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1
Chapter

Basic Material and
Asymptotics

The information that will be used in the theory that will be created
in the next chapters is gathered in this chapter. The existence and
uniqueness theorem for contraction-based starting value prob-
lems, along with results from subsequent iterations and growth es-
timates, make up this background information.

The equations that we will investigate have the following general form:

ẋ = f (x, t ,ε),

where x and f (x, t ,ε) are vectors, elements of Rn. All quantities used
will be real except if explicitly stated otherwise. Often we shall assume
x ∈ D ⊂ Rn with D an open, bounded set. The variable t ∈ R is usu-
ally identified with time; We assume t ≥ 0 or t ≥ t0 with t0 a constant.
The parameter ε plays the part of a small parameter which characterizes
the magnitude of certain perturbations. We usually take ε to satisfy ei-
ther 0 ≤ ε ≤ ε0 or |ε| ≤ ε0, but even when ε = 0 is not in the domain, we
may want to consider limits as ε ↓ 0. We shall use Dx f (x, t ,ε) to indi-
cate the derivative with respect to the spatial variable x; so Dx f (x, t ,ε)
is the matrix with components ∂ fi /∂x j (x, t ,ε). For a vector u ∈ Rn with
components ui , i = 1, ...,n, we use the norm

||u|| =
n∑

i=1

|ui |. (1.1)
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For the n ×n−matrix A, with elements ai j we have

||A|| =
n∑

i , j=1

|ai , j |.

Any pair of vector and matrix norms satisfying ||Ax|| ≤ ||A|| ||x|| may be
used instead, such as the Euclidean norm for vectors and its associated
operator norm for matrices, ||A|| = Sup{||Ax|| : ||x|| = 1}.

In the study of differential equations most vectors depend on vari-
ables. To estimate vector functions we shall nearly always use the sup
norm. For instance for the vector functions arising in the differential
equation formulated above we put

|| f ||sup = sup
x ∈ D,0 ≤ t ≤ T,0 ≤ ε≤ ε0

|| f (x, t ,ε)||.

A system of differential equations on R2n is called a Hamiltonian system
with n degrees of freedom if it has the form

(
q̇i

ṗi

)
=


∂H

∂pi

−∂H

∂qi

 ,

where (q1, ..., qn, p1, ..., pn) are the coordinates on R2n and H : R2n → R is
a function called the Hamiltonian for the system 1. In particular, when
dealing with Hamiltonian systems we often use special coordinate changes
(q, p) ⇔ (Q,P ) that preserve the property of being Hamiltonian, and trans-
form a system with Hamiltonian H(q, p) into one with Hamiltonian K (Q,P ) =
H(q(Q,P ), p(Q,P )). Such coordinate changes are associated with sym-
plectic mappings but were known traditionally as canonical transforma-
tions.

1.1 The initial value problem: Existence, Unique-
ness and Continuation

The vector functions f (x, t ,ε) arising in our study of differential equa-
tions will have certain properties with respect to the variables x and t
and the parameter ε. With respect to the ‘spatial variable’ x, f will al-
ways satisfy a Lipschitz condition:

Master 2 Averaging Theory Course
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Notation 1 Let G = D × [t0, t0 +T ]× (0,ε0].

Definition 1 The vector function f : G → Rn satisfies a Lipschitz
condition in x with Lipschitz constant λ f if we have

|| f (x1, t ,ε)− f (x2, t ,ε)|| ≤λ f ||x1 −x2||,

where ≤λ f is a constant. If f is periodic with period T , the Lipschitz
condition will hold for all time.

It is well known that if f is of class C 1 on an open set U in Rn, and
D is a subset of U with compact and convex closure D , f will satisfy
a Lipschitz condition on D with ≤ λ f = max{D f (x) : x ∈ D}. (The proof
uses the mean value theorem for the scalar functions gi (s) = fi (x1+s(x2−
x1), t ,ε) for 0 ≤ s ≤ 1.) The following lemma shows that convexity is not
necessary. (This is a rather technical issue and the reader can skip the
proof of this lemma on first reading.)

Lemma 1 Suppose that f is C 1 on U , as above, and D is compact
(but not necessarily convex). Then f is still Lipschitz on D.

Proof 1 For convenience we suppress the dependence on t and ε. Since D
is compact, there exists M > 0 such that f (x1)− f (x2) ≤ M for x1, x2 ∈ D.
Again by compactness, construct a finite set of open balls Bi with centers
pi and radii ri (in the norm || ||), such that each Bi is contained in U
and such that the smaller balls B ′

i with centers pi and radii ri /3 cover
D. Let λi

f be a Lipschitz constant for f in Bi , let λ0
f = maxiλ

i
f , and let

δ= mi ni ri /3. Observe that if x1, x2 ∈ D and ||x1 − x2|| ≤ δ, then x1 and x2

belong to the same ball Bi (in fact x1 belongs to some B ′
i and then x2 ∈ Bi ),

and therefore || f (x1)− f (x2)|| <λ0
f ||x1−x2||. Now let λ f = max{λ0

f , M/δ}.

We claim that || f (x1)− f (x2)|| <λ0
f ||x1 −x2|| for all x1, x2 ∈ D.

If ||x1−x2|| ≤ d, this has already been proved (sinceλ0
f ≤λ f ). If x1−x2 >

δ, then

|| f (x1)− f (x2)|| ≤ M = Mδ

δ
≤λ f δ<λ f ||x1 −x2||

This completes the proof of the lemma.
We are now able to formulate a well-known existence and uniqueness

theorem for initial value problems.

Course Averaging Theory Master 2
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Theorem 1 (Existence and uniqueness) Consider the differential
equation

ẋ = f (x, t ,ε),

We are interested in solutions x of this equation with initial value
x(t0) = a. Let D = {x ∈ Rn| ||x −a|| < d}, inducing G by Notation 1,
and f : G →Rn. We assume that

1 f is continuous on G,

2 f satisfies a Lipschitz condition as in Definition 1.

Then the initial value problem has a unique solution x which exists
for t0 ≤ t ≤ t0 + i n f (T,d/M) where M = supG || f || = || f ||sup

Note that the theorem guarantees the existence of a solution on an in-
terval of time which depends explicitly on the norm of f . Additional as-
sumptions enable us to prove continuation theorems, that is, with these
assumptions one can obtain existence for larger intervals or even for all
time. In the sequel we shall often meet equations in the so called stan-
dard form

ẋ = εg 1(x, t ),

where the superscript reflects the ε−degree. (We often use integer su-
perscripts in place of subscripts to avoid confusion with components of
vectors. These superscripts are not to be taken as exponents.) Here, if
the conditions of the existence and uniqueness theorem have been sat-
isfied, we find that the solution exists for t0 ≤ t ≤ t0 + i n f (T,d/M) with

M = supx∈D supt [t0,t0+T )||g 1||.

This means that the size of the interval of existence of the solution is of
the order C /ε with C a constant. This conclusion, in which ε is a small
parameter, involves an asymptotic estimate of the size of an interval.

1.2 The Gronwall Lemma

Closely related to contraction is the idea behind an inequality derived by
Gronwall.

Master 2 Averaging Theory Course
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Lemma 2 (General Gronwall Lemma) Suppose that for t0 ≤ t ≤
t0 +T we have

ϕ(t ) ≤α
∫ t

t0

β(s)ϕ(s)d s,

where ϕ and β are continuous and β(t ) > 0. Then

ϕ(t ) ≤αexp
∫ t

t0

β(s)d s,

for t0 ≤ t ≤ t0 +T .

Proof 2

Φ(t ) =α+
∫ t

t0

β(s)φ(s)d s.

Then φ(t ) ≤ Φ(t ) and Φ̇(t ) = β(t )φ(t ), so (since β(t ) > 0) we have Φ̇(t )−
β(t )Φ(t ) ≤ 0. This differential inequality may be handled exactly as one
would solve the corresponding differential equation (with ≤ replaced by
=). That is, it may be rewritten as

d

d t

(
Φ(t )e

∫ t
t0
β(s)d s

)
≤ 0,

and then integrated from t0 to t , usingΦ(t0) =α, to obtain

Φ(t )e
∫ t

t0
β(s)d s −α≤ 0,

which may be rearranged into the desired result.

Remark 1 The lemma may be generalized further to allow α to depend
on t, provided we assume α is differentiable and α(t ) ≥ 0, α̇(t ) > 0.

Lemma 3 (Specific Gronwall lemma).
Suppose that for t0 ≤ t ≤ t0 +T

φ(t ) ≤ δ2(t − t0)+δ1

∫ t

t0

φ(s)d s +δ3,

with φ(t ) continuous for t0 ≤ t ≤ t0+T and constants δ1 > 0, δ2 ≥ 0,
δ3 ≥ 0 then

φ(t ) ≤ (δ2/δ1 +δ3)eδ1(t−t0) −δ2/δ1

for t0 ≤ t ≤ t0 +T .

Proof 3 This has the form of Lemma 2 with α= δ1/δ2 +δ3 and β(t ) = δ1

for all t , and the result follows at once (changing back to φ(t ).)

Course Averaging Theory Master 2
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1.3 Concepts of Asymptotic Approximation

In the following sections we shall discuss those concepts and elemen-
tary methods in asymptotics which are necessary prerequisites for the
study of slow-time processes in nonlinear oscillations. In considering a
function defined by an integral or defined as the solution of a differen-
tial equation with boundary or initial conditions, approximation tech-
niques can be useful. In the applied mathematics literature no single
theory dominates but many techniques can be found based on a great
variety of concepts leading in general to different results. We mention
here the methods of numerical analysis, approximation by orthonormal
function series in a Hilbert space, approximation by convergent series
and the theory of asymptotic approximations. Each of these methods
can be suitable to understand an explicitly given problem. In this book
we consider problems where the the- ory of asymptotic approximations
is useful and we introduce the necessary concepts in detail. One of the
first examples of an asymptotic approximation was discussed by Euler
[6], or [[7], pp. 585-617], who studied the series

∞∑
n=0

(−1)nn!xn

with x ∈ R. This series clearly diverges for all x = 0. We shall see in a
moment why Euler would want to study such a series in the first place,
but first we remark that if x > 0 is small, the individual terms decrease in
absolute value rapidly as long as nx < 1. Euler used the truncated series
to approximate the function given by the integral∫ ∞

0

e−s

1+ sx
d s

Poincarée ([[21], Chapter 8]) and Stieltjes gave the mathematical foun-
dation of using a divergent series in approximating a function. The the-
ory of asymptotic approximations has expanded enormously ever since,
but curiously enough only few authors concerned themselves with the
foundations of the methods. Both the foundations and the applications
of asymptotic analysis have been treated by Eckhaus [?]. We are inter-
ested in perturbation problems of the following kind: consider the dif-
ferential equation

ẋ = f (t , x,ε) (1.2)

Master 2 Averaging Theory Course
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As usual, let x,α ∈ Rn, t ∈ [t0,∞) and ε ∈ (0,ε0] with ε0 a small positive
parameter. If the vector field f is sufficiently smooth in a neighborhood
of (α, t0) ∈Rn ×R, the initial value problem has a unique solution xε(t )
for small values of ε on some interval [t0, t̃ );

Some of the problems arising in this approximation process can be
illustrated by the following examples. Consider the first-order equation
with initial value

ẋ = x +ε, xε(0) = 1.

The solution is xε(t ) = (1+ε)e t −ε. We can rearrange this expression
with respect to ε:

xε(t ) = e t +ε(e t −1).

This result suggests that the function e t is an approximation in some
sense for xε(t ) if t is not too large. In defining the concept of approx-
imation one certainly needs a consideration of the domain of validity.
A second simple example also shows that the solution does not always
depend on the parameter ε in a smooth way:

ẋ =− εx

ε+ t
, xε(0) = 1.

The solution reads

xε =
( ε

ε+ t

)ε
,

To characterize the behavior of the solution with ε for t ≥ 0 one has to
divide R+ into different domains. For instance, it is sometimes possible
to write

xε(t ) = 1+ε logε+ε log t +O(ε/t ).

where O(ε/t ) is small compared to the other terms. (O will be defined
more carefully below.) This expansion is possible when t is confined
to an ε-dependent interval Iε such that ε/t is small. (For instance, if
Iε = (

p
ε,∞) then t ∈ Iε implies ε/t < p

ε.) Of course, this expansion
does not satisfy the initial condition. Such problems about the domain
of validity and the form of the expansions arise in classical mechanics.
To discuss these problems one has to introduce several concepts.

Course Averaging Theory Master 2
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Definition 2 A function δ(ε) will be called an order function if δ(ε)
is continuous and positive in (0,ε0) and if l i m↓0δ(ε) exists.
Sometimes we use subscripts such as i in δi (ε), i = 1,2, . . . In many
applications we shall use the set of order functions {εn}∞n=1; however
also order functions such as εq , q ∈ Q will play a part. To compare
order functions we use Landau’s symbols:

Definition 3 Let φ(t ,ε) be a real or vector valued function defined
for ε> 0 (or ε≥ 0) and for t ∈ Iε. The expression for ε ↓ 0 means that
there exists an ε0 > 0 such that the relevant statement holds for all
ε ∈ (0,ε0]). We define the symbols O(.) and o(.) as follows.

1. We say that φ(t ,ε) = O(δ(ε)) for ε ↓ 0 if there exist constants
ε0 > 0 and k > 0 such that ||φ(t ,ε)|| ≤ k|δ(ε)| for all t ∈ Iε, for
0 < ε< ε0.

2. We say that φ(t ,ε) = o(δ(ε)) for ε ↓ 0 if

l i mε↓0 = ||φ(t ,ε)||
δ(ε)

= 0,

uniformly for t ∈ Iε. (That is, for every α > 0 there exists β > 0
such that ||φ(t ,ε)||/δ(ε) <α if t ∈ Iε and 0 < ε<β).)

3. We say that δ1(ε) = o(δ2(ε)) for ε ↓ 0 if l i mε↓0δ1(ε)/δ2(ε) = 0.

In all problems we shall consider ordering in a neighborhood of ε= 0
so in estimates we shall often omit ‘for ε ↓ 0’.

Example 1 The following show the usage of the symbols O(·) and o(·).

1. εn = o(εm) for ε ↓ 0 if n > m;

2. ε si n(1/ε) =O(ε) for ε ↓ 0;

3. ε2 logε= o(ε2 log2ε) for ε ↓ 0;

4. e−1/ε = o(εn) for ε ↓ 0 and all n ∈N .

Now δ1(ε) = o(δ2(ε)) implies δ1(ε) = O(δ2(ε)); for instance ε2 = o(ε)
and ε2 = O(ε) as ε ↓ 0. It is useful to introduce the notion of a sharp
estimate of order functions:

Master 2 Averaging Theory Course
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Definition 4 (Eckhaus [5]). We say that δ1(ε) =O#(δ2(ε)) for ε ↓ 0 if
δ1(ε) =O(δ2(ε)) and δ1(ε) ̸= o(δ2(ε)) for ε ↓ 0.

Example 2 One has ε si n(1/ε) =O#(ε), ε logε=O#(2ε logε+ε3).

The real variable t used in the initial value problem (2) will be called
time. Extensive use shall also be made of time-like variables of the form
τ= δ(ε)t with δ(ε) =O(1). We are now able to estimate the order of mag-
nitude of functions φ(t ,ε), also written φε(t ), defined in an interval Iε,
ε ∈ (0,ε0].

Definition 5 Suppose that φ(ε) : Iε → Rn for 0 < ε ≤ ε0. Let ||.||
be the Euclidean metric on Rn and let |.| be defined by |φε| =
sup{||φε(t )|| : t ∈ Iε}. (Notice that this norm depends on ε and could
be written more precisely as |.|ε.) Let δ be an order function. Then:

1. ϕε =O(δ(ε)) in Iε if |ϕε| =O(δ(ε)) for ε ↓ 0;

2. ϕε = o(δ(ε)) in Iε if l i mε↓0|φε|/δ(ε)) = 0;

3. ϕε =O♯(δ(ε)) in Iε if ϕε =O♯(δ(ε)) and ϕε = o(δ(ε)).

It is customary to say that the estimates defined in this way are uni-
form or uniformly valid on Iε, because of the use of |.|, which makes
the estimates independent of t .

Of course, one can give the same definitions for spatial variables.

Example 3 We wish to estimate the order of magnitude of the error we
make in approximating si n(t + ε t ) by si n(t ) on the interval Iε. If Iε is
[0,2Π] we have for the difference of the two functions supt∈[0,2Π]|si n(t +
εt )− si n(t )| =O(ε).

Remark 2 An additional complication is that in many problems the bound-
aries of the interval Iε depend on ε in such a way that the interval becomes
unbounded as ε tends to 0. For instance in the example above we might
wish to compare si n(t +εt ) with si n(t ) on the interval Iε = [0,2π/ε]. We
obtain in the sup norm

si n(t +εt )− si n(t ) =O#(1)

Course Averaging Theory Master 2
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(with O# as defined in Definition 4).
Suppose δ(ε) = o(1) and we wish to estimate ϕε on Iσ = [0,L/δ(ε)] with
L a constant independent of ε. Such an estimate will be stated as ϕε =
O (δ0(ε)) as ε ↓ 0 on Iε, or else as ϕε(t ) = O (δ0(ε)) as ε ↓ 0 on Iε. The first
form, without the t, is preferable, but is difficult to use in an example
such as

si n(t +εt )− si n(t ) =O (1)

as ε ↓ 0 on Iε. We express such estimates often as follows:

Definition 6 We say that ϕε(t ) =O (δ0(ε)) as ε ↓ 0 on the time scale
δ(ε)−1 if the estimate holds for 0 ≤ δ(ε)t ≤ L with L a constant inde-
pendent of ε.

An analogous definition can be given for o(δ0(ε))-estimates. Once we
are able to estimate functions in terms of order functions we are able to
define asymptotic approximations.

Definition 7 We define asymptotic approximations as follows.

1/ . ψε(t ) is an asymptotic approximation ofϕε(t ) on the interval
Iε if

ϕε(t )−ψε(t ) = o(1)

as ε ↓ 0, uniformly for t ∈ Iε. Or rephrased for time scales:

2/ ψε(t ) is an asymptotic approximation of ϕε(t ) on the time
scale δ(ε)−1 if

ϕε−ψε = o(1)

as ε ↓ 0 on the time scale δ(ε)−1.

In general one obtains as approximations asymptotic series (or ex-
pansions) on some interval Iε. An asymptotic series is an expression of
the form

ϕε(t ,ε) ∼
∞∑

j=1

δ j (ε)ϕ j (t ,ε) (1.3)

in which δ j (ε) are order functions with δ j+1 = o(δ j ). Such a series is not
expected to converge, but instead one has

ϕε(t ,ε) =
m∑

j=1

δ j (ε)ϕ j (t ,ε)+o(δm(ε)) on Iε

Master 2 Averaging Theory Course
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for each m in N, or, more commonly, the stronger condition

ϕε(t ,ε) =
m∑

j=1

δ j (ε)ϕ j (t ,ε)+O (δm+1(ε)) on Iε

often stated as “the error is of the order of the first omitted term.”

Example 4 Consider, on I = [0,2π],

ϕε(t ) = si n(t +ε),

ϕ̃ε(t ) = si n(t )+εtcos(t )− 1

2
ε2t 2si n(t ).

The order functions are δn(ε) = εn−1, n = 1,2,3, . . . and clearly

ϕε(t )− ϕ̃ε(t ) = o(ε2) on I ,

so that ϕ̃ε(t ) is a third-order asymptotic approximation of ϕε(t ) on I .
Asymptotic approximations are not unique.

Another third-order asymptotic approximation of ϕε(t ) on I is

ψε(t ) = si n(t )+εϕ2ε(t )− 1

2
ε2t 2si n(t ),

with ϕ2ε(t ) = si n(ε)cos(t )/ε. The functions ϕnε = (t ) are not determined
uniquely as is immediately clear from the definition.

More serious is that for a given function different asymptotic approxi-
mations may be constructed with different sets of order functions. Con-
sider an example given by Eckhaus ([?], Chapter 1]):

ϕε(t ) = (1− ε

1+ε t )−1, I = [0,1].

One easily shows that the following expansions are asymptotic approxi-
mations of ϕε on I:

ψ1ε(t ) =
m∑

n=0

( ε

1+ε
)n

t n,

ψ2ε(t ) = 1+
m∑

n=1
εn t (t −1)n−1.

Although asymptotic series in general are not unique, special forms
of asymptotic series can be unique. A series of the form (1.3) in which
each ϕn is independent of ε is called a Poincaré asymptotic series.
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Theorem 2 If ϕ(t ,ε) has a Poincaré asymptotic series with order
functions δ1,δ2, . . . then this series is unique.

Proof 4 First,ϕ(t ,ε) = δ1(ε)ϕ1(t )+o(δ1(ε)). Dividing byδ1 we haveϕ/δ1 =
ϕ1 +o(1), and letting ε→ 0 gives

ϕ1(t ) = lim
ε→0

ϕ(t ,ε)

δ1(ε)

which determines ϕ1(t ) uniquely. Next, dividing ϕ= δ1ϕ1 +δ2ϕ2 +o(δ2)
by δ2 and letting ε→ 0 give

ϕ2(t ) = lim
ε→0

ϕ(t ,ε)−δ1(ε)ϕ1(t )

δ2(ε)

which fixes ϕ2. It is clear how to continue. Because of these formulas,
Poincaré asymptotic series are often called limit process expansions

Another special type of asymptotic series is one in which the ϕ j depend
on ε only through a second time variable τ= εt . The next theorem, due
to Perko [20], shows that certain series of this type are unique.

Theorem 3 (Perko[20]). Suppose that the function ϕ(t ,ε) has an
asymptotic expansion of the form

ϕ(t ,ε) ∼ϕ0(τ, t )+εϕ1(τ, t )+ε2ϕ2(τ, t )+ . . . , (1.4)

valid on an interval 0 ≤ t ≤ L/ε for some L > 0. Suppose also that
each ϕ j (τ, t ) is defined for 0 ≤ τ ≤ L and t ≥ 0, and is periodic in
t with some period T (for all fixed τ). Then there is only one such
expansion.

