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Introduction 

          "Artificial intelligence is just the beginning. It's the opening act of a far more profound 

transformation driven by technology"  

This is what Elon Musk said, as AI continues to advance, it holds the key to unlocking 

unprecedented levels of efficiency, automation, and problem-solving capabilities across industries. 

From healthcare to transportation, finance to education, the advancements in machine learning 

algorithms and neural networks have fueled breakthroughs in computer vision, speech recognition, 

and decision-making systems, enabling AI to comprehend, analyze, and derive insights from vast 

amounts of data with unprecedented speed and accuracy. 

       Within the realm of AI, object detection stands as a compelling example of the impact and 

potential of this technology. By leveraging advanced algorithms and Deep Learning techniques, 

object detection has transformed how machines perceive and interact with visual data. Through 

object detection, AI systems are capable of analyzing images or videos to identify and localize 

objects of interest. This ability has far-reaching implications across industries and applications. For 

instance, in healthcare, object detection contributes to the accurate diagnosis of diseases by 

analyzing medical images, leading to earlier detection and improved patient outcomes. 

Our research thesis aims to design and implement various object detection algorithms in order to 

conduct a comparative analysis between older algorithms and the newest ones, starting with CNN, 

transfer learning, and then proceed to YOLOv5. Additionally, we will explore the latest algorithm, 

YOLOv8, which was launched on January 10th, 2023. 

To achieve this goal, we have structured our thesis into three chapters: 

Chapter 1: in this chapter we will discuss the Deep Learning field and focusing on the CNN 

architecture. 

Chapter 2: we will go deep into object detection techniques  

Chapter 3: this chapter contains the comparative result’s implementation of our CNN architecture, 

transfer learning and YOLO.
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Chapter 1: Deep learning 

 

Abstract 

This chapter provides an overview of Deep Learning and neural network which represent the 

key components of modern Artificial Intelligence (AI), also we explored Deep Learning 

where we focused on CNN architecture. 

 

1.1 Introduction 

1.2 Artificial intelligence 

1.3 Deep learning 

1.4 Neural networks 

1.5 Deep Learning Architecture 

1.6 Conclusion 
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1.1  Introduction 

        Today, AI is being used in a wide range of applications, such as natural language processing, 

computer vision, robotics, and autonomous vehicles. AI development has been fueled by advances 

in hardware, such as faster processors and more powerful GPUs, as well as breakthroughs in 

software algorithms and data management. in this chapter we will discuss Deep Learning which is 

one of the AI subsystems that offer additional features such as the use of Big Data. In the beginning, 

we provide a brief overview of neural networks that simulate the mechanism of learning in a 

biological organism. Then we go over different types of Deep Learning then the most popular Deep 

Learning type called supervised learning, specifically CNN’S. 

1.2 Artificial intelligence 

      Artificial Intelligence (AI) is known as the ability of robots or computer programs to carry out 

operations that would typically require human intelligence to complete, such as learning, problem 

solving, and decision-making.  

      Artificial Intelligence is frequently used as a catchall term for Machine Learning and Deep 

Learning, but they are not interchangeable terms, where Machine Learning (ML) is a subset of AI 

that employs statistical techniques to allow machines to learn from data without being explicitly 

programmed. In other words, it is a method of teaching machines to recognize patterns and predict 

outcomes based on data on the other side Deep Learning (DL) is a subset of ML that involves the 

use of multiple-layer artificial neural networks to learn from data. Deep learning algorithms can 

analyze massive amounts of data and automatically learn to recognize patterns and features that 

humans are incapable of identifying. 

      To put it simply, Deep Learning is a subset of the larger field of AI that is a more specialized 

form of machine learning. Machine Learning models are all Deep Learning models, but not all 

Deep Learning models are Machine Learning models. Similarly, while all Machine Learning 

models are a subset of AI, not all AI systems employ Machine Learning[8]. 
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1.2.1 Choosing between Machine Learning and Deep Learning 

        Depending on your application, the volume of data you are processing, and the kind of issue 

you are trying to solve, Machine learning and Deep Learning offer a variety of methods and models 

to choose from. For Deep Learning to be effective, the model must be trained on thousands of 

images, which requires high performance GPUs to process data quickly. When deciding between 

Machine Learning and Deep Learning, take into account the performance of the GPU and the 

amount of annotated data available. Machine Learning may be more advantageous than Deep 

Learning if you lack either of those resources. In order to get accurate findings with Deep Learning, 

you'll need at least a few thousand images. The model will process all those images faster if it has 

a high-performance GPU [1]. 

