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ABSTRACT

This thesis deals with the applications of compactly supported radial basis functions for high
dimensional reconstruction of surfaces (images) based on irregular samples. These methods
without mesh (meshfree) based on the introduction of radial basis functions, contrary to
traditional methods, namely finite element (FEM) and finite difference (FDM) methods. We
try to introduce the concept of this technique through several applications.
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RÉSUMÉ

Cette thèse traite les applications des fonctions de base radiale, à support compact (CSRBF),
pour la reconstruction bidimensionnelle de surfaces (images) à partir d’échantillons irréguliers.
Ces méthodes sans maillage (meshefree) qui reposent sur l’introduction des fonctions de base
radiale, contrairement, aux méthodes traditionnelles, a savoir la méthode des éléments finis
(FEM) et la méthode des différences finies (FD). Nous essayons d’introduire le concept de cette
méthode à travers plusieurs applications.

Mots clés:

Fonctions de base radiale (RBF), interpolation multivariée, données dispersées, solution
numérique.
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Introduction

The subject of this thesis concern the applications of radial basis functions for solving linear
and nonlinear functional equations in particulary Volterra-Fredholm integral equations in two
dimensional space. The proposed algorithm is based on pseudo spectral method using compactly
and multiquadric generalized radial basis functions.

Scattered data approximation is a recent fast growing research area [36, 49, 51], it deals
with the problem of reconstructing an unknown function from given scattered data. This field
has many applications such as, fluid structure interaction, terrain modeling, computer science,
different fields as applied mathematics, biology, geology ...etc.

The polynomial interpolation is a powerful tool to approximate given data sites in the
univariate setting, since a set of distinct points can be interpolated using a unique polynomial.
In higher-dimensional problems, it is not always possible to obtain a unique polynomial
interpolation for multivariate data sites justified by the Mairhuber-Curtis theorem [57].

Traditional numerical methods, such as finite difference , finite elements or finite volume
methods were motivated mostly by early one or two dimensional simulation of engineering
problems via partial differential equations. The discretization of these methods require some
sort of underlying computation mesh, which becomes a rather difficult task in high dimensional.
To overcome this problem, we must establish a basis which depends on the data locations
selected arbitrarily on certain domains. Therefore we can approximate a function without mesh
generation on the domain utilizing these basis functions which called radial basis functions
(RBFs). Radial basis function methods belong to a category of methods called meshless
(meshfree) methods [11, 19, 29], which does not require connectivity of grid/mesh points. This
is achieved by composing a univariate basic function with a norm usually Euclidean norm,
that makes the problem insensitive to the dimension and makes it virtually one-dimensional.
meshless methods have received much attention not only by applied mathematics but also in
different fields of science.

RBFs are effective techniques for interpolating an unknown function on a scattered set
of points which have been used in the past few decades. These functions involve a single
independent variable regardless of the dimension of the problem, so applying them in higher
dimensions does not increase the difficulties. Also it should be noted that the RBF approach
does not require any domain elements, so it does not depend on the geometry of a domain.
Firstly, Hardy [36] has studied RBFs as a multidimensional scattered interpolation method
in modeling of the Earth’s gravitational field in 1971, by using multiquadrics (MQs), inverse
multiquadrics (IMQs) and thin plate splines (TPSs) as a type of free shape parameter RBF.
Radial basis functions have been developed by Meinguet [62] and have been investigated for
smoothing noisy multidimensional data by Wahba [82]. Franke [34] has published a review paper
on the comparison of two-dimensional interpolation methods available in the early 1980. In
recent years, the implication of RBFs has been shifted from scattered data interpolation to the
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numerical solution of partial differential equations (PDEs). A method for the numerical solution
of PDEs which utilizes radial basis functions, specially the MQ, as a basis in the collocation
method is called Kansa’s method created by Kansa in 1990 [49, 52]. Kansa’s method has been
developed for solving various types of partial differential equations such as the one-dimensional
nonlinear Burgers equation with shock wave [39], shallow water equations for tide and currents
simulation [40], heat transfer problems [77, 97], parabolic equation with nonlocal boundary
conditions [78], financial mathematic problems [41], Klein-Gordon equation [25], and improved
Boussinesq equation [75]. Later, Fasshauer has modified Kansa’s method to a Hermite-type
collocation method for the solvability of the resultant collocation matrix [28].

Radial basis functions are truly meshless and simple to allow modeling of rather high
dimensional problems [18, 48, 74]. These basis functions can be clustered in a specific region
to locally increase the accuracy of the method. It was shown that RBF converges to pseudo
spectral methods in their flat radial function limit.

Radial basis functions open the door to existence and uniqueness results for interpolating
scattered data by radial basis functions in very general settings. Indeed, one of the greatest
advantages of this method lies in its applicability in almost any dimension because there are
generaly little restrictions on the way the data are prescribred. A further advantage is their
high accuracy or fast convergence to the approximated target function in many cases when
data become dense.

Radial basis functions have a parameter in their definitions which called the shape parameter,
this parameter controls the shape of RBF and the conditioning of linear systems to be solved.
Locating an optimal shape parameter is a difficult problem and a topic of current research
[17, 69, 76, 81].

The convergence of RBF approaches can be seen in terms of two different types of approxi-
mation, stationary and non-stationary. In stationary approximation, the number of centers N
is fixed and the shape parameter is refined towards zero. This type is unique to RBF methods
which does not exist in polynomial based methods. For non-stationary technique, we fix the
value of the shape parameter and N increased.

Radial basis functions methods which rely on global interpolation functions, result large
fully-populated matrices and ill-conditioned systems if very smooth radial basis functions are
used on large number of points, that can produce poor and unstability in the solution, also
proper selection of the shape parameter often involves optimization. To overcome this problem,
researchers have developed a scheme based on radial basis functions with compact support
(CSRBFs). Using compactly supported radial basis functions produces a sparse interpolation
matrix, also the operation of the banded matrix system could reduce the ill-conditioning of the
resultant coefficient matrix. The compactly supported basis functions consist of a polynomial
which are non-zero on [0, 1) and vanish on [1,∞). A family of CSRBFs was first introduced by
Wu [89] and later expanded by Wendland [84] in the mid 1990s.

In this work, new computational methods based on both globally and compactly supported
radial basis functions (CSRBFs) are presented for solving nonlinear integral equations and
partial differential equations. These equations reduced to systems of algebraic equations which
can be solved via iteration method. Some error estimations are provided and illustrative
examples are also included to demonstrate the efficiency and applicability of the proposed
methods.

This work is organized in the following way:
The first chapter, is devoted to some elementary concepts of interpolation problems. Also, to
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give an introduction to radial basis functions and principle about RBFs inerpolation problems.
Chapter 2 gives introduction to CSRBFs with convergence analysis, also it develops some
numerical methods for solving different types of equations using RBFs and CSRBFs, such
as Burger, Poisson and Schrodinger partial differential equations, also linear and nonlinear
Volterra and Fredholm integral equations. The comparaison between stationary and non-
stationary approaches is discussed. Also new method based on composite techniques for solving
Volterra-Fredholm integral equations is presented.

In chapter 3, we introduce new techniques for finding the approximate solutions of two
dimensional nonlinear Volterra-Fredholm integral equations based on generalized global RBFs
and CSRBFs, also convergence analysis and error estimates are provided. These techniques can
be implemented for solving high dimensional integral equations.

Finally, we summarise the work that has been carried out in this thesis and consider some
perspectives of future work.
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Chapter 1

Concept of interpolation problem

In chapter 1, some basic results of interpolation problem and an introduction to radial basis
functions interpolation problem are given.

Most functions encountred in mathematics can not be evaluated exactly, even though we
usually handle them as if they were completely known quantities. The interpolation is the
process of finding and evaluating a function whose graph goes through a set of given points,
these points may arise as measurements in physical problem, or they may be obtained from a
known function.

In many scientific disciplines one faces the following problem. We have a set of data (for
example: measurements, and locations at which these measurements were obtained), and we
want to find a rule which allows us to deduce information about the process we are studying
also at locations different from those at which we obtained our measurements. Thus, we are
trying to find a function which is a "good" fit to the given data. There are many ways to
decide what we mean by "good", and the only criterion we will consider now is that we want
the functions to exactly match the given measurements at the corresponding locations. This
approach is called interpolation, and if the locations at which the measurements are taken are
not on a uniform or regular grid, then the process is called scattered data interpolation.

1.1 Polynomial interpolation in one dimensional

Given a set of data points (xi, yi) ∈ X × Y , i = 0 : N , X, Y ⊂ R (or C) are the domains xi
and yi reside, respectively, and the points xi are called the interpolation nodes and assumed
distinct. Provided with a specific linear subspace V of functions in C(X). Find an interpolating
function f in V satisfying the interpolating condition

f(xi) = yi, i = 0, . . . N.

An interpolation function is also called interpolant. The primary purpose of interpolation is
to replace a set of data points (xi, yi) with a function given analytically, another purpose is to
approximate functions with simpler ones, usually polynomials or piecewise polynomials.

We start with the simplest case, when only the values fi := f(xi), for i = 0, . . . , N are given
at the pairwise distinct nodes x0, . . . , xN . We now seek a unique polynomial P ∈ PN = RN [x]
(a set of polynomials with coefficients in R and of degree 6 N),

which interpolates f at the (N + 1) nodes x0, . . . , xN , i.e., P (xi) = fi for i = 0, . . . , N .
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In order actually to compute the interpolating polynomial, we have to choose a basis of the
space of polynomials PN .

There are several basis in which one can represent a polynomial

1- Monomial basis: the monomial basis of a polynomial is of the forme {1, x, ..., xN} .

2- Center basis: the center basis of a polynomial is of the form {1, (x− c), ..., (x− c)N} with
c 6= 0.

3- Lagrange basis: let (xi)Ni=0, be N distinct points, the associated basis is given by

Li(x) =
N∏

j=0,i 6=j

x− xj
xi − xj

.

4- Newton basis: let (xi)Ni=0, be N distinct points, the associated basis is given by

{1, (x− x0), (x− x0)(x− x1), ..,
N∏
k=0

(x− xk)}.

If we write P as above in coefficient representation

PN(x) =
N∑
i=0

aix
i,

i.e., with respect to the monomial basis {1, x, ..., xN} of PN , then the interpolation matrix
resulting from interpolation conditions PN(xi) = f(xi) is called Vandermonde matrix. The
determinant of Vandermonde matrix is different from zero exactly when the nodes x0, . . . , xN
are pairwise distinct. However, the solution of the system requires an excessive amount of
computational effort. In addition, the Vandermonde matrices are almost singular in higher
dimensions N .

1.1.1 Polynomial interpolation error and Runge’s phenomenon

Theorem 1.1. Let f be a function in CN+1[a, b], and let PN be a polynomial of degree ≤ N
that interpolates the function f at (N + 1) distinct points x0, x1, . . . , xN ∈ [a, b]. Then to each
x ∈ [a, b] there exists a point ξx ∈ [a, b] such that

f(x)− PN(x) = 1
(N + 1)!f

(N+1)(ξx)
N∏
i=0

(x− xi). (1.1)

The Runge phenomenon
Runge phenomenon is a problem of oscillation at the edges of an interval that occurs when

using polynomial of high degree over a set of equispaced interpolation points. The discovery
was important because it shows that going to higher degree doesn’t always improve accuracy.

Interpolation at equidistant points is a natural and well-known approach to construct
approximating polynomials. Runge’s phenomenon demonstrates, that interpolation can result a
divergent approximations.
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Let Consider the function
f(x) = 1

1 + x2 . (1.2)

Runge found that if this function is interpolated at equidistant points xi = −5 : 10
N

: 5 between
−5 and 5. The resulting interpolation oscillates towards the end of the interval. It can be
proven that the interpolation error increases when the degree of the polynomial is increased.

Example 1.1. The comparaison between f(x) and its interpolation polynomial is represented in
figure 1.1-1.2.

Figure 1.1: Comparaison between Runge’s function and its Lagrange interpolation polynomial
of second degree (left), eighth degree (right).

Figure 1.2: Comparaison between Runge’s function and its Lagrange interpolation polynomial
of twelfth degree (left), sixteenth degree (right).
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If we consider the class of functions

F =
{
f ∈ CN+1[a, b], | sup

τ∈[a,b]
f (N+1)(τ) |≤M(N + 1)!

}
,

for a constant M > 0, then the approximation error obviously depends crucially on the
choice of the nodes x0, . . . , xN via the expression

ωN+1(x) = (x− x0) . . . (x− xN). (1.3)
Also the equidistance between points leads to Lebesgue constant that increases quickly when N
increases. The table 1.1 shows the the error between Runge’s function and its interpolation
polynomial when N increasing, with xN−1/2 = 5− 5

N
. We remark that

lim
N→∞

‖ PN(xN−1/2)− f(xN−1/2) ‖∞= +∞.

The evaluation of prod(x) =
N∏
i=0

(x− xi) is illustrated in table 1.2, with: xi = −5 : 10
N

: 5.

N f(x) pN(x) Absolute error
2 0.1379 0.7596 0.6217
10 0.0471 1.5787 1.5317
16 0.0435 −10.1739 10.2174
20 0.0424 −39.9524 39.9949

Table 1.1: The error between Runge’s function and its interpolation polynomial when N →∞.

x f(x) p20(x) Absolute error prod(x)
0.25 0.9412 0.9425 0.0013 2.0468e+ 006
1.75 0.2462 0.2384 0.0077 −6.5587e+ 006
3.75 0.0664 −0.4471 0.5134 −7.5594e+ 008
4.75 0.0424 −39.9524 39.9949 −7.2721e+ 010

Table 1.2: The behavior of prod(x).

Runge’s phenonmenon can be avoided by

1- Change of the interpolation points
The oscillation can be minimized by using nodes that are disturbed more densely towards
the edges of the interval, this set of nodes is Chebyshev nodes for which the maximum
error in approximating the Runge function is guaranted to diminish with increasing
polynomial order.

2- Use piecewise polynomials
The problem can be avoided by using spline curves which are piecewise polynomials, when
trying to decrease the interpolation error one can increase the number of polynomials
pieces which are used to construct the spline instead of increasing the degree of the
polynomial.
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1.2 Problem of interpolation in higher dimensions

In the univariate setting it is well known that one can interpolate to arbitrary data at (N + 1)
distinct data sites using a polynomial of degree N . For the multivariate setting, however,
through the work of Alfréd Haar and his description of Haar spaces in 1956 [57], we obtain the
negative result that well-posedness is not guaranteed in higher dimensional linear systems with
independently chosen basis functions.

Figure 1.3: Alfréd Haar, John Mairhuber, and Phillip Curtis

Theorem 1.2. Haar-Mairhuber-Curtis [57].

Let Ω ⊂ Rs, s ≥ 2, contains an interior point, then there exist no Haar spaces of contin-
uous functions except for one-dimensional ones.

In order to understand this theorem we need

Definition 1.1. [57] Let the linear finite-dimensional function space B ⊆ C(Ω) have
a basis {B1, . . . , BN}. Then B is a Haar space on Ω if

det(Bk(xj)) 6= 0, k, j = 1, . . . , N. (1.4)

for any set of distinct x1, . . . , xN in Ω.

Proof. To prove Haar-Mairhuber-Curtis theorem , let s ≥ 2 and suppose B is a Haar space
with basis {B1, . . . , BN} with N ≥ 2. Then, by the definition of a Haar space

det(Bk(xj)) 6= 0, (1.5)

for any distinct x1, . . . , xN .
Now consider a closed path P in Ω connecting only x1 and x2. This is possible since by

assumption Ω contains an interior point. We can exchange the positions of x1 and x2 by moving
them continuously along the path P (without interfering with any of the other xj). This
means, however, that rows 1 and 2 of the determinant (1.5) have been exchanged, and so the
determinant has changed sign. Since the determinant is a continuous function of x1 and x2 we
must have determinant equal to zero at some point along P . This is a contradiction.
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Remark 1.1. 1- Note that existence of a Haar space guarantees invertibility of the interpola-
tion matrix (Bk(xj)), i.e., existence and uniqueness of an interpolant to data specified at
x1, . . . , xN , from the space B.

2- As mentioned above, univariate polynomials of degree N − 1 form an N -dimensional Haar
space for data given at x1, . . . , xN .

3- The Haar-Mairhuber-Curtis theorem implies that in the multivariate setting we can no
longer expect this to be the case. It is not possible to perform unique interpolation with
(multivariate) polynomials of degree N to data given at arbitrary locations in R2.

So as a result of this theorem, if we choose our basis functions independently of the data,
we are not guaranteed a well-posed problem.
The Haar-Mairhuber-Curtis theorem tells us that if we want to have a well-posed multivariate
scattered data interpolation problem, we can’t fix in advance the set of basis functions, but the
basis should depend on the data location.

1.2.1 Meshfree methods

Originally, the motivation for the basic meshfree approximation methods (radial basis functions)
came from applications in geodesy, geophysics, mapping, or meteorology. Later, applications
were found in many areas such as in the numerical solution of PDEs, artificial intelligence,
learning theory, neural networks, signal processing, statistics (kriging), finance, and optimization.
It should be pointed out that meshfree local regression methods have been used (independently)
in statistics for more than 100 years . "Standard" multivariate approximation methods (splines
or finite elements) require an underlying mesh (e.g. triangulation) for the definition of basis
functions or elements. This is very difficult in space dimensions greater than two.

Some historical landmarks for meshfree methods in approximation theory

• D. Shepard, Shepard functions, late 1960s (application, surface modelling)

• Rolland Hardy (Iowa State Univ.), multiquadrics (MQs), early 1970s (application, geodesy)

• Jean Meinguet (Université Catholique de Louvain, Louvain, Belgium), surface splines,
late 1970s (mathematics)

• Richard Franke (NPG, Montery), in 1982 compared scattered data interpolation methods,
and concluded MQs and TPs were best. Franke conjectured interpolation matrix for MQs
is invertible.

• Charles Micchelli (IBM), Interpolation of scattered data: Distance matrices and condi-
tionally positive definite functions, 1986.

Advantages of meshfree methods

Meshfree methods have gained much attention in recent years, this is due to the following
reasons:

• Many traditional numerical methods (finite differences, finite elements or finite volumes)
have trouble with high-dimensional problems.
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• Meshfree methods can often handle changes in the geometry of the domain of interest
(e.g., free surfaces, moving particles and large deformations) better.

• Independence from a mesh is a great advantage since mesh generation is one of the most
time consuming parts of any mesh-based numerical simulation.

• New generation of numerical tools.

Applications

• Original applications were in geodesy, geophysics, mapping, or meteorology.

• Later, many other application areas

– Numerical solution of PDEs in many engineering applications,
– Computer graphics,
– Sampling theory,
– Artificial intelligence,
– Machine learning or statistical learning (neural networks or SVMs),
– Signal and image processing,
– Statistics (kriging),
– Finance,
– Optimization.

1.2.2 Basis functions depending on data

* The basis functions of meshless methods noted by φi are dependent on the data sites xi
as suggested by Haar-Mairhuber-Curtis.

* The points xi for which the basic function is shifted to form the basis functions, are
usually referred as centers or knots.

* Technically, one could choose these centers different from the data sites. However, usually
centers coincide with the data sites. This simplifies the analysis of the method, and is
sufficient for many applications. In fact, relatively little is known about the case when
centers and data sites differ.

* φi(x) are radially symmetric about their centers, for this reason we call these functions
Radial Basis Functions (RBFs).

In 1968 , R.L. Hardy [37] wanted to create a satisfactory function that could represent a
topographical curve. While studying this problem, Hardy discovered that, the data could be
satisfactory represented by a piecewise linear interpolating function [37]. He proposed that
given a set of N distinct scattered data points {xj}Nj=0 and corresponding measurements {fj}Nj=0,
that the form of

φj(x) = |x− xj|, j = 0, . . . , N.
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Hardy soon recognized that the absolute function had a jump in the first derivative at each source
point. Hardy figured out that this problem could be solved by removing the absolute value basis
function and replacing it with a function that is continuously differentiable. Hardy’s function
was
√
ε2 + r2, where ε is an arbitrary non-zero constant [37]. Hardy applied the interpolation

method using this function to more than a one dimensional space. Note that the absolute value
of the difference between two points in two dimensional space is the Euclidean distance between
the two points; for example, | x− xj |=

√
(x− xj)2. What Hardy created was an interpolating

function based on translates of the Euclidean distance function in two dimensions. Hence,
given N distinct scattered data points {xj, yj}Nj=0 and corresponding topographic measurements
{fj}Nj=0 for j = 0, 1, . . . , N , Hardy proposed the following basis function

φi,j(x, y) =
√

(x− xj)2 + (y − yj)2. (1.6)

To be exact φ(r) =
√
x2 + y2. Also as previously described in one dimension, the vertex of

each cone is centered at one of the data points. Again, Hardy ran into the same problem as his
one dimensional interpolating function. The problem was that function defined in equation
(1.6) suffered from being a piecewise continuous. He was unable to find a simple fix for this
problem. Hardy proposed using a linear combination circular hyperboloid basis functions
(rotated hyperbola basis functions

√
ε2 + x2 translated to be centered at each source point).

The new form of equation (1.6) is

φi,j(x, y) =
√
ε2 + (x− xj)2 + (y − yj)2. (1.7)

Hardy discovered that the interpolation method based on the new function was an excellent
method for approximating topographical information from sparse data points. Unlike the
Fourier series, the new function did not suffer from large oscillations. Also, the function
alleviated the problem associated with the polynomial series method (i.e. the polynomial series
was unable to account for rapid variations of the topographical surface) [36]. Hardy named this
new technique the multiquadric basis function (MQ).

Notice that the multiquadric basis function is also radially symmetric about its center.
Because of this radial symmetry, the multiquadric kernel can be described as a Radial Basis
Function. In other words, it is a basis function which depends only on the radial distance from
its center. Since our basis functions depend only on distance.

Definition 1.2. RBF approximations are usually finite linear combinations of the translation
of a radially symmetric basis function. The set of RBFs, φi is as follows
φi: Rd −→ R, φi(x) = φ(‖ x−xi ‖), where ‖ . ‖ denote the Euclidean norm and xi is the center
of RBF .

1.3 Radial basis functions interpolation problem

This method was proposed by Edward Kansa in 1990 [49], a proffessor at the university of
California. It was used for the first time for polynomial interpolation problems. The method
makes it possible to offer a high order accuracy with nodes dispresed on a totally irregular
geometry with a particular simple algorithm compared to the classical methods used until this
moment. Before Kansa’s successful research, Hardy [36, 37] used the multiquadric function to
interpolate multidimensional data and reconsile two dimensional geographic surfaces, showed
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that multiquadric has a physical foundation as a consistent solution to the biharmonic potential
problem. Buhmann and Michelli [14] have shown that the MQ interpolation sheme converges
faster as the spatial dimension increases, and converges exponentially as the density of the
nodes increases. Buhmann and Michelli [15] and Chui et al [23] have shown that MQ and other
RBFs were prewavelets. Kansa intervened to solve partial differentiall equations of elliptic,
parabolic or even hyperbolic type [51]. This intervention which modified the multiquadric
function was very succesful. Finaly, in 1990 Hon et al [42] have improved the MQ method for
solving varieties of nonlinear boundary problems, the most common of which is the Burgers
equation.

The scattered data approximation problem is as follows, let given a set of N distinct data
points X =

(
x1, x2, ..., xN

)
in RN and a corresponding set of N values

(
y1, y2, ..., yN

)
sampled

from an unknown function f such that yi = f(xi). We can then choose a radial function φ
and a set of centers

(
xc1, xc2, ..., xcN

)
for some N ∈ N, to obtain a basis

(
φ(||.− xc1||), φ(||.−

xc2||), ..., φ(||.− xcN ||)
)
.

This basis can then be used to construct an approximation s of the function f .
One option is to center an RBF on each data site. In that case, the approximation will be
constructed from n radial basis functions, and there will be one basis function with xc = xi for
each i = 1, 2, ..., N .

The approximation s is then constructed from a linear combination of those N RBFs, such
that

s(x) =
N∑
i=1

ciφ(||x− xi||), (1.8)

with: ri = ||x− xi||. Then,
φ1(r1) φ1(r2) · · · φ1(rN)
φ2(r1) φ2(r2) · · · φ2(rN)

... ... . . . ...
φN(r1) φN(r2) · · · φN(rN)



c1
c2
...
cN

 =


f1
f2
...
fN

 .

Such that, c = [c1, c2, ..., cN ] and y = [f1, f2, ..., fN ],
The constants ci are determined by ensuring that the approximation will exactly match the

given data at the data points. This is accomplished by enforcing s(xi) = yi = fi, i = 1, . . . N ,
which produces the system of linear equations

Ac = y. (1.9)

The solution of the system requires that the matrix A is non-singular. The situation is favorable
if we know in advance that the matrix is positive definite. Moroever we would like to characterize
the class of functions φ for which the matrix is positive definite.

Polynomial Terms
It is sometimes useful to add low order polynomials to our method of radial basis function

interpolation. We let πsm−1 be the linear space of polynomials from Rs to R of degree at most
m− 1, and choose pj, j = 1, 2, . . . ,M as a basis for this space, whose dimension is

M =
[
m− 1 + s
m− 1

]
.
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This means we let s(x) have the form

s(x) =
N∑
i=1

ciφ(||x− xi||) +
M∑
j=1

djpj(x), x ∈ Rs. (1.10)

with the additional constraints
N∑
i=1

cipj(xi) = 0, j = 1, 2, . . . ,M. (1.11)

Adding the extra constraints and the polynomial conditions to the interpolant, we find the
system of linear equations, [

A P
P T O

] [
c
s

]
=
[
y
0

]
,

where now the matrices and arrays have the following dimensions: A is N ×N , P is N ×M , O
is M ×M of zeros; c, y are N × 1 , s and 0 are M × 1.

The addition of polynomials of degree not more than m− 1 guarantees polynomial precision,
meaning that if the data comes from a polynomial of degree less than or equal to m− 1 they
are fitted by that polynomial.

1.3.1 Positive-definite matrices and functions

Definition 1.3. A real symmetric matrix A is called positive semi-definite if its associated
quadratic form cTAc ≥ 0, that is

N∑
i=1

N∑
j=1

cicjAi,j ≥ 0, (1.12)

for c ∈ Rn. If the quadratic form (1.12) is zero only for c = 0 then A is called positive definite.

Hence, if in (1.8) the basis φi generates a positive definite interpolation matrix that we
would always have a well-defined interpolation problem. In order to get such property, we need
to introduce the class of positive definite functions.

Definition 1.4. A continuous complex valued function φ : Rs → C is called positive semi-
definite if, for all N ∈ N, all sets of pairwise distinct points X = {x1, . . . , xN} ⊂ Rs and c ∈ CN

the quadratic form
N∑
i=1

N∑
j=1

cicjφ(xi − xj) ≥ 0, (1.13)

is nonnegative. The function φ is then called positive definite if the quadratic form above is
positive for c ∈ CN , c 6= 0.

One of the most celebrated results on positive definite functions is their characterization in
terms of Fourier transforms established by Bochner in 1932.

Theorem 1.3. (Bochner)[6] A (complex-valued) function Φ ∈ C(Rs) is positive definite on Rs

if and only if it is the Fourier transform of a finite non-negative Borel measure µ on Rs , i.e.

Φ(x) = 1√
(2π)s

∫
Rs
e−ixydµ(y), x ∈ Rs.
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1.3.2 Completely monotone functions

Definition 1.5. [29](p.47) A function φ : [0,∞)→ R that is C[0,∞) ∩ C∞(0,∞) and satisfies

(−1)kφ(k)(r) ≥ 0, r > 0, k = 0, 1, 2, . . . (1.14)

is called completely monotone.

Here we enumerate some of the most important positive definite functions showing that
they are completely monotone.

1. The function φ(r) = ε, ε ≥ 0 is completely monotone on [0,∞).

2. The function φ(r) = e−εr, ε ≥ 0 is completely monotone on [0,∞) since

(−1)kφ(k)(r) = εke−εr ≥ 0, k = 0, 1, 2, . . . .

3. The function φ(r) = 1
(1 + r)β , β ≥ 0 is completely monotone on [0,∞) since

(−1)kφ(k)(r) = (−1)2kβ(β + 1) . . . (β + k − 1)(1 + r)−β−k ≥ 0, k = 0, 1, 2, . . .

Theorem 1.4. (Hausdorff–Bernstein–Widder)[84](p.91) A function Φ : [0,∞) → R is com-
pletely monotone on [0,∞) if and only if it is the Laplace transform of a nonnegative finite
Borel measure ν, i.e. it is of the form

Φ(r) =
∫ ∞

0
e−rtdν(t).

