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Faculté des Mathématiques et d’informatique

Département de Mathématiques

THÈSE

EN VUE DE L’OBTENTION DU DIPLÔME DE
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Introduction

It is usually referred to us that the language of nature and science is mathematics. Ever

since humanity became aware of the world around it, there has been an absolute need to

understand the rules behind natural phenomena, and no one can ignore the main role

that mathematics plays in this context.

Mathematics help to understand what we see and to make predictions about what will

happen in a precise language. In fact, differential equations have shown to be one of the

most powerful tools to model the reports between phenomena of the reality in which

we are living, not only to describe the laws of nature but also, to explain the behavior of

some social processes. Although initially considered as simple modeling tools, ordinary

differential equations have given rise to a whole theory of their own.

The birth of differential equations is essentially related to the evolution of infinitesimal

calculus in the 17th century by I. Newton (1642-1727) and G. W. Leibnitz (1646-1716).

During the 18th century, the study of differential equations was supported by L. Eu-

ler (1707-1783), who was interested in solving certain mechanical problems, as well as

by the two French mathematicians J. L. Lagrange (1736-1813) and P. S. Laplace (1749-

1827), who introduced, among others, the notion of partial differential equations.

Differential equations whether ordinary or partial can be classify them either linear or

nonlinear. In general; there can be a system of differential equation is called a differen-

tial system. This system can be either linear or nonlinear.

The nonlinear differential systems constitute a very important branch of differential

systems. From a technical point of view, nonlinear differential systems play an essential

role in control systems. This is because, in reality, all systems are non-linear in nature.
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In mathematics, a nonlinear system does not fulfill the superposition rule, where its

output is not directly proportional to its input.

Nonlinear problems are of great interest in many fields, including engineering, biology,

physics, mathematics, and many other fields. Nonlinear dynamical systems, which de-

scribe changes in variables over time, can appear chaotic, unpredictable, in contrast to

much simpler linear systems.

If differential equations are nonlinear, their solutions cannot easily and sometimes are

impossible to be given in terms of known functions. Therefore numerical and asymp-

totic techniques and methods are used to obtain approximations of the solutions. An

analogous method is provided by the qualitative theory of differential equations, which

seeks to find properties of the solutions without actually solving the equations.

Two classical and difficult problems of the qualitative theory of planar polynomial dif-

ferential systems are the characterization of their centers, and the study of their cyclicity,

i.e. how many limit cycles can bifurcate from a center when we perturb it inside a given

class of polynomial differential systems. Of course, this kind of bifurcation is called in

the literature a Hopf bifurcation. In our thesis we are interested to planar polynomial

differential systems of the form

ẋ = −y, ẏ = x+Qn(x,y), (1)

where Qn is a real homogeneous polynomial of degree n. These kind of systems are

called Kukles homogeneous diffrential systems.

In the literature we find many works studying kukles differential systems. In 1999,

Volokitin and Ivanov [71] were the first who studied the problem of center-focus for

kukles differential systems (1) for n > 2, where they conjectured that the origin of these

systems is a center if and only if systems (1) are symmetric with respect to one of the

coordinates axes, and they proved this conjecture for n = 2 and n = 3. In 2002 Giné

[33] proved this conjecture for n = 4 and n = 5. In 2015 Giné et all [34] proved that the

conjecture is true for all n ≥ 2.

For the global phase portraits of Kukles differential systems (1) we can cite the following

works: Vulpe [73] studied the global phase portraits for all center quadratic differential

systems and since systems (1) for n = 2 is a particular case of these systems, we know that
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their phase portraits are studied. Buzzi et al. [20], Malkin [60], Vulpe and Sibirskij [74]

and Żoła̧dek [75, 76] classified the global phase portraits of cubic polynomial differential

systems with a symmetry with respect to a straight line. Benterki and Llibre [5] provided

the global phase portraits of systems (1) for n = 4.

Llibre and Silva [51, 52] classified the phase portraits of the systems (1) with n = 5,6,

and the global phase portraits for the case n = 7 was studied by Benterki and Llibre [12].

One of the best methods which allowing to study the number of limit cycles of a differen-

tial systems is the averaging method study which is a classical tool allowing us to study

the dynamics of non-linear differential system with periodical orbits. The method of

averaging has a long history starting with the classical works of Lagrange and Laplace,

who provided an intuitive justification of the method. The first formalization of this

theory was done in 1928 by Fatou [27]. Important practical and theoretical contribu-

tions to the averaging theory were made in 1930 by Bogoliubov– Krylov [17], in 1945 by

Bogoliubov [16], and by Bogoliubov–Mitropolsky.

The second part of the sixeteenth Hilber problem also arises for the discontinuous dif-

ferential systems, where the first work studying the discontinuous piecewise linear dif-

ferential systems in the plane is due to Andronov, Vitt and Khaikin in [1]. Later on

these systems became a topic of great interest in the mathematical community due to

their applications for modeling real phenomena, see for instance the books [14, 68] and

references quoted there.

To determine the non–existence, the existence of limit cycles and their number is one

of the big problems in the qualitative theory of the planar differential systems, and in

particular of the planar discontinuous piecewise linear differential systems separated

by a curve. In this work we are considering that a crossing limit cycle is a periodic orbit

isolated in the set of all periodic orbits of the system which has exactly two points on

the discontinuity curve.

The problem of finding the best upper bound for the maximum number of limit cycles

that a family of piecewise linear differential systems in the plane separated by a straight

line can have, has been studied by many authors recently, see for instance [2, 25, 32,

69]. Lum and Chua[57, 58] in 1990 conjectured that the continuous (but non–smooth)

piecewise linear systems in the plane separated by one straight line have at most one
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limit cycle. This conjecture was proved by Freire et al [31] in 1998, for a shorter proof

see [46]. Han and Zhang [35] in 2010 conjectured that discontinuous piecewise linear

differential systems in the plane separated by a straight line have at most two crossing

limit cycles. Huan and Yang [37] in 2012 provided a negative answer to this conjecture

exhibiting a numerical example with three crossing limit cycles. Llibre and Ponce in

[47] proved the existence of these three limit cycles analytically. Nowadays it remains as

an open problem to know if three is the maximum number of crossing limit cycles that

this class of systems can have.

In the article [44] the authors considered the problem of Lum and Chua restricted to

the class of discontinuous piecewise linear differential centers in the plane separated by

a straight line, and they proved that those systems has no crossing limit cycles. But in

[45, 54] were studied planar discontinuous piecewise linear differential centers with a

curve of discontinuity different from a straight line, and then those systems which can

exhibit crossing limit cycles. For this reason it is interesting to study the role which

plays the shape of the discontinuity curve in the number of crossing limit cycles that

planar discontinuous piecewise linear differential centers can have.

This work consists of five chapters, where in the first chapter we briefly present some

of the basic concepts, definitions and results used through this thesis.

In the second chapter, we solve the second part of 16–th Hilbert problem for a discon-

tinuous piecewise linear differential systems fromed by centers separated by irreducible

cubic curves .

In Chapter three, we solve the second part of 16–th Hilbert problem for a discon-

tinuous piecewise linear differential systems fromed by centers or Hamiltonian without

equilibria separated by irreducible cubics. The main goal was providing the maximum

number of crossing limit cycles of two different families of discontinuous piecewise lin-

ear differential systems. More precisely we prove that the systems formed by two zones,

where, in one zone we define a linear center and in the second zone we define a Hamil-

tonian system without equilibria which can exhibit three crossing limit cycles having

two intersection points with the cubic of separation.

In the fourth chapter we provided the exact upper bound of limit cycles for linear piece-

wise differential systems, formed by linear Hamiltonian systems without equilibrium
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and separated by two concentric circles. Furthermore, we proved that our result is

reached by giving some systems having exactly one, two or three limit cycles.

Finally which concerns the fifth chapter we are intersecting in providing all the

global phase portraits of the generalized kukles differential systems

ẋ = −y, ẏ = x+ ax8 + bx6y2 + cx4y4 + dx2y6 + ey8,

symmetric with respect to the x–axis, with a2 + b2 + c2 + d2 + e2 , 0, and by using the

averaging theory up to seven order, we give the upper bounds of limit cycles which can

bifurcate from its center when we perturb it inside the class of all polynomial differential

systems of degree 8.
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Chapter 1
Some Basic Concepts on Qualitative

Theory of Ordinary Differential Equations

This chapter is devoted to give basic ideas and results from the qualitative theory

of ordinary differential equations, which are a general background and important for

the developing of this thesis. Here is presented some existence results related with our

work, furthermore are presented theorems and techniques which will be helpful in the

developing of the results.

Section 1.1 Vector Fields and Flows

Definition 1.1 ( Vector fields)

Let D be an open subset in R
n. We define a vector field of class Cr on D as a Cr map X :

D −→ R
n, where X (x) is meant to represent the free part of a vector attached at the point

x ∈ D. Here the r of Cr denotes a positive integer or +∞. The graphical representation of

a vector field on the plane consists in drawing a number of well chosen vectors (x, X (x))

as in Figure 1.1. En lever of [24]

Remark 1 Integrating a vector field means that we look for curves x(t), with t belonging
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Figure 1.1: Vector fields.

to some interval in R, that are solutions of the differential equation

ẋ(t) = X (x(t)). (1.1)

where x ∈ D, and ẋ denotes dx/dt. The variables x and t are called the dependent variable

and the independent variable of the differential equation (1.1), respectively. Usually t is

also called the time.

If X = X (x) does not depend on t, we say that the differential equation (1.1) is au-

tonomous.

Definition 1.2 (Flow)

Let X be the vector field defned in (1.1). The flow is a C1 function

φ : R×D→D,

where D is an open subset of Rn and if φt(x) = φ(t,x), then φt satisfies

(i) φ0(x) = φ(x) ∀x ∈ D,

(ii)
dφ

dt
(x) = X (φt(x)),
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(iii) φt ◦φs(x) = φt+s(x) ∀s, t ∈R and x ∈ D. En lever of [64]

Remark 2 The same properties are preserve for a linear system which has the flow φt =

eAt defined from R
n to R

n.

Section 1.2 Discontinuous Vector Fields

Definition 1.3 (Piecewise linear differential systems.) A differential system defined

in R
2 is a piecewise linear differential system (PWLS) in R

2 if there exists a set of 3–tuples

{(Ai ,Bi ,Ri)}i∈I where Ai is a 2 × 2 real matrix; Bi ∈ R2 and Ri are connected and open

regions in R
2 separated by a discontinuity manifold Σ. These regions satisfy Ri ∩Rj = ∅

for i , j and ∪i∈IRi ∪Σ = R
2; and Aix+Bi is the vector field in Ri when x ∈ Ri .

The switching manifold or discontinuity manifold Σ is described as

Σ = {(x,y) ∈R2 :H(x,y) = 0},

where H : R2→R is a Cr function, r ≥ 1, and (0,0) is a regular value of H .

Under these conditions, a Piecewise Linear Differential Systems can be written as

follows

Z(p) = Xi(p) = Aip+Bi , p ∈ Ri , i ∈ {1, . . . ,n}, (1.2)

where each vector field Xi is smooth, and defines a smooth flow ϕXi(p, t) within any

open set U ⊂ Ri . In particular, each flow ϕXi(p, t) is well defined on both sides of the

boundary ∂Ri .

We note that Definition 1.3 does not specify a rule for the evolution of the dynamics

within a discontinuity set. This depends basically of the behavior of the vector fields

X(i−1) and Xi close to the discontinuity manifold for i ∈ {1,2,3, . . . ,n} where we denote

that i − 1 = n when i = 1. Here we namely Σ(i−1)i = R(i−1) ∩Ri ⊂ Σ.

To extend the evolution of the dynamics on the discontinuity manifold Σ, we divide each

Σ(i−1)i in three regions. See Figure 1.2.

• Crossing region: Σc(i−1)i = {P ∈ Σ(i−1)i | X(i−1)H(P ) ·XiH(P ) > 0},
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• Escaping region: Σe(i−1)i = {P ∈ Σ(i−1)i | X(i−1)H(P ) < 0 and XiH(P ) > 0},

• Sliding region: Σs(i−1)i = {P ∈ Σ(i−1)i | X(i−1)H(P ) > 0 and XiH(P ) < 0}.

Figure 1.2: Crossing (a), escaping (b) and sliding (c).

Section 1.3 Singular Points

Let f : D → R
n be a continuous function in an open set D ⊂ R

n and consider the

autonomous equation

ẋ = f (x). (1.3)

The set D is called the phase space of the differntial equation (1.3).

Definition 1.4 (Singular points)

A point x0 ∈Rn is called a singular point (or an equilibrium point) of (1.3) if f (x0) = 0. If

a singular point has a neighborhood that does not contain any other singular points, then

that singular point is called an isolated singularity.
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1.3.1 Types of singular points

Definition 1.5 Let p be a singular point of a planar Crvector field X = (P ,Q). In general

the study of the local behavior of the flow near p is quite complicated. Already the linear

systems show different classes, even for local topological equivalence.

We say that

DX (p) =


∂P
∂x

(p)
∂P
∂y

(p)

∂Q
∂x

(p)
∂Q
∂y

(p)

 ,
is the linear part of the vector field X at the singular point p.

We classify the singular points of a planar differential system in hyperbolic, semi-

hyperbolic, nilpotent and linearly zero.

The hyperbolic ones are the singular points such that the linear part of the differential

system has eigenvalues with nonzero real part, see for instance Theorem 2.15 of [24] for

the classification of their local phase portraits.

The semi-hyperbolic points are the ones having a unique eigenvalue equal to zero,

their phase portraits are characterized in Theorem 2.19 of [24].

The nilpotent singular points have both zero eigenvalues but their linear part is not iden-

tically zero.

Finally the linearly zero singular points are the ones such that their linear part is

identically zero, and their local phase portraits must be studied using the change of

variables called Blow-ups, see for instance chapter 2 and 3 of [24].

Section 1.4 Phase Portrait of a Vector Fields

Although it is often impossible (or very difficult) to determine explicitly the solu-

tions of a differential equation, it is still important to obtain information about these

solutions, at least of qualitative nature. To a considerable extent, this can be done de-

scribing the phase portrait of the differential equation.
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Exemple 1.1 Let us construct the phase portrait for the equation

ẍ = x3 − x, (1.4)

Equation (1.4) can be written as a Newtonian system ẋ = y, ẏ = x3 − x.
The differential equation for the phase portraits is

dy

dx
=
x3 − x
y

. (1.5)

This equation is separable, leading to∫
ydy =

∫
x3 − xdx,

or
1
2
y2 =

1
4
x4 − 1

2
x2 +C, where C is the parameter of the phase portraits. Therefore the

equation of the phase portraits is

y(x) = ±
√

1
2
x4 − x2 + 2C.

Figure 1.3: The phase portrait for ẍ = x3 − x.
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Definition 1.6 (Periodic solutions) A solution ϕ(t,x) of (1.3) is periodic if there exists

a finite time T > 0 such that ϕ(t + T ,x) = ϕ(t,x) for all t ∈ R. The minimal T for which

the solution ϕ(t,x) of (1.3) is periodic is called the period.

Definition 1.7 (Limit cycle) A limit cycle of a planar vector field given by (1.1) is an

isolated periodic trajectory. In other word, a periodic trajectory of a vector field is a limit

cycle, if it has an annular neighborhood free from other periodic trajectories.

Section 1.5 Poincaré Compactification.

In this subsection we give some basic results which are necessary for studying the

behavior of the trajectories of a planar polynomial differential systems near infinity. Let

X (x,y) = (P (x,y),Q(x,y)) represent a vector field to each system which we are going to

study its phase portraits, then for doing this we use the so called a Poincaré compactifi-

cation.

We consider the Poincaré sphere S
2 = {(x,y,z) ∈ R

3 : x2 + y2 + z2 = 1}, and we define

the central projection f : T(0,0,1)S
2 −→ S

2 (with T(0,0,1)S
2 the tangent space of S2 at the

point (0,0,1) ), such that for each point q ∈ T(0,0,1)S
2, T(0,0,1)S

2(q) associates the two in-

tersection points of the straight line which connects the point q and (0,0)). The equator

S
1 = {(x,y,z) ∈ S2 : z = 0} represent the infinity points of R2. In summary we get a vector

field X ′ defined in S
2 \S1, which is formed by to symmetric copies of X , and we prolong

it to a vector field p(X ) on S
2. By studiying the dynamics of p(X ) near S

1 we get the

dynamics of X at infinity. We need to do the calculations on the Poincaré sphere near

the local charts Ui = {Y ∈ S2 : yi > 0}, and Vi = {Y ∈ S2 : yi < 0} for i = 1,2,3; with the as-

sociated diffeomorphisms Fi :Ui −→R
2 and Gi : Vi −→R

2 for i = 1,2,3. After a rescaling

in the independent variable in the local chart (U1,F1) the expression of p(X ) is

Figure 1.4: The local charts in the Poincaré sphere.

u̇ = vn
[
−uP

(1
v
,
u
v

)
+Q

(1
v
,
u
v

)]
, v̇ = −vn+1P

(1
v
,
u
v

)
,
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in the local chart (U2,F2) the expression of p(X ) is

u̇ = vn
[
P
(u
v
,
1
v

)
−uQ

(u
v
,
1
v

)]
, v̇ = −vn+1Q

(u
v
,
1
v

)
,

and for the local chart (U3,F3) the expression of p(X ) is

u̇ = P (u,v), v̇ =Q(u,v).

Note that for studying the singular points at infinity we only need to study the infi-

nite singular points of the chart U1 and the origin of the chart U2, because the singular

points at infinity appear in pairs diametrally opposite.

For more details on the Poincaré compactification see Chapter 5 of [24].
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1.5.1 Phase portraits on the Poincaré disc

In this subsection we shall see how to characterize the global phase portraits in the

Poincaré disc of polynomial differential systems. We shall determine the local phase

portrait at all its finite and infinite singular points, then we have to study the properties

of its separatrices, where a separatrix of p(X ) is an orbit which is either a singular point,

or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector at a

singular point. Neumann [62] proved that the set formed by all separatrices of p(X );

denoted by S(p(X )) is closed. We denote by S the number of separatrices.

The open connected components of D2 \ S(p(X )) are called canonical regions of p(X ):

We define a separatrix configuration as a union of S(p(X )) plus one solution chosen from

each canonical region. Two separatrix configurations S(p(X )) and S(p(Y )) are said to be

topologically equivalent if there is an orientation preserving or reversing homeomorphism

which maps the trajectories of S(p(X )) into the trajectories of S(p(Y )). The following

result is due to Markus [61], Neumann [62] and Peixoto [63].

Theorem 1.1 [10]

The phase portraits in the Poincaré disc of the two compactified polynomial differential

systems p(X ) and p(Y ) are topologically equivalent if and only if their separatrix config-

urations S(p(X )) and S(p(Y )) are topologically equivalent.

This theorem implies that once separatrix configurations of a vector field in the

Poincaré disc is determined, the global phase portrait of that vector field is obtained

up to topological equivalence.

Similarly a parabolic sector, a hyperbolic sector and an elliptic sector are defined in

the standard way.

Definition 1.8 A sector which is topologically equivalent to the sector shown in Figure

1.5(a) is called a hyperbolic sector. A sector which is topologically equivalent to the sector

shown in Figure 1.5(b) is called a parabolic sector. And a sector which is topologically

equivalent to the sector shown in Figure 1.5(c) is called an elliptic sector.
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Figure 1.5: (a) A hyperbolic sector. (b) A parabolic sector. (c) An elliptic sector.

Section 1.6 The Averaging Theory Up to Seventh Order

To study the limit cycles that can bifurcate from the periodic orbits of centers, we can use

one of the three following techniques; Abelian integral; averaging theory; or Melnikov

function, which produce the same results in the plane.

The averaging theory is fundamental to our study, so we introduce the main result in

order to apply it, see [43].

Theorem 1.2 [43]

Consider the differential system

ẋ =
7∑
i=1

εiFi(t,x) + εi+1R(t,x,ε), (1.6)

where Fi : R ×D → R for i = 1, · · · , 7, and R : R ×D × (−ε0, ε0)→ R are T−periodic in

the first variable and continuous functions, D is an open interval of Rn, and ε a small

parameter. Assume that the following hypotheses (i) and (ii) hold:

(a) F1(t, .) ∈ C6(D), F2(t, .) ∈ C5(D), F3(t, .) ∈ C4(D), F4(t, .) ∈ C3(D), F5(t, .) ∈ C2(D),

F6(t, .) ∈ C1(D) and F7(t, .) ∈ C0(D) for all t ∈ R, F1, F2, F3, F4, F5, F6, F7, R, ∂(j1−1)
x F1,

∂
(j2−1)
x F2, ∂(j3−1)

x F3, ∂(j4−1)
x F4, ∂(j5−1)

x F5 and ∂xF6, for j1 = {2, · · · ,7}, j2 = {2, · · · ,6}, j3 =

{2, · · · ,5}, j4 = {2, · · · ,4} and j5 = {2,3}, are locally Lipschitz with respect to x, and R is six

times differentiable with respect to ε.

For i = 1, 2, . . . , 7 we define the averaging function fi :D→R of order i as

fi(z) =
yi(T ,z)
i!

, (1.7)

where yi : R ×D → R for i = 1, 2, . . . , 7 are defined recurrently by the following integral
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equations

yi(t, z) = i!
∫ t

0

(
Fi(s,ϕ(s,z)) +

i∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl !l!bl

.∂LFi−l(s,ϕ(s,z))
l∏
j=1

yj(s,z)
bj
)
ds.

Here ∂LG(φ,z) denotes the derivative of order L of a functionG with respect to the variable

z, and Sl is the set of all l−uples of non-negative integers (b1, b2, . . . , bl) satisfying b1+2b2+

· · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl .

(b) For V ∈ D an open and bounded set, and for each ε ∈ (−ε0, ε0) \ {0} there exists aε
such that f1(aε) + εf2(aε) + ε2f3(aε) + ε3f4(aε) + ε4f5(aε) + ε5f6(aε) + ε6f7(aε) = 0 and

dB

(
f1(aε) + εf2(aε) + ε2f3(aε) + ε3f4(aε) + ε4f5(aε) + ε5f6(aε) + ε6f7(aε),V ,aε

)
, 0. (1.8)

Then for | ε |> 0 sufficiently small there exists a T –periodic solution ϕ(·, ε) of the system

(1.6) such that ϕ(0, ε) = aε.

The expression (1.8) means that the Brouwer degree of the function f1 + εf2 + ε2f3 +

ε3f4+ε4f5+ε5f6+ε6f7(aε) : V →R
n at the fixed point aε is not zero. A sufficient condition

for the inequality to be true is that the Jacobian of the function f1+εf2+ε2f3+ε3f4+ε4f5+

ε5f6 + ε6f7(aε) at aε is not zero.

If f1 is not identically zero, then the zeros of f1 + εf2 + ε2f3 + ε3f4 + ε4f5 + ε5f6 + ε6f7

are mainly the zeros of f1 for ε sufficiently small. In this case, the previous result provides

the averaging theory of first order.

If f1 is identically zero and f2 is not identically zero, then the zeros of f2 + εf3 + ε2f4 +

ε3f5 + ε4f6 + ε5f7 are mainly the zeros of F2 for ε sufficiently small. In this case, the

previous result provides the averaging theory of second order.

If f1 and f2 are both identically zero and f3 is not identically zero, then the zeros of

f3 + εf4 + ε2f5 + ε3f6 + ε4f7 are mainly the zeros of f3 for ε sufficiently small. In this case,

the previous result provides the averaging theory of third order.

If f1, f2 and f3 are identically zero and f4 is not identically zero, then the zeros of

f4 + εf5 + ε2f6 + ε3f7 are mainly the zeros of f4 for ε sufficiently small. In this case, the

previous result provides the averaging theory of fourth order.

If f1, f2 , f3 and f4 are identically zero and f5 is not identically zero, then the zeros of
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f5 + εf6 + ε2f7 are mainly the zeros of f5 for ε sufficiently small. In this case, the previous

result provides the averaging theory of fifth order.

If f1, f2 , f3 and f4 and f5 are identically zero and f6 is not identically zero, then the

zeros of f6 +εf7 are mainly the zeros of f6 for ε sufficiently small. In this case, the previous

result provides the averaging theory of sixth order.

If f1, f2 , f3 , f4, f5 and f6 are identically zero and f7 is not identically zero, then the

zeros of f7 is mainly the zeros of f7 for ε sufficiently small. In this case, the previous result

provides the averaging theory of seventh order. For more details of this theory.

To know the number of zeros of a real polynomial, we are going to use the following

Theorem.

Theorem 1.3 [Descartes Theorem]

Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · · + airx
ir with 0 ≤ i1 < i2 < · · · < ir

and aij , 0 real constants for j ∈ {1,2, · · · , r}. When aijaij+1
< 0, we say that aij and aij+1

have a variation of sign. If the number of variations of signs is m, then p(x) has at most m

positive real roots. Moreover, it is always possible to choose the coefficients of p(x) in such

a way that p(x) has exactly r − 1 positive real roots.

Exemple 1.2 Consider the Van der Pol differential equation ẍ+ x = ε(1− x2)ẋ which can

be written as the differential system

ẋ = y, ẏ = −x+ ε(1− x2)y. (1.9)

In polar coordinates (r,θ), where x = r cosθ, y = r sinθ, this system becomes

ṙ = εr(1− r2 cos2θ)sin2θ,

θ̇ = −1 + εcosθ(1− r2 cos2θ)sinθ,

or, equivalently,
dr
dθ

= −εr(1− r2cos2θ)sin2θ +O(ε2).
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In order to apply the averaging theory of first order, we take x = r, t = θ, T = 2π and

F(t,x) = −r(1− r2 cos2θ)sin2θ,

we get that

f 0(r) =
1

2π

∫ 2π

0
r(1− r2 cos2θ)sin2θdθ =

1
8
r(r2 − 4).

The unique positive root of f 0(r) is r = 2. Since (df 0/dr)(2) = 1, it follows that system

(1.9) has, for |ε| sufficiently small, a limit cycle bifurcating from the periodic orbit of

radius 2 of the unperturbed system (1.9) with ε = 0. Moreover, since (df 0/dr)(2) = 1 > 0,

this limit cycle is unstable.
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Chapter 2
The Limit Cycles of Discontinuous

Piecewise Linear Differential Systems

Formed by Centers and Separated by

Irreducible Cubic Curves

The objective of this chapter is to solve the 16th Hilbert problem extended to the limit

cycles of the discontinuous piecewise linear differential systems formed by centers and

separated by irreducible cubics curves, when these limit cycles intersect the cubics in

four points. Not that, if the limit cycles intersect the cubics in two points this problem

has been solved in [11].

Using the first integrals of the linear centers, which are quadratic functions in the

cartesian coordinates (x,y) of the plane, and the expression of the irreducible cubics, we

shall obtain a set of polynomial equations whose solutions provide the limit cycles of

the discontinuous piecewise linear differential systems that we consider.

Studying the solutions of these polynomial equations we obtain the exact maximum

number of such limit cycles, which vary with the different irreducible cubics. Moreover,

from such polynomial equations we can also describe the possible different configura-

tions of limit cycles for each cubic.
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Section 2.1 Classification of the Irreducible Cubics Curves

A Cubic Curves is the set of points (x,y) ∈ R
2 satisfying P (x,y) = 0 for some poly-

nomial P (x,y) of degree three. This cubic is irreducible (respectively reducible) if the

polynomial P (x,y) is irreducible (respectively reducible) in the ring of all real polyno-

mials in the variables x and y.

A point (x0, y0) of a cubic P (x,y) = 0 is singular if Px(x0, y0) = 0 and Py(x0, y0) = 0 . A cubic

curves is singular if it has some singular point, as usual here Px and Py denote the partial

derivaties of P with respect to the variables x and y respectively.

A flex of an algebraic curve Γ is a point p of Γ such that Γ is nonsingular at p and the

tangent at p intersects Γ at least three times.

The next theorem characterizes all the irreducible algebraic cubic curves.

Theorem 2.1 The following statements classify all the irreducible algebraic cubic curves.

(a) A cubic is nonsingular and irreducible if and only if it can be transformed with an

affine transformation into one of the following two curves

c1 = c1(x,y) = y2 − x(x2 + bx+ 1) = 0 with b ∈ (−2,2), or

c2 = c2(x,y) = y2 − x(x − 1)(x − r) = 0 with r > 1.

(b) A cubic is singular and irreducible if and only if it can be transformed with an affine

transformation into one of the following three curves:

c3 = c3(x,y) = y2 − x3 = 0, or

c4 = c4(x,y) = y2 − x2(x − 1) = 0, or

c5 = c5(x,y) = y2 − x2(x+ 1) = 0.

Statement (a) of Theorem 2.1 is proved in Theorem 8.3 of the book [15] under the

additional assumption that the cubic has a flex, but in section 12 of that book it is shown

that every nonsingular irreducible cubic curve has a flex. While statement (b) of Theo-
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rem 2.1 follows directly from Theorem 8.4 of [15].

Crossing Limit Cycles

For k = 1, · · · ,5 let Ck be the class of planar discontinuous piecewise linear differential

systems formed by centers and separated by the irreducible cubic curve ck(x,y) = 0, or

simply the irreducible cubic curve ck.

Figures 2.1 and 2.2 show the different regions separated by the cubic curves ci , with

i = 1 . . .5.
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Figure 2.1: The two regions R1 and R2 of the plane separated by the curves c1 on the
left, c3 on the middle and c4 on the right.
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Figure 2.2: The three regions R1, R2 and R3 of the plane separated by the curves c2 on
the left and c5 on the right.

The objective of this chapter is to give the maximum number N of crossing limit cycles

for the planar discontinuous piecewise linear differential centers which intersect the

irreducible cubic curves ci , with i = 1 . . .5, and have four points of intersection with the

cubic of separation. Firstly, we giveN when the crossing limit cycles intersects the cubic

curves c2 and c5 in four points in three regions. Secondly, we give N when the crossing

limit cycles intersect ci with i = 1 . . .5, in four points in two different zones.
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The following lemma provides a normal form for an arbitrary linear differential system

having a center.

lemma 2.1 Through a linear change of variables and a rescaling of the independent vari-

able every center in R
2 can be written

ẋ = −b2x −
4b2

2 +ω2

4
y + d, ẏ = x+ b2y + c, with ω > 0.