Proof 5 By considering the difference of two such expansions, it is enough
to prove that if

0 ∼ϕ0(τ, t )+εϕ1(τ, t )+ε2ϕ2(τ, t )+ . . .

then each ϕ j = 0. This asymptotic series implies that ϕ0(τ, t ) = o(1). We
claim that ϕ0(τ, t ) = 0 for any t ≥ 0 and any τ with 0 ≤ τ ≤ L. Let t j =
t+ j T and ε j = τ/t j , and note that ε j → 0 as j →∞ and that 0 ≤ t j ≤ L/ε j .
Now∥∥ϕ0(τ, t )

∥∥= ∥∥ϕ0(ε j t j , t j )
∥∥→ 0 as j →∞ (in view of the definition of |.|,

so ϕ0(τ, t ) = 0. We see that ϕ0 drops out of the series,
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For the sake of completeness we return to the example discussed by Eu-
ler which was mentioned at the beginning of this section. Instead of x
we use the variable ε ∈ (0,ε0]. Basic calculus can be used to show that we
may define the function ϕε by

ϕε =
∫ ∞

0

e−s

1+εs
d s, ε ∈ (0,ε0].

Transform εs = τ to obtain

ϕε = 1

ε

∫ ∞

0

e−τ/ε

1+τdτ,

and by partial integration

ϕε = 1

ε

[
−εe−τ/ε

1+τ |∞0 −ε
∫ ∞

0

e−τ/ε

(1+τ)2
dτ

]
,

and after repeated partial integration

ϕε = 1−ε+2ε
∫ ∞

0

e−τ/ε

(1+τ)3
dτ.

We may continue the process and define 1 Basic Material and Asymp-
totics

ϕ̃ε =
m∑

n=0
(−1)nn!εn.

It is easy to see that
ϕε = ϕ̃ε+Rmε,

Rmε = (−1)m+1(m +1)!εm
∫ ∞

0
e−τ/ε(1+τ)−(m+2)dτ.

Transforming back to t we can show that

Rmε =O (εm+1).

Therefore ϕ̃ε is an asymptotic approximation of ϕ(ε). The expansion is
in the set of order functions {εn}∞n=1 and the series is divergent. A final
remark concerns the case for which one is able to prove that an asymp-
totic series converges. This does not imply that the series converges to
the function to be studied: consider the simple example

ϕε = si n(ε)+e−1/ε.

Taylor expansion of si n(ε) produces the series

ϕ̃1 =
m∑

n=0

(−1)nε2n+1

(2n +1)!
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which is convergent for m → ∞; ϕ̃ε is an asymptotic approximation of
ϕε as

ϕε− ϕ̃ε =O (ε2m+3),∀m ∈N.

However, the series does not converge to ϕε, but instead to si n(ε). The
term e−1/ε is called flat or transcendentally small.

In the theory of nonlinear differential equations, this matter of con-
vergence is of some practical interest. Usually, the calculation of one
or a few more terms in the asymptotic expansion is all that one can do
within a reasonable amount of (computer) time. But there are examples
in bifurcation theory that show this flat behavior.
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2
Chapter

The Averaging The-
ory for Computing
Periodic Orbits

2.1 Preface

A classic tool for studying the dynamics of non-linear differential sys-
tems under periodic forcing is the method of averaging. A long history
of the average technique may be traced back to the classical writings of
Lagrange and Laplace, who gave the average method an intuitive basis.
The first formalization of this theory was done in 1928 by Fatou [18]. A
differential system’s orbits are all homeomorphic to either a point, a cir-
cle, or a straight line. First, it is referred to as a unique point or an equi-
librium point, and a periodic orbit is a term used in the second instance.
There is no name for the third instance. The periodic orbits of a specific
differential system are being studied analytically in the following notes.

We look at differential systems with the form

ẋ = F0(t , x)+εF1(t , x)+ε2R(t , x,ε), (2.1)

with x in some open subset D of Rn, Fi : R×D → Rn of class C 2 for i =
1, 2, R : R× D × (−ε0,ε0) → Rn of class C 2 with ε0 > 0 small, and with
the functions Fi and R being T−periodic in the variable t . Here, the dot
denotes the derivative with respect to the time t .

In general, it is very difficult and usually impossible to discover ana-
lytically periodic solutions to differential systems. As we’ll see when we
can use the averaging theory, this challenging problem for differential
systems (2.1) is reduced to finding the zeros of a nonlinear function with
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at most n dimensions, which means that the problem now has a similar
level of difficulty to that of locating the singular or equilibrium points
of a differential system. A significant challenge for researching periodic
solutions to differential systems of the form

ẋ = F (t , x), or ẋ = F (x), (2.2)

using averaging theory is to convert them into systems represented as a
system eqrefk1, which is the standard form of the averaging theory, i.e.,
as a system (2.1). Note that systems (2.2), in general, are not periodic in
the independent variable t and do not have any small ε. In order to write
the differential systems of form (2.2) into (2.1), where F 0 may eventually
equal zero, we must find changes in variables.

2.2 Introduction: the conventional theory

2.2.1 A first-order averaging method for periodic orbits

We consider the differential system

ẋ = εF (t , x)+ε2R(t , x,ε), (2.3)

with x ∈ D ⊂ R, D a bounded domain, and t Ê 0. Moreover, we assume
that F (t , x) and R(t , x,ε) are T−periodic in t . The averaged system asso-
ciated to the system (2.3) is defined by

ẏ = ε f(y), (2.4)

where

f 0(y) = 1

T

∫ T

0
F (s, y)d s. (2.5)

The next theorem says under what conditions the singular points of the
averaged system (2.4) provide T−periodic orbits for the system (2.3).

Master 2 Averaging Theory Course



Introduction: the conventional theory

2
.

T
he

A
ve

ra
gi

ng
T

he
or

y
fo

r
C
om

pu
ti
ng

P
er

io
di

c
O

rb
it
s

In
tr

od
uc

ti
on

:
th

e
co

nv
en

ti
on

al
th

eo
ry

2.
2.

2
O

th
er

fir
st

or
de

r
av

er
ag

in
g

m
et

ho
ds

fo
r
pe

ri
od

ic
or

bi
ts

19

Theorem 4 We consider system (2.3) and assume that the vector
functions F, R,DxF,D2

x F and DxR are continuous and bounded by
a constant M (independent of ε) in [0,∞)×D, with −ε0 < ε < ε0.
Moreover, we suppose that F and R are T−periodic in t , with T in-
dependent of ε.

(i ) If p ∈ D is a singular point of the averaged system (2.4) such
that

det(Dx f 0(p)) ̸= 0 (2.6)

then, for | ε |> 0 sufficiently small, there exists a T−periodic
solution x(t ,ε) of system (2.3) such that x(0,ε) → p as ε→ 0.

(i i ) If the singular point y = p of the averaged system (2.4) has all
its eigenvalues with negative real part then, for | ε |> 0 suffi-
ciently small, the corresponding periodic solution x(t ,ε) of sys-
tem (2.3) is asymptotically stable and, if one of the eigenvalues
has positive real part x(t ,ε), it is unstable.

For each z ∈ D we denote by x(·, z,ε) the solution of (2.3) with initial
condition x(0, z,ε) = z. We consider also the function ζ : D × (−ε0,ε0) →
Rn defined by

ζ(z,ε) =
∫ T

0
[εF (t , x(t , z,ε))+ε2R(t , x(t , z,ε),ε)]d t (2.7)

From (2.3) it follows that, for every z ∈ D,

ζ(z,ε) = x(T, z, ε)−x(0, z, ε). (2.8)

The function ζ can be written in the form

ζ(z,ε) = ε f0(z)+O(ε2), (2.9)

where f0 is given by (1.5). Moreover, under the assumptions of Theorem
4 the solution x(t ,ε), for | ε | sufficiently small, satisfies that zε = x(0,ε)
tends to be an isolated zero of ζ(·,ε) when ε→ 0. Of course, due to (2.8)
the function ζ is a displacement function for system (2.3), and its fixed
points are initial conditions for the T−periodic solutions of system (2.1).
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2.2.2 Other first order averaging methods for periodic orbits

We consider the problem of bifurcation of T−periodic solutions from
the differential system

ẋ = F0(t , x)+εF1(t , x)+ε2R(t , x,ε), (2.10)

with ε= 0 to ε ̸= 0 sufficiently small. Here, the functions F0, F1 :R×D →
Rn and R :R×D × (−ε0,ε0) →Rn are C 2 functions T−periodic in the first
variable, and D is an open subset of Rn. One of the main assumptions is
that the unperturbed system

ẋ = F0(t , x) (2.11)

has a submanifold of periodic solutions.
Let x(t , z) be the solution of the unperturbed system (2.11) satisfying

that x(0, z) = z. We write the linearization of the unperturbed system
along the periodic solution x(t , z) as

ẏ = DxF0(t , x(t , z))y. (2.12)

In what follows we denote by Mz(t ) some fundamental matrix of the lin-
ear differential system (2.12), and by ξ :Rk ×Rn−k →Rk the projection of
Rn onto its first k coordinates, i .e., ξ(x1, · · · , xn) = (x1, · · · , xn).

Theorem 5 Let V ⊂ Rk be open and bounded, and let β0 : C l (V ) →
Rn−k be a C 2 function. We assume that

(i) Z = {zα = (α,β0(α)) :α ∈C l (V )} ⊂Ω and that for each zα ∈ Z

the solution x(t , zα) of (2.11) is T−periodic;

(ii) for each zα ∈Z there is a fundamental matrix Mzα(t ) of (2.12)
such that the matrix M−1

zα (0)−M−1
zα (T ) has in the right up cor-

ner the k × (n −k) zero matrix, and in the right lower corner a
(n −k)× (n −k) matrix △α with det(△α) ̸= 0.

We consider the function F : C l (V ) →Rk defined as

F (a) = 0 = ξ
(∫ T

0
Mzα(t )F1(t , x(t , zα))

)
. (2.13)

If there exists a ∈ V with F (a) = 0 and det(dF/dα)(a)) ̸= 0, then there
is a T−periodic solution x(t ,ε) of system (2.10) such that x(0,ε) → za as
ε→ 0.
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Proof 6 It follows immediately from Theorem 5 taking k = n.

We assume that there exists an open set V with C l (V ) ⊂Ω such that for
each z ∈C l (V ), x(t , z,0) is T−periodic, where x(t , z,0) denotes the solu-
tion of the unperturbed system (2.11) with x(0, z,0) = z. The set C l (V )
is isochronous for the system (2.10), i.e., it is a set formed only by peri-
odic orbits, all of them having the same period. Then, an answer to the
problem of the bifurcation of T−periodic solutions from the periodic
solutions x(t , z,0) contained in C l (V ) is given in the following result.

Corollary 1 (Perturbations of an isochronous set). We assume that there
exists an open and bounded set V with C l (V ) ⊂Ω and such that, for each
z ∈ C l (V ), the solution x(t , z) is T−periodic; then we consider the func-
tion F : C l (V ) 7→Rn,

F (z) =
∫ T

0
M−1

z (t , z)F1(t , x(t , z)). (2.14)

If there exists a ∈V with F (a) = 0 and det(dF/d z)(a)) ̸= 0, then there is a
T−periodic solution x(t ,ε) of system (2.10) such that x(0,ε) → a as ε→ 0.

Proof 7 It follows immediately from Theorem 5 taking k = n.

2.3 Another first order averaging method for
periodic orbits

The next result extends the result of Theorem 5 to the case n = 2m and
when the matrix ∆α is the zero matrix. Here, ξ⊥ : Rn = Rm ×Rm → Rm is
the projection ofRn onto its second set of m coordinates, i.e., ξ⊥(x1, ..., xn) =
(xm+1, ..., xn).
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Theorem 6 Let V ⊂ Rm be open and bounded, let β0 : C 1(V ) →
Rm be a Ck function and Z = {zα = (α,β0(α))|α ∈ C l (V )} ⊂ Ω its
graphic in R2m. Assume that for each zα ∈ Z the solution x(t , zα) of
(2.10)ε=0 = 0 is T−periodic and that there exists a fundamental ma-
trix Mzα(t ) of (2.3) such that the matrix M−1

zα (0)−M−1
zα (T ) has in the

upper right corner the m×m matrix Ωα with det (Ωα) = 0, and in
the lower right corner the m×m zero matrix. Consider the function
G : C l (V ) →Rm defined by

G(α) = ξ⊥
(∫ T

0
M−1

zα (t )F1(t , x(t , zα))d t
)
, (2.15)

If there is α0 ∈V with G(α0) = 0 and det ((∂G/∂α)(α0)) ̸= 0 then, for
ε ̸= 0 sufficiently small, there is a unique T−periodic solution x(t ,ε)
of the system (2.10) such that x(t ,ε) → x(t , zα0) as ε→ 0.

2.4 Proof of Theorem 4

Proof 8 (Proof of statement (i ) of Theorem 4) The assumptions guaran-
tee the existence and uniqueness of the solutions of the initial valued prob-
lems (2.3) and (2.4) on the time-scale 1/ε. We introduce

u(t , x) =
∫ t

0
[F (s, x)− f 0(x)]d s. (2.16)

Since we have subtracted the average of f (s, x) in the integrand, the inte-
gral is bounded, i.e.,

||u(x, t )|| ≤ 2MT, t ≥ 0, x ∈ D.

We now introduce a transformation near the identity

x(t ) = z(t )+εu(t , z(t )). (2.17)

This transformation will be used for simplifying equation (2.3). Differen-
tiation of (2.17) and substitution in (2.3) yields

ẋ = ż+ε ∂
∂t

u(t , z)+ε ∂
∂z

u(t , z)ż = εF (t , z+εu(t , z))+ε2R(t , z+εu(t , z),ε).

(2.18)
Using (2.16), we write this equation in the form(

I +ε ∂
∂t

u(t , z)
)
ż = ε f 0(z)+S
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with I the n ×n identity matrix, and where

S = εF (t , z +εu(t , z))−εF (t , z)+ε2R(t , z +εu(t , z),ε). (2.19)

Since ∂u/∂z is uniformly bounded (as u) we can invert to obtain(
I +ε ∂

∂z
u(t , z)

)−1 = I −ε ∂
∂z

u(t , z)+O(ε2), t ≥ 0, z ∈ D. (2.20)

From the Lipschitz continuity of F (t , z) we have

||F (t , z +εu(t , z))−F (t , z)|| ≤ Lε||u(t , z)|| ≤ Lε2MT,

where L is the Lispchitz constant. Due to the boundedness of R it follows
that, for some positive constant C independent from ε, we have

||S|| ≤ ε2C , t ≥ 0, z ∈ D. (2.21)

From (2.20) and (2.21) we get that

ż = ε f 0(z)+S −ε2∂u

∂z
f 0(z)+O(ε3), z(0) = x(0). (2.22)

AsS = O(ε2) by introducing the time-like variable τ = εt , we obtain that
the solution of

d y

dτ
= f 0(y), y(0) = z(0), (2.23)

approximates the solution of (2.17) with error O(ε) on the time-scale 1 in
τ, i.e., on the time-scale 1/ε in t . Due to the near identity transformation
(2.17) we obtain that

x(t )− y(t ) =O(ε) (2.24)

in the time-scale 1/ε.
Now we shall impose the periodicity condition after which we can ap-

ply the Implicit Function Theorem. We transform x → z with the near
identity transformation (2.17), then the equation for z becomes

ż = ε f0(z)+ε2S(t , z,ε). (2.25)

Due to the choice of u(t , z(t )), a T-periodic solution z(t ) produces a T-
periodic solution x(t ). For S we have the expression

S(t , z,ε) = ∂F

∂z
(t , z)u(t , z)− ∂u

∂z
(t , z) f 0(z)+R(t , z,0)+O(ε). (2.26)
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This expression is T-periodic in t and continuously differentiable with re-
spect to z. Equation (2.25) is equivalent to the integral equation

z(t ) = z(0)+ε
∫ t

0
f 0(z(s))d s +ε2

∫ t

0
S(s, z(s),ε)d s.

The solution z(t ) is T-periodic if z(t +T ) = z(t ) for all t ≥ 0, which leads
to the equation

h(z(0),ε) =
∫ T

0
f 0(z(s))d s +ε

∫ T

0
S(s, z(s),ε)d s = 0. (2.27)

Note that this is a short-hand notation. The right hand side of equation
(2.27) does not depend on z(0) explicitly. But the solutions depend con-
tinuously on the initial values and so the dependence on z(0) is implicitly
by the bijection z(0) → z(x).

It is clear thath(p,0) = 0. If ε is in a neighborhood of ε= 0, then equa-
tion (2.27) has a unique solution x(t ,ε) = z(t ,ε). If ε→ 0 then z(0,ε) → p.
This completes the proof of statement (i ).

For proving statement (i i ) of Theorem 4 we need some preliminary
results. The first result is Gronwall’s inequality.

Lemma 4 Let a be a positive constant. Assume that t ∈ [t0, t0 + a]
and

ϕ(t ) ≤ δ1

∫ t

t0

ψ(s)ϕ(s)d s +δ2, (2.28)

where ψ(t ) ≤ 0 and ϕ(t ) ≤ 0 are continuous functions, and δi > 0
for i = 1,2. Then,

ϕ(t ) ≤ δ2eδ1
∫ t

t0
ψ(s)d s .

Proof 9 From (2.28) we get

ϕ(t )

δ1

∫ t
t0
ψ(s)ϕ(s)d s +δ2

≤ 1.

Multiplying by δ1ψ(t ) and integrating we obtain∫ t

t0

ϕ(s)ψ(s)

δ1

∫ t
t0
ψ(r )ϕ(r )dr +δ2

d s ≤ δ1

∫ t

t0

ψ(s)d s,

therefore

log(δ1

∫ t

t0

ψ(s)ϕ(s)d s +δ2)− log(δ2) ≤ δ1

∫ t

t0

ψ(s)d s.
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Hence,

δ1

∫ t

t0

ψ(s)ϕ(s)d s +δ2 ≤ δ2eδ1
∫ t

t0
ψ(s)d s .

From (2.28) the lemma follows.

We consider the linear differential system

ẋ = Ax, (2.29)

where A is a constant n ×n matrix. The eigenvalues λ1, ...,λn of system
(2.29) are the zeros of the characteristic polynomial det (A−λI d).

If these eigenvaluesλk are different, with eigenvectors ek for k = 1, ...,n,
then ekeλk t , for k = 1, ...,n, are n independent solutions of the system
(2.29).

Assume now that not all eigenvalues are different, thus suppose that
the eigenvalue λ has multiplicity m > 1. Then λ generates m indepen-
dent solutions of the system (2.29) of the form

P0eλt ,P1(t )eλt , ...,Pm−1(t )eλt .

Where Pi (t ) for i = 0,1, ...,m−1 are polynomial vectors of degree at most
i .

With n independent solutions x1(t ), ..., xn(t ) of system (2.29) we form
a matrix

Φ(t ) = (x1(t ), ..., xn(t )),

called a fundamental matrix of system (2.29) . Every solution x(t ) of sys-
tem (2.29) can be written as x(t ) = Φ(t )c, where c is a constant vector.
Moreover the solution x(t ) with x(t0) = x0 is

x(t ) =Φ(t )Φ(t0)−1x0.

Usually, we choose the fundamental matrixΦ(t ) in such a way thatΦ(t0) =
I d . From (2.30) and the explicit form of the independent solutions of
system (2.29), the next result follows easily.

Proposition 1 We consider the linear differential system ẋ = Ax, where A
is a constant n ×n matrix with eigenvalues λ1, ...,λn. Then the following
statements hold:

(i ) if Reλk < 0 for k = 1, ...,n then, for each solution x(t ) with x(t0) = x0,
there exist two positive constants C and µ satisfying

||x(t )|| ≤C ||x0||eµt and Lim
t →∞x(t );
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(i i ) if Reλk ≤ 0 for k = 1, ...,n and the eigenvalues with Reλk = 0 are
different, then the solution x(t ) is bounded for t ≥ t0; more precisely,

||x(t )|| ≤C ||x0|| and C > 0;

(i i i ) if there exists an eigenvalue λk with Reλk > 0, then in each neigh-
borhood of x = 0 there are solutions x(t ) such that

Lim
t →∞||x(t )|| =∞.

Under the assumptions of statement (i ) of Proposition 1, the solution x =
0 is called asymptotically stable. Under the assumptions of statement (i i ),
the solution x = 0 is called Liapunov stable. Finally, under the assump-
tions of statement (i i i ) the solution x = 0 is called unstable.

The next result is also known as the Poincaré–Liapunov Theorem.

Theorem 7 Consider the differential system

ẋ = Ax +B(t )x + f (t , x), x(t0) = x0, (2.30)

where t ∈ R, A is a constant n ×n matrix having all its eigenvalues
with negative real part, and B(t ) is a continuous n ×n matrix such
that Lim

t →∞||B(t )|| = 0. The function f (t , x) is continuous in t and

x, and Lipschitz in x in a neighborhood of x = 0. If

Lim
||x||→ 0

f (t , x)

||x|| = 0, uniformly in t,

then there exists positive constants C , t0,δ and µ such that ||x0|| ≤ δ
implies

||x(t )|| ≤C ||x0||eµ(t−t0) f or t ≥ t0.

The solution x = 0 is asymptotically stable and the attraction is ex-
ponential in a δ−neighborhood of x = 0.

Proof 10 (Proof of Theorem 5) We consider the function f : D×(−ε0,ε0) →
Rn, given by

f (z,ε) = x(T, z,ε)− z. (2.31)

Then, every (zε,ε) such that

f (zε,ε) = 0. (2.32)
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provides the periodic solution x(·, zε,ε) of (2.10). We need to study the
zeros of the function (2.31), or, equivalently, of

g (z,ε) = Y −1(T, z) f (z,ε). (2.33)

We have that g (zα,0) = 0, because x(·, zα,0) is T-periodic, and we shall
prove that

Gα = d g

d z
(zα,0) = Y −1

α (0)−Y −1
α (T ) (2.34)

For this, we need to know (∂x/∂z)(·, z,0). Since it is the matrix solution of
(2.12) with (∂x/∂z)(0, z,0) = In, we have that (∂x/∂z)(t , z,0) = Y (t , z)Y −1(0, z).
Moreover,

d f

d z
(z,0) = ∂x

∂z
(T, z,0)− In = Y (T, z)Y −1(T, z)− In

and

d g

d z
(z,0) = Y −1(0, z)−Y −1(T, z)+

(∂Y −1

∂z1
f (z,0), ...,

∂Y −1

∂zn
f (z,0)

)
,

which, for zα ∈ Z , reduces to (2.34).
We have

∂g

∂ε
(z,0) = Y −1(T, z)

∂x

∂ε
(T, z,0).

The function (∂x/∂ε)(·, z,0) is the unique solution of the initial value prob-
lem

y ′ = DxF0(t , x(t , z,0))y +F1(t , x(t , z,0)), y(0) = 0.