Theorem 1.5. (Schoenberg)[84](p.93) A function φ is completely monotone on [0,∞) if and
only if Φ = φ(‖ . ‖2

2) is positive semi-definite on Rs for all s.

Multiply monotone functions

This characterization allows to check when a function is positive definite and radial on Rd for
some fixed d.

Definition 1.6. [29](p.49) A function φ : (0,∞)→ R which is Cs−2(0,∞), s ≥ 2 and for which
(−1)kφ(k)(r) ≥ 0, non-increasing and convex for k = 0, 1, . . . , s− 2 is called s times monotone
on (0,∞). In case s = 1 we only require φ ∈ C(0,∞) to be non-negative and non-increasing.

Characterizing positive definite functions using more comprehensible approach based on the
definition of completely monotone and multiply monotone functions can be found in [11, 29, 84].

1.3.3 Conditionally positive definite functions

Definition 1.7. [84](p.97) A continuous function Φ : Rs −→ C is said to be conditionally
positive semi-definite of order m in Rs, if

N∑
i=1

N∑
j=1

cicjφ(xi − xj) > 0, (1.15)
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for anyN setX = {x1, . . . , xN} ⊂ Rs of pairwise distinct points, and c = (c1, . . . , cN )T ⊂ CN

such that
N∑
k=1

ckp(xk) = 0, (1.16)

for any complex-valued polynomial p of degree ≤ m − 1. The function Φ is then called
conditionally positive definite of order m on Rs if the quadratic form (1.15) vanishes only when
c ≡ 0.

The first important fact concerning conditionally positive (semi)-definite functions is their
order. To this aim holds the following important result.
Remark 1.2. - A function which is conditionally positive (semi)-definite of order m is also

conditionally positive (semi)-definite of any order s ≥ m.

- A function that is conditionally positive (semi)-definite of orderm in Rs is also conditionally
positive (semi)-definite of order m on Rk with k ≤ s .

Theorem 1.6. [84](p.99) Suppose Φ is conditionally positive definite of order 1 and that
Φ(0) ≤ 0. Then the matrix A ∈ RN×N , i.e. Ai,j = Φ(xi − xj), has one negative and N − 1
positive eigenvalues. In particular it is invertible.

The most used positive definite RBFs and conditionally positive definite RBFs are given in
tables 1.3-1.4 respectively. The representations of multiquadric, gaussian, inverse multiquadric,
inverse quadric and polyharmonic splines RBFs are given in figures 1.4-1.5-1.6.

Name φ(r)
Inverse Multiquadric (IMQ) φ(r) = 1√

r2 + ε2

Gaussian Function (GS) φ(r) = e−εr
2

Table 1.3: Positive definite radial basis functions.

Name φ(r) Order
Multiquadric (MQ) φ(r) = (r2 + ε2)k, k > 0, k /∈ N dke+ 1
Inverse Multiquadric (IMQ) φ(r) = (r2 + ε2)−k, k > 0, k /∈ N 0
Polyharmonic spline φ(r) = r2k−1, k ∈ N dk/2e+ 1
Polyharmonic spline φ(r) = r2kln(r), k ∈ N dk/2e+ 1
Thin Plate Spline (TPS) φ(r) = r2ln(r) 2

Table 1.4: Conditionally positive definite radial basis functions, where dke denotes the nearest
integers less than or equal to k, and N the natural number, ε a positive constant which is
known as the shape parameter .
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Figure 1.4: Graph of gaussian RBF (left), multiquadric RBF (right), for a center x = 0, with
different values of shape parameter.

Figure 1.5: Graph of inverse multiquadric RBF (left), inverse quadric RBF (right), for a center
x = 0, with different values of shape parameter.
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Figure 1.6: Graph of polyharmonic splines.

1.3.4 Stability

As observed by Schaback [68] there is a trade-off between the accuracy of the interpolation and
the condition number of the matrix defined in equation (1.9) in the 2-norm is defined as follows,

κ(A) =‖ A ‖2‖ A−1 ‖2= σmin
σmax

,

where σmin is the smallest singular value and σmax the largest singular value of A. The shape
parameter affects both the conditioning of the system matrix and the accuracy of the RBFs
method as shown in figure 1.7.

In order to improve the accuracy of the interpolant we can change the shape parameter ε to
use ‘flat’ basis functions , which leads to a more ill-conditioned problem since the condition
number of the matrix A increases. This trade-off has been called the uncertainty principle
(Phrase used to describe the fact that a RBF approximant can not at the same time be accurate
and well conditioned). Alternatively we can increase the number of interpolation points to
increase the accuracy, but this also leads to a larger condition number of A.

increasingly flat basis functions provide more accurate interpolants, but are unusable because
of the numerical instabilities from ill-conditioning. This problem is addressed in [33], where
algorithms for the stable computation of these interpolants are provided.

1.3.5 Shape parameter

Many RBFs, including all of the ones named here, have a variable ε in their definitions. This
variable is called the shape parameter. Finding the shape parameter that will produce the most
accurate approximation is a topic of current research.
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Figure 1.7: Gaussian RBF (φ(r) = e−(εr)2 ) interpolation of the function, f(x) = e−x
2
sin(x),

using N=20 of Chebyshev nodes. RMS-error (RMS-error= 1√
N
||s − f ||2) versus the shape

parameter (Left), condition number versus the shape parameter (right).

Figure 1.8: Graph of Gaussian RBF centered at the origin, with a shape parameter ε = 3
(left),with a shape parameter ε = 1 (center), with a shape parameter ε = 0.3 (right) .

Choosing optimal shape parameter

In recent years, a lot of continued efforts of many authors to establish the theory of evaluating
the optimal shape parameter ε in the MQ radial basis function interpolation. However, such an
explicit formula is only available in special cases. Consequently, numerically determining the
optimal ε proves to be essential. Numerical experiments find that the best ε, via a numerical
scheme, may not be theoretically optimal. A large shape parameter results in a well conditioned
system matrix; however, the approximation using the RBF is poor. If one chooses to use a
small shape parameter, this results in a very accurate RBF approximation, but the system
matrix is ill-conditioned. Many strategies for selecting an optimal value of ε were suggested.

Constant shape parameter

Many scientists and mathematicians use the constant shape parameter for interpolation of data
[34, 36, 44].

Definition 1.8. [36] Hardy’s ε is given by
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ε = 0.815d with d = 1
N

N∑
i=1

di,

where di is the distance from the ith center to the nearest neighbor and N is the number of
centers.

Definition 1.9. [34] Franke’s ε is given by

ε = 1.25D√
N

,

where D is the diameter of the smallest circle encompassing all the center locations and N
is the number of centers.

Many authors have tried to construct a satisfactory formula for the shape parameter in MQ
interpolation as noted in [32, 79]. When creating an optimal shape parameter, one must combat
the uncertainty principle. The goal of finding a shape parameter formula for the interpolant is
to provide good accuracy with not too high of a condition number.

Variable shape parameter

When the theory is established for radial basis functions, a constant shape parameter was used.
If one uses a variable shape parameter, the complexity of theory becomes extremely difficult
to explain. In [7] there are somewhat restrictive sufficient conditions that show the system
matrix A is non-singular with a variable shape parameter. One positive aspect of a variable
shape parameter is that it creates distinct entries in the RBF matrices which can lead to lower
condition numbers [80]. The downside to a variable shape parameter is that it caused A to be
nonsymmetric. Recall that if one uses a constant shape parameter, the system matrix A will be
symmetric. There are additional papers that used the variable shape parameter see- [7, 49, 50].

Variable linear shape parameter

The variable linear shape is a 1×N matrix that contains shape parameters generated by the
formula,

εj = εmin + (εmax − εmin
N − 1 )j, j = 0, 1, . . . N − 1,

where εmin and εmax are the maximum and the minimum values for the variable shape ε
respectively. The representation of variable linear shape parameter is given in figure 1.9.

Exponentially varying shape parameter

The exponentially varying shape is a 1×N matrix that contains shape parameters generated
by the formula,

εj =
[
ε2min

(ε2max
ε2min

) j−1
N−1

] 1
2

, forj = 1, 2, . . . , N,

where εmin and εmax are the maximum and the minimum values for the variable shape ε
respectively. The representation of exponentially varying shape parameter is given in figure
1.10.
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Figure 1.9: Plot of variable linear shape parameter with εmin = 1, εmax = 50, and N = 20.

Figure 1.10: Plot of exponentially variable shape parameter with εmin = 1, εmax = 50, and
N = 20.
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Variable random shape parameter

The variable random shape is a 1×N matrix that contains shape parameters generated by the
formula,

εj = εmin + (εmax − εmin)rand(1, N),

where εmin, εmax are the maximum and the minimum values for the variable shape ε
respectively. The representation of variable random shape parameter is given in figure 1.11.
The representation of absolute errors using linear variable, exponentially varying and random

Figure 1.11: Plot of random variable shape parameter with εmin = 1, εmax = 50, and N = 20.

variable shape parameter is presented in figure 1.12.

The power function

The error of interpolation is given by
| f(x)− s(x) |≤ Pφ,χ(x)||f ||Nφ(Ω), where Pφ,χ(x) denotes the power function. This estimate

decouples the interpolation error into a component independent of the data function f and
one depending on f . Once we have decided on a basic function f and a data set χ, we can
use the power function based on scaled versions of φ to optimize the error component that is
independent of f . The power function can be computed via

Pφ,χ(x) =
√
φ(x, x)− (b(x))TA−1b(x), where A is the interpolation matrix,

and b = [φ(., x1), . . . , φ(., xn)]T .
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Figure 1.12: Plot of absolute errors for interpolating sinc(x+ 1) using linear variable, exponen-
tially varying and random variable shape parameter with εmin = 2.1, εmax = 7.6, and N = 20,
using M = 9 Chebyshev points.

* Advantage: objective and does not depend on any knowledge of the data function.

* Disadvantage: will not be an optimal one since the second component of the error bound
also depends on the basic function via the native space norm (which changes when A is
scaled).

The power function strategy for one and two dimensional interpolation using gaussian RBF is
given in figure 1.13.

Trial and error strategy

It is the simplest approach. It consists in performing various interpolation experiments with
different values of the shape parameter. The best parameter, say ε will be the one that minimize
the interpolation error. In figure 1.14, we plot the interpolation max-error varying ε for different
data points, using the Gaussian kernel in the univariate case. The minimum of every curve
gives the "optimal" value.
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Figure 1.13: The power function strategy by gaussian RBF in one dimensional (left), and two
dimensional (right) for ε ∈ [0, 20], taking 100 values of ε and for different equispaced data
points.

Figure 1.14: Trial and error strategy for the interpolation of the sin(x) function (left) and
Franke’s test function f(x) = exp(−x) + sin(2x) (right) by the gaussian for ε ∈ [0, 20], taking
100 values of ε and for different equispaced data points.
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Cross Validation method

This method is popular in the statistics literature, known in the case the 2-norm is used as
PRESS (Predictive Residual Sum of Squares). The optimal value ε is obtained minimizing the
(least-squares) error for a fit of the data values based on an interpolant for which one of the
centers is left out.

1- Leave one out cross validation (LOOCV )
Cross validation attempts to test the accuracy of a method by separating the available data
into two or more parts. One part of the data set is used to construct an approximation,
and error is measured using a different part of the data set. Leave one out cross validation
(LOOCV ) uses (N − 1) points from the data set to construct an approximation, then
checks that approximation’s error at the remaining data site. The procedure is repeated
leaving out each data site once, and the resulting set of errors are used to estimate the
method’s relative accuracy .

LOOCV (ε) =
N∑
i=1
|si(xi)− yi|2,

where si is the interpolant when excluding the points xi and using functions with shape
parameter ε.

Shmuel Rippa [76] showed that si(xi)− yi = λi
A−1
ii

where λi is the i-th coefficient of the

interpolant f constructed using the full data set and A−1
ii is the i-th diagonal element of

A−1. The vector λ can be found by solving Aλ = y, and the diagonal elements of A−1

can be computed using a matrix factorization. As a result, computing the LOOCV using
Rippa’s formula has computational complexity O(N3). For the following experiments,
LOOCV will be computed using the formula

LOOCV (ε) =
N∑
i=1

[
λi
A−1
ii

]2

.

2- Generalized cross validation (GCV )
Generalized cross validation (GCV ) is a variation of leave one out cross validation which
replaces the diagonal elements of A−1 with their average. GCV is similar to LOOCV , but
has some invariance properties which LOOCV lacks. As with LOOCV , the computational
complexity of GCV is O(N3). In the following experiments, GCV is calculated by using
the formula

GCV (ε) =

N∑
i=1

λ2
i[

1
N

N∑
i=1

A−1
ii

]2 .

3- Maximum Likelihood Estimator (MLE)
Another method for predicting which shape parameter ε will minimize the error of an
RBF interpolation is to use a maximum likelihood estimator (MLE). Assuming that f
is a Gaussian process, maximizing the likelihood function is equivalent to minimizing
ytA−1y.[det(A)]1/N . This formula rapidly approaches 0 as N increases, causing numerical
error. The resulting numerical error can be prevented by taking the logarithm of the
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function in its computation and applying the identity det(A) =
N∏
i=1

λi(A), where λi(A) is

the i-th eigenvalue of A. Additionally, computing A−1 can be avoided because A−1λ = c.
MLE is calculated by using the formula

MLE(ε) = log(ytc) + 1
N

N∑
i=1

log(λi(A)). Computing the coefficients λi and computing the

eigenvalues of a matrix each require O(N3) operations. So the value of this function for a
single shape parameter ε has computational complexity O(N3). The LOOCV strategy for
the interpolation of the sinc function by gaussian RBF in one and two dimensional is
shown in figure 1.15.

Figure 1.15: LOOCV strategy for the interpolation of the sinc function by gaussian RBF in
one dimensional (left), and two dimensional (right) for ε ∈ [0, 20], taking 101 values of ε and for
different equispaced data points.

Other algorithms in litterature for choosing optimal shape parameter are given in [17, 69, 76, 81].

1.3.6 Data sets

Depending on the type of approximation problem we are given, we may or may not be able to
select where the data is collected, i.e., the location of the data sites or design. Standard choices
in low space dimensions are depicted in figure 1.16. In higher space dimensions it is important
to have space-filling (or low-discrepancy) quasi-random point sets. Examples include: Halton
points, Sobol points, lattice designs, Latin hypercube designs and quite a few others (digital
nets, Faure, Niederreiter, etc). The representations of Halton points, Sobol points, lattice and
Latin points are given in figures 1.17-1.18.
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Figure 1.16: Tensor products of equally spaced points and tensor products of Chebyshev points.

Figure 1.17: Graph of Sobol and Halton nodes.

Figure 1.18: Graph of Lattice and Lattin nodes.

26



Algorithms for choosing centers of radial basis funcions

RBF methods have been praised for their simplicity and ease of implementation in multivariate
scattered data approximation. But both the approximation quality and stability depend on
the distribution of the center set. It leads immediately to the problem of finding good or
even optimal point sets for the reconstruction process. Many methods are constructed for
center choosing. We summarize some effective center location methods like greedy algorithms,
arclength equipartition methods and k-mean clustering methods.

Greedy algorithm
In order to minimizing the power function, Marchi S.D., Schaback R. and Wendland H.

constructed a numerical greedy algorithm produces near-optimal point sets by recursively adding
one of the maxima points of the power function w.r.t. the preceding set [60, 61]. Obviously,
greedy algorithm is data-dependent and adaptive algorithm. It is described as follow

Take a set X = {x1, . . . xN} ⊆ Ω ⊆ Rs of N pairwise distinct points coming from a compact
subset Ω of Rs.

(1) Let X1 = {x1} for x1 ∈ Ω arbitrary

(2) Do Xj := Xj−1 ∪ {xj} with

Pφ,Xj−1(xj) =‖ Pφ,Xj−1 ‖L∞(Ω), j ≥ 2, (1.17)

until ‖ Pφ,Xj ‖L∞(Ω) is small enough.
In practice, the maxima is taken over some large discrete set X ⊂ Ω ⊂ Rs . The
convergence rate of the above Greedy algorithm is at least like

‖ Pφ,Xj ‖L∞(Ω)≤ Cj1−s, (1.18)

where C is a constant.
Based on numerous numerical experiments of Greedy Algorithm, the same authors
suggested a geometric greedy algorithm which is data-independent.

ArcLength equipartition like algorithm
Based on the idea that to display a function with some finite discrete sampling data efficiently,

one requires more sampling data where the function is more oscillatory, and less sampling
data where the function is more flat, Wu Z.M. [88] and Sarra S.A. [71] both used arclength
equipartition algorithm to solve partial differential equations.

k-means clustering algorithm
Finally, k-means clustering algorithm commonly used in radial basis function neural networks

is easy to implement and of high performance [94]. The working process of k-means: first, choose
arbitrary k points as the initial cluster centers. For all other points, compute their Euclidean
distances to the k-cluster centers, and add each to its nearest cluster. Then recalculate the k
cluster centers by taking the geometric center of each cluster, and repeat the above process
until the center errors go below a given threshold. This is also a data-independent method.

Other Algorithms for choosing centers for RBFs are given in [21, 31, 46].
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Chapter 2

Compactly supported RBF and some
applications for solving integral and
partial differential equations

This chapter is consacred to introducing the concept of compactly supported RBF and
its applications with globaly RBF for solving different types of integral and partial differen-
tial equations. A comparaison between stationary and non-stationary approaches for RBFs
approximation is also given.

2.1 Compactly supported radial basis functions

After successful studies and tests for the result of partial differential equations, such as the
resolution of hydrodynamic equations by Hon et al, the numerical results demonstrated that
the MQ diagrams are very assuring than the finite element method. However, the MQ method
requires solving a linear system with a full matrix, which could make the method cumbersome
and very expensive once you have to do hundreds of collocation points. To overcome this
problem, researchers have developed a sheme based on radial basis functions with compact
support (CSRBFs). The compactly supported radial basis functions can cover the global
schemes that the simple RBF methods are weak to solve as in the case of the badly conditioned
matrices.

The accuracy of the RBFs method depends on the value of the shape parameter which is still
an unsolved problem, also the resulting interpolation matrix is dense and highly ill conditioned.
So it was suggested the use of compactly supported radial basis functions which can reduce the
resultant full matrix to a sparse one, also the operation of the banded matrix system could
reduce the ill-conditioning of the resultant coefficient matrix when using the global radial basis
functions.

Compactly supported radial functions can be strictly positive definite on Rs only for a fixed
maximal s-value. It is not possible for a function to be strictly positive definite and radial on Rs

for all s and also have a compact support. Therefore we give characterization and construction
of functions that are compactly supported, strictly positive definite and radial on Rs for some
fixed s.

According to Bochner’s work [6], a function is strictly positive definite and radial on Rs if
its s-variate Fourier transform is non-negative.
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The Bessel function J of the first kind of order v ∈ C can be expressed as follow

Jν :=
∞∑
k=0

(−1)k(z/2)2k+v

k!Γ(k + v + 1) , for z ∈ C\0.

such that the Γ-function is given as follow

Γ(z) := lim
n−→∞

n!nz
z(z + 1) . . . (z + n) , for z ∈ C.

Theorem 2.1. [84](p.119) Suppose Φ ∈ L1(Rs) ∩ C(Rs) is radial, i.e. Φ = φ(‖ . ‖2), x ∈ Rs.
Then its Fourier transform Φ̂ is also radial, i.e. Φ̂ = Fs(‖ . ‖2) with

Φ̂(x) = Fsφ(r) = r−(s−2)/2
∫ ∞

0
φ(t)ts/2J(s−2)/2(rt)dt.

Operators for Radial Functions and Dimension Walks
Schaback and Wu [73] defined an integral operator and its inverse differential operator, and

discussed an entire calculus for how these operators act on radial functions. These operators
will facilitate the construction of compactly supported radial functions.

Definition 2.1. [84](p.121) Let φ be given such that t→ tφ(t) ∈ L1[0,∞), then we define

(Iφ)(r) =
∫ +∞

r
tφ(t)dt, r ≥ 0.

For even φ ∈ C2(R) we define

(Dφ)(r) = −1
r
φ
′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even functions using even extension.

Theorem 2.2. [84](p.121-122)

1- Both D and I preserve compact support, i.e., if φ has compact support, then so do Dφ
and Iφ.

2- If φ ∈ C(R) and t→ φ(t) ∈ L1[0,∞), then DIφ = φ.

3- If φ ∈ C2(R) and φ′ ∈ L1[0,∞), then IDφ = φ.

4- If t→ ts−1φ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(φ) = Fs−2(Iφ).

5- If φ ∈ C2(R) is even and t→ tsφ
′(t) ∈ L1[0,∞), then Fsφ = Fs+2(Dφ).

The operators I and D allow us to express s-variate Fourier transforms as (s − 2) or
(s+ 2)−variate Fourier transforms, respectively.

Wendland’s Compactly Supported Functions
In [84] Wendland constructed a popular family of compactly supported radial functions by

starting with the truncated power function which we know to be strictly positive definite and
radial on Rs for s ≤ 2l − 1, and then walking through dimensions by repeatedly applying the
operator I.
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Definition 2.2. [84](p.128) With φl(r) = (1− r)l+ we define

φs,k = Ikφbs/2c+k+1.

It turns out that the functions φs,k are all supported on [0, 1] and have a polynomial
representation there.

Theorem 2.3. [84](p.128) The functions φs,k are strictly positive definite and radial on Rs

and are of the form

φs,k(r) =
{
ps,k(r), r ∈ [0, 1]

0, r > 1, (2.1)

with a univariate polynomial ps,k of degree bs/2c+ 3k + 1. Moreover, φs,k ∈ C2k(R) are unique
up to a constant factor, and the polynomial degree is minimal for given space dimension s and
smoothness 2k.

Wendland gave recursive formulas for the functions φs,k for all s, k.
Example 2.1. Wendland’s compactly supported functions φs,k, for k = 0, 1, 2, 3, are written in
the following form

• φs,0(r) = (1− r)bs/2c+1
+

• φs,1(r) .= (1− r)l+1
+ [(l + 1)r + 1]

• φs,2(r) .= (1− r)l+2
+ [(l2 + 4l + 3)r2 + (3l + 6)r + 3]

• φs,3(r) .= (1− r)l+3
+ [(l3 + 9l2 + 23l + 15)r3 + (6l2 + 36l + 45)r2 + (15l + 45)r + 15] ,

where l := bs/2c+ k + 1, and the symbol .= denotes equality up to a multiplicative positive
constant.
Example 2.2. For s = 3 we get some of the most commonly used functions as

• φ3,0(r) = (1− r)3
+, ∈ C0 ∩ SPD(R3)

• φ3,1(r) .= (1− r)4
+ [4r + 1] , ∈ C2 ∩ SPD(R3)

• φ3,2(r) .= (1− r)6
+ [35r2 + 18r + 3] , ∈ C4 ∩ SPD(R3)

• φ3,3(r) .= (1− r)8
+ [32r3 + (6l2 + 36l + 45)r2 + (15l + 45)r + 15] , ∈ C6 ∩ SPD(R3).
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The abbreviation SPD means striclty positive definite.
Wu’s Compactly Supported Functions
Wu presents another way to construct strictly positive definite radial functions with compact

support [89]. He starts with the function

φ(r) = (1− r2)l+, l ∈ N, (2.2)

which is strictly positive definite and radial since we know that the truncated power function
φ(√.) is multiply monotone. Wu then constructs another function that is strictly positive
definite and radial on R by convolution, i.e.,

φl(r) = (φ ∗ φ)(2r)

=
∫ +∞

−∞
(1− t2)l+ + (1− (2r − t)2)l+dt.

This function is strictly positive definite since its Fourier transform is essentially the square of
the Fourier transform of φ. Just like the Wendland functions, this function is a polynomial on
its support. In fact, the degree of the polynomial is 4l + 1, and φl ∈ C2l(R).

Now, a family of strictly positive definite radial functions is constructed by a dimension
walk using the D operator, i.e.,

φk,l = Dkφl.
The functions φk,l are strictly positive definite and radial in Rs for s ≤ 2k + 1, are polynomials
of degree 4l − 2k + 1 on their support and in C2(l − k) in the interior of the support. On the
boundary the smoothness increases to C2l−k.
Example 2.3. For l = 3 we can compute the three functions

φk,3(r)Dkφ3(r) = Dk((1 − .2)3
+ + (1 − .2)3

+)(2r), k = 0, 1, 2, 3. This results the following
CSRBFs

φ0,3(r) .= (5− 39r2 + 143r4 − 429r6 + 429r7 − 143r9 + 39r11 − 5r13)+

φ0,3(r) .= (1− r)7
+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6), ∈ C6 ∩ SPD(R)

φ1,3(r) .= (6− 44r2 + 198r4 − 231r5 + 99r7 − 33r9 + 5r11)+

φ1,3(r) .= (1− r)6
+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5), ∈ C4 ∩ SPD(R3)

φ2,3(r) .= (8− 72r2 + 105r3 − 63r5 + 27r7 − 5r9)+

φ2,3(r) .= (1− r)5
+(8 + 40r + 48r2 + 25r3 + 5r4), ∈ C2 ∩ SPD(R5)

φ3,3(r) .= (16− 35r + 35r3 − 21r5 + 5r7)+

φ3,3(r) .= (1− r)4
+(16 + 29r + 20r2 + 5r3), ∈ C0 ∩ SPD(R7).

Remark 2.1. 1- For a prescribed smoothness the polynomial degree of Wendland’s functions
is lower than that of Wu’s functions. For example, both Wendland’s function φ3,2 and
Wu’s function φ3,1 are C4 smooth and strictly positive definite and radial in R3. However,
the polynomial degree of Wendland’s function is 8, whereas that of Wu’s function is 11.

2- While both families of strictly positive definite compactly supported functions are con-
structed via dimension walk, Wendland uses integration (and thus obtains a family of
increasingly smoother functions), whereas Wu needs to start with a function of sufficient
smoothness, and then obtains successively less smooth functions (via differentiation).
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Figure 2.1: Graph of Wendland’s CSRBFs (left), Wu’s CSRBFs (right), for a center x = 0.

The figure 2.1 shows some of Wendland’s and Wu’s CSRBFs.

Buhmann’s Compactly Supported Functions
A third family of compactly supported strictly positive definite radial functions that has

been appeared in the literature is due to Buhmann (see [12]). Buhmann’s functions contain a
logarithmic term in addition to a polynomial. His functions have the general form

φ(r) =
∫ +∞

0
(1− r2/t)λ+tα(1− tδ)ρ+dt.

Here 0 < δ ≤ 1
2, ρ ≥ 1, and in order to obtain functions that are strictly positive definite

and radial on Rs for s ≤ 3 the constraints for the remaining parameters are λ ≥ 0, and
−1 < α ≤ λ− 1

2 .

Example 2.4. An example with α = δ = 1
2 , ρ = 1 and λ = 2 is listed in [13]: φ(r) .=

12r4log(r)− 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1, C2 ∩ SPD(R3), which is presented in figure 2.2.
Example 2.5. An example with α = 0, δ = 1

2 , ρ = 4 and λ = 1 is listed in [13] φ(r) .=
1
15 + 19

6 r
2 − 16

3 r
3 + 3r4 − 16

15r
5 + 1

6r
6 + 2r2log(r), 0 ≤ r ≤ 1, C2 ∩ SPD(R3), which is presented

in figure 2.3.

Remark 2.2. (1) While Buhmann [13] claims that his construction encompasses both Wend-
land’s and Wu’s functions, Wendland [86] gives an even more general theorem that shows
that integration of a positive function f ∈ L1[0,∞) against a strictly positive definite
(compactly supported) kernel K results in a (compactly supported) strictly positive
definite function, i.e.,

φ(r) =
∫ +∞

0
K(t, r)f(t)dt.

is strictly positive definite. Buhmann’s construction then corresponds to choosing f(t) =
tα(1− tδ)ρ+ and K(t, r) = (1− r2/t)λ+.
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Figure 2.2: Graph of Buhmann’s function of example 2.4.

Figure 2.3: Graph of Buhmann’s function of example 2.5.
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(2) Multiply monotone functions are covered by this general theorem by taking K(t, r) =
(1−rt)k−1

+ and f an arbitrary positive function in L1 so that dµ(t) = f(t)dt in Williamson’s
characterization. Also, functions that are strictly positive definite and radial in Rs for all
s (or equivalently completely monotone functions) are covered by choosing K(t, r) = e−rt.

The approximation of a function U can be expended in serie’s by compactly supported
radial basis function φ as follow

U(x) '
N∑
i=1

αiφ

(
||x− xi||

σ

)
, x ∈ Rs, (2.3)

where xi, i = 1, . . . , N is a finite set of distinct points (centers) in Rs, and σ is a positive integer.
The coefficients αi are calculated by using some collocation points.

