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ABSTRACT

This thesis deals with the applications of compactly supported radial basis functions for high
dimensional reconstruction of surfaces (images) based on irregular samples. These methods
without mesh (meshfree) based on the introduction of radial basis functions, contrary to
traditional methods, namely finite element (FEM) and finite difference (FDM) methods. We
try to introduce the concept of this technique through several applications.

Keywords:

Radial Basis Functions (RBFs), multivariate interpolation, scattered data, numerical solution.



RESUME

Cette these traite les applications des fonctions de base radiale, a support compact (CSRBF),
pour la reconstruction bidimensionnelle de surfaces (images) a partir d’échantillons irréguliers.
Ces méthodes sans maillage (meshefree) qui reposent sur I'introduction des fonctions de base
radiale, contrairement, aux méthodes traditionnelles, a savoir la méthode des éléments finis
(FEM) et la méthode des différences finies (FD). Nous essayons d’introduire le concept de cette
méthode a travers plusieurs applications.

Mots clés:

Fonctions de base radiale (RBF), interpolation multivariée, données dispersées, solution
numérique.
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Introduction

The subject of this thesis concern the applications of radial basis functions for solving linear
and nonlinear functional equations in particulary Volterra-Fredholm integral equations in two
dimensional space. The proposed algorithm is based on pseudo spectral method using compactly
and multiquadric generalized radial basis functions.

Scattered data approximation is a recent fast growing research area [36, 49, 51|, it deals
with the problem of reconstructing an unknown function from given scattered data. This field
has many applications such as, fluid structure interaction, terrain modeling, computer science,
different fields as applied mathematics, biology, geology ...etc.

The polynomial interpolation is a powerful tool to approximate given data sites in the
univariate setting, since a set of distinct points can be interpolated using a unique polynomial.
In higher-dimensional problems, it is not always possible to obtain a unique polynomial
interpolation for multivariate data sites justified by the Mairhuber-Curtis theorem [57].

Traditional numerical methods, such as finite difference , finite elements or finite volume
methods were motivated mostly by early one or two dimensional simulation of engineering
problems via partial differential equations. The discretization of these methods require some
sort of underlying computation mesh, which becomes a rather difficult task in high dimensional.
To overcome this problem, we must establish a basis which depends on the data locations
selected arbitrarily on certain domains. Therefore we can approximate a function without mesh
generation on the domain utilizing these basis functions which called radial basis functions
(RBFs). Radial basis function methods belong to a category of methods called meshless
(meshfree) methods [11, 19, 29], which does not require connectivity of grid/mesh points. This
is achieved by composing a univariate basic function with a norm usually Euclidean norm,
that makes the problem insensitive to the dimension and makes it virtually one-dimensional.
meshless methods have received much attention not only by applied mathematics but also in
different fields of science.

RBFs are effective techniques for interpolating an unknown function on a scattered set
of points which have been used in the past few decades. These functions involve a single
independent variable regardless of the dimension of the problem, so applying them in higher
dimensions does not increase the difficulties. Also it should be noted that the RBF approach
does not require any domain elements, so it does not depend on the geometry of a domain.
Firstly, Hardy [36] has studied RBFs as a multidimensional scattered interpolation method
in modeling of the Earth’s gravitational field in 1971, by using multiquadrics (MQs), inverse
multiquadrics (IMQs) and thin plate splines (TPSs) as a type of free shape parameter RBF.
Radial basis functions have been developed by Meinguet [62] and have been investigated for
smoothing noisy multidimensional data by Wahba [82]. Franke [34] has published a review paper
on the comparison of two-dimensional interpolation methods available in the early 1980. In
recent years, the implication of RBFs has been shifted from scattered data interpolation to the



numerical solution of partial differential equations (PDEs). A method for the numerical solution
of PDEs which utilizes radial basis functions, specially the MQ), as a basis in the collocation
method is called Kansa’s method created by Kansa in 1990 [49, 52]. Kansa’s method has been
developed for solving various types of partial differential equations such as the one-dimensional
nonlinear Burgers equation with shock wave [39], shallow water equations for tide and currents
simulation [40], heat transfer problems [77, 97], parabolic equation with nonlocal boundary
conditions [78], financial mathematic problems [41], Klein-Gordon equation [25], and improved
Boussinesq equation [75]. Later, Fasshauer has modified Kansa’s method to a Hermite-type
collocation method for the solvability of the resultant collocation matrix [28].

Radial basis functions are truly meshless and simple to allow modeling of rather high
dimensional problems [18, 48, 74]. These basis functions can be clustered in a specific region
to locally increase the accuracy of the method. It was shown that RBF converges to pseudo
spectral methods in their flat radial function limit.

Radial basis functions open the door to existence and uniqueness results for interpolating
scattered data by radial basis functions in very general settings. Indeed, one of the greatest
advantages of this method lies in its applicability in almost any dimension because there are
generaly little restrictions on the way the data are prescribred. A further advantage is their
high accuracy or fast convergence to the approximated target function in many cases when
data become dense.

Radial basis functions have a parameter in their definitions which called the shape parameter,
this parameter controls the shape of RBF and the conditioning of linear systems to be solved.
Locating an optimal shape parameter is a difficult problem and a topic of current research
[17, 69, 76, 81].

The convergence of RBF approaches can be seen in terms of two different types of approxi-
mation, stationary and non-stationary. In stationary approximation, the number of centers N
is fixed and the shape parameter is refined towards zero. This type is unique to RBF methods
which does not exist in polynomial based methods. For non-stationary technique, we fix the
value of the shape parameter and N increased.

Radial basis functions methods which rely on global interpolation functions, result large
fully-populated matrices and ill-conditioned systems if very smooth radial basis functions are
used on large number of points, that can produce poor and unstability in the solution, also
proper selection of the shape parameter often involves optimization. To overcome this problem,
researchers have developed a scheme based on radial basis functions with compact support
(CSRBFs). Using compactly supported radial basis functions produces a sparse interpolation
matrix, also the operation of the banded matrix system could reduce the ill-conditioning of the
resultant coefficient matrix. The compactly supported basis functions consist of a polynomial
which are non-zero on [0, 1) and vanish on [1,00). A family of CSRBFs was first introduced by
Wu [89] and later expanded by Wendland [84] in the mid 1990s.

In this work, new computational methods based on both globally and compactly supported
radial basis functions (CSRBFs) are presented for solving nonlinear integral equations and
partial differential equations. These equations reduced to systems of algebraic equations which
can be solved via iteration method. Some error estimations are provided and illustrative
examples are also included to demonstrate the efficiency and applicability of the proposed
methods.

This work is organized in the following way:
The first chapter, is devoted to some elementary concepts of interpolation problems. Also, to



give an introduction to radial basis functions and principle about RBFs inerpolation problems.
Chapter 2 gives introduction to CSRBFs with convergence analysis, also it develops some
numerical methods for solving different types of equations using RBFs and CSRBFs, such
as Burger, Poisson and Schrodinger partial differential equations, also linear and nonlinear
Volterra and Fredholm integral equations. The comparaison between stationary and non-
stationary approaches is discussed. Also new method based on composite techniques for solving
Volterra-Fredholm integral equations is presented.

In chapter 3, we introduce new techniques for finding the approximate solutions of two
dimensional nonlinear Volterra-Fredholm integral equations based on generalized global RBFs
and CSRBFs, also convergence analysis and error estimates are provided. These techniques can
be implemented for solving high dimensional integral equations.

Finally, we summarise the work that has been carried out in this thesis and consider some
perspectives of future work.



Chapter 1

Concept of interpolation problem

In chapter 1, some basic results of interpolation problem and an introduction to radial basis
functions interpolation problem are given.

Most functions encountred in mathematics can not be evaluated exactly, even though we
usually handle them as if they were completely known quantities. The interpolation is the
process of finding and evaluating a function whose graph goes through a set of given points,
these points may arise as measurements in physical problem, or they may be obtained from a
known function.

In many scientific disciplines one faces the following problem. We have a set of data (for
example: measurements, and locations at which these measurements were obtained), and we
want to find a rule which allows us to deduce information about the process we are studying
also at locations different from those at which we obtained our measurements. Thus, we are
trying to find a function which is a "good" fit to the given data. There are many ways to
decide what we mean by "good", and the only criterion we will consider now is that we want
the functions to exactly match the given measurements at the corresponding locations. This
approach is called interpolation, and if the locations at which the measurements are taken are
not on a uniform or regular grid, then the process is called scattered data interpolation.

1.1 Polynomial interpolation in one dimensional

Given a set of data points (x;,1;) € X xY,i=0: N, X, Y C R (or C) are the domains z;
and y; reside, respectively, and the points z; are called the interpolation nodes and assumed
distinct. Provided with a specific linear subspace V' of functions in C'(X). Find an interpolating
function f in V satisfying the interpolating condition

An interpolation function is also called interpolant. The primary purpose of interpolation is
to replace a set of data points (z;,y;) with a function given analytically, another purpose is to
approximate functions with simpler ones, usually polynomials or piecewise polynomials.

We start with the simplest case, when only the values f; := f(x;), for i =0,..., N are given
at the pairwise distinct nodes x, ..., zy. We now seek a unique polynomial P € Py = Ry|[z]
(a set of polynomials with coefficients in R and of degree < N),

which interpolates f at the (N + 1) nodes zy,...,zn, i.e., P(x;) = f; fori=0,...,N.



In order actually to compute the interpolating polynomial, we have to choose a basis of the
space of polynomials P .

There are several basis in which one can represent a polynomial

1- Monomial basis: the monomial basis of a polynomial is of the forme {1, z,..., 2™} .

2- Center basis: the center basis of a polynomial is of the form {1, (x —¢), ..., (z — ¢)N} with

c# 0.

3- Lagrange basis: let (z;)Y,, be N distinct points, the associated basis is given by
N — .
Li(z) = ]I N
j=05izj i T i
4- Newton basis: let (z;)Y,, be N distinct points, the associated basis is given by
N
{17 (.I‘ - l’()), (I - IO)(x - Il)? ooy H($ - xk)}
k=0

If we write P as above in coefficient representation

i.e., with respect to the monomial basis {1,x,...,2"V} of Py, then the interpolation matrix
resulting from interpolation conditions Py(z;) = f(x;) is called Vandermonde matrix. The
determinant of Vandermonde matrix is different from zero exactly when the nodes zq,...,xy
are pairwise distinct. However, the solution of the system requires an excessive amount of
computational effort. In addition, the Vandermonde matrices are almost singular in higher
dimensions N.

1.1.1 Polynomial interpolation error and Runge’s phenomenon

Theorem 1.1. Let f be a function in CN*[a,b], and let Py be a polynomial of degree < N
that interpolates the function f at (N + 1) distinct points xg, z1,...,xN € [a,b]. Then to each
x € [a,b] there exists a point &, € |a,b] such that

@) = Pu(@) = Gy Ve G ). (1.1

The Runge phenomenon

Runge phenomenon is a problem of oscillation at the edges of an interval that occurs when
using polynomial of high degree over a set of equispaced interpolation points. The discovery
was important because it shows that going to higher degree doesn’t always improve accuracy.

Interpolation at equidistant points is a natural and well-known approach to construct
approximating polynomials. Runge’s phenomenon demonstrates, that interpolation can result a
divergent approximations.



Let Consider the function

1
= —. 1.2
Runge found that if this function is interpolated at equidistant points z; = —5: % : 5 between

—5 and 5. The resulting interpolation oscillates towards the end of the interval. It can be
proven that the interpolation error increases when the degree of the polynomial is increased.

Ezample 1.1. The comparaison between f(x) and its interpolation polynomial is represented in
figure 1.1-1.2.
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Figure 1.1: Comparaison between Runge’s function and its Lagrange interpolation polynomial
of second degree (left), eighth degree (right).
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Figure 1.2: Comparaison between Runge’s function and its Lagrange interpolation polynomial
of twelfth degree (left), sixteenth degree (right).



If we consider the class of functions

F = {f e C"a,b),| sup fNHY(r) |< M(N + 1)!},

T€[a,b]

for a constant M > 0, then the approximation error obviously depends crucially on the
choice of the nodes zq, ..., xy via the expression

wyi1(x) = (x —x0) ... (x — zN). (1.3)

Also the equidistance between points leads to Lebesgue constant that increases quickly when N
increases. The table 1.1 shows the the error between Runge’s function and its interpolation
polynomial when N increasing, with zy_;/, =5 — % We remark that

lim || PN<17N—1/2> - f(xN—1/2> [[oo= +00.

N—o00
N
The evaluation of prod(z) = [[(z — ;) is illustrated in table 1.2, with: z; = —=5: 1 : 5.
i=0
N  f(x) pn(z)  Absolute error
2 01379  0.7596 0.6217
10 0.0471  1.5787 1.5317

16 0.0435 —10.1739 10.2174
20 0.0424 —39.9524 39.9949

Table 1.1: The error between Runge’s function and its interpolation polynomial when N — oc.

T f(x) pao(x)  Absolute error prod(z)
0.25 0.9412  0.9425 0.0013 2.0468e + 006
175 0.2462  0.2384 0.0077 —6.5587e + 006
3.75 0.0664 —0.4471 0.5134 —7.5594e + 008
4.75 0.0424 —39.9524 39.9949 —7.2721e + 010

Table 1.2: The behavior of prod(z).

Runge’s phenonmenon can be avoided by

1- Change of the interpolation points

The oscillation can be minimized by using nodes that are disturbed more densely towards
the edges of the interval, this set of nodes is Chebyshev nodes for which the maximum
error in approximating the Runge function is guaranted to diminish with increasing
polynomial order.

2- Use piecewise polynomials

The problem can be avoided by using spline curves which are piecewise polynomials, when
trying to decrease the interpolation error one can increase the number of polynomials
pieces which are used to construct the spline instead of increasing the degree of the
polynomial.



1.2 Problem of interpolation in higher dimensions

In the univariate setting it is well known that one can interpolate to arbitrary data at (N + 1)
distinct data sites using a polynomial of degree N. For the multivariate setting, however,
through the work of Alfréd Haar and his description of Haar spaces in 1956 [57], we obtain the
negative result that well-posedness is not guaranteed in higher dimensional linear systems with
independently chosen basis functions.

Figure 1.3: Alfréd Haar, John Mairhuber, and Phillip Curtis

Theorem 1.2. Haar-Mairhuber-Curtis [57].

Let Q) C R®, s > 2, contains an interior point, then there exist no Haar spaces of contin-
uous functions except for one-dimensional ones.

In order to understand this theorem we need

Definition 1.1. [57] Let the linear finite-dimensional function space B C C'(£2) have
a basis {Bj, ..., By}. Then B is a Haar space on 2 if

det(By(z;)) #0, k,j=1,...,N. (1.4)
for any set of distinct z1,...,zy in €.

Proof. To prove Haar-Mairhuber-Curtis theorem , let s > 2 and suppose B is a Haar space
with basis {Bj, ..., By} with N > 2. Then, by the definition of a Haar space

det(By(z;)) # 0, (L5)

for any distinct x1,...,zN.

Now consider a closed path P in €2 connecting only z; and x5. This is possible since by
assumption {2 contains an interior point. We can exchange the positions of x; and x5 by moving
them continuously along the path P (without interfering with any of the other x;). This
means, however, that rows 1 and 2 of the determinant (1.5) have been exchanged, and so the
determinant has changed sign. Since the determinant is a continuous function of z; and x5 we
must have determinant equal to zero at some point along P. This is a contradiction. O
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Remark 1.1.  1- Note that existence of a Haar space guarantees invertibility of the interpola-
tion matrix (Bg(x;)), i.e., existence and uniqueness of an interpolant to data specified at
x1,...,Ty, from the space B.

2- As mentioned above, univariate polynomials of degree N — 1 form an N-dimensional Haar
space for data given at x1,...,zy.

3- The Haar-Mairhuber-Curtis theorem implies that in the multivariate setting we can no
longer expect this to be the case. It is not possible to perform unique interpolation with
(multivariate) polynomials of degree N to data given at arbitrary locations in R2.

So as a result of this theorem, if we choose our basis functions independently of the data,
we are not guaranteed a well-posed problem.
The Haar-Mairhuber-Curtis theorem tells us that if we want to have a well-posed multivariate
scattered data interpolation problem, we can’t fix in advance the set of basis functions, but the
basis should depend on the data location.

1.2.1 Meshfree methods

Originally, the motivation for the basic meshfree approximation methods (radial basis functions)
came from applications in geodesy, geophysics, mapping, or meteorology. Later, applications
were found in many areas such as in the numerical solution of PDEs, artificial intelligence,
learning theory, neural networks, signal processing, statistics (kriging), finance, and optimization.
It should be pointed out that meshfree local regression methods have been used (independently)
in statistics for more than 100 years . "Standard" multivariate approximation methods (splines
or finite elements) require an underlying mesh (e.g. triangulation) for the definition of basis
functions or elements. This is very difficult in space dimensions greater than two.

Some historical landmarks for meshfree methods in approximation theory
e D. Shepard, Shepard functions, late 1960s (application, surface modelling)
e Rolland Hardy (Iowa State Univ.), multiquadrics (MQs), early 1970s (application, geodesy)

e Jean Meinguet (Université Catholique de Louvain, Louvain, Belgium), surface splines,
late 1970s (mathematics)

e Richard Franke (NPG, Montery), in 1982 compared scattered data interpolation methods,
and concluded MQs and TPs were best. Franke conjectured interpolation matrix for MQs
is invertible.

e Charles Micchelli (IBM), Interpolation of scattered data: Distance matrices and condi-
tionally positive definite functions, 1986.

Advantages of meshfree methods

Meshfree methods have gained much attention in recent years, this is due to the following
reasons:

e Many traditional numerical methods (finite differences, finite elements or finite volumes)
have trouble with high-dimensional problems.



e Meshfree methods can often handle changes in the geometry of the domain of interest
(e.g., free surfaces, moving particles and large deformations) better.

e Independence from a mesh is a great advantage since mesh generation is one of the most
time consuming parts of any mesh-based numerical simulation.

e New generation of numerical tools.

Applications

e Original applications were in geodesy, geophysics, mapping, or meteorology.
e Later, many other application areas

— Numerical solution of PDEs in many engineering applications,
— Computer graphics,

— Sampling theory,

Artificial intelligence,

Machine learning or statistical learning (neural networks or SVMs),

Signal and image processing,

Statistics (kriging),
— Finance,

— Optimization.

1.2.2 Basis functions depending on data

* The basis functions of meshless methods noted by ¢; are dependent on the data sites x;
as suggested by Haar-Mairhuber-Curtis.

The points z; for which the basic function is shifted to form the basis functions, are
usually referred as centers or knots.

Technically, one could choose these centers different from the data sites. However, usually
centers coincide with the data sites. This simplifies the analysis of the method, and is
sufficient for many applications. In fact, relatively little is known about the case when
centers and data sites differ.

¢;(x) are radially symmetric about their centers, for this reason we call these functions
Radial Basis Functions (RBFs).