 

 

 

 

1.3 Deep learning 

        Deep learning is a subfield of Machine Learning that involves training artificial neural 

networks with multiple layers to learn and recognize patterns in data. The term "deep" refers to the 

fact that these neural networks typically have many layers, allowing them to learn complex 

representations of data. Nowadays, Deep Learning is used to develop many revolutionary 

technologies that have a significant impact on our daily lives. 

 

Figure 1.1: Relationship between AI, ML and DL. 

 

 

 

Figure 1.2: Relationship between AI, ML and DL. 

 

 

 

Figure 1.2: comparing a Machine Learning approach to categorizing vehicles (left) with Deep Learning (right). 

 

 

 

Figure 1.3: comparing a Machine Learning approach to categorizing vehicles (left) with Deep Learning 

(right). 

 



 

Chapter 1  Deep Learning

  

3 

 

Autonomous driving: 

         Because of Deep Learning, autonomous driving for vehicles has become a reality. Some 

algorithms identify road signs while others locate pedestrians. This technology greatly improves 

road safety and the driving experience of motorists. 

In the field of medicine: 

        Deep Learning can also be used to distinguish between cancerous and non-cancerous tumors. 

It scans X-ray photos with greater accuracy than the human eye and therefore allows for earlier 

treatment to increase the patient's chances of recovery. 

In the agricultural sector: 

       Organic agriculture relies on intelligent drones capable of identifying weeds by scanning 

several hectares of plantations during a flyover. This allows farmers to focus their energy only on 

the areas that need weeding. Some use cases of Deep Learning algorithm [1].  

1.4 Neural networks 

1.4.1 Neuron from Biology to AI 

       The foundational unit of the human brain is the neuron. The brain is composed of billions of 

these cells, each of those forms an average of 6,000 connections with other neurons, at its core, the 

neuron is optimized to receive information from other neurons, process this information in a unique 

way, and send its result to other cells [3]. 

      This process is summarized in Figure 1.3. The neuron receives its inputs along antennae-like 

structures called dendrites. Each of these incoming connections is dynamically strengthened or 

weakened based on how often it is used (this is how we learn new concepts!), and it’s the strength 

of each connection that determines the contribution of the input to the neuron’s output. After being 

weighted by the strength of their respective connections, the inputs are summed together in the cell 

body. This sum is then transformed into a new signal that’s propagated along the cell’s axon and 

sent off to other neurons[3]. 
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In a traditional neural network, neurons are fully connected between different layers. Layers 

that sit between the input layer and output layer are called hidden layers. Each hidden layer contains 

several neurons that are fully connected to all neurons in the previous layer. the issue with this 

densely-connected network architecture is that it is not suitable for processing large images. To 

handle large images, the most preferred approach is to use a convolutional neural network[3]. 

 

1.4.2 Neural network parameters and hyper-parameters 

The cost function: is a mathematical function that compares the model's predictions to the actual 

values of the target variable in the training data. The goal of training the model is to minimize this 

cost function, by adjusting the weights and biases of the neurons in the network [16]. 

Weights: are neural network variables that decide the strength of connections between neurons. 

Weights are learned and adjusted during the training process to minimize the cost function. They 

are typically seeded at random and updated iteratively during training [16]. 

Bias: A bias parameter is added to each neuron in the network to help it learn more complex 

relationships between the input and output variables. During training, the bias is also learned and 

updated along with the weights [16]. 

 

Figure 1.3: The biological neurons VS the Artificial Neural Network.   

 

 

 

Figure 1.4: dropout technique.
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Learning rate: is a hyper-parameter defined as the amount of minimization in the cost function in 

each iteration . It regulates the gradient descent algorithm's step size, which is used to train the 

neural network's weights. A low learning rate can lead to sluggish convergence, whereas a high 

learning rate can cause the algorithm to overshoot the minimum. It is typically set to a minor value, 

like 0.1 or 0.01, however the exact value may change depending on the issue [16]. 

Batch size: is a hyper-parameter that controls how many training examples are used in each 

gradient descent algorithm iteration. In other words, it specifies how many training instances are 

analyzed prior to an update to the weights. Small batch sizes can lead to quicker convergence and 

less memory use, but they can also make training noisier. Large batch sizes help lessen training 

process noise, but they can also use more memory and take longer to reach convergence [16]. 