2.1.1 Native space

There is a natural space in which consider the RBF approximation. In fact, for each positive
definite and symmetric kernel Φ and for each region Ω ⊂ Rs it is possible to define an associated
real Hilbert space, the so-called Native space NΦ(Ω).

Hilbert space is a space of functions real or complex, which is complete metric space w.r.t.
the distance induced by the inner product.

Here the inner product between two functions f and g is thought as (f, g) =
∫ b

a
f(x)g(x)dx ,

in the real case or (f, g) =
∫ b

a
f(x)g(x)dx , in the complex case, which has many of the familiar

properties of the Euclidean (discrete) dot product. Examples of Hilbert spaces are: any finite
dimensional inner product space (for example Rs; Cs equipped with the dot product of two
vectors), the Lebesgue spaces Lp, Sobolev spaces.

Definition 2.3. [84](p.134) Let H be a real Hilbert space of functions f : Ω −→ R, with inner
product (., .)H. A function Φ : Ω× Ω −→ R is called a reproducing kernel for H if

1- Φ(., y) ∈ H ∀y ∈ Ω,

2- f(y) = (f,Φ(., y))H ∀f ∈ H, and ∀y ∈ Ω. (reproducing property)

The reproducing kernel of a Hilbert space is uniquely determined. Suppose there are two
reproducing kernels Φ1 and Φ2. Then property (2) gives (f,Φ1(., y) − Φ2(., y))H = 0 for all
f ∈ H and all y ∈ Ω. Setting f = φ1(., y)− Φ2(., y) for a fixed y shows the uniqueness.

Theorem 2.4. [84](p.135) Suppose that H is a reproducing-kernel Hilbert function space with
reproducing kernel Φ : Ω× Ω→ R. Then Φ is positive semi-definite. Moreover, Φ is positive
definite if and only if the point evaluation functionals are linearly independent in H∗.

From the first property of definition 2.3 we know that H contains all functions of the form

f =
N∑
j=1

αjΦ(., xj) if xj ∈ Ω. Furthermore, we know that

‖ f ‖2
H= (f, f) =

N∑
j=1

N∑
i=1

αjαi(Φ(., xj),Φ(., xi))H =
N∑
j=1

N∑
i=1

αjαiΦ(xj, xi).
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We will use this feature to construct a reproducing-kernel Hilbert space for a given positive
definite kernel.

Hence, assume that Φ : Ω × Ω −→ R is a symmetric positive definite kernel. Define the
R-linear space HΦ(Ω) := span {Φ(., y) : y ∈ Ω}, and equip it with the bilinear form(

N∑
j=1

αjΦ(., xj),
M∑
i=1

αiΦ(., yi)
)

Φ
:=

N∑
j=1

M∑
i=1

αjαiΦ(xj, yi).

Theorem 2.5. [84](p.137) If Φ : Ω×Ω→ R is a symmetric positive definite kernel then (., .)Φ
defines an inner product on HΦ(Ω). Furthermore, HΦ(Ω) is a pre-Hilbert space with reproducing
kernel Φ.

Lemma 2.1. [84](p.138) The linear mapping R : HΦ(Ω)→ C(Ω), R(f)(x) := (f,Φ(., x))Φ is
injective.

Definition 2.4. [84](p.138) The native Hilbert function space corresponding to the symmetric
positive definite kernel Φ : Ω× Ω→ R is defined by

NΦ(Ω) := R(HΦ(Ω)).

It carries the inner product
(f, g)NΦ(Ω) := (R−1f,R−1g)Φ.

Indeed, the space so defined is a Hilbert space of continuous functions on Ω with reproducing
kernel Φ. Since Φ(., x) is an element of HΦ(Ω) for x ∈ Ω it is unchanged under R and hence

f(x) = (R−1f,Φ(., x))Φ = (f, φ(., x))NΦ(Ω),

for all f ∈ NΦ(Ω) and x ∈ Ω.

Theorem 2.6. [84](p.138) Suppose that Φ : Ω×Ω→ R is a symmetric positive definite kernel
then its associated native space NΦ(Ω), is a Hilbert function space with reproducing kernel Φ.

The Native space NΦ(Ω) for the kernel Φ is the completion of HΦ(Ω) with respect to the
‖ . ‖Φ-norm, so that ‖ f ‖Φ=‖ f ‖NΦ(Ω), ∀f ∈ HΦ(Ω).

2.1.2 Error bounds and stability estimates

We recall that, for a subset Ω ⊂ Rs, a discrete data-sites set X ⊂ Ω and a radial, positive
definite kernel Φ ∈ C(Ω×Ω) the RBF interpolant PX [f ] to a function f ∈ NΦ(Ω) is computed
as

PX [f ](x) =
N∑
j=1

cjΦ(x, xj), PX [f ](xi) = f(xi) ∀x ∈ Ω, xi ∈ X.

The question is how well PX [f ] can approximate the sampled function f , i.e. if PX [f ] converges
to f in some given norm when the data-sites X becomes dense in Ω.

There are two quantities used to relate the set X to these requirements: the fill distance

hX,Ω = max
x∈Ω

min
xi∈X

‖ x− xi ‖2,
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and the separation distance
qX = 1

2 min
xi,xj∈X

‖ xi − xj ‖2 .

Clearly the shape parameter ε have also an important role, since it determines the radial
amplitude of the kernel. The first estimate comes directly from the definition of the pointwise-
error functional. Let εx be defined for all x ∈ Ω as

εx : NΦ(Ω)→ R, εx(f) = f(x)− PX [f ](x),

and let PΦ,X denote its norm, the so-called Power function. Then the basic estimate for the
convergence is the following

Theorem 2.7. [29](p.171) Let Ω ⊂ Rs, let Φ ∈ C(Ω× Ω) be a strictly positive definite kernel,
let X ⊂ Ω be a discrete set of data sites and let f ∈ NΦ(Ω), and denote with PX [f ] its interpolant
on X. Then

| f(x)− PX [f ](x) |6 PΦ,X ‖ f ‖NΦ(Ω), ∀x ∈ Ω.

Moreover, the Power function can be exactly computed introducing a Lagrange basis for
NΦ(X).

Definition 2.5. [84](p.28) A set Ω ⊂ Rs is said to satisfy an interior cone condition if there
exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit vector ξ(x)
exists such that the cone

C(x, ξ(x), θ, r) :=
{
x+ λy : y ∈ Rs, ‖ y ‖2= 1, yT ξ(x) ≥ cosθ, λ ∈ [0, r]

}
.

is contained in Ω.

Theorem 2.8. [29](p.121) Let Ω ⊂ Rs be a bounded set that satisfies an interior cone condition
and let Φ ∈ C2k(Ω× Ω) be a symmetric positive definite. Then there exist positive constants h0
and C independent of x, f and Φ, such that for all X ⊂ Ω, for all hX,Ω 6 h0, for all f ∈ NΦ(Ω)
and for all x ∈ Ω

| f(x)− PX [f ](x) |6 ChkX,Ω

√
CΦ(x) ‖ f ‖NΦ(Ω),

where CΦ(x) is a given as follow

CΦ(x) = max
|β|=2k

max
ω,z∈Ω∪B(x,c2hX,Ω)

∩Dβ
2 Φ(ω, z) | .

with B(x, c2hX,Ω) denoting the ball of radius c2hX,Ω centered at x.

From the previous estimate we can expect that the approximation error goes to zero as
hX,Ω −→ 0. When the data-sites set X becomes too big the interpolation can be instable. In
fact, it is possible to prove that the condition number of the kernel matrix A grows if the
separation distance qX decreases, and this, together with a bad choice of the shape parameter
ε, can produce very instable approximants. Various approaches are used to avoid this situation.
A lot of efforts are made on the study of well-distributed data-sites set, for examples sets X
such that the uniformity

ρX,Ω = qX
hX,Ω

,

is maximized. Another common way to try to avoid instability, and more related on the linear
algebra part of the method, is to choose a shape parameter ε such that the kernel matrix is not
ill-conditioned.
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2.1.3 Estimates for popular basis functions

we assume the general finite-dimensional subspace to be πm−1(Rs). In the following, the region
Ω ⊆ Rd is always assumed to be open. But this is only necessary for estimates on the derivatives.
In the non-derivative case Ω has only to satisfy an interior cone condition. Moreover, if Ω is
not open, the estimates on the derivatives hold in every interior point.

Theorem 2.9. [84](p.183) Let Φ be one of the gaussians or the (inverse) multiquadrics.
Suppose that Φ is conditionally positive definite of order m. Suppose further that Ω ⊆ Rs is
bounded and satisfies an interior cone condition. Denote the radial basis function interpolant
to f ∈ NΦ(Ω) based on Φ and X = {x1, . . . , xN} by PX [f ]. Fix α ∈ Ns

0. For every l ∈ N with
l ≥ max {| α |,m− 1} there exist constants h0(l), Cl > 0 such that

| Dαf(x)−DαPX [f ](x) |≤ Clh
l−|α|
X,Ω | f |Nφ(Ω) .

for all x ∈ Ω, provided that hX,Ω ≤ h0(l).

Theorem 2.10. [84](p.184) Suppose that Ω ⊆ Rs is bounded and satisfies an interior cone
condition. Let Φ(x) = (−1)dβ/2e ‖ x ‖β2 , β > 0, β /∈ 2N. Denote the interpolant of a function
f ∈ NΦ(Ω) based on this basis function and the set of centers X = {x1, . . . , xN} ⊆ Ω by PX [f ].
Then there exist constants h0, C > 0 such that

| Dαf(x)−DαPX [f ](x) |≤ Ch
β/2−|α|
X,Ω | f |NΦ(Ω),

for all x ∈ Ω and all α with | α |≤ (dβe − 1)− 2, provided that hX,Ω ≤ h0.

Theorem 2.11. [84](p.184)
Let Φs,k be a compactly supported radial basis functions . Suppose that Ω ⊆ Rs is bounded and

satisfies an interior cone condition. Denote the radial basis function interpolant of f ∈ NΦs,k(Ω)
based on Φs,k and X = {x1, . . . , xN} ⊆ Ω by PX [f ]. Then there exist constants C, h0 > 0 such
that

| Dαf(x)−DαPX [f ](x) |≤ Ch
k+1/2−|α|
X,Ω ‖ f ‖NΦ(Ω)

for every α ∈ Ns
0 with | α |≤ k and every x ∈ Ω, provided that hX,Ω ≤ h0.

2.2 Application of RBFs and CSRBFs for solving inte-
gral equations

Over the years, integral equations have motivated a large amount of research works. Integral
equations have been the best way to formulate physics, mechanics, fluid, elastisity, radiation
science and other fields problems. Moreover the numerical integral gives smaller relative errors
than the numerical differentiation. Currently different numerical methods for finiding an
approximate solution of integral equations were proposed, such as, collocation method [8],
Wavelet-Galerkin sheme for solving Volterra integral equations of the second kind [70]. A lot
of researchers used multiquadric, gaussian and inverse multiquadric radial basis functions for
solving integral equations [45, 67].
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2.2.1 CSRBF for solving nonlinear functional Volterra-Fredholm in-
tegral equations

The aim is to give the approximate solution of Volterra-Fredholm integral equations defined as

A(t)U(t) +B(t)U(h(t)) + λ1

∫ 1

0
W1(s, t, U(h(s)))ds+ λ2

∫ h(t)

0
W2(s, t, U(s))ds = f(t), (2.4)

where 0 ≤ t ≤ 1, f(t), h(t) are known functions, and λ1, λ2 are real values, with

W1(s, t, U(h(s))) = k1(s, t) [U(h(s))]r1 ,

W2(s, t, U(s)) = k2(s, t) [U(s)]r2 ,
such that r1, r2 are positive integers.

For our experiment we are going to use Wendland’s and Wu’s compactly supported radial
basis functions φσ4,2 and φσ2,1 respectively.

To approximate the function U(t) of equation (2.4), we apply RBF interpolation in distinct
grids from a definite domain. To this purpose, the function U(t) is approximated by a linear
combination of a functions φj as follows

U(t) ≈
N∑
j=1

cjφ

(
‖ t− tj ‖

σ

)
, (2.5)

where φj is Wu or Wendland’s compactly supported radial basis functions φσ2,1 and φσ4,2
respectively. According to type of the target function which is desired to approximate, and
similarly it is true for

U(h(t)) ≈
N∑
j=1

cjφ

(
‖ h(t)− tj ‖

σ

)
. (2.6)

The integrals have been approximated using the following integration formula

λ1

∫ 1

0
W1(s, t, U(h(s)))ds = λ1

N∑
k=1

wkW1

(
sk, t,

N∑
j=1

cjφj

(
h(sk)
σ

))
, (2.7)

where, sk and wk are shifted Legendre-Gauss-Lobatto nodes and weights .
By replacing equation (2.6) and (2.7) in equation (2.4), and by collocating at points t = ti,

such that
ti = 1

2 −
1
2cos

(
(i− 1)Π

N

)
, i = 1 . . . N,

we obtain

A(ti)
N∑
j=1

cjφ

(
‖ ti − tj ‖

σ

)
+B(ti)

N∑
j=1

cjφ

(
‖ h(ti)− tj ‖

σ

)

+ λ1

N∑
k=1

wkW1

(
sk, ti,

N∑
j=1

cjφ

(
‖ h(sk)− sj ‖

σ

))

+ λ2

∫ h(ti)

0
W2

(
s, ti,

N∑
j=1

cjφ

(
‖ s− sj ‖

σ

))
ds = f(ti),
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the interval [0, h(ti)] has been transformed to [0, 1] , by taking the changement µ = s
h(ti) ,

then, we get

A(ti)
n∑
j=1

cjϕ

(
‖ ti − tj ‖

σ

)
+B(ti)

n∑
j=1

cjϕ

(
‖ h(ti)− tj ‖

σ

)

+ λ1

n∑
k=1

wkW1

(
sk, ti,

n∑
j=1

cjϕ

(
‖ h(sk)− sj ‖

σ

))

+ λ2.h(ti)
n∑
p=1

wpW2

(
h(ti).µp, ti,

n∑
j=1

cjϕ

(
‖ (h(ti).µp)− sj ‖

σ

))
= f(ti).

This is a nonlinear system of equations, that can be solved via Newton’s iteration method to
obtain the unknwon vector C, such that C = (c1, c2, c3, ..., cN)T .

Let UN(t) be the approximate solution of U(t), in order to test the efficiency and the
convergence accuracy of the proposed method, we are going to calculate the absolute error at
some different points using the formula

e(t) = |UN(t)− U(t)|, 0 ≤ t ≤ 1, (2.8)

for N = 7, 14, and different values of the parameter σ.
Example 2.6. Let given the following functional Volterra-Fredholm integral equation

U(t) + U(h(t)) = f(t) + λ1

∫ h(t)

0
(t− s

2)U(s)ds+ λ2

∫ 1

0
tsU(h(s))ds, (2.9)

such that h(t) = t
2 , λ1 = λ2 = 1, and f(t) = −1

112t+ 33
16t

5 − 11
2688t

7.
The exact solution is U(t) = 2t5.
The numerical results are sitting in tables 2.1- 2.2 for Wendland’s CSRBF φ4,2, and in tables

2.3-2.4 for Wu’s CSRBF φ2,1.
Example 2.7. Consider the following nonlinear Fredholm integral equation,

U(t) = e−3t − t
(
− 101

729e
−9 + 2

729

)
+
∫ 1

0
ts2U3(s)ds,

where λ1 = 1, λ2 = 0. The exact solution is y(t) = e−3t .
The numerical results are presented in tables 2.5- 2.6 for Wendland’s CSRBF φ4,2, and in

tables 2.7-2.8 for Wu’s CSRBF φ2,1.
Example 2.8. Let given the following Volterra integral equation

U(t) = etsin(t) + λ2

∫ h(t)

0
cos(t)(t− s)U(s)ds, (2.10)

where h(t) = t, λ1 = 0, λ2 = 2. The exact solution is U(t) = tet.
The numerical results are given in tables 2.9- 2.10 for Wendland’s CSRBF φ4,2, and in tables

2.11-2.12 for Wu’s CSRBF φ2,1.
Remark 2.3. From the numerical tests that we were able to establish, we conclude that:

• Both Wu and Wendland’s CSRBFs method give reasonable accuracy.

• The accuracy of CSRBFs method depends on the choice of the value of parameter σ, and
Number of data sets N .

• Wendland’s CSRBF method gives better results compared to the use of Wu’s CSRBFs.
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Points σ = 12 σ = 20
xi

0 1.3336E − 7 9.7799E − 6
0.01 2.0450E − 5 3.0494E − 5
0.02 4.4889E − 5 5.3677E − 5
0.03 7.2258E − 5 7.8765E − 5
0.04 1.0158E − 4 1.0516E − 4
0.05 1.3178E − 4 1.3216E − 4
0.06 1.6171E − 4 1.5901E − 4
0.07 1.9024E − 4 1.8496E − 4
0.08 2.1632E − 4 2.0932E − 4
0.09 2.3918E − 4 2.3157E − 4

Points σ = 12 σ = 20
xi

0.1 2.5834E − 4 2.5149E − 4
0.2 5.6826E − 4 6.0851E − 4
0.3 2.5188E − 3 2.3858E − 3
0.4 1.6431E − 4 2.8639E − 4
0.5 9.5399E − 3 8.2185E − 3
0.6 2.4712E − 3 1.9396E − 3
0.7 1.6906E − 2 1.5158E − 2
0.8 6.5934E − 3 6.2441E − 3
0.9 2.5450E − 3 2.8301E − 3
1 1.5437E − 2 1.4351E − 2

Table 2.1: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.9), for
N = 7.

Points σ = 12 σ = 20
xi

0 1.8625E − 5 3.7760E − 5
0.01 1.5435E − 5 1.4017E − 5
0.02 2.2983E − 5 1.1013E − 5
0.03 4.0231E − 5 2.7886E − 5
0.04 6.5661E − 5 6.2923E − 5
0.05 9.6718E − 5 1.1131E − 4
0.06 1.2931E − 4 1.6438E − 4
0.07 1.5826E − 4 2.0996E − 4
0.08 1.7841E − 4 2.3588E − 4
0.09 1.8625E − 4 2.3269E − 4

Points σ = 12 σ = 20
xi

0.1 1.7988E − 4 1.9724E − 4
0.2 3.8252E − 4 4.4853E − 4
0.3 6.3846E − 4 7.0832E − 4
0.4 4.6383E − 4 4.8197E − 4
0.5 6.8489E − 4 3.6963E − 4
0.6 2.2853E − 3 2.0447E − 3
0.7 1.7197E − 3 1.2318E − 3
0.8 3.8206E − 3 3.5673E − 3
0.9 4.1741E − 3 4.0646E − 3
1 3.1012E − 3 3.4307E − 3

Table 2.2: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.9), for
N = 14.

Points σ = 18 σ = 25
xi

0 1.2144E − 8 1.9684E − 7
0.01 2.2766E − 5 1.6849E − 5
0.02 3.8376E − 5 3.0117E − 5
0.03 4.6940E − 5 3.9676E − 5
0.04 4.8609E − 5 4.5643E − 5
0.05 4.3910E − 5 4.8355E − 5
0.06 3.4797E − 5 4.8877E − 5
0.07 2.3698E − 5 4.8567E − 5
0.08 1.3187E − 5 4.8923E − 5
0.09 6.0044E − 6 5.1616E − 5

Points σ = 18 σ = 25
xi

0.1 5.0844E − 6 5.8505E − 5
0.2 2.7116E − 4 1.7570E − 4
0.3 4.0221E − 3 4.1391E − 3
0.4 3.3376E − 3 3.3727E − 3
0.5 5.1256E − 2 5.0686E − 2
0.6 1.9943E − 2 1.9774E − 2
0.7 1.1169E − 1 1.0999E − 1
0.8 2.6012E − 2 2.5776E − 2
0.9 3.2195E − 2 3.1439E − 2
1 4.9237E − 2 4.8795E − 2

Table 2.3: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.9), for N = 7.
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Points σ = 18 σ = 25
xi

0 1.1709E − 6 1.9811E − 6
0.01 5.0099E − 6 5.4553E − 6
0.02 1.5824E − 5 1.6499E − 5
0.03 2.7610E − 5 2.6792E − 5
0.04 3.0697E − 5 2.9301E − 5
0.05 1.5942E − 5 1.7393E − 5
0.06 1.3436E − 5 5.9272E − 6
0.07 4.3234E − 5 2.9092E − 5
0.08 5.9007E − 5 4.0378E − 5
0.09 4.6476E − 5 2.8225E − 5

Points σ = 18 σ = 25
xi

0.1 6.0242E − 6 1.6766E − 5
0.2 2.4493E − 5 3.9787E − 5
0.3 1.8029E − 4 2.1595E − 4
0.4 1.1989E − 3 1.1749E − 3
0.5 8.1861E − 4 7.4995E − 4
0.6 2.4034E − 2 2.3674E − 2
0.7 6.6337E − 2 6.5362E − 2
0.8 5.5429E − 2 5.4661E − 2
0.9 3.5231E − 2 3.4795E − 2
1 4.4090E − 4 5.4714E − 4

Table 2.4: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.9), for N = 14.

Points σ = 6 σ = 8
xi

0 3.4853E − 9 4.7196E − 9
0.01 4.2460E − 4 3.5598E − 4
0.02 5.7369E − 4 4.7767E − 4
0.03 4.9506E − 4 4.0634E − 4
0.04 2.3606E − 4 1.8267E − 4
0.05 1.5639E − 4 1.5325E − 4
0.06 6.3598E − 4 5.6205E − 4
0.07 1.1578E − 3 1.0057E − 3
0.08 1.6791E − 3 1.4483E − 3
0.09 2.1608E − 3 1.8570E − 3

Points σ = 6 σ = 8
xi

0.1 2.5678E − 3 2.2024E − 3
0.2 3.8020E − 4 2.2971E − 4
0.3 4.5009E − 3 3.6297E − 3
0.4 1.8742E − 3 1.7448E − 4
0.5 4.5845E − 3 4.0421E − 3
0.6 1.8849E − 3 1.8404E − 3
0.7 1.4575E − 3 1.5568E − 3
0.8 2.1769E − 3 2.1820E − 3
0.9 2.4101E − 3 2.4064E − 3
1 2.7264E − 3 2.7264E − 3

Table 2.5: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.10), for
N = 7.

Points σ = 6 σ = 8
xi

0 5.2946E − 8 1.2213E − 7
0.01 1.9364E − 5 2.0789E − 5
0.02 8.7933E − 5 8.2951E − 5
0.03 1.5399E − 4 1.4281E − 4
0.04 1.7522E − 4 1.6492E − 4
0.05 1.3136E − 4 1.3240E − 4
0.06 3.5017E − 5 5.5911E − 5
0.07 7.1606E − 5 2.9133E − 5
0.08 1.3322E − 4 7.6392E − 5
0.09 9.9559E − 5 4.3751E − 5

Points σ = 6 σ = 8
xi

0.1 5.6600E − 5 9.1566E − 5
0.2 5.9349E − 5 3.7596E − 5
0.3 1.7179E − 3 1.5725E − 3
0.4 6.6511E − 4 7.3367E − 4
0.5 1.3632E − 3 1.3637E − 3
0.6 1.7179E − 3 1.7039E − 3
0.7 1.8651E − 3 1.8707E − 3
0.8 2.1971E − 3 2.1953E − 3
0.9 2.4589E − 3 2.4584E − 3
1 2.7264E − 3 2.7259E − 3

Table 2.6: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.10), for
N = 14.
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Points σ = 6 σ = 10
xi

0 6.2578E − 10 2.9367E − 9
0.01 2.0489E − 3 1.8714E − 3
0.02 3.0189E − 3 2.7538E − 3
0.03 2.9354E − 3 2.6730E − 3
0.04 1.8232E − 3 1.6539E − 3
0.05 2.5485E − 3 2.4440E − 4
0.06 3.0694E − 3 2.8123E − 3
0.07 6.3469E − 3 5.8008E − 3
0.08 9.8146E − 3 8.9616E − 3
0.09 1.3200E − 2 1.2047E − 2

Points σ = 6 σ = 10
xi

0.1 1.6233E − 2 1.4810E − 2
0.2 5.9512E − 3 5.3713E − 3
0.3 3.2131E − 2 2.9206E − 2
0.4 5.3180E − 3 4.9519E − 3
0.5 1.5465E − 2 1.4419E − 2
0.6 2.5581E − 3 2.5413E − 3
0.7 1.9852E − 4 5.2504E − 4
0.8 1.9859E − 3 1.9015E − 3
0.9 2.8439E − 3 3.0586E − 3
1 2.7264E − 3 2.7263E − 3

Table 2.7: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.10), for N = 7.

Points σ = 6 σ = 10
xi

0 1.8537E − 9 5.0199E − 8
0.01 1.1187E − 5 9.9801E − 5
0.02 8.0814E − 5 7.4217E − 4
0.03 1.9631E − 3 1.7981E − 3
0.04 2.0847E − 3 1.9113E − 3
0.05 2.4065E − 6 9.9642E − 6
0.06 4.0684E − 3 3.6967E − 3
0.07 8.4237E − 3 7.6672E − 3
0.08 1.1418E − 2 1.0396E − 2
0.09 1.1380E − 2 1.0359E − 2

Points σ = 6 σ = 10
xi

0.1 6.9198E − 3 6.2882E − 3
0.2 1.5871E − 2 1.4429E − 2
0.3 2.0981E − 2 1.9209E − 2
0.4 6.2034E − 3 5.5557E − 3
0.5 1.3632E − 3 1.3632E − 3
0.6 1.9493E − 3 1.8113E − 3
0.7 2.2107E − 3 2.4891E − 3
0.8 1.8817E − 3 1.6598E − 3
0.9 2.3218E − 3 2.2246E − 3
1 2.7263E − 3 2.7264E − 3

Table 2.8: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.10), for N = 14.

Points σ = 6 σ = 9
xi

0 9.94966E − 10 4.7917E − 9
0.01 3.4569E − 5 3.3932E − 5
0.02 4.5864E − 5 4.4984E − 5
0.03 3.5040E − 5 3.4244E − 5
0.04 3.2911E − 6 2.8273E − 6
0.05 4.8114E − 5 4.8119E − 5
0.06 1.1799E − 4 1.1743E − 4
0.07 2.0505E − 4 2.0400E − 4
0.08 3.0823E − 4 3.0685E − 4
0.09 4.2667E − 4 4.2520E − 4

Points σ = 6 σ = 9
xi

0.1 5.5987E − 4 5.5858E − 4
0.2 2.9718E − 3 2.9672E − 3
0.3 9.8215E − 3 9.6936E − 3
0.4 2.3542E − 2 2.3600E − 2
0.5 4.3521E − 2 4.4287E − 2
0.6 6.9306E − 2 6.9504E − 2
0.7 9.7314E − 2 9.6099E − 2
0.8 1.1796E − 1 1.1777E − 1
0.9 1.1941E − 1 1.1994E − 1
1 8.2429E − 2 8.2438E − 2

Table 2.9: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.11), for
N = 7.
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Points σ = 6 σ = 9
xi

0 6.1491E − 10 3.2441E − 8
0.01 2.5618E − 7 1.1894E − 7
0.02 4.0614E − 6 4.1335E − 6
0.03 1.1476E − 5 1.1452E − 5
0.04 2.1032E − 5 2.1059E − 5
0.05 3.3088E − 5 3.3406E − 5
0.06 4.9999E − 5 5.0808E − 5
0.07 7.5929E − 5 7.7263E − 5
0.08 1.1584E − 4 1.1752E − 4
0.09 1.7440E − 4 1.7602E − 4

Points σ = 6 σ = 9
xi

0.1 2.5486E − 4 2.5593E − 4
0.2 2.0939E − 3 2.0963E − 3
0.3 7.0567E − 3 7.0488E − 3
0.4 1.5711E − 2 1.5726E − 2
0.5 2.8172E − 2 2.8172E − 2
0.6 4.2456E − 2 4.2375E − 2
0.7 5.4086E − 2 5.4257E − 2
0.8 5.5723E − 2 5.5609E − 2
0.9 3.4914E − 2 3.4872E − 2
1 2.5701E − 2 2.5770E − 2

Table 2.10: Computed errors using Wendland’s CSRBF φ4,2 method for Example (2.11), for
N = 14.