Hence,
∂x

∂ε
(t , z,0) = Y (t , z)

∫ t

0
Y −1(s, z)F1(s, x(s, z,0))d s.

Now we have

∂g

∂ε
(z,0) =

∫ T

0
Y −1(s, z)F1(s, x(s, z,0))d s.

and hence
∂(πg )

∂ε
(zα,0) = f1(α),

where f1 is given by (2.13). There exists αepsi lon ∈V such that g (zαε,ε) = 0
and, further, f (zαε,ε) = 0, which assures that ϕ(·,ε) = x(·, zαε,ε) is a T-
periodic solution of (2.10).

For the proof of Theorem 6, since the result of Theorem 6 is analogous
to the result of Theorem 5, their proofs are similar.
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Proof 11 (Proof of Theorem 6) Since Z is a compact set and x(t , zα) is
T−periodic for each zα ∈ Z, there is an open neighborhood D of Z in Ω,
and 0 < ε1 ≤ ε0 such that any solution x(t , z,ε) of (2.10) with initial con-
ditions in Dx(−ε1,ε1) is well defined in (0,T ). We consider the function
L : Dx(−ε1,ε1) → R2m, (z,ε1) → x(T, z,ε) − z. If (z,ε) ∈ D × (−ε1,ε1) is
such that L(z,ε) = 0, then x(t , z,ε) is a T−periodic solution of (2.10)ε = ε.
Clearly, the converse is also true. Hence, the problem of finding T−periodic
orbits of (2.10) close to the periodic orbits with initial conditions in Z is
reduced to finding the zeros of L(x,ε).

The sets of zeros of L(x,ε) and L̃(z,ε) = M−1
z (T )L(z,ε) coincide, since

Mz(T ) is a fundamental matrix. Moreover, following the proof of Theorem
1.2.9, we can compute that

Dz L̃(z,ε) = (M−1
z (0)−M−1

z (T ))+Dz

(∫ T

0
M−1

z (t )F1(t , x(t , z,0))d t
)
ε

+O(ε2).
(2.35)

We note that L̃−1(0) = (ξ⊥ ◦ L̃)−1(0)∩ (ξ ◦ L̃)−1(0). From (2.35) we obtain
Dz L̃(zα,0) = M−1zα(0)−M−1zα(T ). If we write z ∈ R2m as z = (u, v) with
u, v ∈Rm, then Dv (ξ◦L̃)(zα,0) is the upper right corner of M−1z(0)−M−1z(T ).
Then, from (i ), we can apply the Implicit Function Theorem, deducing
the existence of an open neighborhood U × (−ε2,ε2) of C l (V ) in ξ(D)×
(−ε2,ε2), an open neighborhood O of β0(C l (V )) in Rm and a unique C k

functionβ(α,ε) : U×(−ε2,ε2) →O such that (ξ⊥◦L̃)−1(0)∩(U×O×(−ε2,ε2))
is exactly the graphic of β(α,ε). Now, if we define the function δ : U ×
(−ε2,ε2) →R as δ(α,ε) = (ξ⊥ ◦ L̃)(α,β(α,ε),ε), then δ is a function of class
C k and L̃−1(0)∩ (U ×O × (−ε2,ε2)) = {(α,β(α,ε),ε)|(α,ε) ∈ δ−1(0)}. There-
fore, to describe the set L̃−1(0) in an open neighborhood of Z inRn×(−ε0,ε0),
it suffices to describe δ−1(0) in an open neighborhood of C l (V ) in R×
(−ε0,ε0).

Since M−1zα(0)−M−1zα(T ) has in the lower right corner the m×m zero
matrix and δ(α,0) = 0 in V × (−ε2,ε2), the function δ(α,ε) can be writ-
ten as δ(α,ε) = εG(α)+ε2G(α,ε) in V Ö(−ε2,ε2), where G(α) is the func-
tion given in (2.15). In addition, if δ̃(α,ε) =G(α)+εG̃(α,ε) then δ−1(0) =
δ̃−1(0).

If there isα0 ∈V such that δ̃(α0,0) =G(α0) = 0 and det ((∂G/∂α)(α0)) ̸=
0 then, from the Implicit Function Theorem, there exist ε3 > 0 small, an
open neighborhood V0 of α0 in V and a unique function α(ε) : (−ε3,ε3) →
V0 of class C k such that δ̃−1(0)∩(V0×(−ε3,ε3)) is the graphic ofα(ε), which
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also represents the set δ−1(0)∩ (V0 × (−ε3,ε3)). This completes the proof of
the theorem.

2.5 Averaging theory of arbitrary order and di-
mension for finding periodic solutions

In this section we shall study periodic solutions of systems of the form

x ′(t ) =
k∑

i=0

εi Fi (t , x)+εk +1R(t , x,ε), (2.36)

where Fi : R×D → Rn for i = 0,1, . . . ,k, and R : R×D × (−ε0,ε0) → Rn

are locally Lipschitz functions, being T -periodic in the first variable, and
where D is an open subset of Rn; eventually F0 can be the zero constant
function.

The classical works using the averaging theory for studying the pe-
riodic solutions of a differential system (2.36) usually only provide this
theory up to first (k = 1) or second order (k = 2) in the small parameter
ε. Moreover, these theories assume differentiability of the functions Fi

and R up to class C 2 or C 3, respectively.
Recently, in [10], this averaging theory for computing periodic solu-

tions was developed up to second order in dimension n, and up to third
order (k = 3) in dimension 1, only using that the functions Fi and R are
locally Lipschitz.

Also, in the recent work [19], the averaging theory for computing pe-
riodic solutions was developed to an arbitrary order k in ε for analytical
differential equations in dimension 1. In this section we shall develop
the averaging theory for studying the periodic solutions of a differential
system (2.36) up to arbitrary order k in dimension n, with zero or non-
zero F0, and where the functions Fi and R are only locally Lipschitz.

An example that qualitative new phenomena can be found only when
considering higher order analysis is the following. Consider arbitrary
polynomial perturbations

ẋ =−y +∑
j≥1

ε j f j (x, y),

ẏ = x +∑
j≥1

ε j g j (x, y),
(2.37)

of the harmonic oscillator, where ε is a small parameter. In this differen-
tial system the polynomials f j and g j are of degree n in the variables x
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and y , and the system is analytic in the variables x, y and ε. Then in [19]
it is proved that system (2.37) for ε = 0 sufficiently small has no more
than [s(n − 1)/2] periodic solutions bifurcating from the periodic solu-
tions of the linear center ẋ = −y, ẏ = x, using the averaging theory up
to order s, and this bound can be reached. Here, [.] denotes the integer
part function. So, higher order averaging theory can improve the results
on the periodic solutions, both qualitatively and quantitatively. In short,
the goal of this section is to extend the averaging theory for computing
periodic solutions of the differential system in n variables (2.36) up to an
arbitrary order k in ε for locally Lipschitz differential systems, using the
Brouwer degree.

2.5.1 Statement of the main results

We are interested in studying the existence of periodic orbits of general
differential systems expressed by

x ′(t ) =
k∑

i=0

εi Fi (t , x)+εk +1R(t , x,ε), (2.38)

where Fi : R×D → Rn for i = 0,1, . . . ,k, and R : R×D × (−ε0,ε0) → Rn are
continuous functions, being T -periodic in the first variable, and where
D is an open subset ofRn. In order to state our main results we introduce
some notation. Let L be a positive integer, let x = (x1, ,̇xn) ∈ D , t ∈ R and
y j = (y j 1, . . . , y j n) ∈ Rn for j = 1, . . . ,L. Given F : R×D → Rn a sufficiently
smooth function, for each (t , x) ∈ R×D we denote by ∂LF (t , x) a symmet-
ric L-multilinear map which is applied to a “product” of L vectors of Rn,
which we denote as L ⊙L

j=1y j ∈ RnL. The definition of this L-multilinear
map is

∂LF (t , x)⊙L
j=1 y j =

n∑
i1,...,i L=1

∂LF (t , x)

∂xi 1 . . .∂xi l
(2.39)

We define ∂0 as the identity functional. Given a positive integer b and a
vector y ∈Rn, we also write yb =⊙b

i=1y ∈Rnb.

Remark 3 The L-multilinear map defined in (2.39)is the Lth Fréchet t
derivative of the function F (t , x) with respect to the variable x. Indeed,
for every fixed t ∈ R, if we consider the function Ft : D → Rn such that
Ft (x) = F (t , x), then ∂LF (t , x) = F (L)

t (x) = ∂L/∂xLF (t , x).

Example 5 To illustrate the above notation (2.39), we consider a smooth
function F :R×R2 → R2. So, for x = (x1, x2) and y1 = (y1

1 , y1
2), we have
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∂F (t , x)y1 = ∂F

∂x1
(t , x)y1

1 +
∂F

∂x2
(t , x)y1

2

Now, for y1 = (y1
1 , y1

2) and y2 = (y2
1 , y2

2), we have

∂2F (t , x)(y1, y2) = ∂2F

∂x1∂x1
(t , x)y1

1 y2
1 +

∂2F

∂x1∂x2
(t , x)y1

1 y2
2+

∂2F

∂x2∂x1
(t , x)y1

2 y2
1 +

∂2F

∂x2∂x2
(t , x)y1

2 y2
2 .

Observe that, for each (t , x) ∈ R×D, ∂F (t , x) is a linear map in R2 and
∂2F (t , x) is a bilinear map in R2 ×R2. Let ϕ(., z) : [0, tz] → Rn be the solu-
tion of the unperturbed system

ẋ = F0(t , x) (2.40)

such that ϕ(., z) = z. For i = 1,2, . . . ,k, we define the averaged function of
order i , fi : D →Rn, as

fi = yi (T, z)

i !
, (2.41)

where yi : R×D → Rn, for i = 1,2, . . . ,k −1, are defined recurrently by the
integral equation

yi (t , z) = i !
∫ t

0
Fi (s,ϕ(s, z))+

i∑
l=1

∑
sl

1

b1!b2!2!b2 . . .bl !l !bl

∂LFi−l (s,ϕ(s, z))⊙l
j=1 y j (s, z)b j d s,

(2.42)

where Sl is the set of all l -tuples of non-negative integers (b1,b2, . . . ,bl )
satisfying b1 +2b2 +·· ·+ lbl = l , and L = b1 +b2 +·· ·+bl .

In Subsection 2.5.2 we compute the sets Sl for l = 1,2,3,4,5 . Further-
more, we make the functions fk(z) explicit, up to k = 5 when F0 = 0, and
up to k = 4 when F0 = 0. Related to the averaging functions (2.41) there
exist two cases of (2.38), essentially different, that must be treated sepa-
rately, namely, when F0 = 0 and when F0 = 0. It can be seen in the follow-
ing remarks.

Remark 4 If F0 = 0, then ϕ((t , z) = z for each t ∈R. So,

y1(t , z) =
∫ t

0
F1(t , z)d s, and f1(t , z) =

∫ T

0
F1(t , z)d t ,

as usual in averaging theory; see, for instance [1].
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Remark 5 If F0 = 0, then

y1(t , z) =
∫ t

0
F1(s,ϕ(s, z))+∂F0(s,ϕ(s, z))y1(s, z)d s (2.43)

The integral equation (2.43) is equivalent to the following Cauchy prob-
lem:

u̇ = F1(s,ϕ(s, z))+∂F0(s,ϕ(s, z))ud s and u(0) = 0 (2.44)

i.e., y1(t , z) = u(t ). If we write

η(t , z) =
∫ t

0
∂F0(s,ϕ(s, z))d s, (2.45)

we have

y1(t , z) = eη(t ,z)
∫ t

0
e−η(t ,z)F1(s,ϕ(t , z))d t , (2.46)

and

f1(z) =
∫ T

0
e−η(t ,z)F1(s,ϕ(t , z))d t ,

Moreover, each yi (t , z) is obtained similarly from a Cauchy problem. The
formulae are given explicitly in Subsection 2.5.2.

In the following, we state our main results: Theorem 8 when F0 = 0, and
Theorem 9 when F0 = 0.

Theorem 8 Suppose that F0 = 0. In addition, for the functions of
(2.38), we assume the following conditions:

(i) for each t ∈ R,Fi (t , .) ∈ C k−i for i = 1,2, . . . ,k; ∂k−i Fi is locally
Lipschitz in the second variable for i = 1,2, . . . ,k; and R is con-
tinuous and locally Lipschitz in the second variable;

(ii) fi = 0 for i = 1,2, . . . ,r −1 and fr = 0, where r ∈ 1,2, . . . ,k (here,
we are taking f0 = 0). Moreover, suppose that for some a ∈ D
with fr (a) = 0, there exists a neighborhood V ⊂ D of a such
that fr (z) = 0 for all z ∈ V̄ |{a}, and that dB ( fr (z),V , a) ̸= 0.

Then, for |ε| > 0 sufficiently small, there exists a T -periodic solution
x(.,ε) of (2.38) such that x(0,ε) → a when ε→ 0.
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Theorem 9 Suppose that F0 = 0. In addition, for the functions of
(2.38), we assume the following conditions:

(i) there exists an open subset W of D such that, for any z ∈ W̄ ,
ϕ(t , z) is T -periodic in the variable t ;

(ii) for each t ∈R,Fi (t , .) ∈C k−i for i = 0,1,2, . . . ,k; ∂k−i Fi is locally
Lipschitz in the second variable for i = 0,1,2, . . . ,k; and R is
continuous and locally Lipschitz in the second variable;

(iii) fi = 0 for i = 1,2, . . . ,r −1 and fr = 0, where r ∈ 1,2, . . . ,k; more-
over, suppose that for some a ∈W with fr (a) = 0, there exists a
neighborhood V ⊂ W of a such that fr (z) = 0 for all z ∈ V̄ |{a},
and that dB ( fr (z),V , a) = 0.

Then, for |ε| > 0 sufficiently small, there exists a T -periodic solution
x(.,ε) of (2.38) such that x(0,ε) → a when ε→ 0.

Remark 6 When the functions fi defined in (2.41), for i = 1,2, . . . ,k, are
C 1, the hypotheses (i i ) from Theorem 8 and (i i i ) from Theorem 9 become:
(i v) fi = 0 for i = 1,2, . . . ,r −1 and fr = 0, where r ∈ 1,2, . . . ,k; moreover,
suppose that for some a ∈W with fr (a) = 0 we have that fr (a) = 0.

2.5.2 Computing formulae

Now we shall illustrate how to compute the formulae from Theorems
8 and 9 for some k ∈ N. In Subsection 2.5.3 we compute the formulae
when F0 = 0 for Theorem 8 up to k = 5. First of all, from (2.42) we should
determine the sets Sl for l = 1,2,3,4,5:

S1 = {1},

S2 = {(0,1), (2,0)},

S3 = {(0,0,1), (1,1,0), (3,0,0)},

S4 = {(0,0,0,1), (1,0,1,0), (2,1,0,0), (0,2,0,0), (4,0,0,0)}.

To compute Sl it is convenient to exhibit a table of possibilities with the
value bi in the column i . We start from the last column.
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Clearly, the last column can be filled only by zeroes and ones because
5b5 > 5 for b5 > 1; the same happens with the fourth and the third col-
umn, because 3b3, 4b4 > 5, for b3,b4 > 1. Taking b5 = 1, the unique pos-
sibility is b1 = b2 = b3 = b4 = 0, thus any other solution satisfies b5 = 0.
Taking b5 = 0 and b4 = 1, the unique possibility is b1 = 1 and b2 = b3 = 0,
thus any other solution must have b4 = b5 = 0. Finally, taking b5 = b4 = 0
and b3 = 1, we have two possibilities either b1 = 2 and b2 = 0, or b1 = 0
and b2 = 1. Thus any other solution satisfies b3 = b4 = b5 = 0.

Now we observe that the second column can be filled only by 0,1 or
2, since 2b2 > 5 for b2 > 2; and taking b3 = b4 = b5 = 0 and b2 = 1 the
unique possibility is b1 = 3. Taking b3 = b4 = b5 = 0 and b2 = 2 the unique
possibility is b1 = 1, thus any other solution satisfies b2 = b3 = b4 = b5 =
0. Finally, taking b2 = b3 = b4 = b5 = 0 the unique possibility is b1 = 5.
Therefore the complete table of solutions is

S5=

b1 b2 b3 b4 b5

0 0 0 0 1
1 0 0 1 0
0 1 1 0 0
2 0 1 0 0
3 1 0 0 0
1 2 0 0 0
5 0 0 0 0

Now we can use (2.42) and (2.41) to compute the expressions of the yi ’s
and fi ’s in each case.
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2.5.3 Fifth order averaging of Theorem 8

Let us assume that F0 ≡ 0. From (2.42) we obtain the functions yi (t , z)
for k = 1,2,3,4,5

y1(t , z) =
∫ t

0
F1(s, z)d s,

y2(t , z) =
∫ t

0

(
2F2(s, z)+2

∂F1

∂x
(s, z)y1(s, z)

)
d s,

y3(t , z) =
∫ t

0

(
6F3(s, z)+6

∂F2

∂x
(s, z)y1(t , z)

+3
∂2F1

∂x2
(s, z)y1(s, z)2 +3

∂F1

∂x
(s, z)y2(s, z)

)
d s,

y4(t , z) =
∫ t

0

(
24F4(s, z)+24

∂F3

∂x
(s, z)y1(s, z)+12

∂2F2

∂x2
(s, z)y1(s, z)2

+12
∂F2

∂x
(s, z)y2(s, z)+12

∂2F1

∂x2
(s, z)y1(s, z)⊙ y2(s, z)

+4
∂3F1

∂x3
(s, z)y1(s, z)3 +4

∂F1

∂x
(s, z)y3(s, z)

)
d s,

y5(t , z) =
∫ t

0

(
120F5(s, z)+120

∂F4

∂x
(s, z)y1(s, z)+60

∂2F3

∂x2
(s, z)y1(s, z)2

+60
∂F3

∂x
(s, z)y2(s, z)+60

∂2F2

∂x2
(s, z)y1(s, z)⊙ y2(s, z)

+20
∂3F2

∂x3
(s, z)y1(s, z)3 +20

∂F2

∂x
(s, z)y3(s, z)

+20
∂2F1

∂x2
(s, z)y1(s, z)⊙ y3(s, z)+15

∂2F1

∂x2
(s, z)y2(s, z)2

+30
∂3F1

∂x3
(s, z)y1(s, z)2 ⊙ y2(s, z)+5

∂4F1

∂x4
(s, z)y1(s, z)4

+5
∂F1

∂x
(s, z)y4(s, z)

)
d s,

Therefore, from (2.41) we have that
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f0(z) = 0,

f1(z) =
∫ T

0
F1(t , z)d t ,

f2(z) =
∫ T

0

(
F2(t , z)d s + ∂F1

∂x
(t , z)y1(t , z)

)
d t ,

f3(z) =
∫ T

0

(
F3(t , z)+ ∂F2

∂x
(t , z)y1(t , z)+ 1

2

∂2F1

∂x2
(t , z)y1(t , z)2

+1

2

∂F1

∂x
(t , z)y2(t , z)

)
d t ,

f4(z) =
∫ T

0

(
F4(t , z)+ ∂F3

∂x
(t , z)y1(t , z)+ 1

2

∂2F2

∂x2
(t , z)y1(t , z)2

+1

2

∂F2

∂x
(t , z)y2(t , z)+ 1

2

∂2F1

∂x2
(t , z)y1(t , z)⊙ y2(t , z)

+1

6

∂3F1

∂x3
(t , z)y1(t , z)3 + 1

6

∂F1

∂x
(t , z)y3(t , z)

)
d t ,

f5(z) =
∫ T

0

(
F5(t , z)+ ∂F4

∂x
(t , z)y1(t , z)+ 1

2

∂2F3

∂x2
(t , z)y1(t , z)2

+1

2

∂F3

∂x
(t , z)y2(t , z)+ 1

2

∂2F2

∂x2
(t , z)y1(t , z)⊙ y2(t , z)

+1

6

∂3F2

∂x3
(t , z)y1(t , z)3 + 1

6

∂F2

∂x
(t , z)y3(t , z)

+1

6

∂2F1

∂x2
(t , z)y1(t , z)⊙ y3(t , z)+ 1

8

∂2F1

∂x2
(t , z)y2(t , z)2

+1

4

∂3F1

∂x3
(t , z)y1(t , z)2 ⊙ y2(t , z)+ 1

24

∂4F1

∂x4
(t , z)y1(t , z)4

+ 1

24

∂F1

∂x
(t , z)y4(t , z)

)
d t .

2.6 Three applications of Theorem 8

The first application studies the periodic solutions of the Hénon–Heiles
Hamiltonian using the averaging theory of second order. The other two
examples analyze the limit cycles of some classes of polynomial differ-
ential systems in the plane. These last two applications use the aver-
aging theory of third order. More precisely, these three applications are
based in Theorem 8.
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In the next subsection we summarize the results of Theorem 8 up to
third order, precisely the ones used in the applications here considered.

2.6.1 The averaging theory of first, second and third order

As far as we know, the averaging theory of third order for studying specif-
ically periodic orbits was developed by first time in [10]. Now we sum-
marize it here from Theorem 8 which is given at any order. Consider the
differential system

ẋ(t ) = εF1(t , x)+ε2F2(t , x)+ε3F3(t , x)+ε4R(t , x,ε), (2.47)

where F1, F2, F3 : R×D → R and R: R×D × (−ε f ,ε f ) → R are continuous
functions, T -periodic in the first variable, and D is an open subset of Rn.
Assume that the following hypotheses (i) and (ii) hold:
(i) F1(t , .) ∈ C 2(D), F2(t , .) ∈ C 1(D) for all t ∈ R, F1, F2, F3, R, D2

xF1,DxF2

are locally Lipschitz with respect to x, and R is twice differentiable with
respect to ε. We define Fk0 : D →R for k = 1,2,3 as

f10(z) = 1

T

∫ T

0
F1(s, z)d s,

f20(z) = 1

T

∫ T

0
[DzF1(s, z).y1(s, z)+F2(s, z)]d s,

f30(z) = 1

T

∫ T

0

[1

2
y1(s, z)T ∂

2F1

∂z2
(s, z)y1(s, z)+ 1

2

∂F1

∂z
(s, z)y2(s, z)+

∂F2

∂z
(s, z)(y1(s, z))+F3(s, z)

]
d s,

Where

y1(s, z) =
∫ s

0
F1(t , z)d t ,

y2(s, z) =
∫ s

0

[∂F1

∂z
(t , z)

∫ t

0
F1(r, z)dr +F2(t , z)

]
d t .