The first integral of this linear differential system is

H(x,y) = 4(x+ b2y)2 + 8(cx − dy) + y2ω2.

For a proof of this lemma, see [54].

We denote by LC the limit cycles.

Section 2.2 LC in three regions intersecting ci, i = 2,5 in four points

In this subsection we are interessted to provide lower bounds for the maximum num-

ber of crossing limit cycles of piecewise linear differential centers separated by the ir-

reducible cubic curves c2 and c5 , having four points of intersection with the cubic of

separation. We note that such piecewise differential systems are formed by three pieces

in each one there is a linear differential center.

2.2.1 Statement of the first main result

We study the crossing limit cycles contained in three regions of the discontinuous

piecewise linear centers in the classes C2 or C5 and having four points of intersection

with the cubic of separation. The notation (Cik) indicate the configuration number i of

crossing limit cycle for the class Ck, where i ∈N∗ and k = 1, . . . ,5.

Then our first main result is the following.
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Theorem 2.2 The following statements hold.

(a) There are systems in C2 and in C5 exhibiting exactly one crossing limit cycle which

intersects c2 or c5 in four points. The class C2 has one possible configuration see

Figure 2.3, while the class C5 has two possible configurations, see (C1
5) and (C2

5) of

Figure 2.4;

(b) there are systems in C2 and in C5 exhibiting exactly two crossing limit cycles which

intersect c2 or c5 in four points. The class C2 has one possible configuration see

Figure 2.5, while the class C5 has three possible configurations, see (C1
5) of Figure

2.5, and (C2
5) and (C3

5) of Figure 2.6;

(c) there are systems in C2 and in C5 exhibiting exactly three crossing limit cycles which

intersect c2 or c5 in four points. The class C2 has one possible configuration see

Figure 2.7, while the class C5 has four possible configurations, see (C1
5) and (C2

5) of

Figure 2.8, and (C3
5) and (C4

5) of Figure 2.9;

(d) there are systems in C2 and in C5 exhibiting exactly four crossing limit cycles which

intersect c2 or c5 in four points. The class C2 has one possible configuration (C2) of

Figure 2.10, and we give four configurations of the class C5, see (C1
5 ) of Figure 2.10,

(C2
5 ) and (C3

5 ) of Figure 2.11, and (C4
5 ) of Figure 2.12.
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Figure 2.3: The unique limit cycle of the discontinuous piecewise linear differential system
(2.1) contained in three zones.
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Figure 2.4: The unique limit cycle of the discontinuous piecewise linear differential
system (C1

5) for (2.3)–(2.4), and (C2
5) for (2.6)–(2.7) contained in three zones.
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Figure 2.5: The two limit cycles of the discontinuous piecewise linear differential
system (C2) for (2.8) and (C1

5) for (2.10) contained in three zones.
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Figure 2.6: The two limit cycles of the discontinuous piecewise linear differential
system (C2

5) for (2.11) and (C3
5) for (2.12) contained in three zones.
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Figure 2.7: The three limit cycles of the discontinuous piecewise linear differential
system (2.14) contained in three zones.
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Figure 2.8: The three limit cycles of the discontinuous piecewise linear differential
system (C1

5) for (2.15) and (C2
5) for (2.16) contained in three zones.
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Figure 2.9: The three limit cycles of the discontinuous piecewise linear differential
system (C3

5) for (2.18), and (C4
5) for (2.20) contained in three zones.
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Figure 2.10: The four limit cycles of the discontinuous piecewise linear differential
system (C2) for (2.21), and (C1

5) for (2.22) contained in three zones.
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Figure 2.11: The four limit cycles of the discontinuous piecewise linear differential
system (C2

5) for (2.23), and (C3
5) for (2.24) contained in three zones.
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Figure 2.12: The four limit cycles of the discontinuous piecewise linear differential
system (2.25) contained in three zones.
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2.2.2 Proof of the first main result

Proof. (Proof of statement (a) of Theorem 2.2.) First we prove the statement for the class

C2. We consider the linear differential centers

ẋ = −x
4
−

5y
16

+
5
4
, ẏ = x+

y

4
+

1
2
, in R1,

ẋ =
1

56
(14x − 7y − 79), ẏ = x −

y

4
− 211

64
, in R2,

ẋ = ẋ = −x −
5y
4

+
1
2
, ẏ = x+ y − 2, in R3,

(2.1)

with their corresponding first integrals

H1(x,y) = 4
(
x+

y

4

)2
+ 8

(x
2
−

5y
4

)
+ y2,

H2(x,y) = 4x2 + x
(
−2y − 211

8

)
+

1
14
y(7y + 158),

H3(x,y) = 4(x+ y)2 + 8
(
−2x −

y

2

)
+ y2,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.1) has exactly one crossing limit cycle, because the system of equations

H1(α,β)−H1(γ,δ) = 0,

H2(α,β)−H2(f ,g) = 0,

H2(γ,δ)−H2(h,k) = 0,

H3(f ,g)−H3(h,k) = 0,

β2 −α(α − 1)(α − 3) = 0, δ2 −γ(γ − 1)(γ − 3) = 0,

g2 − f (f − 1)(f − 3) = 0, k2 − h(h− 1)(h− 3) = 0,

(2.2)

has the unique real solution (α,β,γ,δ, f ,g,h,k) = (5,−2
√

10,5,2
√

10,1/2,−
√

5/2
√

2,1/2,
√

5/2
√

2), and this limit cycle is shown in Figure 2.3. This completes the proof of statement

(a) for the class C2.

Now we prove the existence of two different configurations of one crossing limit cycle for the
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class C5. For the first possible configuration we consider the linear differential centers

ẋ = −x
8
−

17y
64

+
3
8
, ẏ = x+

y

8
− 1, in R1,

ẋ = −x − 10y − 1
2
, ẏ = x+ y − 2, in R2,

(2.3)

with their corresponding first integrals

H1(x,y) = 4
(
x+

y

8

)2
+ 8

(
−x −

3y
8

)
+ y2,

H2(x,y) = 4(x+ y)2 + 8
(

5
12

(
−3
√

2 +
81
50
− 288

25
√

5

)
x − y

)
+ 16y2,

respectively.

In the region R3 we consider the linear center

ẋ =
x
4
−

101y
16

+
3800

√
2 + 3584

√
5 + 2203113

320
(
95
√

2 + 56
√

5− 4380
) ,

ẏ = x −
y

4
+
−448604

√
2− 315662

√
5 + 48

√
10 + 22560621

160
(
95
√

2 + 56
√

5− 4380
) ,

(2.4)

with its first integral

H3(x,y) =
1

40(95
√

2 + 56
√

5− 4380)

(160(95
√

2 + 56
√

5− 4380)x2 + x(−80(95
√

2 + 56
√

5− 4380)y

−897208
√

2− 631324
√

5 + 96
√

10 + 45121242) + y(1010(95
√

2

+56
√

5− 4380)y − 3800
√

2− 3584
√

5− 2203113).

The discontinuous piecewise linear differential system (2.3)–(2.4) has exactly one crossing

limit cycle, because the system of equations

H1(α,β)−H1(γ,δ) = 0,

H2(α,β)−H2(f ,g) = 0,

H2(γ,δ)−H2(h,k) = 0,

H3(f ,g)−H3(h,k) = 0,

β2 −α2(α + 1) = 0, δ2 −γ2(γ + 1) = 0, g2 − f 2(f + 1) = 0, k2 − h2(h+ 1) = 0,

(2.5)
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has the unique real solution (α,β,γ,δ, f ,g,h,k) = (3,−6,3,6,−1/2,−1/(2
√

2),−4/5,4/(5
√

5)),

see (C1
5) of Figure 2.4.

For the second configuration, we consider the linear differential centers

ẋ =
x
7
−

785y
49

+
70

√
50− 8

√
6 + 40083

490
(√

2− 2
√

3
) , ẏ = x −

y

7
+

1
5
, in R1,

ẋ =
x
8
−

577y
64

+
−10025

√
3− 29787

9216
, ẏ = x −

y

8
− 1

3
, in R2,

(2.6)

with their corresponding first integrals

H1(x,y) = 4
(
x −

y

7

)2
+ 8

x5 +

(
70
√

2− 280
√

3− 40083
)
y

490
(√

2− 2
√

3
) + 64y2,

H2(x,y) = 4
(
x −

y

8

)2
+ 8


(
10025

√
3 + 29787

)
y

9216
− x

3

+ 36y2,

respectively. In the region R3 we consider the linear differential center

ẋ = −3x
7
−

373y
1764

+
−23556784

√
2− 26814823

√
3 + 14402472

√
6 + 83393133

80960544
,

ẏ = x+
3y
7

+
−4861464

√
2 + 3092483

√
3 + 1548288

√
6− 1763763

56448
(
88
√

2− 91
√

3 + 15
) ,

(2.7)

with its first integral

H3(x,y) = 4
(
x+

3y
7

)2
+
y2

9
+

A

7056
(
88
√

2− 91
√

3 + 15
)(

16
√

3− 3
) .

Where

A = 88902216
√

2− 37497657
√

3− 82428288
√

6 + 153730473)x − 8(7597532
√

3

+266112
√

6(259− 32
√

3)− 23982207)y.

The real solution of the system of equations (2.5) with the values of Hi(x,y) with i = 1,2,3

given for this second configuration is (α,β,γ,δ, f ,g,h,k) = (1,−
√

2,2,−2
√

3,−1/4,−
√

3/8,−3/4,

−3/8), then the discontinuous piecewise linear differential system (2.6)–(2.7) has one crossing

limit cycle (C2
5) of Figure 2.4. This completes the proof of statement (a) for the class C5.

Proof. (Proof of statement (b) of Theorem 2.2.) First we prove the statement for the class

36



C2. We consider the linear differential centers

ẋ = −x − 5y − 1.8035.., ẏ = x+ y − 0.664282.., in R1,

ẋ = −x
2
−

10y
4
− 1, ẏ = x+

y

2
− 3

2
, in R2,

ẋ = −2x − 8y + 0.837903.., ẏ = x − 2y − 0.169396.., in R3,

(2.8)

with their corresponding first integrals

H1(x,y) = 4(x+ y)2 + 8(1.8035..y − 0.664282..x) + 16y2,

H2(x,y) = 4
(
x+

y

2

)2
+ 8

(
y − 3x

2

)
+ 9y2,

H3(x,y) = 4(x − 2y)2 + 8(−0.169396..x − 0.837903..y) + 16y2,

(2.9)

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.8) has exactly two crossing limit cycles, because the system of equations (2.2) has the two

real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (3.00039..,0.0485802..,3.43695..,−1.91305..,

0.860569..,0.506666..,0.00442503..,0.114878..) and (α2, β2,γ2,δ2, f2, g2,h2, k2) =

(3.00805..,0.220494..,3.50419..,−2.1034..,0.735716..,0.663523..,0.0779996..,0.458408..),

see (C2) of Figure 2.5. This completes the proof of statement (b) for the class C2.

Now we prove the existence of three different configurations of two crossing limit cycles for the

class C5. To obtain the first configuration we consider the linear differential centers

ẋ = −1.77296..x − 3.39338..y + 1, ẏ = x+ 1.77296..y − 0.15026, in R1,

ẋ = −1.77845..x − 9.41287..y + 2, ẏ = x+ 1.77845..y − 0.640432, in R2,

ẋ = −3x
2
−

45y
4

+ 2, ẏ = x+
3y
2
− 0.3, in R3,

(2.10)

with their corresponding first integrals

H1(x,y) = 4x2 + 14.1837..xy − 1.20208..x+ 13.5735..y2 − 8y,

H2(x,y) = 4x2 + 14.2276..xy − 5.12346..x+ 37.6515..y2 − 16y,

H3(x,y) = 4x2 + 12xy − 12x
5

+ 45y2 − 16y,

respectively. The system of equations (2.5) has the two real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) =
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(0.297668..,0.33909..,0.0389395..,−0.0396904..,−0.610209..,0.380973..,−0.0300808..,

−0.0296249..) and (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.242325..,0.270095..,0.0366105..,0.0372747..,

− 0.386234..,0.302588..,−0.0530128..,0.0515885..). Then the discontinuous piecewise lin-

ear differential system formed by the linear differential centers (2.10) has exactly two crossing

limit cycles shown in (C1
5) of Figure 2.5.

For the second configuration we consider the linear differential centers

ẋ = −6x
5
−

369y
100

+ 0.152456, ẏ = x+
6y
5
− 0.365572, in R1,

ẋ = −y − 0.251587, ẏ = x+ 1.93017, in R2,

ẋ = −x
5
−

29y
100

, ẏ = x+
y

5
, in R3,

(2.11)

with their corresponding first integrals

H1(x,y) = 4
(
x+

6y
5

)2
+ 8(−0.365572x − 0.152456y) + 9y2,

H2(x,y) = 4x2 + 8(1.93017x+ 0.251587y) + 4y2,

H3(x,y) = 4
(
x+

y

5

)2
+ y2,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.11) has exactly two crossing limit cycles, due to the fact that the system of equations (2.5)

has the two real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.286549..,0.325022..,0.400999..,

−0.474638..,−0.416749..,0.318275..,−0.313035..,−0.259454..) and (α2,β2,γ2,δ2, f2, g2,h2,

k2) = (0.484398..,0.590171..,0.681486..,−0.883698..,−0.719407..,0.381077..,−0.569542..,

− 0.373673..), see (C2
5) of Figure 2.6.

Finally to obtain the third configuration we consider the linear differential centers

ẋ = −2x −
25y

4
+ 6.3854.., ẏ = x+ 2y + 0.134162, in R1,

ẋ = −x
2
−

5y
2

+ 0.902952.., ẏ = x+
y

2
+ 0.234228, in R2,

ẋ =
3
2
−

25y
16

, ẏ = x+
1
5
, in R3,

(2.12)
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and their corresponding first integrals

H1(x,y) = 4(x+ 2y)2 + 8(0.134162..x − 6.3854..y) + 9y2,

H2(x,y) = 4
(
x+

y

2

)2
+ 8(0.234228..x − 0.902952..y) + 9y2,

H3(x,y) = 4x2 + 8
(x
5

+
3
2

)
+

25y2

4
,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.12) has exactly two crossing limit cycles, due to fact that the system of equations (2.5) has

the two real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.844854..,1.14753..,0.137908..,0.14711..,

−0.884123..,0.300962..,−0.112734..,0.106189..) and (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.783948..,

1.04708..,0.219822..,0.242783..,−0.824415..,0.345453..,−0.186379..,0.168115..), see (C3
5)

of Figure 2.6. This completes the proof of statement (b) for the class C5.

Proof. (Proof of statement (c) of Theorem 2.2.) First we prove the statement for the class

C2. We consider the linear differential centers

ẋ = −3.95435..x − 19.6368..y − 6.39482.., ẏ = x+ 3.95435..y

+4.13635.., in R1,

ẋ = −x
2
−

5y
2
− 1, ẏ = x+

y

2
− 3

2
, in R2,

(2.13)

ẋ = −0.24134..x − 1.00852..y − 0.35835.., ẏ = x+ 0.24134..y

in R3,
(2.14)

with the corresponding first integrals

H1(x,y) = 4(x+ 3.95435..y)2 + 8(4.13635..x+ 6.39482..y) + 16y2,

H2(x,y) = 4
(
x+

y

2

)2
+ 8

(
y − 3x

2

)
+ 9y2,

H3(x,y) = 4(x+ 0.241343..y)2 + 8(0.358353..y − 0.869754..x) + 4y2,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential cen-

ters (2.14) has exactly three crossing limit cycles, because the system of equations (2.2) has the

three real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (3.00039..,0.0485802..,3.43695..,−1.91305..,
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0.860569..,0.506666..,0.00442503..,0.114878..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (3.00318..,

0.138419..,3.47181..,−2.01219..,0.803882..,0.588414..,0.0319264..,0.302877..) and (α3,

β3,γ3,δ3, f3, g3,h3, k3) = (3.00805..,0.220494..,3.50419..,−2.1034..,0.735716..,0.663523..,

0.0779996..,0.458408..), see (C2) of Figure 2.7. This complets the proof of statement (c) for

the C2.

Now we prove the existence of four different configurations of three crossing limit cycles for

the class C5. For the first configuration we consider the linear differential centers

ẋ = −0.345578..x − 1.11942..y − 0.128163.., ẏ = x+ 0.345578..y

−0.440337, in R1,

ẋ = −0.0923038..x − 1.00852..y − 0.0805185.., ẏ = x+ 0.0923038..y

+0.46371, in R2,

ẋ = −x
5
−

29y
100

, ẏ = x+
y

5
, in R3,

(2.15)

with their corresponding first integrals

H1(x,y) = 4(x+ 0.345578..y)2 + 8(0.128163..y − 0.440337..x) + 4y2,

H2(x,y) = 4(x+ 0.0923038..y)2 + 8(0.46371..x+ 0.0805185..y) + 4y2,

H3(x,y) = 4
(
x+

y

5

)2
+ y2,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential cen-

ters (2.15) has exactly three crossing limit cycles, because the system of equations (2.5) has the

three real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.286549..,0.325022..,0.681486..,−0.883698..,

−0.416749..,0.318275..,−0.569542..,−0.373673..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.366248..,

0.428095..,0.749792..,−0.991822..,−0.538507..,0.365825..,−0.639545..,−0.383969..) and

(α3,β3,γ3,δ3, f3, g3,h3, k3) = (0.429988..,0.514188..,0.81153..,−1.09226..,−0.636378..,

0.383743..,−0.706638..,−0.382736..), see (C1
5) of Figure 2.8.
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For the second configuration. We consider the linear differential centers

ẋ = −0.121241..x − 2.2647..y + 1.93257.., ẏ = x+ 0.121241..y

+0.00611219, in R1,

ẋ = −0.217737..x − 1.04741..y + 0.515416.., ẏ = x+ 0.217737y

+0.350398, in R2,

ẋ =
3
2
−

25y
16

, ẏ = x+
1
5
, in R3,

(2.16)

with their corresponding first integrals

H1(x,y) = 4(x+ 2y)2 + 8(0.134162..x − 6.3854..y) + 9y2,

H2(x,y) = 4(x+ 0.217737..y)2 + 8(0.350398..x − 0.515416..y) + 4y2,

H3(x,y) = 4x2 + 8
(x
5
−

3y
2

)
+

25y2

4
,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential cen-

ters (2.16) has exactly three crossing limit cycles, because the system of equations (2.5) has the

three real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.844854..,1.14753..,0.137908..,0.14711..,

−0.884123..,0.300962..,−0.112734..,0.106189..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.816222..,

1.1..,0.177162..,0.192216..,−0.856934..,0.324128..,−0.147429..,0.136128..), and (α3,β3,

γ3,δ3, f3, g3,h3, k3) = (0.783948..,1.04708..,0.219822..,0.242783..,−0.824415..,0.345453..,

− 0.186379..,0.168115..), see (C2
5) of Figure 2.8.

For the third configuration we consider the linear differential centers

ẋ = −6.11391..x − 39.6298..y + 26.1607.., ẏ = x+ 6.11391..y

+6.97061, in R1,
(2.17)

ẋ = 0.0191156..x − 1.56287..y + 1.64182.., ẏ = x − 0.0191156..y

+0.287842, in R2,

ẋ = − x
10
−

113y
50

+
3
2
, ẏ = x+

y

10
+

3
10
, in R3,

(2.18)
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with their corresponding first integrals

H1(x,y) = 4x2 + 14.1837..xy − 1.20208..x+ 13.5735..y2 − 8y,

H2(x,y) = 4x2 + 14.2276..xy − 5.12346..x+ 37.6515..y2 − 16y,

H3(x,y) = 4x2 +
4xy

5
+

12x
5

+
226y2

25
− 12y,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential cen-

ters (2.18) has exactly three crossing limit cycles, because the system of equations (2.5) has the

three real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.566406..,0.708892..,0.117204..,0.123882..,

−0.948744..,0.214793..,−0.0766687..,0.0736711..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.715789..,

0.937598..,0.0641072..,−0.0661301..,−0.997735..,0.0474848..,−0.097471..,−0.0925994..)

and (α3,β3,γ3,δ3, f3, g3,h3, k3) = (0.767868..,1.02097..,0.11983..,−0.12681..,−0.999038..,

− 0.0309942..,−0.187296..,−0.168847), see (C3
5) of Figure 2.9.

Finally we give an example for the fourth configuration. In the example we consider the linear

differential center in systems

ẋ = 0.69208..x − 1.47897..y + 0.293478.., ẏ = x − 0.69208..y

+0.00888246, in R1,

ẋ = 0.242453..x − 0.308783..y + 1.11385.., ẏ = x − 0.242453..y

+0.433519, in R2,

(2.19)

ẋ = −x
5
−

629y
100

+
23
10
, ẏ = x+

y

5
+

3
10
, in R3, (2.20)

with their corresponding first integrals

H1(x,y) = 4x2 − 5.53664..xy + 0.0710597..x+ 5.9159..y2 − 2.34783..y,

H2(x,y) = 4x2 − 1.93962..xy + 3.46816..x+ 1.23513..y2 − 8.91079..y,

H3(x,y) = 4x2 +
8xy

5
+

12x
5

+
629y2

25
− 18.4y,

respectively.

The system of equations (2.5) has the three real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) =

(0.319705..,0.367272..,0.17682..,0.191816..,−0.938407..,0.232893..,−0.119654..,
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0.112267..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.411196..,0.488475..,0.0696268..,0.07201..,

− 0.975404..,0.152973..,−0.0528588..,0.0514428..) and (α3,β3,γ3,δ3, f3, g3,h3, k3) =

(0.505367..,0.620052..,0.0444858..,−0.0454646..,−0.999041..,0.0309382..,−0.0582745..,

− 0.0565511..). Hence the discontinuous piecewise linear differential system formed by the

linear differential centers (2.20) has exactly three crossing limit cycles shown in (C4
5) of Figure

2.9. This completes the proof of statement (c) for the class C5.

Proof. (Proof of statement (d) of Theorem 2.2.) First we prove the statement for the class

C2. We consider the linear differential centers

ẋ = −0.241343..x − 1.00852..y − 0.358353.., ẏ = x+ 0.241343..y,

−0.869754, in R1,

ẋ = −x
2
−

5y
2
− 1, ẏ = x+

y

2
− 3

2
, in R2,

ẋ = −x
5
−

629y
100

+
23
10
, ẏ = x+

y

5
+

3
10
, in R3,

(2.21)

and the corresponding first integrals

H1(x,y) = 4(x+ 3.95435..y)2 + 8(4.13635..x − 6.39482..y) + 16y2,

H2(x,y) = 4
(
x+

y

2

)2
+ 8

(
y − 3x

2

)
+ 9y2,

H3(x,y) = 4(x+ 0.241343..y)2 + 8(0.358353..y − 0.869754..x) + 4y2,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.21) has exactly four crossing limit cycles, because the system of equations (2.2) has the four

real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (3.00039..,0.04858..,3.4369..,−1.91305..,0.86056..,

0.506666..,0.00442503..,0.114878..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (3.00318..,0.138419..,

3.47181..,−2.01219..,0.803882..,0.588414..,0.0319264..,0.302877..), (α3,β3,γ3,δ3, f3, g3,

h3, k3) = (3.00805..,0.22049..,3.50419..,−2.1034..,0.73571..,0.66352..,0.07799..,0.4584..)

and (α4,β4,γ4,δ4, f4, g4,h4, k4) = (3.0181..,0.33254..,3.5491..,−2.2288..,0.5933..,0.76203..,

0.192725..,0.66088..), see (C2) of Figure 2.10.

Now we give four different configurations of four limit cycles for the class C5. To obtain the
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first configuration we consider the linear differential centers

ẋ = 0.897851..x − 2.12174..y − 0.62272.., ẏ = x − 0.897851..y

−0.620434, in R1,

ẋ = −0.225709..x − 1.26066..y − 0.265909.., ẏ = x+ 0.225709..y

+0.334228, in R2,

ẋ =
x

10
−

17y
450

, ẏ = x −
y

10
, in R3,

(2.22)

and their corresponding first integrals

H1(x,y) = 4(x − 0.897851..y)2 + 8(0.62272..y − 0.620434..x) + 5.2624..y2,

H2(x,y) = 4(x+ 0.225709..y)2 + 8(0.334228..x+ 0.265909..y) + 4.83887..y2,

H3(x,y) = 4
(
x −

y

10

)2
+
y2

9
,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.22) has exactly four crossing limit cycles, because the system of equations (2.5) has the four

real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.2756..,0.31138..,0.4902..,0.200142..,−0.593285..,

−0.378363..,−0.598415..,−0.22775..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.391233..,0.461461..,

0.535875..,−0.664112..,−0.324107..,0.266457..,−0.647454..,−0.38443..) , (α3,β3,γ3,δ3, f3,

g3,h3, k3) = (0.480359..,0.584453..,0.57772..,−0.72566..,−0.399001..,0.30932..,−0.6967..,

− 0.383691..) and (α4,β4,γ4,δ4, f4, g4,h4, k4) = (0.55579..,0.69324..,0.61654..,−0.78389..,

− 0.46287..,0.339233..,−0.742..,−0.376889..), see (C1
5) of Figure 2.10.

Now we give an example for the second configuration, and we consider the linear differential

centers

ẋ = 0.679261..x − 20.2696..y + 7.31483.., ẏ = x − 0.679261..y

−0.688849, in R1,

ẋ = −0.0259413..x − 3.37607..y + 1.05365.., ẏ = x+ 0.0259413..y

+0.350162, in R2,

ẋ =
2x
5
−

269569y
40000

+
14
5
, ẏ = x −

2y
5

+
17

100
, in R3,

(2.23)
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and their corresponding first integrals

H1(x,y) = 4x2 − 5.43409..xy − 5.5108..x+ 81.0784..y2 − 58.5187..y,

H2(x,y) = 4x2 + 0.20753..xy + 2.8013..x+ 13.5043..y2 − 8.4292..y,

H3(x,y) = 4x2 −
16xy

5
+

34x
25

+
269569y2

10000
−

112y
5

,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.23) has exactly four crossing limit cycles, because the system of equations (2.5) has the four

real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.448209..,0.539381..,0.227449..,0.251992..,

− 0.519234..,0.360023..,−0.268115..,0.229373..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.53821..,

0.667513..,0.117618..,0.124343..,−0.7962..,0.359438..,−0.116994..,0.109938..), (α3,β3,

γ3,δ3, f3, g3,h3, k3) = (0.595573..,0.752304..,0.0393207..,0.0400863..,−0.938909..,

0.232066..,−0.0361079..,0.0354501..), and (α4,β4,γ4,δ4, f4, g4,h4, k4) = (0.741939..,

0.979229..,0.187029..,−0.20377..,−0.989482..,−0.101478..,−0.264651..,−0.226945..), see

(C2
5) of Figure 2.11.

For the third configuration we consider the linear differential centers

ẋ = 0.216672..x − 0.113954..y + 0.0710259.., ẏ = x − 0.216672..y

−0.125477, in R1,

ẋ = 0.469674..x − 0.937777..y + 0.544803.., ẏ = x − 0.469674..y

+0.465659, in R2,

ẋ =
9x
20
−

1681y
400

+
193
100

, ẏ = x −
9y
20

+
17

100
, in R3,

(2.24)

with their corresponding first integrals

H1(x,y) = 4x2 − 1.73337..xy − 1.00381..x+ 0.455816..y2 − 0.568207..y,

H2(x,y) = 4x2 − 3.75739..xy + 3.72527..x+ 3.75111..y2 − 4.35843..y,

H3(x,y) = 4x2 −
18xy

5
+

34x
25

+
1681y2

100
−

386y
25

,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.24) has exactly four crossing limit cycles, because the system of equations (2.5) has four real
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solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.649616..,0.83435..,0.0409878..,0.0418194..,

−0.844622..,0.332933..,−0.0357296..,0.0350855..), (α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.71307..,

0.933299..,0.109221..,−0.115031..,−0.966853..,0.176027..,−0.148221..,−0.136796..), (α3,

β3,γ3,δ3, f3, g3,h3, k3) = (0.80866..,1.08755..,0.20814..,−0.22878..,−0.99368..,−0.07898..,

−0.328436..,−0.26915..), and (α4,β4,γ4,δ4, f4, g4,h4, k4) = (0.915369..,1.26684..,0.286357..,

− 0.324779..,−0.831632..,−0.341241..,0.5652..,−0.372689..), see (C3
5) of Figure 2.11.

Finally for the fourth configuration we consider the linear differential centers

ẋ = 0.754941..x − 3.40524..y + 1.04524.., ẏ = x − 0.754941..y

−0.492103, in R1,

ẋ = −0.110936..x − 1.51937..y + 0.51995.. ẏ = x+ 0.110936..y

+0.40335, in R2,

ẋ =
7x
5
−

149y
25

+
23
10
, ẏ = x −

7y
5

+
3

20
, in R3,

(2.25)

with their corresponding first integrals

H1(x,y) = 4x2 − 6.03952..xy − 3.93682..x+ 13.621..y2 − 8.36195..y,

H2(x,y) = 4x2 + 0.88749..xy + 3.2268..x+ 6.07749..y2 − 4.1596..y,

H3(x,y) = 4x2 −
28xy

25
+

6x
5

+
10049y2

625
−

92y
5
,

respectively.

The discontinuous piecewise linear differential system formed by the linear differential centers

(2.25) has exactly four crossing limit cycles, due to the fact that the system of equations (2.5)

has four real solutions (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.527644..,0.652157..,0.298869..,

0.340614..,−0.560417..,0.371562..,−0.373144..,0.295434..), (α2,β2,γ2,δ2, f2, g2,h2, k2)

= (0.631385..,0.806441..,0.173646..,0.18812..,−0.800529..,0.357534..,−0.177469..,

0.160953..), (α3,β3,γ3,δ3, f3, g3,h3, k3) = (0.789235..,1.0557..,0.096985..,−0.101579..,

− 0.987466..,0.110553..,−0.121412..,−0.113803..), and (α4,β4,γ4,δ4, f4, g4,h4, k4) =

(0.860054..,1.17297..,0.216049..,−0.238247..,−0.998835..,−0.0340962..,−0.31406..,

− 0.260109..), see (C4
5) of Figure 2.12. This completes the proof of statement (d).
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Section 2.3 Crossing LC in two regions intersecting ci in four points

Now we give our second main result which provides information on the number of cross-

ing limit cycles of the discontinuous piecewise linear differential systems formed by two

centers and intersect the cubic curves ci , with i = 1 . . .5 in four points.