Epoch: an epoch is defined as a single training iteration of all batches in both forward and 

backpropagation. The number of epochs required to train a neural network depends on factors such 

as the complexity of the task and the size of the dataset [16]. 

1.4.3 Improving neural networks 

        Improving neural networks is critical because it can lead to improved performance and more 

accurate predictions on a given task. There are several reasons why neural networks should be 

improved: 

✓ Better Accuracy: Predicting an output with accuracy from an input is the main objective 

of neural networks. We can increase the predictions accuracy by enhancing the neural 

network's architecture and training techniques.  

✓ Faster Training: Training neural networks can take a long period as they grow larger and 

more complicated. The network can be trained faster and more effectively by altering the 

training procedures. 

✓ Improved generalization: A neural network with good design should perform well on 

data that it has not been trained on, or generalize well to unknown data. 

✓ Enhanced interpretability: Due to their complexity, neural networks can be challenging 

to interpret, but enhancing interpretability can aid both academics and professionals in 

understanding how the model generates its predictions. 

There are several techniques used to improve neural network such as: 
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1.4.3.1 Regularization technique 

       In order to avoid overfitting problem that we faced in the experimental part of this dissertation- 

regularization is a method used in neural networks. When a neural network learns the training data 

too thoroughly, it over fits and becomes unable to apply to new, untrained data. Regularization 

discourages the model from learning overly complex patterns in the data that might not be 

generalizable by adding a penalty word to the loss function. This helps to minimize overfitting. 

In neural networks, regularization can be achieved in a number of ways, including: 

Dropout: chooses a collection of nodes to be dropped out at random with a fixed probability p 

during each training iteration. Typically, the probability p is chosen between 0.2 and 0.5. Different 

nodes are dropped out for various training examples because the dropout process is carried out 

separately on each example. All nodes are used during testing, but their outputs are multiplied by 

probability p to guarantee that the layer's total output is the same as it was during training[2]. 

 

 

 

 

 

Data augmentation: By generating new versions of the existing data through various 

transformations, data augmentation is a Deep Learning method used to artificially expand a training 

dataset. The model can learn more reliable and generalizable features this way, which will enhance 

its performance on untrained data. When applied to neural networks, a set of predefined 

transformations are usually applied to the input data before it is fed to the model. Random cropping, 

flipping, rotation, scaling, and color jittering are a few typical changes[2]. 

1.4.3.2 Optimization techniques  

      For neural networks to minimize the loss function and perform better, optimization methods 

are crucial. Here are a few of the popular Deep Learning optimization methods: 

 

Figure 1.4: dropout technique. 

 

 

 

Figure 1.6: dropout technique. 
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Gradient Descent: The most widely used optimization method in Deep Learning isgradient 

descent. In order to minimize the loss, it includes computing the gradient of the loss function with 

respect to the parameters of the model and updating them in the opposite direction of the gradient. 

ϑk = ϑk − γ (d(cost))/(d(ϑk)                                               (1) 

Where 𝛝𝐤 are the actual weights and 𝛄 is the learning rate. 

Adam: (Adaptive Moment Estimation) is a popular optimization method for neural network 

training. The algorithm keeps track of both the square and the exponentially declining average of 

previous gradients. To take into consideration the initialization of the moving averages, bias 

correction terms are also included [5]. 

The Adam optimization algorithm utilizes a hybrid of two gradient descent techniques by 

combining the benefits of both momentum and RMSprop algorithms. This adjustable learning rate 

approach results in improved performance. 

1.5 Deep learning Architecture 

         Supervised and unsupervised Deep Learning architectures are two types of architectures used 

in Deep Learning that differ in the way they learn from data.  

1.5.1 Supervised Deep Learning 

      In supervised learning, the Deep Learning architecture is trained on labeled data, which means 

that the input data is already associated with the correct output or target. The architecture uses the 

labeled data to learn to predict the correct output for new, unseen input data. Convolutional neural 

network (CNN or Conv-Nets) is among the most commonly used architectures in supervised Deep 

Learning. 