(ii) For V ⊂ D an open and bounded set, and for each ε ∈ (−ε f ,ε f )
{0} there exists a ε ∈ V such that F10(aε)+ εF20(aε)+ ε2F30(aε) = 0 and
dB (F10 +εF20

+ε2F30,V , aε) ̸= 0.
Then for |ε| > 0 sufficiently small there exists a T-periodic solutionϕ(.,ε)
of the system such that ϕ(0,ε) = aε.
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The expression dB (F10+εF20+ε2F30,V , aε) ̸= 0 means that the Brouwer
degree of the function F10 +εF20 +ε2F30 : V → Rn at the fixed point aε is
not zero. A sufficient condition for the inequality to be true is that the
Jacobian of the function F10 +εF20 +ε2F30 at aε is not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are
mainly the zeros of F10 for ε sufficiently small. In this case, the previous
result provides the averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros
of F10 + εF20 + ε2F30 are mainly the zeros of F20 for ε sufficiently small.
In this case, the previous result provides the averaging theory of second
order.

If F10 and F20 are both identically zero and F30 is not identically zero,
then the zeros of F10 +εF20 +ε2F30 are mainly the zeros of F30 for ε suf-
ficiently small. In this case, the previous result provides the averaging
theory of third order.

2.6.2 The Hénon–Heiles Hamiltonian

The results presented in this subsection have been proved by Jiménez–Llibre
[24].

The classical Hénon–Heiles potential consists of a two dimensional
harmonic potential plus two cubic terms. It was introduced in 1964, as a
model for studying the existence of a third integral of motion of a star in
a rotating meridian plane of a galaxy in the neighborhood of a circular
orbit [23]. The classical Hénon–Heiles potential has been generalized by
introducing two parameters to each cubic term,

1

2
(p2

x +p2
y +x2 + y2)+B x y2 + 1

3
Ax3, (2.48)

such that B ̸= 0, with x, y, px , py ∈ R. Then the classical Hénon–Heiles
Hamiltonian system corresponds to

ẋ = px ,

ṗx = −x − (Ax2 +B y2),

ẏ = py ,

ṗy = −y −2B x y.

(2.49)

As usual, the dot denotes derivative with respect to the independent
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Figure 2.1: Open region (2B−5A)(2B−A) < 0 in the parameter space (A,B), where there
is at least one periodic orbit with multipliers different from 1.

variable t ∈ R, the time. We name (2.49) the Hénon–Heiles Hamiltonian
systems with two parameters, or simply the Hénon–Heiles systems.

The periodic orbits in the Hénon–Heiles potential have been numeri-
cally studied and classified by Churchill–Pecelli–Rod [12], Davies–Huston–Baranger
[13] and others [9]. Maciejewski–Radzki–Rybicki did an analytical study
of a more general Hénon–Heiles Hamiltonians including a third cubic
term of the form C x2y , which can be removed by a proper rotation, and
two more parameters associated with the quadratic part of the potential.
They proved the existence of connected branches of non-stationary pe-
riodic orbits in the neighborhood of a given degenerate stationary point.

Theorem 10 At every positive energy level the H´enon–Heiles
Hamiltonian system (2.49) has at least

(i) one periodic orbit if (2B −5A)(2B − A) < 0 (see Figure 2.1),

(ii) two periodic orbits if A +B = 0 and A ̸= 0 (this case contains
the classical Hénon–Heiles system), and

(iii) three periodic orbits if B(2B −5A) > and A +B ̸= 0 (see Figure
2.2).

Proof 12 For proving this theorem we shall apply Theorem 8 to the Hamil-
tonian system (2.49). The periodic orbits of a Hamiltonian system with
more than one degree of freedom are on cylinders fulfilled by periodic or-
bits. Then we must apply Theorem 8 to every Hamiltonian fixed level,
where the periodic orbits are isolated.

On the other hand, in order to apply Theorem 8 we need a small pa-
rameter ε. So in the Hamiltonian system (2.49) we change the variables
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Figure 2.2: Open region B(2B − 5A) > 0 and A +B ̸= 0 in the parameter space (A,B),
where there are at least three periodic orbits with multipliers different from 1. When
A+B = 0, there are at least two periodic orbits with multipliers different from 1.

(x, y, px , py ) to (X ,Y , pX , pY ) where x = εX , y = εY , px = εpX and py =
εpY . In the new variables, the system (2.49) becomes

Ẋ = pX ,

ṗX = −X −ε(AX 2 +BY 2),

Ẏ = pY ,

ṗY = −Y −2εB X Y .

(2.50)

This system again is Hamiltonian with Hamiltonian

1

2
(p2

X +p2
Y +X 2 +Y 2)+ε

(
B X Y 2 + 1

3
AX 3

)
. (2.51)

As the change of variables is only a scale transformation, for all ε differ-
ent from zero, the original and the transformed systems (2.49) and (2.50)
have essentially the same phase portrait and, additionally, the system
(2.50) for ε sufficiently small is close to an integrable one.

First we change the Hamiltonian (2.51) and the equations of motion
(2.51) to polar coordinates for ε = 0 , which is an harmonic oscillator.
Thus we have

X = r cosθ, pX = r si nθ,Y = ρcos(θ+α), pY = ρsi n(θ+α).

Recall that this is a change of variables when r > 0 and ρ > 0. Moreover,
doing this change of variables, the angular variables θ and α appear in
the system. Later on, the variable θ will be used for obtaining the peri-
odicity necessary for applying the averaging theory.

The fixed value of the energy in polar coordinates is

h = 1

2
(r 2 +ρ2)+ε

(
1

3
Ar 3cos3θ+Brρ2cosθcos2(θ+α)

)
, (2.52)
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and the equations of motion are given by

ṙ = −εsi nθ
(

Ar 2cos2θ+Brρcos2(θ+α)
)

,

θ̇ = −1−εcosθ

(
AX r cos2θ+ ρ2

r
Bcos2(θ+α)

)
,

ρ̇ = −εBr cosθsi n(2(θ+α)),

α̇= ε
cosθ

r

(
Ar 2cos2θ+B(ρ2 −2r 2)cos2(θ+α)

)
.

(2.53)

However, the derivatives of the left hand side of these equations are with
respect to the time variable t, which is not periodic. We change to the θ
variable as the independent one, and we denote by a prime the deriva-
tive with respect to θ. The angular variable α cannot be used as the in-
dependent variable since the new differential system would not have the
form (2.36) for applying Theorem 8 The system (2.53) goes over to

ṙ =
εr si nθ

(
Ar 2cos2θ+Bρ2cos2(θ+α)

)
r +ε(Ar 2cos3θ+Bρ2cosθcos2(θ+α))

,

ρ̇ = εBr 2ρcosθsi n(2(θ+α))

r +ε(Ar 2cos3θ+Bρ2cosθcos2(θ+α))
,

Ȧ =− εcosθ
(
B

(
ρ2 −2r 2

)
cos2(θ+α)+ Ar 2cos2θ

)
r +ε(Bρ2cosθcos2(θ+α)+ Ar 2cos3θ)

.

Of course this system has now only three equations because we do not
need the θ equation. If we write the previous system as a Taylor series in
powers of ε, we have

ṙ = εr si nθ
(

Ar 2cos2θ+Bρ2cos2(θ+α)
)
,

−ε2 si n2θ

8r

(
Ar 2(1+ cos(2θ))+Bρ2(1+ cos(2(θ+α))

)2 +O(ε3),

ρ̇ = εBrρcosθsi n(2(θ+α))

ε2Bρcos2θsi n(2(θ+α))(Ar 2cos2θ+Bρ2cos2(2(θ+α)))+O(ε3),
Ȧ =− εcosθr (Ar 2cos2θ+B(ρ2 −2r 2)cos2(θ+α)).

+ε2cos2θr 2(Ar 2cos2θ+Bρ2cos2(θ+α))

(Ar 2cos2θ+B(ρ2 −2r 2)cos2(θ+α))+O(ε3).
(2.54)
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Now system (2.54) is 2π-periodic in the variable θ. In order to apply
Theorem 8 we must fix the value of the first integral at h > 0 and, by
solving equation (2.52) for ρ, we obtain

ρ =
√

h − r 2/2−εAr 3cos3θ/3

1/2+εBr cosθcos2(θ+α)
(2.55)

ṙ = εsi nθ(Ar 2cos2θ+B(2h − r 2)cos2(θ+α))

−ε2
(si n2θ

8r
Ar 2(1+ cos(2θ))+B(2h − r 2)(1+ cos(2(θ+α))))2

+2

3
ABr 3si nθcos3θcos2(θ+α)

+2B 2hr si n(2θ)cos4(θ+α)−B 2r 3si n(2θ)cos4(θ+α)+O(ε3),
(2.56)

and

α̇= ε
(B

r
(3r 2 −2h)cosθcos2(θ+α)− Ar cos3θ

)
ε2(A2r 2cos6θ+ 2

3
AB(6h −5r 2)cos4θcos2(θ+α)

B 2r 2(r 2 −2h)2cos2θcos4(θ+α))+O(ε3).

(2.57)

Clearly, equations (2.56) and (2.56) satisfy the assumptions of Theorem
8, and it has the form of (2.36) with F1 = (F11,F12) and F2 = (F21,F22),
where

F11 = si nθ
(

Ar 2cos2θ+B(2h − r 2)cos2(θ+α)
)

,

F12 = B

r
(3r 2 −2h)cosθcos2(θ+α)− Ar cos3θ,

and

F21 = −si n2θ

8r

(
Ar 2(1+ cos(2θ))+B(2h − r 2)(1+ cos(2(θ+α)))

)2
,

−2

3
ABr 3si nθcos3θcos2(θ+α)−2B 2hr si n(2θ)cos4(θ+α)

+B 2r 3si n(2θ)cos4(θ+α),

F22 = A2r 2cos6θ+ 2

3
AB(6h −5r 2)cos4θcos2(θ+α)

+B 2

r 2
(r 2 −2h)2cos2θcos4(θ+α).

As r ̸= 0 the functions F1 and F2 are analytical. Furthermore, they are
2pi -periodic in the variable θ, the independent variable of the system
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(2.56) -(2.57). However, the averaging theory of first order does not apply
because the average functions of F1 and F2 in the period vanish,

f1(r, A) =
∫ 2π

0
(F11,F12)dθ = (0,0). (2.58)

As the function f1 from Theorem 8 is zero, we procede to calculate the
function f2 by applying the second order averaging theory. We have that
f2 is defined by

f2(r, A) =
∫ 2π

0
[Dr AF1(θ,r, A).y1(θ,r, A)+F2(θ,r, A)]dθ, (2.59)

where

y1(θ,r, A) =
∫ θ

0
F1(t ,r, A)d t .

The two components of the vector y1 are

y11 =
∫ θ

0
F11(t ,r, A)d t

= 1

3

(
B(2h − r 2)si n2(θ/2)

(
cos(2(θ+α))+2cos(2α+θ)+3

)
−Ar 2(cos3θ−1)

)
,

and

y12 =
∫ θ

0
F12(t ,r, A)d t

=−Ar

12
(9si nθ+ si n3θ)−Bh6r (3si n(2α+θ)+ si n(2α+3θ)

−4si n2α+6si nθ)

+Br

4
(3si n(2α+α)+ si n(2α+3θ)−4si n(2α)+6si nθ).

For the Jacobian matrix

Dr A F1(θ,r,A ) =


∂F11

∂r

∂F11

∂A

∂F12

∂r

∂F12

∂A

 ,

we obtain
2Ar cos2θ−2Br cos2(θ+α))si nθ −2B(2h − r 2)cos(θ+α)si nθsi n(θ+α)

−Acos3θ+6Bcos2(θ+α)cosθ
2B

r
(3r 2 −2h)cosθcos(θ+α)si n(θ+α)

B

r 2
(3r 2 −2h)cos2(θ+α)cosθ
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We can now calculate the function (2.59) from Theorem 8, and we
obtain

f2 =
(
− Br

12
(6B − A)(r 2 −2h)si n2A ,

= 1

12

(
r 2(5A2 −12AB −3B 2)−2B(A−6B)(h − r 2)cos(2α)+

2Bh(6A−B)
)
.

We have to find the zeros (r ∗,A ∗) of f2(r,A ), and to check that the Jaco-
bian determinant

|Dr,A f2(r ∗,A ∗)| ̸= 0. (2.60)

Solving the equation f2(r,A ) = 0, we obtain five solutions (r ∗,A ∗) with
r ∗ > 0, namely(p

2h,±ar csec
B(A−6B)

4B 2 +6AB −5A2

)
,

√
2Bh

3B − A
.0

 ,√
14Bh

9B −5A
,±π/2

 .

(2.61)

The first two solutions are not good, because for them we would get from
(2.55) that ρ = 0 when ε= 0 , and ρ must be positive. The third solution
exists if B(3B − A) > 0. The last two solutions exist if B(9B −5A) > 0. The
Jacobian (2.60) of the third solution is

−5B 2h2(A−6B)(A−2B)(A+B)

9(A−3B)
(2.62)

and, for the last two solutions, the Jacobian coincides and is equal to

7B 2h2(A−6B)(5A−2B)(A−B)

9(5A−9B)
. (2.63)

Summarizing, from Theorem 8 the third solution of f2(r,A ) = 0 provides
a periodic orbit for the system (2.56)-(2.57) (and consequently of the
Hamiltonian system (2.50) on the Hamiltonian level h > 0) if B(3B−A) >
0, (A−6B)(A−2B)(A+B) ̸= 0, and from (2.55) we getρ =

√
2(A−2B)h/(A−3B);

we also need (2B − A)(3B − A) > 0. The conditions B(3B − A) > 0 and
(2B −A)(3B −A) > 0 can be reduced to B(2B −A) > 0, where (A−6B)(A−
2B) ̸= 0 is included, but A+B ̸= 0 is not. Then the third solution provides
a periodic orbit when B(2B − A) > 0 and A+B ̸= 0.
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In a similar way the last two solutions of f2(r, A) = 0 provide two pe-
riodic orbits for the system (2.56)-(2.57) if B(9B −5A) > 0, (A−6B)(5A−
2B)(A −B) ̸= 0, and from (2.55) we get ρ =

√
2(5A−2B)h/(5A−9B); we

also need (2B − 5A)(9B − 5A) > 0. The conditions B(9B − 5A) > 0 and
(2B −5A)(9B −5A) > 0 can be reduced to B(2B −5A) > 0, where the con-
dition (A−6B)(5A−2B)(A−B) ̸= 0 is included. Then the fourth and fifth
solutions provide two periodic orbits whenever B(2B −5A) > 0.

There is one periodic orbit if the third solution exists, and the last two
solutions do not. There are two periodic orbits if the two last solutions
exist, and not the third one, i.e., when A +B = 0. Finally, there are three
periodic orbits if the third, fourth and fifth solutions exist. Now the state-
ments of Theorem (8) follow easily. The regions in the parameter space
where periodic orbits exist are summarized in Figures 2.1 and 2.2.

Course Averaging Theory Master 2





3
Chapter

Applications

We recall that a limit cycle of a differential system is a periodic orbit
isolated in the set of all periodic orbits of the system.

3.1 The van der Pol differential equation

Consider the van der Pol differential equation ẍ + x = ε(1− x2)ẋ, which
can be written as the differential system

ẋ = y,

ẏ =−x +ε(1−x2).
(3.1)

In polar coordinates (r,θ), where x = r cosθ, y = r sinθ, this system be-
comes

ṙ = εr (1− r 2 cos2θ)sin2θ,

θ̇ =−1+εcosθ(1− r 2 cos2)sinθ.

or, equivalently,

dr

dθ
=−εr (1− r 2 cos2θ)sin2θ+⃝(ε2)

Note that the previous differential system is in the normal form (2.3) for
applying the averaging theory described in Theorem 4 if we take x =
r, t = θ,T = 2π. From (2.5) we get that

f 0(r ) =− 1

2π

∫ 2π

0
r (1− r 2 cos2)sin2θdθ = 1

8
r (r 2 −4).
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The unique positive root of f 0(r ) is r = 2. Since (d f 0/dr )(2) = 1, by
Theorem 4(i ), it follows that system (3.1) has, for ε= 0 sufficiently small,
a limit cycle bifurcating from the periodic orbit of radius 2 of the unper-
turbed system (3.1) with ε = 0. Moreover, since (d f 0/dr )(2) = 1 > 0, by
Theorem 4(i i ), this limit cycle is unstable.

3.2 The Lienard differential system

The following result is due to Lins−de Melo−Pugh [25]. Here, we provide
an easy and shorter proof with respect to the initial proof given by the
mentioned authors

Proposition 2 The Lienard differential systems of the form

ẋ = y −ε(a1x +·· ·+an xn),

ẏ =−x.

with ε sufficiently small and an ̸= 0 have at most [(n −1)/2] limit cycles
bifurcating from the periodic orbits of the linear center ẋ = y, ẏ =−x and
there are examples with exactly [(n−1)/2] limit cycles; here [.], denotes the
integer part function

Proof 13 We write the system

ẋ = y −ε(a1x +·· ·+an xn) ẏ =−x

in polar coordinates (r,θ), where x = r cosθ, y = r sinθ, and we obtain

ṙ =−εΣn
k=1akr k cosk+1θ,

θ̇ =−1+εsinθ+Σn
k=1akr k−1 cosk θ.

or, equivalently,

dr

dθ
=−εΣn

k=1akr k cosk+1θ+⃝(ε2)

Again, taking x = r , t = θ, T = 2π and F (t , x) = −Σn
k=1akr k cosk+1θ, the

previous he previous differential system is in the normal form (2.1) for
applying the averaging theory described in Theorem 4

We have that

f 0(r ) =− 1

2π
Σn

1 akr k
∫ 2π

0
cosk+1θdθ =− ε

2π
Σn

k=1,k odd akbkr k = ρ(r )
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where bk =
∫ 2π

0
cosk+1θdθ ̸= 0 if k is odd, and bk = 0 if k is even. Now

we apply Theorem 4 since the polynomial p(r ) has at most [(n − 1)/2]
positive roots, and we can choose the coefficients ak with k odd in such
a way that p(r ) has exactly [(n−1)/2] simple positive roots; the proposi-
tion follows.

3.3 Zero-Hopf bifurcation in Rn

In this example we study a zero-Hopf bifurcation of C 3 differential sys-
tems in Rn with n Ê 3.

We assume that these systems have a singularity at the origin, whose
linear part has eigenvalues εa ± bi , with b ̸= 0 and εck for k = 3, · · · ,n,
where ε= 0 is a small parameter. Since the eigenvalues of the lineariza-
tion at the origin when ε= 0 are ±bi ̸= 0 and 0 with multiplicity n −2, if
an infinitesimal periodic orbit bifurcates from the origin when ε= 0, we
call such kind of bifurcation a zero-Hopf bifurcation. Such systems can
be written into the form

ẋ = εax −by +Σi1+···+in=2ai1···in x i1 y i2 z i3 · · ·z in +A ,

ẏ = bx +εay +Σi1+···+in=2bi1···in x i1 y i2 z i3 · · ·z in +B,

ż = εck zk +Σi1+···+in=2c (k)
i1···in

x i1 y i2 z i3 · · ·z in +Ck 3, · · · , n,

(3.2)

where ai1...in , bi1...in , c (k)
i1...in

, a, b and ck are real parameters, ab ̸= 0, and

A,B and C k are the Lagrange expression of the error function of third
order in the expansion of the functions of the system in Taylor series.

Theorem 11 There exist C 3 systems (3.2) for which l ∈ {0, 1, · · · 2n−3}
limit cycles bifurcate from the origin at ε = 0, i.e., for ε sufficiently
small the system has exactly l limit cycles in a neighborhood of the
origin, and these limit cycles tend to the origin when ε↘ 0.

As far as we know, Theorem 11 was the first result proving that the
number of limit cycles that can bifurcate in a Hopf bifurcation increases
exponentially with the dimension of the space. We recall that a Hopf
bifurcation takes place when one or several limit cycles bifurcate from
an equilibrium point. From the proof of Theorem 11 we get immediately
the following result
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Corollary 2 There exist quadratic polynomial differential systems (3.2)
(i.e., with A = B =C k = 0) for which l ∈ {0, 1, · · · 2n−3} limit cycles bifurcate
from the origin at ε= 0, i.e., for ε sufficiently small the system has exactly
l limit cycles in a neighborhood of the origin and these limit cycles tend to
the origin when ε↘ 0.

Proof 14 of Theorem D̊oing the cylindrical change of coordinates

x = r cosθ, y = r sinθ, zi = zi , i = 3, · · · , n, (3.3)

in the region r > 0 the system (3.2) becomes

ṙ = εar +Σi1+···+in=2(ai1···in cosθ+bi1···in sinθ)(r cosθ)i1

(r sinθ)i2 z i3
3 · · ·z in

n )+⃝(3),

θ̇ = 1

r

[
br +Σi1+···+in=2(bi1···in cosθ−ai1···in sinθ)(r cosθ)i1

(r sinθ)i2 z i3
3 · · ·z in +⃝(3)

]
,

(3.4)

ż = εck zk +Σi1+···+in=2c (k)
i1···in

(r cosθ)i1(r sinθ)i2 z i3
3 · · ·z in

+⃝ (3) 3, · · · , n,
(3.5)

where ⃝(3) =⃝(3)(r, z3, · · · , zn)
As usual,Z+denotes the set of all non-negative integers. Taking a00ei j =

b00ei j = 0 where ei j ∈ Zn−2
+ has the sum of the entries equal to 2, it is

easy to show that in a suitably small neighborhood of (r, z3, · · · , zn) =
(0, 0, · · · , 0) we have θ̇ ̸= 0. Then, choosing θ as the new independent
variable system (3.4), in a neighborhood of (r, z3, · · · , zn) = (0, 0, · · · , 0) it
becomes

∂r

∂θ
= 1

M
r
(
εar +Σi1+···+in=2(ai1···in cosθ+bi1···in sinθ)

(r cosθ)i1(r sinθ)i2 z i3
3 · · ·z in

n +⃝(3)
)
,

∂zk

∂θ
= 1

M

(
1r

(
εck zk +Σi1+···+in=2c (k)

i1···in
(r cosθ)i1(r sinθ)i2

z i3
3 · · ·z in +⃝(3)

))
.

(3.6)

Where

Master 2 Averaging Theory Course
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M1 = br +Σi1+···+in=2(bi1···in cosθ−ai1···in sinθ)(r cosθ)i1(r sinθ)i2

z i3
3 · · ·z in

n +⃝(3)
for k = 3, · · · , n. We note that this system is 2π periodic in the variable

θ. In order to write system (3.6) in the normal form of the averaging
theory we rescale the variables

(r, z3, · · · , zn) = (ρε, η3ε, · · · , ηnε). (3.7)

Then the system (3.6) becomes

∂ρ

∂θ
= ε f1(θ, ρ, η3, · · · , ηn)+ε2g (θ, ρ, η3, · · · , ηn),

∂ηk

∂θ
= ε fk(θ, ρ, η3, · · · , ηn)+ε2g1(θ, ρ, η3, · · · , ηn),

k = 3, · · · , n.