In 1968 , R.L. Hardy [37] wanted to create a satisfactory function that could represent a
topographical curve. While studying this problem, Hardy discovered that, the data could be
satisfactory represented by a piecewise linear interpolating function [37]. He proposed that
given a set of NV distinct scattered data points {z; };'V:o and corresponding measurements { f; }j.V:O,
that the form of

¢j(x)=|r—=;|, j=0,...,N.
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Hardy soon recognized that the absolute function had a jump in the first derivative at each source
point. Hardy figured out that this problem could be solved by removing the absolute value basis
function and replacing it with a function that is continuously differentiable. Hardy’s function
was V€2 + 12, where € is an arbitrary non-zero constant [37]. Hardy applied the interpolation
method using this function to more than a one dimensional space. Note that the absolute value
of the difference between two points in two dimensional space is the Euclidean distance between
the two points; for example, | z — z; |= \/(z — z;)2. What Hardy created was an interpolating
function based on translates of the Euclidean distance function in two dimensions. Hence,

given N distinct scattered data points {z;, y; };VZO and corresponding topographic measurements

{f; };‘V:o for j =0,1,..., N, Hardy proposed the following basis function

Si(z,y) = \J(x — 2;)2 + (y — yy)*. (1.6)

To be exact ¢(r) = /z? + y?. Also as previously described in one dimension, the vertex of
each cone is centered at one of the data points. Again, Hardy ran into the same problem as his
one dimensional interpolating function. The problem was that function defined in equation
(1.6) suffered from being a piecewise continuous. He was unable to find a simple fix for this
problem. Hardy proposed using a linear combination circular hyperboloid basis functions
(rotated hyperbola basis functions v/€? + x? translated to be centered at each source point).
The new form of equation (1.6) is

Gij(z,y) = \/62 + (x — ;)2 + (y — y;)% (1.7)

Hardy discovered that the interpolation method based on the new function was an excellent
method for approximating topographical information from sparse data points. Unlike the
Fourier series, the new function did not suffer from large oscillations. Also, the function
alleviated the problem associated with the polynomial series method (i.e. the polynomial series
was unable to account for rapid variations of the topographical surface) [36]. Hardy named this
new technique the multiquadric basis function (MQ).

Notice that the multiquadric basis function is also radially symmetric about its center.
Because of this radial symmetry, the multiquadric kernel can be described as a Radial Basis
Function. In other words, it is a basis function which depends only on the radial distance from
its center. Since our basis functions depend only on distance.

Definition 1.2. RBF approximations are usually finite linear combinations of the translation
of a radially symmetric basis function. The set of RBFs, ¢; is as follows

¢ RY — R, ¢3(z) = ¢(|| ¥ — ; ||), where || . || denote the Euclidean norm and x; is the center
of RBF.

1.3 Radial basis functions interpolation problem

This method was proposed by Edward Kansa in 1990 [49], a proffessor at the university of
California. It was used for the first time for polynomial interpolation problems. The method
makes it possible to offer a high order accuracy with nodes dispresed on a totally irregular
geometry with a particular simple algorithm compared to the classical methods used until this
moment. Before Kansa’s successful research, Hardy [36, 37] used the multiquadric function to
interpolate multidimensional data and reconsile two dimensional geographic surfaces, showed
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that multiquadric has a physical foundation as a consistent solution to the biharmonic potential
problem. Buhmann and Michelli [14] have shown that the MQ interpolation sheme converges
faster as the spatial dimension increases, and converges exponentially as the density of the
nodes increases. Buhmann and Michelli [15] and Chui et al [23] have shown that MQ and other
RBFs were prewavelets. Kansa intervened to solve partial differentiall equations of elliptic,
parabolic or even hyperbolic type [51]. This intervention which modified the multiquadric
function was very succesful. Finaly, in 1990 Hon et al [42] have improved the MQ method for
solving varieties of nonlinear boundary problems, the most common of which is the Burgers
equation.

The scattered data approximation problem is as follows, let given a set of NV distinct data
points X = (xl, To, ..., xN) in RV and a corresponding set of N values (yl, Y2, e yN) sampled
from an unknown function f such that y; = f(x;). We can then choose a radial function ¢
and a set of centers (xcl,xcg, ...,xCN> for some N € N, to obtain a basis (qﬁ(|| —zal]), o(]]- —

Zeal))s ey O] = e ]))-

This basis can then be used to construct an approximation s of the function f.
One option is to center an RBF on each data site. In that case, the approximation will be

constructed from n radial basis functions, and there will be one basis function with x, = z; for
each?=1,2,...,N.

The approximation s is then constructed from a linear combination of those N RBFs, such
that

N
s(a) =Y _cid(|le — zil]), (1.8)
i=1
with: r; = ||z — x;||. Then,

¢1(7“1) ¢1(7"2) ¢1(7"N) C1 fi
¢2(7“1) ¢2(7“2) ¢2(7"N) Ca fo

¢Nt7‘1) ¢N.(7“2) ¢N<TN) C;v f.N

Such that7 c= [617027 “'7CN] and Yy = [fl?f?u “'7fN]7

The constants ¢; are determined by ensuring that the approximation will exactly match the
given data at the data points. This is accomplished by enforcing s(z;) =y, = f;, i =1,... N,
which produces the system of linear equations

Ac=uy. (1.9)

The solution of the system requires that the matrix A is non-singular. The situation is favorable
if we know in advance that the matrix is positive definite. Moroever we would like to characterize
the class of functions ¢ for which the matrix is positive definite.

Polynomial Terms

It is sometimes useful to add low order polynomials to our method of radial basis function
interpolation. We let 77, _; be the linear space of polynomials from R® to R of degree at most

m — 1, and choose p;, 7 = 1,2,..., M as a basis for this space, whose dimension is
M- lm -1+ S] .
m—1
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This means we let s(x) have the form

N M
s(x) :Zcmﬁ(“x—xiH)jLZdjpj(x), x € R*. (1.10)
i=1 j=1
with the additional constraints
N
> epi(zi) =0, j=1,2,..., M. (1.11)

=1

Adding the extra constraints and the polynomial conditions to the interpolant, we find the
system of linear equations,
A Pllel |y
ol -1

where now the matrices and arrays have the following dimensions: Ais N x N, Pis N x M, O
is M x M of zeros; ¢, y are N x 1, s and 0 are M x 1.

The addition of polynomials of degree not more than m — 1 guarantees polynomial precision,
meaning that if the data comes from a polynomial of degree less than or equal to m — 1 they
are fitted by that polynomial.

1.3.1 Positive-definite matrices and functions

Definition 1.3. A real symmetric matrix A is called positive semi-definite if its associated
quadratic form ¢’ Ac > 0, that is

N N
2 Z cicjAig 2 0, (1.12)
1.12) is

for ¢ € R™. If the quadratic form ( s zero only for ¢ = 0 then A is called positive definite.

Hence, if in (1.8) the basis ¢; generates a positive definite interpolation matrix that we
would always have a well-defined interpolation problem. In order to get such property, we need
to introduce the class of positive definite functions.

Definition 1.4. A continuous complex valued function ¢ : R® — C is called positive semi-
definite if, for all N € N, all sets of pairwise distinct points X = {z1,...,2x} C R* and ¢ € CV
the quadratic form

N N
SN eicip(x; — x;) > 0, (1.13)
i=1j=1
is nonnegative. The function ¢ is then called positive definite if the quadratic form above is
positive for ¢ € CV, ¢ # 0.

One of the most celebrated results on positive definite functions is their characterization in
terms of Fourier transforms established by Bochner in 1932.

Theorem 1.3. (Bochner)[6] A (complex-valued) function ® € C(R®) is positive definite on R?
if and only if it is the Fourier transform of a finite non-negative Borel measure n on R® | i.e

O(x) = \/7/ e "Vdu(y), = € R°.
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1.3.2 Completely monotone functions

Definition 1.5. [29](p.47) A function ¢ : [0,00) — R that is C[0,00) N C'*(0, 00) and satisfies
(=™ (r) >0, r>0, k=0,1,2,... (1.14)

is called completely monotone.

Here we enumerate some of the most important positive definite functions showing that
they are completely monotone.

1. The function ¢(r) =€, € > 0 is completely monotone on [0, 00).
2. The function ¢(r) = €=, € > 0 is completely monotone on [0, c0) since
(=D (r) = e >0, k=0,1,2,....

1
3. The function ¢(r) = m , 8 >0 is completely monotone on [0, 00) since
r
(=1)k®(r) = (=1D)*BB+1)...(B+k—-1)(1+7r) *>0k=0,1,2,...

Theorem 1.4. (Hausdor[f-Bernstein—Widder)[8/](p.91) A function ® : [0,00) — R is com-
pletely monotone on [0,00) if and only if it is the Laplace transform of a nonnegative finite
Borel measure v, i.e. it is of the form

O(r) = / et du(t).
0
Theorem 1.5. (Schoenberg)[84](p.93) A function ¢ is completely monotone on [0, 00) if and
only if ® = ¢(|| . ||3) is positive semi-definite on R® for all s.
Multiply monotone functions

This characterization allows to check when a function is positive definite and radial on R? for
some fixed d.

Definition 1.6. [29](p.49) A function ¢ : (0,00) — R which is C*72(0,00), s > 2 and for which
(—=1)k¢*) (r) > 0, non-increasing and convex for k = 0,1,...,s — 2 is called s times monotone
on (0,00). In case s = 1 we only require ¢ € C(0,00) to be non-negative and non-increasing.

Characterizing positive definite functions using more comprehensible approach based on the
definition of completely monotone and multiply monotone functions can be found in [11, 29, 84].
1.3.3 Conditionally positive definite functions

Definition 1.7. [84](p.97) A continuous function ® : R® — C is said to be conditionally
positive semi-definite of order m in R?, if

i%@@(wi — ;) >0, (1.15)

i=1j=1
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for any N set X = {x1,...,2x} C R® of pairwise distinct points, and ¢ = (cy,...,cy)t € CV
such that

i\[: cep(ay) =0, (1.16)

k=1

for any complex-valued polynomial p of degree < m — 1. The function ® is then called
conditionally positive definite of order m on R? if the quadratic form (1.15) vanishes only when
c=0.

The first important fact concerning conditionally positive (semi)-definite functions is their
order. To this aim holds the following important result.

Remark 1.2. - A function which is conditionally positive (semi)-definite of order m is also
conditionally positive (semi)-definite of any order s > m.

- A function that is conditionally positive (semi)-definite of order m in R? is also conditionally
positive (semi)-definite of order m on R* with k < s .

Theorem 1.6. [8//(p.99) Suppose ® is conditionally positive definite of order 1 and that
®(0) < 0. Then the matrizx A € RNV je. A;; = ®(x; — x;), has one negative and N — 1
positive eigenvalues. In particular it is invertible.

The most used positive definite RBFs and conditionally positive definite RBFs are given in
tables 1.3-1.4 respectively. The representations of multiquadric, gaussian, inverse multiquadric,
inverse quadric and polyharmonic splines RBFs are given in figures 1.4-1.5-1.6.

Name o(r)

1
Inverse Multiquadric (IMQ) | ¢(r) = ——=—=
V12 + €

Gaussian Function (GS) o(r) =e

Table 1.3: Positive definite radial basis functions.

Name o(r) Order
Multiquadric (MQ) pr)y=?+H" k>0,k¢N [ [k]+1
Inverse Multiquadric (IMQ) | ¢(r) = (r* +€*) %, k>0, k¢ N | 0
Polyharmonic spline o(r)=r*1 keN [k/2] +1
Polyharmonic spline o(r) =r%*In(r), ke N [k/2] +1
Thin Plate Spline (TPS) o(r) = r’ln(r) 2

Table 1.4: Conditionally positive definite radial basis functions, where [k] denotes the nearest
integers less than or equal to k£, and N the natural number, € a positive constant which is
known as the shape parameter .

15
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Figure 1.4: Graph of gaussian RBF (left), multiquadric RBF (right), for a center x = 0, with

different values of shape parameter.

Figure 1.5: Graph of inverse multiquadric RBF (left), inverse quadric RBF (right), for a

x = 0, with different values of shape parameter.
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Figure 1.6: Graph of polyharmonic splines.

1.3.4 Stability

As observed by Schaback [68] there is a trade-off between the accuracy of the interpolation and
the condition number of the matrix defined in equation (1.9) in the 2-norm is defined as follows,

_ Omin
R(A) =] Alloll A7 [lo= :

max

where 0,,;, is the smallest singular value and o,,,, the largest singular value of A. The shape
parameter affects both the conditioning of the system matrix and the accuracy of the RBFs
method as shown in figure 1.7.

In order to improve the accuracy of the interpolant we can change the shape parameter € to
use ‘flat’ basis functions , which leads to a more ill-conditioned problem since the condition
number of the matrix A increases. This trade-off has been called the uncertainty principle
(Phrase used to describe the fact that a RBF approximant can not at the same time be accurate
and well conditioned). Alternatively we can increase the number of interpolation points to
increase the accuracy, but this also leads to a larger condition number of A.

increasingly flat basis functions provide more accurate interpolants, but are unusable because
of the numerical instabilities from ill-conditioning. This problem is addressed in [33], where
algorithms for the stable computation of these interpolants are provided.

1.3.5 Shape parameter
Many RBFs, including all of the ones named here, have a variable € in their definitions. This

variable is called the shape parameter. Finding the shape parameter that will produce the most
accurate approximation is a topic of current research.

17



RMS-error
Condition number

Figure 1.7: Gaussian RBF (¢(rr) = e~ (")’ ) interpolation of the function, f(z) = e * sin(z),
using N=20 of Chebyshev nodes. RMS-error (RMS—error:ﬁHs — fll2) versus the shape
parameter (Left), condition number versus the shape parameter (right).

Figure 1.8: Graph of Gaussian RBF centered at the origin, with a shape parameter ¢ = 3
(left),with a shape parameter € = 1 (center), with a shape parameter ¢ = 0.3 (right) .

Choosing optimal shape parameter

In recent years, a lot of continued efforts of many authors to establish the theory of evaluating
the optimal shape parameter € in the MQ radial basis function interpolation. However, such an
explicit formula is only available in special cases. Consequently, numerically determining the
optimal € proves to be essential. Numerical experiments find that the best €, via a numerical
scheme, may not be theoretically optimal. A large shape parameter results in a well conditioned
system matrix; however, the approximation using the RBF is poor. If one chooses to use a
small shape parameter, this results in a very accurate RBF approximation, but the system
matrix is ill-conditioned. Many strategies for selecting an optimal value of € were suggested.

Constant shape parameter

Many scientists and mathematicians use the constant shape parameter for interpolation of data
(34, 36, 44].

Definition 1.8. [36] Hardy’s € is given by

18



1 N
e = 0.815d with d = — Zdi>
NI

where d; is the distance from the i*" center to the nearest neighbor and N is the number of
centers.

Definition 1.9. [34] Franke’s € is given by
_ 1.25D

€= —F—,
VN

where D is the diameter of the smallest circle encompassing all the center locations and N
is the number of centers.

Many authors have tried to construct a satisfactory formula for the shape parameter in MQ
interpolation as noted in [32, 79]. When creating an optimal shape parameter, one must combat
the uncertainty principle. The goal of finding a shape parameter formula for the interpolant is
to provide good accuracy with not too high of a condition number.

Variable shape parameter

When the theory is established for radial basis functions, a constant shape parameter was used.
If one uses a variable shape parameter, the complexity of theory becomes extremely difficult
to explain. In [7] there are somewhat restrictive sufficient conditions that show the system
matrix A is non-singular with a variable shape parameter. One positive aspect of a variable
shape parameter is that it creates distinct entries in the RBF matrices which can lead to lower
condition numbers [80]. The downside to a variable shape parameter is that it caused A to be
nonsymmetric. Recall that if one uses a constant shape parameter, the system matrix A will be
symmetric. There are additional papers that used the variable shape parameter see- [7, 49, 50].

Variable linear shape parameter

The variable linear shape is a 1 x N matrix that contains shape parameters generated by the
formula,

€maz — €Emin

, j=0,1,...N—1
N1 7 i=01, ,

€ = 6mzn+(

where €,,;, and €,,,, are the maximum and the minimum values for the variable shape €
respectively. The representation of variable linear shape parameter is given in figure 1.9.

Exponentially varying shape parameter

The exponentially varying shape is a 1 x N matrix that contains shape parameters generated
by the formula,

[ ) ( €2 ) 3;11 ] %
e, =le . (52)" |, forj=1,2,...,N,
J mn Egmn

where €,,;, and €,,,, are the maximum and the minimum values for the variable shape €
respectively. The representation of exponentially varying shape parameter is given in figure

1.10.
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Figure 1.9: Plot of variable linear shape parameter with €,,;, = 1, €0 = 50, and N = 20.
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Figure 1.10: Plot of exponentially variable shape parameter with €,,,, = 1, €4, = 50, and
N = 20.
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Variable random shape parameter

The variable random shape is a 1 X N matrix that contains shape parameters generated by the

formula,

where €,in, €mae are the maximum and the minimum values for the variable shape e
respectively. The representation of variable random shape parameter is given in figure 1.11.
The representation of absolute errors using linear variable, exponentially varying and random

&0

45

Figure 1.11: Plot of random variable shape parameter with €,,;, = 1, €4 = 50, and N = 20.

€; = €min + (Emam - Emin)rand(L N)7

variable shape parameter is presented in figure 1.12.

The power function

The error of interpolation is given by

| f(x) = s(x) |< Py ()| f]n, (@), where Py (x) denotes the power function. This estimate
decouples the interpolation error into a component independent of the data function f and
Once we have decided on a basic function f and a data set x, we can
use the power function based on scaled versions of ¢ to optimize the error component that is

one depending on f .

independent of f. The power function can be computed via

Py () = /é(x, )
and b = [¢(.,x1), ..

— (b(x))TA=1b(x), where A is the interpolation matrix,

L o(,x)]T.
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Figure 1.12: Plot of absolute errors for interpolating sinc(z + 1) using linear variable, exponen-
tially varying and random variable shape parameter with €,,;, = 2.1, €4, = 7.6, and N = 20,
using M = 9 Chebyshev points.

* Advantage: objective and does not depend on any knowledge of the data function.

* Disadvantage: will not be an optimal one since the second component of the error bound
also depends on the basic function via the native space norm (which changes when A is
scaled).

The power function strategy for one and two dimensional interpolation using gaussian RBF is
given in figure 1.13.

Trial and error strategy

It is the simplest approach. It consists in performing various interpolation experiments with
different values of the shape parameter. The best parameter, say € will be the one that minimize
the interpolation error. In figure 1.14, we plot the interpolation max-error varying e for different
data points, using the Gaussian kernel in the univariate case. The minimum of every curve
gives the "optimal" value.
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Figure 1.13: The power function strategy by gaussian RBF in one dimensional (left), and two
dimensional (right) for € € [0, 20], taking 100 values of € and for different equispaced data
points.

Error

Figure 1.14: Trial and error strategy for the interpolation of the sin(x) function (left) and
Franke’s test function f(z) = exp(—x) + sin(2z) (right) by the gaussian for e € [0, 20|, taking
100 values of € and for different equispaced data points.
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Cross Validation method

This method is popular in the statistics literature, known in the case the 2-norm is used as
PRESS (Predictive Residual Sum of Squares). The optimal value € is obtained minimizing the
(least-squares) error for a fit of the data values based on an interpolant for which one of the
centers is left out.

1-

Leave one out cross validation (LOOCYV)

Cross validation attempts to test the accuracy of a method by separating the available data
into two or more parts. One part of the data set is used to construct an approximation,
and error is measured using a different part of the data set. Leave one out cross validation
(LOOCYV) uses (N — 1) points from the data set to construct an approximation, then
checks that approximation’s error at the remaining data site. The procedure is repeated
leaving out each data site once, and the resulting set of errors are used to estimate the
method’s relative accuracy .

N
LOOCV (¢) =Y |si(x:) — wil?,
i=1

where s; is the interpolant when excluding the points z; and using functions with shape
parameter e.