1.5.1.1 Convolutional Neural Network (ConvNet/CNN)  

Convolutional Neural Network (ConvNet or CNN) is one of the most popular deep learning 

architectures that consists of multiple number of layers. The main concept of Conv-Nets is to obtain 

local features from input (usually an image) at higher layers and combine them into more complex 

features at the lower layers. However, because of its complex architecture, training such networks 

on large datasets can take several days, and it is computationally expensive. As a result, deep 

networks are frequently trained on GPUs [4]. 
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 ConvNet consists of a sequence of different types of layers to achieve different tasks. A 

typical Convolutional neural network consists of the following layers: 

• Convolutional layer  

• Activation Function Layer (ReLu)  

• Pooling layer  

• Fully-connected layer. 

 

 

 

 

 

 

 

 

         These layers are stacked up to make a full ConvNet architecture. Convolutional and activation 

function layers are usually stacked together followed by an optional pooling layer. Fully connected 

layer makes up the last layer of the network and the output of the last fully connected layer produces 

the class scores of the input image. In addition to these main layers mentioned above, ConvNet 

may include other types of layers, such as batch normalization and dropout layers to improve the 

training time and address the overfitting issue respectively [4]. 

 

Figure 1.5: CNN Architecture. 

 

 

 

 

Figure 1.7: CNN Architecture. 
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Convolution Layer: Convolution layer is the core building block of a Convolutional Neural 

Network which uses convolution operation (represented by *) in place of general matrix 

multiplication. Its parameters consist of a set of learnable filters also known as kernels. Figure 1.6 

below shows how a filter is convolved with the input to get the feature MAP. Feature MAP is 

obtained after adding a bias term and then applying a non-linear function to the output of the 

convolution operation. The purpose of non-linearity function is to introduce non- linearity in the 

ConvNet model[4]. 

Hyper-parameters:  Convolutional Neural Network architecture has many hyper-parameters that 

are used to control the behavior of the model. Some of these hyper-parameters control the size of 

the output while some are used to tune the running time and memory cost of the model. The four 

important hyper-parameters in the convolution layer of the ConvNet are given below:  

a) Filter Size: Filters can be of any size greater than 2 x 2 and less than the size of the input 

but the conventional size varies from 11 x 11 to 3 x 3. The size of a filter is independent of 

the size of input. 

b) Number of Filters: This can be any reasonable number of filters. Alex Net used 96 filters 

of size 11 x 11 in first convolution layer. VGG Net used 96 filters of size 7 x 7 and another 

variant of VGG Net used 64 filters of size 11 x 11 in first convolution layer. 

c) Stride: It is the number of pixels to move at a time to define the local receptive field for a 

filter. Stride of one means to move across and down a single pixel. The value of stride 

 

               Input image            convolution       kernel                                  final feature Map   

Figure 1.6: Example of Convolution Operation. 

 

 

 

Figure 1.8: Example of Convolution Operation. 
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should not be too small or too large. Too small stride will lead to heavily overlapping 

receptive fields and too large value will overlap less and the resulting output volume will 

have smaller dimensions spatially. 

d) Zero Padding: This hyper-parameter describes the number of pixels to pad the input image 

with zeros. Zero padding is used to control the spatial size of the output volume [4]. 

Activation Function Layer: Activation functions decide whether a neuron should be activated or 

not by calculating the weighted sum and further adding bias with it. They are differentiable 

operators to transform input signals to outputs, while most of them add non-linearity. Because 

activation functions are fundamental to Deep Learning, let’s briefly survey some common 

activation functions. There are many of activation functions in use with artificial neural networks 

(ANN) and some of the commonly used activation functions are: 

✓ Logistic/Sigmoid Activation Function: 

The logistic activation function, also known as the sigmoid activation function, is a commonly 

used activation function in neural networks. It is represented by the mathematical equation: 

sigmoid(x) =  
1

1+e−x                                          (2) 

The figure bellow show the sigmoid activation function graph:  

 

 

 

 

 

 

✓ ReLu Activation Function: 

     ReLu Function The most popular choice, due to both simplicity of implementation and its good 

performance on a variety of predictive tasks, is the rectified linear unit (ReLu) (Nair and Hinton, 

2010). ReLu provides a very simple nonlinear transformation. Given an element x, the function is 

defined as the maximum of that element [5]. 

ReLu(x) =  max(x, 0)                                            (3) 

 

       Figure 1.7: Graph of Sigmoid activation. 

