3.3.4.1 The marking technique

Used to transform a PIM model to a PSM model through annotations (marks), these latter

are extracted from the mapping which represents the transformation rules of the target platform.

The annotations are first applied to the PIM elements to obtain a new model so-called marked

PIM. Then, each rule of the mapping is applied on the related element of the marked PIM to

obtain an element of the PSM.

32

Chapter 3 The Model Driven Engineering

3.3.4.2 The model merging technique

Four steps are needed when wanting to merge a source model (PIM) with another model

(to be defined) to get a target one (PSM).

• Comparison: identifying correspondences between elements of the models to be merged.

• Conformance checking: eliminating the conflicts between the identified elements.

• Merging: applying the merging tools (graph-based algorithms, UML models, etc.).

• Reconciliation and restructuring: fixing the resulting model by cleaning all inconsisten-

cies.

3.4 The Unified Modeling Language (UML)

Over the past few years, the Unified Modeling Language (UML) [74] has become a de-

facto standard for modeling diverse systems. In this section, we are about to present the main

concepts of the Class and Sequence diagrams.

3.4.1 Overview of the UML

Originally, UML was called unified as it resulted from the combination of three leading

methods: Booch [78], the object-modeling technique (OMT) [79], and the object-oriented

software engineering (OOSE) [80]. It started yet to incorporate a number of best practices

from modeling language design, object-oriented programming, and architectural description

languages.

In its latest revisions, UML has been significantly enhanced with precise definitions of

its abstract syntax; this has made of it a more modular language with improved capability for

modeling large-scale systems, covering all structural components and dynamic behaviors.

The UML language is defined by a two-part standard, the infrastructure which describes

the UML common kernel for all the UML diagrams, whereas the superstructure specifies the

detail of each diagram separately. A formal definition through a set of MOF-based metamodels

specifies the abstract syntax of the UML; it defines the UML modeling concepts, their attributes,

relationships, as well as the rules for combining these concepts to construct partial or complete

UML models [74].

33

Chapter 3 The Model Driven Engineering

3.4.2 UML diagrams

A diagram is the graphical presentation of a set of elements which aims to visualize a

system from different perspectives [81]. Following this, the UML is wealthy in notations; it

allows describing various aspects of the system being modeled thanks to the variety of its offered

diagrams.

As depicted in Figure 3.5, UML includes fourteen diagrams organized into two main

groups: seven structural diagrams which describe the static structure of systems (Class dia-

gram, Deployment diagram, Composite Structure diagram, Component diagram, Object dia-

gram, Package diagram, and Profile diagram), and seven behavioral diagrams that describe

the systems’ dynamic behavior (Activity diagram, State Machine diagram, Use Case diagram,

Communication diagram, Interaction Overview diagram, Sequence diagram, and Timing dia-

gram) [82].

UML diagrams

Behavioral diagramsStructural diagrams

State

Machine

diagram

Activity

diagram

Class

diagram

Communication

diagram

Sequence

diagram

Interaction

Overview

diagram

Timing

diagram

Package

diagram

Profile

diagram

Composite

Structure

diagram

Deployment

diagram

Component

diagram

Object

diagram

Interaction

diagrams

Figure 3.5. The organization of UML diagrams [71]

It is worth mentioning that reading and understanding the contribution part of this thesis

requires a thorough knowledge of both the Class and Sequence diagrams.

34

Chapter 3 The Model Driven Engineering

3.4.2.1 The UML Class diagram

Certainly, Class diagrams are the mainstay of object-oriented analysis and design; they are

used in a broad range of modeling concepts. Class diagrams describe the types of objects in the

system and the various kinds of static relationships that exist among them.

In the following, we start by presenting the concepts that define the Class diagram through

a MOF-based description of its metamodel (M2 level); next, we outline the main graphical

notations for a UML Class diagram (M1 level).

UML Class diagram metamodel (M2 level)

The metaclasses that constitute the Class diagram’s metamodel are described below [74]:

• Element: is an abstract metaclass with no superclass. It is used as the common superclass

for all metaclasses in the infrastructure library.

• Classifier: is a classification of instances that have features in common, it is a namespace

whose members can include features. Classifier is an abstract metaclass.

• Feature: declares a behavioral or structural characteristic of instances of classifiers. Fea-

ture is an abstract metaclass.

• StructuralFeature: is a feature of a classifier which specifies the structure of the classi-

fier’s instances. StructuralFeature is an abstract metaclass.

• BehavioralFeature: is a feature of a classifier that specifies an aspect of the behavior of

its instances. BehavioralFeature is an abstract metaclass.

• Class: describes a set of objects that share the same specifications of features, constraints,

and semantics, it is a kind of classifier whose features are attributes and operations. At-

tributes of a class are represented by instances of Property that are owned by the class.

• Property: it is a structural feature, a property related to a class by ownedAttribute repre-

sents an attribute that is shared by all instances of that class. When a property is related

to an association by memberEnd then it represents an end of the association.

• Operation: is a behavioral feature of a class that specifies the name, type, parameters, and

constraints for invoking an associated behavior.

• Parameter: a specification of an argument used to pass information into or out of an

invocation of a behavioral feature. It has a type and may have a multiplicity and an

optional default value.

35

Chapter 3 The Model Driven Engineering

• ParameterDirectionKind: an enumeration type that defines literals used to specify the

direction of parameters. The literals are: in (input), out (output), inout (both input and

output), and return.

• Relationship: a concept that specifies some relationship between elements, it references

one or more related elements. Relationship is an abstract metaclass.

• Association: specifies a semantic relationship between typed instances. It has at least two

ends represented by properties connected to the type of the end. Its instances are called

links.

• Generalization: or specialization, is a taxonomic relationship between a general classifier

(parent) and a specific one (child), the specific classifier inherits the features of the general

one.

• AggregationKind: a special kind of association representing a structural relationship be-

tween a whole and its parts, AggregationKind is an enumeration type that specifies the lit-

erals for defining the kind of aggregation of which the literals are: none (no aggregation),

shared (shared aggregation), and composite (the property is aggregated compositely).

• VisibilityKind: an enumeration type that defines literals to determine the visibility of

elements in a model. The literal values are: + (public), - (private), (package), and

(protected).

Figure 3.6 depicts a simplified metamodel for the UML Class diagram.

UML Class diagram notations (M1 level)

The following list aims to give a comprehensive account of the graphical notations that may be

used in Class diagrams at model level (M1).

• Class: the basic unit of a Class diagram. Graphically, a class is rendered as a rectangle,

divided into three compartments containing: the name of the class, its attributes, and its

operations.

• Property: a class may have several attributes like it may have no one at all. An attribute

is characterized by a name, a visibility, a type, a multiplicity, and a default value. Graph-

ically, attributes are listed in the second compartment just below the class name’s one.

• Operation: defines the actions that a class knows to carry out, it is characterized by

a name, a visibility, a return type, and is related to a set of parameters. Graphically,

operations are listed in the third compartment below the attributes.

36

Chapter 3 The Model Driven Engineering

E
le
m
en
t

F
ea
tu
re

C
la
ss
ifi
er

R
el
a
ti
o
n
sh
ip

S
tr
u
ct
u
ra
lF
ea
tu
re

B
eh
a
vi
o
ra
l
F
ea
tu
re

P
ro
p
er
ty

+
n
am

e:
 S

tr
in

g

+
is

ID
:

B
o
o
le

an

+
ty

p
e:

 D
at

aT
y
p
e

+
v
is

ib
il

it
y
:

V
is

ib
il

it
y
K

in
d

+
ag

g
re

g
at

io
n
:
A

g
g
re

g
at

io
n
K

in
d

O
p
er
a
ti
o
n

+
n
am

e:
 S

tr
in

g

+
is

Q
u
er

y
:

B
o
o
le

an

+
ty

p
e:

 D
at

aT
y
p
e

+
v
is

ib
il

it
y
:

V
is

ib
il

it
y
K

in
d

P
a
ra
m
et
er

+
n
am

e:
 S

tr
in

g

+
ty

p
e:

 D
at

aT
y
p
e

+
d
ir

ec
ti

o
n
:

P
ar

am
et

er
D

ir
ec

ti
o
n
K

in
d

C
la
ss

+
n
am

e:
 S

tr
in

g

+
is

A
b
st

ra
ct

:
B

o
o
le

an

A
ss
o
ci
a
ti
o
n

+
n
am

e:
 S

tr
in

g

+
is

D
er

iv
ed

:
B

o
o
le

an

+
o
w

n
ed

P
ar

am
et

er
*

+
o
w

n
ed

F
o
rm

al
P

ar
am

et
er

0
..

1

+
o
w

n
ed

A
tt

ri
b
u
te

*

+
cl

as
s

0
..

1

+
o
w

n
ed

O
p
er

at
io

n
*

+
cl

as
s

0
..

1

+
o
w

n
ed

E
n
d

*

+
o
w

n
in

g
A

ss
o
ci

at
io

n
0
..

1

+
as

so
ci

at
io

n
0
..

1

+
m

em
b
er

E
n
d

2
..

*

+
su

p
er

C
la

ss

*

«
en

u
m

er
at

io
n
»

A
g
g
re
g
a
ti
o
n
K
in
d

n
o
n
e

sh
ar

ed

co
m

p
o
si

te

«
en

u
m

er
at

io
n
»

D
a
ta
T
y
p
e

n
u
ll

B
o
o
le

an

In
te

g
er

S
tr

in
g

F
lo

at

D
o
u
b
le

«
en

u
m

er
at

io
n
»

V
is
ib
il
it
y
K
in
d

p
u
b
li

c

p
ri

v
at

e

p
ro

te
ct

ed

p
ac

k
ag

e

«
en

u
m

er
at

io
n
»

P
a
ra
m
et
er
D
ir
ec
ti
o
n
K
in
d

in o
u
t

in
o
u
t

re
tu

rn

+
fe

at
u
re*

+
fe

at
u
ri

n
g
C

la
ss

ifi
er

*

Figure 3.6. UML Class diagram metamodel [74]

37

Chapter 3 The Model Driven Engineering

• Parameters: operation’s parameters are notated using a name, a type, a default value, and

a direction which takes its value from the ParameterDirectionKind enumeration and that

indicates the parameter’s type.

• Association: it is rendered as a solid line between two classes, directed from the source

class to the target class as it can also be bidirectional. An association has a name and can

show multiplicities at both ends of the line.

• Generalization: rendered as a solid line with a hollow arrowhead pointing to the parent.

• Aggregation and composition: composite aggregation is depicted as a binary association

decorated with a filled black diamond at the aggregate (whole) end, while a shared aggre-

gation is presented as an unfilled diamond.

Table 3.1 presents the different types of relationships used to connect classes, whereas

Figure 3.7 exhibits an example of a UML Class diagram.

Table 3.1. The types of relationships in UML Class diagrams [74]

Relationship Graphical notation

Association

Generalization

Aggregation

Composition

Class_1

+ attribute_1: DataType
...
+ attribute_n: DataType

0..1 *

class’ name

attributes

+ operation_1(args): DataType
...
+ operation_n(args): DataType

Class_2

+ attribute_1: DataType
...
+ attribute_n: DataType

+ operation_1(args): DataType
...
+ operation_n(args): DataType

association
relationship

multiplicity

property name

operation’s name operation’s parameters

property type

operations

Figure 3.7. An example of a typical UML Class diagram [74]

38

Chapter 3 The Model Driven Engineering

3.4.2.2 The UML Sequence diagram

Interaction diagrams gained increasing importance when modeling systems behavior; they

describe sequences of messages exchanged between objects in the order they occur. The great

strength of Sequence diagrams is how clearly they can describe the collaboration behavior of

several objects within a use case.

In what follows, we present the structure of the Sequence diagram by explaining the meta-

classes that compose its metamodel (M2 level), afterward, we describe the corresponding graph-

ical notations to draw a coherent Sequence diagram (M1 level).

UML Sequence diagram metamodel (M2 level)

The descriptions of the metaclasses that constitute the Sequence diagram metamodel are [74]:

• Lifeline: this metaclass represents an individual participant in the interaction.

• ExecutionSpecification: or activation, it is a specification of the execution of a unit of

behavior within the lifeline which shows that the participant is active in the interaction.

• OccurenceSpecification: the basic semantic unit of interactions. The sequences of occur-

rences specified by them are the meanings of interactions.

• Interaction: is a unit of behavior. It comprises a set of messages exchanged among objects

in some roles to accomplish a purpose.

• InteractionFragment: an abstract notion of the most general interaction unit. It is a piece

of interaction. Each interaction fragment is conceptually like an interaction by itself.

• CombinedFragment: defines an expression of interaction fragments. It is specified by an

interaction operator and corresponding interaction operands. The semantics of a com-

bined fragment depend upon its interaction operator.

• InteractionOperand: represents one operand of the expression given by the enclosing

CombinedFragment. An InteractionOperand is an interaction fragment with an optional

guard expression. An InteractionOperand may be guarded by an InteractionConstraint.

• InteractionOperatorKind: an enumeration designating the different kinds of operators of

combined fragments. The literal values of this enumeration are alt, opt, par, loop, critical,

neg, assert, strict, seq, ignore, and consider.

• InteractionConstraint: is a Boolean expression that guards an interaction operand.

39

Chapter 3 The Model Driven Engineering

• Message: defines a particular communication between Lifelines of an Interaction. It

is a specification of communication between objects that convey information with the

expectation that activity will ensue.

• MessageKind: an enumerated type that determines the message’s type whether it is com-

plete, lost, found, or unknown.

• MessageSort: an enumerated type that identifies the type of communication action that

was used to generate the message. The literal values of this enumeration are synchCall,

asynchCall, asynchSignal, createMessage, deleteMessage, and reply.

Figure 3.8 shows an excerpt of the metamodel for the UML Sequence diagram.

UML Sequence diagram notations (M1 level)

Below, we present the graphical elements of Sequence diagrams at model level (M1).

• The Lifeline is shown using a rectangle followed by a vertical dashed line.

• The ExecutionSpecification (activation) represented as a thin rectangle on the lifeline.

• The notation for a CombinedFragment in a Sequence diagram is a solid-outline rectangle.

The operator is shown in a pentagon in the upper left corner of the rectangle. The operands

of a combined fragment are shown by tiling its graph region using dashed horizontal lines

to divide it into regions corresponding to the operands.

• Conditional behavior can be expressed in different ways: a condition written above the

message signifies that the message is only sent if the condition is met, to show that several

messages are conditionally sent under the same condition an opt operand is used, whereas

an alt operand is used to indicate several alternative interactions.

• To show a loop, preceding a message with an asterisk symbol means that the message

is sent repeatedly as long as the condition written above it holds, whereas using a loop

operand means that multiple messages are sent in the same iteration.

• A message is shown as a line from the sender to the receiver. The form of the line or

arrowhead reflect its kind: stick arrowheads show asynchronous messages, filled arrow-

heads show synchronous messages, and dashed lines represent reply messages. If a caller

sends a synchronous message, it must wait until the message is done. If a caller sends an

asynchronous message, it can continue processing and doesn’t have to wait for a response.

Figure 3.9 shows an example of a typical Sequence diagram.

40

Chapter 3 The Model Driven Engineering

In
te
ra
ct
io
n

M
es
sa
g
e

+
/m

es
sa

g
eK

in
d

:
M

es
sa

g
eK

in
d

 =
 u

n
k

n
o

w
n

+
m

es
sa

g
eS

o
rt

:
M

es
sa

g
eS

o
rt

 =
 s

y
n

ch
C

al
l

L
if
el
in
e

In
te
ra
ct
io
n
F
ra
g
m
en
t

C
o
m
b
in
ed
F
ra
g
m
en
t

+
in

te
ra

ct
io

n
O

p
er

at
o

r:
 I

n
te

ra
ct

io
n

O
p

er
at

o
rK

in
d

In
te
ra
ct
io
n
O
p
er
a
n
d

In
te
ra
ct
io
n
C
o
n
st
ra
in
t

+
o

p
er

an
d

1
..

*

0
..

1

+
g

u
ar

d

0
..

1
1

+
m

es
sa

g
e

*

+
in

te
ra

ct
io

n1
+

li
fe

li
n

e *
+

in
te

ra
ct

io
n

1

*

+
en

cl
o

si
n

g
In

te
ra

ct
io

n
0

..
1

C
o
n
st
ra
in
t

E
x
ec
u
ti
o
n
S
p
ec
ifi
ca
ti
o
n

O
cc
u
re
n
ce
S
p
ec
ifi
ca
ti
o
n

+
ev

en
ts*+

co
v

er
ed

1
+

co
v

er
ed

*

+
co

v
er

ed
B

y
0

..
1

«
en

u
m

er
at

io
n

»

M
es
sa
g
eS
o
rt

sy
n

ch
C

al
l

as
y

n
ch

C
al

l

as
y

n
ch

S
ig

n
al

cr
ea

te
M

es
sa

g
e

d
el

et
eM

es
sa

g
e

re
p

ly

as
y

n
ch

C
o

n
te

x
tN

o
ti

fi
ca

ti
o

n

sy
n

ch
C

o
n

te
x

tQ
u

er
y

co
n

te
x

tI
n

fo
rm

at
io

n
R

ep
ly

*

+
st

ar
t

1

*

+
fi

n
is

h
1

«
en

u
m

er
at

io
n

»

In
te
ra
ct
io
n
O
p
er
a
to
rK

in
d

se
q

al
t

o
p

t

b
re

ak

p
ar

st
ri

ct

lo
o

p

cr
it

ic
al

n
eg

as
se

rt

ig
n

o
re

co
n

si
d

er

ad
ap

t
+

fr
ag

m
en

t
*

+
en

cl
o

si
n

g
O

p
er

an
d

0
..

1

E
le
m
en
t

+
n

am
e:

 S
tr

in
g

«
en

u
m

er
at

io
n

»

M
es
sa
g
eK

in
d

co
m

p
le

te

lo
st

fo
u

n
d

u
n

k
n

o
w

n

Figure 3.8. UML Sequence diagram metamodel [74]

41

Chapter 3 The Model Driven Engineering

message1 (parameters)

[condition]

else

alt

message2 (parameters)

message3 (parameters)

returnedValue

returnedValue

lifeline

guard
occurence
specification

execution
specification

asynchronous
message

synchronous
message

reply

interaction
operator

combined
fragment

interaction
operand

interaction
operand

:Object1 :Object2 :Object3

Figure 3.9. An example of a typical UML Sequence diagram [74]

3.5 UML extension mechanisms

UML diagrams aim to provide a universal language that can be used for various modeling

purposes. But in spite of this, there exist some situations and fields where this language is not

entirely adequate to be used in its standard form, i.e., the UML’s native syntax and primitive

semantics may be insufficient to express particular domain needs.

The OMG devoted plenty of efforts to enable software designers to overcome the above

limitations, they put forward two possible mechanisms to extend UML, UML Profiles (light-

weight extension) and MOF-based metamodels (Heavyweight extension) [83]-[85].

3.5.1 When to extend UML?

In line with Andrea Sindico [26], there are many reasons why one may want to create

domain-specific customizations:

• Giving a terminology that is adapted to a particular domain.

• Giving a syntax for constructs that do not have an existing notation.

• Giving a different notation for already existing symbols.

• Adding semantics that is left unspecified in the metamodel.

• Adding semantics that do not exist in the metamodel.

• Adding constraints that restrict the way of using the metamodel.

42

Chapter 3 The Model Driven Engineering

3.5.2 Lightweight extension (UML Profile)

This mechanism allows adjusting UML to a wide range of domains through the definition

of Profiles. In this method, a copy of the native UML metamodel is manipulated in a read-only

mode; all the imported elements are thus used at the M1 level without neither modifying their

characteristics nor introducing new UML metamodel elements at the M2 level [74], [85].

UML Profiles are based on three main concepts:

• Stereotype: extends an existing metaclass of UML to change its semantics, this allows to

create new kinds of concepts for a particular domain. A stereotype can include tagged

values (properties) and constraints. UML also allows associating a shape (icon and/or

frame) to the stereotype to distinguish it graphically from the original concept.

• Tagged value: extends the properties of a UML stereotype. Tagged values are a way to

annotate features that are additional to the extended UML concept allowing to create new

information in the stereotype’s specification.

• Constraint: extends the semantics of a UML building block permitting to add new rules

or to modify existing ones. We can use the OCL (Object Constraint Language) [86] to

define some rules in order to constrain the UML metamodel.