Points σ = 2 σ = 4
xi

0 1.0811E − 11 2.5678E − 10
0.01 4.7875E − 4 1.0298E − 4
0.02 7.1202E − 4 1.6154E − 4
0.03 6.9750E − 4 1.7233E − 4
0.04 4.3317E − 4 1.3192E − 4
0.05 7.2809E − 5 4.0360E − 5
0.06 7.6924E − 4 8.7248E − 5
0.07 1.5932E − 3 2.3184E − 4
0.08 2.4815E − 3 3.7426E − 4
0.09 3.3709E − 3 4.9567E − 4

Points σ = 2 σ = 4
xi

0.1 4.1975E − 3 5.7713E − 4
0.2 1.6402E − 3 3.4429E − 3
0.3 5.1166E − 3 1.3332E − 2
0.4 2.2872E − 2 2.2566E − 2
0.5 1.8456E − 2 3.0641E − 2
0.6 6.0025E − 2 6.5357E − 2
0.7 1.6223E − 1 1.2555E − 1
0.8 1.3016E − 1 1.2342E − 1
0.9 8.7025E − 2 1.0572E − 1
1 8.2526E − 2 8.2704E − 2

Table 2.11: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.11), for N = 7.

Points σ = 2 σ = 4
xi

0 9.2867E − 12 2.1312E − 9
0.01 3.0763E − 5 6.2139E − 6
0.02 1.7134E − 4 3.1133E − 5
0.03 4.3068E − 4 7.6665E − 5
0.04 4.6247E − 4 7.1383E − 5
0.05 2.3585E − 5 4.0511E − 5
0.06 8.9593E − 4 2.4760E − 4
0.07 1.8501E − 3 4.7853E − 4
0.08 2.4862E − 3 6.5979E − 4
0.09 2.4262E − 3 7.1779E − 4

Points σ = 2 σ = 4
xi

0.1 1.3562E − 3 5.9172E − 4
0.2 1.5554E − 3 2.8629E − 3
0.3 1.1664E − 2 6.1490E − 3
0.4 1.3268E − 2 1.5722E − 2
0.5 2.8152E − 2 2.8156E − 2
0.6 5.5959E − 2 4.8137E − 2
0.7 1.7264E − 2 3.8403E − 2
0.8 8.5592E − 2 6.8463E − 2
0.9 4.8052E − 2 4.0519E − 2
1 2.5701E − 2 2.5703E − 2

Table 2.12: Computed errors using Wu’s CSRBF φ2,1 method for Example (2.11), for N = 14.
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2.2.2 MQ-RBF for solving nonlinear Fredholm integral equations

The aim is to give the approximate solution of nonlinear Fredholm integral equation defined as

A(t)U(t) +B(t)U(h(t)) + λ
∫ T

0
k(s, t) [U(h(s))]r ds = f(t), (2.11)

where f(t), h(t), A(t), B(t), and k(s, t) are known functions, λ, r are real values. To approximate
the function U(t), we apply RBF interpolation in distinct grids from a definite domain. To
this purpose, a linear combination of functions φj is replaced in U(t) as follows

U(t) ≈ UN(t) =
N∑
j=1

cjφ
(
‖ t− tj ‖

)
, (2.12)

where φj is the multiquadric radial basis function defined in previous sections.
According to type of the target function which is desired to approximate, and similarly it is

true for
U(h(t)) ≈

N∑
j=1

cjφ
(
‖ h(t)− tj ‖

)
. (2.13)

The integral has been approximated using the following integration formula∫ 1

0
k(s, t) [U(h(s))]r ds =

N∑
k=1

wkk(sk, t)
[

N∑
j=0

cjφ
(
‖ h(sk)− tj ‖

)]r
, (2.14)

where, sk, wk are shifted Legendre-Gauss-Lobatto nodes and weights .
By replacing equation (2.14) in equation (2.11), and by collocating at points t = ti, we

obtain

A(ti)
N∑
j=0

cjφ
(
‖ ti−tj ‖

)
+B(ti)

N∑
j=1

cjφ
(
‖ h(ti)−tj ‖

)
+λ

∫ T

0
k(s, ti)

[
N∑
j=1

cjφ
(
‖ h(s)−tj ‖

)]r
ds = f(ti).

The interval [0, T ] has been transformed to [0, 1] , by taking the changement µ = s
T
.

A(ti)
N∑
j=1

cjφ
(
‖ ti − tj ‖

)
+B(ti)

N∑
j=1

cjφ
(
‖ h(ti)− tj ‖

)
(2.15)

+λ.T
N∑
k=1

wkk(T.µk, ti)
[

N∑
j=0

cjφ
(
‖ h(T.µk)− tj ‖

)]r
= f(ti).

From equation (2.15), we get a nonlinear system which can be solved via iteration methods to
get the unknwon vector C, such that C = (c1, c2, ..., cN)T .
Finaly, the meshless discrete solution using RBFs is given by

UN(t) =
N∑
j=1

cjφj(t).

Let UN (t) be the approximate solution of U(t), we are going to calculate the absolute errors at
some different points using the formula (2.8), for different shape parameters obtained using
Cross Validation method.
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Example 2.9. Consider the following linear Fredholm integral equation of the second kind

U(t) + A(t)U(h(t)) +
∫ 1

0
k(s, t)U(s)ds = f(t), (2.16)

where A(t) = t, k(s, t) = s− t, h(t) = t, f(t) = t3 + t2 + 1
3t−

1
4 .

The exact solution is U(t) = t2. The numerical results are sitting in table 2.13.
Example 2.10. Consider the following nonlinear Fredholm integral equation

U(t) = e−3t − t
(
− 101

729e
−9 + 2

729

)
+
∫ 1

0
ts2U3(s)ds.

The exact solution is given by U(t) = e−3t. The numerical results are given in table 2.14.

Example 2.11. Let given the following linear Fredholm integral equation of the second kind

U(t) + A(t)U(h(t)) +
∫ 1.1

0
k(t, s)U(s)ds = f(t), (2.17)

where A(t) = t, k(t, s) = t− s, h(t) = t2

2 , f(t) = et + tet
2/2 + (t− 0.1)e1.1 − t− 1.

The exact solution is given by U(t) = et. The numerical results are summarized in table 2.15 .

xi ε = 0.9 ε = 2 xi ε = 0.9 ε = 2
0 1.8625E − 13 2.7081E − 8 0.1 2.1737E − 5 7.8261E − 7

0.01 9.9178E − 5 4.2692E − 6 0.2 3.03188E − 6 9.4842E − 8
0.02 1.4643E − 4 5.9981E − 6 0.3 5.2506E − 5 1.28372E − 6
0.03 1.5311E − 4 6.0481E − 6 0.4 4.5557E − 6 1.1128E − 7
0.04 1.2944E − 4 4.9220E − 6 0.5 7.2784E − 5 1.4376E − 6
0.05 8.4499E − 5 3.0381E − 6 0.6 5.3562E − 6 6.3657E − 8
0.06 2.6270E − 5 7.4346E − 7 0.7 7.2076E − 5 1.4008E − 6
0.07 3.8360E − 5 1.6838E − 6 0.8 4.7951E − 6 1.1831E − 7
0.08 1.0356E − 4 4.0235E − 6 0.9 3.8922E − 5 8.4941E − 7
0.09 1.6451E − 4 6.1107E − 6 1 3.2885E − 10 7.5692E − 8

Table 2.13: Computed errors using multiquadric RBF method for Example (2.9), with ε = 0.9
(obtained using LOOCV strategy) and ε = 2, for N = 7.
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xi ε = 1 ε = 1.5 xi ε = 1 ε = 1.5
0 2.6102E − 11 4.1822E − 8 0.1 4.4348E − 4 3.2048E − 4

0.01 6.6320E − 5 1.9665E − 6 0.2 5.4306E − 4 5.2908E − 4
0.02 8.1213E − 5 1.2495E − 5 0.3 4.6960E − 4 6.7104E − 4
0.03 5.7655E − 5 3.8937E − 5 0.4 9.3627E − 4 9.2246E − 4
0.04 6.8161E − 6 7.3656E − 5 0.5 1.2605E − 3 1.0909E − 3
0.05 6.1827E − 5 1.1358E − 4 0.6 1.0655E − 3 1.0554E − 3
0.06 1.4037E − 4 1.5621E − 4 0.7 8.3439E − 4 9.3402E − 4
0.07 2.2235E − 4 1.9957E − 4 0.8 8.0252E − 4 7.9872E − 4
0.08 3.0263E − 4 2.4210E − 4 0.9 5.2229E − 4 5.0084E − 4
0.09 3.7730E − 4 3.8267E − 4 1 2.0448E − 5 2.0530E − 5

Table 2.14: Computed errors using multiquadric RBF method for Example (2.10), with ε = 1
(obtained using LOOCV strategy) and ε = 1.5, for N = 7.

xi ε = 1.8 ε = 2.5 xi ε = 1.8 ε = 2.5
0 5.8759E − 7 5.7587E − 5 0.1 1.7988E − 4 1.9724E − 4

0.01 3.7887E − 5 8.8951E − 4 0.2 3.8252E − 4 4.5391E − 4
0.02 5.1358E − 5 7.7452E − 4 0.3 9.9853E − 4 7.0206E − 4
0.03 4.8974E − 4 7.1598E − 3 0.4 4.1255E − 3 4.8743E − 3
0.04 6.5661E − 3 7.9297E − 3 0.5 3.1656E − 3 7.1402E − 4
0.05 9.6718E − 4 9.5684E − 4 0.6 5.2898E − 3 2.0592E − 3
0.06 8.7342E − 4 5.8972E − 4 0.7 7.9801E − 3 5.0089E − 3
0.07 7.1287E − 4 3.9465E − 4 0.8 4.2698E − 3 3.5351E − 3
0.08 2.5603E − 4 2.1283E − 4 0.9 8.9689E − 3 6.9894E − 3
0.09 6.5601E − 5 9.9872E − 5 1 6.1470E − 4 7.9758E − 4

Table 2.15: Computed errors using multiquadric RBF method for Example (2.11), with ε = 1.8
(obtained using LOOCV strategy) and ε = 2.5, for N = 7.
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Remark 2.4. From the numerical tests that we were able to establish, we remark that:

• Multiquadric RBFs method provide good accuracy for solving linear and nonlinear
Fredholm integral equations.

• LOOCV strategy is a good strategy for choosing optimal shape parameter ε.

2.2.3 CSRBFs and composite RBFs method for solving integral
equations

Global interpolation methods based on radial basis functions have been found to be efficient
for surface fitting of scattered data sampled at n-dimensional scattered nodes. However, such
interpolation leads to the solution of ill-conditioned system of equations [?, 53]. A lot of
approaches are used to deal with the ill-conditioned problem in the global RBF [?, 30]. We
propose a composite radial basis function using the gaussian and generalized multiquadric radial
basis function which significantly improves the condition of the system matrix avoiding the
above mentioned ill-conditionals in RBF interpolation schemes. Also in fact that generalized
multiquadric RBF is a good choice for improving the accuracy of this approach because it
depend on an exponent β which has some optimal strategies. We give a numerical comparaison
between Wendland’s compactly supported radial basis functions, our composite approach is
necessary and important, in fact that the Wendland’s CSRBFs have less accuracy compared
with global RBFs.

The composite approach is given to approximate solutions of Volterra-Fredholm integral
equations defined as

U(t) +
∫ 1

0
W1(s, t, U(s))ds+

∫ t

0
W2(s, t, U(s))ds = f(t), (2.18)

0 ≤ t ≤ 1, where f(t) is a known function, and

W1(s, t, U(s)) = k1(s, t) [U(s)]r1 ,

W2(s, t, U(s)) = k2(s, t) [U(s)]r2 ,

such that r1, r2 are positive integers.
The geometric representation of gaussian RBF and generalized RBF with some optimal

values of the exponent β is given in figure ??. Also the visualization of composite methods
included gaussian and generalized multiquadric with the optimal values of the exponents β and
with choosing a center tj = 0.5 is given in figure 2.5.

Let consider the nonlinear Volterra-Fredholm integral equations written as equation (2.18),
to approximate the function U(t), we apply RBF interpolation in distinct grids from a definite
domain. To this purpose, a linear convex combination of functions Φ1, and Φ2 is replaced in
U(t) as follows

U(t) ≈ UN =
N∑
j=1

cj (α1Φj,1(t) + α2Φj,2(t)) =
N∑
j=1

cj (α1Φ1(‖ t− tj ‖) + α2Φ2(‖ t− tj ‖)) ,

(2.19)
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Figure 2.4: Representation of generalized multiquadric (φ(r) = (r2 + ε2)β) and gaussian radial
basis functions (φ(r) = e−εr

2), for a center tj = 0.5, with ε1 = 1.5, ε2 = 0.9.

Figure 2.5: Representation of combination between generalized multiquadric and gaussian
radial basis functions, for β = 1.99, tj = 0.5, with ε1 = 1.5, ε2 = 0.9.
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where Φj,1(t) = exp(−ε1(t− tj)2) is gaussian radial basis functions , Φj,2(t) = (ε22 + (t− tj)2)β
is generalized multiquadric radial basis functions, such that

α1 + α2 = 1.

The first integral in equation (2.18) can be approximated using the following integration formula
∫ 1

0
W1(s, t, U(s))ds =

N∑
k=1

wkW1(sk, t,
N∑
j=1

cj(α1Φj,1(sk) + α2Φj,2(sk))), (2.20)

where, sk, wk are shifted Legendre-Gauss-Lobatto nodes and weights [38]. By replacing relation
(2.20) in equation (2.18), and by collocating at points t = ti, i = 1 . . . N we obtain

N∑
j=1

cj(α1Φ1(‖ ti − tj ‖) + α2Φ2(‖ ti − tj ‖)) +
N∑
k=1

wkW1(sk, ti,
N∑
j=1

cj(α1Φ1(‖ sk − sj ‖)(2.21)

+α2Φ2(‖ sk − sj ‖))) +
∫ ti

0
W2(s, ti,

N∑
j=1

cj(α1Φ1(‖ s− sj ‖) + α2Φ2(‖ s− sj ‖)))ds = f(ti),

the interval [0, ti] has been transformed to [0, 1] by taking the changement µ = 1
ti
s, then equation

(2.21) becomes
N∑
j=1

cj(α1Φ1(‖ ti − tj ‖) + α2Φ2(‖ ti − tj ‖)) +
N∑
k=1

wkW1(sk, ti,
N∑
j=1

cj(α1Φ1(‖ sk − sj ‖)

+ α2Φ2(‖ sk − sj ‖))) + ti
N∑
p=1

wpW2(ti.µp, ti,
N∑
j=1

cj(α1Φ1(‖ (ti.µp)− sj ‖) + α2Φ2(‖ sp− sj ‖)))

= f(ti).

This is a nonlinear system of equations, that can be solved via Newton’s iteration method to
obtain the unknwon vector C, such that C = (c1, c2, c3, ..., cN)T .

For our numerical experiments we are going to use Wendland’s compactly supported radial
basis function φ4,2(r) = (1− r)6

+(3 + 18r + 35r2).
Some linear and nonlinear test equations are illustrated to show the efficiency and the

applicability of the proposed approach, using different values of the shape parameter ε, and the
parameter σ, and also in order to compare the condition number of the resulting interpolation
matrix of exact solutions using both composite globaly RBFs and CSRBFs. The condition
numbers have been calculated for different values of N . Tables (2.16)-(2.18) give a comparaison
between the condition number of compactly supported RBF and composite RBF methods.
Example 2.12. Let given the following linear Volterra integral equation,

U(t) = cos(t)− sin(t)et +
∫ t

0
etU(s)ds,

such that 0 ≤ t ≤ 1, where U(t) = cos(t) is the exact solution. The numerical results using
composite RBFs method are prestented in tables 2.20 − 2.22. The results for CSRBFs are
sitting in table 2.19.
Example 2.13. Let given the following linear Volterra integral equation,

U(t) = 1
1 + t2

−
∫ t

0

s

1 + t2
U(s)ds,
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Table 2.16: The condition number, for α1 = 1
2 , α2 = 1

2 , with ε1 = 2, ε2 = 1, for CSRBF with
σ = 2.

Points N = 8 N = 16 N = 26
CSRBF 2.2449e+004 2.7446e+007 5.5641e+009
β = 2.50 5.8355e+005 1.4286e+017 2.9208e+018
β = 1.99 5.8282e+005 1.8006e+016 1.3761e+018
β = 1.03 4.6863e+005 2.2395e+016 2.3590e+018
β = 1/2 1.5176e+006 6.8947e+014 3.9602e+018
β = −1/2 6.0870e+005 3.3954e+014 6.6161e+018

Table 2.17: The condition number, for α1 = 1
4 , α2 = 3

4 , with ε1 = 2, ε2 = 1, for CSRBF with
σ = 4.

Points N = 8 N = 16 N = 26
CSRBF 8.0284e+005 1.0833e+009 2.2719e+011
β = 2.50 1.3254e+006 1.5005e+016 1.8195e+018
β = 1.99 1.3755e+006 1.7695e+016 1.1106e+018
β = 1.03 1.4163e+006 1.3366e+016 8.5205e+017
β = 1/2 1.1906e+006 4.3130+016 1.1758e+018
β = −1/2 1.1754e+006 3.2649e+014 7.9291e+018

Table 2.18: The condition number, for α1 = 3
4 , α2 = 1

4 , with ε1 = 2, ε2 = 1, for CSRBF with
σ = 6.

Points N = 8 N = 16 N = 26
CSRBF 6.1998e+006 8.6434e+009 1.8327e+012
β = 2.50 42.7593e+005 2.6945e+016 2.2988e+018
β = 1.99 2.4821e+005 1.1023e+016 2.4418e+018
β = 1.03 29.6331e+005 1.8556e+016 2.6759e+018
β = 1/2 4.6513e+005 3.4425e+015 2.5299 e+019
β = −1/2 3.8105e+005 4.4327e+014 1.2450e+020

Table 2.19: Computed errors using CSRBFs method for example (2.12), for N = 8.
xi σ = 1.5 σ = 5 σ = 10 σ = 17
0 0.0000 0.0000 0.0000 0.0000

0.1 8.8477× 10−4 9.7564× 10−6 1.7964× 10−5 1.2570× 10−5

0.2 1.7991× 10−4 2.2993× 10−6 3.7244× 10−6 2.5397× 10−6

0.3 9.3080× 10−4 1.9144× 10−5 2.1101× 10−5 1.2945× 10−5

0.4 3.8919× 10−6 4.9272× 10−7 2.7247× 10−7 1.1019× 10−7

0.5 5.4415× 10−4 3.2812× 10−5 1.5171× 10−5 4.7477× 10−6

0.6 8.6641× 10−5 8.5426× 10−6 2.8192× 10−6 2.9720× 10−7

0.7 1.3910× 10−4 5.0884× 10−5 1.2654× 10−5 1.6142× 10−6

0.8 6.3028× 10−5 2.6910× 10−6 7.3324× 10−8 5.6877× 10−7

0.9 1.5270× 10−4 4.3025× 10−5 9.8141× 10−6 2.1247× 10−6

1 9.2935× 10−5 2.7863× 10−8 8.0116× 10−7 6.5655× 10−7
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Table 2.20: Computed errors for different values of β for example (2.12), for N = 8, with ε1 = 2,
ε2 = 1.4.
Points Case 1: α1 = 1

2 , α2 = 1
2

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 6.1448× 10−11 1.1472× 10−10 1.1417× 10−11 1.0468× 10−10 2.5198× 10−11

0.1 1.4981× 10−4 1.5584× 10−4 1.1684× 10−4 2.4368× 10−5 1.7139× 10−5

0.2 3.5608× 10−5 3.7265× 10−5 2.7240× 10−5 1.8489× 10−6 3.1560× 10−6

0.3 2.8942× 10−4 3.0432× 10−4 2.1267× 10−4 3.5923× 10−5 1.2952× 10−5

0.4 1.0743× 10−5 1.1367× 10−5 7.7328× 10−6 2.5459× 10−6 2.0201× 10−7

0.5 3.0574× 10−4 3.2197× 10−4 2.0352× 10−4 1.4291× 10−4 1.4031× 10−5

0.6 5.4675× 10−5 5.7432× 10−5 3.3664× 10−5 3.7949× 10−5 5.9082× 10−6

0.7 2.4132× 10−4 2.5240× 10−4 1.4156× 10−4 1.9437× 10−4 3.3943× 10−5

0.8 6.8421× 10−6 7.0386× 10−6 3.7046× 10−6 6.2990× 10−6 1.2474× 10−6

0.9 1.1984× 10−4 1.2361× 10−4 5.9127× 10−5 1.3789× 10−4 2.9144× 10−5

1 3.2934× 10−7 3.6626× 10−7 9.7643× 10−7 3.3585× 10−6 9.3363× 10−7

Table 2.21: Computed errors for different values of β for example (2.12), for N = 8, with ε1 = 2,
ε2 = 1.4.
Points Case 2: α1 = 1

4 , α2 = 3
4

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 2.4914× 10−10 4.1172× 10−10 3.1159× 10−10 1.8658× 10−10 3.8014× 10−12

0.1 1.6148× 10−4 2.0227× 10−4 1.5929× 10−4 1.1235× 10−4 7.6660× 10−6

0.2 3.8338× 10−5 4.8465× 10−5 3.8480× 10−5 2.5974× 10−5 2.7232× 10−6

0.3 3.1254× 10−4 3.9818× 10−4 3.1761× 10−4 1.9947× 10−4 3.3700× 10−5

0.4 1.1584× 10−5 1.4897× 10−5 1.1983× 10−5 7.1808× 10−6 1.5267× 10−6

0.5 3.3478× 10−4 4.2832× 10−4 3.4028× 10−4 1.8309× 10−4 5.9382× 10−5

0.6 6.0643× 10−5 7.7422× 10−5 6.0993× 10−5 2.9194× 10−5 1.3426× 10−5

0.7 2.7048× 10−4 3.4341× 10−4 2.6803× 10−4 1.2018× 10−4 6.5394× 10−5

0.8 7.8807× 10−6 9.7807× 10−6 7.4088× 10−6 3.0516× 10−6 2.0411× 10−6

0.9 1.3914× 10−4 1.7301× 10−4 1.3056× 10−4 4.5823× 10−5 4.1905× 10−5

1 1.9824× 10−7 2.4764× 10−7 3.0559× 10−7 1.1943× 10−6 7.2315× 10−7
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Table 2.22: Computed errors for different values of β for example (2.12), for N = 8, with ε1 = 2,
ε2 = 1.4.
Points Case 3: α1 = 3

4 , α2 = 1
4

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 1.5930× 10−11 5.7316× 10−11 3.6928× 10−10 2.4075× 10−11 1.0325× 10−11

0.1 1.4680× 10−4 1.3448× 10−4 1.0830× 10−4 1.2591× 10−5 4.6829× 10−7

0.2 3.4794× 10−5 3.1741× 10−5 1.8034× 10−5 1.4292× 10−6 1.0380× 10−5

0.3 2.8080× 10−4 2.5381× 10−4 4.6260× 10−5 9.2679× 10−6 7.2673× 10−5

0.4 1.0396× 10−5 9.3558× 10−6 6.4747× 10−7 8.2161× 10−7 2.4733× 10−6

0.5 2.9114× 10−4 2.5719× 10−4 1.5933× 10−4 5.4093× 10−5 4.9071× 10−5

0.6 5.1294× 10−5 4.4507× 10−5 5.3213× 10−5 1.5009× 10−5 5.2126× 10−6

0.7 2.2410× 10−4 1.9231× 10−4 2.8937× 10−4 7.8222× 10−5 1.4191× 10−5

0.8 6.2136× 10−7 5.2292× 10−6 9.9079× 10−6 2.6138× 10−6 2.5990× 10−8

0.9 1.0748× 10−4 8.8730× 10−5 2.2789× 10−4 5.7418× 10−5 6.9541× 10−6

1 4.9694× 10−7 6.5803× 10−7 6.7732× 10−6 1.4415× 10−6 1.0370× 10−6

Table 2.23: Computed errors using CSRBFs method for example (2.13), for N = 8.
xi σ = 2 σ = 7 σ = 12 σ = 20
0 0.0000 0.0000 0.0000 0.0000

0.1 1.7060× 10−4 1.0122× 10−4 7.4862× 10−5 5.5344× 10−5

0.2 1.5147× 10−5 8.7529× 10−6 6.4506× 10−6 4.7501× 10−6

0.3 1.9390× 10−4 1.1035× 10−4 8.1489× 10−5 6.0304× 10−5

0.4 1.4912× 10−5 8.4504× 10−6 6.3623× 10−6 4.8505× 10−6

0.5 1.1898× 10−4 6.5150× 10−5 5.1434× 10−5 4.1946× 10−5

0.6 4.0736× 10−6 1.5724× 10−6 1.2627× 10−6 1.0763× 10−6

0.7 7.6549× 10−5 1.8076× 10−5 1.6456× 10−5 1.6534× 10−5

0.8 7.3822× 10−6 1.0342× 10−7 3.1817× 10−7 6.4414× 10−7

0.9 4.8168× 10−5 2.8062× 10−6 2.6136× 10−7 2.8698× 10−6

1 5.3201× 10−8 2.0763× 10−8 2.9469× 10−8 2.8494× 10−8

Table 2.24: Computed errors for different values of β for example (2.13), for N = 8, with
ε1 = 1.2, ε2 = 1.8.
Points Case 1: α1 = 1

2 , α2 = 1
2

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 2.7321× 10−9 2.6885× 10−8 8.5788× 10−10 1.2254× 10−8 4.2775× 10−10

0.1 3.3737× 10−5 1.1025× 10−5 2.8653× 10−6 6.2702× 10−6 1.0061× 10−6

0.2 3.4501× 10−6 1.0186× 10−6 2.01135× 10−7 4.0897× 10−7 1.7555× 10−7

0.3 5.7603× 10−5 1.5627× 10−5 2.1928× 10−6 3.6338× 10−6 3.8144× 10−6

0.4 5.8170× 10−6 4.4627× 10−6 1.2278× 10−7 7.1455× 10−8 4.5584× 10−7

0.5 6.4828× 10−5 1.5128× 10−5 3.4877× 10−7 2.8697× 10−6 5.7207× 10−6

0.6 2.6069× 10−6 5.8220× 10−7 9.9686× 10−9 2.4320× 10−7 2.3924× 10−7

0.7 6.1824× 10−5 1.3269× 10−5 7.2680× 10−7 8.2425× 10−5 5.8774× 10−6

0.8 5.8559× 10−6 1.2356× 10−6 9.1993× 10−8 1.0174× 10−6 5.4877× 10−7

0.9 3.7614× 10−5 7.9349× 10−6 6.2590× 10−7 7.7193× 10−6 3.8340× 10−6

1 9.1338× 10−8 9.9908× 10−9 1.1817× 10−9 7.7016× 10−9 1.2181× 10−10
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Table 2.25: Computed errors for different values of β for example (2.13), for N = 8, with
ε1 = 1.2, ε2 = 1.8.
Points Case 2: α1 = 1

4 , α2 = 3
4

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 6.3737× 10−9 3.0382× 10−8 1.5538× 10−7 2.1907× 10−9 2.5828× 10−9

0.1 1.2796× 10−6 8.2210× 10−6 7.9484× 10−5 2.3492× 10−6 6.8278× 10−7

0.2 2.0098× 10−6 9.0816× 10−7 8.1290× 10−6 1.4831× 10−7 1.4331× 10−7

0.3 4.2115× 10−6 1.6000× 10−5 1.3541× 10−4 1.3008× 10−6 3.2868× 10−6

0.4 4.9357× 10−7 1.6849× 10−6 1.3629× 10−5 3.1870× 10−8 4.0351× 10−7

0.5 6.1112× 10−6 1.9453× 10−5 1.5104× 10−4 6.7969× 10−7 5.1492× 10−6

0.6 2.5339× 10−7 7.9609× 10−7 6.0305× 10−6 5.2104× 10−8 2.1678× 10−7

0.7 6.1805× 10−6 1.9163× 10−5 1.4212× 10−4 1.7402× 10−6 5.3555× 10−6

0.8 5.7251× 10−7 1.8215× 10−6 1.3339× 10−5 1.8977× 10−7 5.0083× 10−7

0.9 3.4973× 10−6 1.1656× 10−6 8.4759× 10−5 1.2633× 10−6 3.0878× 10−6

1 8.9967× 10−8 1.4092× 10−7 1.5912× 10−7 6.5870× 10−10 1.8122× 10−10

Table 2.26: Computed errors for different values of β for example (2.13), for N = 8, with
ε1 = 1.2, ε2 = 1.8.
Points Case 3: α1 = 3

4 , α2 = 1
4

xi β = 2.5 β = 1.99 β = 1.03 β = 1/2 β = −1/2
0 7.9699× 10−9 1.3492× 10−9 7.2788× 10−11 1.7852× 10−9 1.8707× 10−10

0.1 4.5650× 10−6 3.5568× 10−6 1.7885× 10−6 5.6234× 10−7 1.4231× 10−6

0.2 3.6850× 10−7 2.6927× 10−7 7.9677× 10−8 1.2280× 10−7 2.1754× 10−7

0.3 4.9181× 10−6 3.2988× 10−6 8.8163× 10−10 2.8323× 10−6 4.5048× 10−6

0.4 3.9391× 10−7 2.3264× 10−7 1.1443× 10−7 3.4699× 10−7 5.2448× 10−7

0.5 3.3589× 10−6 1.5656× 10−6 2.5055× 10−6 4.3804× 10−6 6.4704× 10−6

0.6 1.1279× 10−7 3.9494× 10−8 1.3306× 10−7 1.8040× 10−7 2.6873× 10−7

0.7 2.2172× 10−6 4.5623× 10−7 3.8033× 10−6 4.3878× 10−6 6.5631× 10−6

0.8 1.9483× 10−7 2.2792× 10−8 4.0027× 10−7 3.9761× 10−7 6.1202× 10−7

0.9 1.2811× 10−6 1.3382× 10−7 2.6935× 10−6 2.3598× 10−6 3.7781× 10−6

1 7.3671× 10−9 2.0734× 10−9 7.2099× 10−10 2.4654× 10−9 2.5999× 10−10
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such that 0 ≤ t ≤ 1, where U(t) = (1 + t2)−3
2 is the exact solution. The numerical results using

composite RBFs are prestented in tables 2.24 − 2.26. The results for CSRBFs are sitting in
table 2.23.