(3.8)

where

f1 = 1

b

(
aρ+Σi1+···+in=2(ai1···in cosθ+bi1···in sinθ)( ρ cosθ)i1(ρ sinθ)i2

z i3
3 · · ·z in

n )
)

f1 = 1

b

(
cηk +Σi1+···+in=2c (k)

i1+···+in
(ρ cosθ)i1(ρ sinθ)i2 z i3

3 · · ·z in
n )

)
We note that the system (3.8) is in the normal form (2.1) of the averag-

ing theory, with x = (ρ,η3, · · · , ηn), t = θ, F (θ, ρ, η3, · · · , ηn) = ( f1(θ, ρ, η3, · · · ,
ηn), f3(θ, ρ,η3, · · · , ηn), · · · , fn(θ, ρ, η3, · · · , ηn), and T = 2π. The aver-
aged system of (3.8) is

ẏ = ε f 0(y), y = (ρ, η3 · · · , ηn) ∈Ω, (3.9)

whereΩ is a suitable neighborhood of the origin (ρ, η3, · · · , ηn) = (0, 0, · · · , 0),
and

f 0(y) = ( f 0
1 (y), f 0

3 (y), · · · , f 0
n (y)),

with

f 0
i (y) = 1

2π

∫ 2π

0
fi (θ, ρ, η3, · · · , ηn)dθ, i = 1, 3, · · · , n.

After some calculations we have that

f 0
1 = 1

2b
ρ
(
2a +Σn

j=3(a10e j +b01e j )η j

)
,

f 0
k = 1

2b
ρ
(
2ckηk+

(
c (k)

200n−2
+c (k)

020n−2
ρ2

)
+2Σ3ÉiÉ jÉnc (k)

00ei j
ηiη j

)
, k = 3, · · · , n.

where e j ∈ Zn−2
+ is the unit vector with the j−th entry equal to 1, and
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e j ∈ Zn−2
+ has the sum of the i-th and j−th entries equal to 2 and the

other equal to 0.
Now we shall apply Theorem 4 for studying the limit cycles of sys-

tem (3.8). Note that these limits, after the rescaling (3.7), will become
infinitesimal limit cycles for system (3.6), which will tend to the origin
when ε↘ 0; consequently, they will be bifurcated limit cycles of the Hopf
bifurcation of system (3.6) at the origin.

From Theorem 4 for studying the limit cycles of system (3.8) we only
need to compute the non-degenerate singularities of system (3.9). Since
the transformation from the cartesian coordinates (r, z3, · · · , zn) to the
cylindrical ones (ρ, η3, · · · , ηn) is not a diffeomorphism at ρ = 0, we deal
with the zeros having the coordinate ρ > 0 of the averaged function f 0.
So, we need to compute the roots of the algebraic equations

2a +Σn
j=3(a10e j +b01e j )η j = 0,

2ckηk +
(
c (k)

200n−2
+ c (k)

020n−2

)
ρ2 +2Σ3ÉiÉ jÉnc (k)

00ei j
ηiη j = 0, (3.10)

k = 3, · · · , n.

Since the coefficients of system (3.10) are independent and arbitrary, in
order to simplify the notation we write it as

a +Σn
j=3a jη j = 0, ck

0ρ
2 + ckηk +Σ3ÉiÉ jÉnc (k)

i j ηiη j = 0, (3.11)

k = 3, · · · , n.

where a j , c (k)
0 , ck and c (k)

i j are arbitrary constants. Denote by C the set of
algebraic systems of form (3.11). We claim that there is a system belong-
ing to C which has exactly 2n−3 simple roots. The claim can beverified
by the example

a +a3η3 = 0, (3.12)

c (3)
0 ρ2 + c3η3 +Σ3ÉiÉ jÉnc (3)

i j ηiη j = 0, (3.13)

ckηk +Σ3ÉiÉ jÉkc (k)
i j ηiη j = 0, k = 4, · · · , n, (3.14)

with all the coefficients being non-zero. Equations (3.14) can be treated
as quadratic algebraic equations in eak . Sbttuting the unque solution η30

of η30 . in (3.12) (3.14) with k = 4, this last equation has exactly two dif-
ferent solutions, namely η41 and η42 for η4, choosing conveniently c4. In-
troducing the two solutions (η30,η4i ), i = 1, 2, into (1.22) with k = 5 and
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choosing conveniently the values of the coefficients of equation (3.14)
with k = 5 and (η3, η4) = (η30, η4i ), we get two different solutions η5i 1

and η5i 2 of η5 for each i . Moreover, playing with the coefficients of the
equations, the four solutions (η30,η4i ,η5i j ) for i , j = 1, 2, are distinct.
By induction, we can prove that for suitable choice of the coefficients,
equations (3.12) and (3.14) have 2n−3 different roots (η3, · · · , ηn). Since
η3 = η30 is fixed, for any given c (3)

i j there exist values of c3 and c (3)
0 such

that equation (1.21) has a positive solution ρ for each of the 2n−3 solu-
tions (η3, · · · , ηn). of (3.12) and (3.14). Since the 2n−3 solutions are dif-
ferent, and the number of the solutions of (3.12)-(3.14) is the maximum
that the equations can have (by the Bezout Theorem), it follows that ev-
ery solution is simple, and consequently the determinant of the Jacobian
of the system evaluated at it is not zero. This proves the claim. Using the
same arguments which allowed us to prove the claim, we can also prove
that we can choose the coefficients of the previous system in order to
have 0, 1, · · · , 2n−3 −1 simple real solutions.

Taking the averaged system (3.9) with f 0 having the convenient co-
efficients as in (3.12)-(3.14), the averaged system (3.9) has exactly k ∈
{0, 1, · · · , 2n−1} singularities with the components η > 0. Moreover, the
determinants of the Jacobian matrix ∂ f 0/∂y at these singularities do not
vanish because all the singularities are simple. In short, by Theorem 4 we
get that there are systems of the form (3.2) which have k ∈ {0, 1, · · · , 2n−1}
limit cycles. This proves the theorem.

3.4 The Hopf bifurcation of the Michelson sys-
tem

The Michelson system

ẋ = y ẏ = z ż = c2y − x2

2
, (3.15)

with (x, y, z) ∈R3 and the parameter c Ê 0, was introduced by Michelson
in the study of the travelling wave solutions of the Kuramoto–Sivashinsky
equation. It is well known that system (3.15) is reversible with respect
to the involution R(x, y, z) = (−x, y,−z) and is volume-preserving under
the flow of the system. It is easy to check that system (3.15) has two fi-
nite singularities S1 = (

p
2c,0,0) = and S2 = (

p
2c,0,0) for c > 0, which

are both saddle-foci. The former has a two dimensional stable manifold
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and the latter has a two dimensional unstable manifold.
For c > 0 small numerical experiments and asymptotic expansions

in sinus series and Webster–Elgin revealed the existence of a zero-Hopf
bifurcation at the origin for c = 0. But their results do not provide an
analytic proof on the existence of such zero-Hopf bifurcation. By a zero-
Hopf bifurcation we mean that when c = 0 the Michelson system has
the origin as a singularity having eigenvalues 0,±i , and when c > 0 suf-
ficiently small the Michelson system has a periodic orbit which tends
to the origin when c tends to zero. The analytic proof of this zero-Hopf
bifurcation has been provided by Llibre–Zang. Now we state this result
and reproduce its proof.

Theorem 12 For c Ê 0 sufficiently small the Michelson system (3.15)
has a zero-Hopf bifurcation at the origin for c = 0. Moreover,
the bifurcated periodic orbit satisfies x(t ) = −2c cos t +◦(c), y(t ) =
2c sin t +◦(c) and z(t ) = 2c cot t +◦(c), for c > 0 sufficiently small.

Proof 15 For any ε ̸= 0 we apply the change of variables x = εx, y = εy, z =
εz and c = εd , and Michelson system (3.15) becomes

ẋ = y ẏ = z ż =−y +εd 2 −ε1

2
x2, (3.16)

where we still use x, y, z instead of x, y, z. Now doing the change of vari-
ables ẋ = x, y = r cossinθ and z = r cosθ, system (3.16) goes over to

ẋ = r sinθ ṙ = ε

2
(2d 2 −x2)cosθ, θ̇ = 1− ε

2r
(2d 2 −x2)sinθ. (3.17)

This system can be written as

∂x

∂θ
= r sin

ε

2
(2d 2 −x2)sin2θ+ε2 f1(0,r,ε),

∂r

∂θ
= ε

2
(2d 2 −x2)cosθ+ε2 f2(0,r,ε).

(3.18)

where f1 and f2 are analytic functions in their variables.
For arbitrary (x0,r0) ̸= (0,0), the system (3.18)ε = 0 has the 2π−periodic

solution

x(θ) = r0 +x0 − r0 cosθ, r (θ) = r0, (3.19)
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such that x(0) = x0 and r (0) = r0. It is easy to see that the first variational
equation of (3.17)ε= 0 along the solution (3.19) is d y1

d t
d y2

dθ

=
(

0 sinθ
0 0

)(
d y1

d y2

)

It has the fundamental solution matrix

M =
(

1 1−cosθ
0 1

)
(3.20)

which is independent from the initial condition (x0,r0). Applying Corol-
lary 1 to the differential system (3.18) we have that

F = 1

2

∫ 2π

0
M−1

(
(2d −x2)sin2θ

(2d −x2)cosθ

)
|(1.43) dθ.

Then, F (x0,r ) = g1(x0,r0), g2(x0,r0) with

g1(x0,r0) = 1

4
(4d 2 −5r 2

0 −6r0x0 −2x2
0), g2(x0,r0) = 1

2
r0(x0 + r0).

We can check that F = 0 has a unique non-trivial solution x0 =−2d and
r0 = 2d , and that detDF (x0,r0) x0 = −2d , r0 = 2d = d 2. Hence by Corol-
lary 1 it follows that, for any given d > 0 and for | ε |> 0 sufficiently small,
the system (3.18) has a periodic orbit (x(θ,ε),r (θ,ε)) of period 2π, such
that x(0,ε), r (0,ε) → (−2d ,2d) as ε→ 0. We note that the eigenvalues
of DF (x0,r0)|x0=−2d ,r0=2d are ±di . This shows that the periodic orbit is
linearly stable.

Going back to system (3.15) we get that, for c > 0 sufficiently small,
the Michelson system has a periodic orbit of period close to 2π given by
x(t ) = −2c cos t +◦(c), y(t ) = 2c sin t +◦(c) and z(t ) = 2c cot t +◦(c). We
think that this periodic orbit is symmetric with respect to the involution
R, but we do not have a proof of it.

3.5 A third-order differential equation

Using Theorem 5 in the next result we present a third-order differential
equation having as many limit cycles as we want.

Proposition 3 Let us consider the third-order differential equation
...
x − ẍ + ẋ −x = εcos(x + t ). (3.21)
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Then for all positive integer m there is εm > 0 such that if ε ∈ [−εm,εm]\
{0} the differential equation (3.21) has at least m limit cycles.

Proof 16 If y = ẋ and z = ẍ, then (2.10) can be written as

ẋ = y,

ẏ = z,

ż = x − y + z +εcos(x + t ) = x − y + z +εF (t , x, y, z)

(3.22)

The origin (0,0,0) is the unique singular point of (3.22) when ε = 0.
The eigenvalues of the linearized system at this singular point are ±i and
1. By the linear invertible transformation (X ,Y , Z )T =C (X ,Y , Z )T, where 1 −1 0

0 −1 1
1 0 1

 ,

we transform the differential system (3.22) into another such that its lin-
ear part is the real Jordan normal form of the linear part of system (3.22)
with ε= 0, i .e.,

Ẋ =−Y ,

Ẏ = X +εF (X ,Y , Z , t ),

Ż = Z +εF (X ,Y , Z , t )

(3.23)

where

F (X ,Y , Z , t ) = F
(X −Y +Z

2
,
−X −Y +Z

2
Y ,

−X +Y +Z

2

)
Using the notation introduced in (2.10) we have that x(X ,Y , Z ), F0(x, t ) =
(−X ,Y , Z ), F1(x, t ) = (0,F,F ) and F2(x, t ) = 0 Let x(t ; X0,Y0, Z0,ε) be the
solution to system (3.23) with x(0; X0,Y0, Z0,ε) = (X0,Y0, Z0). Clearly the
unperturbed system (3.23) with ε = 0 has a linear center at the origin in
the (X ,Y ) plane, which is an invariant plane under the flow of the unper-
turbed system, and the periodic solution x(0; X0,Y0,0,0,ε) = x(X (t ),Y (t ), Z (t ))
is

X (t ) = X0 cos t −Y0 sin t , Y (t ) = Y0 cos t +X0 sin t , Z (t ) = 0. (3.24)

Note that all these periodic orbits have period 2π.
For our system, V and α from Theorem (5) are V = {(X ,Y ,0) : 0 < X2 +

Y2 < ρ}, for some arbitrary ρ > 0 and α= (X0,Y0) ∈V .
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The fundamental matrix solution M(t ) of the variational equation
of the unperturbed system (3.23)ε = 0 with respect to the periodic orbits
(3.24) satisfying that M(t ) is the identity matrix is

M(t ) =

 cos t −sin t 0
sin t cos t 0

0 0 e t

 ,

We remark that it is independent from the initial condition (X0,Y0,0).
Moreover an easy computation shows that

M−1(0)−M−1(2π) =

 0 0 0
0 0 0
0 0 1−e2π

 ,

In short we have shown that all the assumptions of Theorem 5 hold.
Hence we shall study the zeros α = (X0,Y0) ∈ V of the two components
of the function F (α) given in (1.26). More precisely we have F (α) =
(F1(α),F2(α)) where

F1(α) =
∫ 2π

0
sin tF (x(t ; X0,Y0,0,0))d t ,

=
∫ 2π

0
sin tF

(
t + X (t )−Y (t )

2
,−X (t )+Y (t )

2
,
−X (t )+Y (t )

2
, t

)
d t ,

F2(α) =
∫ 2π

0
cos tF (x(t ; X0,Y0,0,0))d t ,

=
∫ 2π

0
cos tF

(
t + X (t )−Y (t )

2
,−X (t )+Y (t )

2
,
−X (t )+Y (t )

2
, t

)
d t .

where X (t ),Y (t ) are given by (3.24).
First, we consider the third-order differential equation (3.21). For this

equation we have that

f1(X0,Y0) =
∫ 2π

0
sin t cos

(
t + (X0 −Y0)cos t − (X0 +Y0)sin t

2

)
d t ,

f2(X0,Y0) =
∫ 2π

0
cos t cos

(
t + (X0 −Y0)cos t − (X0 +Y0)sin t

2

)
d t .

To simplify the computation of these two integrals we do the change of
variables (X0,Y0) 7→ (r, s) given by

X0 −Y0 = 2r cos s, X0 +Y0 =−2r sin s, (3.25)
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where r > 0 and s ∈ [0,2π]. From now on and until the end of the paper,
we write f1(r, s) instead of

f1(X0,Y0) = f1

(
r (cos s − sin s),−r (cos s + sin s)

)
.

Similarly for f2(r, s).
We compute the two previous integrals and we get

f1(r, s) =−πJ2(r )sin2s,

f2(r, s) = 2π
(1

r
J1(r )− J2(r )cos2 s

)
,

(3.26)

where J1 and J2 are the first and second Bessel functions of the first kind.
For more details on Bessel functions. These computations become easier
with the help of an algebraic manipulator such as Mathematica or Maple.
Using the asymptotic expressions of the Bessel functions of first kind it
follows that Bessel functions J1(r ) and J2 have different zeros. Hence,
fi (r, s) = 0 for i = 1,2 imply that s ∈ {0,π/2,3π/2}. Therefore, we have to
study the zeros of

f2(r,0) = f2(r,π) = 2π
(1

r
J1(r )− J2(r )

)
, (3.27)

f2(r,π/2) = f2(r,3π/2) = 2π

r
J1(r ). (3.28)

We claim that function (3.27) has also infinite zeros for r ∈ (0,∞). Note
that if ρ is sufficiently large, and we choose r < ρ also sufficiently large,
then

Jn(r ) ≈
√

2

πr
cos

(
r − nπ

2
− π

4

)
, f or n = 1,2,

are asymptotic estimations. Considering (3.27)) for r sufficiently large we
obtain

f2(r,0) ≈ 2

r

√
2π

r

(
cos

(
r − 3π

4

)
+ r cos

(
r − π

4

))
= 2

r

√
π

r
((r −1)cosr + (r +1)sinr )

The above function has infinite zeros because the equation

tanr = 1− r

r +1

has infinitely many solutions.
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For every zero r0 > 0 of the function (3.27) we have two zeroes of system
(3.26), namely (r, s) = (r0,0) and (r, s) = (r0,π). We have from (3.26) that

| ∂( f1, f2)

∂(r, s)
|(r,s)=(r0,0)= 1

r 3
0

(4π2(J0(r0)r0 −2J1(r0))− (J0(r0)r0

+(r 2 −2)J1(r0))),

= 4π2

r0
J2(r0)(J1(r0)r0 − J2(r0)),

(3.29)

where we have used several relations between the Bessel functions of the
first kind. Clearly, it is impossible that (3.27) and (16) are equal to zero
at the same time. Therefore, by Theorem 4 there is a periodic orbit of the
system (3.21) for each (r0, ), that is, for each value of (X0,Y0) = (r0,−r0).

In an analogous way, there is a periodic orbit of the system (3.21) for
each (r0,π), that is, for each value of (X0,Y0) = (−r0,r0). In fact, the peri-
odic orbit with these initial conditions and the previous one with initial
conditions (X0,Y0) = (r0,−r0), are the same.

Similarly, since J1(r ) has infinitely many zeroes, the function (16) has
infinitely many positive zeroes r1. Every one of these zeroes provides two
solutions to the system (3.26) , namely (r, s) = (r1,π/2) and (r, s) = (r1,3π/2)

Moreover we have from (3.26) that

| ∂( f1, f2)

∂(r, s)
|(r,s)=(r1,π/2)= 4π2

r1
J 2

2(r1) ̸= 0. (3.30)

Therefore, by Theorem 4 there is a periodic orbit of the system (3.21) for
each (r1,π/2), that is, for each value of (X0,Y0) = (−r1,−r1). In an analo-
gous way there is also a periodic orbit of the system (3.21) for each (r1,3π/2),
that is, for each value of (X0,Y0) = (r1,r1) In fact, the periodic orbit with
these initial conditions and the previous one with initial conditions (X0,Y0) =
(−r1,−r1) are the same. Taking the radius ρ of the disc V = {(X0,Y0,0) : 0 <
X2+Y2 < ρ} in the proof of Theorem 5 conveniently large, we include in it
as many zeros of the system f1(X0,Y0) = f2(X0,Y0) = 0 as we want, so from
Theorem 5, Proposition 3 follows.

3.6 The Vallis system (El Nino phenomenon)

The Vallis system, introduced by Vallis in 1988, is a periodic nonautonomous
three dimensional system modeling the atmosphere dynamics in the
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tropics over the Pacific Ocean, related to the yearly oscillations of pre-
cipitation, temperature and wind force. Denoting by x the wind force,
by y the difference of near-surface water temperatures of the east and
west parts of the Pacific Ocean, and by z the average near-surface water
temperature, the Vallis system is

d x

d t
=−ax +by +au(t ),

d y

d t
=−y +xz,

d z

d t
=−z −x y +1.

(3.31)

where u(t ) is some C 1T−periodic function describing the wind force
under seasonal motions of air masses, and the parameters a and b are
positive. Although this model neglects some effects like Earth’s rotation,
pressure field and wave phenomena, it provides a correct description of
the observed processes and recovers many of the observed properties
of El Nino. The properties of El Nino phenomena is shown that, taking
u ≡ 0.

It is possible to observe the presence of chaos by considering a = 3
and b = 102. Later it is proved that there exists a chaotic attractor for
the system (3.31) after a Hopf bifurcation. This chaotic motion can be
easily understood if we observe the strong similarity between the sys-
tem (3.31) and the Lorenz system, which becomes more clear under the
replacement of z by z +1 in (3.31). Now we shall provide sufficient con-
ditions in order that system (3.31) has periodic orbits and, additionally,
we shall characterize the stability of these periodic orbits. As far as we
know, the study of the periodic orbits in the non-autonomous Vallis sys-
tem has not been considered in the literature, with the exception of the
Hopf bifurcation studied.

We define ∫ T

0
u(s)d s

Now we state our main result.
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Theorem 13 For I ̸= 0 and a ̸= b the Vallis system (3.31) has a
T−periodic solution (x(t ), y(t ), z(t )) such that

(x(t ), y(t ), z(t )) ≈
( aI

T (a −b
),

aI

T (a −b)
,1

)
Moreover this periodic orbit is stable if a > b, and unstable if a < b.

We do not know the reliability of the Vallis model approximating the
Nino phenomenon but it seems that, for the moment, this is one of the
best existing models. Accepting this reliability we can say the following.

The stable periodic solution provided by Theorem 13 says that the
Nino phenomenon exhibits a periodic behavior if the T−periodic func-
tion u(t ) and the parameters a and b of the system satisfy I ̸= 0 and a > b.
Moreover, Theorem 13 states that this periodic solution lives near the
point

(x, y, z) ≈
( aI

T (a −b)
,

aI

T (a −b)
,1

)
Since the periodic solutions found in the following Theorems 15, 16 and17
are also stable, we can provide a similar physical interpretation for them
as we have done for the periodic solution from Theorem 13

Theorem 14 For I ̸= 0 the Vallis system (3.31) has a T−periodic so-
lution
(x(t ), y(t ), z(t )) such that

(x(t ), y(t ), z(t )) ≈
(
− aI

T b
,− aI

T b
,1

)
Moreover this periodic orbit is always unstable

Theorem 15 For I ̸= 0 the Vallis system 3.31 has a T−periodic solu-
tion
(x(t ), y(t ), z(t )) such that

(x(t ), y(t ), z(t )) ≈
( I

T
,

I

T
,1

)
Moreover this periodic orbit is always stable.
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Theorem 16 For I ̸= 0 the Vallis system 3.31 has a T−periodic solu-
tion (x(t ), y(t ), z(t ) such that

(x(t ), y(t ), z(t )) ≈
( I

T
,0,1

)
Moreover this periodic orbit is always stable.

In what follows we consider the function

J (t ) =
∫ t

0
u(s)d s

and note that J (T ) = I . So, we have the following result.