Figure 3.10 depicts an example of a UML lightweight extension.

ownedAttribute

*

« extend »

« UML »

« metaclass »

Class

« metaclass »

Property

identifier

1

« profile »

« stereotype »

Resource

« stereotype »

ID

Figure 3.10. Example of UML lightweight extension [75]

43

Chapter 3 The Model Driven Engineering

3.5.3 Heavyweight extension (MOF-based metamodel)

The heavyweight extension mechanism is based on manipulating a copy of the UML’s

metamodel or at least some parts of it in a read-write mode. In other words, this mechanism

makes possible to import elements of the UML metamodel through the merge operation and to

add, delete, or modify some characteristics. All changes are thus made directly on a copy of the

concerned metaclasses at the M2 level [84].

This approach has been followed by many researchers in various domains such as [87]-

[90], and also in other standards and languages including the CWM (Common Warehouse

Metamodel) [91].

Figure 3.11 depicts an example of a UML heavyweight extension.

ownedAttribute

*

« merge »

« UML »

« metaclass »

Class

« metaclass »

Property

ownedAttribute

*
« metaclass »

::Class

« metaclass »

::Property

identifier
subsets ownedAttribute

1

« metamodel »

Resource ID

Figure 3.11. Example of UML heavyweight extension [75]

44

Chapter 3 The Model Driven Engineering

3.5.4 Lightweight vs. Heavyweight

Collectively, the lightweight extension mechanism helps to customize UML for specific

needs; it lets UML adapt to the different new software technologies by including new building

blocks. Despite this, it may not provide such elegant and perfectly fitting notations as may

be required for particular systems [83], this is since defining Profiles does not apply a true

modification in the UML metamodel. Instead, it is just a read-only import; it tailors the UML

metamodel for different platforms or domains without conflict with the standard semantics [90].

The self-defined MOF-based metamodel can be as communicative as needed [92], it pro-

duces notations that will seamlessly match the concepts and nature of the target application

domain. However, the downside to the heavyweight extension is that creating a tailor-made lan-

guage is more laborious than constructing a UML Profile [83]. Also, the metamodel approach

does not have enough supporting tool as compared with UML Profile [85], which requires the

need to develop a proper editor of the new modeling language that can be exploitable by its end

users [26].

Indeed, each extension alternative has its advantages and disadvantages; therefore, it may

not be easy to decide when to create a new MOF-based language and when to define just a UML

Profile. However, this can be answered by analyzing the domain space of the target Domain

Specific Language (DSL). As can be seen in Figure 3.12, if there is much overlap between

the concepts in UML and those within the DSL then a Profile-based solution is preferred. In

contrast, if there is only a little overlap then favor the MOF-based solution [83], [84].

UML DSL UML DSL

Much overlap: favor profile-based extension Little overlap: favor MOF-based approach

Figure 3.12. UML Lightweight vs. Heavyweight extensions mechanisms [84]

45

Chapter 3 The Model Driven Engineering

3.6 Summary

In this chapter, we highlighted some of the Object Management Group’s standards and

which are vital for understanding the rest of this thesis. The MDA approach is a rich soft-

ware design approach for the development of software systems based on designing models and

applying several transformation techniques.

Correspondingly, the Unified Modeling Language (UML) has emerged as the most popu-

lar modeling language among software engineers, it includes modeling nomenclatures for the

design of complex software systems, both structurally and behaviorally, through different types

of diagrams. Nevertheless, the fact that UML is a general-purpose notation may limit its suit-

ability for modeling some specific domains, for which domain-specific languages may be more

appropriate. The Object Management Group provides extension mechanisms to tackle this is-

sue; they allow the customization of its syntax and semantics to adapt it to specific application

domains.

46

Part II

CONTRIBUTIONS

47

Chapter 4

Context Handling Approaches

"As we advance in life we learn the limits of our abilities"

Henry FORD

Contents
4.1 Introduction . 49

4.2 Why is context difficult to handle? . 49

4.3 Handling context as a separated concern 51

4.4 Context handling approaches . 52

4.5 Discussion and evaluation of the existing approaches 58

4.6 Summary . 61

48

Chapter 4 Context Handling Approaches

4.1 Introduction

By means of the study we conducted, the main challenge for context-aware computing is to

transfer our real life’s environment into a virtual one. In recent decades, there have been several

studies focusing on enabling context-aware applications to interact with our lives in ways that

are easier to manage, leading to many opportunities to succeed in tasks.

In point of fact, special software engineering approaches and techniques have been pro-

posed to support the development of self-adaptive applications by handling the various environ-

mental factors that surround the applications’ execution.

This chapter starts by investigating the encountered issues when conceiving context-aware

applications, followed by an overview of some key software engineering concepts. Afterward,

we present the literature’s main context handling approaches in light of which we establish a

comparison by standing out the advantages and weaknesses of each approach.

4.2 Why is context difficult to handle?

In line with the literature, there exist many reasons that make the task of handling context

very strenuous. Dey and Abowd outlined in [9] the following characteristics of context:

• Context must be abstracted to make sense to the application, for example, longitude and

latitude coordinates should be provided as higher-level information street or building

names.

• Context information is perceived from different sensors; it requires dedicated hardware

(e.g., a GPS receiver) that must be programmed in order to interface the sensors with the

application.

• Context is acquired from distributed sources; this may require the system to gather in-

formation throughout the environment and to calculate interpolations of position data, or

similar.

• Context sensing technologies may introduce uncertainty, the process of sensing for certain

properties may to provide results with an associated level of probability.

• Context is dynamic; therefore, changes in the environment must be detected and conse-

quently, applications must be able to adapt to the constantly changing context conditions.

49

Chapter 4 Context Handling Approaches

Furthermore, Bettini et al. [93] discussed the main aspects that characterize context-aware

systems and which should be taken into account when developing applications:

• Heterogeneity: designers manage a variety of context sources which differ in their update

frequency. Sensors observe certain states of the physical world and provide fast access.

Information provided by the user (profiles or preferences) is updated rarely, but context

data obtained from databases or digital libraries (geographic maps) is often static.

• Mobility: when context-aware applications are mobile, i.e., running on a mobile device

or depend on mobile sensors -which is the case of ubiquitous applications- the context

information provisioning must be adaptable to the changing environment.

• Relationships and dependencies: there exist various relationships between types of con-

textual information that need to be handled to ensure correct behavior of the applications.

One such relationship is dependency whereby entities may depend on other context pa-

rameters, for example, a change to the value of one parameter (network bandwidth) may

impact the values of some properties (remaining battery power).

• Timeliness: context-aware applications may need access to past states (context histories)

and future states (prognosis); therefore, timeliness is another feature of context informa-

tion that needs to be handled by context models.

• Imperfection: due to its dynamic and heterogeneous nature, context information may

be of variable quality as it may be incomplete or even incorrect. The sensed values may

become useless if the physical world changes rapidly comparing to the updates frequency;

therefore, designers must consider these problems to achieve appropriate adaptations.

• Usability of modeling formalisms: the important features of modeling formalisms are the

ease with which designers can translate real-world concepts into modeling constructs.

• Efficient context provisioning: efficient access to context can be a burdensome require-

ment to meet in the presence of large models and numerous data objects.

In light of the foregoing, building context-aware applications is an inherently complex

task, not only need the developers to be concerned only about the main functionality of the

application, but also they have to understand which context parameters influence the application

functionality, how application variants depend on these parameters, and which action should be

activated under specific context conditions. Thus, building such applications requires specific

engineering and run-time support [40].

50

Chapter 4 Context Handling Approaches

4.3 Handling context as a separated concern

Complex systems are in general characterized by several heterogeneous aspects. Because

the global view is very complex and tricky to understand, a system should no more be seen as an

indivisible whole; instead, it is more practical to divide it into several simple subsystems, each

of which represents only a single aspect of the system. This separation enables to handle each

aspect independently of the others; it helps to distinctly overcome the problems encountered in

every aspect by reducing design complexity and enhancing the problem understanding [94].

For many years, this strategy has attracted the software designers to organize and divide

applications into a set of simpler modules that are easier to handle [95]. Since then, the sepa-

ration of concerns appears in different phases of the software lifecycle, these concerns may be

functional, technical, or related to any other aspect of the application’s elements.

Regarding the domain of context-awareness computing, as believed by authors in [9], con-

text is onerously considered in applications because of the lack of a common way to acquire

and handle context separately. Also, Sindico [26] indicated that the taking into account of

context-awareness can be very tricky because of its tendency to crosscut the other concerns of

the system in which it is introduced.

Therefore, applying the separation of concerns on context-aware systems development re-

quires a thorough study of the contextual parameters to be treated independently. Isolating the

contextual constraints may bring significant support to engineers by eliminating dependencies

between the system’s functionalities and adaptations, increasing the designers’ awareness to-

wards context, and reducing costs and delays caused by later requirement changes.

In this regard, context parameters may be dynamic and may change during the execution,

so they must be transparent for the user since they are not significant as application data. An

instance of these parameters characterizes a context situation which does not modify the appli-

cation data but may lead to process them in a different way [96].

In the opinion of authors in [97], the application should be designed in a context indepen-

dent way, i.e., by abstracting it from the different contexts in which it will be used. In such

a way, a designer should be able to identify the data which are inherently associated with the

application and to distinguish them from the data which specify the context.

51

Chapter 4 Context Handling Approaches

To achieve the above-stated goal, the boundary between application data and context data

must be clearly defined; it may depend on the application domain since some data which is at

the application level in one domain can be seen as context data in another domain. For example,

GPS localization is part of application data in a traffic regulation system but is part of context

data in a telemedicine application.

4.4 Context handling approaches

The software development lifecycle (SDLC) aims to increase systems quality and perfor-

mance through successive phases such as requirements analysis, modeling, coding, testing, and

maintenance [98]-[100].

Unlike traditional ones, developing self-adaptive applications requires enhanced skills and

delicate carefulness for additional concerns related to context and context-awareness. Indeed,

it is strongly needed to revisit existing development approaches and to introduce additional

concepts to ensure more efficient adaptation.

Meaningful research works have been led in the field of context handling. Researchers in

the field of software engineering have adopted different strategies in their attempts to handle

context efficiently. The literature shows several publications which addressed the issue in var-

ious ways; by introducing context in different phases, and by using multiple techniques and

mechanisms. The approaches of interest are mainly the Context Toolkit [61], the MDA-based

approaches [76], and the UML Profile-based approaches [101].

4.4.1 The Context Toolkit

Dey et al. built the Context Toolkit [61] to ease the deployment and to support the rapid

development of context-aware applications. They used the separation of concerns to isolate the

context acquisition from the use of context in applications. Applications can thus use context

without worrying about the details of sensors.

The Context Toolkit was inspired from the GUI tools (Graphical User Interface) which

ensure the mediation between applications and users, analogously, the mediation in the Context

Toolkit is performed between the application and the collected contextual information through

the following components: Context-Widgets, Context-Interpreters, and Context-Aggregators.

52

Chapter 4 Context Handling Approaches

• Context-Widgets are software components that provide applications with access to con-

text information and reusable elements for context detection while hiding the details of

context sensing.

• Context-Interpreters are used by Context-Widgets to abstract or interpret low-level con-

text into higher-level information and communicate it to Context-Aggregators, e.g., a

Context-Widget provides location information as latitude and longitude, but the applica-

tion requires this information in the form of a street name; also information about identity,

location, and sound level can be used to interpret whether a meeting is taking place.

• Context-Aggregators concatenate Context-Widgets data into an abstraction unit and pro-

vide applications with simplified contextual information. A Context-Aggregator is there-

fore similar to a Context-Widget, the difference between the two is that the former gathers

multiple elements of the context (from multiple Context-Widgets). Aggregators provide

an additional separation of concerns between how context is acquired and how it is used.

Figure 4.1 represents the Context Toolkit architecture.

Application

Aggregator
Interpreter

Widget Widget

Interpreter

Sensor Sensor

Figure 4.1. The Context Toolkit architecture [61]

Alongside that, Chen and Kotz [33] presented an interesting study which consists of captur-

ing the different contextual information to be treated and modeled (location model, data struc-

tures). The authors proposed two types of approaches, one based on a centralized architecture

using a centralized context server that provides the contextual information to the applications,

and the other is based on a distributed architecture in which the required contextual information

is hosted on multiple distributed sites.

53

Chapter 4 Context Handling Approaches

4.4.2 Handling context using the MDA

Authors in [76] developed a new technique to handle context using the MDA approach.

As detailed in Section 3.3.1, the MDA is based on model transformations and the separation of

concerns (business and technical), but the notion of context is not explained and taken in charge

by the original lifecycle of the MDA [76].

For it, the authors relied on the MDA approach while resorting to the separation of concerns

to isolate the contextual constraints from the business and the technical aspects; they justified

their choice with the constant changes of the surrounding objects which can directly affect the

state of the current situation of a user (time, location, etc.), and as a consequence, changes in

one element of context may involve the transition of this context toward another state of the

user’s current situation. Because of these changes, it is not reasonable to remake the whole

application development process, but only the part that deals with such constraints.

Authors consider introducing the contextual information in the cycle of life of the MDA

during the PIM-PSM transformation through the marking and model merging techniques.

4.4.2.1 The marking technique

By using the marking technique (see Section 3.3.4.1), the set of the mapping rules of the

target platform can be enriched with contextual information, it means that this mapping will not

include the platform rules solely, but it will nourish itself of another source which is the context.

PIM

Platform

PSM

Marked PIM

marks

mapping

context
rules

Figure 4.2. MDA architecture based on the marking technique [76]

54

Chapter 4 Context Handling Approaches

As illustrated in Figure 4.2, from the mapping, the authors used the marks (or annotations)

to mark the elements of the PIM model in order to get a marked PIM. Next, they applied the

rules of the mapping (platform and context) of the resulting marked PIM to obtain a PSM model.

The latter encompasses all technical specifications of the platform as well as the contextual

specifications and system behaviors.

4.4.2.2 The merging technique

Authors used the MDA’s merging technique (see Section 3.3.4.2) to merge the PIM model

with a novel model containing all the system’s contextual information; therefore, they consider

adding a preliminary step of context modeling which will result in a contextual model (CM),

in the latter, all contextual constraints are formalized. The following step consists in applying

the merging of the resulting CM model with the PIM model to build of the target PSM model.

Figure 4.3 illustrates how to handle context with the MDA’s merging technique.

PIM

Model

merge

Contextual Model

PSM

Figure 4.3. MDA architecture based on the merging technique [76]

In the literature, other works moved toward the use of the MDA approach for building

attractive, efficient and adaptive applications. Ou et al. [102] outlined the value of the MDA

in the development of context-aware applications, they conceived a contextual model using

ontologies, then they propose an MDIA architecture (Model Driven Integration Architecture)

dedicated to the implementation of context-aware applications. Ceri et al. [103] applied the

MDA approach for developing context-aware web applications and focus on context adaptation

actions and context data representation and management. Vale and Hammoudi developed in

[104] a Context-aware Service Oriented Architecture (CSOA) using MDA principles and relied

on EDOC-ECA viewpoints.

55

Chapter 4 Context Handling Approaches

4.4.3 Handling context using UML Profiles

A quite recent work of Benselim and Seridi-Bouchelaghem [101] proposed a lightweight

extension of UML to support the modeling of context-aware applications including the con-

textual aspects that characterize the user’s current situation. On the report of the authors, this

situation may be influenced by several factors and constraints related to the user himself, to the

application, or to the environment [39]; using the new vision of concerns separation, authors

isolated these contextual elements from the global aspects of the system.

The proposed UML Profile was conducted by introducing a set of stereotypes, tagged val-

ues, and constraints. Stereotypes allow to define new meanings for existing UML concepts,

constraints specify restrictions of semantics for each new element, while tagged values are at-

tached to a stereotype to indicate its attributes. In order to take all the contextual components

into account, the authors started by defining the stereotypes ContextClass and ContextAssocia-

tion which are obtained by extending the UML metaclasses Class and Association respectively.

The stereotype ContextClass aims to represent the context of a system and is composed of

a set of elements called ContextElement. Figure 4.4 shows some stereotypes that are associated

with the ContextElement stereotype and that define all constraints related to context, e.g., the

type of a contextual element is presented by the stereotype ContextType, and is provided by one

of the following entities: the user, the application, the environment, or the behavior.

«metaclass»

Class

«stereotype»

ContextClass

«stereotype»

Sensor

«stereotype»

ContextSource

«stereotype»

ContextConstraint

«stereotype»

EnvironmentContext

«stereotype»

BehaviorContext

«stereotype»

UserContext

«stereotype»

ApplicationContext

«stereotype»

ContextType

«stereotype»

ContextAttribute

«stereotype»

ContextElement

«stereotype»

ContextRelevancy

Extend

Figure 4.4. The Class stereotypes of the proposed Profile [101]

56

Chapter 4 Context Handling Approaches

Also, the stereotype ContextAssociation can be specialized in order to get specific rela-

tionships such as CtxtAssociation, CtxtGeneralization or CtxtComposition. These association

stereotypes represent respectively a simple association, a generalization, or a composition rela-

tionship between two Class stereotypes (see Figure 4.5).

«stereotype»

CtxtComposition

«stereotype»

CtxtGeneralization

«stereotype»

CtxtAssociation

«metaclass»

Association

«stereotype»

ContextAssociation

Extend

Figure 4.5. The Association stereotypes of the proposed Profile [101]

Constraints are used to extend the UML semantics by providing conditions used as restric-

tions during the modeling process; they can be expressed by using natural language or using

OCL (Object Constraint Language)[86]. Lastly, tagged values are attached to stereotypes and

used to specify attributes for them.

Another great deal of research works used the UML lightweight extension mechanism to

handle context, Simons [105] proposed the Context Modeling Profile (CMP), which is a UML

lightweight extension for context models in mobile distributed systems which can be integrated

into many UML modeling tools. A case study of meeting system is utilized to illustrate the ap-

proach. Sindico and Grassi [106] defined a UML extension called CAMEL (Context-Awareness

ModEling Language), which is a domain-specific modeling language. CAMEL can be used to

enrich a UML model of an application with elements related to context and context-dependent

behavior, enabling software engineers to handle context-awareness concerns.

Al-alshuhai and Siewe [107]-[109] introduced new annotations at model level (M1) to

make UML diagrams context sensitive. The context-aware use case diagram [107] specifies

the context information upon which the system’s functions depend, the context-aware activity

diagram [108] enables the representation of context objects, context constraints and adaptation

activities, while the context-aware class diagram [109] enables the representation of context

information that affect the behaviors of a class.

57

Chapter 4 Context Handling Approaches

4.5 Discussion and evaluation of the existing approaches

The first interesting work to handle context was the Context Toolkit, it presents an un-

avoidable way for the understanding of adaptation principles. The Context Toolkit can serve

as support for finished applications by adapting them to the context through three main steps:

capturing context, interpreting it, and providing it to the application [76].

Next, another innovative work we investigated is the MDA-based approach in which au-

thors employed model transformation techniques to embed context in applications since the

phase of development. Lastly, we examined UML Profile-based approaches in which contex-

tual information are included since the modeling phase by resorting to the UML lightweight

extension mechanism.

When analyzing the studied approaches regarding the SDLC phases in which the notion of

context was introduced, one may notice that the trend heads toward handling context in earlier

phases: first applied on finished applications (Context Toolkit), then during the development

(MDA-based approaches), and lastly at the modeling phase (Profile-based approaches). This

stems from the fact that context is like any other software requirement, the earlier we handle it,

the best we save costs, efforts, and delays [99], [100], [110]. Figure 4.6 shows the timeline of

the studied context handling approaches as well as their distribution with regard to the phases

of context embedding.

Context Toolkit MDA-based approaches Profile-based approaches

2001 2009 2013

Deployment
phase

Development
phase

Design
phase

Figure 4.6. The timeline of the studied context handling approaches

The Context Toolkit introduces the concept of abstraction clearly, Widgets allow simple

access to sensors, Interpreters give meaning to the captured context, while Aggregators serve

to link Widgets to the application. In spite of that, the data structure used in this approach is

based on <key - value> models which limits the expressivity especially for complex systems

[53]. Also, following Rey and Coutaz [111], the infrastructure of the Context Toolkit does

58

Chapter 4 Context Handling Approaches

not explicitly support metadata to inform the application on the quality and/or accuracy of the

provided information. Furthermore, as the same drawback of the majority of initial adaptation

works, the Context Toolkit considers the applications as a finished product and tries to adapt

their execution to the captured context information [76], this has led to the need of introducing

the context in an earlier development phase.