2.3.1 Statement of the second main result

We study the crosssing limit cycles contained only in two regions of the discontinuous

piecewise linear centers in the class Ck for k = 1 . . .5, and having four intersection points

with the cubic of separation. Then our second main result is the following.

Theorem 2.3 The following statements hold.

(a) There are systems in Ck exibiting exactly one crossing limit cycle intersecting the

cubic curves ci in four points. The classes C1, C3 and C4 have one possible configu-

ration, see (C1), (C3) of Figure 2.13 and (C4) of Figure 2.15, respectively. The classes

C2 and C5 have two possible different configurations, see (C1
2) and (C2

2) of Figure

2.14, and (C1
5) and (C2

5) of Figure 2.16.

(b) There are systems in Ck exibiting exactly two crossing limit cycles intersecting the

cubic curves ci in four points. The classes C1, C3 and C4 have one possible config-

uration, see (C1), (C3) and (C4) of Figure 2.17, respectively. The classes C2 and C5

have two possible different configurations see (C1
2) and (C2

2) of Figure 2.18 for the

class C2, and (C1
5) and (C2

5) of Figure 2.19 for the class C5.
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Figure 2.13: The unique crossing limit cycle of the discontinuous piecewise linear
differential system (C1) for (2.26)–(2.27), and (C3) for (2.33)–(2.34) contained in two
zones.
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Figure 2.14: The unique crossing limit cycle of the discontinuous piecewise linear
differential system (C1

2) for (2.29)–(2.30), and (C2
2) for (2.31)–(2.32) contained in two

zones.
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Figure 2.15: The unique crossing limit cycle of the discontinuous piecewise linear
differential system (2.35)–(2.36) contained in two zones.
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Figure 2.16: The unique crossing limit cycle of the discontinuous piecewise linear
differential system (C1

5) for (2.37)–(2.38), and (C2
5) for (2.39)–(2.40) contained in two

zones.
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Figure 2.17: The two crossing limit cycles of the discontinuous piecewise linear
differential system (C1) for (2.41), (C3) for (2.45), and (C4) for (2.46) contained in two
zones.
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Figure 2.18: The two crossing limit cycles of the discontinuous piecewise linear
differential system (C1

2) for (2.43), and (C2
2) for (2.44)contained in two zones.
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Figure 2.19: The two crossing limit cycles of the discontinuous piecewise linear
differential system (C1

5) for (2.47), and (C2
5) for (2.48) contained in two zones.

2.3.2 Proof of the main result

Proof. (Proof of statement (a) of Theorem 2.3.) First we prove the statement for the class

C1. We consider the first linear differential center in the region R1

ẋ = −x
6
−

25y
576
−
−288

√
13 +

751
√

3
+ 96

576(
√

13− 1)
,

ẏ = x+
y

6
− 6009

√
13 + 576

√
14 + 1152

√
39− 1502

√
42 + 576

√
182− 10515

3456(
√

13− 1)
,

(2.26)

this differential system has the first integral
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H1(x,y) =
1

432(
√

13− 1)
(1728(

√
13− 1)x2 − x(−576(

√
13− 1)y + 6009

√
13

+576
√

14 + 1152
√

39− 1502
√

42 + 576
√

182− 10515) + y(75(
√

13

−1)y + 2(751
√

3− 864
√

13 + 288))).

The second linear differential center in the region R2 is

ẋ = −x
7
−

113y
3136

+

(√
13 + 1

)(
−187

√
3 + 192

√
13− 64

)
5376

,

ẏ = x+
y

7
+

B
75264

,

(2.27)

with B =
(√

13 + 1
)(
−10651

√
13 + 896

√
14− 1792

√
39− 2618

√
42 + 896

√
182 + 18505

)
.

This system has the first integral

H2(x,y) =
1

784(
√

13− 1)
(3136(

√
13− 1)x2 + y(113(

√
13− 1)y + 14(187

√
3

−192
√

13 + 64)) + x(896(
√

13− 1)y − 10651
√

13 + 896
√

14

−1792
√

39− 2618
√

42 + 896
√

182 + 18505)).

For the piecewise linear differential system (2.26)–(2.27) the unique real solution of the system

of equations

H1(α1,β1)−H1(γ1,δ1) = 0,

H1(α2,β2)−H1(γ2,δ2) = 0,

H2(α1,β1)−H2(α2,β2) = 0,

H2((γ1,δ1)−H2(γ2,δ2) = 0,

ci(α1,β1) = 0, ci(α2,β2) = 0,

ci(γ1,δ1) = 0, ci(γ2,δ2) = 0,

(2.28)

when i = 1, is (α1,β1,α2,β2,γ1,δ1,γ2,δ2) = (1,
√

3,2,−
√

14,2,
√

14,3,−
√

39).

Now we prove the statement for the class C2. We consider the first linear differential center in

the region R1

ẋ =
x
6
−

5y
18
− 1, ẏ = x −

y

6
+

1
18

(
12
√

3 + 6
√

10− 151
)
, (2.29)

this differential system has the first integral

H1(x,y) =
2
9

(18x2 + 2x(−3y + 12
√

3 + 6
√

10− 151) + y(5y + 36)).
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The second linear differential center in the region R2 is

ẋ =
x
6
−

13y
144

+
−82
√

3− 205
√

10− 96
√

30− 5664
4896

,

ẏ = x −
y

6
+
−432

√
10 +

√
30

(
3936

√
10 + 24721

)
− 17964

2448
,

(2.30)

this system has the first integral

H2(x,y) =
1

36(2
√

3− 5
√

10)
(144(2

√
3− 5

√
10)x2 − 4x(24

√
3y − 60

√
10y

+1117
√

3− 574− 2649
√

10 + 96
√

30− 720) + y(26
√

3y − 65
√

10y

+384
√

3− 1632
√

10)).

The unique real solution of the system of equations (2.28) for i = 2, for the piecewise linear dif-

ferential system (2.29)–(2.30) is (α1,β1,α2,β2,γ1,δ1,γ2,δ2) = (4,2
√

3,5,−2
√

10,6,3
√

10,6,

− 3
√

10).

For the second configuration of the class C2, we consider the linear differential center in the

region R2

ẋ =
x
5
−

41y
400

+
1440

√
3− 640

√
10− 160

√
33 + 2503

3200
(
−3
√

3 + 2
√

10 +
√

33
) ,

ẏ = x −
y

5
+

160
√

10 +
2503

√
10 + 960

√
30− 3200

−3
√

3 + 2
√

10 +
√

33
− 4390

6400
,

(2.31)

this differential system has the first integral

H2(x,y) =
1

800(−3
√

3 + 2
√

10 +
√

33)
(3200(−3

√
3 + 2

√
10 +

√
33)x2 + x(13170

√
3

−6277
√

10 + 480
√

30− 4390
√

33 + 160
√

330− 1280(−3
√

3 + 2
√

10+
√

33)y) + 2y(164(−3
√

3 + 2
√

10 +
√

33)y − 1440
√

3 + 640
√

10 + 160
√

33

−2503)).

The second linear differential center in the region R3 is

ẋ =
x
5
−

13y
100

+
360
√

3− 160
√

10− 40
√

33 + 579

800
(
−3
√

3 + 2
√

10 +
√

33
) ,

ẏ = x −
y

5
− −3873

√
3 + 4898

√
10 + 1440

√
11 + 480

√
30 + 2449

√
33

3200
(
−3
√

3 + 2
√

10 +
√

33
) ,

(2.32)
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this system has the first integral

H1(x,y) =
1

400(−3
√

3 + 2
√

10 +
√

33)
1600(−3

√
3 + 2

√
10 +

√
33)x2 − x(640(−3

√
3

+2
√

10 +
√

33)y − 3873
√

3 + 4898
√

10 + 1440
√

11 + 480
√

30 + 2449
√

33)

+4y
(
52

(
−3
√

3 + 2
√

10 +
√

33
)
y − 360

√
3 + 160

√
10 + 40

√
33− 579

)
.

The unique real solution of the system of equations (2.28) for i = 2, for the piecewise linear dif-

ferential system (2.31)–(2.32) is (α1,β1,α2,β2,γ1,δ1,γ2,δ2) = (1/4,
√

33/8,1/2,−
√

5/(2
√

2),

3/4,3
√

3/8,1,0).

We prove the statement for the class C3. We consider the first linear differential center in the

region R1

ẋ = −x
6
−

25y
576

+
−128

√
2 + 288

√
3 + 483

−384
√

2 + 576
√

3 + 1344
,

ẏ = x+
y

6
+
−96618

√
2 + 9

√
3(58745128

√
2 + 89093337)− 500192

192384
,

(2.33)

its first integral is

H1(x,y) =
1

144(2
√

2− 3
√

3− 7)
(576(2

√
2− 3

√
3− 7)x2 + x(192(2

√
2− 3

√
3

−7)y − 3770
√

2 + 6861
√

3 + 1152
√

6 + 14875) + y(25(2
√

2− 3
√

3

−7)y − 768
√

2 + 1728
√

3 + 2898).

The second linear differential center in the region R2 is

ẋ = −x
9
−

145y
5184

+
134932

√
2− 69489

√
3− 77682

√
6 + 250949

577152
,

ẏ = x+
y

9
+
−23197

√
2 + 45834

√
3− 1728

√
6 + 79814

5184(2
√

2− 3
√

3− 7)
,

(2.34)
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this system has the first integral

H2(x,y) =
1

648(−2
√

2− 18
√

3 + 6
√

6− 20)
(5184(−

√
2− 9

√
3 + 3

√
6− 10)x2

+x(1152(−
√

2− 9
√

3 + 3
√

6− 10)y + 7645
√

2 + 193608
√

3 + 332692

−67863
√

6) + y(145(−
√

2− 9
√

3 + 3
√

6− 10)y + 2304
√

2 + 10755
√

3

−6912
√

6 + 41343)).

The discontinuous piecewise linear differential centers (2.33)–(2.34) has one limit cycle be-

cause the system of equations (2.28) for i = 3 has the unique real solution (α1,β1,α2,β2,γ1,δ1,

γ2,δ2) = (1,1,2,−2
√

2,3,3
√

3,4,−8). This limit cycle is shown in (C3) Figure 2.13.

Now we prove the statement for the class C4. We consider the linear differential center in the

region R1

ẋ = −x
9
−

181y
8100

+
2
9
, ẏ = x+

y

9
+

√
2

3
− 2071

540
+

8

3
√

3
, (2.35)

this differential system has the first integral

H1(x,y) = 4x2 +
2

135
x
(
60y + 180

√
2 + 480

√
3− 2071

)
+
y(181y − 3600)

2025
.

The second linear differential center in the region R2 is

ẋ = −x
8
−
y

32
+

66
√

2− 62
√

3− 18
√

6 + 525
1128

,

ẏ = x+
y

8
+
−600

√
6 + 8

√
6
(
232
√

6 + 2555
)
− 12627

4512
,

(2.36)

with its first integral

H2(x,y) =
1

8(−15
√

2− 4
√

3 + 6
√

6 + 24)
32(−15

√
2− 4

√
3 + 6

√
6 + 24)x2+

2x(4(−15
√

2− 4
√

3 + 6
√

6 + 24)y + 1521
√

2 + 556
√

3− 666
√

6

−2456) + y((−15
√

2− 4
√

3 + 6
√

6 + 24)y − 8(−51
√

2− 16
√

3

+24
√

6 + 76)).

In this case the unique real solution of the system of equations (2.28) for i = 4, is (α1,β1,α2,

β2,γ1,δ1,γ2,δ2) = (2,2,2,−2,3,3
√

2,4,−4
√

3). Then the disscontinuous piecewise differential
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system (2.35)–(2.36) has one limit cycle shown in Figure 2.15

We prove the statement for the first configuration of the class C5. We consider the linear

differential center in the region R1

ẋ =
x
6
−

5y
18

+
1

612

(
−89
√

2− 636
)
,

ẏ = x −
y

6
+

1
306

(432
√

3 + 178
√

3(
√

3 + 2)− 795),
(2.37)

which has the first integral

H1(x,y) =
1

9(
√

2− 6)
(36(
√

2− 6)x2 − 4x(3(
√

2− 6)y + 141
√

2 + 142
√

3

+6
√

6− 312) + 2y(5(
√

2− 6)y + 6
√

2− 214)).

The second linear differential center in the region R3

ẋ = −x
6
−

13y
144

+
53
√

2 + 1134
4896

,

ẏ = x+
y

6
+
−114

√
2 + 91

√
3− 24

√
6 + 843

72(
√

2− 6)
,

(2.38)

its first integral is

H2(x,y) =
1

36(
√

2− 6)
(144(

√
2− 6)x2 − 4x(−12(

√
2− 6)y + 114

√
2− 91

√
3

+24
√

6− 843) + y(13(
√

2− 6)y − 48
√

2 + 394)).

For this piecewise linear differential centers the unique real solution of system (2.28) when

i = 5 is (α1,β1,α2,β2,γ1,δ1,γ2,δ2) = (1,
√

2,2,−2
√

3,2,2
√

3,3,−6). Hence, the discontinuous

piecewise linear differential system (2.37)–(2.38) has a unique crossing limit cycle, see (C1
5) of

Figure 2.16.

Finally we prove the statement for the second configuration of the class C5 . In the region R2
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we consider the linear center

ẋ = −x
4
−
y

8
+
−22000

√
2− 3000

√
3 + 34816

√
5 + 24585

640(275
√

2 + 75
√

3− 272
√

5
,

ẏ = x+
y

4
+

2400
√

2− 2200
√

3− 4125(149
√

11− 4
√

6 + 200)

275
√

2 + 75
√

3− 272
√

5
+ 62593

108800
,

(2.39)

its first integral is

H2(x,y) =
1

800(275
√

2 + 75
√

3− 272
√

5)
(3200(275

√
2 + 75

√
3− 272

√
5)x2

+x(1600(275
√

2 + 75
√

3− 272
√

5)y + 940225
√

2 + 312300
√

3

−1001488
√

5− 25000
√

6− 38400
√

10 + 35200
√

15) + 10y(40(275
√

2

+75
√

3− 272
√

5)y + 22000
√

2 + 3000
√

3− 34816
√

5− 24585)).

In the region R3 we consider the linear differential center

ẋ =
x
2
−

5y
4

+
2
5
, ẏ = x −

y

2
+

1
640

(96
√

2 + 88
√

3 + 365), (2.40)

this system has the first integral

H1(x,y) = 4x2 +
1

80
x
(
−320y + 96

√
2 + 88

√
3 + 365

)
+

1
5
y(25y − 16).

For this piecewise linear differential centers the unique real solution of system (2.28) when

i = 5 is (α1,β1,α2,β2,γ1,δ1,γ2,δ2) = (−1/4,
√

3/8,−4/5,4/(5
√

5),−1/2,−1/(2
√

2),−4/5,

− 4/(5
√

5). Then the discontinuous piecewise linear differential system (2.39)–(2.40) has ex-

actly one crossing limit cycle, see (C2
5) of Figure 2.16. This completes the proof of statement

(a) of Theorem 2.3.

Proof. (Proof of statement (b) of Theorem 2.3.) First we prove the statement for class

C1. We consider the linear differential center in systems

ẋ = −0.0327708x − 0.167012y + 0.202324, ẏ = x+ 0.0327708y

−2.82026, in R1,

ẋ =
x

10
−

13y
50
− 1

5
, ẏ = x −

y

10
− 16

5
, in R2,

(2.41)
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with their corresponding first integrals

H1(x,y) = 4(x+ 0.0327708y)2 + 8(−2.82026x − 0.202324y) + 0.663752y2,

H2(x,y) = 4
(
x −

y

10

)2
+ 8

(y
5
− 16x

5

)
+ y2,

respectively.

For the piecewise linear differential system (2.41) the real solutions of the system of equations

H1(αi ,βi)−H1(γi ,δi) = 0,

H1(fi , gi)−H1(hi , ki) = 0,

H2(αi ,βi)−H1(fi , gi) = 0,

H2(γi ,δi)−H1(hi , ki) = 0,

cs(αi ,βi) = cs(γi ,δi) = 0, cs(fi , gi) = cs(hi , ki) = 0 i = 1,2,

(2.42)

when s = 1, is (α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.571172..,1.04103..,2.93153..,6.0596..,

0.449711..,−0.861917..,2.66907..,−5.36724..) and (α2,β2,γ2,δ2, f2, g2,h2, k2) = (1.19066..,

2.07275..,2.40283..,4.69567..,0.928007..,−1.60885..,2.25189..,−4.32923..).

Hence this piecewise linear differential centers have exactly two crossing limit cycles, see (C1)

of Figure 2.17.

Now we prove the statement for the class C2. We consider the linear differential center in

systems

ẋ = −
y

25
, ẏ = x − 1

2
, in R1,

ẋ = −0.252669..y, ẏ = x − 0.498272, in R2,
(2.43)

their corresponding first integrals are

H1(x,y) = 4x2 − 4x+
4y2

25
,

H2(x,y) = 4x2 − 3.98617..x+ 1.01067..y2,

respectively.

The real solutions of system (2.42) when s = 2 are (0.898773..,0.43723..,0.16978..,0.63161..,

0.898773..,−0.43723..,0.169784..,−0.631617..) and (0.758688..,0.640578..,0.368993..,

0.782685..,0.758688..,−0.640578..,0.368993..,−0.782685..). Hence the discontinuous piece-

wise linear differential system formed by centers (2.43) has two crossing limit cycles, see (C1
2)
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of Figure 2.18.

For the second configuration of the classC2 we consider the linear differential center in systems

ẋ =
x

10
−

17y
80
− 1

10
, ẏ = x −

y

10
− 11

10
, in R1,

ẋ = 0.057143..x − 0.0550264..y − 0.0521176.., ẏ = x − 0.057143..y

−0.805757, in R2,

(2.44)

and the corresponding first integrals

H1(x,y) = 4
(
x −

y

10

)2
+ 8

( y
10
− 11x

10

)
+

81y2

100
,

H2(x,y) = 4(x − 0.057143..y)2 + 8(0.0521176..y − 0.805757..x) + 0.207044..y2,

respectively.

The real solutions of system (2.42) for these centers are (0.253068..,0.283285..,1.26272..,

1.89942..,0.204637..,−0.224601..,1.16927..,−1.72215..) and (0.145203..,0.155388..,

1.36881..,2.10673..,0.119104..,−0.125997..,1.24855..,−1.87223..). Hence the discontinu-

ous piecewise linear differential system formed by centers (2.44) has two crossing limit cycles,

see (C2
2) of Figure 2.18.

For the class C3 we consider the linear differential center in systems

ẋ = 0.0333015..x − 0.132045..y − 0.0410184.., ẏ = x − 0.0333015..y

−1.97694, in R1,

ẋ = 0.1x − 0.26y − 0.2, ẏ = x − 0.1y − 2.3, in R2,

(2.45)

and the corresponding first integrals

H1(x,y) = 4(x − 0.0333015..y)2 + 8(0.0410184..y − 1.97694..x) + 0.523744..y2,

H2(x,y) = 4(x − 0.1y)2 + 8(0.2y − 2.3x) + y2,

respectively.

The real solutions of system (2.42) when s = 3 are (0.340737..,0.198898..,2.70162..,

4.44056..,0.308678..,−0.171498..,2.52616..,−4.01504..) and (0.862714..,0.801309..,

2.24826..,3.37109..,0.727481..,−0.620487..,2.17185..,−3.2007..). Hence the discontinuous
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piecewise linear differential system (2.45) has two crossing limit cycles, see (C3) of Figure 2.17.

We prove the statement for the class C4. We consider the linear differential center in systems

ẋ = −0.142331..x − 0.0908868y + 1.59716.., in R1,

ẏ = x+ 0.142331..y − 9.92891, ẏ = x −
y

10
− 44

5
, in R2,

(2.46)

with their corresponding first integrals

H1(x,y) = 4(x+ 0.142331..y)2 + 8(−9.92891..x − 1.59716..y) + 0.282515..y2,

H2(x,y) = 4
(
x −

y

10

)2
+ 8

(7y
10
− 44x

5

)
+

9y2

25
,

respectively.

The two real solutions of system (2.42) when s = 4 are (2.34486..,2.71929..,9.31289..,

26.851..,1.97922..,−1.95854..,8.44735..,−23.0527..) and (4.45798..,8.2899..,7.62439..,

19.6236..,3.20672..,−4.7636..,7.33329..,−18.455..). Hence the discontinuous piecewise lin-

ear differential system (2.46) has two crossing limit cycles, see (C4) of Figure 2.17.

For the first configuration of the class C5, we consider the linear differential centers

ẋ = −0.453205..y, ẏ = x+ 0.497252, in R1,

ẋ = −
y

10
, ẏ = x+

1
2
, in R2,

(2.47)

and their corresponding first integrals

H1(x,y) = 4x2 + 3.97802x+ 1.81282y2,

H2(x,y) = 4x2 + 4x+
2y2

5
,

respectively.

The two real solutions of system (2.42) when s = 5 are (−0.0927079..,0.088306..,

− 0.837019..,0.337912..,−0.0927079..,−0.088306..,−0.837019..,−0.337912..) and

(−0.217826..,0.192647..,−0.663868..,0.38489..,−0.217826..,−0.192647..,−0.663868..,

− 0.38489..). Hence, the discontinuous piecewise linear differential formed (2.47) has two

crossing limit cycles, see (C5) of Figure 2.19.

Finally we prove the statement for the second configuration of the class C5, where we consider
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the linear differential centers

ẋ =
x

10
−

17y
80
− 1

10
, ẏ = x −

y

10
− 11

10
, in R1,

ẋ = 0.057143..x − 0.0550264..y − 0.0521176.., ẏ = x − 0.057143..y

−0.805757, in R3,

(2.48)

and their corresponding first integrals

H1(x,y) = 4
(
x −

y

10

)2
+ 8

( y
10
− 11x

10

)
+

81y2

100
,

H2(x,y) = 4(x − 0.057143..y)2 + 8(0.0521176..y − 0.805757..x) + 0.207044..y2,

respectively.

The two real solutions of system (2.42) when s = 5 are (0.253068..,0.283285..,1.26272..,

1.89942..,0.204637..,−0.224601..,1.16927..,−1.72215..) and (0.145203..,0.155388..,

1.36881..,2.10673..,0.119104..,−0.125997..,1.24855..,−1.87223..).

Hence the discontinuous piecewise linear differential system (2.48) has two crossing limit

cycles, see (C2
5) of Figure 2.19. This completes the proof of statement (b) for the class C5.
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Chapter 3
Limit Cycles of Discontinuous Piecewise

Linear Differential Systems Formed by

Centers or Hamiltonian Without

Equilibria Separated by Irreducible

Cubics

This chapter is devoted to study the limit cycles of two families of planar linear

differential systems, the first one is Hamiltonian without equilibrium points and the

second one is a family of centers.

The following lemma provides a normal form for an arbitrary linear Hamiltonians sys-

tem without equilibrium points.

lemma 3.1 An arbitrary linear differential Hamiltonian system in R
2 without singular

points can be written as

Xi(x,y) = (−λibix+ biy +µi ,−λ2
i bix+λibiy + σi),

where σi , λiµi and bi , 0 for i = 1 . . .4. The Hamiltonian function associated to the
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Hamiltonian vector field Xi is

Hi(x,y) = (−λ2
i bi/2)x2 +λibixy − (bi/2)y2 + σix −µiy.

For a proof of this lemma, see [30].

Section 3.1 LC of Discontinuous PWLS Intersecting the Curve ci , i = 1, ..,5 in Two Points

We denote by F1 the family of discontinuous piecewise differential systems separated

by a cubic curve ck for k = 1, . . . ,5 contained in two regions. We note that such piecewise

systems formed by two pieces, in one piece we define a linear differential center, and in

the other piece we define a linear Hamiltonian system without equilibrium point.

Our first objective in this chapter is to provide the maximum number of crossing

limit cycles of the family F1 which intersect the irreducible cubic curves ci = 0, with

i = 1 . . .5 in two points.

3.1.1 Statement of the first main result

Our first main result is the following.

Theorem 3.1 The maximum number of crossing limit cycles of discontinuous piecewise

differential systems of the family F1 which intersect the cubic curve ck = 0, for k = 1, . . . ,5

in two points is three. This maximum is reached in all cases.

(i) For the classes C1, C3 and C4, see Examples 1, 2 and 3, respectively.

(ii) For the class C2, see Examples 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

(iii) For the class C5, see Examples 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.
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Figure 3.1: The three limit cycles of the discontinuous piecewise differential systems
(3.6)–(3.7), (3.8)–(3.9), and (3.11)–(3.12).
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Figure 3.2: The three limit cycles of the discontinuous piecewise differential system
(C1

2 ) for (3.14)–(3.15), and (C2
2 ) for (3.16)–(3.17).
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Figure 3.3: The three limit cycles of the discontinuous piecewise differential system
(C3

2 ) for (3.18)–(3.19), and (C4
2 ) for (3.20)–(3.21).
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Figure 3.4: The three limit cycles of the discontinuous piecewise differential system
(C5

2 ) for (3.22)–(3.23), and (C6
2 ) for (3.24)–(3.25).
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Figure 3.5: The three limit cycles of the discontinuous piecewise differential system
(3.26)–(3.27).
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Figure 3.6: The three limit cycles of the discontinuous piecewise differential system
(C1

5 ) for (3.29)–(3.30), and (C2
5 ) for (3.31)–(3.32).
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Figure 3.7: The three limit cycles of the discontinuous piecewise differential system
(C3

5 ) for (3.33)–(3.34), and (C4
5 ) for (3.35)–(3.36).
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Figure 3.8: The three limit cycles of the discontinuous piecewise differential system
(C5

5 ) for (3.37)–(3.38), and (C6
5 ) for (3.39)–(3.40).
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Figure 3.9: The three limit cycles of the discontinuous piecewise differential systems
(3.41)–(3.42).

3.1.2 Proof of the first main result
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We shall prove that the maximum number of limit cycles of systems of family F1 inter-

secting the cubic curve c3, in two points is three. By a similar way we prove the statement

for the other four cubic curves.

We consider the discontinuous piecewise linear Hamiltonian system such that in the

region R13 = {(x,y) : y2 − x3 ≥ 0} is defined as

ẋ = −λb1x+ b1y +µ, ẏ = −λ2b1x+λb1y + σ, (3.1)

with b1 , 0 and σ , λµ. This system has the first integral

H1(x,y) = −(λ2b1/2)x2 +λb1xy − (b1/2)y2 + σx −µy.

In the region R23 = {(x,y) : y2 − x3 ≤ 0} we consider the linear center

ẋ = −b2x −
4b2

2 +ω2

4
y + d, ẏ = x+ b2y + c, with ω > 0, (3.2)

with its first integral

H2(x,y) = 4(x+ b2y)2 + 8(cx − dy) + y2ω2.

We have to prove that the piecewise linear differential systems composed by system (3.1)

and system (3.2) have at most three crossing limit cycles intersecting the cubic curve

y2−x3 = 0 in two points. For that we suppose that these systems have four crossing limit

cycles intersecting the curve y2 − x3 = 0 in the points (xi , yi) and (zi ,wi) for i = 1, . . . ,4,

which means that they satisfy the system

H1(xi , yi)−H1(zi ,wi) = 0,

H2(xi , yi)−H2(zi ,wi) = 0,

y2
i − x

3
i = 0, w2

i − z
3
i = 0.

(3.3)

Such points (xi , yi) and (zi ,wi) can take form Ai = (r2
i , r

3
i ) and Bi = (s2i , s

3
i ), respectively.

Taking in consideration that these points verify the first two equations of system (3.3),
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then by solving the first and the second equations when i = 1, we get

σ =
1

2(r1 + s1)
(b1r

5
1 + b1r

4
1s1 + b1r

3
1s

2
1 + b1r

2
1s

3
1 + b1r1s

4
1 + b1s

5
1 − 2b1r

4
1λ− 2b1r

3
1s1λ

−2b1r
2
1s

2
1λ− 2b1r1s

3
1λ− 2b1s

4
1λ+ b1r

3
1λ

2 + b1r
2
1s1λ

2 + b1r1s
2
1λ

2 + b1s
3
1λ

2 + 2r2
1µ

+2r1s1µ+ 2s21µ),

d =
1

8(r2
1 + r1s1 + s21)

(8c(r1 + s1) + 4(r1 + b2r
2
1 + s1 + b2r1s1 + b2s

2
1)(r2

1 + b2r
3
1 + s21

+b2s
3
1) + (r1 + s1)(r2

1 − r1s1 + s21)(r2
1 + r1s1 + s21)ω2).