Theorem 17 Consider I = 0 and J (t ) ̸= 0 if 0 < t < T. Then, the Val-
lis system 3.31 has a T−periodic solution (x(t ), y(t ), z(t ) such that

(x(t ), y(t ), z(t )) ≈
(
− a

T

∫ T

0
J (s)d s,0,1

)
Moreover this periodic orbit is always stable

The tool for proving our results will be the averaging theory. This the-
ory applies to periodic non-autonomous differential systems depending
on a small parameter ε. Since the Vallis system already is a T−periodic
non-autonomous differential system, in order to apply to it the averag-
ing theory we need to introduce in such system a small parameter. This
is reached doing convenient rescalings in the variables (x, y, z), in the
parameters (a,b), and in the function u(t ). Playing with different rescal-
ings we shall obtain different results on the periodic solutions of the Val-
lis system. More precisely, in order to study the periodic solutions of
the differential system 3.31, we start doing a rescaling of the variables
(x, y, z), of the function u(t ), and of the parameters a and b, as follows:

x = εm1 X , y = εm2Y , z = εm3 Z ,

u(t ) = εn1U (t ), a = εn2 A, b = εn3 Z .
(3.32)

Where ε is always positive and sufficiently small, and where mi and n j

are nonnegative integers, for all i , j = 1,2,3. Then, in the new variables
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(x, y, z), the system 3.31 is written

d X

d t
=−εn2 AX +ε−m1+m2+n3BY +ε−m1+n1+n2 AU (t ),

dY

d t
=−Y +εm1−m2+m3 X Z ,

d Z

d t
=−Z −εm1+m2−m3 X Y +ε−m3.

(3.33)

Consequently, in order to have non-negative powers of ε we must im-
pose the conditions

m3 = 0 and 0 É m2 É m1 É L, (3.34)

where L = min{m2 +n3,n1 +n2}. So, system 3.35 becomes

d X

d t
=−εn2 AX +ε−m1+m2+n3BY +ε−m1+n1+n2 AU (t ),

dY

d t
=−Y +εm1−m2 X Z ,

d Z

d t
= 1−Z −εm1+m2 X Y .

(3.35)

Our aim is to find periodic solutions of the system (3.35) for some special
values of mi ,n j , i , j = 1,2,3, and after we go back through the rescaling
3.32 to guarantee the existence of periodic solutions in system 3.31. In
what follows we consider the case where n2 and n3 are positive and m2 =
m1 < n1+n2. These conditions lead to the proofs of Theorems 13, 14 and
15. For this reason we present these proofs together in order to avoid
repetitive arguments. Moreover, in what follows we consider

K =
∫ T

0
U (s)d s.

Proof 17 (Proofs of Theorems 13, 14 and 15) We start considering system
(3.35) with n2 and n3 positive and m2 = m1 < n1 +n2. So we have

d X

d t
=−εn2 AX +εn3BY +ε−m1+n1+n2 AU (t ),

dY

d t
=−Y +X Z ,

d Z

d t
= 1−Z −ε2m1 X Y .

(3.36)
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Now we apply the averaging method to the differential system (3.36).
We have x = (X ,Y , Z )T and

F0(t , x) =

 0
−Y +X Z

1−Z

 , (3.37)

We start considering the system

ẋ = F0(t , x) (3.38)

Its solution x(t , z,0) = (X (t ),Y (t ), Z (t )) such that x(0, z,0) = z = (X0,Y0, Z0)
is

X (t ) = X0,

Y (t ) = (1−e−t (1+ t ))X0 +e−t Y0 +e−t t X0Z0,

Z (t ) = 1−e−t +e−t Z0.

In order that x(t , z,0) is a periodic solution we must choose Y 0 = X 0 and
Z 0 = 1. This implies that, through every point of the straight line X = Y ,
Z = 1, there passes a periodic orbit lying in the phase space (X ,Y , Z , t ) ∈
R3 × S1. Here and in what follows, S1 is the interval [0,T ] identifying T
with 0.

Observe that. We have n = 3,k = 1,α = X0 and β(X0) = (X0,1) and,
consequently, M is a one dimensional manifold given by M (X0, X0,1) ∈
R3 : X0 ∈R.

The fundamental matrix Mz(t ) of (3.38) satisfying that Mz(0) is the
identity of R3, is  1 0 0

1−cosh t + sinh e−t e−t t X0

0 0 e−t


and its inverse matrix M−1

z (t ) is 1 0 0
1−e t e t −e t t X0

0 0 e t


Since the matrix M−1

z (0)−M−1
z (T ) has an 1×2 zero matrix in the upper

right corner, and a 2×2 lower right corner matrix

∆=
(

1−eT eT T X0

0 1−eT

)
Master 2 Averaging Theory Course
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with det(∆) = (1−eT )2 ̸= 0 because T ̸= 0.
Let F be the vector field of system (3.36) minus F0 given in (3.36). Then

the components of the function M−1
z (t )F (t , x(t , z,0)) are

g1(X0, t ) =−εn2 AX0 +εn3B X0 +ε−m1+n1+n2 AU (t ),

g2(X0, t ) = ε2m1e t t X 3
0 + (1−e t )g1(X0, t ),

g3(X0, t ) =−ε2m1e t X 2
0 .

In order to apply averaging theory of first order we need to consider
only terms up to order ε. Analysing the expressions of g1, g2 and g3 we note
that these terms depend on the values of m1 and n j , for each j = 1,2,3 .
In fact, we just need to study the integral of g1 because k = 1. Moreover,
studying the function g1 we observe that the only possibility to obtain an
isolated zero of the function

f1(X0) =
∫ T

0
g1(X0, t )d t

is assuming that n1 +n2 −m1. Otherwise, the only solution of f1(X0) = 0
is X0, which corresponds to the equilibrium point (X0,Y0, Z0) = (0,0,1) of
system (3.38). The same occurs if n2 and n3 are greater than 1 simultane-
ously. This analysis reduces the existence of possible periodic solutions to
the following cases:
(p1) n2 = 1 and n3 = 1;
(p2) n2 > 1 and n3 = 1;
(p3) n2 = 1 and n3 > 1.

In the case (p1) we have M−1
z (t )F1(t , x(t , z,0)) = −AX0 +B X0 + AU (t ),

and then
f1(X0) = (−A+B)T X0 + AK .

Consequently, if A ̸= B, then f1(X0) = 0 implies X0 = AK (T (A−B)). So, by
Theorem 5, system (3.36) has a periodic solution (X (t ,ε),Y (t ,ε), Z (t ,ε))
such that

(X (0,ε),Y (0,ε), Z (0,ε)) 7→ (X0,Y0, Z0) =
( AK

T (A−B)
,

AK

T (A−B)
,1

)
when ε 7→ 0. Note that the point (X0,Y0, Z0) is an equilibrium point of the
system (3.32). Then, taking n1 = n2 = n3 = 1 and going back through the
rescaling (3.36) of the variables and parameters, we obtain that the peri-
odic solution of system (3.36) becomes the periodic solution (x(t ), y(t ), z(t ))
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of system (3.31) satisfying

(x(t ), y(t ), z(t )) ≈
( aI

T (a −b)
,

aI

T (a −b)
,1

)
.

Indeed, we observe that

x0 = εX0 = ε(aε−1)(Iε−1)

T ε−1(a −b)
= aI

T (a −b)

Moreover, we note that f
′

1(x0) = ε f
′

1(X0) = −a +b ̸= 0 so, the periodic or-
bit corresponding to x0 is stable if a > b, and unstable otherwise. This
completes the proof of Theorem 13

Analogously the function f1 in the cases (p2) and (p3) is

f1(X0) = T B X0 + AK and f1(X0) =−T AX0 + AK ,

respectively. In the first case the condition f1(X0) = 0 implies X0 =−(AK )/(T B).
Now we observe that n2 > 1 and n3 = 1. So, going back through the rescal-
ing, we obtain

x0 = εX0 = ε(−aε−n2)(Iε−n1)

T bε−1
=− aI

T bεn1+n2−2

and consequently, choosing n1 = 0 and n2 = 2, we get x0 =−aI /(T b). Note
also thatf

′
1(x0) = T b > 0, then the periodic orbit corresponding to x0 is

always unstable. Thus, Theorem 14 is proved.
Finally, in the case (p3), f1(X0) = 0 implies X0 = K /T. So, taking n1 = 1

and going back through the rescaling, we have x0 = εX0 = εI /(T ε) = I /T.
Additionally, f

′
1(x0) = Ta < 0. Therefore, the periodic solution coming

from x0 is always stable. This proves Theorem 15.

Proof 18 (Proof of Theorem 15) . As in the proofs of Theorems 13, 14 and
15,

we start by considering a more general case in the powers of ε in (3.35),
taking n2 > 0 and m2 < m1 < L. In this case the function F0(t , x) of system
(2.10) is

F0(t , x) =

 0
Y

1−Z

 , (3.39)

Then the solution x(t , z,0) of system (2.11) satisfying x(0, z,0) = z is

(X (t ),Y (t ), Z (t )) = (X0,e−t Y0,1−e−t +e−t Z0).
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This solution is periodic if Y0 = 0 and Z0 = 1. Then, through every point
in the straight line Y = 0, Z = 1 there passes a periodic orbit lying in
the phase space (X ,Y , Z , t ) ∈ R3 × S1. We have n = 3,k = 1,α = X0 and
β(α) = (0,1). Consequently, M is a one dimensional manifold given by
M = {(X0,0,1) ∈ R3 : X0 ∈ R}. The fundamental matrix Mz(t ) from (2.12)
and satisfying Mz(0) = I d3 (with F0 given by (3.39). Its inverse M−1

z (t ) are,
respectively

Mz(t ) =

 1 0 0
0 e−t 0
0 0 e−t

 , and M−1
z (t ) =

 1 0 0
0 e t 0
0 0 e t

 ,

Since the matrix M−1
z (0)−M−1

z (T ) has an 1×2 zero matrix in the upper
right corner, and a 2×2 lower right corner matrix

∆=
(

1−eT 0
0 1−eT

)
,

with det(∆) = (1− eT )2 ̸= 0, we can apply the averaging theory Again, us-
ing the notations introduced in the proofs of Theorems 13, 14 and 15,
since k = 1 we will look only to the integral of the first coordinate of F =
( f1, f2, f3). In this case we have

g1(X0,Y0, Z0, t ) =−εn2 AX0 +ε−m1+n1+n2 AU (t ).

Comparing this function g1 with the same function obtained in the proof
of Theorems 13, 14 and 15, it is easy to see that this case corresponds to
the case (p3) of the mentioned theorems. Then, in order to have periodic
solutions, we need to choose n2 = 1 and n1+n2−m1 = 1. So, following the
steps of the proof of case (p3) by choosing n1 = 1 and coming back through
the rescaling 3.32 to system 3.31, Theorem 16 is proved.

Proof 19 (Proof of Theorem 17) . We start by considering the system 3.35
with n3 = 2, n2 > 0, m1 = n1 +n2 and m2 < m1 < m2 +n3. With these
conditions the system 3.35 becomes

d X

d t
=−εn2 AX +εm2−n1−n2+n3BY + AU (t ),

dY

d t
=−Y +ε−m2+n1+n2 X Z ,

d Z

d t
= 1−Z −εm2+n1+n2 X Y .

(3.40)
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Again, we will use the averaging theory So, considering x = (X ,Y , Z )T we
obtain

F0(t , x) =

 AU (t )
Y

1−Z

 , (3.41)

Now we note that the solution x(t , z,0) = (X (t ),Y (t ), Z (t )) such that x(0, z,0) =
z = (X0,Y0, Z0) of the system

ẋ = F0(t , x) (3.42)

is

X (t ) = X0 +
∫ t

0
AU (s)d s, Y (t ) = e−t Y0, Z (t ) = 1−e−t +e−t Z0

Since I = 0 and J (t ) ̸= 0 for 0 < t < T, in order that x(t , z,0) is a peri-
odic solution we need to fix Y0 = 0 and Z0 = 1. This implies that through
every point in a neighbourhood of X0 in the straight line Y = 0, Z = 1 there
passes a periodic orbit lying in the phase space (X ,Y , Z , t ) ∈∈R3 ×S1.

We have n = 3,k = 1,α = X0 and β(X0) = (0,1). Hence, M is a one di-
mensional manifold M = {(X0,0,1) ∈ R3 : X0 ∈ R}, and the fundamental
matrix Mz(t ) of (3.42) satisfying Mz(0) = I d3 is 1 0 0

0 e−t 0
0 0 e−t

 ,

It is easy to see that the matrix M−1
z (0)−M−1 has a 1×2 zero matrix in the

upper right corner, and a 2×2 lower right corner matrix

∆=
(

1−eT 0
0 1−eT

)
,

with det(∆) = (1− eT )2 ̸= 0. Then, the hypotheses of Theorem 5 are satis-
fied. Now the components of the function M−1

z (t )F (t , x(t , z,0)) are

g1(X0, t ) =−εn2 A
(

X0 +
∫ t

0
AU (s)d s

)
+ AU (t ),

g2(X0, t ) = ε−m2+n1+n2

(
X0 +

∫ t

0
AU (s)d s

)
e t ,

g3(X0, t ) = 0.
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Taking n1 = n2 = 1 and observing that k = 1andn = 3, we are interested
only in the first component of the function F1 = (F11,F12,F3) . Indeed, ap-
plying the averaging theory, we must study the zeros of the first compo-
nent of the function

F (X0) = ( f1(X0), f2(X0), f3(X0)) =
∫ T

0
M−1

z (t , z)F11(t , x(t , z))d t .

Since

F11 =−A
(

X0 +
∫ t

0
AU (s)d s

)
.

We deduce

f1(X0) =
∫ T

0
−A

(
X0 +

∫ t

0
AU (s)d s

)
d t

=−AT X0 − A2
∫ T

0

(∫ t

0
U (s)d s

)
d s.

Therefore, from f1(X0) = 0 we obtain

X0 = −A

T

∫ T

0

(∫ t

0
U (s)d s

)
d s ̸= 0

So, rescaling (3.32), we get

x0 = ε2X0 =−ε2 aε−1

εT

∫ T

0
J (s)d s =− a

T

∫ T

0
J (s)d s

Moreover, since f
′

1(x0) =−a/T , because a and ε are positive, the T−periodic
orbit detected by the averaging theory is always stable. This ends the
proof.

3.7 Periodic solutions of the Duffing differen-
tial equation revisited via the averaging
theory

Hamel [11] in 1922 gaves the first general results for the existence of pe-
riodic solutions of the periodically forced pendulum equation

ÿ +a sin y = b sin t , (3.43)

where the dot denotes derivative with respect to the independent vari-
able t , also called the time, and y ∈ S1 is an angle. Four years earlier
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this equation was the main subject of a monograph published by Duff-
ing, who restricted his study to the periodic solutions of the following
approximate equation

ÿ +ay − c y3 = b sin t . (3.44)

This equation is now known as the Duffing differential equation. The
differential equation (3.44) describes the motion of a damped oscilla-
tor with a more complicated potential than in the harmonic motion (i.e.
when c = 0). As usual the parameter a controls the size of stiffness,
b controls the amplitude of the periodic driving force, and c controls
the amount of nonlinearity in the restoring force. In particular, equa-
tion (3.44) models a spring pendulum such that its spring’s stiffness only
obey approximately the Hooke’s law.

Many other different classes of Duffing differential equations have
been investigated by several authors. They are mainly interested in the
existence of periodic solutions, in their multiplicity, stability, bifurca-
tion, ... See for instance the good survey of Mawhin [17].

In this work we shall study the periodic solutions of the Duffing differ-
ential equations (3.43) and (3.44), where a, b and c are real parameters,
via the averaging theory.

Our main results on the periodic solutions of the Duffing differential
equation (3.43) are the following.

Theorem 18 Let ε be a small parameter. The Duffing differential
equation (3.43) has

(a) four periodic solutions y1(t ) = −b sin t + O(ε), y2(t ) = π −
b sin t +O(ε), y3(t ) =O(ε), y4(t ) = π+O(ε) if ab ̸= 0, a =O(ε2)
and b =O(ε);

(b) two periodic solutions yi (t ) for i = 3,4 if b = 0 and a ̸= 0;

(c) infinitely many periodic solutions y(t ) = k −b sin t with k ∈ R
if a = 0 and b ̸= 0;

(d) no periodic solutions if a = b = 0.

Theorem 18 will be proved in subsection 3.7.1 using the averaging
theorems given in the Appendix.
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Our main results on the periodic solutions of the differential system
(3.44) are the following.

Theorem 19 The Duffing differential equation (3.44) has

(a) one periodic solution y(t ) = − 3
√

4b/(3c)sin t +O(ε), if bc ̸= 0,
a = 1 and b =O(ε) and c =O(ε);

(b) one periodic solution y(t ) = O(ε), if b ̸= 0, a = O(ε), b = O(ε)
and c =O(ε2);

(c) two periodic solutions y±(t ) = ±
p

a/c, if ac > 0, b ̸= 0, a =
O(ε2), b =O(ε) and c =O(ε2);

(d) three periodic solutions y(t ) = y0, where y0 ∈ {0,±
p

a/c} if ac >
0, b ̸= 0, a =O(ε2), b =O(ε2) and c =O(ε2).

Theorem 19 will be proved in subsection 3.7.2 using three different
averaging theorems.

3.7.1 Proof of Theorem 18

Instead of working with the Duffing differential equation (3.43) we shall
work with the equivalent differential systems

ẋ =−a sin y +b sin t ,
ẏ = x.

(3.45)

In order to apply the theorems of the averaging theory of first order,
given in the Appendix, for studying the periodic solutions of the differ-
ential system (3.45) we scale the variables and the parameters of this
differential system.

We start doing a scaling of the variables (x, y) and of the parameter a
and b as follows

x = εm1 X , y = εm2Y , a = εn1 A, b = εn2B , (3.46)

where m1, m2, n1 and n2 are integers such that the differential equation
(3.45) becomes

Ẋ =−εn1−m1 A sin(εm2Y )+εn2−m1B sin t ,

Ẏ = εm1−m2 X ,
(3.47)
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where m1 −m2, n1 +m2 −m1 (because sin(εm2Y ) = O (εm2)) and n2 −m1

must be non–negative integers such that

{m1 −m2,n1 +m2 −m1,n2 −m1}∩ {1} ̸= ;,

because we want that the differential system (3.47) has some term of
order one in ε in order to apply the averaging theory with respect to the
small parameter ε of order one. Also we do not consider the case n2 −
m1 > 1, otherwise in the averaging theory the term b sin t of system (3.45)
would not contribute to the existence of periodic solutions, and we want
to take it into account. Therefore, we distinguish the following seven
cases

Case I: m1 −m2 = 0, n1 +m2 −m1 = 0 and n2 −m1 = 1;

Case II: m1 −m2 = 0 and n1 +m2 −m1 = 1;

Case III: m1 −m2 = 1 and n1 +m2 −m1 = 0;

Case IV: m1 −m2 = 1 and n1 +m2 −m1 = 1;

Case V: m1 −m2 > 1 and n1 +m2 −m1 = 1;

Case VI: m1 −m2 = 1 and n1 +m2 −m1 > 1;

Case VII: m1 −m2 > 1, n1 +m2 −m1 > 1 and n2 −m1 = 1;

and every case α ∈ {I I , I I I , . . . ,V I } is separated into the following two
subcases:

(α.1) n2 −m1 = 0,
(α.2) n2 −m1 = 1.

We have applied the three theorems of averaging of the Appendix for
studying the existence of periodic solutions in the 12 previous subcases
of differential systems (3.47). As we shall see the proof of Theorem 18
when ab ̸= 0 will come from the subcase (IV.1), and when a ̸= 0 and
b = 0 from the subcase (IV.2). All the other subcases, either do not satisfy
the hypotheses of one of the three theorems of the averaging, or provide
partial results of the ones stated in Theorem 18. Consequently, in what
follows we only provide the details of the more positive results, i.e. we
shall give the proofs of statements (a) and (b) of Theorem 18 only con-
sidering the subcases (IV.1) and (IV.2). The proofs of statements (c) and
(d) are done without using the averaging theory.
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Proof 20 (Proof of statement (a) of Theorem 18.) For the case (IV.1), i.e.
for

m1 −m2 = 1, n1 +m2 −m1 = 1, n2 −m1 = 0,

we take

m1 = 1, m2 = 0, n1 = 2, n2 = 1. (3.48)

Then system (3.47) becomes

Ẋ =−εA sinY +B sin t ,
Ẏ = εX .

(3.49)

Now we shall apply the averaging Theorem 20 to system (3.49). In what
follows we use the notation of Theorem 20. Thus x = (X ,Y )T and

F0(t ,x) =
(

B sin t

0

)
, F1(t ,x) =

( −A sinY
X

)
, F2(t ,x) =

(
0
0

)
.

In order to apply some of the three averaging theorems of the appendix
for studying the periodic solutions of the differential system (3.49) we must
consider that the functions Fi for i = 0,1,2 are defined in R×Ω, where Ω
is a bounded open subset of R2, here we take Ω equal to the disc of cen-
ter (0,0) and radius k +1, being k the positive integer of the statement of
Theorem 18.

The unperturbed differential system (3.68) (i.e. in our case system (3.49)
with ε= 0) has the solution

x(t ,z,0) = (X (t ),Y (t ))T = (B +X0 −B cos t ,Y0)T . (3.50)

such that x(0,z,0) = z =α= (X0,Y0)T . All these solutions are 2π−periodic
if and only if B ̸= 0, here we use the assumption that b ̸= 0. Then, since
m = n = 2 using the notation of Theorem 20, we have ξ = identity and
the conditions (a) and (b) of Theorem 20 are satisfied trivially. So system
(3.49) satisfies all the assumptions of Theorem 20, consequently in what
follows we apply this theorem for studying the periodic solutions of system
(3.49). We compute for our system (3.49) the fundamental matrix Mz(t )
associated to the first variational system (3.69) such that Mz(0) = Id of R2,
and we obtain

Mz(t ) =
(

1 0

0 1

)
.
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Now we must compute the function F (α) =F (X0,Y0) given in (3.70), i.e.

F (X0,Y0) =
(

F1(X0,Y0)

F2(X0,Y0)

)
=

∫ 2π

0
M−1

z (t )F1(t ,x(t ,z,0))d t ,

=

 −
∫ 2π

0
A sinY0d s∫ 2π

0
(X0 +B −B cos s)d s

= 2π

( −A sinY0

B +X0

)
.

Therefore, solving the system F (X0,Y0) = (0,0), we obtain in Ω the solu-
tions

α j = (X0, j ,Y0, j ) = (−B , jπ) for j =−k, . . . ,−1,0,1, . . . ,k.