Approaches presented in [76] and [112] distinguish themselves by introducing the context

during the development phase and not after. The authors proposed a new vision of the Model-

Driven Architecture and demonstrated how it is possible to isolate the contextual constraints

from the business and the technological aspects; this separation allows managing the context in

a separate branch without restarting the entire development process even if the contextual con-

straints change. Nevertheless, the authors themselves were not completely satisfied with their

proposal given that the UML concepts used in the Context Model (CM) are not sufficient to

describe all contextual constraints accurately [101]; on the other side, MDA-based approaches

can be criticized as they require its practitioners to be very experienced in model transforma-

tion techniques [113], [114]. Hence, that points to the need for a universal language, capable

of representing the contextual information independently of development technologies starting

from the modeling phase.

The UML lightweight extension presented in [101] came to help handling context since

the modeling stage by relying on the separation of concerns to isolate the context from the

global aspects of the system. The authors proposed a set of stereotypes to model the contextual

elements; also, they attached some tagged values and constraints to the proposed stereotypes.

Nonetheless, defining Profiles does not apply a true modification in the UML metamodel, it just

adapts the UML concepts for different domains [74], [84], in other words, a Profile is not a

new element, its expressiveness is consequently constrained by the model element it specializes

[115]. Thereupon, it seems lacking to create stereotypes like ContextClass and to refer it to the

UML metaclass Class, in such manner, objects would unavoidably have the same properties

and relationships defined in the traditional metaclass Class (attributes and operations), whereas

the constructs to be managed define additional features [114]. Another key limitation of this ap-

proach is that lightweight extension mechanisms do not offer the possibility to specify behavior

neither do they for modifying existing structures [84].

59

Chapter 4 Context Handling Approaches

Hence, we strongly believe that the contextual features must be included in the UML meta-

model as first-class entities and not as stereotypes. UML heavyweight extension offers the pos-

sibility to introduce totally new constructs in the metamodel level (M2), and new corresponding

graphical notations in the model level (M1), this allows to define new concepts, structures, be-

havior descriptions, and relationships that may help to overcome related works limitations and

to cover the adaptive aspect accurately.

Table 4.1 summarizes the studied context handling approach, by addressing their advan-

tages and their limitations.

Table 4.1. Summary of the studied context handling approach

Approach Context Toolkit MDA-based UML Profile-based

Phase of introducing

context

Deployment phase Development phase Design phase

The used techniques /

concepts

Widgets, Interpreters,

and Aggregators

PIM, PSM, PDM mod-

els, MDA’s marking and

merging techniques

UML Profiles, stereo-

types, constraints, and

tagged values

Expressiveness level

of the context model

<key - value> model is

clear and simple but not

suitable for complex sys-

tems

The standard UML con-

cepts (used in the Con-

text Model CM) do not

support all aspects of the

context adequately

Its expressiveness is

constrained by the

model element it spe-

cializes (native class and

association metaclasses)

Main advantage eases the deployment

and to support the

rapid development of

context-aware systems

adds context at the de-

velopment phase avoids

restarting the develop-

ment process because of

context changes

helps modeling context-

aware applications with

specific notation since

the system design stage

Main limitations introduces the notion of

context at late stages of

development process

requires the developers

to be experienced in de-

velopment processes and

technologies like model

transformation

Profiles do not offer the

possibility to specify be-

havior neither do they

for modifying existing

structures

60

Chapter 4 Context Handling Approaches

4.6 Summary

On the whole, handling context and adaptation assumptions leads to further challenges and

requirements. The literature shows a variety of approaches which aim to introduce the notion

of context to cope with the perpetual context variations, and thus, to adapt the application’s

behavior correspondingly.

Analyzing the presented studies helped us raising two important notes, the first one regards

the software development lifecycle phases in which context has been introduced, we found that

application developers are tending to anticipate context handling since earlier design phases.

The second note addresses the way in which context has been embedded into the development

lifecycle; it shows the limitations of the related approaches as well as the necessity to define

novel concepts to specify context-awareness requirements appropriately.

61

Chapter 5

Overview of the Context Unified Modeling

Language

"The ultimate task of the architect is to dream, otherwise nothing happens"

Oscar NIEMEYER

Contents
5.1 Introduction . 63

5.2 Motivations . 63

5.3 Overview of the Context Unified Modelig Language 64

5.4 Our vision of context . 65

5.5 Implementation tools . 67

5.6 Summary . 68

62

Chapter 5 Overview of the Context Unified Modeling Language

5.1 Introduction

Analyzing various context handling approaches has led us to find out some interesting

issues to be broached. On that account, our current research focuses on putting forward a novel

approach to ease the design of self-adaptive applications.

The objective of this chapter is to shed light on our contributions; it starts by bringing to

the fore the factors that motivated us to propose new concepts to support context-aware systems

design. Afterward, we introduce the Context Unified Modeling Language (CUML) [114] as

heavyweight extensions for the UML Class and Sequence diagrams. Finally, we present the

tools that we used to operationalize our proposal into concrete modeling editors.

5.2 Motivations

Increasingly, software engineering needs to accommodate and evolve with the emerging

technologies and the related features that they can afford. Notwithstanding, the way applica-

tion programmers can effectively manage and use contextual information is still a challenge,

software designers thus devoted and still are investing considerable efforts to provide advanced

methods for describing context-aware systems appropriately [116], [117]. On these grounds,

we summed up the previous chapter with two inspiring factors:

1. In which software development lifecycle phase it is more advantageous to embed context?

Regarding this issue, we found that application developers are tending to anticipate con-

text handling since earlier design phases. Admittedly, it is worth considering the context

since the phases of requirements analysis and design by documenting the structure and

simulating the behavior of context-aware applications before the implementation phase.

2. What is the most suitable strategy to introduce the context in applications development?

At this juncture, we outlined the complications of solutions requiring developers to ma-

nipulate laborious model transformation methods as well as the lack of expressiveness

of other approaches. This has led us to think about the necessity to conceive a Domain-

Specific Modeling Language of which the concepts are well-fitting to express how do

applications interact with context sources, and how are they affected by the perpetual

context changes.

63

Chapter 5 Overview of the Context Unified Modeling Language

From this perspective, our purpose is to provide universal tools capable of coping with the

context-awareness concerns since earlier design phases and independently of any development

processes techniques. More precisely, we aim at exploiting the UML’s heavyweight extension

mechanism to enrich its diagrams (M1 level) with new specialized means and primitives tailored

for monitoring how applications are linked to context parameters and how the values of these

parameters may affect the application behavior.

5.3 Overview of the Context Unified Modelig Language

The UML’s heavyweight extension mechanism has always been a solution for software

engineering experts to create Domain-Specific Modeling Languages by importing native UML

elements in aggregation with new concepts to complement native ones’ limitations [87]-[91].

In the following chapters of this thesis we will present heavyweight extensions for the UML

Class and Sequence diagrams that we named ContextClass and ContextSequence diagrams re-

spectively. These extensions aim to support the modeling of context-aware systems structure

and behavior and are actually an ongoing work toward the realization of a complete framework

so-called Context Unified Modeling Language (CUML) [114].

Figure 5.1 depicts the overall scheme of the Context Unified Model diagrams.

CUML

ContextClass

diagram

ContextSequence

diagram

UML Sequence

diagram notations

context-specific

behavior notations

UML Class

diagram notations

context-specific

structure notations

Figure 5.1. Overview of the Context Unified Modeling Language diagrams

64

Chapter 5 Overview of the Context Unified Modeling Language

As an extension of the UML Class diagram, the ContextClass diagram is set to map out

the structure of context-aware applications not only by describing objects, attributes, and op-

erations; but also by specifying relationships between the application itself and the contextual

parameters that may alter its execution.

From a behavioral point of view, our solution builds on the ContextSequence diagram. The

latter extends the UML Sequence diagram to capture the behavior of context-aware systems

by depicting the flow of events including context-dependent adaptation actions and interactions

with context sources.

In furtherance of achieving the purposed extensions correctly, we will build on the follow-

ing methodology to extend each diagram:

• First, we start by digging into the limitations that may prevent UML’s standard notations

from describing the context-awareness concerns adequately.

• Second, we explain the customization processes and what diagram notations have been

introduced at the model level (M1).

• Next, to ensure the syntactic correctness of future models, we elaborate corresponding

MOF-based schemes at the metamodels (M2).

• At last, we bolster the proposed modeling concepts by providing hierarchical and graphi-

cal modeling editors for each diagram, this will ease the understanding and the academic

use of the approach on the one hand, and on the other hand, to allow sharing real models

between software designers and developers.

5.4 Our vision of context

Context-aware systems were originally founded to monitor the context and then act ac-

cordingly without any human mediation. The aim of having an autonomous system is to reduce

the user intervention, easing its use and decreasing user distraction [58]. Considering the def-

initions discussed in Chapter 2, we may conclude that the term context is almost synonymous

to the implicit parameters that may drag a change in the conditions of execution, and therefore,

may alter the application’s behavior (Figure 5.2).

65

Chapter 5 Overview of the Context Unified Modeling Language

Context-aware

application

 explicit
input

 implicit
 input

Contextual
parameters

adapted
output

User

Figure 5.2. Context and context-aware applications

In this section, we will put the basic stones of our work by defining the parameters that we

take under consideration in context-aware applications design.

1. Location: refers to the user’s location in a particular situation. Due to the mobility of

users, the application must adjust its behavior by customizing services related to lan-

guage, currency, units of measure, etc.

2. Time: this parameter includes time, date, seasons, etc.. The application can therefore

provide several indications of reminders, schedules, and deadlines.

3. Environment: this parameter encompasses elements related to the state of the execution

environment such as light, sound, temperature, and atmospheric pressure. Significant

changes in one of these elements can modify the application execution accordingly.

4. Device: the state of computing devices (computing and memory capacity, battery sta-

tus, etc.). Users might access their applications from wireless portables, via stationary

embedded devices, or from traditional workstations connected to a local area network.

5. Network: it includes several network parameters such as connectivity, bandwidth, signal

level, network protocols, etc.

6. Nearby persons: people who are in the user’s area may be considered as relevant con-

textual input, it may be in the form of individuals, colleagues, or neighbors.

7. Surrounding objects: close objects can also influence the application’s behavior, for

example, alerting the user when he starts walking away from his wallet.

8. User: the application can perform dynamic adaptations by considering the state of the

user himself as well as his activity: walking, running, cycling, driving, etc.

66

Chapter 5 Overview of the Context Unified Modeling Language

9. Profile: the application can refine its behavior by taking advantage of information related

to the user’s age, gender, and occupation in order to furnish relevant services adaptations.

10. Preferences: context-aware applications can adapt their behavior depending on users

preferences which may encompass default display preferences or priorities for specific

operating modes.

11. History: the application can personalize the suggested services according to a user’s

history, for example, it may recommend services in accordance with the most visited

places, comments, shares, polls, and ratings.

5.5 Implementation tools

To put our modeling proposal into practice, and to overcome the lack of tools in heavy-

weight extension approaches [26], [85], we used specific metamodeling and drawing tools to

elaborate proper hierarchical and graphical editors.

5.5.1 Eclipse Ecore tools

For both diagram extensions, we will present implementations of their metamodels under

the Eclipse Modeling Framework [118]. The EMF defines a metamodeling environment and

code generation facility for building application tools based on a structured data model.

When working with EMF, we start by drawing then validating our metamodel through a

proprietary language called Ecore, the latter includes the necessary constructs to draw a coherent

MOF-based metamodel (EClass, EAttribute, EOperation, ESuperType, EReference, EEnumer-

ation, etc.). After that, we proceed to generate the corresponding hierarchical modeling editor

which can hereafter be integrated into Eclipse as a new EMF model creation plugin. More

implementation details can be found in Appendix A.

5.5.2 The UMLet tool

UMLet is a free, open-source, and multiplatform UML tool with a simple user interface. It

enables to draw different UML diagrams, and also to share them using Eclipse. It is based on

text-formatting codes to modify the basic shapes with decorations and annotations. The main

interface of UMLet is straightforward, it is composed mainly of three panels: a property panel,

a source code panel, and a preview panel.

67

Chapter 5 Overview of the Context Unified Modeling Language

One of the greatest features of UMLet is the possibility to customize it by introducing

not only new graphical notations but also new diagram types. This can be done by directly

editing the text in the property panel or from the source code panel by modifying the code

that is responsible for interpreting the property text and for drawing the element. The preview

panel allows displaying the changes results in real-time [119]-[121]. Further explanations can

be found in Appendix B.

5.6 Summary

All things considered, the main concern of this chapter was to present a brief overview of

the upcoming thesis’ contributions. We started by revealing the design challenges that motivated

us to use the UML heavyweight extension mechanism as a solution to overcome existing context

handling approaches limitations. Next, we introduced the Context Unified Modeling Language

(CUML) as a novel approach to support the design of self-adaptive systems. Afterward, we

explained our vision regarding the contextual parameters that may affect the application’s adap-

tation behavior. Eventually, we found it would be worth presenting some tools that we used to

implement our modeling proposal into concrete editors allowing to explore its expressiveness

in a visual manner.

68

Chapter 6

Extending the Class Diagram to Model

Context-Aware Systems: the ContextClass

Diagram

"We can’t solve problems by using the same kind of thinking

we used when we created them"

Albert EINSTEIN

Contents
6.1 Introduction . 70

6.2 Limitations of the traditional UML Class diagram 70

6.3 Extension of the UML Class diagram: the ContextClass diagram 71

6.4 ContextClass diagram metamodel . 73

6.5 Ecore implementation: ContextClass hierarchical editor 76

6.6 ContextClass diagram graphical editor 78

6.7 Summary . 79

69

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

6.1 Introduction

In pursuance of conceiving context-aware applications appropriately, software designers

must devote more attention for describing applications dependencies to the contextual parame-

ters that surround the application execution. Indeed, as the most popular static diagram amidst

software engineers, the UML Class diagram is quite sufficient for describing the structure of

traditional computing systems, but seem limited in the case of context-aware ones.

To overcome the latter, this chapter presents a heavyweight extension of the UML Class

diagram to ease the modeling of context-aware systems’ structure. We start by recalling the

necessity of introducing novel modeling notations; then we define the concepts of the Con-

textClass diagram as well as its corresponding modeling tools.

6.2 Limitations of the traditional UML Class diagram

As the backbone for the design of any system’s structure, the UML Class diagram is a

modeling standard used to identify the static aspect of systems by mapping their entities as

classes and connecting them via different relationships.

In traditional systems, entities are characterized by several structural and behavioral aspects

which are respectively presented as attributes (name, age, etc.) and operations (getName(),

submit(), etc.). Typically, the traditional Class diagram has powerful concepts to model such

aspects by using classes, attributes, operations, and relationships between classes.

On the flip side, entities evolving in context-aware systems are not solely characterized

with structural and behavioral features, but they are also affected by a couple of contextual

parameters including location, time, environment, etc.. This constitutes a new aspect which

in turn needs be considered for the sake of ensuring better control of the whole system, and

consequently to provide valuable adaptation services [114].

As emphasized by authors in [38], most of the existing models fail to represent depen-

dencies between the diverse context information and to utilize these dependency relationships.

Also, Bettini et al. [93] showed that there exist various relationships between types of contex-

tual parameters that need to be handled to ensure correct behavior of the applications, one such

relationship is dependency whereby entities may depend on other context parameters.

70

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

Geihs and Wagner [40] asserted that designers must understand which context parameters

influence the application functionality and how application variants depend on these parameters.

As an illustration, given a tourist who uses a smart application to seek a reservation in the

closest hotel to his current position, this functionality doesn’t depend only on explicit entries

provided by the user himself (e.g., price, room type), but also on the user’s location as an implicit

input contextual information to favor closest hotels first, i.e., the provided services when the user

is located in somewhere are different from the services when the user is elsewhere, therefore, we

can say that the input location information is autonomously altering the output provided service.

Another example can be found in [93], when a change to the value of one parameter (network

bandwidth) may automatically impact the values of some properties (remaining battery power).

In this sense, the traditional Class diagram including the structure of the class itself (at-

tributes and operations) are likely insufficient to express how applications are linked to the

context parameters and how the values of these parameters may positively affect the applica-

tion structure and behavior, this calls to think about the necessity to introduce distinct modeling

concepts to specify these new relationships.

6.3 Extension of the UML Class diagram: the ContextClass

diagram

Our goal is to enlarge the semantics of the Class diagram so that it can depict further

information about context and context-awareness. To do so, our proposal consists in enriching

the class’ structure with a novel construct capable of monitoring how applications are linked

to the contextual parameters and how the values of these parameters may affect the application

behavior, we call this new construct the monitor.

Contextual aspects will be handled by means of the monitor, it has the real task of reveal-

ing the contextual parameters that may have an influence on objects states and behaviors, as

pointed earlier, considerable variations in the contextual parameters entail changes in objects

states (properties) and alter the ways in which objects behave (operations). With this in mind,

we characterize the monitor by two concepts: a contextual parameter type and the set of the in-

fluenced attributes and/or the operations. The monitor type takes its value from the enumeration

that contains the context parameters of our proposal (see Section 5.4).

71

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

Wherefore setting up such a new feature rather than resorting to the original structural and

behavioral ones comes down to the particularity of the contextual aspect that we are aiming to

append to the inner structure of the class, and which cannot be presented as ordinary attributes or

operations. Moreover, suchlike dedicated notation permits to achieve a clear separation between

traditional (non-contextual) and contextual concerns.

Henceforth, the original notion of Class will be substituted by ContextClass, and the dia-

gram will be called the ContextClass diagram, it will be constituted of a set of ContextClasses,

and relationships among them. Each ContextClass will thus be composed of four compartments:

1. The top compartment holds the name of the ContextClass.

2. The second compartment encompasses the attributes.

3. The third one carries the operations.

4. The bottom compartment contains the monitors.

Figure 6.1 illustrates the general structure of a ContextClass through the previous example

of the tourist.

ContextClass’ name

attributes

Tourist

id: Integer
name: String
age: Integer

findHotel(budget, roomKind): HotelType
lunch(budget, speciality): RestaurantType
optimizeRessources(): void

Location: findHotel(), lunch()
Time: lunch()
History: lunch()
Device: optimizeRessources()

operations

monitors

monitor type influenced operation

Figure 6.1. An example of the ContextClass "Tourist"

The relationships used in ContextClass models remain unchanged, we rely on the same

relationships of the traditional Class diagram (association, composition, aggregation, and spe-

cialization). A full example of a ContextClass diagram will be shown in Chapter 8.

72

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

6.4 ContextClass diagram metamodel

The MOF-based definition of the ContextClass diagram consists in introducing new con-

structs related by inheritance at least to one element of the UML metamodel (M2 level). Some

metaclasses will have their own features and relationships among each other, whereas some

features will redefine and subsume UML-related features (see Figure 6.2).

ContextClass diagram
metamodel

<<merge>> UML Class Diagram
metamodel

Metamodel level (M2)

Model level (M1)

ContextClass diagram

defined by

UML Class diagram

defined by

Figure 6.2. ContextClass diagram metamodel definition

In consonance with the UML definition [74], Element is an abstract metaclass with no

superclass, all modeling concepts are specializations of it. The metaclass Classifier is related to

the metaclasses StructuralFeature and BehavioralFeature. StructuralFeature is a generalization

of Property and BehavioralFeature is a generalization of Operation.

As can be seen from Figure 6.3 to Figure 6.5, our contribution is shaped in three new

metaclasses (ContextClass, ContextualFeature, and Monitor), as well as an enumeration (Con-

textualParameter), all depicted in blue.

The ContextClass metaclass substitutes the older structure of Class and extends the meta-

class Classifier (Figure 6.3); therefore, it will be associated with the native metaclasses Struc-

turalFeature and BehavioralFeature. Similarly to Class, the structural features of ContextClass

instances are attributes and their behavioral features are operations.

« metaclass »

::Classifier
ContextClass

Figure 6.3. Classifier specialization: the ContextClass metaclass

73

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

The other new metaclass is ContextualFeature, it specializes the Feature metaclass (Figure

6.4) and is the superclass of the metaclass Monitor, the latter is defined as a new component of

ContextClass via a composition relationship (Figure 6.5).

« metaclass »

::Feature

« metaclass »

::BehavioralFeature

« metaclass »

::StructuralFeature
ContextualFeature

Figure 6.4. Feature specialization: the ContextualFeature metaclass

ContextClass

« metaclass »

::BehavioralFeature

« metaclass »

::StructuralFeature
ContextualFeature

« metaclass »

::Operation

« metaclass »

::Property

Monitor

Figure 6.5. ContextClass structure: the monitor metaclass

A monitor has a type that takes its value from the ContextParameter enumeration and also

has target meta-relationships with the set of attributes and operations that are influenced by

it (influencedState and influencedBehavior). The ContextParameter enumeration encompasses

the contextual parameters of our proposal: Location, Time, Environment, Device, Network, User

state, Profile, Preferences, History, Surround objects, and Nearby persons.