Since the points A2 = (r2
2 , r

3
2 ) and B2 = (s22, s

3
2) also verify system (3.3), we obtain the

following expressions of the parameters µ = F1/G1 and c = F2/G2, where

F1 = −(b1(r2 − s2)((r1 + s1)(r2 + s2)(r4
1 − r

4
2 + r2

1s
2
1 + s41 − r

2
2s

2
2 − s

4
2)− 2(r2(r4

1 + r3
1s1

−r3
2s1 + r2

1s
2
1 + s41 + r1(−r3

2 + s31)) + (r4
1 + r3

1s1 − r
3
2s1 + r2

1s
2
1 + s41 + r1(−r3

2 + s31))s2

−r2
2 (r1 + s1)s22 − r2(r1 + s1)s32 − (r1 + s1)s42)λ+ (r1 + s1)(r2 + s2)(r2

1 − r
2
2 + s21 − s

2
2)λ2),

G1 = 2(r2
2 (r2

1 + r1(−r2 + s1) + s1(−r2 + s1))− (r2
1 + r1s1 + s21)s22 + (r1 + s1)s32),

F2 = r5
1 (r3

2 − s
3
2)(4b2

2 +ω2) + r4
1 (r3

2 − s
3
2)(4b2(2 + b2s1) + s1ω2) + r3

1 (r3
2 − s

3
2)(4(1 + b2s1)2

+s21ω
2) + r2

1 (−4r4
2 − 8b2r

5
2 − r

6
2 (4b2

2 +ω2) + r3
2s1(4(1 + b2s1)2 + s21ω

2) + s32(−4s1

−8b2s
2
1 + 4s2(1 + b2s2)2 + s32ω

2 − s31(4b2
2 +ω2))) + r1s1(−4r4

2 − 8b2r
5
2 − r

6
2 (4b2

2 +ω2)

+r3
2s1(4(1 + b2s1)2 + s21ω

2) + s32(−4s1 − 8b2s
2
1 + 4s2(1 + b2s2)2 + s32ω

2 − s31(4b2
2 +ω2)))

+s21(−4r4
2 − 8b2r

5
2 − r

6
2 (4b2

2 +ω2) + r3
2s1(4(1 + b2s1)2 + s21ω

2) + s32(−4s1 − 8b2s
2
1

+4s2(1 + b2s2)2 + s32ω
2 − s31(4b2

2 +ω2))),

G2 = 8(r2
2 (r2

1 + r1(−r2 + s1) + s1(−r2 + s1))− (r2
1 + r1s1 + s21)s22 + (r1 + s1)s32).

Likewise the points A3 = (r2
3 , r

3
3 ) and B3 = (s23, s

3
3) satisfy system (3.3), then from the first

equation we obtain two values of λ named λ(1) and λ(2) where λ(1,2) = (L1± (1/2)
√
L2)/L3,

and from the second equation we obtain ω = −2
√
D1/D2. The values of L1, L2, L3, D1 and

D2 are given in the appendix of chapter 3.

Since the points A4 = (r2
4 , r

3
4 ) and B4 = (s24, s

3
4) satisfy system (3.3), then we obtain b1 = 0

from the first equation. This is a contradiction to the assumption.

Finally, we proved that the maximum number of limit cycles for systems of family F1

separated by the irreducible cubic curve c3 is at most three.

Now we shall provide differential systems of family F1 separated by the cubic ck with
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three limit cycles for k = 1, . . . ,5.

We will explain the method for constructing an example of three crossing limit cycles

intersecting the curve c1 in two points, and by a similar way we build examples of three

crossing limit cycles intersecting the curve ck = 0 in two points, when k ∈ {2,3,4,5}.

Proof. (Proof of statement (i) of Theorem 3.1.)

Example 1. Three limit cycles when the cubic of separation is c1. Here we define the

region:

R11 = {(x,y) : y2 − x(x2 + x+ 1) ≥ 0},
R12 = {(x,y) : y2 − x(x2 + x+ 1) ≤ 0}.

(3.4)

To construct three crossing limit cycles intersecting the curve c1 in two points (α,β) and (γ,δ),

these points must satisfy the system of equations

e1 =H1(α,β)−H1(γ,δ) = 0,

e2 =H2(α,β)−H2(γ,δ) = 0,

ci(α,β) = 0, ci(γ,δ) = 0, wheni = 1.

(3.5)

Then we suppose the existence of three real solutions of (3.5) given by

(α1,β1,γ1,δ1) = (0.196374..,−0.492452..,0.16032..,0.436053..),

(α2,β2,γ2,δ2) = (0.493859..,−0.926394..,0.509449..,0.94932..),

(α3,β3,γ3,δ3) = (0.671593..,−1.19396..,0.7124..,1.25756..).

So, by using equation e1 we obtain the values of the three parameters λ, γ and σ in function

of b1, after that we fixe b1 = 5 we obtain in the region R11, the linear Hamiltonian system

(ẋ, ẏ) =
(
− x

2
+ 5y +

1
5
,− x

20
+
y

2
+

4
5

)
, (3.6)

with its Hamiltonian function H1(x,y) = − x
2

40
+
xy

2
+

4x
5
−

5y2

2
−
y

5
.

Now by using equation e2 we obtain the values of the three parameters b2, c and d in function

of ω, after that we fixe ω = 3. Therefore we obtain in the region R12 the linear differential

center

(ẋ, ẏ) = (0.271713..x − 2.32383..y − 0.10829..,x − 0.271713..y − 0.332792..). (3.7)
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This differential center has the first integral

H2(x,y) = 4(x − 0.271713..y)2 + 8(0.10829..y − 0.332792..x) + 9y2.

Then the discontinuous piecewise differential system (3.6)–(3.7) has exactly three limit cycles,

see (C1) of Figure 3.1.

Example 2. Three limit cycles when the cubic of separation is c3.

In the region R31 we consider the Hamiltonian system

(ẋ, ẏ) = (−x
2

+ 5y +
1
5
,− x

20
+
y

2
+

4
5

). (3.8)

It has the Hamiltonian function H1(x,y) = − x
2

40
+
xy

2
+

4x
5
−

5y2

2
−
y

5
.

In the region R32 we consider the linear differential center

(ẋ, ẏ) = (−0.0813117..x − 1.00661..y + 0.56076..,x+ 0.0813117..y + 8.22904..). (3.9)

This differential center has the first integral

H2(x,y) = 4(x+ 0.0813117..y)2 + 8(8.22904..x − 0.56076..y) + 4y2.

The discontinuous piecewise differential system (3.8)–(3.9) has exactly three limit cycles, be-

cause the system of equations (3.5) when i = 3 has only the three real solutions

(α1,β1,γ1,δ1) = (0.700707..,−0.58655..,0.765078..,0.669204..),

(α2,β2,γ2,δ2) = (0.969795..,−0.955036..,1.06038..,1.09192..),

(α3,β3,γ3,δ3) = (1.13263..,−1.2054..,1.23647..,1.37492..).

see (C3) of Figure 3.1.

Example 3. Three limit cycles when the cubic of separation is c4. We define the following

regions associated to the curve c4.

R41 = {(x,y) : y2 − x2(x − 1) ≤ 0},
R42 = {(x,y) : y2 − x2(x − 1) ≥ 0}.

(3.10)
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We consider the Hamiltonian system

(ẋ, ẏ) =
(2x

5
− 4y +

2
5
,
x

25
−

2y
5

+
1
2

)
, (3.11)

in the region R41. This Hamiltonian system has the Hamiltonian function H1(x,y) =
x2

50
−

2xy
5

+
x
2

+ 2y2 −
2y
5
.

In the region R42 we consider the linear center

(ẋ, ẏ) = (0.206345..x − 2.29258..y + 0.369992..,x − 0.206345..y − 0.332766..), (3.12)

which has the first integral

H2(x,y) = 4(x − 0.206345..y)2 + 8(−0.332766..x − 0.369992..y) + 9y2.

The discontinuous piecewise differential system (3.11)–(3.12) has exactly three limit cycles,

because the system of equations (3.5) when i = 4 has only three real solutions

(α1,β1,γ1,δ1) = (1.29278..,−0.699517..,1.55103..,1.15135..),

(α2,β2,γ2,δ2) = (1.18739..,−0.513997..,1.42939..,0.936654..),

(α3,β3,γ3,δ3) = (1.05976..,−0.259058..,1.25796..,0.638917..),

see (C4) of Figure 3.1. This completes the proof of statement (i) for Theorem 3.1.

Proof. (Proof of statement (ii) of Theorem 3.1.) Seven examples with three limit cy-

cles when the cubic of separation is c2. We define the following regions associated to the

curve c2.
R21 = {(x,y) : y2 − x(x − 1)(x − 3) ≥ 0},
R22 = {(x,y) : y2 − x(x − 1)(x − 3) ≤ 0,x ≥ 3},
R23 = {(x,y) : y2 − x(x − 1)(x − 3) ≤ 0,0 ≤ x ≤ 1}.

(3.13)

Example 4.1. For the first configuration of three limit cycles separated by the curve c2, we

consider the Hamiltonian system

(ẋ, ẏ) =
(39
10
x − 3y − 3

5
,0.0507..x − 39

10
y + 1

)
, (3.14)
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in the region R22, which has the Hamiltonian function

H1(x,y) = 0.02535..x2 − 39
10
xy + x+

3y2

2
+

3y
5
.

In the region R21 we consider the linear differential center

(ẋ, ẏ) = (0.138717..x − 1.01924..y − 0.161038..,x − 0.138717..y − 1.51992..), (3.15)

which has the first integral

H2(x,y) = 4(x − 0.138717..y)2 + 8(0.161038..y − 1.51992..x) + 4y2.

The discontinuous piecewise differential system (3.14)–(3.15) has exactly three limit cycles,

because the system of equations (3.5) when i = 2, has only the three real solutions

(α1,β1,γ1,δ1) = (3.04422..,−0.524589..,3.11914..,0.887429..),

(α2,β2,γ2,δ2) = (3.1128..,−0.861296..,3.21824..,1.24817..),

(α3,β3,γ3,δ3) = (3.17852..,−1.11182..,3.30364..,1.52013..),

see (C1
2 ) of Figure 3.2.

Example 4.2. For the second configuration we consider the Hamiltonian system

(ẋ, ẏ) =
(
1.x − 5y − 3

10
,
1
5
x − y − 2

)
, (3.16)

in the region R21. It has the Hamiltonian function H1(x,y) =
1

10
x2 − xy − 2x +

5y2

2
+

3
10
y.

Now we consider the second Hamiltonian system

(ẋ, ẏ) = (0.214743..x − 1.04611y + 0.0404675..,x − 0.214743..y − 2.71521..), (3.17)

in the region R22. This system has the first integral

H2(x,y) = 4(x − 0.311552..y)2 + 8(0.286927..y − 3.12887..x) + 9y2.

The discontinuous piecewise differential system (3.16)–(3.17) has exactly three limit cycles,
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because the system of equations (3.5) when i = 2, has only the three real solutions

(α1,β1,γ1,δ1) = (3.00992..,−0.244971..,3.30407..,1.52144..),

(α2,β2,γ2,δ2) = (3.02738..,−0.409955..,3.36189..,1.69517..),

(α3,β3,γ3,δ3) = (3.04843..,−0.549942..,3.41294..,1.84408..),

see (C2
2 ) of Figure 3.2.

Example 4.3. To obtain the third configuration we consider in the region R21 the Hamiltonian

system

(ẋ, ẏ) =
(
0.63x − 3y − 1

5
,− 23x

1000
−

23y
100

+ 1
)
, (3.18)

which has the Hamiltonian function H1(x,y) = 0.06615x2 − 0.63xy − 2.4x+
3y2

2
+ 0.2y.

In the region R22 we consider the linear center

(ẋ, ẏ) = (0.222578x − 1.04954y + 0.0489144..,x − 0.222578..y − 3.2101..). (3.19)

This differential system has the first integral

H2(x,y) = 4(x − 0.222578..y)2 + 8(−3.2101..x − 0.0489144..y) + 4y2.

The discontinuous piecewise differential system (3.18)–(3.19) has exactly three limit cycles,

due to the fact that the system (3.5) has three real solutions when i = 2. These solutions are

(α1,β1,γ1,δ1) = (3.20789..,−1.21343..,3.74104..,2.7566..),

(α2,β2,γ2,δ2) = (3.3699..,−1.71878..,3.9416..,3.30416..),

(α3,β3,γ3,δ3) = (3.51026..,−2.12043..,4.10331..,3.74825..),

see (C3
2 ) of Figure 3.3.

Example 4.4. To obtain the fourth configuration we consider in the region R21 the Hamilto-

nian system

(ẋ, ẏ) =
(1
5
x − y − 1

5
,0.04x − 1

5
y − 2

)
, (3.20)

which has the Hamiltonian function H1(x,y) = 0.02..x2 − 1
5
xy − 2x+

y2

2
+

1
5
y.
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In the region R22 we consider the linear center

(ẋ, ẏ) = (0.0193278..x − 0.0628736..y + 0.0594448..,x − 0.0193278..y

−2.86499..).
(3.21)

This differential system has the first integral

H2(x,y) = 4(x − 0.0193278..y)2 + 8(−2.86499..x − 0.0594448..y) +
y2

4
.

The discontinuous piecewise differential system (3.20)–(3.21) has exactly three limit cycles,

because the system (3.5) has three real solutions when i = 2, which are

(α1,β1,γ1,δ1) = (3.33264..,−1.60807..,3.86848..,3.1044..),

(α2,β2,γ2,δ2) = (3.71366..,−2.68179..,4.26489..,4.19675..),

(α3,β3,γ3,δ3) = (3.97997..,−3.40919..,4.54158..,4.9795..),

see (C4
2 ) of Figure 3.3.

Example 4.5. For the fifth configuration we consider in the region R21 the Hamiltonian

system

(ẋ, ẏ) =
(
− 14x

5
− 7y +

163
100

,
28x
25

+
14y

5
+

2
5

)
, (3.22)

which has the Hamiltonian function H1(x,y) =
14x2

25
+

14xy
5

+
2x
5

+
7y2

2
−

163y
100

.

In the region R23 we consider the linear center

(ẋ, ẏ) = (0.338865..x − 0.142607..y − 0.170936..,0.338865..x

−0.142607..y − 0.170936..).
(3.23)

This differential system has the first integral

H2(x,y) = 4(x − 0.338865..y)2 + 8(0.170936..y − 0.0452618..x) +
y2

9
.

When i = 2 in the system of equations (3.5) the discontinuous piecewise differential system
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(3.22)–(3.23) has exactly three limit cycles intersecting the cubic curve c2 in the points

(α1,β1,γ1,δ1) = (0.748414..,0.651116..,0.605489..,−0.756295..),

(α2,β2,γ2,δ2) = (0.911161..,0.4112..,0.747078..,−0.652453..),

(α3,β3,γ3,δ3) = (0.988069..,0.154006..,0.87431..,−0.483319..),

see (C5
2 ) of Figure 3.4.

Example 4.6. Now we give un example for the sixth configuration. We consider in the region

R21 the Hamiltonian system

(ẋ, ẏ) = (62.8408..x+ 3y + 11.8867..,−1316.32..x − 62.8408..y + 2292.58..), (3.24)

with its Hamiltonian function

H1(x,y) = −658.162..x2 − 62.8408..xy + 2292.58..x −
3y2

2
− 11.8867..y.

In the region R22 ∪R23 we consider the linear center

(ẋ, ẏ) = (−0.4x − 2.12..y + 0.2..,x+ 0.4y − 1.58..). (3.25)

This differential system has the first integral

H2(x,y) = 4x2 + 3.2..xy − 12.64x+ 8.48..y2 − 1.6..y.

For this configuration the system (3.5) has three real solutions when i = 2. Hence, the discon-

tinuous piecewise differential system (3.24)–(3.25) has exactly three limit cycles given by

(α1,β1,γ1,δ1) = (0.953136..,0.302372..,0.905745..,−0.422833..),

(α2,β2,γ2,δ2) = (0.788975..,0.60673..,0.73033..,−0.668586..),

(α3,β3,γ3,δ3) = (3.02633..,0.401853..,3.21618..,−1.24131..),

see (C6
2 ) of Figure 3.4.

Example 4.7. Finally for the seventh configuration we consider in the region R21 the Hamil-
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tonian system

(ẋ, ẏ) = (98.4926..x+ 3y + 225.612..,−3233.6..x − 98.4926..y + 7255.43..), (3.26)

with its Hamiltonian function

H1(x,y) = −1616.8..x2 − 98.4926..xy + 7255.43..x −
3y2

2
− 225.612..y.

In the region R22 ∪R23 we consider the linear center

(ẋ, ẏ) =
(
− 2x

5
−

29y
25

+
1
5
,x+

2y
5
− 79

50

)
. (3.27)

This differential system has the first integral

H2(x,y) = 4x2 + 3.2..xy − 12.64..x+ 4.64..y2 − 1.6..y.

The system of equations (3.5) has three real solutions when i = 2. So, the discontinuous

piecewise differential system (3.26)–(3.27) has exactly three limit cycles intersecting the cubic

curve c2 in the points

(α1,β1,γ1,δ1) = (0.78786..,0.608054..,0.707741..,−0.688578..),

(α2,β2,γ2,δ2) = (3.02845..,0.418065..,3.43049..,−1.89457..),

(α3,β3,γ3,δ3) = (3.07065..,0.670216..,3.54067..,−2.20536..),

see (C7
2 ) of Figure 3.5. This completes the proof of statement (ii) for Theorem 3.1.

Proof. (Proof of statement (iii) of Theorem 2.3.) Seven examples with three limit cy-

cles when the cubic of separation is c5.

We define the following three regions associated to the curve c5

R51 = {(x,y) : y2 − x2(x+ 1) ≤ 0,x ≥ 0},
R52 = {(x,y) : y2 − x2(x+ 1) ≥ 0},
R53 = {(x,y) : y2 − x2(x+ 1) ≤ 0,−1 ≤ x ≤ 0}.

(3.28)

Example 5.1. For the first configuration of the class C5 and in the region R51 we consider the

75



Hamiltonian system

(ẋ, ẏ) =
(9x
10
− 3y +

1
5
,
27x
100
−

9y
10

+
6
5

)
, (3.29)

which has the Hamiltonian function H1(x,y) =
27x2

200
−

9xy
10

+
6x
5

+
3y2

2
−
y

5
.

In the region R52 we consider the linear differential center

(ẋ, ẏ) = (0.148466..x − 0.744542..y + 0.46566..,x − 0.148466..y + 2.05075..). (3.30)

Its corresponding first integral is

H2(x,y) = 4(x − 0.148466..y)2 + 8(2.05075..x − 0.46566..y) +
289y2

100
.

The discontinuous piecewise differential system (3.29)–(3.30) has exactly three limit cycles,

because the system of equations (3.5) when i = 5, has the three real solutions

(α1,β1,γ1,δ1) = (0.482359..,−0.587282..,0.727878..,0.956787..),

(α2,β2,γ2,δ2) = (0.644665..,−0.826748..,0.94961..,1.32593..),

(α3,β3,γ3,δ3) = (0.770799..,−1.02571..,1.11523..,1.62197..),

see (C1
5 ) of Figure 3.6.

Example 5.2. For the second configuration of the class C5 and in the region R51 we consider

the Hamiltonian system

(ẋ, ẏ) =
(
− 42x

25
− 8y + 1,

441x
1250

+
42y
25

+
12
5

)
, (3.31)

with its Hamiltonian function H1(x,y) =
441x2

2500
+

42xy
25

+
12x

5
+ 4y2 − y.

Now we consider the linear center

(ẋ, ẏ) = (−0.680215..x − 2.02519..y − 0.290646..,x+ 0.680215..y + 0.771302..), (3.32)

in the region R52. This differential system has the first integral

H2(x,y) = 4(x+ 0.680215..y)2 + 8(0.771302..x+ 0.290646..y) + 6.25..y2.
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The discontinuous piecewise differential system (3.31)–(3.32) has exactly three limit cycles,

because the system of equations (3.5) when i = 5, has the three real solutions

(α1,β1,γ1,δ1) = (−0.999059..,0.0306461..,−0.857795..,0.323475..),

(α2,β2,γ2,δ2) = (−0.969398..,−0.16958..,−0.614006..,0.381472..),

(α3,β3,γ3,δ3) = (−0.888264..,−0.296919..,−0.329658..,0.269906..),

see (C2
5 ) of Figure 3.6.

Example 5.3. To obtain the third configuration of the class C5 and in the region R51 we

consider the linear center

(ẋ, ẏ) = (0.371399..x − 1.13794..y − 2.0777..,x − 0.371399..y − 0.612049..), (3.33)

with its first integral H2(x,y) = 4(x − 0.371399y)2 + 8(2.0777y − 0.612049x) + 4y2.

In the region R52 we consider the Hamiltonian system

(ẋ, ẏ) = (2(x − 2y − 3),−4 + x − 2y), (3.34)

which has the Hamiltonian function H1(x,y) =
x2

2
− 2xy − 4x+ 2y2 + 6y.

In this case we have also three limit cycles, due to the fact that the system of equations (3.5)

when i = 5 has only three real solutions. Hence, the discontinuous piecewise differential

system (3.33)–(3.34) has exactly three limit cycles intersecting the curve c5 in the points

(α1,β1,γ1,δ1) = (1.26688..,−1.90744..,0.409461..,−0.486115..),

(α2,β2,γ2,δ2) = (1.19339..,−1.76742..,0.502225..,−0.615553..),

(α3,β3,γ3,δ3) = (1.09399..,−1.58308..,0.620329..,−0.78963..),

see (C3
5 ) of Figure 3.7.

Example 5.4. To get the fourth configuration of the class C5 and in the region R51 ∪R53 we

consider the Hamiltonian system

(ẋ, ẏ) =
(9x
10
− 3y +

1
5
,
27x
100
−

9y
10

+
6
5

)
, (3.35)
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which has the Hamiltonian function H1(x,y) =
27x2

200
−

9xy
10

+
6x
5

+
3y2

2
−
y

5
.

Now we consider the linear center

(ẋ, ẏ) = (0.685337..x − 2.15969..y + 0.24115..,x − 0.685337..y + 1.13465..), (3.36)

in the region R52. This differential system has the first integral

H2(x,y) = 4(x − 0.685337..y)2 + 8(1.13465..x − 0.24115..y) +
169y2

25
.

The discontinuous piecewise differential system (3.35)–(3.36) has exactly three limit cycles,

because the system of equations (3.5) when i = 5, has the three real solutions

(α1,β1,γ1,δ1) = (−0.436282..,−0.327565..,−0.713688..,0.381881..),

(α2,β2,γ2,δ2) = (0.501048..,−0.613871..,0.754011..,0.998606..),

(α3,β3,γ3,δ3) = (0.782108..,−1.04408..,1.12985..,1.64891..),

see (C4
5 ) of Figure 3.7.

Example 5.5. For the fifth configuration of the class C5 and in the region R51 ∪ R53 we

consider the Hamiltonian system

(ẋ, ẏ) =
( 1
200

(367x − 1468y + 40),
367x
800

−
367y
200

+
6
5

)
, (3.37)

which has the Hamiltonian function H1(x,y) = 0.229375..x2 −1.835..xy +
6x
5

+ 3.67..y2 −
y

5
.

Now we consider the linear center

(ẋ, ẏ) = (0.591399..x − 2.59975..y + 0.172769..,x − 0.591399..y + 0.826843..), (3.38)

in the region R52. This differential system has the first integral

H2(x,y) = 4(x − 0.591399..y)2 + 8(0.826843..x − 0.172769..y) + 9y2.

The system of equations (3.5) when i = 5 has three real solutions, which means that the discon-

tinuous piecewise differential system (3.37)–(3.38) has exactly three limit cycles intesecting
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the curve c5 in the following points

(α1,β1,γ1,δ1) = (−0.801385..,−0.357147..,−0.992606..,0.0853535..),

(α2,β2,γ2,δ2) = (−0.457786..,−0.337092..,−0.925215..,0.253018..),

(α3,β3,γ3,δ3) = (0.0989294..,−0.103708..,0.147927..,0.158491..),

see (C5
5 ) of Figure 3.8.

Example 5.6. Now we give the limit cycles of the sixth configuration of the class C5. In the

region R51 we consider the Hamiltonian system

(ẋ, ẏ) = (−5− 3.2x − 8y,−3 + 1.28x+ 3.2y), (3.39)

which has the Hamiltonian function H1(x,y) = 0.64x2 + 3.2xy − 3x+ 4y2 + 5y.

Now we consider in the region R52 the linear center

(ẋ, ẏ) = (−0.213131..x − 0.535425..y − 0.615264..,x+ 0.213131..y − 0.568363..), (3.40)

with its first integralH2(x,y) = 4(x+0.213131..y)2 +8(0.615264..y−0.568363..x)+1.96..y2.

The discontinuous piecewise differential system (3.39)–(3.40) has exactly three limit cycles,

because the system of equations (3.5) when i = 5, has the three real solutions

(α1,β1,γ1,δ1) = (2.19804..,−3.93077..,0.809528..,1.08897..),

(α2,β2,γ2,δ2) = (1.99735..,−3.45798..,0.547303..,0.680793..),

(α3,β3,γ3,δ3) = (1.71246..,−2.82035..,0.123691..,−0.131118..),

see (C6
5 ) of Figure 3.8.

Example 5.7. Finally and for the seventh configuration of the class C5 and in the region R51

we consider the Hamiltonian system

(ẋ, ẏ) =
(
− 7x

5
− 7y − 9,

7x
25

+
7y
5
− 5

)
, (3.41)

which has the Hamiltonian function H1(x,y) =
7x2

50
+

7xy
5
− 5x+

7y2

2
+ 9y.
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Now we consider the linear center

(ẋ, ẏ) = (−0.801265..x − 0.944526..y − 0.242753..,x+ 0.801265..y..

−0.973031..),
(3.42)

in the region R52. This differential system has the first integral

H2(x,y) = 4(x+ 0.801265..y)2 + 8(0.242753..y − 0.973031..x) + 1.21..y2.

Due to the fact that the system of equations (3.5) when i = 5, has three real solutions, we

know that the discontinuous piecewise differential system (3.41)–(3.42) has exactly three limit

cycles intersecting the curve c5 in the points

(α1,β1,γ1,δ1) = (2.55092..,−4.80692..,0.700327..,0.913203..),

(α2,β2,γ2,δ2) = (2.29096..,−4.15603..,0.0707197..,−0.0731776..),

(α3,β3,γ3,δ3) = (1.8659..,−3.15879..,0.786808..,−1.05174..),

see (C7
5 ) of Figure 3.9. This completes the proof of statement (iii) for Theorem 3.1.

Section 3.2 LC of Discontinuous PWLS Intersecting c2 or c5 in four or two points

The main goal of this part is to provide the maximum number of crossing limit cycles

of the family F2 which intersect the irreducible cubic curve c2 or c5 in four points or in

four and two points simultaneously.

3.2.1 Statement of the second main result

Now we denote by F2 the family of discontinuous piecewise differential systems sepa-

rated by the cubic curve c2 or c5 contained in three regions. When the cubic of separation

is c2, we define in regions R22 and R23 a Hamiltonian system without equilibrium points,

and we define in the region R21 a linear center. When the cubic of separation is c5, we

define in regions R51 and R53 a Hamiltonian system without equilibrium points, and in

the region R52 we define a linear center. Then we have the following result.
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Theorem 3.2 The following statements hold.

(a) The maximum number of crossing limit cycles of systems of the family F2 which

intersect the cubic curve c2 or c5 in four points is three.

This maximum is reached, see Example 6 of C2 and Example 7 of C5.

(b) The maximum number of crossing limit cycles of discontinuous piecewise differen-

tial systems of the family F2 intersecting simultaneously in four points and two

points the cubic c2 or c5 is six.

This maximum is reached, see Example 8.1 of C2 and Example 8.2 of C5.
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Figure 3.10: The three limit cycles of the discontinuous piecewise differential system
(C1

2 ) for (3.48)–(3.49), and (C1
5 ) for (3.50)–(3.51).
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Figure 3.11: The six limit cycles of the discontinuous piecewise differential system (C2
2 )

for (3.52)–(3.53), and (C2
5 ) for (3.54)–(3.55).

3.2.2 Proof of the second main result
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Proof. (Proof of statement (a) of Theorem 3.2.) We are going to prove it for the classC5,

and by a similar way we get the proof of the statement for the class C2.

We consider the three regions defined in (3.28).

In the region R51 we consider the linear differential center

ẋ = −1
4
y(4b2

2 +ω2)− b2x+ d, ẏ = b2y + c+ x, (3.43)

its first integral is H2(x,y) = 4(b2y + x)2 + 8(cx − dy) + y2ω2.

Now we consider the two Hamiltonian systems

ẋ = −λ1b1x+ b1y +µ1, ẏ = −λ2
1b1x+λ1b1y + σ1, in the region R52,

ẋ = −λ3b3x+ b3y +µ3, ẏ = −λ2
3b3x+λ3b3y + σ3, in the region R53,

(3.44)

with bi , 0 and σi , λiµi , when i = 1,3. Their corresponding Hamiltonian first integrals are

H1(x,y) = −(λ2
1b1/2)x2 +λ1b1xy − (b1/2)y2 + σ1x −µ1y,

H3(x,y) = −(λ2
3b3/2)x2 +λ3b3xy − (b3/2)y2 + σ3x −µ3y.

(3.45)

If we suppose that the discontinuous piecewise differential system (3.43)–(3.44) has three limit

cycles which intersect the cubic c5 in the points p(i)
1 = (α2

i −1,αi(α
2
i −1)), p(i)

2 = (β2
i −1,βi(β

2
i −

1)), p(i)
3 = (γ2

i − 1,γi(γ
2
i − 1)) and p(i)

4 = (δ2
i − 1,δi(δ

2
i − 1)) they must satisfy the following

system

H1(α2
i − 1,αi(α

2
i − 1))−H1(β2

i − 1,βi(β
2
i − 1)) = 0,

H2(β2
i − 1,βi(β

2
i − 1))−H2(δ2

i − 1,δi(δ
2
i − 1)) = 0,

H2(α2
i − 1,αi(α

2
i − 1))−H2(γ2

i − 1,γi(γ
2
i − 1)) = 0,

H3(γ2
i − 1,γi(γ

2
i − 1))−H3(δ2

i − 1,δi(δ
2
i − 1)) = 0.

(3.46)

We deal with the first and the last equations. By solving the first one for i = 1,2,3 we obtain

the expression of λ1, µ1 and σ1, and by solving the last equation we get the expression of λ3,

µ3 and σ3. Now we suppose that system (3.43)–(3.44) has a fourth limit cycle, so system

(3.46) satisfied for i = 4. We solve the first and the last equations we get b1 = 0 and b3 = 0,

respectively. This is a contradiction of the assumption. Thus we prove that the maximum
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number of limit cycles intersected with the cubic curve c5 in four points is three.

Example 6. Three limit cycles intersecting the curve c2 in four points. We consider the

regions defined in (3.13).

We will explain the method for constructing an example of three limit cycles intersecting the

curve c2 in four points. These points must satisfy the system of equations

e1 =H1(αs,βs))−H1(γs,δs) = 0,

e2 =H2(αs,βs)−H2(fs, gs) = 0,

e3 =H2(γs,δs)−H2(hs, ks) = 0,

e4 =H3(fs, gs)−H3(hs, ks) = 0,

ci(αs,βs) = ci(γs,δs) = 0, ci(fs, gs) = ci(hs, ks) = 0,

(3.47)

with s = 1,2,3 and i = 2.