Ai
Shmuel Rippa [76] showed that s;(x;) — y; = e where J; is the i-th coefficient of the

interpolant f constructed using the full data set and A;;" is the i-th diagonal element of
A=Y, The vector A can be found by solving A\ = y, and the diagonal elements of A~!
can be computed using a matrix factorization. As a result, computing the LOOCYV using
Rippa’s formula has computational complexity O(N?). For the following experiments,
LOOCYV will be computed using the formula

LOOCV (¢) = zNj Ml] .

(2

Generalized cross validation (GCV)

Generalized cross validation (GCV') is a variation of leave one out cross validation which
replaces the diagonal elements of A~! with their average. GCV is similar to LOOCV, but
has some invariance properties which LOOCYV lacks. As with LOOCV, the computational
complexity of GCV is O(N?). In the following experiments, GC'V is calculated by using
the formula

GCV (e) =

N

>N

l;l 5
2

Maximum Likelihood Estimator (M LFE)

Another method for predicting which shape parameter ¢ will minimize the error of an
RBF interpolation is to use a maximum likelihood estimator (MLE). Assuming that f
is a Gaussian process, maximizing the likelihood function is equivalent to minimizing
yt A"y [det(A)]VN. This formula rapidly approaches 0 as N increases, causing numerical
error. The resulting numerical error can be prevented by taking the logarithm of the
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N
function in its computation and applying the identity det(A) = J] Ai(A), where A;(A) is
i=1

the i-th eigenvalue of A. Additionally, computing A~! can be avoided because A=\ = ¢,
M LFE is calculated by using the formula

1 N
MLE(e) = log(y'c) + N > log(A;(A)). Computing the coefficients \; and computing the
i=1

eigenvalues of a matrix each require O(N?) operations. So the value of this function for a
single shape parameter ¢ has computational complexity O(N?3). The LOOCV strategy for
the interpolation of the sinc function by gaussian RBF in one and two dimensional is
shown in figure 1.15.

10 |
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n 2 4 & 8 10 12 14 16 18 20 n 2 4 6 8 10 12 14 16 18 20

Figure 1.15: LOOCYV strategy for the interpolation of the sinc function by gaussian RBF in
one dimensional (left), and two dimensional (right) for € € [0, 20], taking 101 values of € and for
different equispaced data points.

Other algorithms in litterature for choosing optimal shape parameter are given in [17, 69, 76, 81].

1.3.6 Data sets

Depending on the type of approximation problem we are given, we may or may not be able to
select where the data is collected, i.e., the location of the data sites or design. Standard choices
in low space dimensions are depicted in figure 1.16. In higher space dimensions it is important
to have space-filling (or low-discrepancy) quasi-random point sets. Examples include: Halton
points, Sobol points, lattice designs, Latin hypercube designs and quite a few others (digital
nets, Faure, Niederreiter, etc). The representations of Halton points, Sobol points, lattice and
Latin points are given in figures 1.17-1.18.
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Figure 1.16: Tensor products of equally spaced points and tensor products of Chebyshev points.
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Figure 1.17: Graph of Sobol and Halton nodes.
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Figure 1.18: Graph of Lattice and Lattin nodes.
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Algorithms for choosing centers of radial basis funcions

RBF methods have been praised for their simplicity and ease of implementation in multivariate
scattered data approximation. But both the approximation quality and stability depend on
the distribution of the center set. It leads immediately to the problem of finding good or
even optimal point sets for the reconstruction process. Many methods are constructed for
center choosing. We summarize some effective center location methods like greedy algorithms,
arclength equipartition methods and k-mean clustering methods.

Greedy algorithm

In order to minimizing the power function, Marchi S.D., Schaback R. and Wendland H.
constructed a numerical greedy algorithm produces near-optimal point sets by recursively adding
one of the maxima points of the power function w.r.t. the preceding set [60, 61]. Obviously,
greedy algorithm is data-dependent and adaptive algorithm. It is described as follow

Take a set X = {z1,...2x} C Q CR® of N pairwise distinct points coming from a compact
subset (2 of R,

(1) Let X7 = {z1} for x; € Q arbitrary

Pox; (@) =| Pox;oy ey, 722, (1.17)

until || Py x, [|z(o) is small enough.

In practice, the maxima is taken over some large discrete set X C 2 C R* . The
convergence rate of the above Greedy algorithm is at least like

I Pox; lLacioy= €', (1.18)

where C' is a constant.

Based on numerous numerical experiments of Greedy Algorithm, the same authors
suggested a geometric greedy algorithm which is data-independent.

ArcLength equipartition like algorithm

Based on the idea that to display a function with some finite discrete sampling data efficiently,
one requires more sampling data where the function is more oscillatory, and less sampling
data where the function is more flat, Wu Z.M. [88] and Sarra S.A. [71] both used arclength
equipartition algorithm to solve partial differential equations.

k-means clustering algorithm

Finally, k-means clustering algorithm commonly used in radial basis function neural networks
is easy to implement and of high performance [94]. The working process of k-means: first, choose
arbitrary k points as the initial cluster centers. For all other points, compute their Euclidean
distances to the k-cluster centers, and add each to its nearest cluster. Then recalculate the k
cluster centers by taking the geometric center of each cluster, and repeat the above process
until the center errors go below a given threshold. This is also a data-independent method.

Other Algorithms for choosing centers for RBFs are given in [21, 31, 46].
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Chapter 2

Compactly supported RBF and some
applications for solving integral and
partial differential equations

This chapter is consacred to introducing the concept of compactly supported RBF and
its applications with globaly RBF for solving different types of integral and partial differen-
tial equations. A comparaison between stationary and non-stationary approaches for RBFs
approximation is also given.

2.1 Compactly supported radial basis functions

After successful studies and tests for the result of partial differential equations, such as the
resolution of hydrodynamic equations by Hon et al, the numerical results demonstrated that
the MQ diagrams are very assuring than the finite element method. However, the MQ method
requires solving a linear system with a full matrix, which could make the method cumbersome
and very expensive once you have to do hundreds of collocation points. To overcome this
problem, researchers have developed a sheme based on radial basis functions with compact
support (CSRBFs). The compactly supported radial basis functions can cover the global
schemes that the simple RBF methods are weak to solve as in the case of the badly conditioned
matrices.

The accuracy of the RBFs method depends on the value of the shape parameter which is still
an unsolved problem, also the resulting interpolation matrix is dense and highly ill conditioned.
So it was suggested the use of compactly supported radial basis functions which can reduce the
resultant full matrix to a sparse one, also the operation of the banded matrix system could
reduce the ill-conditioning of the resultant coefficient matrix when using the global radial basis
functions.

Compactly supported radial functions can be strictly positive definite on R* only for a fixed
maximal s-value. It is not possible for a function to be strictly positive definite and radial on R?
for all s and also have a compact support. Therefore we give characterization and construction
of functions that are compactly supported, strictly positive definite and radial on R* for some
fixed s.

According to Bochner’s work [6], a function is strictly positive definite and radial on R® if
its s-variate Fourier transform is non-negative.
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The Bessel function J of the first kind of order v € C can be expressed as follow

00 > 2k+v
z:: )k‘(—i—/j)jt ok for z € C\0.

such that the I'-function is given as follow

nln®
I'(z):= li fi .
() ninooz(z—kl)...(z—kn)’ orzcC

Theorem 2.1. [8/](p.119) Suppose ® € L'(R*) N C(R?) is radial, i.e. ® = ¢(| . [l2), v € R®.
Then, its Fourier transform ® is also radial, i.e. ® = F,(|| . ||2) with

B(a) = Fuolr) =02 [T o002 p(rt)dt.

Operators for Radial Functions and Dimension Walks

Schaback and Wu [73] defined an integral operator and its inverse differential operator, and
discussed an entire calculus for how these operators act on radial functions. These operators
will facilitate the construction of compactly supported radial functions.

Definition 2.1. [84](p.121) Let ¢ be given such that t — t¢(t) € L'[0, 00), then we define

o)) = [ ey, v > 0.

For even ¢ € C%*(R) we define

1,
(DY)(r) = =~ (1), 72 0.
In both cases the resulting functions are to be interpreted as even functions using even extension.

Theorem 2.2. [8/](p.121-122)

1- Both D and I preserve compact support, i.e., if ¢ has compact support, then so do D¢
and Lo.

2- If ¢ € C(R) and t — ¢(t) € L'[0,00), then DL¢ = ¢.

3- If g € C*(R) and ¢ € L'[0,00), then ID¢ = ¢.

4- If t — t571p(t) € L'0,00) and s > 3, then Fy(p) = Fs_2(Zo).

5- If » € C*(R) is even and t — t°¢ (t) € L'[0,00), then Fod = Fyyo(Do).

The operators Z and D allow us to express s-variate Fourier transforms as (s — 2) or
(s 4+ 2)—variate Fourier transforms, respectively.

Wendland’s Compactly Supported Functions

In [84] Wendland constructed a popular family of compactly supported radial functions by
starting with the truncated power function which we know to be strictly positive definite and
radial on R?® for s < 2] — 1, and then walking through dimensions by repeatedly applying the
operator 7.
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Definition 2.2. [84](p.128) With ¢;(r) = (1 — ) we define
¢s,k’ = Ik¢[s/2]+k+1-

It turns out that the functions ¢ are all supported on [0,1] and have a polynomial
representation there.

Theorem 2.3. [8/](p.128) The functions ¢sy are strictly positive definite and radial on R?
and are of the form

¢s,k(r) _ { ps,k’(r>7 re [O’ 1] (21)

0, r>1,

with a univariate polynomial psy of degree |s/2| + 3k + 1. Moreover, ¢ € C**(R) are unique
up to a constant factor, and the polynomial degree is minimal for given space dimension s and
smoothness 2k.

Wendland gave recursive formulas for the functions ¢, for all s, .

Ezample 2.1. Wendland’s compactly supported functions ¢, for k£ =0, 1,2, 3, are written in
the following form

e ¢o(r)=(1- 7n)f/2j+1
o 6a1(r) = (1 =) I+ Dr+1]
o Guo(r) = (1—r)i2 [(12+ 41+ 3)r? + (31 4 6)r + 3]

o ¢o3(r) = (1—7) P [(1P + 912 + 231 + 15)7% + (61> + 361 + 45)r% + (151 + 45)r + 15],

where [ := [s/2] + k + 1, and the symbol = denotes equality up to a multiplicative positive
constant.

Example 2.2. For s = 3 we get some of the most commonly used functions as

o P30(r)=(1—-r)3, € C°NSPD(R?)
o ¢31(r)=(1—r)i[dr+1], € C*NSPD(R?)
o ¢32(r) = (1—7)% [35r2 +18r + 3], € C'NSPD(R?)

o (33(r) = (1—r)% [32r® + (6% + 361 + 45)r* + (151 + 45)r + 15], € C® N SPD(R?).
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The abbreviation SPD means striclty positive definite.
Wu’s Compactly Supported Functions

Wu presents another way to construct strictly positive definite radial functions with compact
support [89]. He starts with the function

o(r)=(1—-7r*", €N, (2.2)

which is strictly positive definite and radial since we know that the truncated power function
¢(y/-) is multiply monotone. Wu then constructs another function that is strictly positive
definite and radial on R by convolution, i.e.,

di(r) = (¢ x ¢)(2r)
_ /_+°O(1 S (1= (2 — b2t

This function is strictly positive definite since its Fourier transform is essentially the square of
the Fourier transform of ¢. Just like the Wendland functions, this function is a polynomial on
its support. In fact, the degree of the polynomial is 41 + 1, and ¢; € C*(R).

Now, a family of strictly positive definite radial functions is constructed by a dimension
walk using the D operator, i.e.,
ory = D¢y
The functions ¢y are strictly positive definite and radial in R® for s < 2k 4 1, are polynomials
of degree 41 — 2k + 1 on their support and in C?(I — k) in the interior of the support. On the
boundary the smoothness increases to C#*.

FExample 2.3. For | = 3 we can compute the three functions

Or3(r)DFes(r) = D*((1 — 2)3 + (1 — 2)3)(2r), k = 0,1,2,3. This results the following
CSRBFs

$o,3(r) = (5 — 39r" 4+ 143r* — 429r° 4 42977 — 143r° + 397! — 5r%)
dos(r) = (1 —r)°(5+ 35r + 101r* + 147r° + 101r* 4 35r° + 5r°), € C°N SPD(R)
¢13(r) = (6 — 447r® + 1987 — 2317° 4+ 99r7 — 33r% 4+ 5r'1)
P15(r) = (1 —1)5(6 4 36r 4 82r% + 72r° + 30r* 4+ 5r°), € C*NSPD(R?)
Pas(r) = (8 — 72r® + 1057® — 63r° + 27r" — 5r9)
G2,3(r) = (1 — r)2(8 + 40r + 48r* + 25r* 4 5r*), € C* N SPD(R?)
¢33(r) = (16 — 35r + 35r% — 2175 + 5r7 )+
P33(r) = (1 — )4 (16 4+ 29r + 20r* + 57%), € C° N SPD(RY).
Remark 2.1.  1- For a prescribed smoothness the polynomial degree of Wendland’s functions

is lower than that of Wu’s functions. For example, both Wendland’s function ¢3 2 and
Wu'’s function ¢3; are C* smooth and strictly positive definite and radial in R®. However,
the polynomial degree of Wendland’s function is 8, whereas that of Wu’s function is 11.

2- While both families of strictly positive definite compactly supported functions are con-
structed via dimension walk, Wendland uses integration (and thus obtains a family of
increasingly smoother functions), whereas Wu needs to start with a function of sufficient
smoothness, and then obtains successively less smooth functions (via differentiation).
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Figure 2.1: Graph of Wendland’s CSRBFs (left), Wu’s CSRBFs (right), for a center z = 0.

The figure 2.1 shows some of Wendland’s and Wu’s CSRBFs.

Buhmann’s Compactly Supported Functions

A third family of compactly supported strictly positive definite radial functions that has
been appeared in the literature is due to Buhmann (see [12]). Buhmann’s functions contain a
logarithmic term in addition to a polynomial. His functions have the general form

o) = [T e - )

1
Here 0 < 6 < 50 P > 1, and in order to obtain functions that are strictly positive definite

and radial on R® for s < 3 the constraints for the remaining parameters are A > 0, and
A
-1 < —.
<a< 5
Ezample 2.4. An example with @ = 6 = 3, p = 1 and A = 2 is listed in [13]: ¢(r) =
12rtlog(r) — 21t +32r3 — 1272 +1,0<r < 1, C?*nN S D(R3), which is presented in figure 2.2.
p =
<r

Ezample 2.5. An example with o = 0, § = 3,
L 19,2 16,8 4 500165 4 L6 4 9 200(r) 0
in figure 2.3

4 and A = 1 is listed in [13] ¢(r) =
<1, C?* N SPD(R?), which is presented

Remark 2.2. (1) While Buhmann [13] claims that his construction encompasses both Wend-
land’s and Wu's functions, Wendland [86] gives an even more general theorem that shows
that integration of a positive function f € L'[0,00) against a strictly positive definite
(compactly supported) kernel K results in a (compactly supported) strictly positive
definite function, i.e.,

+oo
or) = [ Kt f(b)d
is strictly positive definite. Buhmann’s construction then corresponds to choosing f(t) =

t(1 =95 and K(t,r) = (1 —r?/t)}.
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Figure 2.2: Graph of Buhmann’s function of example 2.4.
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Figure 2.3: Graph of Buhmann’s function of example 2.5.
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(2) Multiply monotone functions are covered by this general theorem by taking K(t,r) =
(1—r") =Y and f an arbitrary positive function in L' so that du(t) = f(t)dt in Williamson’s
characterization. Also, functions that are strictly positive definite and radial in R?® for all
s (or equivalently completely monotone functions) are covered by choosing K (t,7) = e~ ".

The approximation of a function U can be expended in serie’s by compactly supported
radial basis function ¢ as follow

N
T) ~ ZaiQS(HI;%H), r € R’ (2.3)
i=1

where z;, i = 1,..., N is a finite set of distinct points (centers) in R®) and o is a positive integer.
The coefficients «; are calculated by using some collocation points.

2.1.1 Native space

There is a natural space in which consider the RBF approximation. In fact, for each positive
definite and symmetric kernel ® and for each region €2 C R?® it is possible to define an associated
real Hilbert space, the so-called Native space Ng(£2).

Hilbert space is a space of functions real or complex, which is complete metric space w.r.t.
the distance induced by the inner product.

b
Here the inner product between two functions f and g is thought as (f, g) = / f(z)g(x)dx

b
in the real case or (f,g) = / f(z)g(z)dx , in the complex case, which has many of the familiar

properties of the Euclidean (discrete) dot product. Examples of Hilbert spaces are: any finite
dimensional inner product space (for example R*; C* equipped with the dot product of two
vectors), the Lebesgue spaces LP, Sobolev spaces.

Definition 2.3. [84](p.134) Let H be a real Hilbert space of functions f : Q@ — R, with inner
product (.,.)y. A function ® : Q x 2 — R is called a reproducing kernel for #H if

1- ®(.,y) € H Vy € Q,
2- fy) = (f,P(.,y))n Vf € H, and Yy € Q. (reproducing property)
The reproducing kernel of a Hilbert space is uniquely determined. Suppose there are two

reproducing kernels ®; and ®,. Then property (2) gives (f, ®1(.,y) — P2(.,y))x = 0 for all
f € H and all y € Q. Setting f = ¢1(.,y) — P2(.,y) for a fixed y shows the uniqueness.

Theorem 2.4. [8/](p.135) Suppose that H is a reproducing-kernel Hilbert function space with
reproducing kernel ® : Q2 x Q — R. Then ® is positive semi-definite. Moreover, ® is positive
definite if and only if the point evaluation functionals are linearly independent in H*.

From the first property of definition 2.3 we know that H contains all functions of the form

f= Z a;O(., x;) if z; € Q. Furthermore, we know that

N N N
H f HH ZZO‘J xz = Zza 042 xj)'rl

Jj=1l1i=1 Jj=1:=1
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We will use this feature to construct a reproducing-kernel Hilbert space for a given positive
definite kernel.

Hence, assume that ® : 2 x ) — R is a symmetric positive definite kernel. Define the
R-linear space He(2) := span {®(.,y) : y € Q}, and equip it with the bilinear form

N M
(za@(.,xj),zaz.@(., ) ) S ajadb(e, p)
=1 i=1 ®

Jj=1li=1

Theorem 2.5. [8//(p.137) If  : Q x Q — R is a symmetric positive definite kernel then (.,.)o
defines an inner product on He(Y). Furthermore, He(Q2) is a pre-Hilbert space with reproducing
kernel ®.

Lemma 2.1. [84](p.138) The linear mapping R : He(2) — C(Q), R(f)(x) := (f, P(.,2))s is
injective.

Definition 2.4. [84](p.138) The native Hilbert function space corresponding to the symmetric
positive definite kernel ® : (2 x 0 — R is defined by

Na(2) := R(Ha(Q2)).

It carries the inner product
(fv g)Nq,(Q) = (R_1f7 R_lg>‘1>'

Indeed, the space so defined is a Hilbert space of continuous functions on 2 with reproducing
kernel ®. Since (., x) is an element of He(2) for x € 2 it is unchanged under R and hence

f(ZL’) = (R_lfv @(,ZE))@ = (fygb(vx))/\f@(ﬂ)
for all f € Np(Q2) and z € Q.

Theorem 2.6. [8//(p.138) Suppose that ® : Q x Q — R is a symmetric positive definite kernel
then its associated native space Ng(S2), is a Hilbert function space with reproducing kernel ®.

The Native space Ng(2) for the kernel ® is the completion of He(£2) with respect to the
I+ le-norm, so that || f lo=[| f [lxw@), VF € Ha(S2).