Moreover we have that the Jacobian

det

(
∂F

∂α
(α j )

)
= (−1)k A ̸= 0,

because by assumption a ̸= 0. Hence Theorem 20 says that if AB ̸= 0 then
for every solution (X0, j ,Y0, j ) = (−B , jπ) of the system F (X0,Y0) = 0, the
differential system (3.49) with ε= ε(k) ̸= 0 sufficiently small has a 2π− pe-
riodic solution (X (t ,ε),Y (t ,ε)) such that (X (0,ε),Y (0,ε) → (−B , jπ) when
ε → 0. So, from (3.49) and (3.50) the periodic solution (X (t ,ε),Y (t ,ε))
tends to the solution

(X (t ),Y (t )) ≈ (−B cos t , jπ
)

(3.51)

for ε sufficiently small, i.e.

(X (t ,ε),Y (t ,ε)) = (−B cos t +O(ε), jπ−εB sin t +O(ε2)
)
.

After the change of variables (3.46) satisfying (3.48), i.e.

x = εX , y = Y , b = εB , a = ε2 A,

we obtain that the 2π–periodic solution (3.51) of system (3.49) becomes
the 2π–periodic solution

(x(t ), y(t )) ≈ (−b cos t , jπ−b sin t
)

of system (3.45). Now taking into account that y is an angle, doing mod-
ulo 2π these 2π–periodic solutions of system (3.45) provide the following
two 2π–periodic solutions
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(i) y(t ) ≈−b sin t if j is even,

(ii) y(t ) ≈π−b sin t if j is odd,

of the differential equation (3.43). This ends the proof of statement (a) of
Theorem 18.

Proof 21 (Proof of statement (b) of Theorem 18.) For the case (IV.2), i.e.
for

m1 −m2 = 1, n1 +m2 −m1 = 1, n2 −m1 = 1;

we take
m1 = 1, m2 = 0, n1 = 2, n2 = 2. (3.52)

Then system (3.47) becomes

Ẋ =−εA sinY +εB sin t ,
Ẏ = εX .

(3.53)

We shall apply the averaging Theorem 22 to system (3.53). In what
follows we shall use the notation of system (3.72) and of Theorem 22. Thus
x = (X ,Y )T and

F1(t ,x) =
( −A sinY +B sin t

X

)
, F2(t ,x) =

(
0
0

)
.

We must compute the function g (y) given in (3.74), i.e.

g (y) = 1

2π

∫ 2π

0

( −A sinY0 +B sin s
X0

)
d s =

( −A sinY0

X0

)
.

Then, due to the fact that Y is an angle we have two solutions for (X0,Y0),
namely (X1,Y1) = (0,0) and (X2,Y2) = (0,π). Since the Jacobian (3.75) in
these two solutions is A and −A respectively, and by assumptions a ̸= 0, by
Theorem 22 the system (3.53) has two periodic solutions (Xi (t ,ε),Yi (t ,ε))
such that (Xi (0,ε),Yi (0,ε)) tends to (Xi ,Yi ) when ε→ 0. So by statement
(a) of Theorem 22 we have

(Xi (t ,ε),Yi (t ,ε)) ≈ (
O(ε),Yi +O(ε)

)
(3.54)

for ε sufficiently small.

After the change of variables (3.46) satisfying (21), i.e.

x = εX , y = Y , b = ε2B , a = ε2 A,
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we obtain that the two periodic solutions (3.54) of system (3.53) becomes
the two periodic solutions

(x1(t ), y1(t )) ≈ (
O(ε),O(ε)

)
, (x2(t ), y2(t )) ≈ (

O(ε),π+O(ε)
)
,

of system (3.45). This ends the proof of statement (b) of Theorem 18.

Proof 22 (Proof of statement (c) of Theorem 18.) Now the differential sys-
tem (3.45) becomes

ẋ = b sin t , ẏ = x.

Its general solution is x(t ) = k1−b cos t and y(t ) = k1t −b sin t +k2, where
k1 and k2 are arbitrary constants. So, clearly the unique periodic solutions
of the differential equation (3.43) are y(t ) =−b sin t +k2. This proves the
statement (c) Theorem 18.

Proof 23 (Proof of statement (d) of Theorem 18.) Under the assumptions
of statement (d) the differential system (3.45) becomes

ẋ = 0, ẏ = x.

Its general solution is x(t ) = k1 and y(t ) = k1t +k2, where k1 and k2 are
arbitrary constants. So the system has no periodic solutions.

3.7.2 Proof of Theorem 19

Instead of working with the Duffing differential equation (3.44) we shall
work with the equivalent differential system

ẋ =−ay + c y3 +b sin t ,
ẏ = x.

(3.55)

Again in order to apply the three theorems of the averaging theory
of first order for studying the periodic solutions of the differential sys-
tem (3.55) we scale the variables and the parameters of this differential
system.

We start doing a rescaling of the variables (x, y) and of the parameter
a, b and c as follows

x = εm1 X , y = εm2Y , a = εn1 A, b = εn2B , c = εn3C , (3.56)

where m1, m2, n1, n2 and n3 are integers such that the differential equa-
tion (3.55) becomes

Ẋ =−εn1+m2−m1 AY +εn3+3m2−m1C Y 3 +εn2−m1B sin t ,

Ẏ = εm1−m2 X ,
(3.57)
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where m1 −m2, n1 +m2 −m1, n3 +3m2 −m1 and n2 −m1 must be non–
negative integers such that

{m1 −m2,n1 +m2 −m1,n3 +3m2 −m1,n2 −m1}∩ {1} ̸= ;.

We essentially distinguish the same seven cases of section 3.7.1, i.e.
Therefore, we distinguish the following seven cases

Case I: m1 −m2 = 0 and n1 +m2 −m1 = 0;

Case II: m1 −m2 = 0 and n1 +m2 −m1 = 1;

Case III: m1 −m2 = 1 and n1 +m2 −m1 = 0;

Case IV: m1 −m2 = 1 and n1 +m2 −m1 = 1;

Case V: m1 −m2 > 1 and n1 +m2 −m1 = 1;

Case VI: m1 −m2 = 1 and n1 +m2 −m1 > 1;

Case VII: m1 −m2 > 1 and n1 +m2 −m1 > 1.

Every case α ∈ {I I , I I I , . . . ,V I } is divided into the following four sub-
cases:

(α.1) n3 +3m2 −m1 = 0 and n2 −m1 = 0,
(α.2) n3 +3m2 −m1 = 0 and n2 −m1 = 1,
(α.3) n3 +3m2 −m1 = 1 and n2 −m1 = 0,
(α.4) n3 +3m2 −m1 = 1 and n2 −m1 = 1;

and the cases I and V I I are divided only into the following three sub-
cases

(α.2) n3 +3m2 −m1 = 0 and n2 −m1 = 1,
(α.3) n3 +3m2 −m1 = 1 and n2 −m1 = 0,
(α.4) n3 +3m2 −m1 = 1 and n2 −m1 = 1.

We have applied the three theorems of averaging (see the Appendix)
for studying the existence of periodic solutions of the 26 previous sub-
cases of differential systems (3.57). As we shall see in the proof of The-
orem 19 statement (a) will come from the subcase (I.4), statement (b)
from the subcase (III.3), statement (c) from the subcase (IV.3), statement
(d) from the subcase (IV.4). All the other subcases, either do not satisfy
the hypotheses of one of the three theorems of the averaging, or provide
partial results of the ones stated in Theorem 19. As in the proof of Theo-
rem 18 we only provide the details of the positive results in the proof of
Theorem 19. We separate its proof into its four statements.
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Proof 24 (Proof of statement (a) of Theorem 19) For the case (I.4), i.e. for

m1 −m2 = 0, n1 +m2 −m1 = 0, n3 +3m2 −m1 = 1, n2 −m1 = 1;

we take
m1 = m2 = n1 = 0, n2 = n3 = 1. (3.58)

Then system (3.57) becomes

Ẋ =−AY +ε(C Y 3 +B sin t
)
,

Ẏ = X .
(3.59)

We shall apply the averaging Theorem 20 to system (3.59) and we shall
obtain the statement (a) of Theorem 19. In what follows we shall use the
notation of Theorem 20. Thus x = (X ,Y )T and

F0(t ,x) =
( −AY

X

)
, F1(t ,x) =

(
C Y 3 +B sin t

0

)
, F2(t ,x) =

(
0
0

)
.

The unperturbed differential system (3.68) only has periodic solutions x(t ,z,0) =
(X (t ),Y (t ))T such that x(0,z,0) = z = (X0,Y0)T if A > 0 given by

X (t ) = X0 cos
(p

At
)
−Y0

p
A sin

(p
At

)
,

Y (t ) = X0p
A

sin
(p

At
)
+Y0 cos

(p
At

)
.

In order that x(t ,z,0) be a periodic solution of period T = 2π, the period of
the function sin t and we can apply the averaging theory, we must choose
A = 1. So we get

(X (t ),Y (t )) = (X0 cos t −Y0 sin t , X0 sin t +Y0 cos t ) , (3.60)

where (X0,Y0) ∈R2 \ {(0,0)}.

Now we compute the fundamental matrix Mz(t ) associated to the first
variational system (3.69) such that Mz(0) = Id of R2, and we obtain

Mz(t ) =
(

cos t −sin t
sin t cos t

)
.

Again since m = n = 2 in Theorem 20 we do not need to check any
condition for applying the averaging theory described in Theorem 20 for
studying the periodic solutions (3.60), of system (3.59) with ε = 0 and
A = 1, which can be prolonged to the perturbed system (3.59) with ε ̸= 0
sufficiently small and A = 1. Note that here z =α. Moreover, since for our
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differential system we have ξ(X ,Y ) = (X ,Y ), we must compute the func-
tion (3.70), i.e.

F (X0,Y0) =
∫ 2π

0
M−1

z (t )F1(t ,x(t ,z,0))d t

= 2π


3

8
C Y0

(
X 2

0 +Y 2
0

)
1

8

(−4B −3C X0

(
X 2

0 +Y 2
0

))
 .

The system F (X0,Y0) = (0,0) has three solutions, but only one is real,
namely

(X ∗
0 ,Y ∗

0 ) =
− 3

√
4B

3C
,0

 .

Since

det

(
∂F (X0,Y0)

∂(X0,Y0)

∣∣∣∣
(X0,Y0)=(X ∗

0 ,Y ∗
0 )

)
= 3

5
3 B

4
3 C

2
3

2
10
3

̸= 0,

Theorem 20 says that the periodic solution

(X (t ),Y (t )) =
− 3

√
4B

3C
cos t ,− 3

√
4B

3C
sin t


of the differential system (3.59) with ε= 0 can be prolonged to a periodic
solution of system (3.59) with ε ̸= 0 sufficiently small. Therefore, going
back through the change of variables (3.56) satisfying (3.58), i.e.

x = X , y = Y , a = A, b = εB , c = εC ,

we get that the differential system (3.55) has the 2π–periodic solution given
in the statement (a) of Theorem 19.

Proof 25 (Proof of statement (b) of Theorem 19) For the case (III.3), i.e.
for

m1 −m2 = 1, n1 +m2 −m1 = 0, n3 +3m2 −m1 = 1, n2 −m1 = 0,

we take

m1 = n1 = n2 = 1, m2 = 0, n3 = 2. (3.61)
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Then system (3.57) becomes

Ẋ =−AY +εC Y 3 +B sin t ,

Ẏ = εX ,
(3.62)

We shall apply the averaging Theorem 20 to system (3.62) and we shall
obtain the statement (b) of Theorem 19. In what follows we shall use the
notation of Theorem 20. Thus x = (X ,Y )T and

F0(t ,x) =
( −AY +B sin t

0

)
, F1(t ,x) =

(
C Y 3

X

)
,

F2(t ,x) =
(

0
0

)
.

The unperturbed differential system (3.68) has the solution

x(t ,z,0) = (X (t ),Y (t ))T = (X0 +B −B cos t − AY0t ,Y0) .

such that x(0,z,0) = z = (X0,Y0)T . In order that x(t ,z,0) be a 2π−periodic
solution we must choose B ̸= 0 and Y0 = 0. Then we get

zα = (α,β0(α)) = (X0 +B −B cos t ,0) ,

Therefore, using the notation of Theorem 20, we have n = 2 and k = 1 for
each one of these possible families of periodic solution.

We compute the fundamental matrix Mzα(t ) associated to the first vari-
ational system (3.69) such that Mzα(0) = Id of R2, and we obtain

Mzα(t ) =
(

1 −At
0 1

)
.

Since the matrix

M−1
zα (0)−M−1

zα (2π) =
(

0 −2Aπ
0 0

)
has a non–zero 1× 1 matrix in the upper right corner, and a zero 1× 1
matrix in its lower right corner. Therefore we can apply Theorem 22 of
averaging if A ̸= 0, then by applying this theorem we study the periodic
solutions which can be prolonged from the unperturbed differential sys-
tem to the perturbed one.
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Now we must compute the function F (α) = F (X0,0) given in (3.70),
i.e.

F (X0,0) =
∫ 2π

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

=


∫ 2π

0
A (X0 +B −B cos s) sd s∫ 2π

0
(X0 +B −B cos s)d s


=

(
2π2 A (B +X0)
2π (B +X0)

)
.

The system F (X0,Y0) = (0,0) has a solution

(X0,0) = (−B ,0).

Hence Theorem 22 says that if B ̸= 0 and for every simple real root (X0,0)
of the system F (X0,0) = (0,0), the differential system (3.62) with ε ̸= 0
sufficiently small has one 2π−periodic solution

(X (t ),Y (t )) = (−B cos t ,0)

which can be prolonged for to a periodic solution

(X (t ,ε),Y (t ,ε)) = (−B cos t +O(ε),O(ε)) .

Therefore, going back through the change of variables (3.56) satisfying
(3.61), i.e.

x

ε
= X , y = Y , C = c

ε2
, B = b

ε
, A = a

ε
.

we get that the differential system (3.55) has the 2π–periodic solution given
in the statement (b) of Theorem 19.

Proof 26 (Proof of statement (c) of Theorem 19) For the case (IV.3), i.e.
for

m1 −m2 = 1, n1 +m2 −m1 = 1, n3 +3m2 −m1 = 1, n2 −m1 = 1

we take
n2 = m1 = 1,m2 = 0, n1 = n3 = 2. (3.63)

Then system (3.57) becomes

Ẋ =−εAY +εC Y 3 +B sin t ,
Ẏ = εX ,

(3.64)
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We shall apply the averaging Theorem 20 to system (3.64) and we shall
obtain the statement (c) of Theorem 19. In what follows we shall use the
notation of Theorem 20. Thus x = (X ,Y )T and

F0(t ,x) =
(

B sin t
0

)
, F1(t ,x) =

( −AY +C Y 3

X

)
, F2(t ,x) =

(
0
0

)
.

The unperturbed differential system (3.68) only has periodic solutions
x(t ,z,0) = (X (t ),Y (t ))T such that x(0,z,0) = z = (X0,Y0)T given by

X (t ) = X0 +B −B cos t , Y (t ) = Y0.

All these solutions are 2π−periodic if and only if B ̸= 0.

Since k = n = 2 in the Theorem 20, we do not need to check any condi-
tion for applying the Theorem 20.

We compute the fundamental matrix Mzα(t ) associated to the first vari-
ational system (3.69) associated to the vector field (Ẏ , Ẋ ) given by (3.64)
with ε= 0, and such that Mzα(0) = Id of R2.

We obtain

Mzα(t ) =
(

1 0
0 1

)
.

Then by applying this theorem we study the periodic solutions which can
be prolonged from the unperturbed differential system to the perturbed
one, then we must compute the function F (α) =F (X0,Y0) given in (3.70),
i.e.

F (X0,Y0) = ξ⊥
(∫ 2π

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
=

( −AY0 +C Y 3
0

B +X0

)
The system F (X0,Y0) = (0,0) for AC > 0 has three solutions (−B ,Y0)

with Y0 ∈
0, ±

√
A

C

 ,we want to study the only solutions

−B ,±
√

A

C


because the solution (−B ,0) appears in the statement (b) of Theorem 19.

On the other hand we have the Jacobian matrix for the function F on
(X0,Y0) gives by

det

(
∂F (X0,Y0)

∂(X0,Y0)

∣∣∣∣
(X0,Y0)=

(
−B ,±

√
A
C

)
)
=−2A.
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Theorem 22 says that if A ̸= 0 and for two simple real roots−B ,±
√

A

C

 of the function F (X0,Y0), the differential system (3.64) has

two 2π− periodic solution (X (t ),Y (t )) = (−B cos t ,±
√

A

C
) with ε = 0 can

be prolonged to a periodic solution

(X (t ,ε),Y (t ,ε)) =
−B cos t +O(ε),±

√
A

C
−εB sin t +O(ε)

 .

of system (3.64) with ε ̸= 0 sufficiently small. Therefore, going back through
the change of variables (3.56) satisfying (3.63), i.e.

x

ε
= X , y = Y , C = c

ε2
, B = b

ε
, A = a

ε2
.

we get that the differential system (3.55) has the tow 2π–periodic solution
given in the statement (c) of Theorem 19.

Proof 27 (Proof of statement (d) of Theorem 19) For the case (IV.4)

m1 −m2 = 1, n1 +m2 −m1 = 1, n3 +3m2 −m1 = 1, n2 −m1 = 1,

we take
m1 = 1, m2 = 0, n3 = n2 = n1 = 2. (3.65)

Then system (3.57) becomes

Ẋ =−εAY (t )+εC Y 3(t )+εB sin t
Ẏ = εX (t )

(3.66)

We apply directly the Theorem 22 to system (3.66) and we shall obtain the
statement (d) of Theorem 19.

In what follows we shall use the notation of Theorem 20 and Theorem
22. Thus x = (X ,Y )T and

F0(t ,χ) =
(

0
0

)
, F1(t ,χ) =

( −AY (t )+C Y 3(t )+B sin t
X (t )

)
.

We must compute the function g (y) =G (X0,Y0) given in (3.74), i.e

g (y) =
( −AY0 +C Y 3

0

X0

)
.
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g is periodic of period T = 2π. If AC > 0, the system G (X0,Y0) = (0,0) has
three solutions

(X0,Y0) = (0,Y0) where Y0 ∈
0,±

√
A

C

 .

Since

det

(
∂G (X0,Y0)

∂(X0,Y0)

∣∣∣∣
(X0,Y0)=(0,0)

)
= A,

and

det

 ∂G (X0,Y0)

∂(X0,Y0)

∣∣∣∣
(X0,Y0)=

0,±

√√√√ A

C



=−2A,

Theorem 22 says that if A ̸= 0 and for every simple real root (0,Y0) of the
function g (y),the differential system (3.66) has three 2π− periodic solu-
tions

(X (t ),Y (t )) = (0,Y0) Y0 ∈
0, ±

√
A

C

 .

with ε= 0 can be prolonged to the three periodic solutions

(X (t ,ε),Y (t ,ε)) = (−εB (cos t −1)+O(ε),O(ε)) for (X0,Y0) = (0,0) .

and

(X (t ,ε),Y (t ,ε)) =
−εB (cos t −1)+O(ε),±

√
A

C
+O(ε)

 ,

for (X0,Y0) =
(
0,±

p
A/C

)
. Therefore, going back through the change of

variables (3.56) satisfying (3.65), i.e.

x

ε
= X , y = Y , C = c

ε2
, B = b

ε2
, A = a

ε2
.

We get that the differential system (3.55) has the three 2π–periodic solu-
tions given in the statement (d) of Theorem 19.

3.7.3 Appendix: Periodic solutions via the averaging theory

We consider the problem of bifurcation of T –periodic solutions from the
differential systems of the form

ẋ = F0(t ,x)+εF1(t ,x)+ε2F2(t ,x,ε), (3.67)
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with ε = 0 to ε ̸= 0 sufficiently small. The functions F0,F1 : R×Ω→ Rn

and F2 :R×Ω×(−ε0,ε0) →Rn are C 2, T –periodic in the first variable and
Ω is an open subset of Rn. The main assumption is that the unperturbed
system

ẋ = F0(t ,x), (3.68)

has a submanifold of periodic solutions. A solution of this problem is
given using the averaging theory.

Let x(t ,z,ε) be the solution of system (3.68) such that x(0,z,ε) = z.
We write the linearization of the unperturbed system along a periodic
solution x(t ,z,0) as

ẏ = DxF0(t ,x(t ,z,0))y. (3.69)

In what follows we denote by Mz(t ) a fundamental matrix of the linear
differential system (3.69), by ξ : Rm ×Rn−m → Rm and ξ⊥ : Rm ×Rn−m →
Rn−m the projections ofRn onto its first m and n−m coordinates respec-
tively; i.e. ξ(x1, . . . , xn) = (x1, . . . , xm), and ξ⊥(x1, . . . , xn) = (xm+1, . . . , xn)
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Theorem 20 Let V ⊂ Rm be open and bounded, let β0 : CI (V ) →
Rn−m be a C k function and Z = {zα = (α,β0(α)) |α ∈ CI (V )} ⊂Ω its
graphic in Rn. Assume that for each zα ∈ Z the solution x(t ,zα,0)
of (3.68) is T -periodic and that there exists a fundamental matrix
Mzα(t ) of (3.69) such that the matrix M−1

zα (0)−M−1
zα (T )

(a) has in the lower right corner the (n −m)× (n −m) matrix ∆α
with det(∆α) ̸= 0, and

(b) has in the upper right corner the m × (n −m) zero matrix.

Consider the function F : CI(V ) →Rm defined by

F (α) = ξ
(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
. (3.70)

Suppose that there is α0 ∈ V with F (α0) = 0, then the following
statements hold for ε ̸= 0 sufficiently small.

(i ) If det((∂F/∂α)(α0)) ̸= 0, then there is a unique T -periodic so-
lution x(t ,ε) of system (3.67) such that x(t ,ε) → x(t ,zα0,0) as
ε→ 0.

(i i ) If m = 1 and F ′(α0) = ·· · = F (s−1)(α0) = 0 and F (s)(α0) ̸=
0 with s ≤ k , then there are at most s T -periodic solu-
tions x1(t ,ε), . . . ,xs(t ,ε) of system (3.67) such that xi (t ,ε) →
x(t ,zα0,0) as ε→ 0 for i = 1, . . . , s.

Theorem 20 is a classical result due to Malkin and Roseau.