In the region R21 and by using the software Mathematica we construct the curves

H2(x,y) = 4x2 + 8
(7y

5
− 2x

)
+ 16y2 = 3k − 8, ....(I) k ∈ {1,2,3}.

Where the level curve corresponding to k = 1 in (I), intersects the cubic c2, in (α1,β1) =

(3.02482..,0.389889..), (f1, g1) = (0.927682..,0.372865..), (γ1,δ1) = (3.15833..,−1.03889..)

and (h1, k1) = (0.434221..,−0.793941..). These points satisfy equation e2 and e3 of system

(3.47) for s = 1 and i = 2.

The level curve corresponding to k = 2 in (I), intersects the cubic c2 in (α2,β2) = (3.04069..,

0.502491..), (f2, g2) = (0.878213..,0.47637..), (γ2,δ2) = (3.19002..,−1.15216..) and (h2, k2) =

(0.017634..,−0.227296..). These points satisfy the equation e2 and e3 of system (3.47) for

s = 2 and i = 2.

The level curve corresponding to k = 3 in (I), intersects c2 in (α3,β3) = (3.05752..,

0.601532..), (f3, g3) = (0.821437..,0.565285..), (γ3,δ3) = (3.21933..,−1.25183..) and (h2, k2)

= (0.00229058..,0.0827693..). These points satisfy the equation e2 and e3 of system (3.47)

for s = 3 and i = 2.

In short, in the region R21 we consider the linear differential center

ẋ = −1.4− 4y, ẏ = −2 + x, (3.48)
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with its first integral H2(x,y) = 4x2 + 8
(7y

5
− 2x

)
+ 16y2.

Now we have to give the expression of H1(x,y) in the region R22 and H3(x,y) in the region

R23. Then we deal with the equations e1 and e4 in (3.47). By solving these equations for

s = 1,2,3, then fixing b1 = −2/25 in equation e1 and σ1 = −2 in equation e4, we obtain the

Hamiltonian systems

ẋ = −0.00039097..x − 0.08..y − 0.0252659.., ẏ =
1.91072..

106 x

+0.00039097..y + 0.00562837.., in R22,

ẋ = −0.0474089..x − 0.000365066..y + 0.955189.., ẏ = 6.15669..x

+0.0474089..y − 2, in R23.

(3.49)

The Hamiltonian first integrals of the Hamiltonian systems (3.49) are

H1(x,y) =
9.55359x2

107 + 0.00039097..xy + 0.00562837..x+ 0.04..y2 + 0.0252659..y,

H3(x,y) = 3.07835..x2 + 0.0474089..xy − 2x+ 0.000182533..y2 − 0.955189..y.

For the discontinuous piecewise differential system (3.48)–(3.49) all the real solutions of the

system of equations (3.47) with s = 1,2,3 and i = 2 are

(α1,β1,γ1,δ1, f1, g1,h1, k1) = (3.02482..,0.389889..,3.15833..,−1.03889..

0.927682..,0.372865..,0.434221..,−0.793941..),

(α2,β2,γ2,δ2, f2, g2,h2, k2) = (3.04069..,0.502491..,3.19002..,−1.15216..

0.878213..,0.476377..,0.017634..,−0.227296..),

(α3,β3,γ3,δ3, f3, g3,h3, k3) = (3.05752..,0.601532..,3.21933..,−1.25183..

0.821437..,0.565285..,0.00229058..,0.0827693..).

Then the discontinuous piecewise linear differential system (3.48)–(3.49) has exactly three

limit cycles, see (C1
2 ) of Figure 3.10.

Example 7. Three limit cycles intersecting the curve c5 in four points. We consider the

regions defined in (3.28). In the region R52 we consider the linear differential center

ẋ = −x
5
−

629y
100

+
2
5
, ẏ = x+

y

5
− 4

5
, (3.50)
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its first integral is H2(x,y) = 4(x+
y

5
)2 + 8(−4x

5
−

2y
5

) + 25y2.

Now we consider the following Hamiltonian systems

ẋ = 29.8246..x+ y − 34.8532.., ẏ = −889.505..x − 29.8246..y

+97.1847.., in R51,

ẋ = 0.00341157..x+
3y
2
− 0.095202.., ẏ = −7.7591..

106 x

−0.00341157..y + 0.198512.., in R53.

(3.51)

The Hamiltonian first integrals of the Hamiltonian systems (3.51) are

H1(x,y) = −444.753..x2 − 29.8246..xy + 97.1847..x −
y2

2
+ 34.8532..y,

H3(x,y) = −3.8796
106 x2 − 0.00341157..xy + 0.198512..x −

3y2

4
+ 0.095202..y,

respectively. For the discontinuos piecewise linear differential system (3.50)–(3.51) the real

solutions of the system of equations (3.46) are

(α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.343158..,0.397701..,0.23703..,−0.263629..

−0.163657..,0.149667..,−0.0982745..,−0.0933207..),

(α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.396..,0.467884..,0.304088..,−0.347259..

−0.261162..,0.224484..,−0.173194..,−0.157483..),

(α3,β3,γ3,δ3, f3, g3,h3, k3) = (0.438244..,0.525572..,0.354392..,−0.412436..

−0.345135..,0.279296..,−0.23907..,−0.208544..),

where αi = r2
i − 1, βi = ri(r

2
i − 1), γi = s2i − 1, δi = si(s

2
i − 1), ai = f 2

i − 1, bi = fi(f
2
i − 1),

ci = h2
i − 1, di = hi(h

2
i − 1).

Then the discontinuous piecewise linear differential system (3.50)–(3.51) has exactly three

limit cycles, see (C1
5 ) of Figure 3.10.

This completes the proof of statement (a) of Theorem 3.2.

Proof. (Proof of statement (b) of Theorem 3.2.) In order to have limit cycles with two

and four intersection points, simultaneously, with the cubic c2, the intersection points of the

limit cycles in two points with c2 must satisfy system (3.5) for i = 2, and the intersection

points of the limit cycles in four points with c2 must satisfy system (3.46). In statement (ii)
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of Theorem 3.1 we proved that the maximum number of limit cycles with two intersection

points with c2 is three, and we also proved in the first statement of this Theorem that the

maximum number of limit cycles with four intersection points with c2 is three, then we have

that the upper bound of maximum number of limit cycles with two and four intersection

points, simultaneously, is six. This upper bound is reached.

Examples 8.1. Three limit cycles with four intersection points on c2 and three limit cycles

with two intersection points on c2.

Habitually we consider the regions defined in (3.13). In the region R21 we consider the linear

differential center

ẋ = 0.0408657..x − 0.18657..y − 0.161702.., ẏ = x − 0.0408657..y − 2.22076, (3.52)

its first integral isH2(x,y) = 4(x−0.0413008..y)2 +8(0.163443..y−2.21892..x)+0.7569..y2.

Now we consider the Hamiltonian systems

ẋ = 0.5x − 5y − 2, ẏ = 0.05x − 0.5y + 2, in R22,

ẋ = 0.275117..x+ 4y − 0.895428.., ẏ = −0.0189223..x

−0.275117..y − 10.3678.., in R23.

(3.53)

The Hamiltonian first integrals of the systems (3.53) are

H1(x,y) = 0.025x2 − 0.5xy + 2x+
5y2

2
+ 2y,

H3(x,y) = −0.00838913..x2 − 0.28964..xy − 12.0087..x −
5y2

2
+ 0.897776..y.

The discontinuos piecewise differential system (3.52)–(3.53) has three limit cycles intersecting

the cubic c2 in four points satisfying system (3.47) and three limit cycles intersecting the cubic

c2 in two points satisfying system (3.5) for i = 2, because all the real solutions of these two
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systems are

(α1,β1,γ1,δ1, f1, g1,h1, k1) = (3.29854..,−1.50447..,3.25648..,1.37282..,

0.996543..,0.0830817..,0.967473..,−0.252974..),

(α2,β2,γ2,δ2, f2, g2,h2, k2) = (3.33756..,−1.62283..,3.29637..,1.49782..,0.959503..,

0.281699..,0.897792..,−0.44042..),

(α3,β3,γ3,δ3, f3, g3,h3, k3) = (3.37472..,−1.73293..,3.33474..,1.61438..,0.916959..,

0.398981..,0.836989..,−0.547219..),

(α4,β4,γ4,δ4) = (3.1668..,−1.06984..,3.12648..,0.916988..),

(α5,β5,γ5,δ5) = (3.21363..,−1.23276..,3.17161..,1.0872..),

(α6,β6,γ6,δ6) = (3.25735..,−1.37562..,3.21493..,1.23712..).

Then the discontinuous piecewise differential system (3.52)–(3.53) has exactly six limit cycles,

see (C2
2 ) of Figure 3.11.

Example 8.2. Three limit cycles with four intersection points on c5 and three limit cycles with

two intersection points on c5.

In order to have limit cycles with two and four intersection points with the cubic c5 simulta-

neously, the points of intersection of the limit cycles in two points with c5 must satisfy system

(3.5) for i = 5, and the intersection points of the limit cycles in four points with c5 must sat-

isfy system (3.46). In statement (iii) of Theorem 3.1 we proved that the maximum number of

limit cycles with two intersection points with c5 is three, and we also proved in statement (i)

of Theorem 3.2 that the maximum number of limit cycles with four intersection points with

c5 is three, then we have that the upper bound of the maximum number of limit cycles with

two and four intersection points, simultaneously, is six. The result is reached in the following

example.

Habitually we consider the regions defined in (3.28).

In the region R52 we consider the linear differential center

ẋ = 0.208169..x − 0.0463593..y + 0.0028092.., ẏ = x − 0.208169..y − 0.217992. (3.54)

Its first integral isH2(x,y) = 4(x−0.208169..y)2+8(−0.217992..x−0.0028092..y)+0.0121y2.
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Now we consider the Hamiltonian systems

ẋ = 40x − 8y + 9, ẏ = −33 + 200x − 40y, in R51,

ẋ = 54.173..x − 6y + 31.215.., ẏ = 489.119..x − 54.173..y

−0.0147783.., in R53,

(3.55)

and their Hamiltonian first integrals

H1(x,y) = 100x2 − 40xy − 33x+ 4y2 − 9y,

H3(x,y) = 244.56..x2 − 54.173..xy − 0.0147783..x+ 3y2 − 31.215..y,

respectively.

Due to the fact that system (3.46) has three real solutions and system (3.5) for i = 5 has three

real solutions, it results that the discontinuos piecewise differential systems (3.54)–(3.55) have

three limit cycles intersecting the cubic c5 in four points and three limit cycles intersecting the

cubic c5 in two points and we have H3 instead of H1. The real solutions of the two systems

(3.46) and (3.5) for i = 5 are

(α1,β1,γ1,δ1, f1, g1,h1, k1) = (0.294986..,−0.335687..,1.01573..,1.44209..,

−0.113479..,0.106846..,−0.0149546..,−0.0148423..),

(α2,β2,γ2,δ2, f2, g2,h2, k2) = (0.34172..,−0.395823..,1.09233..,1.58004..,

−0.159928..,0.146583..,−0.0691478..,−0.0667143..),

(α3,β3,γ3,δ3, f3, g3,h3, k3) = (0.34172..,−0.395823..,1.09233..,1.58004..,

−0.200605..,0.179359..,−0.119305..,−0.111962..),

(α4,β4,γ4,δ4) = (0.203429..,0.223163..,0.620097..,0.789278..),

(α5,β5,γ5,δ5) = (0.126866..,0.134673..,0.705726..,0.921702..),

(α6,β6,γ6,δ6) = (0.0684267..,0.070729..,0.773252..,1.02969..).

Then the discontinuous piecewise differential systems (3.54)–(3.55) have exactly six limit

cycles, see (C2
5 ) of Figure 3.11.

This completes the proof of statement (b) of Theorem 3.2.
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Chapter 4
Limit Cycles of Planar Piecewise Linear

Hamiltonian Systems Without

Equilibrium Points Separated by two

Circles

The solution of the 16th Hilbert problem of discontinuous piecewise linear differential

Hamiltonian systems without equilibrium points separated by either reducible, or irre-

ducible cubics is solved by Benterki and Llibre, see [4, 7, 11, 22]. In this chapter we give

the solution of the extended 16th Hilbert problem for discontinuous piecewise differ-

ential systems formed by three linear Hamiltonian systems without equilibrium points

separated by two concentric circles S1 and S2 such that S1 = {(x,y) ∈ R2 : x2 + y2 = 1};
and S2 = {(x,y) ∈R2 : x2 + y2 = a2}; where a > 1.

We denote by F the family of discontinuous piecewise linear Hamiltonian systems with-

out equilibrium points separated by the two circles S1 and S2.

The upper bound of crossing limit cycles of linear Hamiltonian systems without equi-

libria intersecting only in two points the circle S1 or the circle S2 was studied in [4],

where the authors proved that such systems can have at most three crossing limit cycles

intersecting a circle in two points. For that, in our chapter we are intersting in studying

the upper bound of crossing limit cycles for systems in the class F intersecting the circle

S1 in two points and intersecting the circle S2 in two points. For this class we get the
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following three zones

Z1 = {(x,y) ∈R2 : x2 + y2 < 1},
Z2 = {(x,y) ∈R2 : 1 < x2 + y2 < a},
Z3 = {(x,y) ∈R2 : x2 + y2 > a }.

(4.1)

Section 4.1 Statement of the main result

Our main result is the following.

Theorem 4.1 The following statements hold.

(i) The maximum number of crossing limit cycles of systems in F is three.

(ii) There are systems in F exhibiting exactly three limit cycles, see Figure 4.1.

(iii) There are systems in F exhibiting exactly two limit cycles, see Figure 4.2.

(iv) There are systems in F exhibiting exactly one limit cycle, see Figure 4.3.

(v) There are systems in F without limit cycles.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 4.1: The three limit cycles of the discontinuous piecewise differential system
(4.6).
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Figure 4.2: The two limit cycles of the discontinuous piecewise differential system
(4.7).
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Figure 4.3: The one limit cycle of the discontinuous piecewise differential system (4.8).

4.1.1 Proof of the main result

To prove Theorem 4.1, we use lemma 1 in chapter 3 which provides the normal form for

an arbitrary linear Hamiltonian differential system without equilibrium points.

Proof. (Proof of statement (i) of Theorem 4.1) In the zone Z1 we consider the arbitrary

linear Hamiltonian system

ẋ = −λ1b1x+ b1y +µ1, ẏ = −λ2
1b1x+λ1b1y + σ1, (4.2)
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with b1 , 0 and σ1 , λ1µ1. This system has the first integral

H1(x,y) = −
(
λ2

1
b1

2

)
x2 +λ1b1xy −

(b1

2

)
y2 + σ1x −µ1y.

In the zone Z2 we consider the discontinuous piecewise linear Hamiltonian system

ẋ = −λ2b2x+ b2y +µ2, ẏ = −λ2
2b2x+λ2b2y + σ2, (4.3)

with b2 , 0 and σ2 , λ2µ2, with its first integral

H2(x,y) = −
(
λ2

2
b2

2

)
x2 +λ2b2xy −

(b2

2

)
y2 + σ2x −µ2y.

In the zone Z3 we consider the discontinuous piecewise linear Hamiltonian system

ẋ = −λ3b3x+ b3y +µ3, ẏ = −λ2
3b3x+λ3b3y + σ3, (4.4)

with b3 , 0 and σ3 , λ3µ3, which has the first integral

H3(x,y) = −
(
λ2

3
b3

2

)
x2 +λ3b3xy −

(b3

2

)
y2 + σ3x −µ3y.

We are going to prove that the piecewise linear differential Hamiltonian systems formed by

system (4.2), (4.3) and (4.4) have at most three crossing limit cycles intersecting the two

circles S1 and S2 in four points.

In order to have a crossing limit cycle which intersects S1 at the real points Ai = (xi , yi) and

Bi = (zi ,wi) and intersects S2 at the real points Ci = (fi , gi) and Di = (hi , ki), with Ai , Bi and

Di , Ci , these points must satisfy the following system

e1 =H1(xi , yi)−H1(zi ,wi) = 0,

e2 =H2(fi , gi)−H2(xi , yi) = 0,

e3 =H2(zi ,wi)−H2(hi , ki) = 0,

e4 =H3(fi , gi)−H3(hi , ki) = 0,

x2
i + y2

i = 1, z2
i +w2

i = 1,

f 2
i + g2

i = a2, h2
i + k2

i = a2.

(4.5)
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The points Ai , Bi , Ci and Di can take the form Ai =
(r2
i − 1

r2
i + 1

,
2ri
r2
i + 1

)
, Bi =

(s2i − 1

s2i + 1
,

2si
s2i + 1

)
,

Ci =
(
a
n2
i − 1

n2
i + 1

, a
2ni
n2
i + 1

)
, and Di =

(
a
m2
i − 1

m2
i + 1

, a
2mi
m2
i + 1

)
.

Assume that the discontinuous piecewise linear differential systems formed by (4.2), (4.3) and

(4.4) have four limit cycles. For that we must suppose that system (4.5) has the four real

solutions, Ai , Bi , Ci and Di with i = 1, . . . ,4. Firstly, we fixed the points A1 and B1, then by

the equation e2 = 0 we obtain the value of n1 = φ1(a,b2, r1,λ2,γ2,σ2) (or simply n1 = φ1),

where φ1 is a function which depends on parameters a, b2, r1, λ2, γ2 and σ2. Due to the huge

expression of the function φ1 we will omit it. So we get the value of the point C1.

From equation e3 = 0 we obtain the value of the parameter m1 = φ2(a,b2, s1,λ2,γ2,σ2) (or

simply m1 = φ2), where φ2 is a function which depends on parameters a, b2, s1, λ2, γ2 and

σ2, and for the same reason as the function φ1, we will not give its expression. In this case we

get the value of the point D1.

From equation e1 = 0, and by assuming that r1 + s1 , 0 we obtain the expression of the

parameter

σ1 =
1

(1 + r2
1 )(r1 + s1)(1 + s21)

(
− 2(1 + r2

1 )(r1 − s1)(−1 + r1s1)(1 + s21)γ1 + 2b1(r1 − s1)(1

+r1s1)(−1 + s1λ1 + r1(s1 +λ1))(−s1 −λ1 + r1(−1 + s1λ1)
)
.

Now assuming φ1 +φ2 , 0, then from equation e4 = 0 we obtain

σ3 =
−1

2a(1 +φ2
2)(φ2 −φ1)(φ1 +φ2)(1 +φ2

1)

(
2a(1 +φ2

2)(φ2 −φ1)(−1 +φ2φ1)(1 +φ2
1)γ3

−2a2b3(φ2 −φ1)(1 +φ2φ1)(−1 +φ1λ3 +φ2(φ1 +λ3))(−φ1 −λ3 +φ2(−1 +φ1λ3))
)
.

We suppose the second solution of system (3.3), we fixed the points A2, B2, C2 , then from

equation e3 = 0 we obtain the value of the parameter m2 = φ3(a,b2, s2,λ2,γ2,σ2) (or simply

m2 = φ3), which depends on parameters a, b2, s2, λ2, γ2 and σ2, and for the same reason as

the function φ1, we will not give its expression. In this case we get the value of the point D2.

From equation e2 = 0, and by assuming B , 0 we obtain the parameter σ2 = A/B, where

A = 4an2(1 +n2
2)(1 + r2

2 )2γ2 − 4(1 +n2
2)2(r2 + r3

2 )γ2 + a2b2(1 + r2
2 )2(λ2 +n2(2−n2λ2))2

−b2(1 +n2
2)2(λ2 + r2(2− r2λ2))2,

B = 2(1 +n2
2)(1 + r2

2 )(1− a+n2
2 + an2

2 − r
2
2 − ar

2
2 −n

2
2r

2
2 + an2

2r
2
2 ).

By solving equation e1 = 0, and by assuming that D , 0 we have the expression of γ1 = C/D,

where
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C = (b1(−s1(r2 + s2)(−s21 + s22 + r2
2 (1 + (2 + s21)s22)) + (r2(−1 + s21 − 3(s1 + s31)s2 + (−1 + s21)

s22 − (s1 + s31)s32)− (s1 − s2)(−1 + (s1(−1 + s2)− s2)(s1 + s2 + s1s2)) + r3
2 (−1 + s1s2)(1

+2s1s2 + s22 + s21(−1 + s22))− r2
2 (s1 + s2 + 3s1s

2
2 + s32 + s31(1 + 3s22)− s21(s2 + s32)))λ1

+s1(r2 + s2)(−s21 + s22 + r2
2 (1 + (2 + s21)s22))λ2

1 + r3
1 ((r2 + s2)(1− r2

2s
2
2 + s21(2 + r2

2 + s22))

−((−1 + s1s2)(1 + s21 + 2s1s2 + (−1 + s21)s22) + r2
2 (1 + s21 + s1(−1 + s21)s2 + 3(1 + s21)s22

+s1(−1 + s21)s32) + r3
2 (s1 − s2)(−1 + 2s1s2 + s22 + s21(1 + s22)) + r2(3s2 + s32 − s1(1 + s22)

+s31(1 + s22) + s21s2(3 + s22)))λ1 − (r2 + s2)(1− r2
2s

2
2 + s21(2 + r2

2 + s22))λ2
1) + r2

1 (s1(r2 + s2)

(1− r2
2s

2
2 + s21(2 + r2

2 + s22)) + (s1 + s31 + s2 + 3s21s2 − s1(1 + s21)s22 + (1 + 3s21)s32
+r3

2 (1 + s22 + s1s2(−1 + s22) + s31s2(−1 + s22) + 3s21(1 + s22))− r2(−1 + s1s2)(1− 2s1s2

+s22 + s21(3 + s22))− r2
2 (s1 − s2)(1− 2s1s2 + s22 + s21(1 + 3s22)))λ1 − s1(r2 + s2)(1− r2

2s
2
2

+s21(2 + r2
2 + s22))λ2

1) + r1(−(r2 + s2)(−s21 + s22 + r2
2 (1 + (2 + s21)s22)) + (1 + s21 + s1(3

+s21)s2 − (1 + s21)s22 + s1(3 + s21)s32 + r2(s1 − s2)(3 + s21 − 2s1s2 + (1 + s21)s22) + r2
2 (−1

+s1s2)(1 + s21 − 2s1s2 + (3 + s21)s22) + r3
2 (s1(3 + s21)− (1 + s21)s2 + s1(3 + s21)s22 + (1

+s21)s32))λ1 + (r2 + s2)(−s21 + s22 + r2
2 (1 + (2 + s21)s22))λ2

1))),

D = (1 + r2
1 )(1 + r2

2 )(1 + s21)(r1 − r2 + s1 + r1r2s1 − s2 − r1r2s2 + r1s1s2 − r2s1s2)(1 + s22).

From equation e4 = 0, and by assuming F , 0 we have the expression of γ3 = E/F, where E

and F are given in the appendix 4.

Likewise, we consider the third solution, and we fixed the point A3, B3, C3. Then from equa-

tion e3 = 0 we obtain the value of the parameter m3 = φ4(a,b2,n2, r2, s3,λ2,γ2) (or simply

m3 = φ4), which depends on parameters a, b2, s2, λ2 and γ2. In this case we get the value of

the point D3.

By solving equation e1 = 0, we obtain the parameter λ1 = (G1 ±
√
H1)/R1, with R1 , 0, and

G1, H1 and R1 are given in the appendix of chapter 4.

Now solving the equation e2 = 0, we obtain the parameter γ2 = G2/R2, with R2 , 0, and we

give the expressions of G2 and R2 in the appendix of chapter 4.

Finally, if we fix the four points A4, B4, C4 and D4, then from the equation e1 = 0 and e4 = 0

we have that b1 = 0 and b3 = 0 which is a contradiction to the assumptions. Therefore we

have proved that the maximum number of crossing limit cycles for the family F intersecting

the two circles S1 and S2 in four points is three.
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Now we shall provide differential systems of the family F intersecting the two circles S1 and

S1 in four points, and exhibiting three or two orone limit cycle.

Section 4.2 Numericals Examples

Example 1: Three crossing limit cycles for systems in the family F .

Here we consider the three zones defined in (4.1), and we consider the Hamiltonian

systems

ẋ =
9

10
− 63

50
x+ 14y, ẏ = −1− 567

50
x+

63
50
y, in Z3,

ẋ = −0.072..− 0.7313..x+ 0.9..y, ẏ = −0.1726..− 0.5943..x

+0.731367y, in Z2,

ẋ = −11.7461..+ 8.864..x+ 8y, ẏ = 12.996..− 9.8228..x − 8.8646..y, in Z1.

(4.6)

The first integrals of the linear Hamiltonian systems (4.6) are

H1(x,y) = −x − 567
100

x2 − 9
10
y +

63
50
xy − 7y2,

H2(x,y) = −0.172..x − 0.297..x2 + 0.0720..y + 0.731..xy − 0.45y2,

H3(x,y) = 12.996..x − 4.911..x2 + 11.746..y − 8.864..xy − 4y2,

respectively. The discontinuous piecewise linear differential system formed by the linear

Hamiltonian systems (4.6) has exactly three crossing limit cycles, because the system of

equations (4.5) has the three real solutions

S1 = (0.932..,1.063..,1.187..,0.768..,0.48,0.877..,0.646..,0.763..),

S2 = (0.875..,1.110..,1.225..,0.705..,0.44,0.897..,0.681..,0.731..),

S3 = (0.830..,1.145..,1.253..,0.654..,0.4..,0.916..,0.710..,0.703..).

Then these three limit cycles are drawn in Figure 4.1.

Now we give an example of systems of the family F intersecting the two circles S1 and

S2 in four points, and exhibiting two limit cycles.

Example 2: Two crossing limit cycles for systems in the family F .
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We consider the Hamiltonian systems

ẋ =
8
5
− 63

50
x+ 14y, ẏ = −6

5
− 567

50
x+

63
50
y, in Z3,

ẋ = −0.19731..− 1.4359..x+ 2y, ẏ = −0.43806..− 1.03101..x+ 1.43597..y, in Z2,

ẋ = −31.321..+ 5.69824..x+ 8y, ẏ = 29.0365..− 4.05874..x − 5.6982..y, in Z1.
(4.7)

The first integrals of the linear Hamiltonian systems (4.7) are

H1(x,y) = −6
5
x − 567

100
x2 − 8

5
y +

63
50
xy − 7y2,

H2(x,y) = −0.438..x − 0.515..x2 + 0.197..y + 1.435..xy − y2,

H3(x,y) = 29.036..x − 2.029..x2 + 31.321..y − 5.698..xy − 4y2,

respectively. The discontinuous piecewise linear differential system formed by the linear

Hamiltonian systems (4.7) has exactly two crossing limit cycles, because the system of

equations (4.5) has the two real solutions

S1 = (0.945..,1.051..,1.163..,0.803..,0.450,0.893..,0.9,0.435..),

S2 = (0.882..,1.104..,1.208..,0.734..,0.4,0.916..,0.921..,0.387..).

Then these two limit cycles are drawn in Figure 4.2.

In what follows we give an example of systems of the family F intersecting the two

circles S1 and S2 in four points, and exhibiting one limit cycle.

Example 3: One crossing limit cycle for systems in the family F . We consider the

Hamiltonian systems

ẋ =
8
5
− 63

50
x+ 14y, ẏ = −6

5
− 567

50
x+

63
50
y, in Z3

ẋ = −0.103413..− 1.38..x+ 2y, ẏ = −0.240661..− 0.9522..x+ 1.38..y, in Z2

ẋ = −2− 0.9x+ 3y, ẏ = 0.331279− 0.27x+ 0.9y, in Z1.

(4.8)
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The first integrals of the linear Hamiltonian systems (4.8) are

H1(x,y) = −6
5
x − 567

100
x2 − 8

5
y +

63
50
xy − 7y2,

H2(x,y) = −0.240..x − 0.476..x2 + 0.103..y + 1.38..xy − y2,

H3(x,y) = 0.331..x − 0.135..x2 + 2y + 0.899..xy −
3y2

2
,

respectively. The discontinuous piecewise linear differential system formed by the linear

Hamiltonian systems (4.8) has exactly one crossing limit cycle, because the system of

equations (4.5) has the unique real solution

S1 = (0.921..,1.073..,1.182..,0.776..,0.5,0.866..,0.9,0.435..).

This limit cycle is drawn in Figure 4.3.
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Chapter 5
Centers and Limit Cycles for a Kukles

Differential Systems of degree eight

We consider the Kukles homogeneous differential systems, see Giné [34]

ẋ = −y, ẏ = x+Qn(x,y), (5.1)

where Qn is a real homogeneous polynomial of degree n, with the variables x and y over

R.

For the global phase portraits of Kukles differential systems (5.1) we can site the follow-

ing works. Vulpe [73] studied the global phase portraits for all center quadratic differ-

ential systems and since systems (5.1) for n = 2 is a particular case of these systems, we

know that their phase portraits are studied. Buzzi et al. [20], Malkin [60], Vulpe and

Sibirskii [74] and Żoła̧dek [75, 76] classifed the global phase portraits of cubic polyno-

mial differential systems with a symmetry with respect to a straight line. Benterki and

Llibre [5] provided the global phase portraits of systems (5.1) for n = 4.

Llibre and Silva [51, 52] classified the phase portraits of systems (5.1) with n = 5,6,

and the global phase portraits for the case n = 7 was studied by Benterki and Llibre [12].
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Section 5.1 The first Main Result

The first objective of this chapter is to classify all the global phase portraits of the

generalized Kukles differential systems of degree 8 symmetric with respect to the x–axis

ẋ = −y, ẏ = x+ ax8 + bx6y2 + cx4y4 + dx2y6 + ey8. (5.2)

In the following remark we will show how can we restruct the study of systems (5.2)

according to the sign of their parameters.

Remark 3

The Kukles differential systems (5.2) are invariant under the transformation

(x,y, t,a,b,c,d,e) −→ (−x,y,−t,−a,−b,−c,−d,−e), then we only need to study the system

for e > 0, or e = 0 and d > 0, or e = d = 0 and c > 0, or e = d = c = 0 and b > 0, or

e = d = c = b = 0 and a , 0.