Table 6.1 recaps the new metaclasses generalizations, attributes, and associations, whereas

Figure 6.6 depicts the full MOF-based metamodel of the ContextClass diagram.

74

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

«
en

u
m

er
at

io
n
»

C
o
n
te
x
tP
a
ra
m
et
er

L
o
ca

ti
o

n

T
im

e

E
n
iv

ro
n

m
en

t

D
ev

ic
e

N
et

w
o
rk

U
se

r
st

at
e

P
ro

fi
le

P
re

fe
re

n
ce

s

H
is

to
ry

S
u
rr

o
u

n
d

 o
b

je
ct

s

N
ea

rb
y

 p
er

so
n
s

E
le
m
en
t

F
ea
tu
re

C
la
ss
ifi
er

R
el
a
ti
o
n
sh
ip

S
tr
u
ct
u
ra
lF
ea
tu
re

B
eh
a
vi
o
ra
lF
ea
tu
re

C
o
n
te
x
tu
a
lF
ea
tu
re

C
o
n
te
x
tC
la
ss

+
n

am
e:

 S
tr

in
g

+
is

A
b

st
ra

ct
:

B
o

o
le

an

A
ss
o
ci
a
ti
o
n

+
n

am
e:

 S
tr

in
g

+
is

D
er

iv
ed

:
B

o
o

le
an

P
ro
p
er
ty

+
n

am
e:

 S
tr

in
g

+
is

ID
:

B
o
o

le
an

+
ty

p
e:

 D
at

aT
y
p

e

+
v

is
ib

il
it

y
:

V
is

ib
il

it
y
K

in
d

+
ag

g
re

g
at

io
n

: A
g
g

re
g
at

io
n
K

in
d

O
p
er
a
ti
o
n

+
n

am
e:

 S
tr

in
g

+
is

Q
u

er
y
:

B
o
o
le

an

+
ty

p
e:

 D
at

aT
y
p

e

+
v

is
ib

il
it

y
:

V
is

ib
il

it
y
K

in
d

M
o
n
it
o
r

+
T

y
p
e:

 C
o

n
te

x
tP

ar
am

et
er

+
o

w
n
ed

M
o
n

it
o

r
*

+
co

n
te

x
tC

la
ss

0
..
1

+
o

w
n
ed

O
p
er

at
io

n
*

+
co

n
te

x
tC

la
ss

0
..
1

+
o

w
n
ed

A
tt

ri
b

u
te

*

+
co

n
te

x
tC

la
ss

0
..
1

*

+
o

w
n
ed

E
n
d

*
+

o
w

n
in

g
A

ss
o
ci

at
io

n
0
..
1

P
a
ra
m
et
er

+
n

am
e:

 S
tr

in
g

+
ty

p
e:

 D
at

aT
y
p

e

+
d

ir
ec

ti
o
n

:
P

ar
am

et
er

D
ir

ec
ti

o
n
K

in
d

+
o

w
n
ed

P
ar

am
et

er
*

+
o

w
n
ed

F
o
rm

al
P

am
ae

te
r

0
..

1
+

in
fl

u
en

ce
d
B

eh
av

io
r

+
m

o
n
it

o
r

0
..

1
*

+
in

fl
u
en

ce
d
S

ta
te

+
m

o
n
it

o
r

0
..

1

*

«
en

u
m

er
at

io
n
»

A
g
g
re
g
a
ti
o
n
K
in
d

n
o

n
e

sh
ar

ed

co
m

p
o
si

te

«
en

u
m

er
at

io
n
»

D
a
ta
T
y
p
e

n
u

ll

B
o
o
le

an

In
te

g
er

S
tr

in
g

F
lo

at

D
o

u
b
le

«
en

u
m

er
at

io
n
»

V
is
ib
il
it
y
K
in
d

p
u

b
li

c

p
ri

v
at

e

p
ro

te
ct

ed

p
ac

k
ag

e

«
en

u
m

er
at

io
n
»

P
a
ra
m
et
er
D
ir
ec
ti
o
n

K
in
d

in in
o

u
t

o
u

t

re
tu

rn

+
m

em
b
er

E
n
d

2
..

*

0
..

1
+

as
so

ci
at

io
n

+
su

p
er

C
la

ss

+
fe

at
u
re*

+
fe

at
u
ri

n
g
C

la
ss

ifi
er

*

Figure 6.6. The metamodel of the ContextClass diagram

75

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

Table 6.1. Recapitulation of the new metaclasses of the ContextClass Diagram

Metaclass Generalizations Attributes Associations

ContextualFeature Feature

(from UML)

No additional attributes No additional associations

ContextClass Classifier

(from UML)

name: String[0..1]

isAbstract: Boolean

/superclass: ContextClass[*]

ownedAttribute: Property[*]

ownedOperation: Operation[*]

ownedMonitor: Monitor[*]

Monitor ContextualFeature type: ContextualParameter[1] contextClass: ContextClass[0..1]

influencedState: Property[*]

influencedBehavior: Operation[*]

6.5 Ecore implementation: ContextClass hierarchical editor

In the interest of providing a practical tool for describing the structure of context-aware

systems, we created a ContextClass modeling editor by setting up a description of its metamodel

under the Eclipse Modeling Framework (see Appendix A). Figure 6.7 depicts the metamodel

drawn under Eclipse correspondingly to the MOF-based metamodel illustrated in Figure 6.6.

Instantiating the drawn metamodel will offer the possibility to generate an hierarchical

modeling editor which can be integrated into Eclipse as a new Eclipse plugin called Con-

textClass, as given in Figure 6.8. Further explanation on how can this editor be used to model

context-aware systems structures will be presented in Chapter 8.

76

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

E
le
m
en
t

Fe
a
tu
re

C
la
ss
if
ie
r

R
el
a
ti
o
n
sh
ip

S
tr
u
ct
u
ra
lF
ea
tu
re

B
eh
a
vi
o
rF
ea
tu
re

C
o
n
te
xt
u
a
lF
ea
tu
re

C
o

n
te

xt
C

la
ss

n
a
m

e
 :

 E
S
tr

in
g

is
A
b
st

ra
ct

 :

E
B
o
o
le

a
n
 =

 f
a
ls

e

M
o

n
it

o
r

ty
p
e
 :

 C
o
n
te

x
tP

a
ra

m
e
te

r
=

 L
o
ca

ti
o
n

O
p

e
ra

ti
o

n

n
a
m

e
 :

 E
S
tr

in
g

is
Q

u
e
ry

 :
 E

B
o
o
le

a
n
 =

 f
a
ls

e

ty
p
e
 :

 D
a
ta

T
y
p
e
 =

 n
u
ll

v
is

ib
ili

ty
 :

 V
is

ib
ili

ty
K
in

d
 =

 p
u
b
lic

A
ss

o
ci

a
ti

o
n

n
a
m

e
 :

 E
S
tr

in
g

is
D

e
ri
v
e
d
 :

E
B
o
o
le

a
n
 =

 f
a
ls

e

P
a
ra

m
e
te

r

n
a
m

e
 :

 E
S
tr

in
g

ty
p
e
 :

 D
a
ta

T
y
p
e
 =

 n
u
ll

v
is

ib
ili

ty
 :

 V
is

ib
ili

ty
K
in

d
 =

 p
u
b
lic

d
ir
e
ct

io
n
 :

P
a
ra

m
e
te

rD
ir
e
ct

io
n
K
in

d
 =

 i
n

D
a
ta

Ty
p

e

n
u
ll

B
o
o
le

a
n

In
te

g
e
r

S
tr

in
g

F
lo

a
t

D
o
u
b
le

C
o

n
te

xt
P
a
ra

m
e
te

r

L
o
ca

ti
o
n

T
im

e

E
n
v
ir
o
n
m

e
n
t

D
e
v
ic

e

N
e
tw

o
rk

U
se

r

P
ro

fi
le

P
re

fe
re

n
ce

s

H
is

to
ry

S
u
rr

o
u
n
d
in

g
O

b
je

ct
s

N
e
a
rb

y
P
e
rs

o
n
s

V
is

ib
ili

ty
K

in
d

p
u
b
lic

p
ri
va

te

p
ro

te
ct

e
d

p
a
ck

a
g
e

A
g

g
re

g
a
ti

o
n

K
in

d

n
o
n
e

sh
a
re

d

co
m

p
o
si

te

P
a
ra

m
e
te

rD
ir

e
ct

io
n

K
in

d

in in
o
u
t

o
u
t

re
tu

rn

P
ro

p
e
rt

y

n
a
m

e
 :

 E
S
tr

in
g

is
ID

 :
 E

B
o
o
le

a
n
 =

 f
a
ls

e

ty
p
e
 :

 D
a
ta

T
y
p
e
 =

 n
u
ll

v
is

ib
ili

ty
 :

 V
is

ib
ili

ty
K
in

d

=
 p

u
b
lic

a
g
g
re

g
a
ti
o
n
 :

A
g
g
re

g
a
ti
o
n
K
in

d
 =

 n
o
n
e

C
o

n
te

xt
C

la
ss

D
ia

g
ra

m

[0
..1

]
co

n
te

xt
cl

a
ss

[0
..*

]
o

w
n

e
d

M
o

n
it

o
r

[0
..1

]
co

n
te

xt
cl

a
ss

[0
..*

]
o

w
n

e
d

O
p

e
ra

ti
o

n

[0
..1

]
o

w
n

e
d

Fo
rm

a
lP

a
ra

m

[0
..*

]
o

w
n

e
d

P
a
ra

m
e
te

r

[0
..
1

]
a
ss

o
c
ia

ti
o

n
[2

..
*
]

m
e
m

b
e
rE

n
d

[0
..1

]
o

w
n

in
g

A
ss

o
ci

a
ti

o
n

[0
..*

]
o

w
n

e
d

E
n

d

[0
..*

]
su

p
e
rC

la
ss

[0
..*

]
se

tO
fA

ss
o

ci
a
ti

o
n

[0
..*

]
se

tO
fC

o
n

te
xt

C
la

ss

[0
..1

]
co

n
te

xt
cl

a
ss

[0
..*

]
o

w
n

e
d

A
tt

ri
b

u
te

[0
..*

]
in

fl
u

e
n

ce
d

B
e
h

a
vi

o
r

[0
..*

]
in

fl
u

e
n

ce
d

S
ta

te

Figure 6.7. ContextClass metamodel implementation under Eclipse

77

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

Figure 6.8. Example of creating a new ContextClass model

6.6 ContextClass diagram graphical editor

We created a graphical modeling tool for the ContextClass diagram under UMLet. As

depicted in Figure 6.9, this editor is based on three main panels: tools panel, proprieties panel,

and the drawing space panel.

1. In the tools panel, we inserted the necessary graphical notations to draw a complete Con-

textClass diagram; it encompasses the main element which is ContextClass (including

Monitor) as well as the relationships (generalization, composition, aggregation, and as-

sociation).

2. To add an element from the available tools panel to the drawing space panel we simply

double-click on it.

3. From the command line in the properties panel, we can set up the properties of each

ContextClass by entering the list of attributes, operations, and monitors, followed by a

double dash "- -" to create separations between compartments.

78

Chapter 6 UML Class Diagram Extension: The ContextClass Diagram

Figure 6.9. The ContextClass diagram graphical editor interface

6.7 Summary

Context-aware systems structure simulation is a substantial step toward depicting the exter-

nal factors connected with the application. Exploiting the UML heavyweight extension mecha-

nism, we presented a new form of the UML Class diagram by enriching it with new syntax and

semantics to surmount its inabilities of expressing contextual information.

Besides the structural and behavioral features that characterize the system’s entities, the

ContextClass diagram depicts supplementary information by describing the contextual aspects.

This is achieved by monitoring the dependencies between the parameters of context on the

one hand, and on the other hand the properties and operations susceptible to be influenced

once the context of use changes. In such manner, we are not only highlighting the contextual

circumstances but also specifying which part of the system is affected by the related parameter.

At last, we implemented our modeling approach in concrete modeling editors to support

academicians and software engineers understanding and handling context-awareness concerns

using our extension proposal.

79

Chapter 7

Extending the Sequence Diagram to Model

Context-Aware Systems: The

ContextSequence Diagram

"Serendipity is the faculty of finding things

we did not know we were looking for"

Glauco ORTOLANO

Contents
7.1 Introduction . 81

7.2 Limitations of the traditional UML Sequence diagram 81

7.3 Extension of the UML Sequence diagram: the ContextSequence diagram 82

7.4 ContextSequence diagram metamodel . 86

7.5 Ecore implementation: ContextSequence hierarchical editor 88

7.6 ContextSequence diagram graphical editor 91

7.7 Summary . 92

80

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

7.1 Introduction

Undoubtedly, developing context-aware systems implicates the consideration of many ex-

ternal aspects such as the perpetual variations in the contextual information and the different

interactions with sensors. In fact, application designers use the UML behavioral diagrams to

capture the interactions and to simulate the behavior of systems before the construction stage,

however, these diagrams notations may need some enhancement to enable them specifying

communications between the user, the system, and sensors.

This chapter presents a heavyweight extension of the UML Sequence diagram to enable

software designers documenting and simulating models before the developers implement them.

We start by illustrating the usefulness of modeling context-awareness concerns with distinct

modeling notations, before presenting the concepts of ContextSequence diagram as well as its

corresponding modeling tools.

7.2 Limitations of the traditional UML Sequence diagram

Documenting and simulating the needs of applications is requisite to manage their behavior

as well as their interactions with the world. In this sense, the UML Sequence diagram describes

the flow of events between objects leading to the desired outcome through different kinds of

messages, also, it offers the possibility to specify conditional flow by virtue of its operands

which are suitable for indicating actions to be performed under particular constraints.

Nonetheless, the standard notations of the UML Sequence diagram are tool general to

model self-adapting systems, these latter are characterized by special kinds of features that

need advanced handling:

• As presented in the survey of Baldauf and Dustdar [60], context-aware systems don’t

solely implicate interactions among its participants but also interactions with context

sources with which it must establish and maintain connections to obtain relevant con-

textual information; these interactions specify the communication policies of how the

system requests and acquires information from sensors. Hence, we should clarify the

interaction modeling between context-aware systems and context sources.

81

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

• Chaari and his colleagues [97] elucidated the necessity to design applications in a context

independent way, i.e., a designer should identify the data which is related to the appli-

cation distinctively from the data which specify the context. In this sense, in addition

to actions executed according to functional constraints, context-aware applications also

perform autonomous adaptation actions which are automatically triggered on the occur-

rence of context change events, their behavior is therefore affected and controlled by

constraints of implicit contextual information. To do so, the boundary between appli-

cation constraints and contextual constraints must be clearly specified depending on the

application domain, for instance, a GPS localization represents an application data in a

traffic regulation system but is part of context data in a telemedicine application.

Arguably, the Sequence diagram in its current form neither offers constructs to fully repre-

sent interactions with sensors nor provides proper notations for describing autonomous adapta-

tion actions. Therefore, we need to specify the real behavior of context-aware systems visually

by introducing explicit notations to represent perpetual context changes events, adaptation ac-

tivities, and interactions between systems and context sources.

7.3 Extension of the UML Sequence diagram: the ContextSe-

quence diagram

In this section, we introduce the concepts of the ContextSequence diagram. In addition

to the traditional notations presented in Chapter 3, we will define new ones to overcome the

modeling limitations of the traditional UML Sequence diagram. The proposed notations will

offer software designers the possibility to achieve a clear separation of concerns between func-

tional requirements and context-awareness requirements, and will be addressed through two

main aspects: interactions with sensors and adaptation actions.

1. Interactions with sensors:

Together with the traditional interactions defined by the Sequence diagram messages

(synchronous, asynchronous, and replies), context-aware systems comprise new kind of

communications with sensors from which they acquire the relevant contextual informa-

tion.

82

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

Conforming to Baldauf and Dustdar [60], there exist two possible ways of gaining ac-

cess to contextual information sources: synchronous and asynchronous. The synchronous

method allows querying the context source for specific information in a pull-based man-

ner, therefore, the context source receives a message requesting some information and

answers by delivering its value to the requester. Alternatively, the asynchronous method

works via subscriptions, using this method enables the application to subscribe to specific

events which it is interested in, then gets informed on occurrence of one of these events

without continuously repeating context queries.

Our solution proposes to include these types of interaction in future models by defin-

ing novel notations to help software engineers specifying context-dependent messages

distinctively from traditional ones. Graphically, contextual exchanges messages will be

presented as double lines with the related message above as follows: stick arrowhead

to represent asynchronous notification from context sources, filled arrowheads to express

synchronous context queries, and dashed lines for contextual information reply messages.

Interaction notations of the ContextSequence diagram are summarized in Table 7.1.

Table 7.1. ContextSequence diagram interaction notations

Traditional UML notations Contextual interactions notations

Asynchronous message Asynchronous context notification

Synchronous message Synchronous context query

Message reply Context information reply

2. Adaption behavior:

The promise of context-awareness is to enable applications to take actions autonomously

by qualifying them to sense the user’s context and to adapt their behavior appropriately.

Considering the prevalent parameters that constitute the context of execution, we aim to

introduce a novel notation to visualize the adaptation actions which are performed auto-

matically according to the variations of a specific contextual parameter.

83

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

As can be seen in Figure 7.1, the novel notation consists of a dedicated combined

fragment so-called AdaptationCombinedFragment with a new operand which we name

adapt. The adaptation combined fragment is divided into one or more fragments called

adaptation operands. Each AdaptationOperand corresponds to a specific contextual con-

straint and holds the set of messages which are sent once this constraint is met. In this

manner, this allows achieving a clear separation between traditional systems’ functional-

ities (non-contextual constraints) and automatic adaptation behaviors (context-dependent

constraints). Also, we can help developers distinguishing Combined Fragments from

Adaptation Combined Fragments at model level (M1 level) through the use of annota-

tions.

message1 (parameters)

[contextual
constraint1]

[contextual
constraint2]

else

adapt

interaction
operator

adaptation
combined
fragment

adaptation
operand

:Object1 :Object2

message2 (parameters)

message3 (parameters)

Figure 7.1. An example of an adapt combined fragment in a ContextSequence diagram

In furtherance to demonstrate the proposed concepts, we consider a ContextSequence di-

agram for the Temperature Control System (TCS) [122], the TCS ensures users’ comfort by

automatically adjusting rooms temperature. The system acquires the current room’s tempera-

ture by requesting its value from temperature sensors, afterward, a controller applies automatic

adaptation actions by switching between heating, warming, or cooling modes.

We address both of system’s interactions and adaptation behavior by describing them

through a ContextSequence (Figure 7.2). In addition to traditional interactions (switchOn(),

setPreferences(), and activate()), we distinguish those which convey particular contextual in-

84

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

formation of the environment’s temperature, getTemperature() and return(temp) are exactly the

kind of interactions described by Baldauf and Dustdar [60], and therefore, are modeled respec-

tively as Synchronous context query and Context information reply. Besides, we used an Adap-

tationCombinedFragment to specify the system’s automatic adaptation; this behavior manifests

in switching modes autonomously depending on contextual constraints of temperature values

ranges.

display(mode)

switchOn()

setPreferences()

activate()

return(OK)

activate()

return(OK)

getTemperature()

setMode(Heating)

setMode(Warm)

setMode(Air-fan)

setMode(Cooling)

return (temp)

temp ≤ 15

User Controller Air conditioner Temp Sensor

adapt

loop

temp > 15 &
temp ≤ 25

temp > 25 &
temp ≤ 35

else

Figure 7.2. ContextSequence diagram for the Temperature Control System

85

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

7.4 ContextSequence diagram metamodel

Up to a point, future ContextSequence diagrams must syntactically conform to some rules.

In this section, we present a MOF-based metamodel of the ContextSequence diagram by de-

picting UML’s native metaclasses as well as the new modeling concepts that we presented pre-

viously (see Figure 7.3).

ContextSequence diagram
metamodel

<<merge>> UML Sequence Diagram
metamodel

Metamodel level (M2)

Model level (M1)

ContextSequence diagram

defined by

UML Sequence diagram

defined by

Figure 7.3. ContextSequence diagram metamodel definition

From Figure 7.4 to Figure 7.6, we present the constructs of the ContextSequence diagram

metamodel including the metaclasses and enumerations that we introduced (colored in blue).