As we shall see in this paper we have cases where Theorem 20 can-
not be applied for studying the existence of periodic solutions, because
its assumptions are not satisfied. Then in [15] the following result on
averaging has been proved.
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Theorem 21 Let V ⊂ Rm be open and bounded, let β0 :CI(V ) → Rm

be a C k function and Z = {zα = (α,β0(α)) |α ∈ CI(V )} ⊂ Ω its
graphic in R2m. Assume that for each zα ∈ Z the solution x(t ,zα,0)
of (3.68) is T -periodic and that there exists a fundamental matrix
Mzα(t ) of (3.69) such that the matrix M−1

zα (0)−M−1
zα (T )

(a) has in the upper right corner the m × m matrix ∆α with
det(∆α) ̸= 0, and

(b) has in the lower right corner the m ×m zero matrix.

Consider the function G : CI(V ) →Rm defined by

G (α) = ξ⊥
(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
. (3.71)

Suppose that there is α0 ∈ V with G (α0) = 0, then the following
statements hold for ε ̸= 0 sufficiently small.

(i ) If det((∂G/∂α)(α0)) ̸= 0, then there is a unique T -periodic so-
lution x(t ,ε) of system (3.67) such that x(t ,ε) → x(t ,zα0,0) as
ε→ 0.

(i i ) If m = 1 and G ′(α0) = ·· · = G (s−1)(α0) = 0 and G (s)(α0) ̸=
0 with s ≤ k , then there are at most s T -periodic solu-
tions x1(t ,ε), . . . ,xs(t ,ε) of system (3.67) such that xi (t ,ε) →
x(t ,zα0,0) as ε→ 0 for i = 1, . . . , s.

In any case now we shall recall the more classical result on averaging
theory for studying periodic solutions. We consider the initial value
problems

ẋ = εF1(t ,x)+ε2F2(t ,x,ε), x(0) = x0, (3.72)

and
ẏ = εg (y), y(0) = x0, (3.73)

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0,ε0]. We
assume that F1 and F2 are periodic of period T in the variable t, and
we set
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g (y) = 1

T

∫ T

0
F1(t ,y)d t . (3.74)

Theorem 22 Assume that F1, DxF1 ,DxxF1 and DxF2 are continuous
and bounded by a constant independent of ε in [0,∞)× Ω× (0,ε0],
and that y(t ) ∈ Ω for t ∈ [0,1/ε]. Then the following statements
holds:

(a) For t ∈ [0,1/ε] we have x(t )−y(t ) =O(ε) as ε→ 0.

(b) If p ̸= 0 is a singular point of system (3.73) and

detDyg (p) ̸= 0, (3.75)

then there exists a periodic solution x(t ,ε) of period T for sys-
tem (3.72) such that x(0,ε)−p =O(ε) as ε→ 0.

(c) The stability of the periodic solution x(t ,ε) is given by the sta-
bility of the singular point.

We have used the notation Dxg for all the first derivatives of g , and
Dxxg for all the second derivatives of g .

3.8 Periodic solutions of a class of Duffing dif-
ferential equations

3.8.1 Introduction and statement of the main result

Several classes of Duffing differential equations have been investigated
by many authors. They are mainly interested in the existence of periodic
solutions, in their multiplicity, stability, bifurcation, ... See the survey of
J. Mawhin [17].

In this work we shall study the class of Duffing differential equations
of the form

x ′′+ cx ′+a(t )x +b(t )x3 = h(t ), (3.76)

where c > 0 is a constant, and a(t ), b(t ) and h(t ) are continuous T –
periodic functions. These differential equations were studied by Chen
and Li in the papers. These authors studied the periodic solutions of
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equation (3.76) with the following additional conditions, either b(t ) > 0,
h(t ) > 0 and a(t ) satisfies

a(t ) ≤ π2

T 2
+ c2

4
, and a0 = 1

T

∫ T

0
a(t )d t > 0; (3.77)

or a(t ) = a > 0, b(t ) = 1 and c > 0, a,c constants.

In [16] the authors studied the existence and the stability of peri-
odic solutions of the Duffing differential equation (3.76) with c = εC > 0,

a(t ) = ε2 A(t ), A0b0 > 0 where A0 = 1

T

∫ T

0
A(t )d t and b0 = 1

T

∫ T

0
b(t )d t ,

and ε is sufficiently small.

Instead of working with the Duffing differential equation (3.76) we
shall work with the equivalent differential system

x ′ = y,
y ′ =−c y −a(t )x −b(t )x3 +h(t ).

(3.78)

We define the polynomial

p(x0) = −
(∫ T

0
e−ct

∫ t

0
ecsb(s)d s d t − e−cT

c

∫ T

0
ecsb(s)d s

)
x3

0

−
(∫ T

0
e−ct

∫ t

0
ecs a(s)d s d t − e−cT

c

∫ T

0
ecs a(s)d s

)
x0

+e−cT

c

∫ T

0
ecsh(s)d s +

∫ T

0
e−ct

∫ t

0
ecsh(s)d s d t .

Our first result on the periodic solutions of the differential system (3.78)
is the following.

Theorem 23 For every simple real root of the polynomial p(x0) the
differential system (3.78) has a periodic solution (x(t ), y(t )) such
that (x(0), y(0)) = (x0,0).

Theorem 20 will be proved in subsection 3.8.3 using Theorem 20 of
the averaging theory.

Now we define the polynomial

q(x0) =−
(∫ T

0
b(s)d s

)
x3

0 −
(∫ T

0
a(s)d s

)
x0 +

∫ T

0
h(s)d s.
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Theorem 24 For every simple real root of the polynomial q(x0) the
differential system (3.78) has a periodic solution (x(t ), y(t )) such
that (x(0), y(0)) = (0,0).

Theorem 26 will be proved in subsection 3.8.4 using Theorem 26 of
the averaging theory.

As we shall see Theorem 27 of the averaging theory will provide re-
sults on the periodic solutions of system (3.78) which are already con-
tained in Theorems 20 and 26.

In order to apply the three theorems of the averaging theory of first or-
der for studying the periodic solutions of the differential system (3.78) in
subsection 3.8.2 we rescale the variables, the parameters, and the func-
tions of system (3.78).

The results of averaging theory that we use in this paper are described
in subsection 3.8.4.

3.8.2 Preliminary results

We start doing a rescaling of the variables (x, y), of the functions a(t ),
b(t ) and h(t ) and of the parameter c as follows

x = εm1 X , y = εm2Y ,
c = εm3C , a(t ) = εn1 A(t ),
b(t ) = εn2B(t ), h(t ) = εn3 H(t ).

(3.79)

In such a way that the differential equation (3.78) becomes

X ′ = εm2−m1Y ,
Y ′ =−εm3C Y −εn1+m1−m2 A(t )X −εn2+3m1−m2B(t )X 3 +εn3−m2 H(t ),

where 0 ≤ m3, 0 ≤ m1 ≤ m2 ≤ n3, m2 ≤ n1 +m1, m2 ≤ n2 +3m1,
and {m2 −m1,m3,n1 +m1 −m2,n2 +3m1 −m2,n3 −m2}∩ {1} ̸= ;.

(3.80)

We distinguish the following seven cases with their corresponding
subcases, recall that we want to apply the averaging theory of first or-
der for studying the periodic solutions of the differential system (3.77),
see a summary on this theory at the appendix.
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Case I: m2 −m1 = 0 and m3 = 0. Then we have the following subcases

(I .1) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 0, n3 −m2 = 1;
(I .2) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 1, n3 −m2 = 0;
(I .3) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 0, n3 −m2 = 0;
(I .4) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 1, n3 −m2 = 1;
(I .5) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 0, n3 −m2 = 1;
(I .6) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 1, n3 −m2 = 0;
(I .7) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 1, n3 −m2 = 1.

Case II: m2 −m1 = 0 and m3 ≥ 1.

Case III: m2 −m1 = 1 and m3 = 0.

Case IV: m2 −m1 = 1 and m3 = 1.

Case V: m2 −m1 > 1 and m3 = 1.

Case VI: m2 −m1 = 1 and m3 > 1.

Case VII: m2 −m1 > 1 and m3 > 1.
Every case α from II to VII can be split into the following eight sub-

cases:

(α.1) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 0, n3 −m2 = 0,
(α.2) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 0, n3 −m2 = 1,
(α.3) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 1, n3 −m2 = 0,
(α.4) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 0, n3 −m2 = 0,
(α.5) n1 +m1 −m2 = 0, n2 +3m1 −m2 = 1, n3 −m2 = 1,
(α.6) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 0, n3 −m2 = 1,
(α.7) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 1, n3 −m2 = 0,
(α.8) n1 +m1 −m2 = 1, n2 +3m1 −m2 = 1, n3 −m2 = 1.

We have applied the three theorems of averaging (see section 3.8.4) for
studying the existence of periodic solutions of the 55 previous subcases
of differential systems (3.80). Theorem 20 comes from the subcase (III.1),
and Theorem 26 follows from the subcase (IV.1).

All the subcases, different from (III.1) or (IV.1), either do not satisfy
the hypotheses of one of the three theorems of averaging, or provide par-
tial results of the ones stated in Theorems 20 and 26. So in what follows
we shall consider only the subcases (III.1) or (IV.1).

Theorem 27 has been applied for studying the subcases (α,8) for α=
IV , . . . ,V I I , and either do not provide periodic solutions, or provide par-
ticular cases of the results given in Theorems 20 and 26.
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In short, in what follows we only provide the details of the positive
results, i.e. we shall give the proofs of Theorems 20 and 26.

3.8.3 Proof of Theorem 20

For case (III.1), i.e. for

m2 = m1 +1, m2 = n1 = n2 = n3 = 1 and m1 = m3 = 0; (3.81)

system 3.80 becomes

Ẋ = εY ,

Ẏ =−C Y − A(t )X −B(t )X 3 +H(t ),
(3.82)

We shall apply the averaging Theorem 20 to system (3.82) and we
shall obtain Theorem 20. In what follows we shall use the notation of
Theorem 20, see

the appendix. Thus x = (X ,Y )T and

F0(t ,x) =
(

0
−C Y − A(t )X −B(t )X 3 +H(t )

)
,

F1(t ,x) =
(

Y
0

)
,

F2(t ,x) =
(

0
0

)
.

The unperturbed differential system (3.68) has the solution x(t ,z,0) =
(X (t ),Y (t ))T such that x(0,z,0) = z = (X0,Y0)T , where

X (t ) = X0,

Y (t ) = e−C t

(
Y0 +

∫ t

0
eC s (−B(s)X 3

0 − A(s)X0 +H(s)
)

d s

)
.

In order that x(t ,z,0) be a periodic solution we must choose

Y0 = 1

eC T −1

∫ T

0
eC s (−B(s)X 3

0 − A(s)X0 +H(s)
)

d s.

So we get

zα = (α,β0(α)) =
(

X0,
1

eC T −1

∫ T

0
eC s (−B(s)X 3

0 − A(s)X0 +H(s)
)

d s

)
.
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Therefore, following the notation of Theorem 20, we have n = 2 and k =
1.

Now we compute the fundamental matrix Mzα(t ) associated to the
first variational system (3.69) such that Mzα(0) = Id of R2, and we obtain

Mzα(t ) =

 1 0

−e−C t

(∫ t

0
eC s (3B(s)X0 + A(s))d s

)
e−C t

 .

Its inverse matrix is

M−1
zα (t ) =

 1 0∫ t

0
eC s (

3B(s)X 2
0 + A(s)

)
d s eC t

 .

Since the matrix

M−1
zα (0)−M−1

zα (T ) =
 0 0

−
∫ t

0
eC s (

3B(s)X 2
0 + A(s)

)
d s 1−eC T


has a zero 1×1 matrix in the upper right corner and a non–zero 1×1 ma-
trix in its lower right corner equal to 1−eC T , because T ̸= 0. We can apply
the averaging theory described in Theorem 20 for studying the periodic
solutions which can be prolonged from the unperturbed differential sys-
tem to the perturbed one. Therefore, since for our differential system
we have ξ(X ,Y ) = X , then we must compute the function F (α) =F (X0)
given in (3.70), i.e.

F (X0) = ξ

(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
=

∫ T

0

[
e−C t

(
1

−1+eC T

∫ T

0
eC s (−B(s)X 3

0 −X0 A(s)+H(s)
)

d s

+
∫ t

0
eC s (−B(s)X 3

0 −X0 A(s)+H(s)
)

d s

)]
d t

=
∫ T

0
Y (t )d t .

Theorem 20 says that for every simple real root X0 of the polynomial
F (X0) the differential system (3.82) with ε ̸= 0 sufficiently small has a
periodic solution (X (t ),Y (t )) such that (X (0),Y (0)) tends to (X0,β0(X0))
when ε→ 0.
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Now it is to check that the function F (X0) after the change of vari-
ables (3.79) satisfying (3.81), i.e.

X = x, Y = y

ε
, H(t ) = h(t )

ε
, B(s) = b(s)

ε
, A(s) = a(s)

ε
.

becomes the polynomial p(x0) defined in subsection 3.8.1 just before
the statement of Theorem 20. Hence Theorem 20 is proved.

3.8.4 Proof of Theorem 26

For case (IV.1), i.e.

m2 = m1 +1, m3 = 1, m1 = 1, m2 = 2, n1 =−n2 = 1 and n3 = 2;
(3.83)

system (3.80) becomes

Ẋ = εY ,
Ẏ =−εC Y − A(t )X −B(t )X 3 +H(t ),

(3.84)

We shall apply the averaging Theorem 26 to system (3.84) and we
shall obtain Theorem 26. In what follows we shall use the notation of
Theorem 26.

Thus x = (X ,Y )T and

F0(t ,x) =
(

0
−A(t )X −B(t )X 3 +H(t )

)
,

F1(t ,x) =
(

Y
−C Y

)
,

F2(t ,x) =
(

0
0

)
.

The unperturbed differential system (3.68) has the solution x(t ,z,0) =
(X (t ),Y (t ))T such that x(0,z,0) = z = (X0,Y0)T , where

X (t ) = X0,

Y (t ) = Y0 +
∫ t

0

(−B(s)X 3
0 − A(s)X0 +H(s)

)
d s.

In order that x(t ,z,0) be a periodic solution X0 must satisfy∫ T

0

(−B(s)X 3
0 − A(s)X0 +H(s)

)
d s = 0, (3.85)
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Y0 is arbitrary. Therefore we get

zα = (α,β0(α)) = (
Y0, X̄0

)
,

where X̄0 is a real root of the cubic polynomial (3.85). In short the unper-
turbed system (i.e. system (3.85) with ε= 0) has at most three families of
periodic solutions because Y0 is arbitrary and X̄0 is a real root of the cu-
bic polynomial (3.85). Therefore, using the notation of Theorem 26, we
have n = 2 and k = 1 for each one of these possible families of periodic
solutions.

We compute the fundamental matrix Mzα(t ) associated to the first
variational system (3.69) associated to the vector field (Ẏ , Ẋ ) given by
(3.84) with ε= 0, and such that Mzα(0) = Id of R2, and we obtain

Mzα(t ) =
 1 −

∫ t

0

(
3B(s)X 2

0 + A(s)
)

d s

0 1

 .

Its inverse matrix is

M−1
zα (t ) =

 1
∫ t

0

(
3B(s)X 2

0 + A(s)
)

d s

0 1

 .

The matrix

M−1
zα (0)−M−1

zα (T ) =
 0 −

∫ T

0

(
3B(s)X 2

0 + A(s)
)

d s

0 0


has a non–zero 1×1 matrix in the upper right corner if the real root X̄0 of
the cubic polynomial (3.85) is simple, and a zero 1×1 matrix in its lower
right corner. Therefore the assumptions of Theorem 26 hold, then by
applying this theorem we study the periodic solutions which can be pro-
longed from the unperturbed differential system to the perturbed one.
Since for our differential system we have ξ⊥(Y , X ) = X , then we must
compute the function G (α) =G (Y0) given in (3.70), i.e.

G (Y0) = ξ⊥
(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
=−

∫ T

0
C Y0 =−C T Y0.

Theorem 26 says that for every simple real root Y0 = 0 of the poly-
nomial G (Y0) the differential system (3.84) with ε ̸= 0 sufficiently small
has a periodic solution (X (t ),Y (t )) such that (X (0),Y (0)) tends to (X̄0,0)
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when ε→ 0, being X̄0 a simple real root of the cubic polynomial (3.85).
Now it is easy to check that the cubic polynomial (3.85) after the change
of variables (3.79) satisfying (3.83), i.e.

X = x

ε
, Y = y

ε2
, H(t ) = h(t )

ε2
, B(s) = b(s)

ε
, A(s) = a(s)

ε
.

becomes the polynomial q(x0) defined in subsection 3.8.1 just before the
statement of Theorem 26. Hence Theorem 26 is proved.

The appendix: Periodic solutions via the averaging theory

In this subsection we present the basic results on the averaging theory
of first order that we need for proving our results.

We consider the problem of bifurcation of T –periodic solutions from
the differential systems of the form

ẋ = F0(t ,x)+εF1(t ,x)+ε2F2(t ,x,ε), (3.86)

with ε = 0 to ε ̸= 0 sufficiently small. The functions F0,F1 : R×Ω→ Rn

and F2 :R×Ω×(−ε0,ε0) →Rn are C 2, T –periodic in the first variable and
Ω is an open subset of Rn. The main assumption is that the unperturbed
system

ẋ = F0(t ,x), (3.87)

has a submanifold of periodic solutions. A solution of this problem is
given using the averaging theory.

Let x(t ,z,ε) be the solution of system (3.87) such that x(0,z,ε) = z.
We write the linearization of the unperturbed system along a periodic
solution x(t ,z,0) as

ẏ = DxF0(t ,x(t ,z,0))y. (3.88)

In what follows we denote by Mz(t ) a fundamental matrix of the linear
differential system (3.88), by ξ : Rm ×Rn−m → Rm and ξ⊥ : Rm ×Rn−m →
Rn−m the projections ofRn onto its first m and n−m coordinates respec-
tively; i.e. ξ(x1, . . . , xn) = (x1, . . . , xm), and ξ⊥(x1, . . . , xn) = (xm+1, . . . , xn)
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Theorem 25 Let V ⊂ Rm be open and bounded, let β0 : Cl(V ) →
Rn−m be a C k function and Z = {zα = (α,β0(α)) |α ∈ Cl(V )} ⊂ Ω

its graphic in Rn. Assume that for each zα ∈Z the solution x(t ,zα,0)
of (3.87) is T -periodic and that there exists a fundamental matrix
Mzα(t ) of (3.88) such that the matrix M−1

zα (0)−M−1
zα (T )

(a) has in the lower right corner the (n −m)× (n −m) matrix ∆α
with det(∆α) ̸= 0, and

(b) has in the upper right corner the m × (n −m) zero matrix.

Consider the function F : Cl(V ) →Rm defined by

F (α) = ξ
(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
. (3.89)

Suppose that there is α0 ∈ V with F (α0) = 0, then the following
statements hold for ε ̸= 0 sufficiently small.

(i ) If det((∂F/∂α)(α0)) ̸= 0, then there is a unique T -periodic so-
lution ϕ1(t ,ε) of system (3.86) such that ϕ1(t ,ε) → x(t ,zα0,0)
as ε→ 0.

(i i ) If m = 1 and F ′(α0) = ·· · = F (s−1)(α0) = 0 and F (s)(α0) ̸=
0 with s ≤ k, then there are at most s T -periodic solu-
tions ϕ1(t ,ε), . . . ,ϕs(t ,ε) of system (3.86) such that ϕi (t ,ε) →
x(t ,zα0,0) as ε→ 0 for i = 1, . . . , s.

Theorem 25 is a classical result due to Malkin and Roseau .

As we shall see in this paper we have cases where Theorem 25 can-
not be applied for studying the existence of periodic solutions, because
its assumptions are not satisfied. Then in [15] the following result on
averaging has been proved.

Course Averaging Theory Master 2



98 Applications

3
.
A
pp

lic
at

io
ns

P
er

io
di

c
so

lu
ti
on

s
of

a
cl

as
s
of

D
uffi

ng
di

ff
er

en
ti
al

eq
ua

ti
on

s
3.

8.
4

P
ro

of
of

T
he

or
em

26

Theorem 26 Let V ⊂ Rm be open and bounded, let β0 : Cl(V ) → Rm

be a C k function and Z = {zα = (α,β0(α)) |α ∈ Cl(V )} ⊂ Ω its
graphic in R2m. Assume that for each zα ∈ Z the solution x(t ,zα,0)
of (3.87) is T -periodic and that there exists a fundamental matrix
Mzα(t ) of (3.88) such that the matrix M−1

zα (0)−M−1
zα (T )

(a) has in the upper right corner the m × m matrix ∆α with
det(∆α) ̸= 0, and

(b) has in the lower right corner the m ×m zero matrix.

Consider the function G : Cl(V ) →Rm defined by

G (α) = ξ⊥
(∫ T

0
M−1

zα (t )F1(t ,x(t ,zα,0))d t

)
. (3.90)

Suppose that there is α0 ∈ V with G (α0) = 0, then the following
statements hold for ε ̸= 0 sufficiently small.

(i ) If det((∂G/∂α)(α0)) ̸= 0, then there is a unique T -periodic so-
lution ϕ1(t ,ε) of system (3.86) such that ϕ1(t ,ε) → x(t ,zα0,0)
as ε→ 0.

(i i ) If m = 1 and G ′(α0) = ·· · = G (s−1)(α0) = 0 and G (s)(α0) ̸=
0 with s ≤ k, then there are at most s T -periodic solu-
tions ϕ1(t ,ε), . . . ,ϕs(t ,ε) of system (3.86) such that ϕi (t ,ε) →
x(t ,zα0,0) as ε→ 0 for i = 1, . . . , s.

In any case now we shall recall the more classical result on averag-
ing theory for studying periodic solutions. We consider the initial value
problems

ẋ = εF1(t ,x)+ε2F2(t ,x,ε), x(0) = x0, (3.91)

and

ẏ = εg (y), y(0) = x0, (3.92)

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0,ε0]. We assume
that F1 and F2 are periodic of period T in the variable t, and we set

g (y) = 1

T

∫ T

0
F1(t ,y)d t .
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Theorem 27 Assume that F1, DxF1 ,DxxF1 and DxF2 are continuous
and bounded by a constant independent of ε in [0,∞)× Ω× (0,ε0],
and that y(t ) ∈ Ω for t ∈ [0,1/ε]. Then the following statements
hold:

1. For t ∈ [0,1/ε] we have x(t )−y(t ) =O(ε) as ε→ 0.

2. If p ̸= 0 is a singular point of system (3.92) and detDyg (p) ̸=
0, then there exists a periodic solution φ(t ,ε) of period T for
system (3.91) which is close to p and such thatφ(0,ε)−p =O(ε)
as ε→ 0.

3. The stability of the periodic solution φ(t ,ε) is given by the sta-
bility of the singular point.

We have used the notation Dxg for all the first derivatives of g , and
Dxxg for all the second derivatives of g .
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