Analysis of experimental results
From the test examples, we remark that, for a small number of mesh points (N = 8),

the presented methods provide remarkable accurate solutions. The use of optimal values of
exponent β for generalized multiquadric radial basis functions give a good accuracy compared
with the results obtained by the compactly supported radial basis functions (CSRBFs). For
fixed values of the shape parameter ε and the parameter σ, the condition number also grows
with N increasing. The condition number when using CSRBFs is much smaller compared to
the use of composite RBFs, but it is approximately close for small N . Generally for a fixed
number of collocation points N , smaller values of ε produce better approximations, but the
matrix A will be more ill-conditioned . When the number of mesh points increases, the accuracy
of the solution can be increased but the condition number of the matrix becomes very large
and the matrix tends to be ill-conditioned. Compactly supported RBF method gives a balance
between good accuracy and small conditioning number, the accuracy of CSRBFs method can
be improved by using strategies to find the optimal parameter σ.

2.2.4 CSRBFs and FDM for solving PDEs.

The classical methods like Finite elements method (FEM), Finite difference method (FDM) and
Finite Volume method (FVM) are still the most used methods for solving systems of partial
differential equations in physical modeling problems [47, 56, 65].
These methods benefit from a very solid theoritical foundation and many techniques have come
to improve them over the years. However, their implementation remains difficulties and costly
in certain cases, notably in the field of modeling large deformations in lagrangian formulation.
However in the recent years considerable attention was paid to the so called meshess methods
which operate with nodes rather than meshes. The motivation came mainly from the following
considerations

- RBF methods do not require grid generation which can be not an easy task in the three
dimensional cases.

- RBF methods may be successfully applied to achieve exponential accuracy where tradi-
tional methods either have difficulties or fail.

- RBF methods are more appropriate than FEM or FDM methods in the case of very large
mesh deformation and moving discontinuities.

3- RBF methods are easy to apply for the approximation of multivariate scattered data,
and easy to improve the numerical accuracy by adding more points around large gradient
regions.

The use of RBF for PDEs discretizations offers some nice possibilities. First, some RBF-based
discretizations have potential for providing convergence rates dependent on exact solutions
smoothness only rather than on degrees of underlying polynomial approximations. In certain
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cases, they can be exponential. Second, good RBF performance in three-dimensional cases
is theoretically expected. At present, the most popular lines of attack when constructing
RBF-PDE solvers seem to be collocation and boundary elements approaches [35, 54]. In [90, 91]
convergence proofs and error estimates of the collocation procedure are presented. A profound
impact on the RBF-collocation technique applications is due to papers [54, 87].

FDM for solving Burger’s equation

Burger’s equation, which takes its name from the German physicist Johannes Martinus
Burgers(1895- 1981) is a partial differential equation fundamental to fluid mechanics. it
is used in various areas of applied mathematics, such as the study of fluid mechanics, the
modeling of gas dynamics, traffic flow. This equation is used to study the evolution of the
speed of fluids in a given environment.
Given a speed u and a viscosity coefficient v, the general form of Burger’s equation is

ut + uux = vuxx, v = 1
R
, (2.22)

with initial and boundary conditions{
u(0, t) = u(1, t) = 0, t > 0
u(x, 0) = f(x), 0 ≤ x ≤ 1,

where f(x) is a given function and R is the number of Reynolds. The resolution of this equation
presents many difficulties like the problems of stability and entropy.
For study in good conditions, we have to take into account several conditions like the condition
of stability and Rankine - Hugoniot conditions.
Using the shemes that respect these conditions, we will note here only those which are in
conservative form for this equation as follow

uj+1
i = uji −

∆t
∆x

(
g(uji , u

j+1
i )− g(uji−1, uj, j)

)
+ 1
R
uxx, (2.23)

where g(u, v) represents the digital flow of the equation, those shemes respect the following
C.F.L condition given by

βj = sup|uji |
∆tn
∆x 6 1.

We use Lax-Friedrichs sheme [92]

g(u, v) = 1
2

(
1
2(u2 + v2)− ∆x

∆t (v − u)
)
,

and Lax-Wendroff sheme [92]

g(u, v) = 1
2

(
1
2(u2 + v2)− ∆x

∆t

(
u+ v

2

)(
1
2(v2 − u2)

))
.

By replacing the second partial derivative by

u
′′(x) = u(x+ ∆x)− 2u(x) + u(x−∆x)

(∆x)2 ,
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the descritization of Burger’s equation becomes

uj+1
i =

(
1
2 + ∆t

R(∆x)2

)
(uji+1 + uji−1)− 2∆t

R(∆x)2u
j
i + ∆t

4∆x
(
(uji−1)2 − (uji+1)2

)
.

The initial condition f is defined as f(x) = sin(πx) and R = 10000. For Tmax = 0.14 and
∆t = 0.02 and ∆x = 0.125, the numerical results are represented in table 2.27. For different
values of Tmax, the curves of approximate solution are given in figure 2.6.

x/t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0 0 0 0 0 0 0 0 0

0.125 0.383 0.336 0.297 0.267 0.243 0.226 0.205 0.189
0.25 0.707 0.625 0.560 0.507 0.462 0.426 0.391 0.359
0.375 0.924 0.834 0.756 0.689 0.631 0.579 0.534 0.492
0.5 1.000 0.924 0.851 0.783 0.721 0.665 0.613 0.565

0.625 0.924 0.874 0.818 0.762 0.706 0.653 0.603 0.556
0.75 0.707 0.682 0.649 0.610 0.570 0.529 0.489 0.451
0.875 0.383 0.374 0.359 0.341 0.320 0.298 0.276 0.254

1 0 0 0 0 0 0 0 0

Table 2.27: The numerical results using FDM for solving Burger’s equation for Tmax = 0.14.

Figure 2.6: Burgers-FDM, with different values of Tmax.

CSRBFs collocation method for solving Burger’s equation

The compactly supported basis functions consist of a polynomial which are non-zero on [0, 1)
and vanish on [1,∞). This reduces the original resultant full matrix to a sparse matrix.
The operation of the banded matrix system could reduce the ill-conditioning of the resultant
coefficient matrix due to the use of the global radial basis functions.

The approximate solution using CSRBFs is given by

un(xi, yj) =
N∑
j=1

αjφl,k

(
ri,j
σj

)
,
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where σ is parameter, αj are the coefficients to be determined using collocation points (xi, yj).
For our experiment, we use Wendland’s compactly supported radial basis function φσ3,1,

which is given by
φσ3,1(r) =

(
1− r

σ

)4

+

(
1 + 4 r

σ

)2
,

with r = ||x− xj||, σ > 0, we obtain

∂û

∂t
+ ∂

∂x

(
û2

2

)
= 1
R

∂2û

∂x2 ,

because of stability’s reasons and under C.F.L conditions, we keep the sheme of Lax-Friedrichs
[92] for solving our equation, so the equation becomes

un+1
i = 1

2(uni+1) + ∆t
4∆x

(
(uni−1)2 − (uni+1)2

)
+ ∆t

R

n∑
j=1

αj(tn) 4
σ2

(
1− r

σ

)2

+

(
−7 + 12 r

σ

)
.

The numerical results using ∆t = 0.02 ,∆x = 0.125, Tmax = 0.14 and σ = 5 are sitting in table
2.28, for different values of Tmax, the curves of approximate solution are given in figure 2.7.

x/t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0 0 0 0 0 0 0 0 0

0.125 0.383 0.333 0.297 0.268 0.243 0.223 0.205 0.189
0.25 0.708 0.625 0.560 0.507 0.462 0.424 0.390 0.359
0.375 0.924 0.834 0.756 0.690 0.631 0.579 0.534 0.492
0.5 1.000 0.924 0.851 0.783 0.721 0.665 0.613 0.565

0.625 0.924 0.874 0.818 0.762 0.706 0.653 0.603 0.557
0.75 0.707 0.682 0.649 0.611 0.570 0.529 0.489 0.451
0.875 0.383 0.374 0.359 0.341 0.320 0.298 0.276 0.254

1 0 0 0 0 0 0 0 0

Table 2.28: The numerical results using CSRBF for solving Burger’s equation for Tmax = 0.14.

FDM for solving Poisson’s equation

The Poisson’s equation is a second order PDE named after Simeon Denis Poisson, it is
generalization of Laplace’s equation, it arises, for instance, to describe the potential field caused
by a given charge or mass density distribution, with the potential field known, one can then
calculate gravitational or electric field.
Our aim now, is to solve Poisson’s equation with homogeneous Dirichlet boundary conditions

∆u = ∂2u

∂x2 + ∂2u

∂y2 = f, (x, y) ∈]0, 1[×]0, 1[
u(x, 1) = u(0, y) = u(1, y) = 0,
u(x, 0) = sin(πx).
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Figure 2.7: Burger-CSRBFs, with different values of Tmax.

We see that if f = 0, we obtain Laplace’s equation, where ∆x = 1/n and ∆y = 1/m, with
n, m are the numbers of subregions. As this equation is only made up of second derivatives,
we will approximate them by using the Taylor’s formula of order 2 which gives us the centred
approximation of the second partial derivatives, given as follow

∂2u

∂x2 (x, y) = u(x+ ∆x, y)− 2u(x, y) + u(x−∆x, y)
(∆x)2 ,

and
∂2u

∂y2 (x, y) = u(x, y + ∆y)− 2u(x, y) + u(x, y −∆y)
(∆y)2 .

Subtituting by point (xi, yj), we have

∂2u

∂x2 (xi, yj) = ui+1,j − 2ui,j + ui−1,j

(∆x)2 ,

∂2u

∂y2 (xi, yj) = ui,j+1 − 2ui,j + ui,j−1

(∆y)2 .

Replacing these approximations into Poisson’s equation

∂2u

∂x2 + ∂2u

∂y2 = f,

yields to
ui+1,j − 2ui,j + ui−1,j

(∆x)2 + ui,j+1 − 2ui,j + ui,j−1

(∆y)2 = fi,j.

If ∆x = ∆y = h, the Poissson equation can be written as

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2fi,j.

We notice that at each step, we need to know the points ui−1,j, ui,j−1, ui+1,j and ui,j+1 to
calculate the value of ui,j at the point (xi, yj).
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The correspending matrix system Au = b is given by

k = (j − 1)× n+ i, ∀i = 2 : n− 1, ∀j = 2 : m− 1{
A(k, k) = −4, A(k, k − 1) = 1, A(k, k + 1) = 1
A(k, k + n) = 1, A(k, k − n) = 1, b(k, 1) = (h)2fi,j{

A(k, k) = 1, i = 1, ∀j = 1 : m
b(k, 1) = 0,{

A(k, k) = 1, i = n, ∀j = 1 : m
b(k, 1) = sin(πx),{
A(k, k) = 1, j = 1, j = m, ∀i = 1 : n
b(k, 1) = 0.

From the numerical results using Finite difference method, we obtain the approach values of
u for h = 0.1 and f = −5π2

4 sin(πx)cos(πy2 ), which are sitting in table 2.29. The curves of
approximate solution are given in figure 2.8.

Figure 2.8: Poisson-FDM, with different values of Tmax.

CSRBFs collocatin method for solving Poisson’s equation

Now, we are going to solve Poisson’s equation by using CSRBF, let given the following problem
with boundary conditions:

∆u = ∂2u

∂x2 + ∂2u

∂y2 = f, (x, y) ∈]0, 1[×]0, 1[,
u(x, 1) = u(0, y) = u(1, y) = 0,
u(x, 0) = sin(πx).

We suppose that un is the approximate solution of u written as

un =
N∑
j=1

αjφ
σ,
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x/y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0 0 0 0 0 0 0 0 0

0.1 0.309 0.306 0.295 0.276 0.251 0.220 0.183 0.141 0.096 0.049
0.2 0.588 0.582 0.561 0.526 0.478 0.418 0.347 0.268 0.183 0.093
0.3 0.809 0.801 0.772 0.724 0.658 0.575 0.478 0.369 0.251 0.127
0.4 0.951 0.941 0.907 0.851 0.773 0.676 0.562 0.434 0.296 0.150
0.5 1.000 0.990 0.954 0.895 0.813 0.711 0.591 0.457 0.311 0.157
0.6 0.951 0.941 0.907 0.851 0.773 0.676 0.562 0.434 0.296 0.150
0.7 0.809 0.801 0.772 0.724 0.658 0.575 0.478 0.369 0.251 0.127
0.8 0.588 0.582 0.561 0.526 0.478 0.418 0.347 0.268 0.183 0.093
0.9 0.309 0.306 0.295 0.276 0.251 0.220 0.183 0.141 0.096 0.049
1 0 0 0 0 0 0 0 0 0 0

Table 2.29: The numerical results using FDM for solving Poisson’s equation.

we have ∂
2u

∂x2 =
N∑
j=1

αj
∂2φσ

∂x2 , and ∂2u

∂y2 =
N∑
j=1

αj
∂2φσ

∂y2 .

For this equation, we use the compactly supported radial basis function φσ4,2 of Wendland
which is written in the form

φσ4,2(r) =
(

1− r

σ

)6

+

(
3 + 18 r

σ
+ 35

(
r

σ

)2
)
,

with r is the Euclidean norm.
Then, we obtain

∂2u

∂x2 = −56
σ2 (1− r

σ
)4
+

(
1 + 4 r

σ
− 5( r

σ
)2 − 30

(x− xj
σ

)2
))

∂2u

∂y2 = −56
σ2 (1− r

σ
)4
+

(
1 + 4 r

σ
− 5

( r
σ

)2
− 30

(y − yj
σ

)2
)
.

This yields to

∆u =
N∑
j=1

αj
−56
σ2 (1− r

σ
)4
+

(
2 + 8 r

σ
− 40

( r
σ

)2
)

= f,

where α is the vector that should be determined.
The matrix system is given by Aα = B, where

A(i, j) =


−56
σ2 (1− ri,j

σj
)4
+

(
2 + 8 ri,j

σj
− 40( ri,j

σj
)2
)

if [x, y] ∈ Ω
(1− ri,j

σj
)6
+

(
3 + 18 ri,j

σj
+ 35( ri,j

σj
)2
)

if [x, y] ∈ ∂Ω.

and B takes the boundary values.
The approximate values of u using CSRBFs method ,for h = 0.1 and σ = 1.3 and f =
−5π2

4 sin(πx)cos(πy2 ), are sitting in table 2.30, the curves of approximate solution are given in
figure 2.9 .
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Figure 2.9: Poisson-CSRBF, with different values of Tmax.

x/y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0.005 0.007 0.004 0.003 0.0004 0.009 0.004 0.001 0.002

0.1 0.309 0.301 0.288 0.269 0.244 0.214 0.175 0.135 0.092 0.046
0.2 0.588 0.580 0.556 0.520 0.472 0.412 0.341 0.263 0.179 0.089
0.3 0.809 0.799 0.768 0.718 0.651 0.569 0.472 0.364 0.247 0.124
0.4 0.951 0.941 0.904 0.846 0.767 0.670 0.556 0.429 0.291 0.146
0.5 1.000 0.989 0.951 0.890 0.807 0.705 0.585 0.451 0.3071 0.154
0.6 0.951 0.941 0.904 0.846 0.768 0.670 0.557 0.429 0.292 0.146
0.7 0.809 0.800 0.769 0.720 0.653 0.570 0.473 0.365 0.2481 0.124
0.8 0.588 0.581 0.558 0.522 0.474 0.414 0.343 0.265 0.180 0.090
0.9 0.309 0.304 0.291 0.272 0.247 0.216 0.179 0.138 0.094 0.047
1 0 0 0 0 0 0 0 0 0 0

Table 2.30: The numerical results using CSRBF for solving Poisson’s equation.
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Remark 2.5. The numerical tests which we were able to establish here have proved that the
method using CRBFs are very economical in terms of calculation time and programming
compared to finite difference. Also it is very flexible and easy method to apply, the degree of
precision does not depend on the choice of the function and the factor σ does not really have a
great influence in the approximations.

GRBF for solving 2D time-dependent Schrodinger equation.

The time-dependent Schrodinger equation is a linear differential equation that governs the wave
equation of a quantum-mechanical system.

Let us consider the two-dimensional time-dependent Schrodinger equation

− i∂U
∂t

= ∂2U

∂x2 + ∂2U

∂y2 + ω(x, y)U, (2.24)

in some continuous domain with suitable initial and Dirichlet boundary conditions, and an
arbitrary potential function ω(x, y), with initial condition

U(x, y, 0) = U0(x, y), 0 ≤ x, y ≤ 1, (2.25)

and boundary conditions

U(0, y, t) = g1(x, y, t), u(1, y, t) = g2(x, y, t), (2.26)
U(x, 0, t) = g3(x, y, t), u(x, 1, t) = g4(x, y, t), 0 ≤ t ≤ 1.

Let φ(r) be the radial basis function, the approximation of a distribution U(x) using radial
basis function takes the form

U(x, y) '
N∑
i=0

M∑
j=0

cijφij(x, y) + Υ(x, y), (x, y) ∈ R2, (2.27)

where φij = φij(x, y) = φ(||(x, y) − (xi, yj)||), (xi, yj), i = 0, . . . , N , j = 0, ...,M , here we
are going to use generalized multiquadric radial basis function which is mentioned before.

If Pdq denotes the space of d-variate polynomials of order not exceeding than q, and letting
the polynomials P1, P2, P3, . . . , Pm be the basis of Pdq in Rd, then the polynomial Υ(x, y) is
written in the form

Υ(x, y) =
m∑
i=1

aiPi(x, y), (2.28)

where m = (q − 1 + d)!/(d!(q − 1)!). Collocating equation (2.27 ) at N ×M points, and m
equations are required as

N∑
i=0

M∑
j=0

λjPi(x, y) = 0, i = 1, . . .m. (2.29)

We determine the unknown coefficients (λ1, . . . , λNM) and (a1, . . . , am). If L is a linear
differential operator then the approximation LU is given by

LU =
N∑
i=0

M∑
j=0

cijLΦij(x, y) + LΥ(x, y). (2.30)
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In our approach, we are going to use Crank-Nicolson scheme.
Lets discretize equation (2.24) as follows

− iU(x, y, t+ dt)− U(x, y, t)
dt

= θ
[
∇2U(x, y, t+ dt) + ω(x, y)U(x, y, t+ dt)

]
+ (1− θ)

[
∇2U(x, y, t) + ω(x, y)U(x, y, t)

]
,

where θ = 1
2 , dt is the time step size. Using the notation Un = U(x, y, tn), where tn+1 = tn +dt,

we obtain

− iUn+1 − θdt
[
∇2Un+1 + ω(x, y)Un+1

]
= −iUn + (1− θ)dt

[
∇2Un + ω(x, y)Un

]
(2.31)

Assuming that there are a total of N ×M interpolation points, and let Υ(x, y) = 1 + x + y,
U(x, y, tn) can be approximated by

Un(xi, yj) '
N×M∑
j=1

λnj φ(||x− xi, y − yj||) + λnN×M+1xi + λnN×M+2yj + λnN×M+3. (2.32)

The additional condition (2.29) can be written as

N×M∑
j=1

λnj = 0, (2.33)

N×M∑
j=1

λnj xj = 0, (2.34)

N×M∑
j=1

λnj yj = 0. (2.35)

Writting equation (2.32) together with equation (2.33), equation (2.34), and equation (2.35
), we obtain a matrix system Un = Aλn, where, Un = [Un

1 , U
n
2 , . . . U

n
N×M , 0, 0, 0]T , λn =

[λn1 , λn2 , . . . , λnN×M+3]T , and the matrix A is defined as

A = [aij, 1 ≤ i, j ≤ N ×M + 3] =



φ11 φ12 . . . φ1(N×M) x1 y1 1
φ21 φ22 . . . φ2(N×M) x1 y1 1
... ... . . . ... ... ... ...

φ(N×M)1 φ(N×M)2 . . . φ(N×M)(N×M) x1 y1 1
1 1 . . . . . . 0 0 0
x1 x2 . . . . . . 0 0 0
y1 y2 . . . . . . 0 0 0


.

(2.36)
Suppose that there are k internal points and N×M−k boundary points, then the (N×M+3,

N ×M + 3) matrix A can be divided into

A = B + C +D, (2.37)

where,
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B=[bij, for (1 ≤ i ≤ k, 1 ≤ j ≤ N ×M + 3) and else 0 ],
C=[ cij, for (k + 1 ≤ i ≤ N ×M, 1 ≤ j ≤ N ×M + 3) and else 0 ],
D=[dij, for (N ×M + 1 ≤ i ≤ N ×M + 3, 1 ≤ j ≤ N ×M + 3) and else 0].
Equation ( 2.31) can be written in the following form[
−iB − θdt

(
∇2B +W ∗B

)
+ C +D

]
λn+1 =

[
−iB + (1− θ)dt

(
∇2B +W ∗B

)]
λn +Gn+1,

(2.38)
where Gn = [0 . . . 0Gn

k+1 . . . G
n
N×M 0 0 0]T , and W = [ω1 ω2 ωk 0 . . . 0]T .

Using the notation
λn = λnr + iλni , (2.39)

and
Gn = Gn

r + iGn
i . (2.40)

Equation (2.38) can be written as

Eλn+1
r +Bλn+1

i +i
(
Eλn+1

i −Bλn+1
r

)
= Fλn+1

r +Bλni +Gn+1
r +i

(
−Bλnr + Fλni +Gn+1

i

)
, (2.41)

such that: E = −θdt (∇2B +W ∗B) + C +D, F = (1− θ)dt (∇2B +W ∗B) .
Equation (2.41), can be written in the following real variable form

(
E B
−B E

)(
λn+1
r

λn+1
i

)
=
(
F B
−B F

)(
λnr
λni

)
+
(
Gn+1
r

Gn+1
i

)
.

Thus, the solution of complex system has been reduced to solving the real variable system.
Since the coefficients matrix is unchanged in time steps.
Example 2.14. Lets given Schrodinger equation with a potential function

ω(x, y) = 1− 2
x2 −

2
y2 ,

with initial condition
u(x, y, 0) = x2y2, 0 ≤ x, y ≤ 1,

and boundary condition
u(0, y, t) = 0, u(1, y, t) = y2exp(it),

u(x, 0, t) = 0, u(x, 1, t) = x2exp(it),

The exact solution is
u(x, y, t) = x2y2exp(it).

For dx = dy = 0.2, dt = 0.0005 and 0 ≤ t ≤ 1. The obtained results with (β = 1
2 , ε = 0.79) ,

are sitting in table 2.31, and figure 2.10, for (β = 1.03, ε = 0.82) are presented in table 2.32, for
(β = 1.99, ε = 0.8) are given in table 2.33, and for (β = 2.5, ε = 1) are shown in table 2.34.
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(s, t) Real part Imaginary part
(0, 0) 1.5180× 10−10 5.0590× 10−11

(0.01, 0.01) 5.8344× 10−5 2.8995× 10−7

(0.02, 0.02) 8.8344× 10−5 9.9016× 10−7

(0.03, 0.03) 8.0440× 10−5 2.1778× 10−6

(0.04, 0.04) 5.8854× 10−5 3.6819× 10−6

(0.05, 0.05) 2.4097× 10−5 5.3906× 10−6

(0.06, 0.06) 1.8323× 10−5 7.1931× 10−6

(0.07, 0.07) 6.3652× 10−5 8.9826× 10−6

(0.08, 0.08) 1.0789× 10−4 1.0659× 10−5

(0.09, 0.09) 1.4778× 10−4 1.2131× 10−5

(s, t) Real part Imaginary part
(0, 0) 2.9422× 10−10 3.5695× 10−11

(0.01, 0.01) 7.8184× 10−5 2.3817× 10−5

(0.02, 0.02) 1.2550× 10−4 4.7061× 10−5

(0.03, 0.03) 1.4855× 10−4 6.8836× 10−5

(0.04, 0.04) 1.5321× 10−4 8.8157× 10−5

(0.05, 0.05) 1.4459× 10−4 1.0393× 10−4

(0.06, 0.06) 1.2710× 10−4 1.1495× 10−4

(0.07, 0.07) 1.0444× 10−4 1.1987× 10−4

(0.08, 0.08) 7.9664× 10−5 1.1720× 10−4

(0.09, 0.09) 5.5231× 10−5 1.0529× 10−4

Table 2.31: Computed errors using GRBFs method for Example (2.14)
(
t=0.0005(left),

t=0.1(right)
)
, with β = 1

2 .

(s, t) Real part Imaginary part
(0, 0) 1.6302× 10−5 2.8483× 10−8

(0.01, 0.01) 2.0211× 10−4 3.9188× 10−4

(0.02, 0.02) 2.5086× 10−6 6.6224× 10−4

(0.03, 0.03) 5.3878× 10−4 7.2407× 10−4

(0.04, 0.04) 1.3770× 10−3 7.2956× 10−4

(0.05, 0.05) 2.4670× 10−3 6.7126× 10−4

(0.06, 0.06) 3.7639× 10−3 5.8079× 10−4

(0.07, 0.07) 5.5223× 10−3 4.8851× 10−4

(0.08, 0.08) 6.8026× 10−3 4.2301× 10−4

(0.09, 0.09) 8.4609× 10−3 4.1066× 10−4

(s, t) Real part Imaginary part
(0, 0) 3.8562× 10−4 8.3182× 10−7

(0.01, 0.01) 5.4510× 10−3 1.0829× 10−2

(0.02, 0.02) 1.3643× 10−2 2.2474× 10−2

(0.03, 0.03) 2.5344× 10−2 3.4702× 10−2

(0.04, 0.04) 4.0926× 10−2 4.7229× 10−2

(0.05, 0.05) 6.0744× 10−2 5.9722× 10−2

(0.06, 0.06) 8.5136× 10−2 7.1798× 10−2

(0.07, 0.07) 1.1441× 10−2 8.3029× 10−2

(0.08, 0.08) 1.4883× 10−1 9.2943× 10−2

(0.09, 0.09) 1.8863× 10−1 1.0103× 10−1

Table 2.32: Computed errors using GRBFs method for Example (2.14)
(
t=0.0005(left),

t=0.0375(right)
)
, with β = 1.03.