InteractionFragment is an abstract notion of the most general interaction unit, it is a piece

of an interaction. Each interaction fragment is conceptually like an interaction by itself. Inter-

action comprises the set of messages exchanged among lifelines [74].

The metaclass Message defines a particular communication between lifelines, a message is

characterized by messageKind and messageSort properties which take their values respectively

from the MessageKind and the MessageSort enumerations. Originally, the literal values of

the MessageSort enumeration are only: synchCall, asynchCall, asynchSignal, createMessage,

deleteMessage, and reply; we enriched this enumeration by adding the three types of messages

introduced by Baldauf [60]: asynchContextNotification, synchContextQuery, and contextInfor-

mationReply.

The metaclass Lifeline represents an individual participant in the interaction, whereas the

metaclass sensorLifeline is the specialization of Lifeline, its instances represent context sources

distinctively from the system participants (see Figure 7.4).

86

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

« metaclass »

::Lifeline
SensorLifeline

Figure 7.4. Lifeline specialization: the SensorLifeline metaclass

Following the UML specification [74], combined fragments of traditional Sequence dia-

grams are defined by the CombinedFragment metaclass, while the fragments that compose it

are presented by InteractionOperand. Analogously, our proposed adaptation combined frag-

ment concept is defined by the AdaptationCombinedFragment metaclass while the inner frag-

ments that compose it are instances of the metaclass AdaptationOperand (see Figure 7.5).

« metaclass »

::InteractionFragment

« metaclass »

::CombinedFragment

« metaclass »

::InteractionOperand
AdaptationOperand

AdaptationCombinedFragment

Figure 7.5. InteractionFragment specialization: the AdaptationCombinedFragment metaclass

To designate its semantic, the metaclass CombinedFragment is characterized by the prop-

erty interactionOperator, this latter takes its value from the literals of the InteractionOpera-

torKind enumeration: seq, alt, opt, break, par, strict, loop, critical, neg, assert, ignore, and

consider.

The interactionOperator attribute of the AdaptationCombinedFragment is always set to

adapt, we added this literal to the InteractionOperatorKind enumeration to express the seman-

tics of the adaptation behavior.

As illustrated in Figure 7.6, InteractionOperand is guarded by an InteractionConstraint,

whereas AdaptationOperand is guarded by a ContextualConstraint, the latter corresponds to

one of the contextual parameters of our proposal (see Section 5.4).

87

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

« metaclass »

::Constraint

« metaclass »

::InteractionConstraint

« metaclass »

::InteractionOperand

ContextualConstraint

AdaptationOperand

Figure 7.6. Constraint specialization: the ContextualConstraint metaclass

Table 7.2 recaps the properties of the metaclasses that we introduced as new concepts of

the ContextSequence diagram, whereas Figure 7.7 depicts its full MOF-based metamodel.

Table 7.2. Recapitulation of the new metaclasses of the ContextSequence Diagram

Metaclass Generalizations Attributes Associations

SensorLifeline Lifeline (from UML) No additional attributes No additional associations

AdaptationCombined

Fragment

InteractionFragment

(from UML)

interactionOperator:

InteractionOperatorKind

operand:AdaptationOperand[1..*]

AdaptationOperand InteractionFragment

(from UML)

No additional attributes fragment:InteractionFragment[*]

guard:ContextualConstraint[0..1]

ContextualConstraint Constraint (from UML) Type: ContextParameter No additional associations

7.5 Ecore implementation: ContextSequence hierarchical ed-

itor

As depicted in Figure 7.8, we implemented the ContextSequence diagram metamodel in

Eclipse (details can be found in Appendix A), this metamodel holds the rules to verify the

correctness of the future models. Next, we have generated the corresponding hierarchical editor

as an Eclipse plugin called ContextSequence, as illustrated in Figure 7.9. More illustrative

examples of using this editor will be presented in Chapter 8.

88

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

In
te
ra
ct
io
n

M
es
sa
g
e

+
/m

es
sa

g
eK

in
d

:
M

es
sa

g
eK

in
d

 =
 u

n
k

n
o

w
n

+
m

es
sa

g
eS

o
rt

:
M

es
sa

g
eS

o
rt

 =
 s

y
n

ch
C

al
l

L
if
el
in
e

In
te
ra
ct
io
n
F
ra
g
m
en
t

C
o
m
b
in
ed
F
ra
g
m
en
t

+
in

te
ra

ct
io

n
O

p
er

at
o

r:
 I

n
te

ra
ct

io
n

O
p

er
at

io
n

K
in

d

In
te
ra
ct
io
n
O
p
er
a
n
d

In
te
ra
ct
io
n
C
o
n
st
ra
in
t

+
o

p
er

an
d

1
..

*

0
..

1

A
d
a
p
ta
ti
o
n
C
o
m
b
in
ed
F
ra
g
m
en
t

+
in

te
ra

ct
io

n
O

p
er

at
o

r:
 I

n
te

ra
ct

io
n

O
p

er
at

io
n

K
in

d
 =

 a
d

ap
t

A
d
a
p
ta
ti
o
n
O
p
er
a
n
d

+
o

p
er

an
d

1
..

*

0
..

1

C
o
n
te
x
tu
a
lC
o
n
st
ra
in
t

+
ty

p
e:

 C
o

n
te

x
tP

ar
am

et
er

+
g

u
ar

d
0

..
1

1

+
g

u
ar

d
0

..
1

1

+
m

es
sa

g
e

*

+
in

te
ra

ct
io

n1
+

li
fe

li
n

e *
+

in
te

ra
ct

io
n

1

*

+
en

cl
o

si
n

g
In

te
ra

ct
io

n
0

..
1

C
o
n
st
ra
in
t

E
x
ec
u
ti
o
n
S
p
ec
ifi
ca
ti
o
n

O
cc
u
re
n
ce
S
p
ec
ifi
ca
ti
o
n

S
en
so
rL
if
el
in
e

+
ev

en
ts*+

co
v

er
ed

1
+

co
v

er
ed

*

+
co

v
er

ed
B

y

«
en

u
m

er
at

io
n

»

M
es
sa
g
eK

in
d

co
m

p
le

te

lo
st

fo
u

n
d

u
n

k
n

o
w

n «
en

u
m

er
at

io
n

»

M
es
sa
g
eS
o
rt

sy
n

ch
C

al
l

as
y

n
ch

C
al

l

as
y

n
ch

S
ig

n
al

cr
ea

te
M

es
sa

g
e

d
el

et
eM

es
sa

g
e

re
p

ly

as
y

n
ch

C
o

n
te

x
tN

o
ti

fi
ca

ti
o

n

sy
n

ch
C

o
n

te
x

tQ
u

er
y

co
n

te
x

tI
n

fo
rm

at
io

n
R

ep
ly

*

+
st

ar
t

1

*

+
fi

n
is

h
1

«
en

u
m

er
at

io
n

»

In
te
ra
ct
io
n
O
p
er
a
ti
o
n
K
in
d

se
q

al
t

o
p

t

b
re

ak

p
ar

st
ri

ct

lo
o

p

cr
it

ic
al

n
eg

as
se

rt

ig
n

o
re

co
n

si
d

er

ad
ap

t

«
en

u
m

er
at

io
n

»
C
o
n
te
x
tP
a
ra
m
et
er

lo
ca

ti
o

n

ti
m

e

en
v

ir
o

n
m

en
t

d
ev

ic
e

n
et

w
o

rk

u
se

rS
ta

te

p
ro

fi
le

p
re

fe
re

n
ce

s

h
is

to
ry

su
rr

o
u

n
d

O
b

je
ct

s

n
ea

rb
y

P
er

so
n

s
+

fr
ag

m
en

t
*

+
en

cl
o

si
n

g
O

p
er

an
d

0
..

1

+
fr

ag
m

en
t

*

+
en

cl
o

si
n

g
O

p
er

an
d

0
..

1

E
le
m
en
t

+
n

am
e:

 S
tr

in
g

Figure 7.7. The metamodel of the ContextSequence diagram

89

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

El
em

en
t

n
am

e
: E

St
ri

n
g

Li
fe

lin
e

Se
n

so
rL

if
el

in
e

M
es

sa
g

e

m
es

sa
g

eK
in

d
 :

M
es

sa
g

eK
in

d
 =

 c
o

m
p

le
te

m
es

sa
g

eS
o

rt
 :

M
es

sa
g

eS
o

rt
 =

 s
yn

ch
C

al
l

In
te

ra
ct

io
n

In
te
ra
ct
io
n
Fr
a
g
m
en
t

C
o

n
te

xt
Se

q
u

en
ce

D
ia

g
ra

m

O
cc

u
re

n
ce

Sp
ec

if
ic

at
io

n

Ex
ec

u
ti

o
n

Sp
ec

if
ic

at
io

n

A
d

ap
ta

ti
o

n
C

o
m

b
in

ed
Fr

ag
m

en
t

in
te

ra
ct

io
n

O
p

er
at

o
r

: I
n

te
ra

ct
io

n
O

p
er

at
io

n
K

in
d

 =
 a

d
ap

t

C
o

m
b

in
ed

Fr
ag

m
en

t

in
te

ra
ct

io
n

O
p

er
at

io
n

 :
In

te
ra

ct
io

n
O

p
er

at
io

n
K

in
d

 =
 s

eq

A
d

ap
ta

ti
o

n
O

p
er

an
d

In
te

ra
ct

io
n

O
p

er
an

d

In
te

ra
ct

io
n

C
o

n
st

ra
in

t
C

o
n

te
xt

u
al

C
o

n
st

ra
in

t
C

o
n

st
ra

in
t

M
es

sa
g

eK
in

d

co
m

p
le

te

lo
st

fo
u

n
d

u
n

kn
o

w
n

In
te

ra
ct

io
n

O
p

er
at

io
n

K
in

d

se
q

al
t

o
p

t

b
re

ak

p
ar

st
ri

ct

lo
o

p

cr
it

ic
al

n
eg

as
se

rt

ig
n

o
re

co
n

si
d

er

ad
ap

t

C
o

n
te

xt
Pa

ra
m

et
er

lo
ca

ti
o

n

ti
m

e

en
vi

ro
n

m
en

t

d
ev

ic
e

n
et

w
o

rk

u
se

rS
ta

te

p
ro

fi
le

p
re

fe
re

n
ce

s

h
is

to
ry

su
rr

o
u

n
d

O
b

je
ct

s

n
ea

rb
yP

er
so

n
s

M
es

sa
g

eS
o

rt

sy
n

ch
C

al
l

as
yn

ch
C

al
l

as
yn

ch
Si

g
n

al

cr
ea

te
M

es
sa

g
e

d
el

et
eM

es
sa

g
e

re
p

ly

as
yn

ch
C

o
n

te
xt

N
o

ti
fi

ca
ti

o
n

sy
n

ch
C

o
n

te
xt

Q
u

er
y

co
n

te
xt

In
fo

rm
at

io
n

R
ep

ly

[0
..*

]
m

es
sa

g
e[0

..1
]

in
te

ra
ct

io
n

[0
..1

]
en

cl
o

si
n

g
In

te
ra

ct
io

n

[0
..*

]
fr

ag
m

en
t

[0
..*

]
lif

el
in

e
[0

..1
]

in
te

ra
ct

io
n

[0
..1

]
st

ar
t

[0
..1

]
fi

n
is

h

[0
..1

]
g

u
ar

d
[0

..1
]

g
u

ar
d

[1
..
*]

 o
p

e
ra

n
d

[1
..
*]

 o
p

e
ra

n
d

[0
..*

]
fr

ag
m

en
t

[0
..1

]
en

cl
o

si
n

g
O

p
er

an
d

[0
..*

]
fr

ag
m

en
t

[0
..1

]
en

cl
o

si
n

g
O

p
er

an
d

A
d

ap
t

[0
..*

]
se

tO
fI

n
te

ra
ct

io
n

[0
..*

]
co

ve
re

d

[0
..1

]
co

ve
re

d
B

y

[0
..1

]
co

ve
re

d

[0
..*

]
ev

en
ts

Figure 7.8. ContextSequence metamodel implementation under Eclipse

90

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

Figure 7.9. Example of creating a new ContextSequence model

7.6 ContextSequence diagram graphical editor

To expedite the description of context-aware systems behavior graphically, we built an

editor for the ContextSequence diagram under UMLet by embedding the necessary drawing

primitives. Further explanations can be found in Appendix B.

As presented in Figure 7.10, the editor is based on three main panels:

1. Tools panel: this panel contains all the necessary notations to draw a ContextSequence

diagram (lifeline, activation, traditional interactions, contextual interactions, traditional

combined fragments, and adaptation combined fragments).

2. Drawing panel: the space where to draw the diagram’s elements.

3. Proprieties panel: enables to fill the properties of the drawn elements via the command

line. As shown in the TCS example, we can indicate the contextual constraints for an

adaptation combined fragment, following each contextual constraint with a "-." symbol

allows creating separations between adaptation operands. Regarding messages, we can

select the convenient message sort and determine its direction with "_LtR" or "_RtL".

91

Chapter 7 UML Sequence Diagram Extension: The ContextSequence Diagram

Figure 7.10. The ContextSequence diagram graphical editor interface

7.7 Summary

Altogether, simulation of context-aware systems behavior specifies the purpose of any in-

teraction with an external part and identifies the different options for applications responses;

however, it may be a challenging task especially when the output is affected by the constantly

changing contextual parameters. Software designers aim to elaborate refined models conductive

to increase adaptation’s quality and performance, and also to reduce time and cost risks.

This chapter was devoted to presenting the ContextSequence diagram as a heavyweight

extension of the UML Sequence diagram. The new diagram affords dedicated notations to

help increasing designers’ awareness towards the different interactions that convey contextual

information from sensors. Moreover, the ContextSequence diagram also depicts the automatic

adaptation actions which are performed under specific contextual constraints.

For the purpose of supporting software engineers and academic institutions simulating and

documenting the behavior of context-aware systems, we operationalized our modeling approach

in concrete editors.

92

Chapter 8

Case Study: a Smart Blood Pressure

Tracker Application

"Don’t find fault, find a remedy"

Henry FORD

Contents
8.1 Introduction . 94

8.2 Description of the Smart Blood Pressure Tracker 94

8.3 Utility of the Smart Blood Pressure Tracker 96

8.4 Requirements specification . 97

8.5 Contextual parameters of the SPBT system 98

8.6 Modeling the SBPT with the ContextClass diagram 99

8.7 Modeling the SBPT with the ContextSequence diagram 104

8.8 Summary . 110

93

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.1 Introduction

The maturity of ubiquitous applications has made them available in an increasing number

of areas. In this vein, diverse assistive technologies can afford health monitoring services by

perceiving biological and physiological data of an individual and providing supports for diag-

nosis, therapy, prevention and early detection of diseases.

To evaluate our modeling approach in rich scenarios, we condense into investigating a

case study in the healthcare field involving a Smart Blood Pressure Tracker application. We

begin this chapter by describing the application’s functionalities and infrastructure; followed by

its requirements specifications as well as the contextual aspects that characterize it; afterward,

we proceed to the modeling of the structure and the behavior of the SBPT system using the

ContextClass and the ContextSequence diagrams respectively.

8.2 Description of the Smart Blood Pressure Tracker

The popularity of healthcare applications has increased beyond expectations, they help im-

proving hospitals workflow management as well as clinical communications between providers

and patients. Reinhold Haux [123] described health-enabling applications as "technologies that

include wearable devices, such as micro-sensors embedded in textiles and personal computers.

These technologies are aimed at making it easier for individuals to monitor and maintain their

own health while enjoying lives in normal social settings".

To demonstrate the pragmatics of our modeling approach, our self-proposed case study is

of interest to hypertensive patients and is presented as a Smart Blood Pressure Tracker (SBPT).

Because the daily measurement of blood pressure may be very bothersome, the SBPT appli-

cation is intended to provide an automatic system for the daily measurement and the regular

screening of the patient’s blood pressure. Also, the application purposes to decrease hyperten-

sion crisis damage probabilities by enhancing the monitoring and the reporting of critical health

conditions of hypertensive patients, everywhere and at any time.

The SBPT consists in outfitting the patient with a smartwatch and a smartphone. The

former is endowed with built-in sensorial features to measure the patient’s blood pressure pe-

riodically and to emit the gotten values to his smartphone via a Bluetooth connection. The

94

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

smartphone merges all the day’s blood pressure values into a single report and uploads it via

Internet to a remote data server from which the doctor can consult all his patients’ daily reports,

using any device from everywhere (home, hospital, office, etc.).

Figure 8.1. A smartwatch with a built-in heart rate sensor

In the case of hypertensive crisis, the application detects it and performs an emergency call

to the nearest rescue services, whereas the location of the user is known via his smartphone GPS

sensor. Moreover, the application is capable of considering the user’s profile and can afford di-

etary advice accordingly. The system is also capable of capturing the environmental conditions

by displaying weather warnings and includes a timely reminder system for medication.

Figure 8.2 depicts the elements that constitute the infrastructure of the SBPT system.

HOSPITAL

Internet

Smartphone

AMBULANCE

Emergency

GPS satellite

 receiving location

 information

 uploading
reports

downloading
 reports

cellular

 call

transmitting sensed

information

Data servers

Hospital

Doctor’s house
or office

Smartwatch

Figure 8.2. The infrastructure of the Smart Blood Pressure Tracker system

95

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.3 Utility of the Smart Blood Pressure Tracker

With the evolving climate of healthcare, rapidly developing technology, and emphasis on

delivering patient-centered care, blood pressure telemonitoring is a promising tool to help pa-

tients achieve optimal blood pressure control.

The SBPT application leverages different types of contextual information to provide auto-

matic adaptation services; it is beneficial for many reasons:

• Blood pressure telemonitoring offers an automatic measurement and remote monitoring

of blood pressure by gathering the patient’s blood pressure values and delivering them

to the doctor, without bothering the patients to visit hospitals and measure their blood

pressure manually.

• May encourage more appropriate resource utilization by curtailing the need for unneces-

sary in-person clinic visits (e.g., visits solely for a blood pressure check), while simulta-

neously alerting needed visits when a patient’s blood pressure is out of target range.

• Accelerate the speed at which a patient achieves their target blood pressure goals. Patients

can alter their health behaviors or have adjustments made in their medication regimen

between visits, avoiding the need to wait months between visits for adjustments.

• Home-based monitoring may also alert the provider of new changes in a patient’s health

that may manifest with uncontrolled blood pressure.

• Hypertension is not called the "silent killer" for no reason, it has no symptoms, but it’s a

major risk for heart disease and stroke, for this, the application is able to detect sudden

hypertension states, and performs automatic calls for the nearest emergency services.

• To ensure better safety of patients, the application is also capable of taking into account

the environmental conditions like the temperature by displaying weather warnings.

• The application provides dietary advice according to the patient’s profile including his

age, gender, job, and his medical history.

• The medicine reminder tracks the patient’s prescriptions and reminds him/her when it’s

time for a refill.

96

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.4 Requirements specification

When smart applications are introduced into the domain of health care, their well-functioning

is critical. To guarantee an enhanced performance of such applications, several properties need

to be addressed since the phases of requirements analysis and modeling. The various functional-

ities involved in the Smart Blood Pressure Tracker application make the design and development

tasks complicated due to many considerations:

• Unlike traditional systems where input information is provided manually by the user,

the Smart Blood Pressure Tracker is context-aware; therefore, it collects information of

users and their surrounding environment continuously and makes adaptation decisions

proactively.

• The environment is highly dynamic, the system must perform transparent adaptations in

response to context variations, i.e., without distracting the user from his tasks.

• The application is surrounded by several contextual parameters that vary and influence

the application’s behavior perpetually; thus, these influencing relationships must be con-

sidered as a key concern.

• The user is nomad and carries his smartwatch and smartphone with him; also, the doctor

needs to keep accessing all his patients’ information any time and from anywhere (home,

hospital, office).

• The smartwatch is supplied with temperature and heart rate sensors, the system queries

them at precise times to monitor the patient’s temperature and blood pressure respectively.

• The user’s smartwatch is paired with his smartphone via a Bluetooth connection to emit

the values of measured blood pressure. Both must be reasonably near one another.

• The Smartphone is responsible for delivering the daily gathered information to the doctor

via Internet, calling the emergency services through cellular networks, locating the user

via the embedded GPS sensor, and for alerting the patient for medication time.

• As mentioned previously, healthcare applications’ functioning is critical, they may be-

come unavailable due to malfunction or network failure, the system must watch over the

availability of services in all situations.