 

 

 Figure 1.9: Rectified Linear Unit (Relu) 

activation function.
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Pooling Layer: In ConvNet, the sequence of convolution layer and activation function layer is 

followed by an optional pooling or down sampling layer to reduce the spatial size of the input and 

thus reducing the number of parameters in the network. A pooling layer takes each feature MAP 

output from the convolutional layer and down samples it i.e. pooling layer summarizes a region of 

neurons in the convolution layer. There are few pooling techniques available and the most common 

pooling technique is Max-Pooling. Max-Pooling simply outputs the maximum value in the input 

region. The input region is a subset of input (usually 2x2). For example, if input region is of size 2 

x 2 the Max-Pooling unit will output the maximum of the four values as shown in Figure 11. Other 

options for pooling layers are average pooling and L2-norm pooling. Pooling layer operation 

discards less significant data but preserves the detected features in a smaller representation. The 

intuitive reasoning behind pooling operation is that feature detection is more important than 

feature's exact location. This strategy works well for simple and basic problems but it has its own 

limitations and does not work well for some problem [4]. 

 

 

 

 

 

 

 

   Figure 1.8: Rectified Linear Unit (Relu) activation function. 

 

 

    

 Figure 1.11: Max-pooling.

 

 Figure 1.12: Rectified Linear Unit (Relu) activation function. 

 

    

 Figure 1.9: Max-pooling. 

 

 

  



 

Chapter 1  Deep Learning

  

12 

 

Fully Connected Layer: In ConvNets, The fully connected layers can be stacked to learn even 

more sophisticated combinations of features. The input of the FC layer comes from the last pooling 

or convolutional layer. This input is in the form of a vector, which is created from the feature MAPs 

after flattening. The output of the FC layer represents the final CNN output, as illustrated in 

Figure1.12.  

 So, the fully connected layer collects the resulting data from the convolutional and pooling 

layer, analyzes the data from the layers independently and makes the final classification or 

localization decision. [4]. 

 

 

 

 

 

 

 

1.5.2 Unsupervised learning architecture 

In unsupervised learning, the Deep Learning architecture is trained on unlabeled data, 

which means that the input data does not have any associated output or target. The architecture 

uses the structure and patterns in the input data to learn to represent the data in a more compact and 

informative way. 

Examples of unsupervised learning architectures include auto-encoders and generative 

adversarial networks (GANs). These architectures are commonly used for tasks such as data 

compression, feature extraction, and data generation. The following are some of the most important 

reasons for the importance of Unsupervised Learning:  

Unsupervised learning is beneficial for extracting useful insights from data. It is very 

similar to how humans learn to think through their own experiences, making it closer to true AI, it 

operates on unlabeled and uncategorized data, making it more important. In the real world, we do 

  

Figure 1.10: fully connected layer. 

 

 

  

Figure 1.15: fully connected layer. 
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not always have input data with corresponding output, so unsupervised learning is required to solve 

such cases.  

      Overall, the choice of a supervised or unsupervised Deep Learning architecture depends on the 

nature of the task, the type of data available, and the desired outcome [3]. 

1.6 Conclusion 

     As shown above in this chapter we presented a brief approach about Deep Learning, 

which will serve as a foundation for our exploration of object detection. Then, we dealt with the 

fundamental studies of Deep Learning including neural network concepts, how to improve a neural 

network. Also, we covered one of the most commonly used deep neural networks, CNN, and 

provided an overview of each CNN component and layer, from the convolutional layer to the final 

layer known as the fully connected layer (FC). 

All these notions let us proceed towards the next chapters, where we will put them into practice by 

implementing these theoretical concepts, we will gain a better understanding of how deep learning 

architectures work and will be able to build our own deep neural network. 
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This chapter is an overview of the background and main focus of our thesis. The categories 

algorithms of object detection are introduced, the YOLO algorithm and  the evaluation 

metrics are discussed in detail. 
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2.1 Introduction 

       Object detection is a crucial but difficult vision task. It is an essential component of many 

applications, including object tracking, scene understanding, image auto-annotation, and image 

search. Numerous computer vision disciplines had already used it, including intelligent video 

surveillance (Arun Hampapur 2005), artificial intelligence, military guidance, safety detection and 

robot navigation, as well as medical and biological applications.  

       In this chapter of our project, we are interested on object detection. We will explore the primary 

algorithms of object detection, then we go deeply into YOLO object detection algorithm, and 

finally, talk about the evaluation metrics of an object detection model. 