(s, t) Real part Imaginary part
(0, 0) 1.7616× 10−4 8.8295× 10−8

(0.01, 0.01) 1.5103× 10−4 6.8656× 10−5

(0.02, 0.02) 3.5086× 10−4 9.0989× 10−5

(0.03, 0.03) 4.4470× 10−4 7.4369× 10−5

(0.04, 0.04) 4.5312× 10−4 2.5827× 10−5

(0.05, 0.05) 3.9576× 10−4 4.7919× 10−5

(0.06, 0.06) 2.9108× 10−4 1.4052× 10−4

(0.07, 0.07) 1.5626× 10−4 2.4604× 10−4

(0.08, 0.08) 7.0203× 10−7 3.5901× 10−4

(0.09, 0.09) 1.4253× 10−4 4.7448× 10−4

(s, t) Real part Imaginary part
(0, 0) 1.0096× 10−3 1.1330× 10−6

(0.01, 0.01) 8.6039× 10−4 3.6595× 10−4

(0.02, 0.02) 3.1837× 10−3 4.1454× 10−4

(0.03, 0.03) 5.9365× 10−3 1.3490× 10−4

(0.04, 0.04) 9.0901× 10−3 4.8421× 10−4

(0.05, 0.05) 1.2611× 10−3 1.4530× 10−3

(0.06, 0.06) 1.6459× 10−2 2.7807× 10−3

(0.07, 0.07) 2.0592× 10−2 4.4748× 10−3

(0.08, 0.08) 2.4962× 10−2 6.5414× 10−3

(0.09, 0.09) 2.9516× 10−2 8.9847× 10−3

Table 2.33: Computed errors using GRBFs method for Example (2.14)
(
t=0.0005(left),

t=0.1(right)
)
, with β = 1.99.
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(s, t) Real part Imaginary part
(0, 0) 5.1195× 10−5 2.6510× 10−8

(0.01, 0.01) 2.0942× 10−4 1.0238× 10−4

(0.02, 0.02) 3.2546× 10−4 1.3338× 10−4

(0.03, 0.03) 4.0492× 10−4 1.0309× 10−4

(0.04, 0.04) 4.5309× 10−4 2.1050× 10−5

(0.05, 0.05) 4.7491× 10−4 1.0377× 10−4

(0.06, 0.06) 4.7498× 10−4 2.6301× 10−4

(0.07, 0.07) 4.5753× 10−4 4.4892× 10−4

(0.08, 0.08) 4.2644× 10−4 6.5442× 10−4

(0.09, 0.09) 3.8523× 10−4 8.7305× 10−4

(s, t) Real part Imaginary part
(0, 0) 3.7432× 10−3 5.0240× 10−8

(0.01, 0.01) 1.5549× 10−3 2.3129× 10−3

(0.02, 0.02) 1.4707× 10−3 3.7799× 10−3

(0.03, 0.03) 3.1897× 10−3 4.5546× 10−3

(0.04, 0.04) 6.4242× 10−3 4.7795× 10−3

(0.05, 0.05) 1.0901× 10−2 4.5856× 10−3

(0.06, 0.06) 1.6364× 10−2 4.0924× 10−3

(0.07, 0.07) 2.2570× 10−2 3.4074× 10−3

(0.08, 0.08) 2.9295× 10−2 2.6267× 10−3

(0.09, 0.09) 3.6333× 10−2 1.8345× 10−3

Table 2.34: Computed errors using GRBFs method for Example (2.14)
(
t=0.0005(left),

t=0.05(right)
)
, with β = 2.5.

Figure 2.10: The Absolute errors , for t = 0.05, real part(left), imaginary part(right), with
β = 1

2 .
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Example 2.15. Let us given Schrodinger equation with a potential function

ω(x, y) = 0,

with initial condition
u(x, y, 0) = e−x

2−y2−c0x, −2 ≤ x, y ≤ 2,

and boundary condition

u(0, y, t) = i

i− 4te
i((y2+ic20t)/(i−4t)), u(1, y, t) = i

i− 4te
i((1+y2+ic0+ic20t)/(i−4t)),

u(x, 0, t) = i

i− 4te
i((x2+ic0x+ic20t)/(i−4t)),

u(x, 1, t) = i

i− 4te
i((x2+1+ic0x+ic20t)/(i−4t)),

The exact solution is given by

u(x, y, t) = i

i− 4te
i((x2+y2+ic0x+ic20t)/(i−4t)), −2 ≤ x, y ≤ 2.

For dx = dy = 0.5, dt = 0.0002 and 0 ≤ t ≤ 1. The obtained results with (β = 1
2 , ε = 0.55),

are sitting in table 2.35 and figure 2.11, for (β = 1.03, ε = 0.5) are presented in table 2.36, for
(β = 1.99, ε = 0.4) are given in table 2.37, and for β = 2.5, ε = 0.4 are shown in table 2.38.

(s, t) Real part Imaginary part
(0, 0) 3.6724× 10−6 1.6642× 10−4

(0.01, 0.01) 1.0966× 10−3 4.7663× 10−2

(0.02, 0.02) 2.0815× 10−3 9.5420× 10−2

(0.03, 0.03) 2.9561× 10−3 1.4302× 10−2

(0.04, 0.04) 3.7196× 10−3 1.9039× 10−1

(0.05, 0.05) 4.3727× 10−3 2.3743× 10−1

(0.06, 0.06) 4.9175× 10−3 2.8408× 10−1

(0.07, 0.07) 5.3571× 10−3 3.3026× 10−1

(0.08, 0.08) 5.6961× 10−3 3.7587× 10−1

(0.09, 0.09) 5.9399× 10−3 4.2086× 10−1

(s, t) Real part Imaginary part
(0, 0) 7.1509× 10−3 1.4923× 10−2

(0.01, 0.01) 4.0534× 10−3 3.0590× 10−2

(0.02, 0.02) 1.5171× 10−2 7.6129× 10−2

(0.03, 0.03) 2.6174× 10−2 1.2161× 10−2

(0.04, 0.04) 3.7038× 10−2 1.6697× 10−1

(0.05, 0.05) 4.7740× 10−2 2.1212× 10−1

(0.06, 0.06) 5.8253× 10−2 2.5699× 10−1

(0.07, 0.07) 6.8560× 10−2 3.0151× 10−1

(0.08, 0.08) 7.8640× 10−2 3.4560× 10−1

(0.09, 0.09) 8.8473× 10−2 3.8917× 10−1

Table 2.35: Computed errors using GRBFs method for Example (2.15)
(
t=0.0002(left),

t=0.016(right)
)
, with β = 1

2 .
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(s, t) Real part Imaginary part
(0, 0) 1.8941× 10−2 3.1833× 10−2

(0.01, 0.01) 2.0214× 10−2 1.6196× 10−2

(0.02, 0.02) 2.1393× 10−2 6.4146× 10−2

(0.03, 0.03) 2.2475× 10−2 8.1193× 10−2

(0.04, 0.04) 2.3456× 10−2 1.5948× 10−1

(0.05, 0.05) 2.4340× 10−2 2.0670× 10−1

(0.06, 0.06) 2.5112× 10−2 2.5320× 10−1

(0.07, 0.07) 2.5811× 10−2 2.9983× 10−1

(0.08, 0.08) 2.6404× 10−2 3.4558× 10−1

(0.09, 0.09) 2.6906× 10−2 3.9069× 10−1

(s, t) Real part Imaginary part
(0, 0) 1.6881× 10−2 9.9516× 10−2

(0.01, 0.01) 2.9550× 10−2 6.8410× 10−1

(0.02, 0.02) 4.1877× 10−2 7.2821× 10−1

(0.03, 0.03) 5.3834× 10−2 7.7160× 10−1

(0.04, 0.04) 6.5395× 10−2 8.1418× 10−1

(0.05, 0.05) 7.6539× 10−2 8.5591× 10−1

(0.06, 0.06) 8.7242× 10−2 8.9673× 10−1

(0.07, 0.07) 9.7487× 10−2 9.3665× 10−1

(0.08, 0.08) 9.8216× 10−2 9.7532× 10−1

(0.09, 0.09) 1.1654× 10−1 9.9801× 10−1

Table 2.36: Computed errors using GRBFs method for Example (2.15)
(
t=0.0002(left),

t=0.036(right)
)
, with β = 1.03.

(s, t) Real part Imaginary part
(0, 0) 6.4793× 10−2 4.2012× 10−2

(0.01, 0.01) 6.5824× 10−2 6.6113× 10−3

(0.02, 0.02) 6.6786× 10−2 5.5157× 10−5

(0.03, 0.03) 6.7676× 10−2 1.0354× 10−2

(0.04, 0.04) 6.8489× 10−2 1.5168× 10−2

(0.05, 0.05) 6.9225× 10−2 1.9947× 10−1

(0.06, 0.06) 6.9883× 10−2 2.4687× 10−1

(0.07, 0.07) 7.0460× 10−2 2.9376× 10−1

(0.08, 0.08) 7.0960× 10−2 3.4007× 10−1

(0.09, 0.09) 7.1382× 10−2 3.8572× 10−1

(s, t) Real part Imaginary part
(0, 0) 6.2007× 10−2 8.9252× 10−2

(0.01, 0.01) 6.8899× 10−2 2.4920× 10−1

(0.02, 0.02) 7.5646× 10−2 2.9639× 10−1

(0.03, 0.03) 8.2229× 10−2 3.4311× 10−1

(0.04, 0.04) 8.8633× 10−2 3.8931× 10−1

(0.05, 0.05) 9.4839× 10−2 4.3488× 10−1

(0.06, 0.06) 9.8896× 10−2 4.7977× 10−1

(0.07, 0.07) 9.9901× 10−2 5.2390× 10−1

(0.08, 0.08) 9.9201× 10−2 5.6719× 10−1

(0.09, 0.09) 9.9316× 10−2 6.0956× 10−1

Table 2.37: Computed errors using GRBFs method for Example (2.15)
(
t=0.0002(left),

t=0.0172(right)
)
, with β = 1.99.

(s, t) Real part Imaginary part
(0, 0) 5.9901× 10−5 2.9172× 10−3

(0.01, 0.01) 1.0905× 10−3 5.1498× 10−2

(0.02, 0.02) 2.1802× 10−3 1.0000× 10−2

(0.03, 0.03) 3.2048× 10−3 1.4836× 10−1

(0.04, 0.04) 4.1605× 10−3 1.9646× 10−1

(0.05, 0.05) 5.0445× 10−3 2.4424× 10−1

(0.06, 0.06) 5.8549× 10−3 2.9160× 10−1

(0.07, 0.07) 6.5901× 10−3 3.3846× 10−1

(0.08, 0.08) 7.2495× 10−3 3.8474× 10−1

(0.09, 0.09) 7.8333× 10−3 4.3036× 10−1

(s, t) Real part Imaginary part
(0, 0) 3.5521× 10−2 2.2318× 10−2

(0.01, 0.01) 4.1224× 10−2 2.7150× 10−2

(0.02, 0.02) 4.6827× 10−2 3.1955× 10−1

(0.03, 0.03) 5.2313× 10−2 3.6723× 10−1

(0.04, 0.04) 5.7670× 10−2 4.1447× 10−1

(0.05, 0.05) 6.2885× 10−2 4.6119× 10−1

(0.06, 0.06) 6.7948× 10−2 5.0729× 10−1

(0.07, 0.07) 7.2847× 10−2 5.5272× 10−1

(0.08, 0.08) 7.7573× 10−2 5.9738× 10−1

(0.09, 0.09) 8.2117× 10−2 6.4120× 10−1

Table 2.38: Computed errors using GRBFs method for Example (2.15)
(
t=0.0002(left),

t=0.018(right)
)
, with β = 2.5.
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Figure 2.11: The Absolute errors , for t = 0.4, real part(left), imaginary part(right), with β = 1
2 .

2.3 Comparaison between stationary and non-stationary
approaches in interpolating some one and two-dimensional
functions

The convergence of RBF methods can be discussed in terms of two different types of approxi-
mation, stationary and non-stationary. In stationary approximation, the number of centers N
is fixed and the shape parameter ε is refined towards zero. Non-stationary approximation fixes
the value of the shape parameter and N is increased. The theoritical convergence rates may
be difficult to achieve computationally due to the condition number of the resulting matrix
growing with decreasing both fill distance and shape parameter. In the following, we analyse the
efficiency and applicability of the two approaches for scattered data approximation by globally
RBFs. In the following, we analyse the efficiency and applicability of the two approaches for
scattered data approximation by globally RBFs.

The set of interpolation data points
The most known set of interpolation data points are the Chebyshev, Halton and Sobol

points.
Chebyshev nodes
For a given positive integer n the Chebychev nodes in the interval [−1, 1] are

xk = cos

(
2k − 1

2n Π
)
, k = 1, . . . , n.

In our experiments we are going to use the shifted Chebychev nodes in [0, 1] given by

xk = 1
2 + 1

2cos
(

2k − 1
2n Π

)
, k = 1, . . . , n.

Halton nodes
In statistics, Halton sequence are sequences used to generate points in space for numerical

methods such as Monte Carlo simulations. Although these sequences are deterministic, they
are of low discrepancy, that is appear to be random for many purposes. They were first
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introduced in 1960 and are an example of a quasi-random number sequence. They generalize
the one-dimensional var der Corput sequence.

Sobol nodes
Sobol sequences are an example of quasi-random low-discrepancy sequences. They were first

introduced by thr Russian mathematician Ilya M. Sobol in 1967. These sequences use a base
of two to form successively finer uniform partitions of the unit interval and then reorder the
coordinates in each dimension.

Numerical examples
Let Pf(x) be the interpolant of f(x), in order to show the convergence accuracy of the

radial basis function interpolation , we are going to calculate the absolute errors at the equally
spaced points in [0, 1] using the formula

e(x) = |Pf (x)− f(x)|, 0 ≤ x ≤ 1.

Also, we have,
Root-mean-square error (RMS):

RMS-error =

√√√√ 1
N

N∑
i=1

[Pf (xi)− f(xi)]2 = 1√
N
||Pf − f ||2, (2.42)

where xi, i = 1, . . . , N are the evaluation points.
For our experiments we are going to use the following 2D and 1D Franke’s test functions:
2D Franke’s test functions

f1(x, y) = 0.75e(−(9x−2)2+ (9y−2)2
4 ), x ∈ [0, 1]× [0, 1].

f2(x, y) = 0.75e(−((9x+1)2/49+(9y+1)2/10)), x ∈ [0, 1]× [0, 1].
f3(x, y) = sinc(x)sinc(y), x ∈ [0, 1]× [0, 1].
1D Franke’s test functions
f1(x) = x3 + x2 + 1, x ∈ [0, 1].
f2(x) = sinc(x) + 1, x ∈ [0, 1].

2.3.1 Stationary approach

For 2D and 1D stationary approach, we fix the number of centers N = 289, N = 17 respectively.
RMS-errors, Max-errors and absolute errors are computed for different values of shape parameter
ε using multiquadric RBF and with Halton, Sobol and Chebyshev points. The numerical tests
are given in tables 2.39-2.43 and figures 2.12-2.16.
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Table 2.39: 2D stationary interpolation (N = 289) to the test function f1(x, y) with Multi-
quadric RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebychev points
ε MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 8.2487e-03 5.2283e-04 9.7009e-03 1.3026e-03 2.5595e-03 5.5118e-04
0.7 1.8078e-04 13389e-05 3.9934e-03 4.3877e-04 2.8352e-03 7.9621e-04
1.2 3.3123e-02 2.3527e-03 8.2889e-02 1.1020e-02 2.7342e-03 8.7432e-04
1.6 8.8136e-02 9.0501e-03 4.0381e-01 3.8320e-02 2.6120e-03 8.7284e-04
3 4.5229e-01 1.4229e-01 6.6016e-01 7.8839e-02 .2.7617e-01 1.699e-01

Figure 2.12: Absolute errors for stationary interpolation using Halton points to the test function
f1(x, y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and ε=
0.2,0.7,1.2,1.6,3, (left), the condition number (right).

Table 2.40: 2D stationary interpolation (N = 289) to the test function f2(x, y) with multi-
quadric RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
ε MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 4.3052e-03 4.1163e-04 7.0019e-04 1.2867e-04 8.7577e-05 1.9101e-05
0.7 1.0122e-04 7.1236e-06 9.9876e-05 8.1483e-07 2.2902e-06 6.91147e-07
1.2 4.0902e-05 3.9870e-06 1.0606e-05 1.3681e-06 1.40252e-06 8.0095e-07
1.6 8.2537e-05 84913e-06 2.2973e-04 3.5719e-05 4.5406e-05 2.3142e-05
3 1.1461e-02 2.8493e-03 7.9248e-03 3.0039e-03 3.5045e-03 1.3482e-03

Table 2.41: 2D stationary interpolation (N = 289) to the test function f3(x, y) with Multi-
quadric RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
ε MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 6.5239e-03 5.433e-04 8.6697e-04 11483e-04 4.1378e-05 1.3596e-05
0.7 2.1649e-05 1.3475e-06 2.0369e-06 2.5393e-07 7.53968e-08 2.42744e-08
1.2 1.9017e-06 2.6104e-07 1.2744e-06 1.8414e-07 8.1136e-08 5.45705e-08
1.6 1.1837e-06 1.1038e-07 2.4734e-06 5.2780e-07 1.7337e-07 7.8064e-08
3 3.0919e-06 6.9209e-07 2.0032e-05 8.4621e-06 1.0456e-06 4.0600e-07
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Figure 2.13: Absolute errors for stationary interpolation with Sobol points the test function
f2(x, y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and ε=
0.2,1.7,1.2,1.6,3, (left), the condition number (right).

Figure 2.14: Absolute errors for stationary interpolation using Chebyshev to the test function
f3(x, y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and ε=
0.2,1.7,1.2,1.6,3, (left), the condition number (right).

Table 2.42: 1D stationary interpolation (N = 17) to the test function f1(x) with Multiquadric
RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
ε MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 2.1189e-04 6.0906e-05 1.3000e-02 3.1981e-04 1.9005e-04 8.2560e-05
0.6 1.4190e-04 1.1925e-04 8.7795e-05 4.5640e-05 8.9861e-04 8.2265e-04
1.5 1.9652e-04 1.7681e-04 4.3145e-04 3.2300e-04 3.4495e-04 2.8935e-04
4 3.3761e-04 3.3333e-04 5.6112e-04 5.5600e-04 3.2464e-04 3.2006e-04
9 5.5214e-05 3.4000e-05 5.5765e-05 3.8200e-05 5.1522e-05 3.4852e-05
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Figure 2.15: Absolute errors for stationary interpolation using Halton points to the test function
f1(x) with multiquadric RBF based on M = 20 uniformly spaced points in [0, 1] and ε=
0.2,0.6,1.5,4,9 , (left), the condition number (right).

Table 2.43: 1D stationary interpolation (N = 17) to the test function f2(x) with multiquadric
RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
ε MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 1.3773e-04 4.3354-05 6.7480e-04 1.7075e-04 7.0838e-05 4.0763e-05
0.6 1.5740e-04 1.2784e-04 3.1620e-04 2.3401e-04 1.6270e-04 1.2083e-04
1.5 1.3713e-04 1.0902e-04 1.5000e-03 1.2000e-03 5.7895e-05 4.2606e-05
4 6.0397e-05 5.8292e-05 2.0285-04 2.0190e-04 1.5183e-05 1.1386e-05
9 5.0826e-04 3.0552e-04 7.9172e-04 5.3070e-04 7.0278e-04 4.9092e-04

Figure 2.16: Absolute errors for stationary interpolation with Chebyshev points to the test
function f2(x) with multiquadric RBF based on M = 20 uniformly spaced points in [0, 1] and
ε= 0.2,0.6,1.5,4,9, (left), the condition number (right).
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2.3.2 Non-stationary approach

For 2D and 1D non-stationary approach, we fix the value of shape parameter ε (obtained using
different strategies). RMS-errors, Max-errors and absolute errors are computed for different
values of N using multiquadric RBF and with Halton, Sobol and Chebyshev points. The
numerical tests are given in tables (2.44-2.48) and figures 2.17-2.21.

Table 2.44: 2D non-stationary interpolation to the test function f1(x, y) with multiquadric
RBF using Halton, Sobol and Chebyshev points, with ε = 0.404 based on leave-one-out cross
validation strategy.

Halton points Sobol points Chebyshev points
N MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
9 5.1315e-01 1.0457e-01 .2.9910e-01 8.6722e-02 6.7251e-01 1.6202e-01
25 2.9913e-01 4.9196e-02 9.2517e-02 2.1972e-02 7.4536e-02 1.6952e-02
81 4.4413e-02 3.6867e-03 4.3246e-03 6.9907e-04 4.7335e-03 1.4676e-03
289 3.1021e-04 2.1030e-05 2.4821e-05 1.9365e-06 1.9380e-06 4.3116e-07
1089 8.9652e-06 6.0805e-07 1.5201e-07 2.8906e-08 6.1803e-09 2.4224e-09

Figure 2.17: Absolute errors for non-stationary interpolation with ε = 0.404 using Halton points
to the test function f1(x, y) with multiquadric RBF based on M = 225 uniformly spaced points
in [0, 1] and N = 9, 25, 81, 289, 1089, (left), the condition number (right).
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Table 2.45: 2D non-stationary interpolation to the test function f2(x, y) with Multiquadric
RBF using Halton, Sobol and Chebyshev points, with ε = 0.5 based on power functions strategy.

Halton points Sobol points Chebyshev points
N MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
9 2.8640e-01 4.9658e-02 1.0342e-01 2.9548e-02 7.0008e-02 2.5809e-02
25 6.1532e-02 8.5300e-03 4.4339e-02 7.7823e-03 2.0312e-02 6.5735e-03
81 5.3381e-03 5.2796e-04 5.4857e-03 7.0515e-04 7.6353e-04 2.3434e-04
289 3.7393e-04 2.5547e-05 6.2459e-05 5.0461e-06 2.2616e-06 5.3155e-07
1089 1.7536e-05 1.4928e-06 9.3336e-07 1.1966e-07 4.13205e-08 1.9331e-08

Figure 2.18: Absolute errors for non-stationary interpolation with ε = 0.5 using Sobol points to
the test function f2(x, y) with multiquadric RBF based on M = 225 uniformly spaced points in
[0, 1] and N = 9, 25, 81, 289, 1089, (left), the condition number (right).

Table 2.46: 2D non-stationary interpolation to the test function f3(x, y) with multiquadric
RBF using Halton, Sobol and Chebyshev points, with ε = 1.6 based on linear variable shape
parameter strategy.

Halton points Sobol points Chebyshev points
N MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
9 2.6950e-02 6.3979e-03 8.0187e-01 6.2289e-02 3.14308e-02 1.3940e-02
25 3.0421e-03 5.8786e-04 5.1026e-02 2.9727e-03 7.7250e-04 2.9675e-04
81 4.5207e-05 3.8551e-06 3.8587e-04 1.37e-05 6.6310e-07 2.67398e-07
289 1.8378e-06 1.1038e-07 1.3422e-05 6.1619e-06 1.73378e-07 7.8064e-08
1089 1.0175e-06 3.7494e-07 3.7494e-07 6.1646e-08 4.90822e-07 1.7926e-08
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Figure 2.19: Absolute errors for non-stationary interpolation with ε = 1.6 using Chebyshev
points to the test function f3(x, y) with multiquadric RBF based on M = 225 uniformly spaced
points in [0, 1] and N = 9, 25, 81, 289, 1089, (left), the condition number (right).

Table 2.47: 1D non-stationary interpolation (ε = 1.1818) obtained using LOOCV strategy to
the test function f1(x) with multiquadric RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
N MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
3 8.5246e4e-02 2.1517e-02 2.1047e-02 9.6999e-03 1.8302e-02 8.9470e-03
5 1.4259e-02 3.3936e-03 1.2666e-03 5.4619e-04 1.1480e-03 5.0893e-04
7 7.2383e-04 1.6244e-04 1.36676e-04 4.1719e-05 8.1498e-05 3.3618e-05
9 3.2763e-04 1.6094e-04 3.5024e-05 1.7944e-05 4.8233e-06 2.4234e-06
17 7.1340e-04 5.8457e-04 1.1443e-03 1.0710e-03 5.4030e-04 3.9382e-04

Figure 2.20: Absolute errors for non-stationary interpolation ε = 1.1818 using Sobol points to
the test function f1(x) with multiquadric RBF based on M = 20 uniformly spaced points in
[0, 1] and N = 3, 5, 7, 9, 17 , (left), the condition number (right).
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Table 2.48: 1D non-stationary interpolation (ε = 5.4545) obtained using LOOCV strategy to
the test function f2(x) with multiquadric RBF using Halton, Sobol and Chebyshev points.

Halton points Sobol points Chebyshev points
N MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
3 8.1496e-03 2.2664e-03 3.4965e-03 1.5535e-03 2.8222e-03 1.4316e-03
5 5.2554e-03 1.3007e-03 2.8605e-04 2.7069e-04 4.8607e-05 2.8909e-05
7 1.2072e-03 1.1692e-03 2.2625e-04 2.1388e-04 4.8279e-05 3.5853e-05
9 5.7929e-04 5.6974e-04 1.3540e-04 1.1491e-04 3.3140e-05 2.1139e-05
17 3.0636e-05 2.4027e-05 1.1582e-04 1.0469e-04 4.3451e-05 3.1373e-05

Figure 2.21: Absolute errors for non-stationary interpolation with ε = 5.4545 using Chebyshev
points the test function f2(x) with multiquadric based on power M = 20 uniformly spaced
points in [0, 1] and N = 3, 5, 7, 9, 17, (left), the condition number (right).

Analysis of numerical results
The subject in this work is to give a comparaison between the stationary and non-stationary

interpolation approaches. From the previous results, we can conclude

* We see clearly the effect of the number of data points N on the condition number of
interpolation matrix (condition number is growing with N increasing), for all types of
nodes.

* For instance, in general we see that Chebyshev nodes gives good results in a comparaison
with Sobol and Halton nodes in 1D and 2D approximations in both approaches.
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* We can see that, from the tests of stationary and non-stationary appraoches that the
better way is to find at least optimal strategies of N and the shape paramater on both
approaches.

* In both, stationary and non-stationary approaches, the accuracy is better when ε is toward
zero.
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Chapter 3

Application of GRBFs and CSRBFs for
solving two-dimensional
Volterra-Fredholm integral equations

Radial basis functions interpolation is a very well-established numerical technique for
reconstructing multivariate functions from the so called scattered data. Recent works give a
general description for RBF interpolation-see [13, 84]. Radial basis functions method is a very
attractive method when it is applied to high scattered data interpolation problems, compared
to alternative methods such as finite elements and finite difference methods. The most popular
globally and compactly supported radial basis functions are given in [84]. Polynomials and
trigonometric functions can also be used as basis functions-see [55].

In [34] a comparative study indicates that the most elegant interpolation RBF is the so
called Hardy’s multiquadric. After that a huge amount of studies have been carried out to
show the reliability of multivariate scattered data interpolation. Radial basis functions are
also used for solving partial differential equations. In 1990, Edward Kansa first introduced
the collocation method by radial basis functions-see [49]. Many radial basis functions (RBFs)
contain a free shape parameter ε. The choice of this parameter has a big effect on the accuracy
of RBF interpolation [34, 36]. The method of cross validation has long been used in the
statistics literature, and the special case of leave-one-out cross validation (LOOCV) represents
the basis of many strategies to find both the optimal number of iterations and the optimal
shape parameter. The globally RBFs interpolation problem using a large number of data points
can cause serious stability problems embodied in that the matrix is dense and can be highly ill
conditioned, so it was suggested that the difficulty can be overcome by the use of compactly
supported positive definite RBFs (CS-PD-RBF) and it was demonstrated by [85] that for a
given dimension d and smoothness C2k, a positive definite radial basis function in the form of a
univariate polynomial of minimal degree always exists, and it is unique within a constant factor.
Results were given for d = 1, d ≤ 3 and d ≤ 5, for the current two- dimensional problems. The
use of compactly supported radial basis functions can reduce the resultant full matrix to a
sparse one, also the operation of the banded matrix system could reduce the ill-conditioning of
the resultant coefficient matrix when using the global radial

Nonlinear phenomena play an important role in applied mathematics, physics and engineering.
Many phenomena in applied science are modeled by nonlinear equations. Solutions of nonlinear
evolution equations provide better understanding of the physical mecanism of many phenomena
[63, 95]. In general finding exact solutions is very difficult; so it is necessary to use numerical
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techniques for finding approximate solutions.
The aim of this chapter ([24]) is to solve the mixed two-dimensional Volterra-Fredholm

integral equation written in the form

u(s, t) = g(s, t) +
∫ s

0

∫
Ω′
U(s, t, x, y, u(x, y))dydx, (3.1)

where Ω′ is a closed subset of R, The function g(s, t) and U(s, t, x, y, u) are defined respectively
on D = [0, T ]×Ω′ , and S =

{
(s, t, x, y, u) : 0 ≤ x ≤ s ≤ T, t, y ∈ Ω′

}
, and u(s, t) is an unknown

scalar valued function defined on D. We assume that U(s, t, x, y, u) = k(s, t, x, y)[u(s, t)]p, p is
a positive integer.

The equation (3.1) has a unique solution u ∈ C(D), D = [0, T ]× Ω′ under the conditions
given in [9, 64].

In our work, we take Ω′ = [0, a] ⊂ R, it becomes clear that all results can be readily extended
to more general regions (Ω′ ⊂ Rn).