• The system can take advantage of information related to the patient’s profile to improve

the quality of the provided services, including age, gender, and medical history.

97

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

• Each patient has a specific healthcare level related to his current state and profile, this

property determines several parameters such as the schedules and the timetables for blood

pressure measurements and is defined and updated continuously by the doctor.

8.5 Contextual parameters of the SPBT system

The parameters that constitute the contextual aspect of our application and which may alter

its adaptation behavior are:

1. Location: longitude and latitude coordinates are usually used to provide users with location-

aware services such as locating the patient in a case of critical health state.

2. Time: defines the schedules and the timetables for blood pressure measurements as well

as the medication reminders.

3. Environment: high temperature and bad environmental conditions may be hurtful for

hypertensive patients, the application reacts by alerting the user with weather warnings.

4. Device: the application must maintain the availability of information regardless of the

used device, for example, the doctor can receive and consult all his patients daily reports,

using any device (laptop, tablet, PDA, etc.).

5. Network: the application should manage to keep the system functional, for example, if

the ADSL connection (Asymmetric Digital Subscriber Line) is down, the doctor still can

receive the patients’ reports by toggling towards a 4G connection automatically.

6. Surrounding objects: the application is aware of near objects, the smartwatch emits the

measured blood pressure value to the smartphone as soon as they are closer to each other.

7. User’s state: the state of the patient is an essential information source that may alter the

way in which the application behaves (emergency alerts).

8. User’s profile: age, gender, and job are significant factors for hypertension disease, as an

example, stressful occupation strains situations which can cause blood pressure spikes,

this requires to monitor the patient’s state in a more accurate way.

9. User’s history: the patient’s medical history may be used as additional information to

provide supplementary adaptation services, for example, hypertensive patients who suffer

kidney failure or spinal disc herniation need extra care.

98

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.6 Modeling the SBPT with the ContextClass diagram

8.6.1 The SBPT system’s structure

For the purposes of modeling this example with our proposed approach, we should:

1. define the involved ContextClasses, their attributes, and their operations;

2. determine the context monitors for each ContextClass;

3. draw the corresponding ContextClass diagram using the graphical editor; and

4. instantiate the ContextClass diagram metamodel under Eclipse.

At first, we consider the four following ContextClasses: Doctor, Patient, SmartWatch and

SmartPhone.

A doctor can determine the medical profile for a given patient by inquiring his past medical

history and by examining his current health state (defineProfile() operation), he can thus pre-

scribe the adequate medication for the patient (prescribeMedic()). The patient’s profile, history,

state, and information are presented as attributes.

The SmartWatch is responsible for carrying out low-level context sensing, it measures

the patient’s blood pressure and his skin temperature continuously (measurePressValue() and

mesureSkinTemperature() operations), it emits the measured values as well as their measuring

time to the smartphone as soon as they are close to each other (emitPressValue()). The smart-

watch sounds alarm reminders for medication (alarmMedic ()) and for weather warnings to

inform the patient of hot or cold weather (weatherWarning ()).

The smartphone receives the measured blood pressure values from the smartwatch (get-

PressValue()), gathers them into a single report with the related date (makeReport()) and deliv-

ers it to the Doctor’s data server (deliverReport()).

If a measured blood pressure value represents a critical health status, the smartwatch detects

it (signalER()) and orders the smartphone to perform a call to the closest emergency services

automatically, according to the patient’s location (callER()).

Later on, we determine the context monitors for each ContextClass by enumerating the

contextual parameters and the influenced operation and/or attributes for each one. Monitors

99

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

aim at highlighting which context parameters may alter the attributes values or operations be-

haviors for the corresponding ContextClass. If we take the ContextClass SmartWatch as an

example, it is fed with four kinds of context monitors: Time, Surrounding Objects, User state,

and Environment. For instance, the weatherWarning() operation depends on the environment,

and its behavior is altered depending on environmental variations. Just in the same way, for the

SmartPhone ContextClass, callER() may operate in different ways; thereby, the called emer-

gency services are selected according to the patient’s location.

Table 8.1 summarizes the context monitors for each ContextClass.

Table 8.1. The monitors of each ContextClass of the SBPT system

ContextClass context monitors influenced properties influenced operations

SmartWatch

Time -
alarmMedic()

measurePressValue()

Surrounding Objects - emitPressValue()

User state - signalER()

Environment - weatherWarning()

SmartPhone

Time - deliverReport()

Network - deliverReport()

Surrounding Objects - getPressValue()

Location - callER()

Patient
User state healthCareLevel -

Profile healthCareLevel -

Doctor

Location - receiveReport()

Device - receiveReport()

Network - receiveReport()

8.6.2 Modeling the SBPT with the ContextClass graphical editor

Figure 8.3 depicts the full ContextClass diagram of our case study drawn under the UMLet-

based graphical editor. In addition to attributes and operations, the model also represents the

contextual aspects clearly by means of the monitors.

100

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Patient

+idPatient:Integer
+idSmartWatch:Integer
+idSmartPhone:Integer
+name:String
+address:String
+phoneNumber:Integer
+age:Integer
+gender={Male, Female}
+medicalHistory:String
+healthCareLevel={normal,
high, critical}

+getProfile()
+getMedic()

UserState:healthCareLevel
Profile:healthCareLevel

SmartWatch

+idSmartWatch:Integer

+alarmMedic()
+mesurePressValue()
+emitPressValue(pressValue)
+signalER()
+mesureSkinTemp()
+weatherWarning()

Time:alarmMedic(),
 mesurePressValue()
SurroundObjects:emitPressValue()
UserState:signalER()
Environment:weatherWarning()

SmartPhone

+idSmartPhone:Integer

+getPressValue()
+makeReport(Date, pressValues)
+deliverReport(Report,Network)
+callER(ER_number)

Time:deliverReport()
Network:deliverReport()
SurroundObjects:getPressValue()
Location:callER()

Doctor

+idDoctor:Integer
+name:String
+address:String
+phoneNumber:Integer

+defineProfile(Patient)
+prescribeMedic(Patient)
+receiveReport(Report)
+analyseReport(Report)

Location:receiveReport()
Device:receiveReport()
Network:receiveReport()

own

11

1..*1

treat

1..*

1

1
1

PressValue

+mesureTime:Time
+value:Integer

Report

+idPatient:Integer
+reportDate:Date
+pressValues:Array

Figure 8.3. The ContextClass graphical editor: Modeling the SBPT’s structure

8.6.3 Modeling the SBPT with the ContextClass hierarchical editor

In this subsection, we will describe the SBPT system using the ContextClass Eclipse editor

to explore its capabilities, we start by modeling the ContextClasses that intervene in our example

as well as the associations between them as shown in Figure 8.4.

Figure 8.4. The ContextClass Eclipse editor: creating new ContextClasses and associations

101

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Once the considered ContextClasses have properly been created, we add for each one the

corresponding properties, operations and parameters of operations. Figure 8.5 depicts an ex-

ample showing the properties and operations of the SmartWatch ContextClass.

Figure 8.5. The ContextClass Eclipse editor: adding new properties and operations

We proceed to model the contextual information by adding context monitors. For each one

of those, we specify the context type from a combo box list (Figure 8.6).

Also, we match the monitors to the corresponding influenced operations and/or attributes

for each ContextClass. Figure 8.7 shows an example of matching the operation weatherWarn-

ing() as an influenced behavior for the monitor Environment.The modeling process is completed

when all the attributes, operations and monitors for all the ContextClasses are identified.

102

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Figure 8.6. The ContextClass Eclipse editor: defining the type of a new monitor

Figure 8.7. The ContextClass Eclipse editor: defining the influenced operations for a monitor

103

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.7 Modeling the SBPT with the ContextSequence diagram

8.7.1 The SBPT system’s behavior

In pursuance of describing the behavior and the interactions of our case study system using

the proposed ContextSequence diagram we start by defining the objects that may participate

in the different use case scenarios, and that may interact by sending or receiving messages.

These participants include sensors which provide contextual information for the system’s ob-

jects which consume this information.

We take the emergency use case as an example; in addition to traditional interactions of

switching on and connecting devices (switchOn() and connect()), we distinguish those which are

related to contextual information exchanges (blood pressure and location queries and replies).

The system interrogates both the smartphone GPS and the smartwatch blood pressure sensors

to acquire the relevant contextual information in a Query-Reply method. Table 8.2 summarizes

the interactions in the emergency use case by specifying the source, the target and the sort for

each one.

Table 8.2. Specification of the exchanged messages in the SBPT system

Message Source Target Message sort

switchOn User SW_BloodPressureSensor Asynchronous message

switchOn User SPhone Asynchronous message

connect SPhone SW_BloodPressureSensor Synchronous message

connected SW_BloodPressureSensor SPhone Message reply

getPressValue SPhone SW_BloodPressureSensor Context Query

pressValue SW_BloodPressureSensor SPhone Context Information Reply

getLocation SPhone SP_GPSSensor Context Query

location SP_GPSSensor SPhone Context Information Reply

call SPhone Emergency Asynchronous message

makeReport SPhone Sphone Synchronous message

deliverReport SPhone Server Synchronous message

receipt Server SPhone Message reply

104

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Besides, the SBPT system includes a set of functions that compose its behavior, among

these, we can name the weather warnings, the dietary advice, and the medicine reminder ser-

vices.

If we take the telemonitoring functionality as an example, the application’s automaticity

manifests in measuring and delivering blood pressure reports to doctors; in addition, when the

user’s health state is critical, the system reacts autonomously by performing an emergency call

to the closest rescue services according to the user’s position, whereas the latter is known via his

smartphone GPS sensor. This adaptation depends on contextual parameters variations (user’s

state and location), and therefore, is performed automatically and without asking the user’s

guidance.

Also, the system must look up and switch between Internet connections whenever one

of them keeps dropping off, e.g., auto-switching from WiFi to 4G mobile data when ADSL

connection goes down. Other adaptation scenarios consist in locating the doctor and delivering

reports to the closest associated device of his, alerting the patient for medication time and for

bad weather.

8.7.2 Modeling the SBPT with the ContextSequence graphical editor

Exploiting the clarity the ContextSequence diagram drawing tool, we try to model the

blood pressure telemonitoring and hypertensive crisis scenarios (Figure 8.8). The future dia-

gram will feature all the interactions described in Table 8.2 including the novel double-lined

notations for highlighting contextual information traffic.

As well as that, the resulting diagram will describe the system’s self-adaptation in the case

of hypertensive crisis and of switching between Internet connections, to model such context-

dependent behavior, we use the novel notation of AdaptationCombinedFragment, which en-

compasses the automatic actions to be performed depending on the user’s context.

105

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

:S
P
h
o
n
e

P
a
ti
en
t

S
m
a
rt
w
a
tc
h
_
B
lo
o
d
P
re
ss
u
re
S
en
so
r

S
m
a
rt
p
h
o
n
e_
G
P
S
S
en
so
r

:E
m
er
g
en
cy

:D
a
ta
S
er
v
er

sw
it

ch
O

n
()

sw
it

ch
O

n
()

co
n
n
ec

t(
)

re
tu

rn
(O

K
)

re
tu

rn
(R

ec
ei

p
t

)

g
et

P
re

ss
V

al
u
e(

)

re
tu

rn
 (

p
re

ss
V

al
u
e)

lo
o

p

m
ak

eR
ep

o
rt

(d
at

e,
 p

re
ss

V
al

u
es

)

ca
ll

E
R

(E
R

_
n
u
m

b
er

)

ad
ap

t

if
 (

p
re

ss
V

al
u
e<

1
2
)

g
et

L
o
ca

ti
o
n
()

re
tu

rn
 (

lo
ca

ti
o
n
)

if
 (

A
D

S
L

_
co

n
n

=
=

av
ai

la
b

le
)

if
 (

4
G

_
co

n
n

=
=

av
ai

la
b

le
)

el
sead

ap
t

d
el

iv
er

R
ep

o
rt

 (
W

iF
i_

n
et

w
o
rk

,
re

p
o
rt

)

d
el

iv
er

R
ep

o
rt

 (
m

o
b
il

e_
d
at

a,
 r

ep
o
rt

)

d
el

iv
er

R
ep

o
rt

 (
sm

s,
 r

ep
o
rt

)

Figure 8.8. The ContextSequence graphical editor: Modeling the SBPT’s behavior

106

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.7.3 Modeling the SBPT with the ContextSequence hierarchical editor

In this subsection, we present a description of the hypertensive crisis scenario by instan-

tiating the ContextSequence metamodel under the Eclipse hierarchical editor. We can create

lifelines, sensor lifelines, interactions, combined fragments, adaptation interaction fragments,

and messages. Each of these latter can be described by specifying his name, kind, and sort as

well as the interaction to which it belongs.

Figure 8.9 shows an example of changing the sort of the message getLocation(patient) to

synchContextQuery.

Figure 8.9. The ContextSequence Eclipse editor: Defining message proprieties

Regarding the complex structures, we take the example of the adaptation combined frag-

ment, we can identify the lifelines it covers (the property Covered), the inner fragments (En-

closing Operand), the fragment by whom it is enclosed (Enclosing Interaction), and the kind of

the interaction operator (Interaction Operator) as shown in Figure 8.10.

107

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Figure 8.10. The ContextSequence Eclipse editor: Defining an adaptation combined fragment

In the meantime, the modeling process is finished once all elements are added correctly.

Figure 8.11 presents the ContextSequence model of the hypertensive crisis scenario.

108

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

Figure 8.11. The ContextSequence Eclipse editor: Modeling the hypertensive crisis scenario

109

Chapter 8 Case Study: a Smart Blood Pressure Tracker Application

8.8 Summary

In the interest of instantiating the concepts of our modeling approach proposal, we re-

lied on a real context-aware application of a Smart Blood Pressure Tracker, which is able to

monitor blood pressure values regularly to decrease hypertension crisis damage probabilities.

This example holds the main adaptation requirements of a context-aware system in ubiquitous

environments.

Using the CUML diagrams, our objective was to clarify how to apply the new diagram

notations in practical ways.

By virtue of the ContextClass diagram, we showed that objects are characterized by not

only attributes and operations, but also by some additional features related to context, these

features describe the relationships between the application and the contextual parameters of

which the variation may have a significant impact on the applications itself.

The ContextSequence diagram shows clearly the contextual information flows within a

system including the methods of communication between context-aware systems and sensors,

and how do the formers acquire the relevant contextual information from the latters. It also

indicates the output adaptation behaviors which are executed depending on contextual variation

events.

110

Chapter 9

Conclusion and Future Perspectives

"Once we accept our limits, we go beyond them"

Albert EINSTEIN

Contents
9.1 Research summary . 112

9.2 Evaluation criteria revisited . 113

9.3 Contribution to knowledge . 115

9.4 Future works . 116

111

Chapter 9 Conclusion and Future Perspectives

9.1 Research summary

Context-awareness feature has been gaining huge importance in recent years, it becomes

the main ingredient to enable next generation applications to fulfil the needs of making the in-

formation available everywhere and at any moment, this requires to sense different information

from the environment and use the gotten information to adapt applications behavior automati-

cally. Conversely, software engineers are still facing difficulties when designing context-aware

systems, existing modeling approaches and tools do not deal with all context-awareness require-

ments in an adequate manner.

Throughout the present research work, we recalled the fundamental concepts of the do-

main, as well as several modeling standards which we judged requisite to familiarize the reader

of this thesis to the work it covers. Before moving to the main contributions of our work,

we believed it was mandatory to investigate why requirements analysis and modeling are the

foundation of context-aware applications development, afterward, we dedicated our attention to

present and assess the foremost research works on context handling.

In this thesis we suggested a powerful modeling approach based on UML heavyweight

extension, called Context Unified Modeling Language, which has the ultimate purpose of de-

caying the gap between the real world and models by depicting structures, interactions, and be-

havior of context-aware systems with suitable notations. In particular, the results of the CUML

language present two diagrams we called ContextClass and ContextSequence diagrams, these

latter attempt to provide meaningful modeling concepts to cater for the description of future

applications, and therefore, helping developers to better understand the contextual constraints

and ensure higher adaptation levels. For the sake of verifying the consistency of the future

models, the new notations and relationships for each diagram are defined through a MOF-based

description of their metamodels.

The ContextClass diagram has been presented as a heavyweight extension of the UML

Class diagram, to ease the design of context-aware systems structure. It suggests a new compo-

nent called ContextClass which extends and replaces the old Class structure. The ContextClass

includes beneath the attributes and the operations a new compartment we named monitor, which

reveals how applications depend on context parameters and how the values of these parameters

may influence the related object’s attributes and/or operations.

112

Chapter 9 Conclusion and Future Perspectives

The thesis contributed with another diagram which extends the UML Sequence diagram

to enable the modeling of context-aware systems behavior. The ContextSequence diagram is

capable of depicting interactions with context sources, adaptation actions, as well as their con-

straints using two main concepts. The first one consists in capturing the different contextual

information acquisition and distinguishing them from traditional interactions by modeling them

with distinct notations. The second concept tackles the adaptation behavior, the use of a ded-

icated combined fragment enables software engineers to specify adaptation actions and their

constraints to be performed in reaction to changes in the application’s environment.

Another notable contribution of the thesis lies in the modeling editors that we elaborated.

The hierarchical and the graphical tools we presented aim to improve the usability and to explore

the semantics of our proposal visually.

Lastly, we demonstrated the usefulness of our method through a real-world case study in

the healthcare domain. The Smart Blood Pressure Tracker allowed us to show how the CUML

notations can be applied to model context-aware systems. We used the ContextClass diagram

to describe the structure of the SBPT and prepare the context-awareness requirements for the

implementation stage by monitoring the contextual aspects that characterize the system. We

used the ContextSequence diagram to depict the different interactions with sensors by specify-

ing the context acquisition methods, and also, to model the adaptations which are performed

automatically by the system in reaction to contextual variations.

Summing up the results, it can be concluded that CUML models represent several po-

tentialities of use, they provide improved ways to model context-aware systems structure and

behavior using semantic-rich modeling concepts, and which are able to refine context models

for different uses.

9.2 Evaluation criteria revisited

Context-aware applications are a new generation of sophisticated technologies of which

the interest is to make users’ lives better and safer. This research has investigated the context-

awareness requirements of such applications and has suggested a new approach to cater for the

specification, visualization, and documentation of the structure and the behavior of context-

aware applications.

113

Chapter 9 Conclusion and Future Perspectives

The solution presented in this thesis is assessed by answering the research questions that

have been formulated in Chapter 1.

Q1. What is the originality of CUML and what contributions does it afford among the existing

context handling approaches?

A1. To the best of our knowledge, this is the first study to deal with context-awareness re-

quirements by proposing heavyweight extensions to UML diagrams, that is to say, our solution

presents an innovative way to effectively customize and enrich native UML diagrams, by ap-

plying true modification on their metamodel.

Q2. How can software designers achieve efficient translation of context into models using

CUML diagrams?

A2. CUML models enable higher abstraction levels, they include simple and explicit notations

capable of expressing complex contextual aspects of the system. Describing contextual param-

eters influence on the application and how does the latter reacts is therefore possible.

Q3. How to use CUML to properly integrate the contextual parameters and their influence on

applications when modeling context-aware systems’ structure?

A3. Using the ContextClass diagram, we established new notation called monitor, the latter

helps describing the different influence relationships between the application and the diverse

context parameters.

Q4. How does CUML enable software designers to effectively specify details about context

changes events and interactions methods between applications and context sensors?

A4. The novel notations of the ContextSequence diagram can help enormously in distinguish-

ing traditional messages from context information conveying messages. They can also depict

the context acquisition methods (synchronous or asynchronous).

Q5. How can CUML diagrams used to describe autonomous adaptation behavior of context-

aware applications?

A5. We can describe adaptation behavior by using dedicated notations, the adaptation com-

bined fragment captures automatic adaptation behaviors distinctly while specifying the contex-

tual events that constrain them.

Q6. How is it possible for applications modelers and academic institutions to concretely build

and share their models using CUML?

A6. We created a set of hierarchical and graphical modeling editors that help designers exploit-

ing the CUML expressiveness through the creation of concrete models.

114

Chapter 9 Conclusion and Future Perspectives

Q7. Are the resulting models conform to specific syntax rules? How to ensure that?

A7. Among the advantages of using MOF-based metamodels resides in the ability to define

the rules that verify the correctness of the future models, otherwise they will be ad hoc. Our

approach distinguishes itself by being defined through a MOF-based metamodels for both Con-

textClass and ContextSequence diagrams. This method is an effective way to enforce the for-

malisms and the syntax convention, all models are thus conform to the related metamodel.