2.1.2 Error bounds and stability estimates

We recall that, for a subset 2 C R®, a discrete data-sites set X C €2 and a radial, positive
definite kernel ® € C(Q2 x Q) the RBF interpolant Px[f] to a function f € Ng(f2) is computed
as

ZCJ (x,x5), Px[fl(z;) = f(x;) Vo € Q,z; € X.

The question is how well Py [ f] can approximate the sampled function f, i.e. if Px[f] converges
to f in some given norm when the data-sites X becomes dense in (2.

There are two quantities used to relate the set X to these requirements: the fill distance

hxo=maxmin || x — z; |2,
reQ x;€X
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and the separation distance
r .
ax =5 min |z — ;|2
Clearly the shape parameter ¢ have also an important role, since it determines the radial
amplitude of the kernel. The first estimate comes directly from the definition of the pointwise-
error functional. Let £, be defined for all x € ) as

e : No(Q) = R, &(f) = f(z) — Px[f](2),

and let Py x denote its norm, the so-called Power function. Then the basic estimate for the
convergence is the following

Theorem 2.7. [29](p.171) Let Q C R®, let & € C(2 x Q) be a strictly positive definite kernel,
let X C Q be a discrete set of data sites and let f € No(Q), and denote with Px|[f] its interpolant
on X. Then

| f(x) = Px[fl(z) |[< Pox || f H/\@(Q), Yz € .

Moreover, the Power function can be exactly computed introducing a Lagrange basis for

Nap(X).

Definition 2.5. [84](p.28) A set 2 C R*® is said to satisfy an interior cone condition if there
exists an angle 6 € (0,7/2) and a radius r > 0 such that for every x € Q a unit vector £(z)
exists such that the cone

C(z,€(x),0,r) = {x + My y € R, | y o= 1,5"¢(x) > cos, X € [0,7]}.
is contained in ).

Theorem 2.8. [29](p.121) Let Q C R?® be a bounded set that satisfies an interior cone condition
and let ® € C*(Q x Q) be a symmetric positive definite. Then there exist positive constants hyg
and C' independent of x, f and ®, such that for all X C 2, for all hx o < ho, for all f € Ns(Q)
and for all x €

| f(&) = Px[f](z) |< Ch0y/Ca() ||  lInucos

where Cy(x) is a given as follow

C — ND2® .
2(v) = max o dmX (P2 2) ]

with B(x, cohx o) denoting the ball of radius cohx o centered at x.

From the previous estimate we can expect that the approximation error goes to zero as
hx o — 0. When the data-sites set X becomes too big the interpolation can be instable. In
fact, it is possible to prove that the condition number of the kernel matrix A grows if the
separation distance ¢y decreases, and this, together with a bad choice of the shape parameter
g, can produce very instable approximants. Various approaches are used to avoid this situation.
A lot of efforts are made on the study of well-distributed data-sites set, for examples sets X
such that the uniformity

PxX.Q =
hxq’

is maximized. Another common way to try to avoid instability, and more related on the linear
algebra part of the method, is to choose a shape parameter € such that the kernel matrix is not
ill-conditioned.
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2.1.3 Estimates for popular basis functions

we assume the general finite-dimensional subspace to be 7, 1(R?). In the following, the region
Q) C R? is always assumed to be open. But this is only necessary for estimates on the derivatives.
In the non-derivative case () has only to satisfy an interior cone condition. Moreover, if §2 is
not open, the estimates on the derivatives hold in every interior point.

Theorem 2.9. [84](p.183) Let ® be one of the gaussians or the (inverse) multiquadrics.
Suppose that ® is conditionally positive definite of order m. Suppose further that {2 C R® is
bounded and satisfies an interior cone condition. Denote the radial basis function interpolant
to f € No(Q) based on ® and X = {xy,...,xn} by Px|f]. Fix a € N§. For everyl € N with
[ > max{| o |,m — 1} there exist constants ho(l), C; > 0 such that

| D*f(x) — D*Px[f](z) |< Cilx ' | £ Inyon -

for all x € Q, provided that hx o < ho(l).

Theorem 2.10. [8//(p.184) Suppose that Q C R is bounded and satisfies an interior cone
condition. Let ®(x) = (—=1)IP/21 ||z ||5, B >0, 8 ¢ 2N. Denote the interpolant of a function
f € Na(Q) based on this basis function and the set of centers X = {xy,...,xx} C Q by Px[f].
Then there exist constants hg, C' > 0 such that

| D f(w) = D*Px[f1() |< CHEG ™ | f Inacon,
for all x € Q and all o with | o |< ([B] — 1) — 2, provided that hx o < hy.

Theorem 2.11. [8//(p.184)

Let @ 1, be a compactly supported radial basis functions . Suppose that €2 C R® is bounded and
satisfies an interior cone condition. Denote the radial basis function interpolant of f € ./V’<1>S7,€(Q)
based on Oy and X = {x1,...,xn} CQ by Px[f]. Then there exist constants C, hg > 0 such
that

| D f(x) — D*Px[f](z) |< CH ST F v

for every a € Nj with | o |< k and every x € 2, provided that hx g < hy.

2.2 Application of RBFs and CSRBFs for solving inte-
gral equations

Over the years, integral equations have motivated a large amount of research works. Integral
equations have been the best way to formulate physics, mechanics, fluid, elastisity, radiation
science and other fields problems. Moreover the numerical integral gives smaller relative errors
than the numerical differentiation. Currently different numerical methods for finiding an
approximate solution of integral equations were proposed, such as, collocation method [8],
Wavelet-Galerkin sheme for solving Volterra integral equations of the second kind [70]. A lot
of researchers used multiquadric, gaussian and inverse multiquadric radial basis functions for
solving integral equations [45, 67].
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2.2.1 CSRBEF for solving nonlinear functional Volterra-Fredholm in-
tegral equations

The aim is to give the approximate solution of Volterra-Fredholm integral equations defined as
AU(t) + B(t)U(h(t)) + M\ /01 Wi(s,t,U(h(s)))ds + Az Oh(t) Wa(s,t,U(s))ds = f(t), (2.4)
where 0 <t <1, f(t), h(t) are known functions, and A, Ag are real values, with
Wi(s, 8, U(h(s))) = ku(s, 1) [U(h(s))]"™
Wa(s, t,U(s)) = ka(s, 1) [U ()],

such that r{, ro are positive integers.

For our experiment we are going to use Wendland’s and Wu’s compactly supported radial
basis functions ¢7 , and ¢F ; respectively.

To approximate the function U(t) of equation (2.4), we apply RBF interpolation in distinct
grids from a definite domain. To this purpose, the function U(t) is approximated by a linear
combination of a functions ¢; as follows

gl 2)

where ¢; is Wu or Wendland’s compactly supported radial basis functions ¢3, and ¢f,
respectively. According to type of the target function which is desired to approximate, and
similarly it is true for

Ut ~ e ¢(M) (26)

Jj=1 g

The integrals have been approximated using the following integration formula

A /01 Wi(s, t,U(h(s)))ds = A Zwkwl (sk,t Zc]@(h(j’“))), (2.7)

7=1
where, s, and wy are shifted Legendre-Gauss-Lobatto nodes and weights .

By replacing equation (2.6) and (2.7) in equation (2.4), and by collocating at points ¢t = t;,

such that I
1 1 ,— 1
t; = - — —cos u ,2=1...N,
2 2

we obtain

0o L0 1 5 L2201

j=1

N
+ A > w Wy <Sk,t“ Cg¢<” d Sk) % H))
=

k=1

h(t:) L (s s
+ A2 ; Wy s,tz,Zc]<b . ds = f(t;),
i=1
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the interval [0, h(t;)] has been transformed to [0, 1] , by taking the changement p =

then, we get
ch ( ~t, H) anw(” hit:) ~ ; H)

R

BRSNS (LERT TR )
w.h(ti)i%%( “p’tl’zlw<||(()a> 2 H))Z £,

This is a nonlinear system of equations, that can be solved via Newton’s iteration method to
obtain the unknwon vector C, such that C' = (cy, ¢, ¢35 ..., en) 7.

Let Un(t) be the approximate solution of U(t), in order to test the efficiency and the
convergence accuracy of the proposed method, we are going to calculate the absolute error at
some different points using the formula

e(t) = [Un(t) = U], 0< <1, (2.8)

for N = 7,14, and different values of the parameter o.

Example 2.6. Let given the following functional Volterra-Fredholm integral equation

Ut) + U(h(t)) = F(t) + M\ /0 e g)U(s)ds W / C1sU (h(s))ds, (2.9)

such that k() = £, My = Ao =1, and f(t) = o5t + 215 — it
The exact solution is U(t) = 2t°.

The numerical results are sitting in tables 2.1- 2.2 for Wendland’s CSRBF ¢, 5, and in tables
2.3-2.4 for Wu’s CSRBF ¢, ;.

Example 2.7. Consider the following nonlinear Fredholm integral equation,

101
Ut)=e 3 —t[ — ——e 9+ /t2U3
() =e ( 729° 729) §

where A\; = 1, Ay, = 0. The exact solution is y(t) = e .

The numerical results are presented in tables 2.5- 2.6 for Wendland’s CSRBF ¢, 2, and in
tables 2.7-2.8 for Wu’s CSRBF ¢3 ;.

Example 2.8. Let given the following Volterra integral equation
h(t)
U(t) = e'sin(t) + Mg /0 cos(t)(t — $)U(s)ds, (2.10)
where h(t) =t, Ay =0, Ay = 2. The exact solution is U(t) = te'.
Renyl 2t Froi, AL el i Eahed 3591 PSS b eEIP R RIS R cables
2'110_ Qéotﬁowgﬁdc&%n(ﬁa%@é CSRBFs method give reasonable accuracy.

e The accuracy of CSRBFs method depends on the choice of the value of parameter o, and
Number of data sets N.

e Wendland’s CSRBF method gives better results compared to the use of Wu’s CSRBFs.
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Points oc=12 o =20 Points oc=12 o=20

ZT; €Z;

0 1.3336E — 7 9.7799F — 6 0.1 2.5834F — 4 2.5149F — 4
0.01 2.0450F — 5 3.0494FE — 5 0.2 5.6826F —4 6.0851F — 4
0.02 4.4889F —5 5.3677TE —5 0.3 2.5188F — 3 2.3858FK — 3
0.03 7.2258FE —5 T7.8765FE —5 0.4 1.6431F — 4 2.8639F — 4
0.04 1.0158FE —4 1.0516F — 4 0.5 9.5399F — 3 8.218FE — 3
0.05 1.3178E —4 1.3216FE —4 0.6 2.4712FE — 3 1.9396F — 3
0.06 1.6171FE —4 1.5901F —4 0.7 1.6906F — 2 1.5158F — 2
0.07 1.9024F —4 1.8496F — 4 0.8 6.5934F — 3 6.2441F — 3
0.08 2.1632FE —4 2.0932FE — 4 0.9 2.5450F — 3 2.8301FE — 3
0.09 2.3918FE —4 2.3157TE —4 1 1.5437F — 2 1.4351E —2

Table 2.1: Computed errors using Wendland’s CSRBF ¢4 5 method for Example (2.9), for

N =T1.

Points o=12 o =20 Points o=12 o=20

x; T

0 1.8625F — 5 3.7760F — 5 0.1 1.7988F — 4 1.9724F — 4
0.01 1.5435E —5 1.4017E -5 0.2 3.8252F —4 4.4853F — 4
0.02 2.2983F —5 1.1013E —5 0.3 6.3846E — 4 7.0832FE — 4
0.03 4.0231FE —5 2.7836FE — 5 0.4 4.6383FE —4 4.8197F —4
0.04 6.5661F —5 6.2923F —5 0.5 6.8489F —4 3.6963F — 4
0.05 9.6718FE —5 1.1131F —4 0.6 2.2853F — 3 2.0447FE — 3
0.06 1.2931F —4 1.6438FE —4 0.7 1.7197F — 3 1.2318E — 3
0.07 1.5826F —4 2.0996F — 4 0.8  3.8206E —3 3.5673FE — 3
0.08 1.7841F —4 2.3588F — 4 0.9 4.1741FE — 3 4.0646F — 3
0.09 1.8625FE —4 2.3269FE — 4 1 3.1012F — 3 3.4307E — 3

Table 2.2: Computed errors using Wendland’s CSRBF ¢4 method for Example (2.9), for

N = 14.

Points o=18 o=25 Points oc=18 o=25

Z; ZT;

0 1.2144F — 8 1.9684F — 7 0.1 5.0844FE — 6 5.8505FE — 5
0.01 2.2766F —5 1.6849F —5 0.2 2.7116E — 4 1.7570F — 4
0.02 3.8376E —5 3.0117E —5 0.3 4.0221F — 3 4.1391FE — 3
0.03 4.6940F — 5 3.9676F — 5 04 3.3376E —3 3.3727TE — 3
0.04 4.8609F —5 4.5643F —5 0.5 5.1256E — 2 5.0686F — 2
0.05 4.3910F —5 4.8355FE —5 0.6 1.9943F — 2 1.9774F — 2
0.06 3.4797TFE —5 4.8877TE —5 0.7 1.1169F — 1 1.0999F — 1
0.07 2.3698FE —5 4.8567TFE —5 0.8 2.6012F — 2 2.5776FE — 2
0.08 1.3187TFE —5 4.8923F —5 0.9 3.2195F — 2 3.1439F — 2
0.09 6.0044F — 6 5.1616FE —5 1 4.9237TE — 2 4.8795FE — 2

Table 2.3: Computed errors using Wu’s CSRBF ¢4 method for Example (2.9), for N = 7.
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Table 2.4: Computed errors using Wu’s CSRBF ¢, 1 method for Example (2.9), for N = 14.

Table 2.5: Computed errors using Wendland’s CSRBF ¢4 method for Example (2.10), for

N =T.

Table 2.6: Computed errors using Wendland’s CSRBF ¢4 method for Example (2.10), for

N = 14.

Points oc=18 oc=25 Points o=18 oc=25

ZT; ZT;

0 1.1709F — 6 1.9811F — 6 0.1 6.0242F — 6 1.6766FE — 5
0.01 5.0099FE — 6 5.4553F — 6 0.2 2.4493F — 5 3.9787FE — 5
0.02 1.5824F —5 1.6499FE — 5 0.3 1.8029F — 4 2.1595F — 4
0.03 2.7610E —5 2.6792FE —5 0.4 1.1989F — 3 1.1749F — 3
0.04 3.0697E —5 2.9301E -5 0.5 8.1861F — 4 7.4995F — 4
0.05 1.5942F —5 1.7393F — 5 0.6 2.4034F — 2 2.36T4FE — 2
0.06 1.3436FE —5 5.9272FE — 6 0.7 6.6337E —2 6.5362F — 2
0.07 4.3234F —5 2.9092F —5 0.8 5.5429F — 2 5.4661F — 2
0.08 5.9007E —5 4.0378E —5 0.9 3.5231F — 2 3.4795FE — 2
0.09 4.6476FE —5 2.8225FE —5 1 4.4090F — 4 54714F — 4

Points c=6 c=28 Points c=6 c=28

ZT; ZT;

0 3.4853FE — 9 4.7196E — 9 0.1 2.5678E — 3 2.2024F — 3
0.01 4.2460F — 4 3.5598F — 4 0.2 3.8020F — 4 2.2971F — 4
0.02 5.7369F —4 4.776TE — 4 0.3 4.5009F — 3 3.6297FE — 3
0.03 4.9506F —4 4.0634F — 4 0.4 1.8742F — 3 1.7448F — 4
0.04 2.3606FE —4 1.826TF —4 0.5 4.5845F — 3 4.0421FE — 3
0.05 1.5639F —4 1.5325F — 4 0.6 1.8849F — 3 1.8404F — 3
0.06 6.3598F —4 5.6205F — 4 0.7 1.4575F — 3 1.5568F — 3
0.07 1.1578FE — 3 1.0057TF — 3 0.8 2.1769E — 3 2.1820F — 3
0.08 1.6791F —3 1.4483FE —3 0.9 2.4101F — 3 2.4064F — 3
0.09 2.1608F —3 1.8570F — 3 1 2.7264F — 3 2.7264FE — 3

Points oc=206 oc=28 Points oc=256 =28

ZT; Z;

0 5.2946F — 8 1.2213E —7 0.1 5.6600E —5 9.1566F — 5
0.01 1.9364F —5 2.0789FE — 5 0.2 5.9349F — 5 3.7596F — 5
0.02 8.7933FE —5 8.2951F —5 0.3 1.7179FE — 3 1.5725F — 3
0.03 1.5399F —4 1.4281F — 4 0.4 6.6511FE —4 7.3367E —4
0.04 1.7522F —4 1.6492F — 4 0.5 1.3632FE — 3 1.3637TF — 3
0.05 1.3136FE —4 1.3240F — 4 0.6 1.7179FE — 3 1.7039F — 3
0.06 3.5017FE —5 5.5911F —5 0.7 1.8651F — 3 1.8707F — 3
0.07 7.1606E —5 2.9133FE —5 0.8 2.1971FE — 3 2.1953F — 3
0.08 1.3322F —4 7.6392FE —5 0.9 2.4589F — 3 2.4584F — 3
0.09 9.9559F —5 4.3751FE —5 1 2.7264FE — 3 2.7259F — 3
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Table 2.7: Computed errors using Wu’s CSRBF ¢, ; method for Example (2.10), for N = 7.

Points oc=206 oc=10 Points c=6 oc=10

ZT; €T

0 6.2578FE — 10 2.9367E — 9 0.1 1.6233F — 2 1.4810F — 2
0.01 2.0489F —3 1.8714FE —3 0.2 5.9512F — 3 5.3713E — 3
0.02 3.0189F — 3 2.7538F — 3 0.3 3.2131FE — 2 2.9206F — 2
0.03 2.9354FE — 3 2.6730F — 3 0.4 5.3180EF — 3 4.9519F — 3
0.04 1.8232F — 3 1.6539F — 3 0.5 1.5465F — 2 1.4419F — 2
0.05 2.5485F — 3 2.4440F — 4 0.6 2.5581F —3 2.5413FE — 3
0.06 3.0694F —3 2.8123E — 3 0.7 1.9852F — 4 5.2504F — 4
0.07 6.3469F — 3 5.8008F — 3 0.8 1.9859F — 3 1.9015F — 3
0.08 9.8146F —3 8.9616E — 3 0.9 2.8439EF — 3 3.0586FE — 3
0.09 1.3200F — 2 1.2047FE — 2 1 2.7264F — 3 2.7263E — 3

Points c=6 c=10 Points c=6 o=10

ZT; ZT;

0 1.8537FE —9 5.0199F — 8 0.1 6.9198F — 3 6.2882F — 3
0.01 1.1187E —5 9.9801F —5 0.2 1.5871F — 2 1.4429F — 2
0.02 8.0814F —5 T7.4217TE —4 0.3 2.0981EF — 2 1.9209F — 2
0.03 1.9631F —3 1.7981F —3 0.4 6.2034E —3 5.5557FE — 3
0.04 2.0847FE —3 1.9113F —3 0.5 1.3632FE — 3 1.3632F — 3
0.05 2.4065FE — 6 9.9642F — 6 0.6 1.9493F — 3 1.8113F — 3
0.06 4.0684F —3 3.6967F — 3 0.7 2.2107TE — 3 2.4891F — 3
0.07 8.4237TFE —3 7.6672F — 3 0.8 1.8817FE — 3 1.6598F — 3
0.08 1.1418F —2 1.0396F — 2 0.9 2.3218E — 3 2.2246F — 3
0.09 1.1380F —2 1.0359F — 2 1 2.7263F — 3 2.7264F — 3

Table 2.8: Computed errors using Wu’s CSRBF ¢, ; method for Example (2.10), for N = 14.