We know that to study the global phase portraits of such differential systems, we have

to compute its equilibrium points, for this reason we need to know the real roots of the

polynomial P (x,y) = ax8 + bx6y2 + cx4y4 + dx2y6 + ey8.

By doing the following change of variables X = x2 and Y = y2 the polynomial P (x,y)

becomes

P (X,Y ) = aX4 + bX3Y + cX2Y 2 + dXY 3 + eY 4,

which is a polynomial of degree four, so it has many different kind of roots which are

summarized in the following 69 cases.

If the polynomial P (x,y) has four simple real roots, so

P (x,y) = e(y2 − r1x2)(y2 − r2x2)(y2 − r3x2)(y2 − r4x2) and we distinguish the 9 subcases:

(1) 0 < r1 < r2 < r3 < r4,

(2) r1 = 0 < r2 < r3 < r4,

(3) r1 < 0 < r2 < r3 < r4,

(4) r1 < r2 = 0 < r3 < r4,

(5) r1 < r2 < 0 < r3 < r4,

(6) r1 < r2 < r3 = 0 < r4,

(7) r1 < r2 < r3 < 0 < r4,
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(8) 0 < r1 < r2 < r3 < r4 = 0,

(9) r1 < r2 < r3 < r4 < 0.

If the polynomial P (x,y) has three real roots: two simples and one double, so

P (x,y) = e(y2 − r1x2)(y2 − r2x2)(y2 − r3x2)2 and we distinguish the 7 subcases:

(10) 0 < r1 < r2 < r3,

(11) r1 = 0 < r2 < r3,

(12) r1 < 0 < r2 < r3,

(13) r1 < r2 = 0 < r3,

(14) r1 < r2 < 0 < r3,

(15) r1 < r2 < r3 = 0,

(16) r1 < r2 < r3 < 0.

If the polynomial P (x,y) has two double real roots, so P (x,y) = e(y2 − r1x2)2(y2 − r2x2)2

and we distinguish the 5 subcases:

(17) 0 < r1 < r2,

(18) r1 = 0 < r2,

(19) r1 < 0 < r2,

(20) r1 < r2 = 0,

(21) r1 < r2 < 0.

If the polynomial P (x,y) has one simple and one triple real roots, so

P (x,y) = e(y2 − r1x2)(y2 − r2x2)3 and we distinguish the 5 subcases:

(22) 0 < r1 < r2,

(23) r1 = 0 < r2,

(24) r1 < 0 < r2,

(25) r1 < r2 = 0,

(26) r1 < r2 < 0.

If the polynomial P (x,y) has one quarter real root, so P (x,y) = e(y2 − r1x2)4 and we dis-

tinguish the 3 subcases:

(27) 0 < r1,

(28) r1 = 0,

(29) r1 < 0.

If the polynomial P (x,y) has two simple real roots and two complexes, so

P (x,y) = e(y2−r1x2)(y2−r1x2)(y4−2αx2y2+(α2+β2)x4) and we distinguish the 5 subcases:
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(30) 0 < r1 < r2,

(31) r1 = 0 < r2,

(32) r1 < 0 < r2,

(33) r1 < r2 = 0,

(34) r1 < r2 < 0.

If the polynomial P (x,y) has one double real root and two complexes, so

P (x,y) = e(y2 − r1x2)2(y4 − 2αx2y2 + (α2 + β2)x4) and we distinguish the 3 subcases:

(35) 0 < r1,

(36) r1 = 0,

(37) r1 < 0.

If the polynomial P (x,y) has no real root, so P (x,y) = e(y4−2αx2y2 +(α2 +β2)x4)2 and we

have to study the case:

(38) e > 0.

If e = 0 and the polynomial P (x,y) has three simple real roots, so

P (x,y) = dx2(y2 − r1x2)(y2 − r2x2)(y2 − r3x2) and we distinguish the 7 subcases:

(39) 0 < r1 < r2 < r3,

(40) r1 = 0 < r2 < r3,

(41) r1 < 0 < r2 < r3,

(42) r1 < r2 = 0 < r3,

(43) r1 < r2 < 0 < r3,

(44) r1 < r2 < r3 = 0,

(45) r1 < r2 < r3 < 0.

If e = 0 and the polynomial P (x,y) has two real roots one simple and one double, so

P (x,y) = dx2(y2 − r1x2)(y2 − r2x2)2 and we distinguish the 5 subcases:

(46) 0 < r1 < r2,

(47) r1 = 0 < r2,

(48) r1 < 0 < r2,

(49) r1 < r2 = 0,

(50) r1 < r2 < 0.

If e = 0 and the polynomial P (x,y) has one triple real root, so P (x,y) = dx2(y2−r1x2)3 and

we distinguish the 3 subcases:

(51) 0 < r1,
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(52) r1 = 0,

(53) r1 < 0.

If e = 0 and the polynomial P (x,y) has one simple real root and two complexes, so

P (x,y) = dx2(y2 − r1x2)(y4 − 2αx2y2 + (α2 + β2)x4) and we distinguish the 3 subcases:

(54) 0 < r1,

(55) r1 = 0,

(56) r1 < 0.

If e = 0, d = 0 and the polynomial P (x,y) has two simple real roots, so

P (x,y) = cx4(y2 − r1x2)(y2 − r2x2) we have distinguish the 5 subcases:

(57) 0 < r1 < r2,

(58) r1 = 0 < r2,

(59) r1 < 0 < r2,

(60) r1 < r2 = 0,

(61) r1 < r2 < 0.

If e = 0, d = 0 and the polynomial P (x,y) has one double real root, so

P (x,y) = cx4(y2 − r1x2)2 and we distinguish the 3 subcases:

(62) 0 < r1,

(63) r1 = 0,

(64) r1 < 0.

If e = 0, d = 0 and the polynomial P (x,y) has two complexes roots, so

P (x,y) = cx4(y4 − 2αx2y2 + (α2 + β2)x4) then we have the following subcase:

(65) c > 0,

If e = 0, d = 0 and c = 0, the polynomial P (x,y) has one simple real root, so

P (x,y) = bx6(y2 − r1x2) then we have the following 3 subcases:

(66) 0 < r1,

(67) r1 = 0,

(68) r1 < 0.

If e = 0, d = 0, c = 0 and b = 0, the polynomial P (x,y) has one simple real root, so

P (x,y) = ax8 we have the following subcase:

(69) a , 0.
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Remark 4 Some subcases for the previous ones have more then one configuration. Ac-

cording to the position of their separatrices:

- the subcase (7) has two different configurations (7.1) and (7.2),

- the subcase (11) has two different configurations (11.1) and (11.2),

- the subcase (12) has two different configurations (12.1) and (12.2),

- the subcase (13) has two different configurations (13.1) and (13.2),

- the subcase (17) has two different configurations (17.1) and (17.2),

- the subcase (22) has two different configurations (22.1) and (22.2),

- the subcase (30) has two different configurations (30.1) and (30.2),

- the subcase (31) has two different configurations (31.1) and (31.2),

- the subcase (32) has two different configurations (32.1) and (32.2),

- the subcase (39) has two different configurations (39.1) and (39.2),

- the subcase (40) has two different configurations (40.1) and (40.2),

- the subcase (41) has two different configurations (41.1) and (41.2),

- the subcase (43) has three different configurations (43.1), (43.2) and (43.3),

- the subcase (51) has four different configurations (51.1), (51.2), (51.3) and (51.4),

- the subcase (57) has two different configurations (57.1) and (57.2),

- the subcase (58) has two different configurations (58.1) and (58.2),

- the subcase (59) has two different configurations (59.1) and (59.2),

- the subcase (60) has two different configurations (60.1) and (60.2),

- the subcase (62) has two different configurations (62.1) and (62.2).
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5.1.1 Finite and infinite singularities

To study the phase portraits of systems (5.2) we identify all the finite singular points

and their local phase portrait. We go through the same steps to study the local phase

portrait for the infinite ones.

Finite singular points. We identify the finite singular points of the generalized

kukels polynomial differential systems (5.2) in the following Proposition.

Proposition 5.1

The differential systems (5.2) have a center at the origin of coordinates and an hyperbolic

saddle at (−a−1/7,0), if a , 0.

Proof. The eigenvalues of the linear part of systems (5.2) at the origin are ±i so the origin is

either a focus or a center, but due to the fact that these systems are symmetric with respect to

x-axis, we know that the origin is a center. For a < 0, in addition to the origin systems (5.2)

have the second equilibrium point (−a−1/7,0) with eginvalues ±
√

7. By using Theorem 2.15 of

[24] we conclude that this equilibria is a saddle.

Infinite singular points. By using the preliminaries given in chapter 1 we study the

infinite singular points and their nature in the Poincaré disc.

Proposition 5.2

The local phase portraits at the infinite equilibrium points (√rj ,0) with rj ≥ 0 of the local

chart U1 are

(a) four semi–hyperbolic saddle–nodes for the subcase (1),

(b) a linearly zero singularity at the origin of coordinates with four hyperbolic sectors,

and three semi–hyperbolic saddle–nodes for the subcase (2),

(c) Three semi–hyperbolic saddle–nodes for the subcases (3) and (39),

(d) a linearly zero singularity at the origin of coordinates with four hyperbolic sectors,
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and tow semi–hyperbolic saddle–nodes for the subcases (4) and (40),

(e) tow semi–hyperbolic saddle–nodes for the subcases (5), (41) and (57),

(f) linearly zero singularity at the origin of coordinates with four hyperbolic sectors,

and one semi–hyperbolic saddle–node for the subcases (6), (42) and (58),

(g) tow semi–hyperbolic saddle–nodes for the subcases (7), (43), (54), (59) and (66),

(h) a linearly zero singularity at the origin of coordinates with one hyperbolic, one el-

liptic and two parabolic sectors for the subcases (8), (15), (20), (44) and (60),

(i) no infinite equilibria in the local chart U1 for the subcases (9), (16), (21), (26), (29),

(37), (38), (45), (50), (53), (55), (61), (64), (65), (68) and (69),

(j) two semi–hyperbolic saddle–nodes and a linearly zero singularity with one parabolic

and two hyperbolic sectors for the subcase (10),

(k) a semi–hyperbolic saddle–node, a linearly zero singularity with one parabolic and

two hyperbolic sectors and another linearly zero singularity at the origin of coordi-

nates where its local phase portrait consists of four hyperbolic sectors, for the subcase

(11),

(l) a semi–hyperbolic saddle–node and a linearly zero singularity with one parabolic

and two hyperbolic sectors, for the subcases (12), (22) and (46),

(m) two linearly zero singularities, where the local phase portrait at the first one consists

of one parabolic and two hyperbolic sectors, and the local phase portrait of the second

one which is located at the origin of coordinates consists of four hyperbolic sectors,

for the subcases (13), (18), (23) and (47),

(n) a linearly zero singularity where its local phase portrait consists of one parabolic

and two hyperbolic sectors, for the subcases (14), (19), (24), (48) and (51),

(o) two linearly zero singularities where their local phase portraits consist of one parabolic

and two hyperbolic sectors, for the subcases (17), (27) and (35),
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(p) a linearly zero singularity at the origin of coordinates with two hyperbolic sectors

and one parabolic sector, for the subcases (25) and (47),

(q) linearly zero singularity at the origin of coordinates with four hyperbolic sectors for

the subcases (28),(36), (52), (55), (63) and (67),

(r) a linearly zero singularity (not at the origin) with four hyperbolic sectors for the

subcase (62).

Proof. As we have mentioned at the beginning of this section the phase portraits of the

semi–hyperbolic equilibrium can be determined by using Theorem 2.19 of [24], and the phase

portraits of the linearly zero equilibrium points doing the blow–up changes of variables. Here

we shall prove with all details the statements (a) and (b), the other statements are proved in a

similar way. In statements (a) and (b) system (5.2) write as

ẋ = −y; ẏ = x+ e(y2 − r1x2)(y2 − r2x2)(y2 − r3x2)(y2 − r4x2), (5.3)

with e > 0. This system in the local chart U1 becomes

u̇ = er1r2r3r4 − e(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)u2 + e(r1r2 + r1r3

+r2r3 + r1r4 + r2r4 + r3r4)u4 − e(r1 + r2 + r3 + r4)u6 + eu8

+v7 +u2v7,

v̇ = uv8.

(5.4)

Assume 0 < r1 < r2 < r3 < r4, then the eigenvalues at the infinite equilibrium point (√rj ,0) for

j = 1,2,3,4 are 0, and h′(√rj) = e√rj(−6r2
j (r1+r2+r3+r4)+4rj(r1(r2+r3+r4)+r2(r3+r4)+r3r4)−

2r1r2r3−2r1r2r4−2r1r3r4−2r2r3r4 +8r3
j ) , 0, because the four roots √rj for j = 1,2,3,4 of the

polynomial h(u) = u̇|v=0 = er1r2r3r4−e(r1r2r3 +r1r2r4 +r1r3r4 +r2r3r4)u2 +e(r1r2 +r1r3 +r2r3 +

r1r4+r2r4+r3r4)u4−e(r1+r2+r3+r4)u6+eu8 are simples. The point (√rj ,0) for j = 1, . . . ,4 is a

semi–hyperbolic equilibria. In order to know the local phase portraits of the infinite equilibria

(√rj ,0) for j = 1,2,3,4 we apply Theorem 2.19 of [24]. First we translate the equilibrium

point (√rj ,0) to the origin of coordinates by doing the change (u,v) = (Y +√rj ,X). Thus we
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obtain the differential system

Ẋ = A(X,Y ) = sign(h′(√rj))
(√
rjX

8 +X8Y
)
,

Ẏ = sign(h′(√rj))Y +B(X,Y )
)
.

(5.5)

Where

B(X,Y ) = +8e√rjY 7 + eY 8 − e(r1 + r2 + r3 + r4 − 28rj)Y 6 − 2e(3r1 + 3r2 + 3r3

+3r4 − 28rj)
√
rjY

5 + (−e(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 − 6r1r2rj

−6r1r3rj − 6r2r3rj − 6r1r4rj − 6r2r4rj − 6r3r4rj + 15r1r
2
j + 15r2r

2
j

+15r3r
2
j + 15r4r

2
j − 28r3

j ) +X7)Y 2 + 4e√rj(r1r2 + r1r3 + r2r3 + r1r4

+r2r4 + r3r4 − 5r1rj − 5r2rj − 5r3rj − 5r4rj + 14r2
j )Y 3 + e(r1r2 + r1r3

+r2r3 + r1r4 + r2r4 + r3r4 − 15r1rj − 15r2rj − 15r3rj − 15r4rj + 70r2
j )Y 4

+(1 + rj)X7 + 2√rjX7Y .

Applying Theorem 2.19 we get the following expressions of the functions f (X) and g(X)

f (X) = −
1 + rj
h′(√rj)

X7 + h.o.t.,

g(X) = sign(h′(√rj))
√
rjX

8 + h.o.t.,

where h.o.t. denotes higher order terms. So using the notation of Theorem 2.19 we have

that am = sign(h′(√rj))
√
rj and m = 8 is even. Then we know that the equilibria (√rj ,0) for

j = 1, . . . ,4 is a saddle–node. This completes the proof of statement (a).

Assume r1 = 0 < r2 < r3 < r4, then to prove that the equilibria (
√
r2,0),(

√
r3,0) and (

√
r4,0)

are semi–hyperbolic saddle–nodes, we use the same steps as the proof of statement (a). Then

we shall show that the local phase portrait of the equilibrium (
√
r1,0) = (0,0) is constituted by

four hyperbolic sectors. After doing the blow–up change of variables v = wu to system (5.4)

and by eliminating the common factor u of u̇ and ẇ by doing the rescaling dτ = udt in the
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independent variable, we get the differential system

u′ = −er2r3r4u + er2r3u3 + er2r4u3 + er3r4u3 − er2u5

−er3u5 − er4u5 + eu7 +u6w7 +u8w7,

w′ = er2r3r4w − er2r3u2w − er2r4u2w − er3r4u2w+ er2u4w

+er3u4w+ er4u4w − eu6w −u5w8.

(5.6)

The unique equilibrium on the w–axis of system (5.6) is the origin of coordinates, which is

a saddle whose four separatrices are contained in the two axes. Going back through the two

changes of variables, the first change is dτ = udt and the second change is v = wu, and taking

into account that in system (5.4) we have that u̇|u=0 = v7, we obtain that the local phase

portrait at the origin of system (5.4) is formed by two hyperbolic sectors. This completes the

proof of statement (b).

Proposition 5.3 The local phase portrait at the origin of the local chartU2 is a hyperbolic

stable node in all the subcases.

Proof. We prove the Proposition 5.3 for the statement (a) and the other statements are

proved in a similar way.

In the subcase (1) system (5.2) becomes system (5.3). In the local chart U2 it becomes

u̇ = −eu + (er1 + er2 + er3 + er4)u3 + (−er1r2 − er1r3

−er2r3 − er1r4 − er2r4 − er3r4)u5 + (er1r2r3

+er1r2r4 + er1r3r4 + er2r3r4)u7 − er1r2r3r4u9 − v7

−u2v7,

v̇ = −ev + (er1 + er2 + er3 + er4)u2v + (−er1r2 − er1r3

−er2r3 − er1r4 − er2r4 − er3r4)u4v + (er1r2r3

+er1r2r4 + er1r3r4 + er2r3r4)u6v − er1r2r3r4u8v

−uv.

(5.7)

The origin is a singular point of system (5.7), and the eigenvalues of its associated Jacobian

108



matrix are (−e) and (−e). Then the origin is a stable node.

Theorem 5.1 Suppose that a2 + b2 + c2 + d2 + e2 , 0. Then the polynomial differential

system (5.2) has 38 topologically non–equivalent phase portraits in the Poincaré disc.

More precisely, the phase portrait in the Poincaré disc of

• (1) of Figure 5.1 is realizable by the case (1),

• (2) of Figure 5.1 is realizable by the case (2),

• (3) of Figure 5.1is realizable by the cases (3) and (39.1),

• (4) of Figure 5.1 is realizable by the case (4) and (40.1),

• (5) of Figure 5.1 is realizable by the cases (5), (30.1), (41.1) and (57.1),

• (6) of Figure 5.1 is realizable by the cases (6), (31.1) and (58.2),

• (7) of Figure 5.2 is realizable by the cases (7.1), (32.2), (43.2), (51.2) and (59.1),

• (8) of Figure 5.2 is realizable by the cases (7.2), (32.1), (43.1), (54) and (59.2),

• (9) of Figure 5.2 is realizable by the case (8), (15), (20), (44) and (60.1),

• (10) of Figure 5.2 is realizable by the case (9), (16), (21), (26), (29), (34), (37), (38),

(45), (50), (53), (56), (61), (64), (65), (68) and (69),

• (11) of Figure 5.2 is realizable by the cases (10),

• (12) of Figure 5.2 is realizable by the cases (11.1),

• (13) of Figure 5.2 is realizable by the cases (11.2),

• (14) of Figure 5.2 is realizable by the cases (12.1),

• (15) of Figure 5.2 is realizable by the cases (12.2) and (46),

• (16) of Figure 5.2 is realizable by the cases (13.1), (18) and (47),
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• (17) of Figure 5.2 is realizable by the cases (13.2),

• (18) of Figure 5.2 is realizable by the cases (14), (19), (27), (35), (48) and (62.2),

• (19) of Figure 5.3 is realizable by the case (17.1),

• (20) of Figure 5.3 is realizable by the case (17.2),

• (21) of Figure 5.3 is realizable by the case (22.1),

• (22) of Figure 5.3 is realizable by the case (22.2),

• (23) of Figure 5.3 is realizable by the case (23),

• (24) of Figure 5.3 is realizable by the case (24), and (51.1),

• (25) of Figure 5.3 is realizable by the case (25) and (49),

• (26) of Figure 5.3 is realizable by the cases (28), (33), (36), (52), (55), (60.2), (63)

and (67),

• (27) of Figure 5.3 is realizable by the case (30.2),

• (28) of Figure 5.3 is realizable by the case (31.2),

• (29) of Figure 5.3 is realizable by the cases (39.2),

• (30) of Figure 5.3 is realizable by the cases (40.2),

• (31) of Figure 5.4 is realizable by the cases (40.3),

• (32) of Figure 5.4 is realizable by the case (41.2),

• (33) of Figure 5.4 is realizable by the cases (42) and (58.1),

• (34) of Figure 5.4 is realizable by the cases (51.3),

• (35) of Figure 5.4 is realizable by the cases (51.4) and (43.3),

• (36) of Figure 5.4 is realizable by the cases (57.2),

110



• (37) of Figure 5.4 is realizable by the cases (62.1),

• (38) of Figure 5.4 is realizable by the cases (66).

5.1.2 Global phase portraits of Kukles differential system

(6)

(1)

(5)

(2) (3)

(4)

Figure 5.1: Global phase portraits of Kukles differential systems (5.2).
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(12)

(7) (8) (9)

(10)

(15)

(16) (17) (18)

(14)(13)

(11)

Figure 5.2: Continuation of Figure 5.1.
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(20) (21)

(22)

(27)

(28) (29) (30)

(26)(25)

(19)

(23) (24)

Figure 5.3: Continuation of Figure 5.1.
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(32) (33)

(34)

(31)

(35) (36)

(38)(37)

Figure 5.4: Continuation of Figure 5.1.

114



5.1.3 Limit cycles of Kukles differential systems via averaging theory

Now we consider the application of the developed averaging methods. As the first ap-

plication we perturbed the polynomial differential systems (5.2) with polynomials of

degree eight, we get

ẋ = −y +
7∑
s=1

εs
∑

0≤i+j≤8

asijx
iyj ,

ẏ = x+ ax8 + bx6y2 + cx4y4 + dx2y6 + ey8 +
7∑
s=1

εs
∑

0≤i+j≤8

bsijx
iyj ,

(5.8)

where asij and bsij are real parameters, for 0 ≤ i, j ≤ 8 and 1 ≤ s ≤ 7. For more information

about the averaging theory of higher order see chapter 1.

Section 5.2 The second Main Result

The second objective of this chapter is to solve the second part of the Hilbert 16th prob-

lem for system (5.2), when we perturb it inside the class of all polynomial differential

system of degree 8.

Our second main result is given in the following Theorem.

Theorem 5.2 Assume that fj = 0 for j = 1, . . . , k − 1 and fk , 0. Then if r is a simple zero

of fk, the small amplitude limit cycle (x(t,ε), y(t,ε)) associated to this zero is of the form

(x(t,ε), y(t,ε)) = ε(r cos t, r sin t) +O(ε2). Moreover, for |ε| , 0 sufficiently small the max-

imum number of small amplitude limit cycles of the differential system (5.8) bifurcating

from the periodic solutions of the center (5.2), and which are in correspondence with the

zeros r i of fj , is

(a) 0 if the first order average function f1 is non-zero,

(b) 0 if f1 ≡ 0 and the second order average function f2 is non-zero,

(c) 1 if f1 ≡ f2 ≡ 0 and the third order average function f3 is non-zero, where r1 =
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√
−M0/M2 whith M0M2 < 0,

(d) 1 if f1 ≡ f2 ≡ f3 ≡ 0 and the fourth order average function f4 is non-zero, where

r1 =
√
−N0/N2 with N0N2 < 0,

(e) 2 if f1 ≡ f2 ≡ f3 ≡ f4 ≡ 0 and the fifth order average function f5 is non-zero, when

the equation H4r
4 +H2r

2 +H0 = 0 has four simple solutions,

(f) 2 if f1 ≡ f2 ≡ f3 ≡ f4 ≡ f5 ≡ 0 and the sixth order average function f6 is non-zero,

when the equation T4r
4 + T2r

2 + T0 = 0 has four simple solutions,

(g) 3 if f1 ≡ f2 ≡ f3 ≡ f4 ≡ f5 ≡ f6 ≡ 0 and the seventh order average function f7 is

non-zero, when the equation G6r
6 +G4r

4 +G2r
2 +G0 = 0 has six simple solutions.

Section 5.3 Proof of Theorem 5.2

For studying the limit cycles which bifurcate in a Hopf bifurcation from the center of

the differential systems (5.2) when it is perturbed inside the class of all polynomial dif-

ferential systems of degree 8, see (5.8), we proceed as follows.

First, doing the scaling x = εX, y = εY we introduce a small parameter ε. Thus

we obtain the differential system (Ẋ, Ẏ ). Now performing the polar change of coordi-

nates X = r cosθ, Y = r sinθ, the differential system (Ẋ, Ẏ ) written in polar coordinates

becomes a differential system (ṙ , θ̇). Taking as independent variable the angle θ the dif-

ferential system (ṙ , θ̇) produces the differential equation dr/dθ. Finally, doing a Taylor

expansion in the variable r at r = 0 and truncating at 7–th order in ε we obtain the

differential equation

r ′ =
dr
dθ

=
7∑
i=0

εiFi(θ,r) +O(ε8). (5.9)

The functions Fi(θ,r) for i = 1, . . . ,7, of the differential system (5.9) are analytic, and

since the independent variable θ appears through the sinus and cosinus of θ, they are

2π–periodic. Hence the assumptions for applying the averaging theory described in

subsection 1.6 chapter 1 are satisfied. Now we shall study the limit cycles bifurcating

from the center of systems (5.2) when it is perturbed as in (5.8). We give only the expres-

sions of functions F1(r,θ) and F2(r,θ). The explicit expressions of Fi(r,θ) for i = 3, . . . ,7
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are very long, therefore we shall omit them here. Thus we have

F1(r,θ) = a2
00 cosθ + b2

00sinθ + 1
2r(b

1
01 + a1

10 − b
1
01 cos2θ + a1

10 cos2θ + b1
10 sin2θ + a1

01 sin2θ),

and

F2(r,θ) = 1
r (a2

00 cosθ + a1
10r cos2θ + b2

00 sinθ + b1
10r cosθ sinθ + a1

01r cosθ sinθ + b1
01

r sin2θ)(−b2
00 cosθ − b1

10r cos2θ + a2
00 sinθ − b1

01r cosθ sinθ + a1
10r cosθ

sinθ + a1
01r sin2θ) + (a3

00 cosθ + a2
10r cos2θ + a1

20r
2 cos3θ + b3

00 sinθ

+b2
10r cosθ sinθ + a2

01r cosθ sinθ + b1
20r

2 cos2θ sinθ + a1
11r

2 cos2θ

sinθ + b2
001r sin2θ + b1

11r
2 cosθ sin2θ + a1

02r
2 cosθ sin2θ + b1

02r
2 sin3θ).

Using the formulas given in subsection 1.6 chapter 1, the averaged function of first order

is

f1(r) = (b1
01 + a1

10)r.

Clearly the polynomial f1(r) has no positive root, so the first average function does

not provide any information on the limit cycles that bifurcate from the center when we

perturb it as in system 5.8. So, the proof of the theorem follows for k = 1.

Taking b1
01 = −a1

10, we obtain f1(r) ≡ 0. We apply the averaging theory of second order

and we get the averaged function of second order f2(r) = (b2
01 + a2

10)r.

Again the second averaged function does not provide any limit cycles. The proof of

statement (b) holds.

Now taking b2
01 = −a2

10, we get f2(r) ≡ 0, and applying the averaging theory of third

order, we obtain the third averaged function f3(r) = r(M2r
2 +M0) where

M0 = −(b1
11b

2
00 − b

3
01 + 2b2

00a
1
20 − 2b1

02a
2
00 − a

1
11a

2
00 − a

3
10),

M2 = 1
4(3b1

03 + b1
21 + a1

12 + 3a1
30).

Clearly the coefficients M0 and M2 are independent, so the polynomial f3(r) can have at

most one positive real root, so statement (c) of the theorem is proved.
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In order to apply the averaging theory of fourth order we need that f3(r) ≡ 0 . So we take

a3
10 = b1

11b
2
00 − b

3
01 + 2b2

00a
1
20 − 2b1

02a
2
00 − a

1
11a

2
00, a1

12 = −3b1
03 − b

1
21 − 3a1

30.

Computing the function f4(r) , we obtain f4(r) = r(N2r
2 +N0), where

N2 = −1
4

(b1
02b

1
11 + b1

11b
1
20 + b1

10b
1
21 − 3b2

03 − b
2
21 + b1

21a
1
01 − a

2
12 − 3a2

30 + 3b1
10a

1
30

−2b1
02a

1
02 − 2b1

12a
1
10 − a

1
02a

1
11 + 2b1

20a
1
20 − a

1
11a

1
20 − 2a1

10a
1
21 + 3a1

01a
1
30)

N0 = −(−b1
10b

1
11b

2
00 + b2

00b
2
11 + b1

11b
3
00 − b

4
01 + 2b1

02b
2
00a

1
10 − a

1
11a

3
00 − a

4
10 + 2b2

00a
2
20

+b2
00a

1
10a

1
11 − 2b1

10b
2
00a

1
20 + 2b3

00a
1
20 − 2b2

02a
2
00 − 2b1

02a
1
01a

2
00 − 2b1

02a
3
00

−b1
11a

1
10a

2
00 − a

1
01a

1
11a

2
00 − 2a1

10a
1
20a

2
00 − a

2
00a

2
11).

From the expression of the polynomial f4(r) we know that it has at most one positive

real root. Hence statement (d) of the theorem is proved.