9.3 Contribution to knowledge

This thesis’ findings can be summarized as follows:

• Conducts a literature review about context-aware computing and adaptive systems.

• Analyzes different OMG standards including the MDA approach, UML Class and Se-

quence diagrams, as well as UML extension mechanisms.

• Provides thorough study of several software engineering concepts such as the separation

of concerns and requirement engineering novelties in context-aware systems.

• Presents a set of significant research works that attempt to handle context, and specifies

their assets and weaknesses.

• Demonstrates how application developers are tending to anticipate context handling since

earlier design phases.

• Suggests a definition for the notion of context by enumerating several parameters of which

the changes can be significantly influencing on the application’s autonomy.

• Addresses the limitations preventing the existing UML Class and Sequence diagrams

from modeling context-awareness concerns in an accurate manner.

• Proposes an extension of the UML Class diagram to describe the structure of context-

aware systems by monitoring the contextual aspects that characterize them.

• Presents an extension of the UML Sequence diagram to capture the behavior and the

interactions of context-aware systems with clear models.

• Furnishes hierarchical and graphical modeling editors for the two proposed diagrams.

• Suggests a considerable real-life case study presented as a smart system for tracking

users’ blood pressure, and investigates the system’s requirements.

• At last, the thesis demonstrates the feasibility of the proposed approach by applying the

ContextClass and ContextSequence diagrams notations on the case study example.

115

Chapter 9 Conclusion and Future Perspectives

9.4 Future works

The advent of smart technologies is changing the ways of producing and consuming in-

formation. Context-sensitive computing is the first channel affected by these changes, and as a

result, the outlook is enormous. Our main purpose is to reduce the gap between the users’ needs

and the conceptual model of the system to be created.

On the basis of the promising findings presented in this thesis, further study would be of

interest. In our future research we intend to concentrate on four areas:

• Improve the semantics of the novel concepts by including constraints expressed in the

Object Constraint Language (OCL), this may support the validation of the proposed ap-

proach, moreover, we may validate it by testing it in rich scenarios in different domains

(medical, university, banking sector).

• UML includes other important types of diagrams. Our future work involves extending

other UML diagrams with new concepts and vocabularies to cover supplementary views

of context-aware systems including the Activity Diagram and the Use Case Diagram.

This will make CUML a more complete tool for specifying and designing context-aware

systems.

• Another possible perspective concerns the elaboration of a development framework. Re-

quirements analysis and modeling are the foundation of context-aware applications de-

velopment, but the implementation phase is also necessary to generate executable code.

We aim to enforce our proposal by employing integrated development environment tools

(IDEs) such as Eclipse, Netbeans, and Visual Studio, to facilitate the development of

adaptive applications

• Last but not least, by dint of the present findings and the envisioned works, the next stage

of our research will be to concretize the project of the Smart Blood Pressure Tracker into

a real context-aware application that has the ultimate purpose of helping hypertensive

patients with real-time blood pressure tracking.

116

Bibliography

[1] Weiser, M. (1991), "The Computer for the 21st Century", Scientific American, Vol. 265

No. 3, pp. 94-105.

[2] Schilit, B.N. and Theimer, M.M. (1994), "Disseminating active map information to mo-

bile hosts", IEEE Network, Vol. 8, No. 5, pp. 22-32.

[3] Schilit, B.N., Adams, N.L. and Want, R. (1994), "Context-aware computing applica-

tions", IEEE 1st Workshop on Mobile Computing Systems and Applications (WMCSA

1994), IEEE, Santa Cruz, CA, December 8-9, pp. 85-90.

[4] Brown, P.J., Bovey, J.D. and Chen, X. (1997), "Context-Aware Applications: From the

Laboratory to the Marketplace", IEEE Personal Communications, Vol. 4, No. 5, pp. 58-

64.

[5] Pascoe, J. (1998), "Adding generic contextual capabilities to wearable computers", In

Second International Symposium on Wearable Computers, IEEE Computer Society,

Pittsburgh, USA, October, Vol. 44, pp. 92-99.

[6] Brézillon, P. and Pomerol, J. C. (1999), "Contextual knowledge sharing and cooperation

in intelligent assistant systems", Le Travail Humain, Vol. 62, No. 3, pp. 223-246.

[7] Schmidt, A. (2000), "Implicit human computer interaction through context", Personal

Technologies, Vol. 4, No. 2-3, pp. 191-199.

[8] Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A. and Palfreyman, K. (2000), "Ex-

ploiting space and location as a design framework for interactive mobile systems", ACM

Transactions on Computer Human Interaction (TOCHI), Vol. 7, No. 3, pp. 285-321.

117

[9] Dey, A.K. and Abowd, G.D. (2000), "Towards a better understanding of context and

context-awareness", In CHI 2000’s Workshop on The What, Who, Where, When, Why

and How of Context-awareness, ACM Press, The Hague, Netherlands, April, pp.1-6.

[10] Winograd, T. (2001), "Architectures for Context", Human-Computer Interaction, Vol.

16, No. 2, pp. 401-419.

[11] Mostéfaoui, K., Pasquier-Rocha, J. and Brézillon, P. (2004), "Context-aware comput-

ing: a guide for the pervasive computing community", In Proceedings of the IEEE/ACS

International Conference on Pervasive Services (IPCS’04), USA, p. 39-48.

[12] Lemlouma, T. (2004), "Architecture de négociation et d’adaptation de Services Multi-

média dans des Environnements Hétérogènes", Doctoral dissertation, Institut National

Polytechnique de Grenoble-INPG, France.

[13] Chaari, T., Laforest, F. and Flory, A. (2005), "Adaptation des applications au contexte

en utilisant les services Web", In Proceedings of the 2nd French-speaking conference on

mobility and ubiquity computing (UbiMob ’05), ACM, Grenoble, France, June, p. 111-

118.

[14] Strassner, J., Meer, S., Sullivan, D.O. and Dobson, S. (2009), "The use of context-aware

policies and ontologies to facilitate business-aware network management", Journal of

Network and Systems Management, Vol. 17, No. 3, pp. 255-284.

[15] Ryan, N.S., Pascoe, J and Morse, D.R. (1998), "Enhanced reality fieldwork : the context-

aware archaeological assistant", In Computer Applications in Archaeology, British

Archeological Reports, Tempus Reparatum, pp. 1-9.

[16] Salber, D., Dey, A.K. and Abowd, G.D. (1998), "Ubiquitous Computing: Defining an

HCI Research Agenda for an Emerging Interaction Paradigm", Georgia Tech GVU Tech-

nical Report GIT-GVU-98-01, Georgia Institute of Technology.

[17] Lieberman, H. and Selker, T. (2000), "Out of context : computer systems that adapt to,

and learn from, context", IBM Systems Journal, Vol. 39, No. 3.4, pp. 617-632.

[18] Korkea-Aho, M. (2000), "Context-aware applications survey", available at: www.cse.tkk

.fi/fi/opinnot/T-110.5190/2000/applications/context-aware.html (accessed April 2018).

118

[19] Dey, A.K. (2001), "Understanding and using context", Personal and Ubiquitous Com-

puting, Vol. 5 No. 1, pp. 4-7.

[20] Burrell, J. and Gay, G. K. (2001), "Collectively defining context in a mobile, networked

computing environment", In CHI’01 extended abstracts on Human factors in computing

systems, ACM, Seattle, USA, March, pp. 231-232.

[21] Cheverest, K., Mitchell, K. and Davies, N. (2002), "The role of adaptive hypermedia in

a context-aware tourist guide", Communications of the ACM, Vol. 45, No. 5, pp. 47-51.

[22] Rohn, E. (2003), "Predicting context aware computing performance", Ubiquity, pp. 1-17.

[23] Barkhuus, L. (2003), "Context information vs. sensor information: A model for catego-

rizing context in context-aware mobile computing", SIMULATION SERIES, Vol. 35, No.

1, pp. 127-133.

[24] Abbas, K., Verdier, C. and Flory, A. (2007), "Exploiting profile modeling for web-based

information systems", In International Conference on Web Information Systems Engi-

neering, Springer, Berlin, Germany, December, pp. 313-324.

[25] Christopoulou, E. (2009), "Context as a necessity in mobile applications", In Mobile

Computing: Concepts, Methodologies, Tools, and Applications, IGI Global, pp. 65-83.

[26] Sindico, A. (2009), "Model Driven Development of Context Aware Software Systems",

Doctoral thesis, Università Degli Studi Di Roma "Tor Vergata", Roma, Italy.

[27] Brown, M. (1996), "Supporting User Mobility", In Mobile Communications, The In-

ternational Federation for Information Processing (IFIP), Springer, Boston, USA, pp.

69-77.

[28] Cooperstock, J., Tanikoshi, K., Beirne, G., Narine, T. and Buxton, W (1995), "Evolution

of a Reactive Environment", In Proceedings of the SIGCHI conference on Human factors

in computing systems (CHI ’95), ACM Press/Addison-Wesley Publishing Co., pp. 170-

177.

[29] Elrod, S., Hall, G., Costanza, R., Dixon, M. and Des Rivieres, J. (1993), "Responsive

Office Environments", Communications of the ACM (CACM), Vol. 36, No. 7, pp. 84-85.

119

[30] Hull, R., Neaves, P. and Bedford-Roberts, J. (1997), "Towards Situated Computing", In

1st International Symposium on Wearable Computers, IEEE, Boston, USA, October, pp.

146-153.

[31] Rekimoto, J., Ayatsuka, Y. and Hayashi, K. (1998), "Augment-able Reality: Situated

Communication through Physical and Digital Spaces", In 2nd International Symposium

on Wearable Computers, IEEE, Pittsburgh, USA, October, pp. 68-75.

[32] Fickas, S., Korteum, G. and Segall, Z. (1997), "Software Organization for Dynamic and

Adaptable Wearable Systems", In 1st International Symposium on Wearable Computers,

IEEE, Boston, USA, October, pp. 56-63.

[33] Chen, G. and Kotz, D. (2000), "A survey of context-aware mobile computing research",

Technical Report TR2000-381, Department of Computer Science, Dartmouth College.

[34] Petrelli, D., Not, E., Strapparava, C., Stock, O. and Zancanaro, M. (2000), "Modeling

Context is Like Taking Pictures", In CHI 2000’s Workshop on The What, Who, Where,

When, Why and How of Context-awareness, ACM Press, The Hague, Netherlands, April.

[35] Gwizdka, J. (2000), "What’s in the Context?", In CHI 2000’s Workshop on The What,

Who, Where, When, Why and How of Context-awareness, ACM Press, The Hague,

Netherlands, April.

[36] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J. and Rets-

chitzegger, W. (2003), "Context-awareness on mobile devices-the hydrogen approach",

In Proceedings of the 36th Annual Hawaii International Conference on System Sciences

(HICSS’03), IEEE, Hawaii, January, p. 10.

[37] Henricksen, K. (2003), "A framework for context-aware pervasive computing applica-

tions", Queensland: University of Queensland.

[38] Razzaque, M.A., Dobson, S. and Nixon, P. (2006), "Categorization and modelling of

quality in context information", In Proceedings of the IJCAI 2005 Workshop on AI and

Autonomic Communications, Edinburgh, Scotland, August 2005.

120

[39] Benselim, M.S. and Seridi-Bouchelaghem, H. (2011), "Development of context-aware

applications in ubiquitous information systems", Proceeding of the 13th International

Conference on Entreprise Information Systems (ICEIS vol. 3), Beijing, June 8-11, pp.

223-228.

[40] Geihs, K. and Wagner, M. (2012), "Context-awareness for self-adaptive applications in

ubiquitous computing environments", International Conference on Context-Aware Sys-

tems and Applications (ICCASA 2012), Springer, Ho Chi Minh City, November 26-27,

pp. 108-120.

[41] Sánchez-Pi, N., Carbó, J. and Molina, J.M. (2012), "A knowledge-based system approach

for a context-aware system", Knowledge-Based Systems, Vol. 27, pp. 1-17.

[42] Dey, A.K., Abowd, G.D. and Wood, A. (1999), "CyberDesk: A Framework for Providing

Self-Integrating Context-Aware Services", Knowledge-Based Systems, Vol. 11, No. 1, pp.

3-13.

[43] Layaïda, N. (1999), "Adaptabilité. Pistes d’étude pour la définition d’une infrastruc-

ture d’accès au contenu multimédia pour des machines hétérogènes", Technical Report.

Grenoble : INRIA Rhône-Alpes, France, October.

[44] Satyanarayanan, M. (2001), "Pervasive computing: Vision and challenges", IEEE Per-

sonal communications, Vol. 8, No. 4, pp. 10-17.

[45] Capra, L., Emmerich, W. and Mascolo, C. (2001), "Reflective middleware solutions for

context-aware applications", In International Conference on Metalevel Architectures and

Reflection, Springer, Berlin, Germany, September, pp. 126-133.

[46] Dejene Ejigu, D. (2007), "Services pervasifs contextualisés: modélisation et mise en

uvre", Doctoral dissertation, Villeurbanne, INSA, France.

[47] Chassot, C., Drira, K. and Guennoun, K. (2006), "Towards autonomous management

of QoS through model-driven adaptability in communication-centric systems", Interna-

tional Transactions on Systems Science and Applications (ITSSA), Vol. 2, No. 3, pp.

255-264.

121

[48] Chaari, T. (2007), "Adaptation d’applications pervasives dans des environnements multi-

contextes", PhD thesis, L’institut national des sciences appliquées de Lyon, laboratoire

LIRIS, France.

[49] Fernando, N., Loke, S.W. and Rahayu, W. (2013), "Mobile cloud computing: A survey",

Future generation computer systems, Vol. 29, No. 1, pp. 84-106.

[50] Perera, C., Zaslavsky, A., Christen, P. and Georgakopoulos, D. (2014), "Context aware

computing for the internet of things: A survey", IEEE communications surveys tutorials,

Vol. 6, No. 1, pp. 414-454.

[51] Bricon-Souf, N. and Newman, C.R. (2007), "Context awareness in health care: A re-

view", International Journal of Medical Informatics, Vol. 76, No. 1, pp. 2-12.

[52] Truong, H. L. and Dustdar, S. (2009), "A survey on context-aware web service systems",

International Journal of Web Information Systems, Vol. 5, No. 1, pp. 5-31.

[53] Strang, T. and Linnhoff-Popien, C. (2004), "A Context Modeling Survey", In Proceed-

ings of the First International Workshop on Advanced Context Modelling, Reasoning and

Management (UbiComp 2004), Nottingham, September 7, pp. 31-41.

[54] Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992), "The Active Badge Location

System", ACM Transaction on Information Systems, Vol. 10, No. 1, pp. 42-47.

[55] Abowd, G.D., Atkeson, C.G., Hong, J.I., Long, S., Kooper, R. and Pinkerton, M. (1997),

"Cyberguide: A mobile context-aware tour guide", Wireless Networks, Vol. 3, No. 5, pp.

421-433.

[56] Long, S., Kooper, R., Abowd, G.D. and Atkeson, C.G. (1996), "Rapid Prototyping of

Mobile Context-aware Applications: The Cyberguide Case Study", In 2nd International

Conference on Mobile Computing and Networking (MobiCom’96), ACM, White Plains,

USA, November, pp. 97-107.

[57] Schilit, W.N. (1995), "A system architecture for context-aware mobile computing", Doc-

toral dissertation, Columbia University.

[58] Alegre, U., Augusto, J.C. and Clark, T. (2016), "Engineering context-aware systems and

applications: A survey", Journal of Systems and Software, Vol. 117, pp. 55-83.

122

[59] Temdee, P. and Prasad, R. (2018), "Context-Aware Communication and Computing: Ap-

plications for Smart Environment", 1st ed. Springer International Publishing.

[60] Baldauf, M. and Dustdar, S. (2007), "A survey on context-aware systems", International

Journal of Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, pp. 263-277.

[61] Dey, A.K., Abowd, G.D. and Salber, D. (2001), " A conceptual framework and a toolkit

for supporting the rapid prototyping of context-aware applications" , Human-Computer

Interaction, Vol. 16 No. 2, pp. 97-166.

[62] Ailisto, H., Alahuhta, P., Haataja, V., Kylloenen, V. and Lindholm, M. (2002), "Structur-

ing context aware applications: Five-layer model and example case", In Proceedings of

the Workshop on Concepts and Models for Ubiquitous Computing, Goteborg, Sweden,

pp. 1-5.

[63] Indulska, J. and Sutton, P. (2003), "Location management in pervasive systems", In Pro-

ceedings of the Australasian Information Security Workshop (CRPITS’03), Adelaide,

Australia, pp.143-151.

[64] Schmidt, A. and Van Laerhoven, K. (2001), "How to build smart appliances?", IEEE

Personal Communications, Vol. 8, No. 4, pp. 66-71.

[65] Rabail, T. (2013), "Context aware mobile computing as a challenge for developers and

software engineers: a review", European Scientific Journal, Vol. 4, pp. 534-542.

[66] Bézivin, J. (2004), "In Search of a Basic Principle for Model Driven Engineering", The

European Journal for the Informatics Professional, Vol. 5, No. 2, pp. 21-24.

[67] Bézivin, J. (1998), "On different interoperability modes in software engineering: The

case of modeling activities at OMG", In Proceedings of Software Engineering’98, Paris,

December.

[68] Bézivin, J. and Gerbé, O. (2001), "Towards a precise definition of the OMG/MDA frame-

work", In 16th Annual International Conference on Automated Software Engineering

(ASE), IEEE, San Diego, USA, November, pp. 273-280.

[69] Favre, J.M. (2004), "Towards a basic theory to model driven engineering", In 3rd Work-

shop on Software Model Engineering (WISME), pp. 262-271.

123

[70] OMG MDA (2014), OMG MDA Guide revision 2.0, available at: www.omg.org/cgi-

bin/doc?ormsc/14-06-01 (accessed September 2016).

[71] Benyahia, A. (2012), "Contribution à la mise en uvre d’un moteur d’exécution de mod-

èles UML pour la simulation d’applications temporisées et concurrentes", Doctoral dis-

sertation, Supélec, France.

[72] Object Management Group (2013), Meta Object Facility (MOF) specification, version

2.4.1, available at: www.omg.org/spec/MOF/2.4.1/ (accessed September 2016).

[73] Crawley, S., Davis, S., Indulska, J., McBride, S. and Raymond, K. (1997), "Meta-meta

is better better!", In Proceedings of the IFIP WG 6.1 International Working Conference

on Distributed Applications and Interoperable Systems (DAIS’91), Cottbus, Germany,

September.

[74] Object Management Group (2011), Unified Modeling Language (UML) specification,

version 2.4.1, available at: www.omg.org/spec/UML/2.4.1/ (accessed September 2016).

[75] Taha, S. (2008), "Modélisation conjointe logiciel/matériel de systèmes temps réel", Doc-

toral dissertation, Lille 1, France.

[76] Benselim, M.S. and Seridi-Bouchelaghem, H. (2009), "Contextual adaptation of ubiq-

uitous information systems", IEEE International Conference on Multimedia Computing

and Systems (ICMCS’09), IEEE, Ouarzazate, April 2-4, pp. 17-22.

[77] Kolovos, D. S., Paige, R. F. and Polack, F. A. (2006), "Merging Models with the Epsilon

Merging Language (EML)", In International Conference on Model Driven Engineering

Languages and Systems, Springer, Berlin, Germany, October, pp. 215-229.

[78] Booch, G. (1994), "The Booch method: process and pragmatics", In Object development

methods, SIGS Publications, pp. 149-166.

[79] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.E. (1991), "Object-

oriented modeling and design", Englewood Cliffs, NJ: Prentice-hall, Vol. 199, No. 1.

[80] Jacobson, I. (1993), "Object-oriented software engineering: a use case driven approach",

Pearson Education India.

124

[81] Booch, G., Rumbaugh, J. and Jacobson, I. (2005), "The Unified Modeling Language

User Guide", 2nd ed., Addison-Wesley Professional.

[82] Fowler, M. (2004), "UML distilled: a brief guide to the standard object modeling lan-

guage", 3rd ed., Addison Wesley Professional.

[83] Fuentes-Fernández, L. and Vallecillo-Moreno, A. (2004), "An Introduction to UML Pro-

files", UML and Model Engineering, vol. 2, pp. 6-13.

[84] Bruck, J. and Hussey, K. (2007), "Customizing UML: which technique is right for you?",

International Business Machines Corporation, available at: www.eclipse.org/ model-

ing/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You

/article.html (accessed September 2016).