The analytical solutions of Volterra-Fredholm equation (3.1) either do not exist or are
hard to find, hence some numerical methods have been proposed for the general equations,
such that collocation methods, projection methods, Adomian decomposition method, meshless
method using radial basis functions, ...etc. Two-dimensional integral equations have significant
applications in various fields of sciences and engineering such as, heat conduction problem
[5], diffusion problem [4], plasma physics [27], diffraction theory [66], axisymmetric contact
for bodies with complex rheology [59], ...etc. Instead of dealing with a multivariate function
φ whose complexity increases proportionally to the space dimension, in our work, we have
the same univariate function for all choices of dimensions. Multiquadric radial basis function
(MQ-RBF) is related to a consistent solution of the harmonic potential problem and it has a
physical foundation. RBFs also are related to prewavelets. There are many important problems
in biology and finance markets, physics, and chemistry that involve PDEs in higher dimension
which can be also converted to higher integral equations and can be solved by RBF interpolation,
for examples

- Dirac relativity.

- The six dimensional Boltzmann’s equation.

- The Fokker-Plank equation that describes the evolution of Probability density function.

- The Benjamin-Bona-Malhony equation which has many physical applications, it has been
utilized in different scientific areas, such that a constic gravity waves in compressible
fluids, analysis of surfaces waves of long wavelength in liquids.

Radial basis functions network is a neural network approach, by viewing the design as a curve
fitting problem in a high dimensional space. Learning is equivalent to finding a multidimensional
function that provides a benefit to training data with the criterian for benefit being measured
in some statistical scheme-see [26, 96]. There are distinct benefits from the idea of using
generalized multiquadric and compactly supported radial basis functions, that can be used
for irregular regions, high accuracy, wide applicability, sparse matrix for the use of compactly
radial basis functions, and a general convergence also can be obtained. In this study, we employ
generalized multiquadric with compactly supported RBF interpolation to generate a numerical
solution technique for solving Volterra-Fredholm two-dimensional integral equation. To do this,
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we require a suitable integration based on Legendre-Gauss-Lobatto quadrature formula. The
series expansion of the solution by radial basis functions is used to convert our problem to
nonlinear system of equations. This technique is simple and its precision is investigated on
some test examples.

3.1 Radial basis and compactly radial basis functions

The generalized multiquadric radial basis function (GMQ) Φ(r) = (r2 + ε2)β has the exponent
β and shape parameter ε that controls the shape of the RBF. In the cases of β < 0, and
0 < β < 1, the GMQ interpolation problem can be easily shown to be invertible. The GMQ is
conditionally positive definite of order dβe, when β > 1. So it is necessary to append low order
polynomials to the RBF interpolant , to assure that system matrix is invertible [29].

Half-integer exponents have been formed to work well for values of β in the GMQ, but we
are going to investigate non-half-integer values as well. According to [83] , β = 1.03 was an
optimal value for the GMQ, in 2003, [93] found that β = 1.99 is an optimal value. Also [52]
suggested that the GMQ has better outcomes when β = 5

2 . In our numerical experiments the
GMQ radial basis function will be performed for better understanding the best choices of the
integer β.

Figure 3.1: The GMQ function, with different values of β, when ε = 5.
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Figure 3.2: The GMQ function, with different values of β, when ε = 0.5.

One of the most important RBFs are the compactly supported radial basis functions introduced
in chapter 1, and the whole idea of their construction is based on the earlier work by Askey
(1973) who observed by considering Fourier transforms that the truncated power function
φ(r) = (1− r)l+ gives rise to positive definite interpolation matrices for l ≥ [d/2] + 1.

Some of Wu’s and Wendland’s compactly supported radial basis functions are given in tables
3.1-3.2.

φ2,0(r) = (1− r)5
+(1 + 5r + 9r2 + 5r3 + r4) C4 ∩ SPD(R)

φ2,1(r) = Dφ2(r) = (1− r)4
+(4 + 16r + 12r2 + 3r3) C2 ∩ SPD(R3)

φ2,2(r) = D2φ2(r) = (1− r)3
+(8 + 9r + 3r2) C0 ∩ SPD(R5)

Table 3.1: Examples of Wu’s CSRB functions.

φ3,0(r) = (1− r)3
+ C0 ∩ SPD(R5)

φ3,1(r) = (1− r)4
+(1 + 4r) C2 ∩ SPD(R3)

φ3,2(r) = (1− r)6
+(3 + 18r + 35r2) C4 ∩ SPD(R3)

Table 3.2: Examples of Wendland’s CSRB functions.

Furthermore, another class of CSRBFs constructed by Buhmann [12] is reminiscent of the
popular thin plate splines. Three examples of these CSRBFs are given below

φ(x) =
(
2r4log(r) + 7r4/2 + 16r3/3 + 2r2 + 1/6

)
+
, x ∈ R3;

φ(x) =
(
112r9/2/45 + 16r7/2/3 + 7r4 + 14r2/15 + 1/9

)
+
, x ∈ R2
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φ(x) =
(
1/18− r2 + 4r3/9 + r4/2 + 4r3log(r)/3

)
+
, x ∈ R2.

For our study we use the Wendland’s compactly supported radial basis function φσ4,2.
Knowing that interpolation is always possible, it is necessary to look for the behaviour of the
interpolation error u− Pu (pointwise or in a given norm).

Figure 3.3: The Wendland compactly supported radial basis function φ4,2.

Theorem 3.1. [85] Let s = d/2 + k + 1/2 and k ≥ 1 for d = 1, 2. For every u ∈ Hs(Rd) and
every compact Ω ⊂ Rd satisfying a uniform interior cone condition, the interpolant Pu,X on
X = {x1, x2, . . . , xN} ⊂ Ω satisfying the estimate

||u− Pu,X ||L∞(Ω) ≤ C||u||Hs(Rd)h
k+1/2, (3.2)

with H is a sobolev space and h = sup
x∈Ω

min
1≤i≤N

||x − xi||2 sufficiently small. Thus interpolation

with Φd,k provides at least approximation of order k + 1/2.

3.2 Legendre–Gauss–Lobatto nodes and weights

The shifted Legendre–Gauss–Lobatto nodes are x0 = 0 < x1 < · · · < xN−1 < xN = 1, and xm,
1 ≤ m ≤ N − 1 are the zeros of L′(x), where L′(x) is the derivative of Legendre polynomial of
degree N , with respect to x ∈ [0, 1]. We approximate the integral of a function u on [0, 1] as∫ 1

0
u(x)dx =

N∑
i=0

wiu(xi), (3.3)

where xi are the Legendre–Gauss–Lobatto nodes and the weights are wi given in [16] as.

wi = 1
N(N + 1) .

1
(LN(xi)2) , i = 0, 1, . . . , N. (3.4)

The integration given in (3.3) is exact whenever u(x) is a polynomial of degree ≤ 2N + 1.
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3.3 Description of the numerical technique

Let Φ(r) be the radial basis function, we approximate u(s, t) with interpolation by the function
Φ(r) as follow

u(s, t) ≈
N∑
i=0

N∑
j=0

cijΦij(s, t) = CTΦ(s, t), (3.5)

where Φij = Φij(s, t) = Φ(||(s, t)− (si, tj)||),
Φ(s, t) = [Φ00,Φ10, . . . ,ΦN0,Φ01,Φ11, . . . ,ΦN1, . . . ,Φ0N ,Φ1N , . . . ,ΦNN ]T , and
CT = [c00, c10, . . . , cN0, c01, c11, . . . , cN1, . . . , c0N , c1N , . . . , cNN ]T .
Let given the two-dimensional Volterra-Fredholm integral equation (3.1) with Ω′ = [0, 1]

and s ∈ Ω′ .
First, we collocate eq.(3.1) at shifted Legendre–Gauss–Lobatto nodes (si, tj) for i = 0, . . . , N ,
j = 0, ..., N . Hence, we have

u(si, tj) = g(si, tj) +
∫ si

0

∫ 1

0
U(si, tj, x, y, u(x, y))dydx. (3.6)

Changing the variable τ = 1
si
x, to transform the interval [0, si] to [0, 1]. Then, we have

u(si, tj) = g(si, tj) + si

∫ 1

0

∫ 1

0
U(si, tj, τsi, y, u(τsi, y))dydτ. (3.7)

By using strictly positive definite function Φ(r) or RBF approximation of u(s, t) and applying
numerical integration method given in (3.3), we can approximate the integral in equation (3.7)
to obtain

CTΦ(si, tj) = g(si, tj) + si
N∑

r1=0

N∑
r2=0

ωr1ωr2U(si, tj, τr1si, yr2 , CTΦ(τr1si, yr2)), (3.8)

where wr1 and wr2 , r1, r2 = 0, . . . , N are given in equation (3.4). Then we obtain a nonlinear
system of equations that can be solved via iteration methods such as Newton’s iteration method
to obtain the unknown vector C and then

û(s, t) =
N∑
i=0

N∑
j=0

cijΦij(s, t),

is the meshless discrete collocation solution based on the RBF approximation for the integral
equation (3.1).

The following algorithm gives the numerical approximate solution of equation (3.1).
Algorithm of the proposed method

• Step 1. Input the given functions g(s, t), U(s, t, u(x, y)).

• Step 2. Choose an RBF function Φ(r), we suggest here GMQ and CSRBF.

• Step 3. Choose the set of points (si, tj), the shape parameter ε and the parameters β, σ.

• Step 4. Solve the (N + 1)× (N + 1) system of nonlinear equations (3.8) to determine the
unknown vector C.

• Step 5. Substitute the obtained value of C in equation (3.5) to obtain the aprroximate
solution u(s, t).
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3.4 Convergence analysis and error estimate

In the following, we investigate the error convergence analysis of the proposed method.

Theorem 3.2. [84] (p. 139) Suppose Φ ∈ C(Rd) ∩ L1(Rd) is a real-valued strictly positive
definite function. Then the real native Hilbert space of Φ on Rd is given by

NΦ(Rd) =

u ∈ C(Rd) ∩ L2(Rd) : û√
Φ̂
∈ L2(Rd)

 , (3.9)

with inner product〈
u1, u2

〉
NΦ(Rd)

= 1√
2π

〈
û1√
Φ̂
,
û2√
Φ̂

〉
L2(Rd)

= 1√
2π

∫
Rd

û1(y)û2(y)
Φ̂

dy, (3.10)

where û denotes Fourier transform of u. Furthermore, every u ∈ NΦ(Rd) has the representation

u(χ) = 1√
2π

∫
Rd
ûeiχydy.

In particular, every u ∈ NΦ(Rd) can be recoverd from its Fourier transform û ∈ L1(Rd) ∩
L2(Rd). The native spaces of translation invariant functions can be viewed as a generalization
of standard Sobolev spaces. In other words, if the Fourier transform of strictly positive definite
function Φ decays only algebraically, then the function Φ has a corresponding Sobolev space as
its native space-see [29, 84].

Let Ω = [0, 1]× [0, 1] and CN(Ω) = span {Φ(||x− x1||), . . . ,Φ(||x− xN ||)}. We define the
collocation operator PN : NΦ(Ω) −→ CN(Ω) as follows

PNu(x) =
N∑
i=1

ciφ(||x− xi||, x ∈ Ω. (3.11)

Theorem 3.3. [84](p.190) Let Ω be a cube in Rd Suppose that Φ = φ(‖ . ‖2) is a conditionally
positive definite function such that f := φ(√.) satisfies | f (l)(r) |≤ l!M l for all integers l ≥ l0
and all r ∈ [0,∞), where M > 0 is a fixed constant. Then there exists a constant c > 0 such
that the error between a function f ∈ NΦ(Ω) and its interpolant sf,X can be bounded by

||u− PNu||L∞(Ω) ≤ e−C/hX,Ω|u|NΦ(Ω), (3.12)

provided hX ≤ h0(l).

for all data sites X with sufficiently small hX . All radial basis and strictly positive definite
functions give rise to reproducing kernels with respect to some Hilbert spaces which are named
native Hilbert spaces.
Now, we represent the convergence analysis. Let given the two-dimensional integral equation
(3.1), with g(s, t) ∈ C([0, 1]× [0, 1]) and U(s, t, u(x, y)) is continuous for all (s, t) ∈ [0, 1]× [0, 1]
and all x, y, satisfy the (uniform) Lipschitz conditions

|U(s, t, x, y, u(x, y)− U(s, t, x, y, u1(x, y))| ≤ L|u− u1|. (3.13)
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We transform the equation (3.1) to operator form

Tu = u, (3.14)

where the operator T : C(Ω) −→ C(Ω), is defined as
Tu = g(s, t) +

∫ s

0

∫
Ω′
U(s, t, x, y, u(x, y))dydx. Therefore, solving the integral equation (3.1) is

equivalent to obtain the fixed points of operator T . Utilizing the Gauss–Legendre quadrature
rule to approximate the integral in equation (3.1), a sequence of numerical integral operators
TN , N ≥ 1 is introduced by

TNu(s, t) = g(s, t) + s
N∑

r1=0

N∑
r2=0

ωr1ωr2U(s, t, τr1s, yr2 , u(τr1s, yr2)), t, s ∈ [0, 1]. (3.15)

The discrete collocation method for solving equation (3.1) is defined by

zN = PNTN(zN). (3.16)

The iterated discrete collocation solution is defined by

ẑN = TN(zN). (3.17)

Hence,
zN = PN(ẑN), (3.18)

and
ẑN = TNPN(ẑN). (3.19)

We suppose that

H1. T and {TN , N ≥ 1}, are completely continuous nonlinear operators on C([0, 1]× [0, 1]).

H2. {TN , N ≥ 1} is a collectively compact family on C([0, 1]× [0, 1]).

H3. {TN , N ≥ 1} is pointwise convergent to T on C([0, 1]× [0, 1]), i.e., TN(u) −→ T (u), u ∈
C([0, 1]× [0, 1]).

H4. At each point of C([0, 1]× [0, 1]), {TN} is an equicontinuous family.

H5. T and {TN , N ≥ 1} are twice Frechet differential on B(u0, r) = {u : ||u− u0|| ≤ r, r > 0}
and moreover ||T ′′u||, ||T ′′Nu|| ≤M <∞, N ≥ 1, u ∈ B(u0, r).

The previous hypotheses on T and TN , N ≥ 1 are listed and labeled in the following [1, 2, 3].
Theorem 4 in [3] affirms that under the previous conditions on B(u0, r), and let u0 be a fixed
point of the operator T and also assume that 1 is not an eigenvalue of T ′(u0). If H5 is satisfied
on B(u0, r) ⊂ C([0, 1] × [0, 1]). Then u0 is an isolated fixed point of T , of nonzero index,
Moreover, there are 0 < ε ≤ r and N1 > 0 such that for every N ≥ N1, TNPN has a unique
fixed point ẑN in B(u0, ε). Also, there exist γ > 0 such that

||ẑN − u0||L∞(Ω) ≤ γ||Tu0 − TNPNu0||L∞(Ω), N ≥ N1, (3.20)

this gives a bound on the rate of convergence of ẑN and u0. The proof of the previous results
is based on the fact that the operators {TNPN} also satisfies the hypotheses H1-H4 and the
remainder of the proof follows from Atkinson [1]. For the convergence of zN to u, we use the
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results given by [98] and also the works of [1, 2, 3] as follow
Let eN = u− zN the error estimation of the proposed technique, we can write eN in the form

eN = u− PNu+ PNu− zN , (3.21)

using equation (3.14), we have PNTu = PNu. Applying equation (3.16), we obtain

PNu−zN = PNTu−PNTNzN = PN [Tu−TNzN ] = PN
(

[Tu−TNu]+ [TNu−TNzN ]
)
. (3.22)

We use mean-Value theorem to the kernel function U(s, t, x, y, u(x, y)) implies that there exists
a function θN(s, t), whose value is between u(s, t) and zN(s, t), such that

U(s, t, x, y, u(x, y))− U(s, t, x, y, zN) = U(s, t, x, y, θN(x, y))eN(x, y). (3.23)

From equations (3.15) and (3.23), we have

TNu− TNzN = TN(u− zN) = s
N∑

r1=0

N∑
r2=0

ωr1ωr2U [s, t, τr1s, yr2 , u(τr1s, yr2)] (3.24)

− s
N∑

r1=0

N∑
r2=0

ωr1ωr2U [s, t, τr1s, yr2 , zN(τr1s, yr2 ]

= s
N∑

r1=0

N∑
r2=0

ωr1ωr2U [s, t, τr1s, yr2 , θN(τr1s, yr2)]eN(τr1s, yr2).

Let
TNu− TNzN = G1(u− zN), (3.25)

where
(G1ψ)(s, t) = s

N∑
r1=0

N∑
r2=0

ωr1ωr2U [s, t, τr1s, yr2 , θN(τr1s, yr2)]ψ(τr1s, yr2). (3.26)

Then, by using equation (3.22), we obtain

eN = u− PNu+ PNu− zN = u− PNu+ PN
(

[Tu− TNu] +G1([u− zN ])
)
, (3.27)

hence,
[I − PNG1](u− zN) = u− PNu+ PN([Tu− TNu]), (3.28)

this is equivalent to

[I − PNG1]eN = u− PNu+ PN([Tu− TNu]), (3.29)

Now, we show the existence of the inverse [I − PNG1]. Let

(G2ψ)(s, t) = s
N∑

r1=0

N∑
r2=0

ωr1ωr2Uu[s, t, τr1s, yr2 , u(τr1s, yr2)]ψ(τr1s, yr2), (3.30)

then, we have,

I − PNG1 = I − PNG2 + PN(G2 −G1) (3.31)
= (I −G2) + (I − PN)G2 + PN(G2 −G1)

= (I −G2)
[
I + (I −G2)−1[(I − PN)G2 + PN(G2 −G1)]

]
.
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The existence and uniform boundedness of (I − G2)−1 and using that ||G2 − G1|| −→ 0 as
N −→∞, ||(I−PN )G2|| −→ 0 as N −→∞ [43, 98]. We obtain that the operator (I−PNG1)−1

exists and is uniformly bounded for sufficiently large N . From the uniformly boundedness of
the family {PN} we get

C1 = sup
N≥1
||PN ||.

We have
||eN || ≤ ||(I − PNG1)−1|| ||u− PNu+ PN([Tu− TNu])||, (3.32)

||eN || ≤ C2
(
Clh

l
X |u|NΦ(Ω)

)
+ C2C1||[Tu− TNu]||, (3.33)

||eN || ≤ C2Clh
l
X |u|NΦ(Ω) + C2C1||[Tu− TNu]||, (3.34)

where
||(I − PNG1)−1|| ≤ C2.

Since, hlX −→ 0 as N −→∞ (Justified by the quasi-uniform condition on X), and lim
N−→∞

||[Tu−
TNu]|| = 0 (The error caused by numerical integration scheme ) [3], yields to zN −→ u. This
completes the proof.

For the error estimation by using the compactly supported radial basis function, we just
use the estimation in equation (3.2).
Remark 3.1. If zN is a fixed point of equation (3.16), and consequently, a solution for the
presented method, we consider the decomposition

u− zN = u− PN ẑN =
(
u− PNu

)
+ PN

(
u− ẑN

)
,

which gives
||u− zN ||∞ ≤ ||u− PNu||∞ + ||PN || ||u− ẑN ||∞,

by using (3.20), we get

||u− zN ||∞ ≤ ||u− PNu||∞ + γ||PN || ||Tu− TNPNu||∞ (3.35)

≤ ||u− PNu||∞ + γ||PN ||
[
||Tu− TNu||∞ + ||TN || ||u− PNu||∞

]

≤ ||u− PNu||∞ + γ||PN ||
[
||Tu− TNu||∞ + γ1||u− PNu||∞

]

≤
(

1 + γγ1||PN ||
)
||u− PNu||∞ + γ||PN ||

[
||Tu− TNu||∞

]

≤
(

1 + γγ1C1

)
||u− PNu||∞ + γC1

[
||Tu− TNu||∞

]
,

where ||TN || ≤ γ1. Hence, the error for the presented method is mainly based on the error of
the RBF interpolation and the error of the integration rule.

3.5 Analysis of numerical examples

In this section some comparative examples are provided to show the strength of the two proposed
numerical methods in approximating the solution of two-dimensional Volterra-Fredholm integral
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equations. The aim here is to show that the choice of generalized multiquadric radial basis
functions with the optimal exponent β gives a good accuracy for the approximation of the
exact solution. From the test examples, we confirm that in different cases, the optimal values
of β give a good accuracy compared with the results obtained by the compactly radial basis
functions.

To analyse the efficiency and accuracy of the technique mentioned in the previous section,
it was applied to some linear and nonlinear Volterra-Fredholm integral equations. The values
of absolute error at some different points are given by the following formula

e(s, t) = |u(s, t)− uN(s, t)|, 0 ≤ s, t ≤ 1.
The errors are represented in the following tables using different values of N = 3, 5 and 7, and
some values of the parameters ε and σ. All the numerical computations have been done using
MATLAB 2011.
Example 3.1. Consider the following linear Volterra–Fredholm integral equation [58]

U(s, t) = sin(s) + t− es

6 + 1/6 +
∫ s

0

∫ 1

0
(2y − 1)exU(x, y)dydx, 0 ≤ s < 1, (3.36)

in which (s, t) ∈ ([0, 1] × [0, 1]), with the exact solution U(s, t) = sin(s) + t. The numerical
results using CSRBFs method are represented in table 3.3 and figure 3.4, for the GMQ, they
are represented in tables 3.6− 3.9 and figure 3.7.
Example 3.2. Let given the nonlinear Volterra-Fredholm integral equation

U(s, t) = 1
(1 + s+ t)2 −

s

6(1 + t) +
∫ 1

0

∫ 1

0

s

1 + t
(1 + x+ y)U2(x, y)dydx, (3.37)

with the exact solution U(s, t) = 1
(1 + s+ t)2 . The numerical results using CSRBFs method are

represented in table 3.4 and figure 3.5, for the GMQ, they are represented in tables 3.10− 3.13
and figure 3.8.
Example 3.3. Consider the linear Volterra-Fredholm integral equation

U(s, t) = g(s, t)−
∫ s

0

∫ 1

0
t2e−yU(x, y)dydx, (3.38)

where g(s, t) = 1
3s

2(3et + st2). The exact solution is given by U(s, t) = s2et. The numerical
results using CSRBFs method are represented in table (3.5) and figure 3.6, for the GMQ, they
are represented in tables 3.14− 3.17 and figure 3.9.
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Table 3.3: Computed errors using CSRBFs method for Example (3.1) , with σ = 2.

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 0.0000 0.0000

(0.1, 0.1) 4.0564E − 2 3.5505E − 2 3.4792E − 1
(0.2, 0.2) 6.6561E − 1 7.2976E − 2 7.3776E − 1
(0.3, 0.3) 1.2568E − 1 1.1649E − 1 1.1673E − 1
(0.4, 0.4) 2.1892E − 1 1.6345E − 1 1.6396E − 1
(0.5, 0.5) 3.0864E − 1 2.1423E − 1 2.1659E − 1
(0.6, 0.6) 3.5785E − 1 2.7271E − 1 2.7407E − 1
(0.7, 0.7) 3.5531E − 1 3.4045E − 1 3.3712E − 1
(0.8, 0.8) 3.3389E − 1 4.1244E − 1 4.0859E − 1
(0.9, 0.9) 3.7546E − 1 4.8529E − 1 4.8720E − 1

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 0.0000 0.0000

(0.01, 0.01) 5.6989E − 3 4.1310E − 3 3.5989E − 3
(0.02, 0.02) 1.1012E − 3 8.0203E − 3 7.0728E − 3
(0.03, 0.03) 1.5966E − 2 1.1714E − 2 1.0476E − 2
(0.04, 0.04) 2.0591E − 2 1.5258E − 2 1.3854E − 2
(0.05, 0.05) 2.4917E − 2 1.8696E − 2 1.7240E − 2
(0.06, 0.06) 2.8977E − 2 2.2069E − 2 2.0656E − 2
(0.07, 0.07) 3.2803E − 2 3.5410E − 2 2.4114E − 2
(0.08, 0.08) 3.6429E − 2 2.8748E − 2 2.7620E − 2
(0.09, 0.09) 3.9887E − 2 3.2111E − 2 3.1179E − 2

Figure 3.4: The Absolute errors, for N = 3 (left), N = 5 (right), when σ = 1.

Table 3.4: Computed errors using CSRBFs method for Example (3.2) , with σ = 4.

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 0.5395E − 14 1.5530E − 13

(0.1, 0.1) 2.9743E − 2 7.6968E − 4 2.2225E − 4
(0.2, 0.2) 8.9163E − 3 4.7855E − 4 4.4320E − 6
(0.3, 0.3) 1.0070E − 3 2.2689E − 5 6.6375E − 5
(0.4, 0.4) 1.5321E − 3 5.4130E − 5 2.2830E − 6
(0.5, 0.5) 9.0126E − 4 7.65860E − 6 9.3241E − 6
(0.6, 0.6) 7.1433E − 4 2.5748E − 5 6.6099E − 7
(0.7, 0.7) 1.1294E − 4 3.6335E − 4 7.0214E − 6
(0.8, 0.8) 8.2513E − 4 4.3246E − 5 2.3258E − 7
(0.9, 0.9) 1.1044E − 3 8.9130E − 6 1.3192E − 6

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 0.5395E − 14 1.5330E − 13

(0.01, 0.01) 9.2435E − 3 2.5670E − 3 7.9981E − 4
(0.02, 0.02) 1.6567E − 2 4.0243E − 3 9.9977E − 4
(0.03, 0.03) 2.2192E − 2 4.6332E − 3 8.6230E − 4
(0.04, 0.04) 2.6327E − 2 4.6291E − 3 5.8772E − 4
(0.05, 0.05) 2.9164E − 2 4.2168E − 3 3.0433E − 4
(0.06, 0.06) 3.0885E − 2 3.5672E − 3 7.4510E − 5
(0.07, 0.07) 3.1655E − 2 2.8150E − 3 8.5540E − 5
(0.08, 0.08) 3.1629E − 2 2.0590E − 3 1.8060E − 4
(0.09, 0.09) 3.0949E − 2 1.3650E − 3 2.2177E − 4
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Figure 3.5: The Absolute errors, for N = 3 (left), N = 5 (right), when σ = 3.

Table 3.5: Computed errors using CSRBFs method for Example (3.3) , with σ = 6.

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 2.8710E − 10 3.6988E − 13

(0.1, 0.1) 6.5254E − 3 4.7116E − 3 4.5910E − 3
(0.2, 0.2) 1.8858E − 2 1.7066E − 2 1.7441E − 2
(0.3, 0.3) 3.6020E − 2 3.6260E − 2 3.6725E − 2
(0.4, 0.4) 5.6531E − 2 6.0044E − 2 5.9689E − 2
(0.5, 0.5) 7.9698E − 2 8.4014E − 2 8.3034E − 2
(0.6, 0.6) 1.0154E − 1 1.0249E − 1 1.0213E − 2
(0.7, 0.7) 1.1059E − 1 1.0944E − 1 1.0985E − 1
(0.8, 0.8) 8.8154E − 2 9.7181E − 2 9.8780E − 2
(0.9, 0.9) 2.2374E − 2 5.0871E − 2 8.1713E − 2

(s, t) N = 3 N = 5 N = 7
(0, 0) 0.0000 2.8710E − 10 3.9688E − 13

(0.01, 0.01) 4.1075E − 4 1.4104E − 4 7.1890E − 5
(0.02, 0.02) 8.7134E − 4 3.5032E − 4 2.2648E − 4
(0.03, 0.03) 1.3833E − 3 6.3022E − 4 4.6622E − 4
(0.04, 0.04) 1.9482E − 3 9.8294E − 4 7.9293E − 4
(0.05, 0.05) 2.5676E − 3 1.4104E − 3 1.2076E − 3
(0.06, 0.06) 3.2429E − 3 1.9114E − 3 1.7104E − 3
(0.07, 0.07) 3.9753E − 3 2.4959E − 3 2.3010E − 3
(0.08, 0.08) 4.7659E − 3 3.1558E − 3 2.9786E − 3
(0.09, 0.09) 5.6157E − 3 3.8944E − 3 3.7423E − 3

Table 3.6: Computed errors using GMQ method for ε = 2, with β = 5
2 . for Example (3.1).