Table 2.9: Computed errors using Wendland’s CSRBF ¢4 method for Example (2.11), for

N=T7.

Points oc=26 c=9 Points oc=256 c=9

ZT; ZT;

0 9.94966F — 10 4.7917FE — 9 0.1 5.5987FE — 4 5.5858F — 4
0.01 3.4569F — 5 3.3932F — 5 0.2 2.9718FE — 3 2.9672FE — 3
0.02 4.5864F — 5 4.4984F — 5 0.3 9.8215F — 3 9.6936F — 3
0.03 3.5040F — 5 3.4244F — 5 0.4 2.3542F — 2 2.3600F — 2
0.04 3.2911EF —6 2.8273F —6 0.5 4.3521F — 2 4.4287FE — 2
0.05 4.8114F —5 4.8119FE —5 0.6 6.9306F — 2 6.9504F — 2
0.06 1.1799FE — 4  1.1743F — 4 0.7 9.7314E — 2 9.6099F — 2
0.07 2.0505F —4 2.0400F — 4 0.8 1.1796F —1 1.1777E —1
0.08 3.0823FE —4 3.0685F — 4 0.9 1.1941F — 1 1.1994F — 1
0.09 4.2667F —4 4.2520F — 4 1 8.2429F — 2 8.2438FE — 2
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Points oc=6 c=9 Points c=6 c=9

ZT; €T

0 6.1491F — 10 3.2441F —8 0.1 2.5486F — 4 2.5593F — 4
0.01 2.5618F — 7 1.1894FE — 7 0.2 2.0939E — 3 2.0963F — 3
0.02 4.0614F — 6 4.1335E —6 0.3 7.0567F —3 7.0488E — 3
0.03 1.1476FE — 5 1.1452F — 5 0.4 1.5711F — 2 1.5726F — 2
0.04 2.1032E — 5 2.1059FE — 5 0.5 2.8172FE — 2 2.8172E —2
0.05 3.3088F — 5 3.3406FE — 5 0.6 4.2456F — 2 4.2375FE — 2
0.06 4.9999F — 5 5.0808F — 5 0.7 5.4086F — 2 5.4257E — 2
0.07 7.5929E — 5 T7.7263F — 5 0.8 5.5723E — 2 5.5609F — 2
0.08 1.1584F — 4 1.1752FE — 4 0.9 3.4914F — 2 3.4872FE — 2
0.09 1.7440F — 4 1.7602E — 4 1 2.5701F — 2 2.5770FE — 2

Table 2.10: Computed errors using Wendland’s CSRBF ¢4 2 method for Example (2.11), for

N = 14.

Points oc=2 oc=4 Points oc=2 oc=4

ZT; ZT;

0 1.0811F — 11 2.5678E — 10 0.1 4.1975F — 3 5.7713FE — 4
0.01 4.7875FE —4 1.0298F — 4 0.2 1.6402F — 3 3.4429F — 3
0.02 71202E —4 1.6154F — 4 0.3 5.1166FE — 3 1.3332FE — 2
0.03 6.9750F —4 1.7233FE — 4 0.4 2.2872F — 2 2.2566E — 2
0.04 43317TF —4 1.3192FE —4 0.5 1.8456F — 2 3.0641F — 2
0.05 7.2809E —5 4.0360F — 5 0.6 6.0025F — 2 6.5357E — 2
0.06 7.6924F —4 8.7248F —5 0.7 1.6223F — 1 1.2555F — 1
0.07 1.5932FE —3 2.3184F — 4 0.8 1.3016FE — 1 1.2342F —1
0.08 2.4815FE —3 3.7426F — 4 0.9 8.7025F —2 1.0572F — 1
0.09 3.37T09F —3 4.9567FE — 4 1 8.2526F — 2 8.2704FE — 2

Table 2.11: Computed errors using Wu’s CSRBF ¢ ; method for Example (2.11), for N = 7.

Points o=2 oc=4 Points o=2 oc=4

0 9.2867F — 12 2.1312FE —9 0.1 1.3562F — 3 5.9172FE — 4
0.01 3.0763F —5 6.2139E —6 0.2 1.5554F — 3 2.8629F — 3
0.02 1.7134FE — 4 3.1133E —5 0.3 1.1664F — 2 6.1490F — 3
0.03 4.3068F —4 T7.6665FE — 5 0.4 1.3268F — 2 1.5722F — 2
0.04 4.6247TF —4 7.1383E —5 0.5 2.8152FE — 2 2.8156F — 2
0.05 2.3585E — 5 4.0511F —5 0.6 5.5959F — 2 4.8137TE — 2
0.06 8.9593F —4 2.4760F — 4 0.7 1.7264F — 2 3.8403F — 2
0.07 1.8501F — 3 4.7853F — 4 0.8 8.5592F — 2 6.8463F — 2
0.08 2.4862F —3 6.5979F — 4 0.9 4.8052F — 2 4.0519F — 2
0.09 2.4262F —3 T7.1779E — 4 1 2.5701F — 2 2.5703F — 2

Table 2.12: Computed errors using Wu's CSRBF ¢, ; method for Example (2.11), for N = 14.
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2.2.2 MQ-RBF for solving nonlinear Fredholm integral equations

The aim is to give the approximate solution of nonlinear Fredholm integral equation defined as
AU (t) + B(t) +>\/ (5,6) [U(h(s)]" ds = f(t), (2.11)

where f(t), h(t), A(t), B(t), and k(s, t) are known functions, A, r are real values. To approximate
the function U(t), we apply RBF interpolation in distinct grids from a definite domain. To
this purpose, a linear combination of functions ¢; is replaced in U(t) as follows

U(t) = Un(t) = ;Cﬂb( It 11), (2.12)

where ¢; is the multiquadric radial basis function defined in previous sections.

According to type of the target function which is desired to approximate, and similarly it is
true for

ZCJ (1) =t 1 )- (2.13)

The integral has been approximated using the following integration formula

[ HD WG s = S wk(st| Seo( ) —551)] . 214

where, s, wy are shifted Legendre-Gauss-Lobatto nodes and weights .

By replacing equation (2.14) in equation (2.11), and by collocating at points t = ¢;, we
obtain

N N

A Y o (N =ty | )+B(t) > o || ht)—t; || )+A / st[ e ( || h(s)—t; ||)] ds

=0 j=1

The interval [0, 7] has been transformed to [0, 1] , by taking the changement pu = =

A Yoo (1t =1 1) + B S eo( 1 6) -1 1) 215)
AT S wk(Tt)| Seso( 14T ~t51)] = 160

From equation (2.15), we get a nonlinear system which can be solved via iteration methods to
get the unknwon vector C, such that C = (¢, co, ..., cny) 7.
Finaly, the meshless discrete solution using RBFs is given by

N

Un(t) = c;o5(t).

=1

Let Un(t) be the approximate solution of U(t), we are going to calculate the absolute errors at
some different points using the formula (2.8), for different shape parameters obtained using
Cross Validation method.
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Example 2.9. Consider the following linear Fredholm integral equation of the second kind

U+ AWUR() + [ ks, U (s)ds = (1),

where A(t) =t, k(s,t) =s—t, h(t) =t, f(t) =3+ + 5t — ;.
The exact solution is U(t) = t*. The numerical results are sitting in table 2.13.

Example 2.10. Consider the following nonlinear Fredholm integral equation

The exact solution is given by U(t) = e~3!. The numerical results are given in table 2.14.

Ezxample 2.11. Let given the following linear Fredholm integral equation of the second kind

where A(t) =t, k(t,s) =t —s, h(t) = &

U(t):e_3t—t<

101
729

) +/01 ts?U(s)ds.

U(0) + AWUR() + [ U ) U(s)ds = £0),

DR

ft) =€ +te? + (t—0.1)e" —t —1.
The exact solution is given by U(t) = e'. The numerical results are summarized in table 2.15 .

T; e=20.9 €e=2 T; e=20.9 €e=2

0 1.8625FE — 13 | 2.7081E —8 | 0.1 | 2.1737TE —5 | 7.8261FE — 7
0.01 | 9.9178E —5 | 4.2692FE —6 | 0.2 | 3.03188FE — 6 | 9.4842F — 8
0.02 | 1.4643F —4 | 5.9981EF —6 | 0.3 | 5.2506F —5 | 1.28372E — 6
0.03| 1.5311EF —4 | 6.0481E —6 | 0.4 | 4.5557E —6 | 1.1128E — 7
0.04 | 1.2944F — 4 | 4.9220E —6 | 0.5 | 7.2784F —5 | 1.4376FE —6
0.05 | 8.4499F —5 | 3.0381E —6 | 0.6 | 5.3562FE — 6 | 6.3657F — 8
0.06 | 2.6270F —5 | 7T4346E —7 | 0.7 | 7.2076E —5 | 1.4008F — 6
0.07 | 3.8360F —5 | 1.6838E —6 | 0.8 | 4.7951E —6 | 1.1831F —7
0.08 | 1.0356F —4 | 4.0235E —6 | 0.9 | 3.8922F —5 | 8.4941F — 7
0.09 | 1.6451F —4 | 6.1107TE—6 | 1 | 3.2885E — 10 | 7.5692F — 8

Table 2.13: Computed errors using multiquadric RBF method for Example (2.9), with ¢ = 0.9

(obtained using LOOCYV strategy) and € = 2, for N = 7.
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X

e=1

e=1.5

X

e=1

e=1.5

0

2.6102F — 11

4.1822F — 8

0.1

4.4348F — 4

3.2048F — 4

0.01

6.6320E — 5

1.9665E — 6

0.2

54306 — 4

5.2908F — 4

0.02

8.1213E -5

1.2495F — 5

0.3

4.6960F — 4

6.7104F — 4

0.03

D.7655E — 5

3.8937E — 5

0.4

9.3627TF — 4

9.2246F — 4

0.04

6.8161F — 6

7.3656F — 5

0.5

1.2605E — 3

1.0909F — 3

0.05

6.1827E — 5

1.1358E — 4

0.6

1.0655E — 3

1.0554E — 3

0.06

1.4037E — 4

1.5621E — 4

0.7

8.3439EF — 4

9.3402F — 4

0.07

2.2235FE — 4

1.9957TE — 4

0.8

8.0252F — 4

7T9872E — 4

0.08

3.0263F — 4

2.4210F — 4

0.9

5.2229F — 4

5.0084F — 4

0.09

3.7730F — 4

3.8267F — 4

1

2.0448E — 5

2.0530E — 5

Table 2.14: Computed errors using multiquadric RBF method for Example (2.10), with e = 1

(obtained using LOOCYV strategy) and ¢ = 1.5, for N = 7.

€T

e=1.8

€e=2.5

X

e=1.8

€e=2.5

0

.87k — 7

5.7587TE — 5

0.1

1.7988E — 4

1.9724F — 4

0.01

3.7887TE — 5

8.8951F — 4

0.2

3.8252F — 4

4.5391F — 4

0.02

5.1358F — 5

7.7452F — 4

0.3

9.9853F — 4

7.0206F — 4

0.03

4.8974F — 4

7.1598FE — 3

0.4

4.1255F — 3

4.87T43F — 3

0.04

6.5661F — 3

7.9297FE — 3

0.5

3.1656E — 3

7.1402F — 4

0.05

9.6718FL — 4

9.5684F — 4

0.6

5.2898F — 3

2.0092F — 3

0.06

8.7342F — 4

5.8972F — 4

0.7

7.9801F — 3

5.0089F — 3

0.07

71287TE — 4

3.9460F — 4

0.8

4.2698E — 3

3.5351F — 3

0.08

2.5603F — 4

2.1283EF — 4

0.9

8.9689F — 3

6.9894F — 3

0.09

6.5601F — 5

9.9872FE — 5

1

6.1470F — 4

7.9758F — 4

Table 2.15: Computed errors using multiquadric RBF method for Example (2.11), with € = 1.8

(obtained using LOOCYV strategy) and € = 2.5, for N = 7.
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Remark 2.4. From the numerical tests that we were able to establish, we remark that:

e Multiquadric RBFs method provide good accuracy for solving linear and nonlinear
Fredholm integral equations.

e LOOCYV strategy is a good strategy for choosing optimal shape parameter e.

2.2.3 CSRBFs and composite RBFs method for solving integral
equations

Global interpolation methods based on radial basis functions have been found to be efficient
for surface fitting of scattered data sampled at n-dimensional scattered nodes. However, such
interpolation leads to the solution of ill-conditioned system of equations [?, 53]. A lot of
approaches are used to deal with the ill-conditioned problem in the global RBF [?, 30]. We
propose a composite radial basis function using the gaussian and generalized multiquadric radial
basis function which significantly improves the condition of the system matrix avoiding the
above mentioned ill-conditionals in RBF interpolation schemes. Also in fact that generalized
multiquadric RBF is a good choice for improving the accuracy of this approach because it
depend on an exponent 8 which has some optimal strategies. We give a numerical comparaison
between Wendland’s compactly supported radial basis functions, our composite approach is
necessary and important, in fact that the Wendland’s CSRBFs have less accuracy compared
with global RBFs.

The composite approach is given to approximate solutions of Volterra-Fredholm integral
equations defined as

U(t) + /01 Wi(s,t,U(s))ds + /Ot Wa(s,t,U(s))ds = f(t), (2.18)
0 <t <1, where f(t) is a known function, and
Wi(s, t,U(s)) = ki(s,t) [U(s)]",

W2(3>t7 U(S)) = k2(37t> [U(S)]Tz )
such that ry, ro are positive integers.

The geometric representation of gaussian RBF and generalized RBF with some optimal
values of the exponent [ is given in figure ?7?. Also the visualization of composite methods
included gaussian and generalized multiquadric with the optimal values of the exponents 5 and
with choosing a center ¢; = 0.5 is given in figure 2.5.

Let consider the nonlinear Volterra-Fredholm integral equations written as equation (2.18),
to approximate the function U(t), we apply RBF interpolation in distinct grids from a definite
domain. To this purpose, a linear convex combination of functions ®;, and ®, is replaced in
U(t) as follows

=

Ut) = Uy = ;Cj (1®j1(t) + ax®ja(1) Z (@[l t =25 []) + Pl t =25 [])),
" ) (2.19)
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Graph of Generalized and Gaussian RBF

Gaussian RBF
121 Generalized REBF(R=25) |
—' =" Generalized REF({=1.99)
Generalized RBF(E=1.03) A

DS 1 1 1 1 1 1 1 1
0

Figure 2.4: Representation of generalized multiquadric (¢(r) = (r?* + EQ)ﬁ) and gaussian radial
basis functions (¢(r) = 6_67’2), for a center ¢t; = 0.5, with €; = 1.5, e, = 0.9.

Graph of Combination between Generalized and Gaussian RBF

—q»-—u1=1f2,ot2=1f2
U,1=1M,DL2=3M
nos | — - U,1=3M,DL2=1M |

0.9%

0.85

0.6,

07af

Figure 2.5: Representation of combination between generalized multiquadric and gaussian
radial basis functions, for 8 = 1.99, t; = 0.5, with ¢; = 1.5, e = 0.9.
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where @, () = exp(—e;(t — t;)?) is gaussian radial basis functions , ®;(t) = (€3 + (t — t;)?)?
is generalized multiquadric radial basis functions, such that

a1+ e = 1.
The first integral in equation (2.18) can be approximated using the following integration formula
/ Wi(s,t,U(s))ds = Zkal Sk, t, ZCJ a1®P;1(sk) + a®;2(sk))), (2.20)

k=1 j=1

where, sy, wy, are shifted Legendre-Gauss-Lobatto nodes and weights [38]. By replacing relation
(2.20) in equation (2.18), and by collocating at points t =¢;, i = 1... N we obtain

N N N
Z Oi(|| ti —t5 1)+ aa®a(ll ti — 15 ) + D wkWisy, ti, D cj(an®a(]] se — s [1(2.21)
=1 k=1 j=1
N
Far®o(|| sk —s5 1)) +/ Wa(s Z Pi([| s =55 []) + o]l s — 55 [))ds = f(ta),

the interval [0, ;] has been transformed to [0, 1] by taking the changement p = +s, then equation
(2.21) becomes

N N N
S cslen®i(l] to— 5 1) + ol t — 15 1)) + 30 welWi(se, i, eyl (] st — s )
j=1 k=1 j=1

N

+ ®o(|| s — 55 ) +ti prwa (ti-tps tis Y ci(an®@i(|] (ti-prp) — 55 (1) + cx®a(]| sp = 35 11)))
7=1

= f(t:).

This is a nonlinear system of equations, that can be solved via Newton’s iteration method to
obtain the unknwon vector C, such that C' = (cy, ¢, ¢35 ..., en) 7.

For our numerical experiments we are going to use Wendland’s compactly supported radial
basis function ¢4o(r) = (1 —7)%(3 + 18r + 3512).

Some linear and nonlinear test equations are illustrated to show the efficiency and the
applicability of the proposed approach, using different values of the shape parameter ¢, and the
parameter o, and also in order to compare the condition number of the resulting interpolation
matrix of exact solutions using both composite globaly RBFs and CSRBFs. The condition
numbers have been calculated for different values of N. Tables (2.16)-(2.18) give a comparaison
between the condition number of compactly supported RBF and composite RBF methods.

Example 2.12. Let given the following linear Volterra integral equation,
t
U(t) = cos(t) — sin(t)e' —1—/ e'Ul(s)ds,
0

such that 0 <t < 1, where U(t) = cos(t) is the exact solution. The numerical results using
composite RBFs method are prestented in tables 2.20 — 2.22. The results for CSRBFs are
sitting in table 2.19.

FExample 2.13. Let given the following linear Volterra integral equation,

1 t g
U = 14— ) Tl @ds,
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Table 2.16: The condition number, for oy =

o=2.

Table 2.17: The condition number, for a; =

o =4.

Table 2.18: The condition number, for a; =

o =06.

Table 2.19

,as = 1, with €, = 2, &, = 1, for CSRBF with

Points N =28 N =16 N =26
CSRBF |2.2449e+004 | 2.7446e+007 | 5.5641e+009
B =2.50 |5.8355e+005 | 1.4286e+017 | 2.9208e+018
5 =1.99 |5.8282e+005 | 1.8006e+016 | 1.3761e+018
B =1.03 |4.6863e+005 | 2.2395e+016 | 2.3590e+018
B =1/2 |[1.5176e+006 | 6.8947e+014 | 3.9602¢+018
B8 =—1/216.0870e4+005 | 3.3954e+014 | 6.6161e+018

, with € = 2, e = 1, for CSRBF with

has =
Points N =28 N =16 N =26
CSRBF |8.0284e+005 | 1.0833e+009 | 2.2719e+011
8 =2.50 | 1.3254e+006 | 1.5005e+016 | 1.8195e+018
£ =1.99 | 1.3755e+006 | 1.7695e+016 | 1.1106e+018
B8 =1.03 | 1.4163e+006 | 1.3366e+016 | 8.5205e+017
B =1/2 [1.1906e+006 | 4.3130+016 | 1.1758¢+018
08 =—1/2]1.1754e4006 | 3.2649e+014 | 7.9291e+018

,Qp = i, with ¢, = 2, e = 1, for CSRBF with

Points

N =28

N =16

N =26

CSRBF

6.1998e4-006

8.6434e4-009

1.8327e+012

B =250

42.7593e+005

2.6945e+-016

2.2988e+-018

B=1.99

2.4821e4-005

1.1023e+016

2.4418e+4-018

F=1.03

29.6331e+005

1.8556e+016

2.6759e+4-018

=172

4.6513e4-005

3.4425e4-015

2.5299 e+019

B=—-1/2

3.8105e4-005

4.4327e+4-014

1.2450e+020

: Computed errors using CSRBFs method for example (2.12), for N = 8.