[85] Magableh, A.A., Shukur, Z. and Ali, N.M. (2012), "Heavy-Weight and Light-weight

UML Modelling Extensions of Aspect-Orientation in the Early Stage of Software Devel-

opment", Journal of Applied Sciences, Vol. 12, No. 21, pp. 2195-2201.

[86] Object Management Group (2014), Object Constraint Language (OCL) specification,

version 2.4, available at: www.omg.org/spec/OCL/2.4/ (accessed September 2016).

[87] Pérez-Martínez, J.E. (2003), "Heavyweight extensions to the UML metamodel to de-

scribe the C3 architectural style", ACM SIGSOFT Software Engineering Notes, Vol. 28,

No. 3, p. 5.

[88] Da Silva, V.T. and De Lucena, C.J.P. (2004), "Extending UML to Model Multi-Agent

Systems", Computer Science Department , Pontifical Catholic University, Rio de Janeiro,

Brazil.

[89] Burgués, X., Franch, X. and Ribó, J.M. (2005), "A MOF-compliant approach to soft-

ware quality modeling", In International Conference on Conceptual Modeling, Springer,

Klagenfurt, Austria, October, pp. 176-191.

[90] Al-Kady, M., Bahgat, R. and Fahmy, A. (2008), "A UML Heavyweight Extension for

MAS Modeling", In The 8th International Conference on Quality Software, IEEE, Au-

gust, pp. 435-440.

125

[91] Object Management Group (2003), Common Warehouse Metamodel (CWM) specifi-

cation, version 1.1, available at: www.omg.org/spec/CWM/1.1/ (accessed September

2016).

[92] Rui, W., Xiao-Guang, M., Zi-Ying, D. and Yan-Ni, W. (2009), "Extending UML for

aspect-oriented architecture modeling", Proceedings of the 2nd International Workshop

on Computer Science and Engineering, IEEE, Qingdao, China, October, pp. 362-366.

[93] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A. and

Riboni, D. (2010), "A survey of context modelling and reasoning techniques", Pervasive

and Mobile Computing, Vol. 6 No. 2, pp. 161-180.

[94] Taconet, C. (2011), "Intergiciels pour la sensibilité au contexte en environnement ubiq-

uitaire", Habilitation Dissertation, Université d’Évry Val d’Essonne, Évry, France.

[95] Parnas, D. (1972), "On the criteria to be used in decomposing systems in modules",

Communication on the ACM, Vol. 15, No. 12, pp. 1053-1058.

[96] Chaari, T., Laforest, F. and Celentano, A. (2004), "Design of context-aware applications

based on web services", Technical Report RR-2004-033, INSA Lyon, France.

[97] Chaari, T., Laforest, F. and Celentano, A. (2008), "Adaptation in context-aware pervasive

information systems: the SECAS project", International Journal of Pervasive Computing

and Communications, Vol. 3, No. 4, pp. 400-425.

[98] Bassil, Y. (2012), "A simulation model for the waterfall software development life cycle",

International Journal of Engineering Technology, Vol. 2, No. 5, pp. 1-7.

[99] Breitman, K., Leite, J. and Finkelstein, A. (1999), "The World a Stage: A Survey of

Requirements Engineering Using a Real-life Case Study", Journal of the Brazilian Com-

puter Society, Vol. 6, No. 1, pp. 13-37.

[100] Finkelstein, A. and Kramer, J. (2000), "Software Engineering: a roadmap", A. Finkel-

stein Ed., ACM Press, pp. 3-24.

[101] Benselim, M.S. and Seridi-Bouchelaghem, H. (2013), "Extending UML class diagram

notation for the development of context-aware applications", Journal of Emerging Tech-

nologies in Web Intelligence, Vol. 5 No. 1, pp. 35-44.

126

[102] Ou, S., Georgalas, N., Azmoodeh, M., Yang, K. and Sun, X. (2006), "A Model Driven

Integration Architecture for Ontology-Based Context Modelling and Context-Aware

Application Development", In European Conference on Model Driven Architecture-

Foundations and Applications, Springer, Bilbao, Spain, July, pp. 188-197.

[103] Ceri, S., Florian, D., Matera, M. and Facca, F. (2007), "Model driven development of

context-aware web applications", ACM Transactions in Internet Technology (TOIT), Vol.

7, No. 1, p. 2.

[104] Vale, S. and Hammoudi, S. (2008), "Context-aware Model Driven Development by Pa-

rameterized Transformation", Proceedings of the First International Workshop on Model

Driven Interoperability for Sustainable Information Systems (MDISIS’08), Montpellier,

France, June, pp. 121-133.

[105] Simons, C. (2007), "CMP: a UML context modeling profile for mobile distributed sys-

tems", IEEE Proceedings of the 40th Annual Hawaii International Conference on System

Sciences (HICSS 2007), IEEE, Hawaii, January 3-6, pp. 289b-289b.

[106] Sindico, A. and Grassi, V. (2009), "Model driven development of context aware soft-

ware systems", International Workshop on Context-Oriented Programming (COP 2009),

ACM, Genoa, July 7, p. 7.

[107] Al-alshuhai, A. and Siewe, F. (2015), "An extension of the use case diagram to model

context-aware applications", In SAI Intelligent Systems Conference (IntelliSys), IEEE,

London, November, pp. 884-888.

[108] Al-alshuhai, A. and Siewe, F. (2015), "An Extension of UML Activity Diagram to Model

the Behaviour of Context-Aware Systems", In IEEE International Conference on Com-

puter and Information Technology; Ubiquitous Computing and Communications; De-

pendable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), IEEE, Liverpool, October, pp. 431-437.

[109] Al-alshuhai, A. and Siewe, F. (2015), "An Extension of Class Diagram to Model the

Structure of Context-Aware Systems", In The Sixth International Joint Conference on

Advances in Engineering and Technology (AET-2015).

127

[110] Hong, D., Chiu, D.K. and Shen, V.Y. (2005), "Requirements elicitation for the design

of context-aware applications in a ubiquitous environment", In Proceedings of the 7th

international conference on Electronic commerce, ACM, Xi’an, China, August, pp. 590-

596.

[111] Rey, G. and Coutaz, J. (2004), "Le contexteur : capture et distribution dynamique

d’information contextuelle", In Proceedings of the 1st French-speaking conference on

mobility and ubiquity computing (UbiMob ’04), ACM, Nice, France, June, pp. 131-138.

[112] Benselim, M.S. (2009), "Une approche pour le développement d’applications sensibles

au contexte", The 27th congress of INFORSID, Toulouse, May 26-29, pp. 479-480.

[113] Ambler, S.W. (2004), "Are You Ready For the MDA?", available at: www.agilemodeli

ng.com/essays/readyForMDA.htm (accessed June 2017).

[114] Boudjemline, H., Touahria, M., Boubetra, A. and Kaabeche, H. (2017), "Heavyweight

extension to the UML class diagram metamodel for modeling context aware systems in

ubiquitous computing", International Journal of Pervasive Computing and Communica-

tions, Vol. 13, No. 3, pp. 238-251.

[115] Misbhauddin, M. and Alshayeb, M. (2015), "UML model refactoring: a systematic liter-

ature review", Empirical Software Engineering, Vol. 20, No. 1, pp. 206-251.

[116] Oh, Y., Schmidt, A. and Woo, W. (2007), "Designing, Developing and Evaluating

Context-Aware Systems", In Proceedings of the International Conference on Multimedia

and Ubiquitous Engineering (MUE’07), IEEE, Seoul, South Korea, April, pp. 1158-

1163.

[117] Milner, R. (2001), "Bigraphical Reactive Systems: Basic Theory", Technical Report 523,

University of Cambridge, Computer Laboratory, England.

[118] Eclipse Modeling Framework (EMF) (2016), available at: www.eclipse.org/modeling

/emf/ (accessed September 2016).

[119] UMLet 14.2 (2017), available at: www.umlet.com (accessed April 2018).

128

[120] Auer, M., Tschurtschenthaler, T. and Biffl, S. (2003), "A flyweight UML modelling tool

for software development in heterogeneous environments", In Proceedings of the 29th

EUROMICRO Conference, IEEE, Belek-Antalya, Turkey, September, pp. 267-272.

[121] Auer, M., Meyer, L. and Biffl, S. (2007), "Explorative UML Modeling-Comparing the

Usability of UML Tools", In Proceedings of the 9th International Conference on Enter-

prise Information Systems (ICEIS’07), Madeira, Portugal, June, pp. 466-473.

[122] Singhala, P., Shah, D. and Patel, B. (2014), "Temperature Control using Fuzzy Logic",

International Journal of Instrumentation and Control Systems, Vol.4, No.1.

[123] Haux R. (2006), "Individualization, globalization and health about sustainable informa-

tion technologies and the aim of medical informatics", International Journal of Medical

Informatics, Vol. 75, No. 12, pp. 795-808.

129

Appendix A

Implementing metamodels and creating modeling editors in Eclipse

In the following, sample Eclipse screenshot showing the easiest way to generate modeling

editors based on self-created metamodels. We start by creating a new Ecore Modeling Project

named CUML for instance, this will create CUML.aird, CUML.ecore, and CUML.genmodel

files.

We proceed to draw the metamodel inside the CUML.aird design panel using constructs

such as EClass, EAttribute, EOperation, ESuperType, EReference, and EEnumeration, then we

validate the CUML.ecore file. Afterward, we generate the corresponding modeling editor using

the CUML.genmodel.

130

Once generated, the modeling editor can be launched by running it as an Eclipse Application.

131

Appendix B

Creating new primitive shapes in UMLet

To illustrate how to introduce new shapes to UMLet, the following set of Java codes shows

how to draw the shapes of ContextSequence diagram’s interactions.

Asynchronous message

setLineType(0);

drawLine(5, 20, width-2, 20);

setLineType(0);

int y=textHeight();

for(String textline : textlines) {

if (textline.equals("_LtR")){

drawLine(width-10, 11, width, 20);

drawLine(width-10, 29, width, 20);}

}

for(String textline : textlines) {

if (textline.equals("_RtL")){

drawLine(10, 11, 0, 20);

drawLine(10, 29, 0, 20);}

}

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

132

Synchronous message

int y=textHeight();

Polygon p = new Polygon();

for(String textline : textlines) {

if (textline.equals("_LtR")){

setBackgroundColor("Black");

setLineType(0);

drawLine(0, 21, width-10, 21);

setLineType(0);

p.addPoint(width-10, 11);

p.addPoint(width-10, 29);

p.addPoint(width, 20);

drawPolygon(p);

}

}

for(String textline : textlines) {

if (textline.equals("_RtL")){

setBackgroundColor("Black");

setLineType(0);

drawLine(10, 21, width, 21);

setLineType(0);

p.addPoint(10, 11);

p.addPoint(10, 29);

p.addPoint(0, 20);

drawPolygon(p);

}

}

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

133

Message reply

setLineType(1);

drawLine(5, 20, width-5, 20);

setLineType(0);

int y=textHeight();

for(String textline : textlines) {

if (textline.equals("_LtR")){

drawLine(width-10, 11, width, 20);

drawLine(width-10, 29, width, 20);}

}

for(String textline : textlines) {

if (textline.equals("_RtL")){

drawLine(10, 11, 0, 20);

drawLine(10, 29, 0, 20);}

}

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

134

Context notification

setLineType(0);

drawLine(5, 18, width-5, 18);

setLineType(0);

drawLine(5, 23, width-5, 23);

setLineType(0);

int y=textHeight();

for(String textline : textlines) {

if (textline.equals("_LtR")){

drawLine(width-10, 11, width, 20);

drawLine(width-10, 29, width, 20);}

}

for(String textline : textlines) {

if (textline.equals("_RtL")){

drawLine(10, 11, 0, 20);

drawLine(10, 29, 0, 20);}

}

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

135

Context query

int y=textHeight();

Polygon p = new Polygon();

for(String textline : textlines) {

if (textline.equals("_LtR")){

setBackgroundColor("Black");

setLineType(0);

drawLine(5, 18, width-10, 18);

setLineType(0);

drawLine(5, 23, width-10, 23);

setLineType(0);

p.addPoint(width-10, 11);

p.addPoint(width-10, 29);

p.addPoint(width, 20);

drawPolygon(p);

} }

for(String textline : textlines) {

if (textline.equals("_RtL")){

setBackgroundColor("Black");

setLineType(0);

drawLine(10, 18, width, 18);

setLineType(0);

drawLine(10, 23, width, 23);

setLineType(0);

p.addPoint(10, 11);

p.addPoint(10, 29);

p.addPoint(0, 20);

drawPolygon(p);

} }

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

136

Context information reply

setLineType(1);

drawLine(5, 18, width-5, 18);

setLineType(1);

drawLine(5, 23, width-5, 23);

setLineType(0);

int y=textHeight();

for(String textline : textlines) {

if (textline.equals("_LtR")){

drawLine(width-10, 11, width, 20);

drawLine(width-10, 29, width, 20);}

}

for(String textline : textlines) {

if (textline.equals("_RtL")){

drawLine(10, 11, 0, 20);

drawLine(10, 29, 0, 20);}

}

for(String textline : textlines) {

y += printCenter(textline,10);

break;

}

137

List of Scientific Papers

Journals’ papers

• Boudjemline, H., Touahria, M., Boubetra, A. and Kaabeche, H. (2017), Heavyweight

extension to the UML class diagram metamodel for modeling context aware systems in

ubiquitous computing, International Journal of Pervasive Computing and Communica-

tions, Vol. 13, No. 3, pp. 238-251.

• Boudjemline, H., Touahria, M., Boubetra, A. and Kaabeche, H., Heavyweight Extension

to the UML Sequence Diagram for Modeling Context-Aware Systems, submitted.

National conferences

• Boudjemline, H., Touahria, M. and Boubetra, A. (2013), La sensibilité au contexte dans

les environnements ubiquitaires, JIDID Doctoral day, 1st Ed., BBA University, December,

15th.

• Boudjemline, H., Touahria, M. and Boubetra, A. (2014), Conception des applications sen-

sibles au contexte dans des environnements ubiquitaires avec l’approche orienté-modèle

(MDA), JIDID Doctoral day, 2nd Ed., BBA University, December, 18th.

• Boudjemline, H., Touahria, M. and Boubetra, A. (2015), Vers une extension de UML pour

la modélisation de l’aspect adaptatif d’un système sensible au contexte, JIDID Doctoral

day, 3rd Ed., BBA University, December, 17th.

• Boudjemline, H., Touahria, M. and Boubetra, A. (2016), Extending UML class diagram

notations for modeling context-aware systems in ubiquitous environments, JIDID Doc-

toral day, 4th Ed., BBA University, June, 7th.

138

ABSTRACT

With the widespread use of mobile devices, a new generation of ubiquitous applications has emerged in daily

life activities, making information available everywhere and at any moment. Context-awareness is the feature that

allows these applications to be smart, by enabling them to adapt their behavior according to the user’s current

situation. In the same vein, designing context-aware applications involves new challenges not present in traditional

ones, this has propelled the software engineers to introduce additional requirements analysis and enhanced

modeling techniques capable of dealing with the different contextual parameters that may affect the application’s

behavior. The Unified Modeling Language (UML) is the most commonly used language to specify, visualize, and

document the artifacts of software systems. Nevertheless, existing UML diagrams are too general to describe

context-aware systems adequately.

This thesis proposes a new modeling approach so-called CUML (Context Unified Modeling Language) to

cater for the specification, visualization, and documentation of context-aware computing systems. We present a

number of contributions through which we have succeeded in (i) A novel notion called ContextClass diagram,

which extends the UML Class diagram to model the structure of context-aware systems by monitoring the

contextual aspects that characterize them. (ii) A novel notion called ContextSequence diagram, which extends the

UML Sequence diagram to model the interactions as well as the adaptation behavior of context-aware systems. (iii)

A set of modeling editors. (iv) A case study in the healthcare field to demonstrate the pragmatics of our approach.

Keywords: Context-aware Systems, Ubiquitous Environment, Adaptation, Context Modeling, Requirements

Analysis, Software Design.

RESUME

Avec l'utilisation répandue des dispositifs mobiles, une nouvelle génération d'applications ubiquitaire est

apparue dans les activités quotidiennes des utilisateurs, rendant ainsi l'information disponible partout et à tout

moment. La sensibilité au contexte est la propriété qui permet à ces applications de devenir intelligentes, en leur

permettant d’adapter leurs comportements selon la situation actuelle de l'utilisateur. Dans ce sens, la conception

d'applications sensibles au contexte comprend de nouveaux défis par rapport aux applications traditionnelles, ce

qui a incité les ingénieurs du génie logiciel à introduire des analyses des besoins et des techniques de modélisation

améliorées dans le but de gérer les différents paramètres contextuels susceptibles d'affecter le comportement de

l'application. Le langage UML (Unified Modeling Language) est le langage le plus couramment utilisé pour

spécifier, visualiser et documenter les artefacts des systèmes logiciels. Néanmoins, les diagrammes existants

d’UML sont trop généraux pour décrire les systèmes sensibles au contexte correctement.

 L’objectif de cette thèse est d’offrir une nouvelle approche de modélisation appelée CUML (Context Unified

Modeling Language) pour aider à la spécification, la visualisation, et la documentation des systèmes sensibles au

contexte. Nous présentons l’ensemble des contributions aux quelles nous avons abouti (i) Une nouvelle notion

appelée diagramme de ContextClass, qui étend le diagramme de Classes de UML pour modéliser la structure des

systèmes sensibles au contexte en spécifiant les aspects contextuels qui les caractérisent. (ii) Une nouvelle notion

appelée diagramme de ContextSequence, qui étend le diagramme de Séquence de UML pour modéliser les

interactions ainsi que le comportement d'adaptation des systèmes sensibles au contexte. (iii) Un ensemble d'éditeurs

de modélisation graphiques et hiérarchiques. (iv) Une étude de cas dans le domaine médical pour démontrer la

pragmatique de notre approche.

Mots-clés : Systèmes Sensible au Contexte, Environnement Ubiquitaire, Adaptation, Modélisation du Contexte,

Analyse des Besoins, Conception de Logiciel.

 صــملخ
شكل أسهم ب مام جيل جديد من التطبيقات في الأنشطة اليومية للمستخدمين اندمجمع الانتشار الواسع لاستخدام الأجهزة المحمولة ،

كبير في جعل المعلومات متوفرة في كل مكان وفي أي زمان. إدراك سياق الاستعمال هو الخاصية التي تتيح لهذه التطبيقات أن تصير

ي هذا الصدد ف .تماشيًا مع تحولات سياق الاستعمال تلقائيبشكل و هذا برصدها المستمر للوضع الحالي للمستخدم وتكييف سلوكياتها ذكية،

ى اللجوء ما دفع مهندسي البرمجيات إل وهو دة مقارنة بالتطبيقات التقليديةالتطبيقات المدركة للسياق على تحديات جدي ، يشتمل تصميم

لغة .اتقلتحليل الاحتياجات وتقنيات نمذجة متطورة من أجل التحكم في مختلف معلومات السياق التي من شأنها أن تؤثر على سلوك التطبي

لكن بالرغم برمجيات.، وتوثيق أعمال التصوير الأكثر استخدامًا لتحديد، هي اللغة UML (Unified Modeling Language)النمذجة

 .لأنظمة المدركة للسياق بشكل صحيحمن ذلك ، فإن رموز مخططاته الحالية غير دقيقة بما يكفي لوصف ا

 (Context Unified Modeling Language)لسياق ا ة لنمذجةالموحدلغة نهجًا جديداً للنمذجة يسمى ال طرروحةتقترح هذه الأ

(أ) إليها توصلنا التي المساهمات من مجموعة نقدم .و الذي يرمي إلى تسهيل عمليات وصف, تصوير, وتوثيق الأنظمة المدركة للسياق

 المدركة الأنظمة بنية لتصميم UML Class diagram لمخطط كامتداد يعُتبر والذي ،ContextClass diagram يدعى جديد مخطط

 يمثل الذي و ،ContextSequence diagram مخطط يسمى جديد مخطط(ب.)تمُيزها التي السياقية الجوانب تحديد خلال من للسياق

 المدركة للأنظمة التأقلم لسلوك بالإضافة السياق معلومات مصادر مع التبادلات لنمذجة UML Sequence diagram لمخطط امتداد

 .المقترح النهج براغماتية لتبيان الطبي المجال في حالة دراسة(د.)النمذجة أدوات من مجموعة(ج.)للسياق

 للسياق, البيئة دائمة الوجود, التكيف, نمذجة السياق, تحليل المتطلبات, تصميم البرامج. ةالمدرك مةنظالأ : فتاحيةكلمات م