Doing N2 = 0 and N0 = 0 and we extract the value of a2
12 from N2 = 0 and the value of

a4
10 from N0 = 0, we have that f4(r) ≡ 0, which allows us to apply the averaging theory of

order five, and we obtain the fifth averaged function f5(r) = r(H4r
4 +H2r

2 +H0), where

H0 = −((b1
10)2b1

11b
2
00 − b

1
21(b2

00)2 − b1
11b

2
00b

2
10 − b

1
10b

2
00b

2
11 − b

1
10b

1
11b

3
00 + b2

11b
3
00 + b2

00b
3
11

+2b2
00b

2
02a

1
10 + 2b1

02b
3
00a

1
10 + 2b1

02b
2
00a

1
01a

1
10 + b1

11b
2
00(a1

10)2 − 2b1
02b

1
10b

2
00a

1
10 − b

1
10

b2
00a

1
10a

1
11 + b3

00a
1
10a

1
11 + b2

00a
1
01a

1
10a

1
11 + 2(b1

10)2b2
00a

1
20 − 2b2

00b
2
10a

1
20 − a

5
10 − a

2
11a

3
00

+2b4
00a

1
20 + 2b2

00(a1
10)2a1

20 − 3(b2
00)2a1

30 + b1
11b

4
00 − 2b1

10b
3
00a

1
20 + 2b1

12b
2
00a

2
00 − b

5
01

−2b3
002a2

00 − 2b2
02a

1
01a

2
00 − 2b1

02(a1
01)2a2

00 + b1
10b

1
11a

1
10a

2
00 − b

2
11a

1
10a

2
00 + 2b2

00a
3
20 − b

1
11

a1
01a

1
10a

2
00 − 2b1

02(a1
10)2a2

00 + b1
21(a2

00)2 + 3a1
30(a2

00)2 − 2b1
02a

2
00a

2
01 − a

2
00a

3
11 − a

1
11a

4
00

−(a1
01)2a1

11a
2
00 − (a1

10)2a1
11a

2
00 + 2b1

10a
1
10a

1
20a

2
00 − 2a1

01a
1
10a

1
20a

2
00 + 2b2

00a
1
21a

2
00 + b2

00

a1
11a

2
10 − b

1
11a

2
00a

2
10 − 2a1

20a
2
00a

2
10 + b2

00a
1
10a

2
11 − a

1
01a

2
00a

2
11 − a

1
11a

2
00a

2
01 − 2b1

02a
4
00

−2b1
10b

2
00a

2
20 + 2b3

00a
2
20 − 2a1

10a
2
00a

2
20 − 2b2

02a
3
00 − 2b1

02a
1
01a

3
00 + 2b1

02b
2
00a

2
10 − b

1
11

a1
10a

3
00 − a

1
01a

1
11a

3
00 − 2a1

10a
1
20a

3
00),
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H2 = −1
4

(−b1
02b

1
10b

1
11 − 2b1

10b
1
11b

1
20 − (b1

10)2b1
21 + 3b1

13b
2
00 + 3b1

31b
2
00 + b1

11b
2
02 + b1

21b
2
10 − 3a3

30

+b1
02b

2
11 + b1

20b
2
11 + b1

11b
2
20 + b1

10b
2
21 − 3b3

03 − b
3
11 − b

1
11b

1
20a

1
01 − b

1
10b

1
21a

1
01 − 2b2

02a
1
02

−2b1
02a

1
01a

1
02 + 2(b1

02)2a1
10 + (b1

11)2a1
10 + 2b1

10b
1
12a

1
10 + b2

21a
1
01 + 2b1

02b
1
20a

1
10 − 2b2

12a
1
10

−b1
11a

1
02a

1
10 − a

1
01a

1
02a

1
11 − b

1
02a

1
10a

1
11 + 3b2

10a
1
30 + 3b1

10a
2
30 + 3a1

01a
2
30 − p

3
12 − a

1
11a

2
20

+b1
20a

1
10a

1
11 − a

1
10(a1

11)2 − 4b1
10b

1
20a

1
20 + 2b2

20a
1
20 − 2b1

20a
1
01a

1
20 − 3(b1

10)2a1
30 − a

1
20a

2
11

+b1
11a

1
10a

1
20 − 2a1

02a
1
10a

1
20 + b1

10a
1
11a

1
20 − 2a1

10(a1
20)2 + 2b1

10a
1
10a

1
21 + 2b2

00a
1
22 − a

1
02a

2
11

−12b1
04a

2
00 − 2b1

22a
2
00 − 3a1

13a
2
00 − 3a1

31a
2
00 + b1

21a
2
01 − 3b1

10a
1
01a

1
30 + 12b2

00a
1
40 − a

1
11a

2
00

+3a1
30a

2
01 − 2b1

02a
2
02 − 2b1

12a
2
10 − 2a1

21a
2
10 + 2b1

20a
2
20 − 2a1

10a
2
21),

H4 =
1
8

(5b1
05 + b1

23 + b1
41 + a1

14 + a1
32 + 5a1

50).

The rank of the Jacobian matrix of the function H = (H0,H2,H4) with respect to the co-

efficients asij and bsij which appear in their expressions is maximal, i.e. it is 3. Then the

coefficients Hi for i = 0,2,4 which appear in the expression of f5(r) are linearly indepen-

dent. By the roots of a quadratic polynomial in the variable r2 it follows that f5(r) can

have at most two positive real roots. Therefore statement (e) of the theorem is proved.

Imposing that H0 = 0, H2 = 0 and H4 = 0 we know that f5(r) ≡ 0, and applying the aver-

aging theory of order six we obtain the sixth average function f6(r) = r(T4r
4 + T2r

2 + T0).

The values of T0, T2 and T4 are given in the appendix of chapter 5.

Taking T0 = 0,T2 = 0 and T4 = 0 we obtain that f6(r) ≡ 0. Computing the seventh average

function we obtain f7(r) = r(G6r
6 +G4r

4 +G2r
2 +G0). We do not give the big expressions

of the coefficients Gi for i = 0,2,4,6. According to the expression of the polynomial f7(r)

it follows easily that f7(r) can have at most three positive real roots.

Now we are going to reach our result by giving an example with exactely three limit

cycles.

Example with three limit cycles. We consider the kukles differential systems of degree

8 symmetric with respect to the x–axis, with a2 + b2 + c2 + d2 + e2 , 0, perturbed inside a
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class of polynomial differential systems of degree 8

ẋ = −y + ε7
(
r0 + r2x2

)
+ ε6

(
u2x

2 − 1
)

+ ε4
(

815x3

36
− 8xy2 − 5xy +

17x
2

)
+ ε5(x3 + x2

−xy) + ε3(−851x5

30
− x3y + x3 − 7x2y −

37xy2

2
− 3x

2
) + ε2(−14x5

3
+ 2x3y2 − 9x2y3

+x2 − 2xy2 + xy − x − 2y3 + y2 + 1) + ε(−2x7 − 4x4y2 −
2x4y

3
+ 2x3y4 − x3y3 − 7x3y2

+x3y − 7x2y4 + x2y2 +
73xy6

5
− 3xy5 + 2xy2 − 2x − 2y4 + 4y3 + 2y2 − 2y),

ẏ = x+ ax8 + bx6y2 + cx4y4 + dx2y6 + ey8 + ε6(g1x+ g2x
2) + ε7(k0 + k1x) + ε5(

387x2y

4

−
1743xy

4
− 2y3 + 9y2 − 32y − 122

3
) + ε4

(
−5x2y − 6xy2 + xy −

y3

4

)
+ ε2(−x2y2

−2xy4 + 4x+ y5 + y − 1
2

) + ε3
(
4x4y − 2x3y − 4x2 −

xy3

2
−
xy2

3
− 3y5

)
+ ε(5x4y2

+2x4 + x3y3 + x3y + x3 + 4x2y5 + 2x2y3 − 2x2y + 3xy + 3x+ y7 + y5 + 2y),
(5.10)

where r0, r2,u2, g1, g2, k0, k1 are real parametres.

An exhausting computation shows that for the polynomial differential systems (5.10),

we obtain f1(r) ≡ f2(r) ≡ f3(r) ≡ f4(r) ≡ f5(r) ≡ f6(r) ≡ 0, and

f7(r) = r(r − 3)(r − 2)(r − 1)(r + 1)(r + 2)(r + 3).

Then for this systems we have three limit cycles bifurcating from the periodic orbits of

the center ẋ = −y, ẏ = x+ax8 +bx6y2 +cx4y4 +dx2y6 +ey8. Moreover, in polar coordinates

(r,θ) the periodic orbits that bifurcate are r = 1,2,3. This completes the proof of the

theorem when k = 7.
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In this part dedicated to giving appendixes to the chapters 3, 4 and 5

Section The appendix of Chapter 3

Here we provide the values of L1, L2, L3, D1 and D2 that appear in the proof of Theorem

3.1.

L1 = r4
1 r

2
2 r3 − r

2
1 r

4
2 r3 − r

4
1 r2r

2
3 + r1r

4
2 r

2
3 + r2

1 r2r
4
3 − r1r

2
2 r

4
3 + r3

1 r
2
2 r3s1 − r1r

4
2 r3s1 − r

3
1 r2r

2
3s1 + r4

2 r
2
3

s1 + r1r2r
4
3s1 − r

2
2 r

4
3s1 + r2

1 r
2
2 r3s

2
1 − r

4
2 r3s

2
1 − r

2
1 r2r

2
3s

2
1 + r2r

4
3s

2
1 + r1r

2
2 r3s

3
1 − r1r2r

2
3s

3
1 + r2

2 r3s
4
1

−r2r2
3s

4
1 + r4

1 r2r3s2 − r
2
1 r

3
2 r3s2 − r

4
1 r

2
3s2 + r1r

3
2 r

2
3s2 + r2

1 r
4
3s2 − r1r2r

4
3s2 + r3

1 r2r3s1s2 − r
4
3s1s

2
2

−r1r3
2 r3s1s2 − r

3
1 r

2
3s1s2 + r3

2 r
2
3s1s2 + r1r

4
3s1s2 − r2r

4
3s1s2 + r2

1 r2r3s
2
1s2 − r

3
2 r3s

2
1s2 + r2

2 r
2
3s1s

2
2

+r4
3s

2
1s2 + r1r2r3s

3
1s2 − r1r

2
3s

3
1s2 + r2r3s

4
1s2 − r

2
3s

4
1s2 − r

2
1 r

2
3s

2
1s2 + r4

1 r3s
2
2 − r1r

2
2 r3s1s

2
2 + r1r2r

3
3

−r2
1 r

2
2 r3s

2
2 + r1r

2
2 r

2
3s

2
2 − r1r

4
3s

2
2 + r3

1 r3s1s
2
2 + r2

1 r3s
2
1s

2
2 − r

2
2 r3s

2
1s

2
2 + r1r3s

3
1s

2
2 + r3s

4
1s

2
2 − r

2
1 r2r3s

3
2

+r1r2r
2
3s

3
2 − r1r2r3s1s

3
2 + r2r

2
3s1s

3
2 − r2r3s

2
1s

3
2 − r

2
1 r3s

4
2 + r1r

2
3s

4
2 − r1r3s1s

4
2 + r2

3s1s
4
2 − r

4
1 r2r3s3

−r3s21s
4
2 + r4

1 r
2
2s3 − r

2
1 r

4
2s3 + r1r

4
2 r3s3 + r2

1 r2r
3
3s3 − r1r

2
2 r

3
3s3 + r3

1 r
2
2s1s3 − r1r

4
2s1s3 − r

3
1 r2r3s1s3

+r4
2 r3s1s3s1s3 − r

2
2 r

3
3s1s3 + r2

1 r
2
2s

2
1s3 − r

4
2s

2
1s3 − r

2
1 r2r3s

2
1s3 + r2r

3
3s

2
1s3 + r1r

2
2s

3
1s3 − r1r2r3s

3
1s3

+r3
1 r2s1s2s3 − r2r3s

4
1s3 + r4

1 r2s2s3 − r
2
1 r

3
2s2s3 − r

4
1 r3s2s3 + r1r

3
2 r3s2s3 + r2

1 r
3
3s2s3 − r1r2r

3
3s2s3

−r1r3
2s1s2s3 − r

3
1 r3s1s2s3 + r3

2 r3s1s2s3 + r1r
3
3s1s2s3 − r2r

3
3s1s2s3 + r2

1 r2s
2
1s2s3 − r

2
1 r3s

2
1s2s3

+r2
2s

4
1s3 − r

3
2s

2
1s2s3 + r3

3s
2
1s2s3 + r1r2s

3
1s2s3 − r1r3s

3
1s2s3 + r2s

4
1s2s3 − r3s

4
1s2s3 + r2

2 r3s1s
2
2s3

−r2
1 r

2
2s

2
2s3 + r1r

2
2 r3s

2
2s3 − r1r

3
3s

2
2s3 + r3

1s1s
2
2s3 − r1r

2
2s1s

2
2s3 − r

3
3s1s

2
2s3 − r1r2s1s

3
2s3 + r2

1s
2
1s

2
2s3

−r2
2s

2
1s

2
2s3 + r1s

3
1s

2
2s3 + s41s

2
2s3 − r

2
1 r2s

3
2s3 + r1r2r3s

3
2s3 + r2r3s1s

3
2s3 + r4

1s
2
2s3 − r

4
1 r2s

2
3 + r1r

4
2s

2
3

−r2s21s
3
2s3 − r

2
1s

4
2s3 + r1r3s

4
2s3 − r1s1s

4
2s3 + r3s1s

4
2s3 − s

2
1s

4
2s3 + r2

1 r2r
2
3s

2
3 − r

3
1 r2s1s

2
3 − r1r

2
2 r

2
3s

2
3

+r1r2r
2
3s1s

2
3 − r

2
2 r

2
3s1s

2
3 − r

2
1 r2s

2
1s

2
3 + r2r

2
3s

2
1s

2
3 − r1r2s

3
1s

2
3 − r2s

4
1s

2
3 − r

4
1s2s

2
3 + r1r

3
2s2s

2
3 + r4

2s1s
2
3

+r2
1 r

2
3s2s

2
3 − r1r2r

2
3s2s

2
3 − r

3
1s1s2s

2
3 + r3

2s1s2s
2
3 + r1r

2
3s1s2s

2
3 − r2r

2
3s1s2s

2
3 − r

2
1s

2
1s2s

2
3 + r2

3s
2
1s2s

2
3

−r1s31s2s
2
3 − s

4
1s2s

2
3 + r1r

2
2s

2
2s

2
3 − r1r

2
3s

2
2s

2
3 + r2

2s1s
2
2s

2
3 − r

2
3s1s

2
2s

2
3 + r1r2s

3
2s

2
3 + r2s1s

3
2s

2
3 + r1s

4
2s

2
3

+s1s
4
2s

2
3 + r2

1 r2r3s
3
3 − r1r

2
2 r3s

3
3 + r1r2r3s1s

3
3 − r

2
2 r3s1s

3
3 + r2r3s

2
1s

3
3 + r2

1 r3s2s
3
3 − s1s

2
2s

4
3 + r2

1 r2s
4
3

−r1r2
2s

4
3 + r1r2s1s

4
3 − r

2
2s1s

4
3 + r2s

2
1s

4
3 + r2

1s2s
4
3 − r1r2s2s

4
3 + r1s1s2s

4
3 − r2s1s2s

4
3 + s21s2s

4
3 − r1s

2
2s

4
3

−r1r2r3s2s33 + r1r3s1s2s
3
3 − r2r3s1s2s

3
3 + r3s

2
1s2s

3
3 − r1r3s

2
2s

3
3 − r3s1s

2
2s

3
3,
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L2 = 4(r4
1 (r2

2 (r3 + s3) + s2(−r2
3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2

3 + r3(−s2 + s3) + s3(−s2 + s3)))

+r3
1s1(r2

2 (r3 + s3) + s2(−r2
3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2

3 + r3(−s2 + s3) + s3(−s2 + s3)))

+r2
1 (−r4

2 (r3 + s3)− r3
2s2(r3 + s3) + r2

2 (s21 − s
2
2)(r3 + s3) + r2(r4

3 + r3
3s3 + r2

3 (−s21 + s23) + r3(−s32
+s21(s2 − s3) + s33) + s3(−s32 + s21(s2 − s3) + s33)) + s2(r4

3 + r3
3s3 + r2

3 (−s21 + s23) + r3(−s32 + s21(s2

−s3) + s33) + s3(−s32 + s21(s2 − s3) + s33))) + r1(r4
2 (r2

3 + r3(−s1 + s3) + s3(−s1 + s3)) + r3
2s2(r2

3

+r3(−s1 + s3) + s3(−s1 + s3))− r2
2 (r4

3 + r3
3s3 + r2

3 (−s22 + s23) + r3(−s31 + s1s
2
2 − s

2
2s3 + s33) + s3

(−s31 + s1s
2
2 − s

2
2s3 + s33)) + r2(r4

3 (s1 − s2) + r3
3 (s1 − s2)s3 + r2

3 (−s31 + s32 + s1s
2
3 − s2s

2
3) + r3

(s31(s2 − s3) + s2s3(s22 − s
2
3) + s1(−s32 + s33)) + s3(s31(s2 − s3) + s2s3(s22 − s

2
3) + s1(−s32 + s33)))

+s2(r4
3 (s1 − s2) + r3

3 (s1 − s2)s3 + r2
3 (−s31 + s32 + s1s

2
3 − s2s

2
3) + r3(s31(s2 − s3) + s2s3(s22 − s

2
3)

+s1(−s32 + s33)) + s3(s31(s2 − s3) + s2s3(s22 − s
2
3) + s1(−s32 + s33)))) + s1(r4

2 (r2
3 + r3(−s1 + s3)

+s3(−s1 + s3)) + r3
2s2(r2

3 + r3(−s1 + s3) + s3(−s1 + s3))− r2
2 (r4

3 + r3
3s3 + r2

3 (−s22 + s23) + r3

(−s31 + s1s
2
2 − s

2
2s3 + s33) + s3(−s31 + s1s

2
2 − s

2
2s3 + s33)) + r2(r4

3 (s1 − s2) + r3
3 (s1 − s2)s3 + r2

3

(−s31 + s32 + s1s
2
3 − s2s

2
3) + r3(s31(s2 − s3) + s2s3(s22 − s

2
3) + s1(−s32 + s33)) + s3(s31(s2 − s3) + s2

s3(s22 − s
2
3) + s1(−s32 + s33))) + s2(r4

3 (s1 − s2) + r3
3 (s1 − s2)s3 + r2

3 (−s31 + s32 + s1s
2
3 − s2s

2
3) + r3

(s31(s2 − s3) + s2s3(s22 − s
2
3) + s1(−s32 + s33)) + s3(s31(s2 − s3) + s2s3(s22 − s

2
3) + s1(−s32 + s33)))))2

−4(r2
1 (−r3

2 (r3 + s3) + r2
2 (s1 − s2)(r3 + s3) + r2(r3

3 + r3(s1 − s2 − s3)(s2 − s3) + (s1 − s2 − s3)

(s2 − s3)s3 + r2
3 (−s1 + s3)) + s2(r3

3 + r3(s1 − s2 − s3)(s2 − s3) + (s1 − s2 − s3)(s2 − s3)s3 + r2
3

(−s1 + s3))) + r3
1 (r2

2 (r3 + s3) + s2(−r2
3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2

3 + r3(−s2 + s3) + s3

(−s2 + s3))) + r1(r2(s1 − s2)(r3
3 + r3(s1 − s3)(s2 − s3)− r2

3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3)

+(s1 − s2)s2(r3
3 + r3(s1 − s3)(s2 − s3)− r2

3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + r3
2 (r2

3 + r3(−s1
+s3) + s3(−s1 + s3))− r2

2 (r3
3 + r2

3 (−s2 + s3)− r3(s1 − s3)(s1 − s2 + s3)− (s1 − s3)s3(s1 − s2
+s3))) + s1(r2(s1 − s2)(r3

3 + r3(s1 − s3)(s2 − s3)− r2
3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + (s1

−s2)s2(r3
3 + r3(s1 − s3)(s2 − s3)− r2

3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + r3
2 (r2

3 + r3(−s1 + s3)

+s3(−s1 + s3))− r2
2 (r3

3 + r2
3 (−s2 + s3)− r3(s1 − s3)(s1 − s2 + s3)− (s1 − s3)s3(s1 − s2 + s3))))

(r5
1 (r2

2 (r3 + s3) + s2(−r2
3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2

3 + r3(−s2 + s3) + s3(−s2 + s3))) + r4
1

s1(r2
2 (r3 + s3) + s2(−r2

3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2
3 + r3(−s2 + s3) + s3(−s2 + s3))) + r3

1

s21(r2
2 (r3 + s3) + s2(−r2

3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2
3 + r3(−s2 + s3) + s3(−s2 + s3))) + r2

1

(−r5
2 (r3 + s3)− r4

2s2(r3 + s3)− r3
2s

2
2(r3 + s3) + r2

2 (s31 − s
3
2)(r3 + s3) + r2(r5

3 + r4
3s3 + r3

3s
2
3 + r2

3

(−s31 + s33) + r3(−s42 + s31(s2 − s3) + s43) + s3(−s42 + s31(s2 − s3) + s43)) + s2(r5
3 + r4

3s3 + r3
3s

2
3 + r2

3

(−s31 + s33) + r3(−s42 + s31(s2 − s3) + s43) + s3(−s42 + s31(s2 − s3) + s43))) + r1(r5
2 (r2

3 + r3(−s1 + s3)

+s3(−s1 + s3)) + r4
2s2(r2

3 + r3(−s1 + s3) + s3(−s1 + s3)) + r3
2s

2
2(r2

3 + r3(−s1 + s3) + s3(−s1 + s3))
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+s43) + s3(−s41 + s1s
3
2 − s

3
2s3 + s43)) + r2(r5

3 (s1 − s2) + r4
3 (s1 − s2)s3 + r3

3 (s1 − s2)s23 + r2
3 (−s41 + s42

+s1s
3
3 − s2s

3
3) + r3(s41(s2 − s3) + s2s3(s32 − s

3
3) + s1(−s42 + s43)) + s3(s41(s2 − s3) + s2s3(s32 − s

3
3) + s1

(−s42 + s43))) + s2(r5
3 (s1 − s2) + r4

3 (s1 − s2)s3 + r3
3 (s1 − s2)s23 + r2

3 (−s41 + s42 + s1s
3
3 − s2s

3
3) + r3(s41(s2

−s3) + s2s3(s32 − s
3
3) + s1(−s42 + s43)) + s3(s41(s2 − s3) + s2s3(s32 − s

3
3) + s1(−s42 + s43)))) + s1(r5

2 (r2
3

+r3(−s1 + s3) + s3(−s1 + s3)) + r4
2s2(r2

3 + r3(−s1 + s3) + s3(−s1 + s3)) + r3
2s

2
2(r2

3 + r3(−s1 + s3) + s3

(−s1 + s3))− r2
2 (r5

3 + r4
3s3 + r3

3s
2
3 + r2

3 (−s32 + s33) + r3(−s41 + s1s
3
2 − s

3
2s3 + s43) + s3(−s41 + s1s

3
2 − s

3
2s3

+s43)) + r2(r5
3 (s1 − s2) + r4

3 (s1 − s2)s3 + r3
3 (s1 − s2)s23 + r2

3 (−s41 + s42 + s1s
3
3 − s2s

3
3) + r3(s41(s2 − s3)

+s2s3(s32 − s
3
3) + s1(−s42 + s43)) + s3(s41(s2 − s3) + s2s3(s32 − s

3
3) + s1(−s42 + s43))) + s2(r5

3 (s1 − s2)

+r4
3 (s1 − s2)s3 + r3

3 (s1 − s2)s23 + r2
3 (−s41 + s42 + s1s

3
3 − s2s

3
3) + r3(s41(s2 − s3) + s2s3(s32 − s

3
3) + (−s42

+s43))s1 + s3(s41(s2 − s3) + s2s3(s32 − s
3
3) + s1(−s42 + s43))))),

L3 = r2
1 (−r3

2 (r3 + s3) + r2
2 (s1 − s2)(r3 + s3) + r2(r3

3 + r3(s1 − s2 − s3)(s2 − s3) + (s1 − s2 − s3)(s2

−s3)s3 + r2
3 (−s1 + s3)) + s2(r3

3 + r3(s1 − s2 − s3)(s2 − s3) + (s1 − s2 − s3)(s2 − s3)s3 + r2
3 (−s1

+s3))) + r3
1 (r2

2 (r3 + s3) + s2(−r2
3 + r3(s2 − s3) + (s2 − s3)s3)− r2(r2

3 + r3(−s2 + s3) + s3(−s2
+s3))) + r1(r2(s1 − s2)(r3

3 + r3(s1 − s3)(s2 − s3)− r2
3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + (s1

−s2)s2(r3
3 + r3(s1 − s3)(s2 − s3)− r2

3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + r3
2 (r2

3 + r3(−s1
+s3) + s3(−s1 + s3))− r2

2 (r3
3 + r2

3 (−s2 + s3)− r3(s1 − s3)(s1 − s2 + s3)− (s1 − s3)s3(s1 − s2
+s3))) + s1(r2(s1 − s2)(r3

3 + r3(s1 − s3)(s2 − s3)− r2
3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3)

+(s1 − s2)s2(r3
3 + r3(s1 − s3)(s2 − s3)− r2

3 (s1 + s2 − s3) + (s1 − s3)(s2 − s3)s3) + r3
2 (r2

3 + r3

(−s1 + s3) + s3(−s1 + s3))− r2
2 (r3

3 + r2
3 (−s2 + s3)− r3(s1 − s3)(s1 − s2 + s3)− (s1 − s3)s3

(s1 − s2 + s3))).

D1 =
1

−(r1 + s1)s22 + (r2
1 + (s1 − r2)r1 + s1(s1 − r2))s2 + r2(r2

1 + (s1 − r2)r1 + s1(s1 − r2))

(
(b2

2

(−(r2 + s2)s33 + (r2
2 + s2r2 + s22)s23 − r

2
3 (r2

2 + (s2 − r3)r2 + s2(s2 − r3)))r5
1 + b2(b2s1 + 2)(r3

−s3)((r2
3 + (s3 − s2)r3 + s3(s3 − s2))r2 − r2

2 (r3 + s3) + s2(r2
3 + (s3 − s2)r3 + s3(s3 − s2)))r4

1

+(b2s1 + 1)2(r3 − s3)((r2
3 + (s3 − s2)r3 + s3(s3 − s2))r2 − r2

2 (r3 + s3) + s2(r2
3 + (s3 − s2)r3

+s3(s3 − s2)))r3
1 + (r3 − s3)(b2

2(r3 + s3)r5
2 + b2(b2s2 + 2)(r3 + s3)r4

2 + (b2s2 + 1)2(r3 + s3)

r3
2 − (s1 − s2)((s21 + s2s1 + s22)b2

2 + 2(s1 + s2)b2 + 1)(r3 + s3)r2
2 + (−2b2s

4
3 − 2b2r3s

3
3 + (−2

b2r
2
3 + s1 + b2s

2
1(b2s1 + 2))s23 + (b2

2s
4
2 + 2b2s

3
2 + s22 − s1(b2s1 + 1)2s2 + r3(−2b2r

2
3 + s1 + b2

s21(b2s1 + 2)))s3 + r3(b2
2s

4
2 + 2b2s

3
2 + s22 − s1(b2s1 + 1)2s2 + r3(−2b2r

2
3 + s1 + b2s

2
1(b2s1
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+2))))r2 + s2(−2b2s
4
3 − 2b2r3s

3
3 + (−2b2r

2
3 + s1 + b2s

2
1(b2s1 + 2))s23 + (b2

2s
4
2 + 2b2s

3
2 + s22

−s1(b2s1 + 1)2s2 + r3(−2b2r
2
3 + s1 + b2s

2
1(b2s1 + 2)))s3 + r3(b2

2s
4
2 + 2b2s

3
2 + s22 − s1(b2s1 + 1)2

s2 + r3(−2b2r
2
3 + s1 + b2s

2
1(b2s1 + 2)))))r2

1 + (b2
2(−r3

3 + s1r
2
3 + s23(s3 − s1))r5

2 − b2(b2s2 + 2)(r3 − s3)

(r2
3 + (s3 − s1)r3 + s3(s3 − s1))r4

2 − (b2s2 + 1)2(r3 − s3)(r2
3 + (s3 − s1)r3 + s3(s3 − s1))r3

2 + (−2b2s
5
3

+s2(b2s2 + 1)2s33 + s1(b2
2s

3
1 + 2b2s

2
1 + s1 − s2(b2s2 + 1)2)s23 − r

2
3 (−2b2r

3
3 + b2

2(r3 − s1)s32 + s21 + 2b2

(r3 − s1)s22 + b2s
3
1(b2s1 + 2) + (r3 − s1)s2))r2

2 + (s1 − s2)(2b2s
5
3 − (b2s

2
1 + s1 + b2s

2
2 + s2)(b2(s1 + s2)

+1)s33 + s1s2((s21 + s2s1 + s22)b2
2 + 2(s1 + s2)b2 + 1)s23 + r2

3 ((r3(s1 + s2)(s21 + s22)− s1s2(s21 + s2s1

+s22))b2
2 − 2(r3 − s1)(r3 − s2)(r3 + s1 + s2)b2 − s1s2 + r3(s1 + s2)))r2 + s2(s2 − s1)(−2b2s

5
3 + (b2s

2
1

+s1 + b2s
2
2 + s2)(b2(s1 + s2) + 1)s33 − s1s2((s21 + s2s1 + s22)b2

2 + 2(s1 + s2)b2 + 1)s23 + r2
3 (−r3(s1 + s2)

(s21 + s22)b2
2 + s1s2(s21 + s2s1 + s22)b2

2 + 2(r3 − s1)(r3 − s2)(r3 + s1 + s2)b2 + s1s2 − r3(s1 + s2))))r1 + s1

(b2
2(−r3

3 + s1r
2
3 + s23(s3 − s1))r5

2 − b2(b2s2 + 2)(r3 − s3)(r2
3 + (s3 − s1)r3 + s3(s3 − s1))r4

2 − (b2s2 + 1)2

(r3 − s3)(r2
3 + (s3 − s1)r3 + s3(s3 − s1))r3

2 + (−2b2s
5
3 + s2(b2s2 + 1)2s33 + s1(b2

2s
3
1 + 2b2s

2
1 + s1 − s2(b2

s2 + 1)2)s23 − r
2
3 (−2b2r

3
3 + b2

2(r3 − s1)s32 + s21 + 2b2(r3 − s1)s22 + b2s
3
1(b2s1 + 2) + (r3 − s1)s2))r2

2 + (s1

−s2)(2b2s
5
3 − (b2s

2
1 + s1 + b2s

2
2 + s2)(b2(s1 + s2) + 1)s33 + s1s2((s21 + s2s1 + s22)b2

2 + 2(s1 + s2)b2 + 1)

s23 + r2
3 ((r3(s1 + s2)(s21 + s22)− s1s2(s21 + s2s1 + s22))b2

2 − 2(r3 − s1)(r3 − s2)(r3 + s1 + s2)b2 − s1s2 + r3

(s1 + s2)))r2 + s2(s2 − s1)(−2b2s
5
3 + (b2s

2
1 + s1 + b2s

2
2 + s2)(b2(s1 + s2) + 1)s33 − s1s2((s21 + s2s1 + s22)

b2
2 + 2(s1 + s2)b2 + 1)s23 + r2

3 (−r3(s1 + s2)(s21 + s22)b2
2 + s1s2(s21 + s2s1 + s22)b2

2 + 2(r3 − s1)(r3 − s2)(r3

+s1 + s2)b2 + s1s2 − r3(s1 + s2)))))
)

+ (s43 − r
4
3 )a2 + b2

2(s63 − r
6
3 ),

D2 =
1

s2(r2
1 + r1(s1 − r2) + s1(s1 − r2)) + r2(r2

1 + r1(s1 − r2) + s1(s1 − r2)) + s22(−(r1 + s1))

(
− r3

3 (r1

+s1)(r2 + s2)(r4
1 + r2

1s
2
1 − r

4
2 − r

2
2s

2
2 + s41 − s

4
2) + ar2

3 (r2
1 + r1s1 + s21)(r2

2 + r2s2 + s22)(r3
1 − r

3
2 + s31

−s32) + as23(s3(r1 + s1)(r2 + s2)(r4
1 + r2

1s
2
1 − r

4
2 − r

2
2s

2
2 + s41 − s

4
2) + (r2

1 + r1s1 + s21)(r2
2 + r2s2 + s22)

(−r3
1 + r3

2 − s
3
1 + s32)) + s63(−r2

1 (r2 + s2) + r1(r2
2 + r2(s2 − s1) + s2(s2 − s1)) + s1(r2

2 + r2(s2 − s1)

+s2(s2 − s1))) + r6
3 (s2(r2

1 + r1(s1 − r2) + s1(s1 − r2)) + r2(r2
1 + r1(s1 − r2) + s1(s1 − r2)) + s22(−(r1

+s1))
)
.
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Section The appendix of Chapter 4

Here we provide the values E, F, G1, G2, G3, H1, H2, R1, R2 and R3, that appear in the

proof of Theorem 4.1.