{7

c=15

oc=25

=10

oc=17

0

0.0000

0.0000

0.0000

0.0000

0.1

8.8477 x 1074

9.7564 x 107°

1.7964 x 10~

1.2570 x 107

0.2

1.7991 x 10~*

2.2993 x 107°

3.7244 x 107

2.5397 x 107

0.3

9.3080 x 1074

1.9144 x 107°

2.1101 x 10™°

1.2945 x 107°

0.4

3.8919 x 107°

4.9272 x 1077

2.7247 x 1077

1.1019 x 1077

0.5

5.4415 x 1074

3.2812 x 107°

1.5171 x 107

4.7477 x 107°

0.6

8.6641 x 107°

8.5426 x 107°

2.8192 x 107°

2.9720 x 1077

0.7

1.3910 x 10~

5.0884 x 107°

1.2654 x 107

1.6142 x 107°

0.8

6.3028 x 107°

2.6910 x 107°

7.3324 x 1078

5.6877 x 1077

0.9

1.5270 x 10~*

4.3025 x 107°

9.8141 x 107

2.1247 x 107

1

9.2935 x 107°

2.7863 x 107°

8.0116 x 10~ 7

6.5655 x 1077
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Table 2.20: Computed errors for different values of 3 for example (2.12), for N = 8, with ¢; = 2,

€y = 1.4.
Points Case 1: o = %, oy = %

T; 5=25 5 =1.99 £ =1.03 f=1/2 g=-1/2
0 6.1448 x 1071 | 1.1472 x 10719 | 1.1417 x 10~ | 1.0468 x 10710 | 2.5198 x 10~
0.1 1.4981 x 10~* | 1.5584 x 10~% | 1.1684 x 10~* | 2.4368 x 10~ | 1.7139 x 10~°
0.2 3.5608 x 107° | 3.7265 x 107> | 2.7240 x 10~° | 1.8489 x 107°® | 3.1560 x 10~°
0.3 2.8942 x 107* | 3.0432 x 10~* | 2.1267 x 10=* | 3.5923 x 10™° | 1.2952 x 10~°
0.4 1.0743 x 107 | 1.1367 x 107> | 7.7328 x 107% | 2.5459 x 10=% | 2.0201 x 10"
0.5 3.0574 x 107 | 3.2197 x 10™* | 2.0352 x 10™% | 1.4291 x 10~* | 1.4031 x 10~
0.6 5.4675 x 107° | 5.7432 x 107° | 3.3664 x 107> | 3.7949 x 10~° | 5.9082 x 107
0.7 24132 x 107% | 2.5240 x 10~* | 1.4156 x 10~* | 1.9437 x 10~* | 3.3943 x 10~°
0.8 6.8421 x 107% | 7.0386 x 107° | 3.7046 x 107° | 6.2990 x 107°¢ | 1.2474 x 10~°
0.9 1.1984 x 107* | 1.2361 x 107* | 5.9127 x 10> | 1.3789 x 10~* | 2.9144 x 10~°
1 3.2934 x 1077 | 3.6626 x 1077 | 9.7643 x 1077 | 3.3585 x 1075 | 9.3363 x 107”7

Table 2.21: Computed errors for different values of 8 for example (2.12), for N = 8, with ¢; = 2,

€ = 1.4.

Points Case 2: a; = i, g = %

x; b5 =25 £ =1.99 £ =1.03 g=1/2 f=-1/2
0 2.4914 x 10719 | 4.1172 x 10719 | 3.1159 x 1071V | 1.8658 x 10719 | 3.8014 x 10~!2
0.1 1.6148 x 10™* | 2.0227 x 10~* | 1.5929 x 10~* | 1.1235 x 10~* | 7.6660 x 1076
0.2 3.8338 x 107° | 4.8465 x 10™° | 3.8480 x 107> | 2.5974 x 107> | 2.7232 x 107°
0.3 3.1254 x 10~ | 3.9818 x 10™* | 3.1761 x 10~* | 1.9947 x 10~* | 3.3700 x 10~
0.4 1.1584 x 107 | 1.4897 x 107 | 1.1983 x 10~ | 7.1808 x 10~° | 1.5267 x 10~°
0.5 3.3478 x 107* | 4.2832 x 107% | 3.4028 x 10~* | 1.8309 x 10~* | 5.9382 x 10~°
0.6 6.0643 x 1075 | 7.7422 x 107° | 6.0993 x 107> | 2.9194 x 107> | 1.3426 x 107
0.7 2.7048 x 107 | 3.4341 x 107* | 2.6803 x 10~* | 1.2018 x 10~* | 6.5394 x 107
0.8 7.8807 x 107° | 9.7807 x 107% | 7.4088 x 107° | 3.0516 x 107° | 2.0411 x 10~
0.9 1.3914 x 10~* | 1.7301 x 10~* | 1.3056 x 10~* | 4.5823 x 10~ | 4.1905 x 10~°
1 1.9824 x 1077 | 2.4764 x 107 | 3.0559 x 10~7 | 1.1943 x 10=% | 7.2315 x 10~"
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Table 2.22: Computed errors for different values of 3 for example (2.12), for N = 8, with ¢; = 2,

€ = 1.4.
Points Case 3: a; = %, g = %

T =25 £ =1.99 5 =1.03 B=1/2 B=-1/2

0 1.5930 x 10~ | 5.7316 x 10711 [ 3.6928 x 1010 | 2.4075 x 10711 [ 1.0325 x 10~
0.1 1.4680 x 10~* | 1.3448 x 10~* | 1.0830 x 10~* | 1.2591 x 10~° | 4.6829 x 10~
0.2 3.4794 x 107° | 3.1741 x 107° | 1.8034 x 10> | 1.4292 x 107% | 1.0380 x 10~°
0.3 2.8080 x 10~* | 2.5381 x 10~* | 4.6260 x 107° | 9.2679 x 1076 | 7.2673 x 10~°
0.4 1.0396 x 107> | 9.3558 x 1079 | 6.4747 x 10~7 | 8.2161 x 107 | 2.4733 x 10~©
0.5 29114 x 107* | 2.5719 x 10~* | 1.5933 x 10~* | 5.4093 x 10~° | 4.9071 x 10~°
0.6 5.1294 x 10~° | 4.4507 x 10~° | 5.3213 x 10~ | 1.5009 x 107° | 5.2126 x 10~
0.7 2.2410 x 107* | 1.9231 x 10~* | 2.8937 x 10~* | 7.8222 x 10~° | 1.4191 x 10~°
0.8 6.2136 x 1077 | 5.2292 x 1076 | 9.9079 x 10°¢ | 2.6138 x 10=% | 2.5990 x 10~®
0.9 1.0748 x 10~* | 8.8730 x 107 | 2.2789 x 10~* | 5.7418 x 10~° | 6.9541 x 10~°
1 4.9694 x 107 | 6.5803 x 107 | 6.7732 x 1076 | 1.4415 x 106 | 1.0370 x 106

Table 2.23: Computed errors using CSRBFs method for example (2.13), for N = 8.

X

o=2

oc=7

oc=12

=20

0

0.0000

0.0000

0.0000

0.0000

0.1

1.7060 x 10~

1.0122 x 10~

7.4862 x 107°

5.5344 x 107°

0.2

1.5147 x 107

8.7529 x 107°

6.4506 x 107°

4.7501 x 107°

0.3

1.9390 x 10~*

1.1035 x 10~*

8.1489 x 107°

6.0304 x 107°

0.4

1.4912 x 107°

8.4504 x 107

6.3623 x 107°

4.8505 x 107°

0.5

1.1898 x 10~*

6.5150 x 107°

5.1434 x 107°

4.1946 x 107°

0.6

4.0736 x 107°

1.5724 x 107°

1.2627 x 107°

1.0763 x 107°

0.7

7.6549 x 107°

1.8076 x 10~

1.6456 x 107

1.6534 x 107°

0.8

7.3822 x 107°

1.0342 x 10~7

3.1817 x 1077

6.4414 x 10~°

0.9

4.8168 x 107

2.8062 x 107°

2.6136 x 10~ 7

2.8698 x 107°

1

5.3201 x 1078

2.0763 x 1078

2.9469 x 1078

2.8494 x 1078

Table 2.24: Computed errors for different values of § for example (2.13), for N = 8, with
€1 — 12, €y — 1.8.

Points Case 1: o = %, g = %

T =25 £ =1.99 5 =1.03 B=1/2 B=—1/2

0 2.7321 x 1079 | 2.6885 x 1078 | 8.5788 x 10710 | 1.2254 x 10~% | 4.2775 x 10~ 10
0.1 3.3737 x 107° | 1.1025 x 107° | 2.8653 x 106 | 6.2702 x 10~% | 1.0061 x 10~
0.2 3.4501 x 107° | 1.0186 x 107 | 2.01135 x 107 | 4.0897 x 10~ | 1.7555 x 10~ 7
0.3 5.7603 x 107° | 1.5627 x 1075 | 2.1928 x 106 | 3.6338 x 107 | 3.8144 x 10~
0.4 | 5.8170 x 1076 | 4.4627 x 1076 | 1.2278 x 1077 | 7.1455 x 10~% | 4.5584 x 1077
0.5 |6.4828 x 107° | 1.5128 x 107° | 3.4877 x 10~7 | 2.8697 x 10~ | 5.7207 x 106
0.6 2.6069 x 1076 | 5.8220 x 10~7 | 9.9686 x 10~2 | 2.4320 x 10~7 | 2.3924 x 10—~
0.7 |6.1824 x 107° | 1.3269 x 107° | 7.2680 x 107 | 8.2425 x 107° | 5.8774 x 10~
0.8 5.8559 x 1076 | 1.2356 x 1076 | 9.1993 x 108 | 1.0174 x 107° | 5.4877 x 10~
0.9 3.7614 x 107° | 7.9349 x 1076 | 6.2590 x 107 | 7.7193 x 107 | 3.8340 x 10~
1 9.1338 x 1073 | 9.9908 x 1079 | 1.1817 x 102 | 7.7016 x 1079 | 1.2181 x 1010
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Table 2.25: Computed errors for different values of § for example (2.13), for N = 8, with

€1 = 12, €y = 1.8.

Points Case 2: oy = i, p = %

T B=25 B =1.99 5 =1.03 B=1/2 B=-1/2

0 6.3737 x 1079 | 3.0382 x 1078 | 1.5538 x 107 | 2.1907 x 102 | 2.5828 x 10~?
0.1 1.2796 x 1076 | 8.2210 x 1076 | 7.9484 x 107° | 2.3492 x 106 | 6.8278 x 1077
0.2 2.0098 x 1076 | 9.0816 x 10~7 | 8.1290 x 107 | 1.4831 x 10~7 | 1.4331 x 1077
0.3 |4.2115x 1075 | 1.6000 x 107° | 1.3541 x 10~* | 1.3008 x 107 | 3.2868 x 10~
0.4 [4.9357 x 1077 | 1.6849 x 1079 | 1.3629 x 10~° | 3.1870 x 10~® | 4.0351 x 10~
0.5 6.1112 x 107° | 1.9453 x 107° | 1.5104 x 10~* | 6.7969 x 10~ | 5.1492 x 10~
0.6 [2.5339 %1077 | 7.9609 x 10~7 | 6.0305 x 107% | 5.2104 x 10~® | 2.1678 x 1077
0.7 ]6.1805 x 1075 | 1.9163 x 107° | 1.4212 x 10~* | 1.7402 x 107 | 5.3555 x 10~
0.8 [5.7251 x 1077 [ 1.8215 x 10°% | 1.3339 x 107° | 1.8977 x 10~7 | 5.0083 x 10~ 7
0.9 [3.4973 x107°°%]1.1656 x 10°% | 8.4759 x 107° | 1.2633 x 1076 | 3.0878 x 10°°
1 8.9967 x 1078 | 1.4092 x 10~7 | 1.5912 x 107 | 6.5870 x 10~ | 1.8122 x 10~ 1°

Table 2.26: Computed errors for different values of 3 for example (2.13),

€1 = 12, €y = 1.8.

for N = 8, with

Points Case 3: a; = %, g = i

T B =25 £ =1.99 5 =1.03 B=1/2 B=—1/2

0 7.9699 x 1079 | 1.3492 x 1079 | 7.2788 x 10~ | 1.7852 x 109 | 1.8707 x 10~10
0.1 4.5650 x 1079 | 3.5568 x 1079 | 1.7885 x 1079 | 5.6234 x 10~7 | 1.4231 x 106
0.2 3.6850 x 1077 | 2.6927 x 10~ | 7.9677 x 1078 | 1.2280 x 10~7 | 2.1754 x 1077
0.3 [4.9181 x 107% | 3.2988 x 107 | 8.8163 x 1010 | 2.8323 x 1076 | 4.5048 x 10~°
0.4 [3.9391 x 1077 | 2.3264 x 1077 | 1.1443 x 10~7 | 3.4699 x 10~7 | 5.2448 x 10~
0.5 3.3589 x 1076 | 1.5656 x 1076 | 2.5055 x 10~% | 4.3804 x 107 | 6.4704 x 10~
0.6 1.1279 x 1077 | 3.9494 x 108 | 1.3306 x 107 | 1.8040 x 107 | 2.6873 x 107
0.7 [22172x107°% | 45623 x 10~7 | 3.8033 x 1076 | 4.3878 x 107% | 6.5631 x 10~°
0.8 1.9483 x 1077 | 2.2792 x 1078 | 4.0027 x 10~7 | 3.9761 x 107 | 6.1202 x 10~ 7
0.9 1.2811 x 1070 [ 1.3382 x 1077 | 2.6935 x 107 | 2.3598 x 1076 | 3.7781 x 10~©
1 7.3671 x 1079 [ 2.0734 x 1079 | 7.2099 x 10710 | 2.4654 x 1079 | 2.5999 x 1010
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such that 0 <t <1, where U(t) = (1 + £2)7 is the exact solution. The numerical results using
composite RBFs are prestented in tables 2.24 — 2.26. The results for CSRBFs are sitting in
table 2.23.

Analysis of experimental results

From the test examples, we remark that, for a small number of mesh points (N = 8),
the presented methods provide remarkable accurate solutions. The use of optimal values of
exponent (3 for generalized multiquadric radial basis functions give a good accuracy compared
with the results obtained by the compactly supported radial basis functions (CSRBFs). For
fixed values of the shape parameter € and the parameter o, the condition number also grows
with N increasing. The condition number when using CSRBFs is much smaller compared to
the use of composite RBFs, but it is approximately close for small N. Generally for a fixed
number of collocation points N, smaller values of ¢ produce better approximations, but the
matrix A will be more ill-conditioned . When the number of mesh points increases, the accuracy
of the solution can be increased but the condition number of the matrix becomes very large
and the matrix tends to be ill-conditioned. Compactly supported RBF method gives a balance
between good accuracy and small conditioning number, the accuracy of CSRBFs method can
be improved by using strategies to find the optimal parameter o.

2.2.4 CSRBFs and FDM for solving PDEs.

The classical methods like Finite elements method (FEM), Finite difference method (FDM) and
Finite Volume method (FVM) are still the most used methods for solving systems of partial
differential equations in physical modeling problems [47, 56, 65].

These methods benefit from a very solid theoritical foundation and many techniques have come
to improve them over the years. However, their implementation remains difficulties and costly
in certain cases, notably in the field of modeling large deformations in lagrangian formulation.
However in the recent years considerable attention was paid to the so called meshess methods
which operate with nodes rather than meshes. The motivation came mainly from the following
considerations

- RBF methods do not require grid generation which can be not an easy task in the three
dimensional cases.

- RBF methods may be successfully applied to achieve exponential accuracy where tradi-
tional methods either have difficulties or fail.

- RBF methods are more appropriate than FEM or FDM methods in the case of very large
mesh deformation and moving discontinuities.

3- RBF methods are easy to apply for the approximation of multivariate scattered data,
and easy to improve the numerical accuracy by adding more points around large gradient
regions.

The use of RBF for PDEs discretizations offers some nice possibilities. First, some RBF-based

discretizations have potential for providing convergence rates dependent on exact solutions
smoothness only rather than on degrees of underlying polynomial approximations. In certain
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cases, they can be exponential. Second, good RBF performance in three-dimensional cases
is theoretically expected. At present, the most popular lines of attack when constructing
RBF-PDE solvers seem to be collocation and boundary elements approaches [35, 54]. In [90, 91]
convergence proofs and error estimates of the collocation procedure are presented. A profound
impact on the RBF-collocation technique applications is due to papers [54, 87].

FDM for solving Burger’s equation

Burger’s equation, which takes its name from the German physicist Johannes Martinus
Burgers(1895- 1981) is a partial differential equation fundamental to fluid mechanics. it
is used in various areas of applied mathematics, such as the study of fluid mechanics, the
modeling of gas dynamics, traffic flow. This equation is used to study the evolution of the
speed of fluids in a given environment.

Given a speed u and a viscosity coefficient v, the general form of Burger’s equation is

U + Uly = Vlgy, V= (2.22)

i
R’

with initial and boundary conditions

uw(0,t) =u(l,t) =0, t>0

u(z,0) = f(x), 0<z<1,
where f(x) is a given function and R is the number of Reynolds. The resolution of this equation
presents many difficulties like the problems of stability and entropy.
For study in good conditions, we have to take into account several conditions like the condition
of stability and Rankine - Hugoniot conditions.
Using the shemes that respect these conditions, we will note here only those which are in
conservative form for this equation as follow

1
Eu$x7
where g(u,v) represents the digital flow of the equation, those shemes respect the following
C.F.L condition given by

4 At

uz u; — E (9(“% Ug‘—i_l) - g(ug—lv U’jvj)) + (223>

At
< 1.
Az

d

¥ = suplu
We use Lax-Friedrichs sheme [92]

and Lax-Wendroff sheme [92]

o(u,v) = ;(;(zf +o?) - if(“;”) (;(02 _ u2)>>.

By replacing the second partial derivative by

i (z) = u(z + Az) — 2u(x) + u(z — Ax)
(Ax)? ’
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the descritization of Burger’s equation becomes

: L At ' : Nt . At ,
g+ _ (L, At j ; B ; s
u; = (2 + R(Al‘)2> (ui—i-l + Ui—l) R(A]:)2ui + AT ((ui—l) (qu) ) .

The initial condition f is defined as f(z) = sin(mx) and R = 10000. For T,,, = 0.14 and
At = 0.02 and Az = 0.125, the numerical results are represented in table 2.27. For different
values of T,,.., the curves of approximate solution are given in figure 2.6.

x/t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0 0 0 0 0 0 0 0 0
0.125 | 0.383 | 0.336 | 0.297 | 0.267 | 0.243 | 0.226 | 0.205 | 0.189
0.25 | 0.707 | 0.625 | 0.560 | 0.507 | 0.462 | 0.426 | 0.391 | 0.359
0.375 | 0.924 | 0.834 | 0.756 | 0.689 | 0.631 | 0.579 | 0.534 | 0.492
0.5 1.000 | 0.924 | 0.851 | 0.783 | 0.721 | 0.665 | 0.613 | 0.565
0.625 | 0.924 | 0.874 | 0.818 | 0.762 | 0.706 | 0.653 | 0.603 | 0.556
0.75 | 0.707 | 0.682 | 0.649 | 0.610 | 0.570 | 0.529 | 0.489 | 0.451
0.875 [ 0.383 | 0.374 [ 0.359 | 0.341 | 0.320 | 0.298 | 0.276 | 0.254
1 0 0 0 0 0 0 0 0

Table 2.27: The numerical results using FDM for solving Burger’s equation for T'maz = 0.14.