(t, s) N = 3 N = 5 N = 7
(0, 0) 3.9790E − 13 4.3656E − 11 1.3970E − 8

(0.1, 0.1) 7.4020E − 4 1.7251E − 7 8.7544E − 8
(0.2, 0.2) 3.4535E − 4 3.9923E − 8 4.7497E − 8
(0.3, 0.3) 8.1556E − 5 2.8016E − 7 6.5193E − 9
(0.4, 0.4) 2.7082E − 4 4.0188E − 7 2.5611E − 9
(0.5, 0.5) 2.8697E − 4 1.2181E − 6 5.3318E − 8
(0.6, 0.6) 2.1627E − 4 6.7616E − 7 2.0955E − 9
(0.7, 0.7) 5.4858E − 5 9.8666E − 7 1.8626E − 9
(0.8, 0.8) 2.2223E − 4 1.4628E − 6 4.5635E − 9
(0.9, 0.9) 4.5426E − 4 3.8013E − 7 3.8650E − 9

(t, s) N = 3 N = 5 N = 7
(0, 0) 3.9790E − 13 4.3656E − 11 1.3970E − 8

(0.01, 0.01) 1.8378E − 4 4.3282E − 7 1.7229E − 8
(0.02, 0.02) 3.3563E − 4 6.8681E − 7 4.3259E − 8
(0.03, 0.03) 4.5872E − 4 8.0477E − 7 6.1002E − 8
(0.04, 0.04) 5.5601E − 4 8.2375E − 7 4.1910E − 8
(0.05, 0.05) 6.3028E − 4 7.7295E − 7 4.3772E − 8
(0.06, 0.06) 6.8409E − 4 6.7743E − 7 3.0734E − 8
(0.07, 0.07) 7.1985E − 4 5.5623E − 7 1.9558E − 8
(0.08, 0.08) 7.3978E − 4 4.2424E − 7 8.3819E − 9
(0.09, 0.09) 7.4593E − 4 2.9369E − 7 2.1420E − 8
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Table 3.7: Computed errors using GMQ method for ε = 2, with β = 1.99. for Example (3.1).

(t, s) N = 3 N = 5 N = 7
(0, 0) 9.0950E − 13 4.6566E − 10 1.9511E − 7

(0.1, 0.1) 1.7454E − 4 5.3691E − 7 1.2573E − 8
(0.2, 0.2) 1.1876E − 4 2.2643E − 6 3.5390E − 8
(0.3, 0.3) 4.0928E − 5 1.7799E − 6 2.1886E − 8
(0.4, 0.4) 1.9590E − 4 1.5063E − 6 1.2573E − 8
(0.5, 0.5) 2.6710E − 4 3.5699E − 6 1.0664E − 7
(0.6, 0.6) 2.1496E − 4 1.7164E − 6 3.4946E − 8
(0.7, 0.7) 4.9315E − 5 2.3142E − 6 2.7940E − 8
(0.8, 0.8) 1.5833E − 4 3.3884E − 6 2.7940E − 9
(0.9, 0.9) 2.5796E − 4 9.3837E − 7 9.8720E − 8

(t, s) N = 3 N = 5 N = 7
(0, 0) 9.0950E − 13 4.6566E − 10 1.9511E − 7

(0.01, 0.01) 3.1572E − 5 5.4308E − 7 6.1467E − 8
(0.02, 0.02) 5.9656E − 5 9.4087E − 7 4.6100E − 8
(0.03, 0.03) 8.4382E − 5 1.2056E − 6 6.2864E − 8
(0.04, 0.04) 1.0588E − 4 1.3527E − 6 2.9337E − 8
(0.05, 0.05) 1.2429E − 4 1.3961E − 6 4.1910E − 9
(0.06, 0.06) 1.3973E − 4 1.3505E − 6 6.0070E − 8
(0.07, 0.07) 1.5235E − 4 1.2295E − 6 4.9360E − 8
(0.08, 0.08) 1.6226E − 4 1.0449E − 6 4.8894E − 8
(0.09, 0.09) 1.6962E − 4 8.1037E − 6 3.7719E − 8

Table 3.8: Computed errors using GMQ method for ε = 4, with β = 1.03. for Example (3.1).

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.1642E − 10 4.7684E − 6 1.1921E − 6

(0.1, 0.1) 1.8864E − 4 5.7222E − 6 7.1526E − 7
(0.2, 0.2) 1.2361E − 4 4.7684E − 6 1.4305E − 6
(0.3, 0.3) 4.1201E − 5 3.8147E − 6 2.3842E − 6
(0.4, 0.4) 1.9141E − 4 8.5831E − 6 2.1458E − 6
(0.5, 0.5) 2.5335E − 4 6.6757E − 6 2.8610E − 6
(0.6, 0.6) 1.9764E − 4 3.8147E − 6 9.5367E − 7
(0.7, 0.7) 4.3824E − 5 5.7220E − 6 1.1921E − 6
(0.8, 0.8) 1.3531E − 6 2.8610E − 6 1.1921E − 6
(0.9, 0.9) 2.1123E − 4 1.9073E − 6 0.0000

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.1642E − 10 4.7684E − 6 1.1921E − 6

(0.01, 0.01) 3.5496E − 5 3.8147E − 6 9.5367E − 7
(0.02, 0.02) 6.6787E − 5 1.9073E − 6 1.6689E − 6
(0.03, 0.03) 9.3993E − 5 2.8610E − 6 2.3842E − 6
(0.04, 0.04) 1.1741E − 4 8.5831E − 6 0.0000
(0.05, 0.05) 1.3721E − 4 1.9073E − 6 2.8610E − 6
(0.06, 0.06) 1.5358E − 4 1.2398E − 5 2.3842E − 7
(0.07, 0.07) 1.6673E − 4 3.8147E − 6 1.1921E − 6
(0.08, 0.08) 1.7683E − 4 1.4444E − 5 1.6689E − 6
(0.09, 0.09) 1.8407E − 4 3.8147E − 6 7.1526E − 6

Figure 3.6: The Absolute errors, for N = 3 (left), N = 5 (right), when σ = 7.5.
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Table 3.9: Computed errors using GMQ method for ε = 3, with β = 1
2 . for Example (3.1).

(t, s) N = 3 N = 5 N = 7
(0, 0) 4.5475E − 13 4.6566E − 10 2.8902E − 8

(0.1, 0.1) 1.3838E − 5 3.2270E − 7 1.3039E − 8
(0.2, 0.2) 1.6107E − 5 1.3169E − 6 1.5832E − 8
(0.3, 0.3) 6.2842E − 6 1.0228E − 6 4.7497E − 8
(0.4, 0.4) 4.1039E − 5 8.5006E − 7 2.7940E − 9
(0.5, 0.5) 6.4107E − 5 2.0091E − 6 5.8673E − 8
(0.6, 0.6) 5.5851E − 5 9.6601E − 7 1.0245E − 8
(0.7, 0.7) 1.4412E − 5 1.2862E − 6 1.8626E − 9
(0.8, 0.8) 3.8213E − 5 1.8808E − 6 7.3574E − 8
(0.9, 0.9) 5.9713E − 5 5.1130E − 7 1.2107E − 8

(t, s) N = 3 N = 5 N = 7
(0, 0) 4.5475E − 13 4.6566E − 10 2.9802E − 8

(0.01, 0.01) 8.7356E − 7 3.3644E − 7 5.5979E − 9
(0.02, 0.02) 1.9968E − 6 5.7952E − 7 8.3819E − 9
(0.03, 0.03) 3.3129E − 6 7.3924E − 7 9.3132E − 9
(0.04, 0.04) 4.7682E − 6 8.2608E − 7 3.4459E − 9
(0.05, 0.05) 6.3125E − 6 8.4867E − 7 2.4214E − 8
(0.06, 0.06) 7.8986E − 6 8.1770E − 7 1.8626E − 8
(0.07, 0.07) 9.4829E − 6 7.4226E − 6 8.3819E − 6
(0.08, 0.08) 1.1024E − 5 6.2818E − 7 5.5879E − 9
(0.09, 0.09) 1.2488E − 5 4.8708E − 7 5.5879E − 9

Figure 3.7: The Absolute errors, for N = 3 (left), N = 5 (right) with β = 1.99, when ε = 3.5.

Table 3.10: Computed errors using GMQ method for ε = 2, with β = 5
2 . for Example (3.2).

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.7276E − 11 4.4703E − 8 4.8828E − 4

(0.1, 0.1) 4.7513E − 3 3.4547E − 4 1.0376E − 3
(0.2, 0.2) 4.5234E − 3 1.1547E − 3 1.2207E − 4
(0.3, 0.3) 1.6590E − 3 6.7922E − 4 6.1035E − 4
(0.4, 0.4) 6.9041E − 3 4.2710E − 4 6.1035E − 4
(0.5, 0.5) 7.7879E − 3 7.6804E − 4 1.4038E − 3
(0.6, 0.6) 4.9804E − 3 2.8787E − 4 3.0518E − 4
(0.7, 0.7) 9.6601E − 3 3.0913E − 4 2.1362E − 3
(0.8, 0.8) 1.9807E − 3 3.6240E − 4 1.7700E − 3
(0.9, 0.9) 2.2527E − 3 8.1174E − 5 1.6479E − 3

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.7276E − 11 4.4703E − 8 4.8828E − 4

(0.01, 0.01) 1.5134E − 5 3.7628E − 4 1.3428E − 3
(0.02, 0.02) 2.2982E − 4 6.5345E − 4 1.0986E − 3
(0.03, 0.03) 6.5942E − 4 8.3712E − 4 1.2207E − 4
(0.04, 0.04) 1.2107E − 3 9.3625E − 4 1.4038E − 3
(0.05, 0.05) 1.8316E − 3 9.5965E − 4 2.9907E − 3
(0.06, 0.06) 2.4795E − 3 9.1955E − 4 2.4414E − 3
(0.07, 0.07) 3.1198E − 3 8.2801E − 4 1.4038E − 3
(0.08, 0.08) 3.7252E − 3 6.9363E − 4 1.8311E − 4
(0.09, 0.09) 4.2743E − 3 5.3024E − 4 8.5449E − 4
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Table 3.11: Computed errors using GMQ method for ε = 2, with β = 1.99. for Example (3.2).

(t, s) N = 3 N = 5 N = 7
(0, 0) 2.3283E − 10 0.0000 1.3733E − 4

(0.1, 0.1) 3.5544E − 3 3.1471E − 4 1.0681E − 4
(0.2, 0.2) 4.2906E − 3 1.1196E − 3 1.2970E − 4
(0.3, 0.3) 1.7012E − 3 6.6805E − 4 0.0000
(0.4, 0.4) 7.4346E − 3 4.3082E − 4 2.2888E − 5
(0.5, 0.5) 8.7508E − 3 7.9393E − 4 6.1035E − 5
(0.6, 0.6) 5.8734E − 3 3.0470E − 4 2.4414E − 4
(0.7, 0.7) 1.1955E − 3 3.2568E − 4 7.6294E − 6
(0.8, 0.8) 2.8092E − 3 3.9115E − 4 3.5858E − 4
(0.9, 0.9) 4.0571E − 3 8.5831E − 5 3.8147E − 5

(t, s) N = 3 N = 5 N = 7
(0, 0) 2.3283E − 11 0.0000 1.3733E − 4

(0.01, 0.01) 4.3764E − 4 3.0613E − 4 3.2043E − 4
(0.02, 0.02) 5.1854E − 4 5.4407E − 4 2.2888E − 4
(0.03, 0.03) 3.3092E − 4 7.1859E − 4 1.2207E − 4
(0.04, 0.04) 5.0562E − 5 8.0490E − 4 3.0518E − 5
(0.05, 0.05) 5.6313E − 4 8.4400E − 4 4.5776E − 5
(0.06, 0.06) 1.1544E − 3 8.2827E − 4 9.1553E − 5
(0.07, 0.07) 1.7811E − 3 7.3528E − 4 1.5259E − 4
(0.08, 0.08) 2.4079E − 3 6.3801E − 4 2.4414E − 4
(0.09, 0.09) 3.0065E − 3 4.8161E − 4 1.8311E − 4

Table 3.12: Computed errors using GMQ method for ε = 1.8, with β = 1.03. for Example (3.2).

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.4552E − 11 2.3842E − 7 3.9673E − 4

(0.1, 0.1) 4.3032E − 3 1.9247E − 4 8.882E − 4
(0.2, 0.2) 7.1513E − 3 8.2710E − 4 4.9621E − 4
(0.3, 0.3) 8.7069E − 4 5.2533E − 4 2.3270E − 4
(0.4, 0.4) 4.5922E − 3 3.3735E − 4 3.4332E − 4
(0.5, 0.5) 5.7003E − 3 6.1741E − 4 2.1744E − 4
(0.6, 0.6) 3.7566E − 3 2.3790E − 4 1.7166E − 4
(0.7, 0.7) 7.5440E − 4 2.5992E − 4 1.4687E − 4
(0.8, 0.8) 1.5053E − 3 3.0144E − 4 1.4496E − 4
(0.9, 0.9) 2.0854E − 3 6.4575E − 4 6.1035E − 5

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.4552E − 11 2.3842E − 7 3.9673E − 4

(0.01, 0.01) 2.4396E − 3 7.4796E − 5 8.1253E − 4
(0.02, 0.02) 4.1650E − 3 1.6911E − 4 2.6703E − 5
(0.03, 0.03) 5.3012E − 3 2.6092E − 4 1.9073E − 5
(0.04, 0.04) 5.9570E − 3 3.3626E − 4 1.0681E − 4
(0.05, 0.05) 6.2274E − 3 3.8509E − 4 3.9673E − 4
(0.06, 0.06) 6.1945E − 3 4.0373E − 4 2.0218E − 4
(0.07, 0.07) 5.9292E − 3 3.9151E − 4 3.1281E − 4
(0.08, 0.08) 5.4923E − 3 3.4979E − 4 4.8065E − 4
(0.09, 0.09) 4.9356E − 3 2.8203E − 4 6.4468E − 4

Table 3.13: Computed errors using GMQ method for ε = 0.6, with β = 1
2 . for Example (3.2).

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.0001E − 11 1.0170E − 13 2.0464E − 12

(0.1, 0.1) 3.2044E − 2 7.1103E − 4 6.9573E − 5
(0.2, 0.2) 8.6903E − 3 3.3313E − 4 1.3704E − 5
(0.3, 0.3) 2.2576E − 4 7.1978E − 4 2.2836E − 4
(0.4, 0.4) 3.8850E − 3 4.5121E − 4 2.4781E − 5
(0.5, 0.5) 6.3386E − 3 9.8913E − 4 3.4746E − 4
(0.6, 0.6) 4.4749E − 3 4.8454E − 4 1.7459E − 5
(0.7, 0.7) 9.8344E − 4 5.5387E − 4 1.7688E − 4
(0.8, 0.8) 2.5198E − 3 6.3404E − 4 9.2614E − 6
(0.9, 0.9) 3.9825E − 3 1.5049E − 4 6.1714E − 5

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.0001E − 11 1.0170E − 13 2.0464E − 12

(0.01, 0.01) 9.9507E − 3 2.1458E − 3 3.3052E − 4
(0.02, 0.02) 1.7851E − 2 3.3873E − 3 4.2113E − 4
(0.03, 0.03) 2.3932E − 2 3.9365E − 3 3.7471E − 4
(0.04, 0.04) 2.8411E − 2 3.9876E − 3 2.6513E − 4
(0.05, 0.05) 3.1491E − 2 3.6885E − 3 1.4197E − 4
(0.06, 0.06) 3.3359E − 2 3.1725E − 3 3.5330E − 5
(0.07, 0.07) 3.4192E − 2 2.5447E − 3 3.9877E − 5
(0.08, 0.08) 3.4152E − 2 1.8873E − 3 7.9523E − 5
(0.09, 0.09) 3.3390E − 2 1.2619E − 3 8.6915E − 5
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Figure 3.8: The Absolute errors for N = 3 (left), N = 5 (right) with β = 1.03, when ε = 2.5.

Table 3.14: Computed errors using GMQ method for ε = 1.8, with β = 5
2 . for Example (3.3).

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.0142E − 11 2.0373E − 10 5.2452E − 5

(0.1, 0.1) 6.5427E − 3 2.8740E − 5 1.0490E − 5
(0.2, 0.2) 4.3275E − 3 1.1390E − 4 3.3379E − 5
(0.3, 0.3) 1.5107E − 3 8.5512E − 5 5.9128E − 5
(0.4, 0.4) 6.9533E − 3 7.1149E − 5 9.5367E − 7
(0.5, 0.5) 9.2423E − 3 1.6350E − 4 2.6703E − 5
(0.6, 0.6) 7.1619E − 3 7.5883E − 5 3.8147E − 6
(0.7, 0.7) 1.3627E − 3 1.0452E − 4 0.0000
(0.8, 0.8) 5.3907E − 3 1.4822E − 4 4.6730E − 5
(0.9, 0.9) 8.1578E − 3 4.2256E − 5 7.0572E − 5

(t, s) N = 3 N = 5 N = 7
(0, 0) 0.0142E − 11 2.0373E − 10 5.2452E − 5

(0.01, 0.01) 1.2178E − 3 3.1728E − 5 3.0518E − 5
(0.02, 0.02) 2.2931E − 3 5.4267E − 5 6.4850E − 5
(0.03, 0.03) 3.2326E − 3 6.8786E − 5 6.9618E − 5
(0.04, 0.04) 4.0429E − 3 7.6382E − 5 1.8120E − 5
(0.05, 0.05) 4.3703E − 3 7.8073E − 5 2.8610E − 5
(0.06, 0.06) 5.3013E − 3 7.4808E − 5 4.4823E − 5
(0.07, 0.07) 5.7620E − 3 6.7465E − 5 2.8610E − 5
(0.08, 0.08) 6.1186E − 3 5.6853E − 5 3.9101E − 5
(0.09, 0.09) 6.3769E − 3 4.3718E − 5 4.5776E − 5

95



Table 3.15: Computed errors using GMQ method for ε = 2, with β = 1.99. for Example (3.3).

(t, s) N = 3 N = 5 N = 7
(0, 0) 9.4587E − 11 2.9802E − 8 8.3447E − 6

(0.1, 0.1) 7.8363E − 3 3.3665E − 5 5.9605E − 7
(0.2, 0.2) 5.0778E − 3 1.3251E − 4 1.1921E − 7
(0.3, 0.3) 1.7276E − 3 9.8798E − 5 1.0729E − 5
(0.4, 0.4) 7.8789E − 3 8.1595E − 5 2.6226E − 6
(0.5, 0.5) 1.0361E − 2 1.8596E − 4 7.2718E − 6
(0.6, 0.6) 7.9579E − 3 8.5540E − 5 8.1062E − 6
(0.7, 0.7) 1.5321E − 3 1.1674E − 4 2.3842E − 6
(0.8, 0.8) 5.7535E − 3 1.6326E − 4 2.2650E − 6
(0.9, 0.9) 8.5560E − 3 4.5802E − 5 4.4107E − 6

(t, s) N = 3 N = 5 N = 7
(0, 0) 9.4587E − 11 2.9802E − 8 8.7738E − 6

(0.01, 0.01) 1.4912E − 3 3.7260E − 5 1.2279E − 5
(0.02, 0.02) 2.8007E − 3 6.3568E − 5 3.6955E − 6
(0.03, 0.03) 3.9381E − 3 8.0518E − 5 1.3113E − 6
(0.04, 0.04) 4.9128E − 3 8.9295E − 5 1.4303E − 6
(0.05, 0.05) 5.7338E − 3 9.1351E − 5 1.2636E − 5
(0.06, 0.06) 6.4101E − 3 8.7589E − 5 1.1086E − 5
(0.07, 0.07) 6.9503E − 3 7.8894E − 5 7.7486E − 5
(0.08, 0.08) 7.3626E − 3 6.6661E − 5 4.7684E − 6
(0.09, 0.09) 7.6553E − 3 5.1074E − 5 3.8147E − 6

Table 3.16: Computed errors using GMQ method for ε = 2, with β = 1.03. for Example (3.3).

(t, s) N = 3 N = 5 N = 7
(0, 0) 2.9104E − 11 2.8902E − 8 3.2425E − 5

(0.1, 0.1) 5.3639E − 3 4.2498E − 5 1.9073E − 6
(0.2, 0.2) 3.5846E − 3 1.6980E − 4 1.7166E − 5
(0.3, 0.3) 1.2194E − 3 1.2676E − 4 3.8147E − 6
(0.4, 0.4) 5.6054E − 3 1.0302E − 4 9.5367E − 6
(0.5, 0.5) 7.1552E − 3 2.2967E − 4 3.8147E − 6
(0.6, 0.6) 5.1188E − 3 1.0233E − 4 2.4796E − 5
(0.7, 0.7) 8.9421E − 4 1.3201E − 4 9.5367E − 6
(0.8, 0.8) 2.4403E − 3 1.7087E − 4 2.2888E − 5
(0.9, 0.9) 2.2223E − 3 4.1999E − 5 2.2888E − 5

(t, s) N = 3 N = 5 N = 7
(0, 0) 2.9104E − 11 2.9802E − 8 3.2425E − 5

(0.01, 0.01) 9.8822E − 4 4.6074E − 5 1.9073E − 6
(0.02, 0.02) 1.8630E − 3 7.8980E − 5 1.1444E − 5
(0.03, 0.03) 2.6294E − 3 1.0033E − 4 2.5610E − 5
(0.04, 0.04) 3.2923E − 3 1.1168E − 4 0.0000
(0.05, 0.05) 3.8562E − 3 1.1444E − 4 1.9073E − 5
(0.06, 0.06) 4.3271E − 3 1.0988E − 4 1.5259E − 5
(0.07, 0.07) 4.7084E − 3 9.9283E − 5 5.7220E − 6
(0.08, 0.08) 5.0053E − 3 8.3860E − 5 1.9073E − 6
(0.09, 0.09) 5.2223E − 3 6.4623E − 5 2.4796E − 5

Table 3.17: Computed errors using GMQ method for ε = 3, with β = 1
2 . for Example (3.3).

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.6007E − 11 1.4901E − 7 1.3828E − 5

(0.1, 0.1) 2.8338E − 3 1.9103E − 5 7.6259E − 6
(0.2, 0.2) 1.9371E − 3 7.5012E − 5 7.6294E − 6
(0.3, 0.3) 6.5883E − 4 5.4508E − 5 8.1062E − 6
(0.4, 0.4) 3.0039E − 3 4.3601E − 5 8.1062E − 6
(0.5, 0.5) 3.7284E − 3 9.6530E − 5 6.1989E − 6
(0.6, 0.6) 2.5425E − 3 4.2766E − 5 1.3828E − 5
(0.7, 0.7) 4.1992E − 4 5.4866E − 5 1.3828E − 5
(0.8, 0.8) 8.9515E − 4 7.1347E − 5 1.9073E − 5
(0.9, 0.9) 3.3706E − 4 1.7911E − 5 4.7684E − 6

(t, s) N = 3 N = 5 N = 7
(0, 0) 1.6007E − 11 1.4901E − 7 1.3828E − 5

(0.01, 0.01) 5.0513E − 4 2.0802E − 5 2.8610E − 6
(0.02, 0.02) 9.5631E − 4 3.5524E − 5 6.1989E − 6
(0.03, 0.03) 1.3552E − 3 4.5478E − 5 4.7684E − 7
(0.04, 0.04) 1.7036E − 3 5.0515E − 5 9.5367E − 7
(0.05, 0.05) 2.0032E − 3 5.1588E − 5 9.5367E − 7
(0.06, 0.06) 2.2559E − 3 4.9502E − 5 8.5831E − 6
(0.07, 0.07) 2.4634E − 3 4.4584E − 5 4.7684E − 7
(0.08, 0.08) 2.6276E − 3 3.7581E − 5 1.2875E − 7
(0.09, 0.09) 2.7505E − 3 2.9057E − 5 5.2452E − 6
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Figure 3.9: The Absolute errors for N = 3 (left), N = 5 (right) with β = 1.03, when ε = 3.

3.6 Analysis of Results

In this chapter, an effective method for solving a class of two-dimensional mixed nonlinear
Volterra–Fredholm integral equations is presented. This method compares interpolation using
global and compactly supported radial basis functions. The shifted Gauss-Legendre quadrature
formula is applied for numerical integration. Error estimate is provided for suffficiently smooth
kernel and source functions. The convergence accuracy of the new scheme has been examined
for several examples. From our test examples, we remark that in examples 1, 2 and 3 the
optimal values of the exponent β give better results compared with that obtained by CSRBF
( the choice of σ is obtained after several tests). Based on those findings, the two methods
provide remarkable accurate solutions. The numerical results reported in tables and figures
show that only a small number of collocation points is required to obtain a good approximation
to the exact solution. An improtant property of the use of RBFs (Wendland’s functions) is
that they are positive definite so the problem is well posed. The use of optimal exponent
β of the generalized multiquadric function is a good choice to performe the accuracy of the
approximation. As a conclusion, from our experiments one can say that the optimal shape
parameter and the condition number of interpolation matrix can also be taken in consideration
for comparaison. By increasing the number of unknowns in a nonlinear system or by using
very efficient solvers for a nonlinear system, the accuracy of the solution can be increased.
The proposed method is simple because it does not need any background interpolation or
approximation cells and so it is a meshless method. The test experiments are in particular
encouraging to solve a large physical problems of time dependent and other problems based on
solution representation. Generalizing the proposed method to local fractional equations is a
good idea for future work. The method can also be easily adapted to solve higher dimensional
integral equations. Another future application concerns the ability of the proposed method for
solving stochastic problems by using chaotic radial basis functions.
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Conclusion

In this work, we have been concerned with the study of the resolution of some linear and nonlinear
integral and partial differential equations by using globaly and compactly supported radial basis
functions, where we have provided a comprehensive theory based on some optimal strategies
for choosing the shape parameter and centers of the RBFs. By using RBFs interpolation
problem, the original problem is converted to a system of algebraic equations which can be
solved by using numerical techniques. When using global radial basis functions, the resulting
interpolation matrix is fully populated, the system may also become ill conditioned if very
smooth radial basis functions are used on large number of points, both CPU time and ill
conditioning increase with increasing the number of collocation points. This limits the use of
global radial basis functions to a maximum number of collocation points which depend on the
power of the computational platform. Other alternatives are used like domain decomposition
and compactly supported RBFs. This results a sparse matrix coefficients and pass the above
mentioned problems related to global RBF. Also, we have presented a complete numerical study
of application of both golbaly and compactly supported for solving some integral and partial
differential equations. A comparative study between stationary and non stationary approaches
was discussed. Quadrature rules are also used on the approximation of the definite integrals
that appear in our integral equation by a finite sum to seek an approximation solution in a finite
number of points. An adaptive strategy based on generalized multiquadric RBFs with some
optimal values of the exponent β is used for solving two-dimensional Volterra-Fredholm integral
equations, and is compared with Wendland’s CSRBF through our work, we have explained that
the adaptive technique is suitable and very accurate for solving nonlinear integral equations
and it has an exponential convergence order. We can also examin a stabilized RBF with a
hybrid kernel generated, through a hybridization of gaussian and multiquadric RBF. This is
used to improve the condition number of the interpolation matrix. Finally, we look forward to
consider some strategies for improving the condition number, first by examining the relation
between the condition number and the shape parameter and if this depend on the number
N of interpolation points, secondly, presenting some high dimensional PDE problems survery
what has been done with mesh based on stochastics methods. Finally to find a stable relation
between the shape parameter and the accuracy of the RBFs approximation.

Some of perspectives of future work are

• Working with chaotic radial basis functions and looking if they can improve the accuracy
and ill-conditioned of interpolation problems.

• Find the best radial basis function for solving integral equations in one and higher
dimensional, by taking into account all the previous interpolation problems by RBFs.

• Also, finding some optimal strategies for Kansa’s method for solving PDEs.
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Abstract :

This thesis deals with the applications of compactly supported radial basis functions for
high dimensional reconstruction of surfaces (images) based on irregular samples. These me-
thods without mesh (meshfree) based on the introduction of radial basis functions. Contrary
to traditional methods, namely finite element (FEM) and finite difference (FDM) methods. We
try to introduce the concept of this method through several applications.

Keywords :

Radial Basis Functions (RBF), multivariate interpolation, scattered data, numerical solu-
tion.

Résumé :

Cette thèse traite les applications des fonctions de base radiale, à support compact (CSRBF),
pour la reconstruction bidimensionnelle de surfaces (images) à partir d’échantillons irréguliers.
Ces méthodes sans maillage (meshefree) qui repose sur l’introduction des fonctions de base
radiale. Contrairement, aux méthodes traditionnelles, a savoir la méthode des éléments finis
(FEM) et la méthode des différences finies (FD). Nous essayons d’introduire le concept de cette
méthode à travers plusieurs applications.

Mots clés :

Fonctions de base radiale (RBF), interpolation multivariée, données dispersées, solution
numérique.
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