E = ab3(−λ3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2) + (λ3(−1−φ1 + (−1 +φ1)φ2)(1 +φ1φ2)(−1 +φ1 +φ2

+φ1φ2)− (φ1 +φ2)(φ2
1 +φ2

2 + 2φ2
1φ

2
2) +λ2

3(φ1 +φ2)(φ2
1 +φ2

2 + 2φ2
1φ

2
2))φ3 +λ3(1 +φ2

1)

(φ1 +φ2)(1 +φ2
2)φ2

3 + (1 +φ1φ2)(−1 +φ1φ2 +λ3(φ1 +φ2))(−φ1 −φ2 +λ3(−1 +φ1φ2))

φ3
3 +n3

2((1 +φ1φ2)(−1 +φ1φ2 +λ3(φ1 +φ2))(−φ1 −φ2 +λ3(−1 +φ1φ2)) +λ3(1 +φ2
1)

(φ1 +φ2)(1 +φ2
2)φ3 − (−λ3(−1−φ1 + (−1 +φ1)φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2)

−(φ1 +φ2)(2 +φ2
1 +φ2

2) +λ2
3(φ1 +φ2)(2 +φ2

1 +φ2
2))φ2

3 −λ3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2)

φ3
3) +n2

2(λ3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2) + (1 +φ1φ2)(−1 +φ1φ2 +λ3(φ1 +φ2))(−φ1 −φ2

+λ3(−1 +φ1φ2))φ3 + 3λ3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2)φ2
3 − (−λ3(−1−φ1 + (−1 +φ1)φ2)(1

+φ1φ2)(−1 +φ1 +φ2 +φ1φ2)− (φ1 +φ2)(2 +φ2
1 +φ2

2) + λ2
3(φ1 +φ2)(2 +φ2

1 +φ2
2))φ3

3)

+n2(λ3(1−φ2
1 − 3φ1φ2 −φ3

1φ2 −φ2
2 − 3φ2

1φ
2
2 −φ1φ

3
2 +φ3

1φ
3
2 + 3(1 +φ2

1)(φ1 +φ2)(1

+φ2
2)φ3 + (−1−φ1 + (−1 +φ1)φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2)φ2

3 + (1 +φ2
1)(φ1+

φ2)(1 +φ2
2)φ3

3)− (φ1 +φ2)((φ2 −φ3)(φ2 +φ3) +φ2
1(1 +φ2

2(2 +φ2
3))) +λ2

3(φ1 +φ2)((φ2

−φ3)(φ2 +φ3) +φ2
1(1 +φ2

2(2 +φ2
3))))),

F = (1 +n2
2)(1 +φ2

1)(1 +φ2
2)(1 +φ2

3)(φ1 +φ2 −φ3 +φ1φ2φ3 +n2(−1 +φ1φ2 − (φ1 +φ2)φ3)),

G1 = b1D(r3(r3(1 + r3)(1 + r2
3 ) + 2(−1 + r3

3 )s1 − r3(1 + r3)(1 + r2
3 )s21 + 2(−1 + r3

3 )s31) + 2(1 + r2
3 )2

s1(1 + s21)s3 − 2(−1 + r3
3 )(−1 + s21 + r2

3 (−1 + s21)− 2r3(s1 + s31))s23 − 2(1 + r2
3 )2s1(1 + s21)s33

+(−2 + r2
3 (−3 + r3 − r2

3 + r3
3 ) + 2r3(−1 + r3

3 )s1 − (1 + r2
3 )(−2 + (−1 + r3)r2

3 )s21 + 2r3(−1 + r3
3 )

s31)s43 + r1(r3(−2 + 2r3
3 − 3r3(1 + r3)(1 + r2

3 )s1 + 2(−1 + r3
3 )s21 − r3(1 + r3)(1 + r2

3 )s31) + 2(1+

r2
3 )2(1 + s21)s3 − 2(−1 + r3

3 )(3s1 + s31 − 2r3(1 + s21) + r2
3s1(3 + s21))s23 − 2(1 + r2

3 )2(1 + s21)s33
+(2r3(−1 + r3

3 )− 3(1 + r2
3 )(−2 + (−1 + r3)r2

3 )s1 + 2r3(−1 + r3
3 )s21 − (1 + r2

3 )(−2 + (−1 + r3)

r2
3 )s31)s43) + r13(r3(−2 + 2r3

3 − r3(1 + r3)(1 + r2
3 )s1 + 2(−1 + r3

3 )s21 + r3(1 + r3)(1 + r2
3 )s31)

+2(1 + r2
3 )2(1 + s21)s3 + 2(−1 + r3

3 )(−s1 + s31 + r2
3s1(−1 + s21) + 2r3(1 + s21))s23 − 2(1 + r2

3 )2

(1 + s21)s33 + (2r3(−1 + r3
3 )− (1 + r2

3 )(−2 + (−1 + r3)r2
3 )s1 + 2r3(−1 + r3

3 )s21 + (1 + r2
3 )(−2+

(−1 + r3)r2
3 )s31)s43) + r12(r3(−r3(1 + r3)(1 + r2

3 ) + 2(−1 + r3
3 )s1 − 3r3(1 + r3)(1 + r2

3 )s21 + 2

(−1 + r3
3 )s31) + 2(1 + r2

3 )2s1(1 + s21)s3 − 2(−1 + r3
3 )(1 + 3s21 + r2

3 (1 + 3s21)− 2r3(s1 + s31))

s23 − 2(1 + r2
3 )2s1(1 + s21)s33 + (2− r2

3 (−3 + r3 − r2
3 + r3

3 ) + 2r3(−1 + r3
3 )s1 − 3(1 + r2

3 )(−2+

(−1 + r3)r2
3 )s21 + 2r3(−1 + r3

3 )s31)s43)),
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H1 = b1D(b1D(r3(−r3(1 + r3)(1 + r2
3 )− 2(−1 + r3

3 )s1 + r3(1 + r3)(1 + r2
3 )s21 − 2(−1 + r3

3 )s31)− 2

(1 + r2
3 )2s1(1 + s21)s3 + 2(−1 + r3

3 )(−1 + s21 + r2
3 (−1 + s21)− 2r3(s1 + s31))s23 + 2(1 + r2

3 )2s1

(1 + s21)s33 + (2− r2
3 (−3 + r3 − r2

3 + r3
3 )− 2r3(−1 + r3

3 )s1 + (1 + r2
3 )(−2 + (−1 + r3)r2

3 )s21 − 2

r3(−1 + r3
3 )s31)s43 + r3

1 (r3(2− 2r3
3 + r3(1 + r3)(1 + r2

3 )s1 − 2(−1 + r3
3 )s21 − r3(1 + r3)(1 + r2

3 )

s31)− 2(1 + r2
3 )2(1 + s21)s3 − 2(−1 + r3

3 )(−s1 + s31 + r2
3s1(−1 + s21) + 2r3(1 + s21))s23 + 2(1 + r2

3 )2

(1 + s21)s33 + (−2r3(−1 + r3
3 ) + (1 + r2

3 )(−2 + (−1 + r3)r2
3 )s1 − 2r3(−1 + r3

3 )s21 − (1 + r2
3 )(−2+

(−1 + r3)r2
3 )s31)s43) + r1(r3(2− 2r3

3 + 3r3(1 + r3)(1 + r2
3 )s1 − 2(−1 + r3

3 )s21 + r3(1 + r3)(1 + r2
3 )

s31)− 2(1 + r2
3 )2(1 + s21)s3 + 2(−1 + r3

3 )(3s1 + s31 − 2r3(1 + s21) + r2
3s1(3 + s21))s23 + 2(1 + r2

3 )2(1

+s21)s33 + (−2r3(−1 + r3
3 ) + 3(1 + r2

3 )(−2 + (−1 + r3)r2
3 )s1 − 2r3(−1 + r3

3 )s21 + (1 + r2
3 )(−2 + (−1

+r3)r2
3 )s31)s43) + r2

1 (r3(r3(1 + r3)(1 + r2
3 )− 2(−1 + r3

3 )s1 + 3r3(1 + r3)(1 + r2
3 )s21 − 2(−1 + r3

3 )

s31)− 2(1 + r2
3 )2s1(1 + s21)s3 + 2(−1 + r3

3 )(1 + 3s21 + r2
3 (1 + 3s21)− 2r3(s1 + s31))s23 + 2(1 + r2

3 )2s1

(1 + s21)s33 + (−2 + r2
3 (−3 + r3 − r2

3 + r3
3 )− 2r3(−1 + r3

3 )s1 + 3(1 + r2
3 )(−2 + (−1 + r3)r2

3 )s21 − 2r3

(−1 + r3
3 )s31)s43))2 − 2(r1 + s1)(−2s23 + r2

3 (1 + r3 + (−1 + r3)s23))(C(1 + r2
1 )(1 + r2

3 )(1 + s21)

(1 + s23)(−r3(r3 + r2
3 − 2s1) + r1r3(2 + r3(1 + r3)s1)− 2(1 + r2

3 )(r1 + s1)s3 + (2 + 2r1r3 + r2
3

−r3
3 + 2r3s1 + r1(−2 + (−1 + r3)r2

3 )s1)s23) + b1D(r1 + s1)(−r2
3 (−1− 2r2

1 + r3 + r2
3 + r3

3 ) + r2
3

(2 + r2
1 (3 + r3 + r2

3 + r3
3 ))s21 + 2(−s21 + r2

1 (−1− r4
3 + (−2 + (−1 + r3)r2

3 (1 + r2
3 ))s21)− r2

3 (−1

+r3 + r2
3 (1 + r3 + s21)))s23 + (2 + r2

3 (5 + 2r2
1 + r3(−1 + r3 − r2

3 )) + (2r2
3 + r2

1 (−2 + (−1 + r3)r2
3 (1

+r2
3 )))s21)s43))(−2(s1 − s3)(s1 + s3) + r2

3 (1 + r3 − s21 + r3s
2
1 + (3 + r3 + (1 + r3)s21)s23) + r2

1 (r3
3 (1

+s21)(1 + s23)− 2(1 + s21(2 + s23)) + r2
3 (−1 + s23 − s

2
1(3 + s23))))),

R1 = b1D(r1 + s1)(−2s23 − r
2
3 (−1 + s23) + r3

3 (1 + s23))(−2s21 + 2s23 + r3
3 (1 + s21)(1 + s23) + r2

3 (1 + 3s23
+s21(−1 + s23)) + r2

1 (r3
3 (1 + s21)(1 + s23)− 2(1 +2 (2 + s23)) + r2

3 (−1 + s23 − s
2
1(3 + s23)))),

G2 = −4b2(1 +n2
2)(1 +n2

3)(1 + r2
2 )(1 + r2

3 )(a2(n2 −n3)(1 +n2n3)(1 + r2
2 )(1 + r2

3 ) + (1 +n2
2)(1

+n2
3)(r2 + (−1 + r2

2 )r3 − r2r3
3 ) + a(n2(1 +n2

3)(1 + r2
2 )(−1 + r3

3 ) + (n3 − r2 + r3 +n3r2r3)(1

−r2r3 +n3(r2 + r3))−n2
2(1 +n3(r2 − r3) + r2r3)(r2 + r3 +n3(−1 + r2r3))))(−2a3(n2 −n3)

(1 + r2
2 )2(1 + r2

3 )2(−2(n2 +n3)(1 +n2
2n

2
3) + 2(−1 +n2

2)(−1 +n2n3)(−1 +n2
3)λ2 + (−1

+n2
2)(n2 +n3)(−1 +n2

3)λ2
2)− a(1 +n2

2)(1 +n2
3)(−4(1 +n2

2)(−1 +n2
3)r2

2 + 4((−1 +n2
2)(1

+n2
3) + 4(n2 −n3)(n2 +n3)r2

2 + (−1 +n2
2)(1 +n2

3)r4
2 )r2

3 − 4(1 +n2
2)(−1 +n2

3)r2
2 r

4
3 − 4((1

+n2
2)(−1 + (−1 +n2

2)(1 +n2
3)r3(−1 + r3

3 ) + 2(−1 +n2
2)(1 +n2

3)r2
2 r3(−1 + r3

3 ) + (−1 +n2
2)(1

+n2
3)r4

2 r3(−1 + r3
3 ))λ2 + (−4r2

2 − 2n2
3(1 + r4

2 ) + 2n2
2(1 + 2n2

3r
2
2 + r4

2 )− 2(1 +n2
2)(−1 +n2

3)

(−1 + r2
2 )2r2

3 − 2(−1 +n2
2)(1 +n2

3)(1 + r2
2 )2r3

3 − (1 +n2
2)(−1 +n2

3)(−1 + r2
2 )2r4

3 + (−1 +n2
2)
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(1 +n2
3)(1 + r2

2 )2r6
3 )λ2

2) + (1 +n2
2)2(1 +n2

3)2(−4r2
3 + 4r2

2 (1− r2
3 (−1− r2

2 + r3 + r3
3 ))− 4(−1

+r2)(1 + r2)(r2 − r3)(−1 + r3)(−1 + r2r3)(1 + r3 + r2
3 )λ2 + (−1 + r2

2 )(−1 + r3
3 )(r2

3 + r3
3 + r2

2

(−2 + (−1 + r3)r2
3 ))λ2

2) + a2(1 + r2
2 )(1 + r2

3 )(−4n2
3(−1 + r2

2 )(1 + r2
3 ) + 4n3(−1 +n2

3)(−1 + r2
2 )(1

+r2
3 )λ2 + 4n2(1 +n2

3)2(1 + r2
2 )(−1 + r3

3 )λ2 − 4n3
2(1 +n2

3)2(1 + r2
2 )(−1 + r3

3 )λ2 + (−4n2
3 − 2(1

+n4
3)r2

2 − (−1 +n2
3)2(−1 + r2

2 )r2
3 + (1 +n2

3)2(1 + r2
2 )r3

3 )λ2
2 +n4

2(−4n2
3(−1 + r2

2 )(1 + r2
3 ) + 4n3(−1

+n2
3)(−1 + r2

2 )(1 + r2
3 )λ2 + (−4n2

3 − 2(1 +n4
3)r2

2 − (−1 +n2
3)2(−1 + r2

2 )r2
3 + (1 +n2

3)2(1 + r2
2 )r3

3 )

λ2
2) + 2n2

2(−2(1 +n4
3)− 2(1 + 4n2

3 +n4
3)r2

2 − 4n2
3(−1 + r2

2 )r2
3 + 2(1 +n2

3)2(1 + r2
2 )r3

3 + 4n3(−1

+n2
3)(−1 + r2

2 )(1 + r2
3 )λ2 − (−2(1 +n4

3 + 2n2
3r

2
2 ) + (−1 +n2

3)2(−1 + r2
2 )r2

3 + (1 +n2
3)2(1 + r2

2 )r3
3 )

λ2
2))),

R2 = 4(1 +n2
2)(1 +n2

3)(1 + r2
2 )(1 + r2

3 )(a2(n2 −n3)(1 +n2n3)(1 + r2
2 )(1 + r2

3 ) + (1 +n2
2)(1 +n2

3)

(r2 + (−1 + r2
2 )r3 − r2r3

3 ) + a(n2(1 +n2
3)(1 + r2

2 )(−1 + r3
3 ) + (n3 − r2 + r3 +n3r2r3)(1− r2r3

+n3(r2 + r3))−n2
2(1 +n3(r2 − r3) + r2r3)(r2 + r3 +n3(−1 + r2r3)))),

G3 = ab3((1 +φ2
1)(φ1 +φ2)(1 +φ2

2)− (−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1

φ2)φ4 − (1 +φ2
1)(φ1 +φ2)(1 +φ2

2)φ2
4 − (−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2

+φ1φ2)φ3
4 +n2

3(−(1 +φ2
1)(φ1 +φ2)(1 +φ2

2)− (−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1

+φ1 +φ2 +φ1φ2)φ4 − 3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2)φ2
4 − (−1 +φ1(−1 +φ2)−φ2)(1 +φ1

φ2)(−1 +φ1 +φ2 +φ1φ2)φ3
4) +n3(−1 +φ2

1 + 3φ1φ2 +φ3
1φ2 +φ2

2 + 3φ2
1φ

2
2 +φ1φ

3
2 −φ

3
1

φ3
2 − 3(1 +φ2

1)(φ1 +φ2)(1 +φ2
2)φ4 − (−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2

+φ1φ2)φ2
4 − (1 +φ2

1)(φ1 +φ2)(1 +φ2
2)φ3

4)

+n3
3(−1 +φ2

1 + 3φ1φ2 +φ3
1φ2 +φ2

2 + 3φ2
1φ

2
2 +φ1φ

3
2 −φ

3
1φ

3
2 − (1 +φ2

1)(φ1 +φ2)(1 +φ2
2)

φ4 − (−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2)φ2
4 + (1 +φ2

1)(φ1 +φ2)(1

+φ2
2)φ3

4)),

H2 = ab3(ab3(n3(−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2) +n3
3(−1 +φ1(−1

+φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2)− (1 +φ2
1)(φ1 +φ2)(1 +φ2

2) +n2
3(1 +φ2

1)(φ1

+φ2)(1 +φ2
2) + ((−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2φ1φ2) +n2

3(−1 +φ1(−1

+φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2) + 3n3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2) +n3
3(1 +φ2

1)

(φ1 +φ2)(1 +φ2
2))φ4 + (n3(−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2) +n3

3

(−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2) + (1 +φ2
1)(φ1 +φ2)(1 +φ2

2) + 3

n2
3(1 +φ2

1)(φ1 +φ2)(1 +φ2
2))φ2

4 − (−(−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1

φ2)−n2
3(−1 +φ1(−1 +φ2)−φ2)(1 +φ1φ2)(−1 +φ1 +φ2 +φ1φ2)−n3(1 +φ2

1)(φ1 +φ2)(1

+φ2
2) +n3

3(1 +φ2
1)(φ1 +φ2)(1 +φ2

2))φ3
4)2 + (1/F)4(φ1 +φ2)(n3 +φ4)((φ2 −φ4)(φ2 +φ4)
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+n2
3(−1 +φ2

1φ
2
2 − (2 +φ2

1 +φ2
2)φ2

4) +φ2
1(1 +φ2

2(2 +φ2
4)))(E(1 +n2

3)(1 +φ2
1)(1 +φ2

2)(1 +φ2
4)

(φ1 +φ2 −φ4 +φ1φ2φ4 +n3(−1 +φ1φ2 − (φ1 +φ2)φ4)) + ab3F(φ1 +φ2)(n3 +φ4)((φ2

−φ4)(φ2 +φ4) +n2
3(−1 +φ2

1φ
2
2 − (2 +φ2

1 +φ2
2)φ2

4) +φ2
1(1 +φ2

2(2 +φ2
4))))),

R3 = (2ab3(φ1 +φ2)(n3 +φ4)(φ2
1 +φ2

2 + 2φ2
1φ

2
2 +n2

3(−1 +φ2
1φ

2
2)− (1−φ2

1φ
2
2 +n2

3(2 +φ2
1 +φ2

2))

φ2
4)).

128



Section The appendix of Chapter 5

Here we provide the values of T0, T2 and T4 that appear in the proof of Theorem 5.2.

T0 = (b1
10)3b1

11b
2
00 − 2b1

02b
1
11(b2

00)2 − b1
11b

1
20(b2

00)2 − 2b1
10b

1
21(b2

00)2 − 2b1
10b

1
11b

2
00b

2
10 − (b1

10)2b2
00

b2
11 + b2

00b
2
10b

2
11 + (b2

00)2b2
21 − (b1

10)2b1
11b

3
00 + 2b1

21b
2
00b

3
00 + b1

11b
2
10b

3
00 + b1

10b
2
11b

3
00 + b2

00b
3
01

2b1
02 + b1

11b
2
00b

3
10 + b1

10b
1
11b

4
00 − b

2
11b

4
00 − b

2
00b

4
11 − 2b1

02(b1
10)2b2

00a
1
10 + 2b1

12(b2
00)2a1

10 + b6
01

+2b1
10b

2
00b

2
02a

1
10 + 2b1

02b
2
00b

2
10a

1
10 − 2b2

02b
3
00a

1
10 − 2b2

00b
3
02a

1
10 − 2b1

02b
4
00a

1
102b1

02b
1
10 + 2b1

02

b1
10b

3
00a

1
10 + b2

00a
1
01a

1
10 − 2b2

00b
2
02a

1
01a

1
10 − 2b1

02b
3
00a

1
01a

1
10 + 2b1

10b
1
11b

2
00(a1

10)2 − b2
00b

2
11(a1

10)2

−b1
11b

3
00(a1

10)2 − b1
11b

2
00a

1
01(a1

10)2 − 2b1
02b

2
00(a1

10)3 − (b1
11b

2
00)2a1

11 + b2
00b

3
00a

1
11 − b

4
00a

1
10a

1
11

+b2
00b

2
10a

1
10a

1
11 + b1

10b
3
00a

1
10a

1
11 − (b1

10)2b2
00a

1
10a

1
11 + b1

10b
2
00a

1
01a

1
10a

1
11 − b

3
00a

1
01a

1
10a

1
11 − b

2
00

(a1
01)2a1

10a
1
11 − b

2
00(a1

10)3a1
11 + 2(b1

10)3b2
00a

1
20 − 2b1

02(b2
00)2a1

20 − 2b1
20(b2

00)2a1
20 + 2b2

00b
3
10a

1
20

−4b1
10b

2
00b

2
10a

1
20 − 2(b1

10)2b3
00a

1
20 + 2b2

10b
3
00a

1
20 + 2b1

10b
4
00a

1
20 + 4b1

10b
2
00(a1

10)2a1
20 − 2b3

00a
1
20

(a1
10)2 − 2b2

00a
1
01(a1

10)2a1
20 − (b2

00)2a1
11a

1
20 + 2(b2

00)2a1
10a

1
21 − 6b1

10(b2
00)2a1

30 + 4(b1
02)2b2

00a
2
00

+6b2
00b

3
00a

1
30 + (b1

11)2b2
00a

2
00 + 2b1

10b
1
12b

2
00a

2
00 − 2b2

00b
2
12a

2
00 − 2b1

12b
3
00a

2
00 + 2b2

02(a1
01)2a2

00

−b1
11b

3
00a

2
00 + 2b4

02a
2
00 − 2b1

12b
2
00a

1
01a

2
00 + 2b3

00a
1
01a

2
00 + 2b1

02(a1
01)3a2

00 + +2(a1
01a

1
10)2a1

11a
2
00

−b1
11b

2
10a

1
10a

2
00 − b

1
10b

2
11a

1
10a

2
00 + b3

11a
1
10a

2
00 − b

1
10b

1
11a

1
01a

1
10a

2
00 + b2

11a
1
01a

1
10a

2
00 + a1

10a
2
00b

1
11

(a1
01)2 − 2b1

02b
1
10(a1

10)2a2
00 + 2b2

02(a1
10)2a2

004b1
02a

1
01(a1

10)2a2
00 + b1

11(a1
10)3a2

00 + 2b1
02b

2
00a

1
11

a2
00 + (a1

01)3a1
11a

2
00 − b

1
10(a1

10)2a1
11a

2
00 + 2b1

11b
2
00 + (b1

10)2b1
11a

1
10a

2
00a

1
20a

2
00 + 2(a1

10)3a1
20a

2
00

+2(b1
10)2a1

10a
1
20a

2
00 − 2b2

10a
1
10a

1
20a

2
00 − 2b1

10a
1
01a

1
10a

1
20 − 2b3

01a
1
20a

2
00a

2
00 + 2(a1

01)2a1
10a

1
20a

2
00

+2b1
10b

2
00a

1
21a

2
00 − 2b3

00a
1
21a

2
00 − 2b2

00a
1
01a

1
21a

2
00 + b1

11b
1
20(a2

00)2 + b1
10b

1
21(a2

00)2 − b2
21(a2

00)2

−b1
21a

1
01(a2

00)2 − 2b1
02a

1
20(a2

00)2 + 2b1
20a

1
20(a2

00)2 − a1
11a

1
20(a2

00)2 + 3b1
10a

1
30(a2

00)2 − 3a1
01a

1
30

(a2
00)2 − 2b1

02b
2
00a

1
10a

2
01 − b

2
00a

1
10a

1
11a

2
01 + 2b2

02a
2
00a

2
01 + 4b1

02a
1
01a

2
00a

2
01 + b1

11a
1
10a

2
00a

2
01 + a1

01

2a1
11a

2
00a

2
01 + 2a1

10a
1
20a

2
00a

2
01 + 2b1

02b
1
10b

2
00a

2
10 − 2b2

00b
2
02a

2
10 − 2b1

02b
3
00a

2
10 − 2b1

02b
2
00a

1
01a

2
10

−2b1
11b

2
00a

1
10a

2
10 + b1

10b
2
00a

1
11a

2
10 − b

3
00a

1
11a

2
10 − b

2
00a

1
01a

1
11a

2
10 − 4b2

00a
1
10a

1
20a

2
10 − b

1
10b

1
11a

2
00

a2
10 + b2

11a
2
00a

2
10 + b1

11a
1
01a

2
00a

2
10 + 4b1

02a
1
10a

2
00a

2
10 + 2a1

10a
1
11a

2
00a

2
10 − 2b1

10a
1
20a

2
00a

2
10
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+3(b2
00)2a2

30 + 2a1
01a

1
20a

2
00a

2
10 + b1

10b
2
00a

1
10a

2
11 − b

3
00a

1
10a

2
11 − b

2
00a

1
01a

1
10a

2
11 + (a1

01)2a2
00a

2
11

+(a1
10)2a2

00a
2
11 + a2

00a
2
01a

2
11 − b

2
00a

2
10a

2
11 − 2(b1

10)2b2
00a

2
20 + 2b2

00b
2
10a

2
20 + 2b1

10b
3
00a

2
20 − 2b2

00

(a1
10)2a2

20 − 2b4
00a

2
20 − 2b1

10a
1
10a

2
00a

2
20 + 2a1

01a
1
10a

2
00a

2
20 + 2a2

00a
2
10a

2
20 − 2b2

00a
2
00a

2
21 − 3(a2

00)2

a2
30 − 2b1

12b
2
00a

3
00 + 2b3

002a3
002b2

02a
1
01a

3
00 + 2b1

02(a1
01)2a3

00 − b
1
10b

1
11 + a1

10a
3
00 + b1

11a
1
01a

1
10a

3
00

+b2
11a

1
10a

3
00 + 2b1

02(a1
10)2a3

00 + (a1
01)2a1

11a
3
00 + (a1

10)2a1
11a

3
00 − 2b1

10a
1
10a

1
20a

3
00 − 2b2

00a
1
21a

3
00

+2a1
01a

1
10a

1
20a

3
00 − 2b1

21a
2
00a

3
00 − 6a1

30a
2
00a

3
00 + 2b1

02a
2
01a

3
00 + a1

11a
2
01a

3
00 + b1

11a
2
10a

3
00 + 2a1

20

a2
10a

3
00 + a1

01a
2
11a

3
00 + 2a1

10a
2
20a

3
00 + 2b1

02a
2
01a

3
00 + a1

11a
2
01a

3
00 − b

2
00a

1
10a

3
11 + a1

01a
2
00a

3
11 + a3

00

a3
11 + 2b1

10b
2
00a

3
20 − 2b3

00a
3
20 + 2a1

10a
2
00a

3
20 + 2b1

02a
5
00 + a1

11a
5
00 + a6

10 + 2b2
02a
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Conclusion

In this work, we solved the second part of the sixteenth Hilbert problem for three

families of planar discontinuous piecewise differential systems, the first one formed by

a linear differential centers separated by irreducible cubic algebraic curves, the second

family formed by differential Hamiltonian systems without equilibrium points and lin-

ear differential centers separated by irreducible cubic curves, and the third family is

formed by linear differential Hamiltonian systems without equilibrium points separated

by two circles.

On the other hand, we considered Kukles differential systems of degree eight and pro-

vided all their global phase portraits in the Poincaré disk, by using the classical method.

We also solved the second part of the sixteenth Hilbert problem for these systems by

applying the averaging theory up to seven order, and we succeeded in showing a certain

number of limit cycles.
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