Finite difference method for solving Burger equation for Tmax=0.14 finite difference method for solving Burger equation for Tmax=0.6

® t

Figure 2.6: Burgers-FDM, with different values of 7,,,,.

CSRBFs collocation method for solving Burger’s equation

The compactly supported basis functions consist of a polynomial which are non-zero on [0, 1)
and vanish on [1,00). This reduces the original resultant full matrix to a sparse matrix.
The operation of the banded matrix system could reduce the ill-conditioning of the resultant
coefficient matrix due to the use of the global radial basis functions.

The approximate solution using CSRBFs is given by
Un(ﬂﬁi,yj) = Z%‘@,k <]> )
j=1 gj
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where o is parameter, «; are the coefficients to be determined using collocation points (x;, y;).

For our experiment, we use Wendland’s compactly supported radial basis function ¢g ;,
which is given by

o) = (1-2), (1+42),

with r = ||z — z4||, 0 > 0, we obtain

ou N o (u*\ 10%

ot  0xr\2) ROz
because of stability’s reasons and under C.F.L conditions, we keep the sheme of Lax-Friedrichs
[92] for solving our equation, so the equation becomes

n+1 1 At

= S0+ g (0 )+ et (1 1) (T e12])

+

The numerical results using At = 0.02 ,Ax = 0.125, T},,.. = 0.14 and o = 5 are sitting in table
2.28, for different values of T},.., the curves of approximate solution are given in figure 2.7.

x/t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0 0 0 0 0 0 0 0 0
0.125 | 0.383 | 0.333 | 0.297 | 0.268 | 0.243 | 0.223 | 0.205 | 0.189
0.25 | 0.708 | 0.625 | 0.560 | 0.507 | 0.462 | 0.424 | 0.390 | 0.359
0.375 | 0.924 | 0.834 | 0.756 | 0.690 | 0.631 | 0.579 | 0.534 | 0.492
0.5 1.000 | 0.924 | 0.851 | 0.783 | 0.721 | 0.665 | 0.613 | 0.565
0.625 | 0.924 | 0.874 | 0.818 | 0.762 | 0.706 | 0.653 | 0.603 | 0.557
0.75 | 0.707 | 0.682 | 0.649 | 0.611 | 0.570 | 0.529 | 0.489 | 0.451
0.875 [ 0.383 | 0.374 | 0.359 | 0.341 [ 0.320 | 0.298 [ 0.276 | 0.254
1 0 0 0 0 0 0 0 0

Table 2.28: The numerical results using CSRBF for solving Burger’s equation for Tmaz = 0.14.

FDM for solving Poisson’s equation

The Poisson’s equation is a second order PDE named after Simeon Denis Poisson, it is
generalization of Laplace’s equation, it arises, for instance, to describe the potential field caused
by a given charge or mass density distribution, with the potential field known, one can then
calculate gravitational or electric field.
Our aim now, is to solve Poisson’s equation with homogeneous Dirichlet boundary conditions
2 2

Au = g;g a— = f, (x,y) €]0, 1[x]0, 1]

u(z,1) = u(0, y) =u(l,y) =0,

u(z,0) = sin(mz).
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CRBFs method for solving Burger equation for tmax=0.14 CREFs method for solving Burger equation for tmax=0.6

Figure 2.7: Burger-CSRBFs, with different values of T},4..

We see that if f = 0, we obtain Laplace’s equation, where Az = 1/n and Ay = 1/m, with
n, m are the numbers of subregions. As this equation is only made up of second derivatives,
we will approximate them by using the Taylor’s formula of order 2 which gives us the centred
approximation of the second partial derivatives, given as follow

0*u u(r + Az, y) — 2u(z,y) + u(z — Az, y)
@({Ea y) = <A$)2 ’
and
0%u _u(@,y+ Ay) — 2u(z,y) + u(z,y — Ay)
o (B0 |
Subtituting by point (z;,y;), we have
u Uit1j — 25 + Ui—1
gz o) = (Az)? ’
0%u L U1 — 22U+ U
o T Ty
Replacing these approximations into Poisson’s equation
0?u  0%u
5t =1/
ox dy

yields to
Uil = 2Wig U1y | Uige1 = 2+ Ui

(Az)? (Ay)?

If Ax = Ay = h, the Poissson equation can be written as

= fij-

2
Uig1,j + Uizrg + Uigr + Uiy — dui; = h”fi;.

We notice that at each step, we need to know the points w;_1 ;, u; 1, Uiy1,; and u; j41 to
calculate the value of u; ; at the point (z;,y;).
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The correspending matrix system Au = b is given by

k=(G—-1)xn+i Vi=2:n—1,¥Vj=2:m—1
Al k) = —4, Akk—1)=1, Alkk+1)=1
A(k,k+n) =1, A(k,k—n) =1, b(k,1)=(h)*fi
{A(k,k)zl, i=1,Vj=1:m

A

b(

{A(k,k): ., j=1j=m,Vi=1:n

From the numerical results using Finite difference method, we obtain the approach values of

u for h = 0.1 and f = ’Z’Tz sin(ﬂx)cos(ﬂ), which are sitting in table 2.29. The curves of

approximate solution are given in figure 2.8.

Finite difference method for solving Poisson equation for h=0.1 Finite difference method for solving Poisson equation for h=0.2

Figure 2.8: Poisson-FDM, with different values of T},,4,.

CSRBFs collocatin method for solving Poisson’s equation

Now, we are going to solve Poisson’s equation by using CSRBF, let given the following problem
with boundary conditions:

*u  O%*u

Auzw‘l’@:][‘ (Ly) 6]071[X]0a1[7

w(z,1) = u(0,y) = u(l,y) =0,
u(z,0) = sin(nz).

We suppose that u,, is the approximate solution of u written as
N
Up = Z O‘j(ba?
j=1
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x/y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0 0 0 0 0 0 0 0 0
0.1 | 0.309 | 0.306 | 0.295 | 0.276 | 0.251 | 0.220 | 0.183 | 0.141 | 0.096 | 0.049
0.2 | 0.588 | 0.582 | 0.561 | 0.526 | 0.478 | 0.418 | 0.347 | 0.268 | 0.183 | 0.093
0.3 | 0.809 | 0.801 | 0.772 | 0.724 | 0.658 | 0.575 | 0.478 | 0.369 | 0.251 | 0.127
0.4 | 0.951 | 0.941 | 0.907 | 0.851 | 0.773 | 0.676 | 0.562 | 0.434 | 0.296 | 0.150
0.5 | 1.000 | 0.990 [ 0.954 | 0.895 | 0.813 | 0.711 | 0.591 | 0.457 | 0.311 | 0.157
0.6 | 0.951 | 0.941 | 0.907 | 0.851 | 0.773 | 0.676 | 0.562 | 0.434 | 0.296 | 0.150
0.7 | 0.809 | 0.801 | 0.772 | 0.724 | 0.658 | 0.575 | 0.478 | 0.369 | 0.251 | 0.127
0.8 | 0.588 | 0.582 | 0.561 | 0.526 | 0.478 | 0.418 | 0.347 | 0.268 | 0.183 | 0.093
0.9 | 0.309 | 0.306 | 0.295 | 0.276 | 0.251 | 0.220 [ 0.183 | 0.141 | 0.096 | 0.049
1 0 0 0 0 0 0 0 0 0 0

Table 2.29: The numerical results using FDM for solving Poisson’s equation.

a N a2¢o' a N 82¢0
Wehave@ Zjaxz,and— Zj .

For this equation, we use the compactly supported radial basis function ¢F, of Wendland
which is written in the form

#alr) = (1- ;)i (3 +187 435 (;)2> |

with r is the Euclidean norm.

Then, we obtain

9u  —56 r r T, T— T,
gzt = or (= (17 -5 -0 (7))

g g

Pu  —56 _y,
o = o (1 (e ag =) (TR

This yields to

N 56 2
Au—Za] 1—;)1<2+8;—4O(;))—f,

where « is the vector that should be determined.
The matrix system is given by Aa = B, where

Al ) = (1 - )t (24 8% —40(22)?) if [z,y] € Q
D =m0 (341872 1 35(22)2) iffe,y] € 00

and B takes the boundary values.
The approximate values of u using CSRBFs method ,for A = 0.1 and ¢ = 1.3 and [ =

T
_TQ sm(ﬂx)cos(?y), are sitting in table 2.30, the curves of approximate solution are given in

figure 2.9 .
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CRBFs method for solving poissan equation for h=011

Figure 2.9: Poisson-CSRBF, with different values of T,,.

CRBFs method for solving paisson equation forh=0.2

x/y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0.005 | 0.007 | 0.004 | 0.003 | 0.0004 | 0.009 | 0.004 [ 0.001 | 0.002
0.1 | 0.309 | 0.301 | 0.288 | 0.269 | 0.244 | 0.214 | 0.175 | 0.135 | 0.092 | 0.046
0.2 | 0.588 | 0.580 | 0.556 | 0.520 | 0.472 | 0.412 | 0.341 | 0.263 | 0.179 | 0.089
0.3 [ 0.809 | 0.799 | 0.768 | 0.718 | 0.651 | 0.569 | 0.472 | 0.364 | 0.247 | 0.124
0.4 | 0951 | 0.941 | 0.904 | 0.846 | 0.767 | 0.670 | 0.556 | 0.429 | 0.291 | 0.146
0.5 | 1.000 | 0.989 | 0.951 | 0.890 | 0.807 | 0.705 | 0.585 | 0.451 | 0.3071 | 0.154
0.6 [ 0951 | 0.941 | 0.904 | 0.846 | 0.768 | 0.670 | 0.557 | 0.429 | 0.292 | 0.146
0.7 | 0.809 | 0.800 | 0.769 | 0.720 | 0.653 | 0.570 | 0.473 | 0.365 | 0.2481 | 0.124
0.8 | 0.588 | 0.581 | 0.558 | 0.522 | 0.474 | 0.414 | 0.343 | 0.265 | 0.180 | 0.090
0.9 [ 0.309 | 0.304 | 0.291 | 0.272 | 0.247 | 0.216 | 0.179 | 0.138 | 0.094 [ 0.047
1 0 0 0 0 0 0 0 0 0 0

Table 2.30: The numerical results using CSRBF for solving Poisson’s equation.
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Remark 2.5. The numerical tests which we were able to establish here have proved that the
method using CRBFs are very economical in terms of calculation time and programming
compared to finite difference. Also it is very flexible and easy method to apply, the degree of
precision does not depend on the choice of the function and the factor o does not really have a
great influence in the approximations.

GRBF for solving 2D time-dependent Schrodinger equation.

The time-dependent Schrodinger equation is a linear differential equation that governs the wave
equation of a quantum-mechanical system.

Let us consider the two-dimensional time-dependent Schrodinger equation
oU _9U + il + w(z,y)U (2.24)
—i— = — 4+ — + w(z, ) .
ot~ ox2 | oy Y
in some continuous domain with suitable initial and Dirichlet boundary conditions, and an
arbitrary potential function w(z,y), with initial condition

U(z,y,0) = Up(z,y), 0 <,y < 1, (2.25)
and boundary conditions

U(07y7t) = 91(33;%75)7 u(lvy7t> = 92(x7y7t)7 (226)
U(.Z',O,t) = 93($7y7t)7 U(.T, 1>t) = g4(;1:,y,t), 0 S t S 1.

Let ¢(r) be the radial basis function, the approximation of a distribution U(z) using radial
basis function takes the form

~ 33 cydii(n,y) + T, y), (2.y) € R, (2.27)

=0 j=0

where ¢;; = ¢ij(x,y) = o(||(x,y) — (zi,y;)|]), (zi,y;),i=0,...,N, j=0,...,M, here we
are going to use generalized multiquadric radial basis function which is mentioned before.

If ]P’g denotes the space of d-variate polynomials of order not exceeding than ¢, and letting
the polynomials Py, P, Ps, ..., P, be the basis of IP’Z in RY, then the polynomial T (z,y) is
written in the form

T(z,y) = i a:Pi(z,y), (2.28)

where m = (¢ — 1 + d)!/(d!(q — 1)!). Collocating equation (2.27 ) at N x M points, and m
equations are required as

Y)Y NP(z,y)=0,i=1,...m. (2.29)
i=0 j=0
We determine the unknown coefficients (A1,..., Ana) and (aq,...,a,). If L is a linear

differential operator then the approximation LU is given by

LU = i\’: i/[: c;;L®i;(z,y) + LY (x,y). (2.30)

i=0 j=0
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In our approach, we are going to use Crank-Nicolson scheme.

Lets discretize equation (2.24) as follows

t+dt) — Uz, y,t
Ulz,y.t + di (9, ):9[V2U(:c,y,t+dt)+w(w7y)U(w,y,t+dt)}

+(1=0) [V2U(z,y,t) +w(z,y)U(z,y,1)],

—1

where 0 = % , dt is the time step size. Using the notation U™ = Uz, y,t"), where t"*! = t" + dt,
we obtain

— U™ = 0dt [VPUM t w(z,y) U] = il + (1= 0)dt [V2U™ + w(z,y)U"|  (2.31)

Assuming that there are a total of N x M interpolation points, and let Y(z,y) =1+ x + ¥,
U(z,y,t") can be approximated by

NxM
U(xi,y5) = Y Njo(llz — iy = 4l + ANeari1®i + Mscarai + Aiscarss: (2.32)
j=1

The additional condition (2.29) can be written as

NxM

> A =0, (2.33)
j=1
NxM
> N =0, (2.34)
j=1
NXxXM
> Ay =0. (2.35)
j=1

Writting equation (2.32) together with equation (2.33), equation (2.34), and equation (2.35
), we obtain a matrix system U™ = AN", where, U" = [U}, Uy, ... U%,,;,0,0,0]7, A\ =

NS, o A args]T, and the matrix A is defined as
[ on P12 ¢1(NxM) oy 1]
®o1 P22 ¢2(N><M) T oy 1
A= lay, 1 <4, <N XM +3] = ONxM)L P(Nxd)2 - QNxMY(NxM) T Y11
1 1 0 0 O
T i) e Ce 0 0 O
L W Y2 0 0 0]
(2.36)

Suppose that there are k internal points and N x M —k boundary points, then the (N x M +3,
N x M + 3) matrix A can be divided into

A=B+C+D, (2.37)

where,
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B=[b;j, for (1<i<k,1<j<NxM-+3)andelse0 ],
C=[¢y, for (k+1<i<NxM,1<j<NxM-+3) and else 0 |,
D=[d;j, for (NXx M +1<i<NxM+3,1<j<N xM-+3)and else 0].

Equation ( 2.31) can be written in the following form

[—iB = 0dt (V*B+W % B) + C + D| \"*! = [=iB + (1 - 0)dt (V> B+ W % B)| A" + G,

(2.38)
where G" = [0...0G},, ... Gy, 0007, and W = [wy wowy, 0 ... 0]7.
Using the notation
A= AT 4], (2.39)
and
G" =G +iGr. (2.40)

Equation (2.38) can be written as
BN BT i (BATY = BAITY) = AP BAIHGr i (= BAL + FAY + GIY), (2.41)

such that: E = —0dt (V?B+W xB)+C+ D, F = (1-0)dt (V*B+ W * B).

Equation (2.41), can be written in the following real variable form

E B\ [\ [(F B A?+Gﬁ+1
-B E)\N*Y) T \-B F)\\ Gt
Thus, the solution of complex system has been reduced to solving the real variable system.
Since the coefficients matrix is unchanged in time steps.

Ezxample 2.14. Lets given Schrodinger equation with a potential function
2 2
22 g2

with initial condition

and boundary condition

The exact solution is
u(z,y, t) = 2*y’exp(it).

For dz = dy = 0.2, dt = 0.0005 and 0 < ¢ < 1. The obtained results with (8 = %, e=0.79),
are sitting in table 2.31, and figure 2.10, for (5 = 1.03, e = 0.82) are presented in table 2.32, for
(B =1.99, € = 0.8) are given in table 2.33, and for (8 = 2.5, ¢ = 1) are shown in table 2.34.
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(s,1) Real part  Imaginary part (s,t) Real part  Imaginary part

(0,0) 15180 x 10° 10 5.0590 x 10~ T (0,0)  2.0422 x 10- 0 3.5695 x 10~ |1
(0.01,0.01) 5.8344 x 10° 2.8995 x 107 (0.01,0.01) 7.8184 x 107 2.3817 x 107
(0.02,0.02) 8.8344 x 10" 9.9016 x 107 (0.02,0.02) 12550 x 10-% 4.7061 x 10-7
(0.03,0.03) 8.0440 x 10> 2.1778 x 10~ ° (0.03,0.03) 1.4855 x 10~ 6.8836 x 10>
(0.04,0.04) 5.8854 x 107> 3.6819 x 10-°®  (0.04,0.04) 1.5321 x 10~* 8.8157 x 10~
(0.05,0.05) 2.4097 x 10> 5.3906 x 10~ ° (0.05,0.05) 1.4459 x 10~T 1.0393 x 10~ *
(0.06,0.06) 1.8323 x 10°° 7.1031 x 10°° _ (0.06,0.06) 1.2710 x 10~ 1.1495 x 102
(0.07,0.07) 6.3652 x 105 8.9826 x 10 ° _ (0.07,0.07) 1.0444 x 10-% 1.1087 x 10 *
(0.08,0.08) 1.0789 x 10~ 1.0659 x 10—° (0.08,0.08) 7.9664 x 10> 1.1720 x 102
(0.09,0.09) 1.4778 x 10~ 1.2131 x 10~° (0.09,0.09) 5.5231 x 10~> 1.0529 x 10~%

Table 2.31: Computed errors
t=0.1(right) ), with 8 = }

using GRBFs method for Example (2.14) ( t=0.0005(left),

(s,t) Real part  Imaginary part (s,t) Real part  Imaginary part

(0,0) 1.6302 x 10> 2.8483 x 10~° (0,0) 3.8562 x 1074 8.3182 x 10~
(0.01,0.01) 2.0211 x 10~ 3.9188 x 10~ % (0.01,0.01) 5.4510 x 10~3 1.0829 x 10?2
(0.02,0.02) 2.5086 x 10~° 6.6224 x 10~ % (0.02,0.02) 1.3643 x 102 2.2474 x 102
(0.03,0.03) 5.3878 x 10~ 7.2407 x 102 (0.03,0.03) 2.5344 x 10-2 3.4702 x 10?2
(0.04,0.04) 1.3770 x 10~3 7.2956 x 10~ % (0.04,0.04) 4.0926 x 10-2 4.7229 x 102
(0.05,0.05) 2.4670 x 10~3 6.7126 x 102 (0.05,0.05) 6.0744 x 10~2 5.9722 x 10?2
(0.06,0.06) 3.7639 x 10~2 5.8079 x 10~ % (0.06,0.06) 8.5136 x 10~2 7.1798 x 102
(0.07,0.07) 5.5223 x 10~2 4.8851 x 10~ % (0.07,0.07) 1.1441 x 10~2 8.3029 x 102
(0.08,0.08) 6.8026 x 10~3 4.2301 x 102 (0.08,0.08) 1.4883 x 10~ 9.2943 x 102
(0.09,0.09) 8.4609 x 10~2 4.1066 x 10—* (0.09,0.09) 1.8863 x 10~ 1.0103 x 10~ !

Table 2.32: Computed errors using GRBFs method for Example (2.14) ( t=0.0005(left),

t=0.0375(xight) ), with 8 = 1.03.

(s,1) Real part  Imaginary part (s,1) Real part  Imaginary part

(0,0) L7616 x 107 8.8205 x 10°° (0,0) 10096 x 102 1.1330 x 10 °
(0.01,0.01) 15103 x 107 6.8656 x 107 (0.01,0.01) 8.6030 x 107 3.6595 x 107
(0.02,0.02) 3.5086 x 10~ 9.0989 x 10— (0.02,0.02) 3.1837 x 103 4.1454 x 102
(0.03,0.03) 4.4470 x 107 7.4369 x 107 (0.03,0.03) 5.9365 x 102 1.3490 x 107
(0.04,0.04) 4.5312 x 10~* 2.5827 x 107 (0.04,0.04) 9.0901 x 10-° 4.8421 x 10~
(0.05,0.05) 3.9576 x 10~ 4.7919 x 10~° (0.05,0.05) 1.2611 x 10~3 1.4530 x 10~3
(0.06,0.06) 2.9108 x 10~ 1.4052 x 10~ * (0.06,0.06) 1.6459 x 10~2 2.7807 x 103
(0.07,0.07) 1.5626 x 10~ 2.4604 x 102 (0.07,0.07) 2.0592 x 10~2 4.4748 x 103
(0.08,0.08) 7.0203 x 107 3.5901 x 102 (0.08,0.08) 2.4962 x 102 6.5414 x 1073
(0.09,0.09) 1.4253 x 10~T 4.7448 x 10~ % (0.09,0.09) 2.9516 x 10~2 8.9847 x 103

Table 2.33: Computed errors using GRBFs method for Example (2.14) ( t=0.0005(left),

tzO.l(right)), with 3 = 1.99.
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(s,t) Real part  Imaginary part (s,t) Real part  Imaginary part

(0,0)  5.1195 x 10~> 2.6510 x 10~° 0,0) 3.7432 x 107%  5.0240 x 10~°
(0.01,0.01) 2.0942 x 10~ 1.0238 x 10~ % (0.01,0.01) 1.5549 x 10=3 2.3129 x 103
(0.02,0.02) 3.2546 x 10~% 1.3338 x 107 (0. )
(0.03,0.03) 4.0492 x 10~* 1.0309 x 10~* (0. ) 3.1897 x 103 4.5546 x 103
(0.04,0.04) 4.5309 x 10~* 2.1050 x 10~° (0. 04 0. 04) 6.4242 x 10~2 4.7795 x 103
(0.05,0.05) 4.7491 x 10~* 1.0377 x 10~* (0.05,0.05) 1.0901 x 10~% 4.5856 x 103
( ) ( )
( ) ( )
( ) ( )
( ) . )

1.4707 x 1073 3.7799 x 1073

0.06,0.06) 4.7498 x 10~* 2.6301 x 10~ 0.06,0.06) 1.6364 x 102 4.0024 x 103
0.07,0.07) 4.5753 x 10 * 4.4892 x 10 7 0.07,0.07) 2.2570 x 10~ 2 3.4074 x 10 3
0.08,0.08) 4.2644 x 10 % 6.5442 x 10~ % 0.08,0.08) 2.9295 x 10~2 2.6267 x 103
0.09,0.09) 3.8523 x 10~* 8.7305 x 107 3.6333 x 102 1.8345 x 103

Table 2.34: Computed errors using GRBFs method for Example (2.14) ( t=0.0005(left),
tz0.0S(right)), with 3 = 2.5.

Real part errors using multiquadric RBF Imaginary part errars using multiquadric REF

Figure 2.10: The Absolute errors , for t = 0.05, real part(left), imaginary part(right), with
s=1

66



Ezxample 2.15. Let us given Schrodinger equation with a potential function

with initial condition

and boundary condition

u(0,y,t) =

1 — 4t

w(z,y) =0,

u(z,y,0) = e V0T 9 < gy <2,

i
i —4
i

i— 4t

u(z,0,t) =

u(z, 1,t) =

The exact solution is given by

u(z,y,t) =

For dr = dy = 0.5, dt = 0.0002 and 0 < t < 1. The obtained results with (8 = 2

1 — 4t

ei((y2+ic(2)t)/(i74t))7 u(l, y,t) _

t

e

1 — 4t

6i((:(;2+ic0x+ic(2)t)/(i—4t)) :

i((@2+14icoz+icdt) /(i—4t))

Y

ei((1+y2+ico+ic§t) /(i—4t))

ei((IQ+y2+icom+icat)/(i—4t))’ _2 S x, y S 2

29

e = 0.55),

are sitting in table 2.35 and figure 2.11, for (5 = 1.03, € = 0.5) are presented in table 2.36, for
(8 =1.99, € = 0.4) are given in table 2.37, and for § = 2.5, ¢ = 0.4 are shown in table 2.38.

(s,1) Real part  Imaginary part (s,1) Real part  Imaginary part

(0,0)  3.6724 x 10~° 1.6642 x 10~* (0,0)  7.1509 x 10~° 1.4923 x 10—
(0.01,0.01) 1.0966 x 10~3 4.7663 x 10> (0.01,0.01) 4.0534 x 10~3 3.0590 x 102
(0.02,0.02) 2.0815 x 10~3  9.5420 x 102 (0.02,0.02) 1.5171 x 10~2 7.6129 x 102
(0.03,0.03) 2.9561 x 10~3 1.4302 x 102 (0.03,0.03) 2.6174 x 10~2 1.2161 x 102
(0.04,0.04) 3.7196 x 10~3 1.9039 x 10~ ! (0.04,0.04) 3.7038 x 10~2 1.6697 x 10~ 1
(0.05,0.05) 4.3727 x 10~3 2.3743 x 10~ 1 (0.05,0.05) 4.7740 x 10~2 2.1212 x 10~ 1
(0.06,0.06) 4.9175 x 103 2.8408 x 10~ 1 (0.06,0.06) 5.8253 x 10~2 2.5699 x 101
(0.07,0.07) 5.3571 x 10~% 3.3026 x 10! (0.07,0.07) 6.8560 x 10~2 3.0151 x 10~ 1
(0.08,0.08) 5.6961 x 10~2 3.7587 x 10~ ! (0.08,0.08) 7.8640 x 10=2 3.4560 x 10~ T
(0.09,0.09) 5.9399 x 103 4.2086 x 10~ 1 (0.09,0.09) 8.8473 x 102 3.8917 x 10~ 1

Table 2.35: Computed errors using GRBFs method for Example (2.15) ( t=0.0002(left),
t=0.016(right) ), with 8 = .
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(s,1) Real part  Imaginary part (s,t) Real part  Imaginary part

(0,0 1.8941 x 1072 3.1833 x 10~ (0,0) 1.6881 x 1072 9.9516 x 102
(0.01,0.01) 2.0214 x 10-2 1.6196 x 10-2 _ (0.01,0.01) 2.9550 x 102 6.8410 x 10~
(0.02,0.02) 2.1393 x 10-2_6.4146 x 10-2 _ (0.02,0.02) 4.1877 x 102 7.2821 x 10~
(0.03,0.03) 2.2475 x 102 8.1193 x 102 (0.03,0.03) 5.3834 x 10~2 7.7160 x 10~ T
(0.04,0.04) 2.3456 x 10~2 1.5948 x 10~ 1 (0.04,0.04) 6.5395 x 10~2 8.1418 x 10~ 1
(0.05,0.05) 2.4340 x 10~% 2.0670 x 10~ T (0.05,0.05) 7.6539 x 10~2 8.5591 x 10~ T
(0.06,0.06) 2.5112 x 10=2 2.5320 x 10! (0.06,0.06) 8.7242 x 10~2 8.9673 x 10!
(0.07,0.07) 2.5811 x 102 2.9983 x 101 (0.07,0.07) 9.7487 x 102 9.3665 x 10
(0.08,0.08) 2.6404 x 10~2 3.4558 x 10~ ! (0.08,0.08) 9.8216 x 10~2 9.7532 x 10~ !
(0.09,0.09) 2.6906 x 10=2 3.9069 x 101 (0.09,0.09) 1.1654 x 10~T 9.9801 x 10~ T

Table 2.36: Computed errors using GRBFs method for Example (2.15) ( t=0.0002(left),
t=0.036(right) ), with 3 = 1.03.

(s,t) Real part  Imaginary part (s,t) Real part  Imaginary part

(0,0) 6.4793 x 1072 4.2012 x 10~ (0,0) 6.2007 x 1072 8.9252 x 10~
(0.01,0.01) 6.5824 x 10~2 6.6113 x 103 (0.01,0.01) 6.8899 x 10~2 2.4920 x 10~ T
(0.02,0.02) 6.6786 x 10~2 5.5157 x 10~ ° (0.02,0.02) 7.5646 x 10~2 2.9639 x 10~ T
(0.03,0.03) 6.7676 x 102 1.0354 x 102 (0.03,0.03) 8.2229 x 102 3.4311 x 10"
(0.04,0.04) 6.8480 x 1072 15168 x 10°2 _ (0.04,0.04) 8.8633 x 102 3.8031 x 10~
(0.05,0.05) 6.9225 x 10=2 1.9947 x 10! (0.05,0.05) 9.4839 x 10~2 4.3488 x 10!
(0.06,0.06) 6.9883 x 102 2.4687 x 10T (0.06,0.06) 9.8896 x 102 4.7977 x 10~
(0.07,0.07) 7.0460 x 10~2 2.9376 x 10! (0.07,0.07) 9.9901 x 10~2 5.2390 x 10~ T
(0.08,0.08) 7.0960 x 10-2 3.4007 x 10! (0.08,0.08) 9.9201 x 10~2 5.6719 x 10!
(0.09,0.09) 7.1382 x 1072 3.8572 x 10! (0.09,0.09) 9.9316 x 10~2 6.0956 x 10~ *

Table 2.37: Computed errors using GRBFs method for Example (2.15) ( t=0.0002(left),

t=0.0172(xight) ), with 8 = 1.99.

(s,1) Real part  Imaginary part (s,1) Real part  Imaginary part

(0,0)  5.9901 x 10=> 2.9172 x 102 (0,0)  3.5521 x 10=% 2.2318 x 102
(0.01,0.01) 1.0905 x 10~3 5.1498 x 102 (0.01,0.01) 4.1224 x 10=2 2.7150 x 102
(0.02,0.02) 2.1802 x 10~3 1.0000 x 102 (0.02,0.02) 4.6827 x 10~2 3.1955 x 10~ 1
(0.03,0.03) 3.2048 x 10~3 1.4836 x 10! (0.03,0.03) 5.2313 x 10~2 3.6723 x 10!
(0.04,0.04) 4.1605 x 10~% 1.9646 x 10~ ! (0.04,0.04) 5.7670 x 10~2 4.1447 x 10~ 1
(0.05,0.05) 5.0445 x 103 2.4424 x 10~ 1 (0.05,0.05) 6.2885 x 10~2 4.6119 x 10~ T
(0.06,0.06) 5.8549 x 10~% 2.9160 x 10~ ! (0.06,0.06) 6.7948 x 10~2 5.0729 x 10"
(0.07,0.07) 6.5901 x 10~3 3.3846 x 10~ T (0.07,0.07) 7.2847 x 10~ 5.5272 x 10~ 1
(0.08,0.08) 7.2495 x 10~3 3.8474 x 107! (0.08,0.08) 7.7573 x 10~2 5.9738 x 10!
(0.09,0.09) 7.8333 x 102 4.3036 x 10! (0.09,0.09) 8.2117 x 10~2 6.4120 x 10"

Table 2.38: Computed errors using GRBFs method for Example (2.15) ( t=0.0002(left),

tz0.0lS(right)), with 3 = 2.5.
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Real part errors using multiquadric RBF Imaginary part errors using multiquadric RBF

Figure 2.11: The Absolute errors , for t = 0.4, real part(left), imaginary part(right), with 5 = %

2.3 Comparaison between stationary and non-stationary
approaches in interpolating some one and two-dimensional
functions

The convergence of RBF methods can be discussed in terms of two different types of approxi-
mation, stationary and non-stationary. In stationary approximation, the number of centers N
is fixed and the shape parameter € is refined towards zero. Non-stationary approximation fixes
the value of the shape parameter and N is increased. The theoritical convergence rates may
be difficult to achieve computationally due to the condition number of the resulting matrix
growing with decreasing both fill distance and shape parameter. In the following, we analyse the
efficiency and applicability of the two approaches for scattered data approximation by globally
RBFs. In the following, we analyse the efficiency and applicability of the two approaches for
scattered data approximation by globally RBFs.

The set of interpolation data points

The most known set of interpolation data points are the Chebyshev, Halton and Sobol
points.

Chebyshev nodes

For a given positive integer n the Chebychev nodes in the interval [—1, 1] are

2k -1
a:k:cos< H),kzl,...,n.
2n

In our experiments we are going to use the shifted Chebychev nodes in [0, 1] given by
1 1 <2k -1

T = 5 + 5(305 o

Halton nodes

H),kzl,...,n.

In statistics, Halton sequence are sequences used to generate points in space for numerical
methods such as Monte Carlo simulations. Although these sequences are deterministic, they
are of low discrepancy, that is appear to be random for many purposes. They were first
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introduced in 1960 and are an example of a quasi-random number sequence. They generalize
the one-dimensional var der Corput sequence.

Sobol nodes

Sobol sequences are an example of quasi-random low-discrepancy sequences. They were first
introduced by thr Russian mathematician Ilya M. Sobol in 1967. These sequences use a base
of two to form successively finer uniform partitions of the unit interval and then reorder the
coordinates in each dimension.

Numerical examples

Let Pg(x) be the interpolant of f(z), in order to show the convergence accuracy of the
radial basis function interpolation , we are going to calculate the absolute errors at the equally
spaced points in [0, 1] using the formula

e(x) = |Ps(x) — f(x)], 0 <z <1.
Also, we have,

Root-mean-square error (RMS):

1 Y 1
RM S-error = | — Y [P(z;) — f(z)]* = —=||P; — fl|2, 2.42)
$N;[ 7 ()] \/NH r— [ll2 (
where x;, 1 = 1,..., N are the evaluation points.

For our experiments we are going to use the following 2D and 1D Franke’s test functions:
2D Franke’s test functions

fi(z,y) = 0.756(_(95”_2)2*%), z € [0,1] x [0,1].

folx,y) = 0.75e(-(O2+1)?/49+0y+1)2/10) "5 10, 1] x [0, 1].

f3(z,y) = sinc(x)sinc(y), z € [0,1] x [0, 1].

1D Franke’s test functions

file)=23+22+1,2€]0,1].

fa(x) = sinc(z) + 1, z € [0, 1].

2.3.1 Stationary approach
For 2D and 1D stationary approach, we fix the number of centers N = 289, N = 17 respectively.
RMS-errors, Max-errors and absolute errors are computed for different values of shape parameter

¢ using multiquadric RBF and with Halton, Sobol and Chebyshev points. The numerical tests
are given in tables 2.39-2.43 and figures 2.12-2.16.
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Table 2.39: 2D stationary interpolation (N = 289) to the test function f(x,y) with Multi-
quadric RBF using Halton, Sobol and Chebyshev points.

Halton points

Sobol points

Chebychev points

€ MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 8.2487e-03 5.2283e-04 9.7009e-03 1.3026e-03 2.5595e-03 5.5118e-04
0.7 1.8078e-04 13389e-05 3.9934e-03 4.3877e-04 2.8352e-03 7.9621e-04
1.2 3.3123e-02 2.3527e-03 8.2889e-02 1.1020e-02 2.7342e-03 8.7432e-04
1.6 8.8136e-02 9.0501e-03 4.0381e-01 3.8320e-02 2.6120e-03 8.7284e-04
3 4.5229e-01 1.4229¢-01 6.6016e-01 7.8839e-02 .2.7617e-01 1.699¢e-01
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Figure 2.12: Absolute errors for stationary interpolation using Halton points to the test function
fi(z,y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and e=
0.2,0.7,1.2,1.6,3, (left), the condition number (right).

Table 2.40:

quadric RBF using Halton, Sobol and Chebyshev points.

2D stationary interpolation (N = 289) to the test function f5(z,y) with multi-

Halton points

Sobol points

Chebyshev points

€ MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 4.3052e-03  4.1163e-04 7.0019e-04  1.2867e-04 8.7577e-05  1.9101e-05
0.7 1.0122e-04  7.1236e-06 9.9876e-05  8.1483e-07 2.2902e-06  6.91147e-07
1.2 4.0902e-05  3.9870e-06 1.0606e-05  1.3681e-06 1.40252e-06  8.0095e-07
1.6 8.2537e-05 84913e-06 2.2973e-04  3.5719e-05 4.5406e-05  2.3142e-05
3 1.1461e-02  2.8493e-03 7.9248e-03  3.0039e-03 3.5045e-03  1.3482e-03
Table 2.41: 2D stationary interpolation (N = 289) to the test function f3(x,y) with Multi-

quadric RBF using Halton, Sobol and Chebyshev points.

Halton points

Sobol points

Chebyshev points

€ MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 6.5239¢-03 5.433e-04 8.6697e-04 11483e-04 4.1378e-05  1.3596e-05
0.7 2.1649e-05  1.3475e-06 2.0369¢-06  2.5393e-07 7.53968e-08  2.42744e-08
1.2 1.9017e-06  2.6104e-07 1.2744e-06  1.8414e-07 8.1136e-08  5.45705e-08
1.6 1.1837e-06  1.1038e-07 2.4734e-06  5.2780e-07 1.7337e-07  7.8064e-08
3 3.0919e-06  6.9209e-07 2.0032e-05  8.4621e-06 1.0456e-06  4.0600e-07
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Figure 2.13: Absolute errors for stationary interpolation with Sobol points the test function
fo(z,y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and e=
0.2,1.7,1.2,1.6,3, (left), the condition number (right).
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Figure 2.14: Absolute errors for stationary interpolation using Chebyshev to the test function
f3(z,y) with multiquadric RBF based on M = 225 uniformly spaced points in [0, 1] and e=
0.2,1.7,1.2,1.6,3, (left), the condition number (right).

Table 2.42:

1D stationary interpolation (N = 17) to the test function fi(z) with Multiquadric
RBF using Halton, Sobol and Chebyshev points.

Halton points

Sobol points

Chebyshev points

€ MAX-error RMS-error MAX-error RMS-error MAX-error RMS-error
0.2 2.1189%-04  6.0906e-05 1.3000e-02  3.1981e-04 1.9005e-04  8.2560e-05
0.6 1.4190e-04  1.1925e-04 8.7795e-05  4.5640e-05 8.9861e-04  8.2265e-04
1.5 1.9652e-04  1.7681e-04 4.3145e-04  3.2300e-04 3.4495e-04  2.8935e-04
4 3.3761e-04  3.3333e-04 5.6112e-04  5.5600e-04 3.2464e-04  3.2006e-04
9 5.5214e-05  3.4000e-05 5.5765e-05  3.8200e-05 5.1522e-05  3.4852¢-05
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Figure 2.15: Absolute errors for stationary interpolation using Halton points to the test function
fi(z) with multiquadric RBF based on M = 20 uniformly spaced points in [0,1] and e=
0.2,0.6,1.5,4,9 , (left), the condition number (right).

Table 2.43: 1D stationary interpolation (N = 17) to the test function fo(z) with multiquadric
RBF using Halton, Sobol and Chebyshev 