2.2 Object Detection  

Object detection is the field of computer vision that deals with the localization and classification 

of objects contained in an image or video. Object localization, involves detecting one or more objects 

in an image and drawing a bounding box around them, Bounding boxes are used to indicate the 

location of objects within an image it represented by four integers: (𝑥1, 𝑦1) for the upper-left 

corner and (𝑥2, 𝑦2) for the lower-right corner[11] An example of a bounding box can be seen in 

figure 2.1. 

 

 

 

 

 

 

 

 

 Localizing an object in a picture means predicting a bounding box around the object and 

can be expressed as a regression problem. On the other hand, Image classification includes 

identifying an object's class from an image.  

       Once an object is localized, the object detector model predicts the class or category that the 

object belongs to. This is done by considering the pixels within the region of the localized object. 

The model outputs probabilities for each class it is trained to identify. For example, if the model is  

 

Figure 2.1: localizing object. 
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trained to detect men and women, it will provide probabilities for both categories [11]. An example 

of this is shown in figure 2.2 

 

 

 

 

 

 

 

 

These two tasks are combined in object detection, which involves locating and categorizing one or 

more objects in an image.  

2.3 Object detection Algorithms 

       In general, there are two types of object detection algorithms: single stage and two stage [7]. 

Object detection in images and videos is performed using single-stage object detection algorithms, 

also referred to as one-stage detectors. In a single forward pass, these algorithms use a single neural 

network to forecast the bounding boxes and class probabilities for every object in the input image. 

        The method used by single-stage object detection algorithms is to divide the incoming image 

into a grid of cells and forecast the bounding boxes and class probabilities for each cell. The 

network generates a collection of bounding boxes, each of which includes a confidence value and 

a probability distribution over object classes. Then duplicate bounding boxes are removed, leaving 

only the most probable ones, using non-maximum suppression. 

You Only Look Once (YOLO) and SSD (Single Shot Detector) are a couple of well-known single-

stage object detection methods [7]. Even though these algorithms are actually faster than two-stage 

detectors, they may give up some accuracy in order to operate in real-time on low-power devices. 

Numerous applications, including robotics, surveillance, and automated driving, where real-time 

performance is essential, make extensive use of single-stage object detection algorithms. 

     Two-stage object detection algorithms, on the other hand, perform object detection in two 

stages. In the first stage, the algorithm generates region proposals, which are potential object 

 

Figure 2.2: classifying objects. 

 

 

 

Figure 2.4: classifying objects. 
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locations generated by a separate neural network called a region proposal network (RPN). The 

RPN receives an image as input and returns a set of candidate regions, each with a score indicating 

the likelihood of the region containing an object. In the second stage, the region proposals are 

refined and classified into different object categories. This is accomplished through the use of a 

separate network that accepts each region proposal as input and outputs the final bounding box 

coordinates and class probabilities for each object. 

       Fast R-CNN (Region-based Convolutional Neural Network) and Faster R-CNN (Faster 

Region-based Convolutional Neural Network) are the most widely used two-stage object detection 

algorithms [7]. These algorithms are usually more accurate than single-stage detectors, but they are 

slower and require more computation. They are used in high-accuracy applications such as medical 

imaging, satellite imagery, and object recognition in natural scenes. 

On the whole, two-stage object detection algorithms are an effective strategy for object detection 

in images and videos, especially when high accuracy is required but real-time performance is not 

a priority. 

          The algorithm to use is determined by the specific application requirements and constraints. 

In Figure 2.3 presented below, we can observe examples of Object detection Algorithms 

categorized into the two primary types: single-stage and two-stage algorithms for object detection. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3: classification of object detection categories and algorithms. 
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2.3.1 One stage object detection Algorithm  

2.3.1.1 Single Shot Detector (SSD) 

        A single deep neural network is used in the Single Shot Detector (SSD) method to find objects 

in images. In the SSD method, the output space of the bounding boxes is discretized into a 

collection of default boxes with various aspect ratios. The technique scales per feature map location 

after discretization [7]. To naturally handle objects of varying sizes, the Single Shot Detector 

network combines predictions from multiple feature maps with varied resolutions. 

Advantages of SSD:  

• SSD completely eliminates proposal generation and subsequent pixel or feature resampling 

stages and encapsulates all computation in a single network.  

• Easy to train and straightforward to integrate into systems that require a detection 

component.  

SSD has competitive accuracy to methods that utilize an additional object proposal step, and it is 

much faster while providing a unified framework for both training and inference 

2.3.2 Two Stage Object Detection Algorithm   

2.3.2.1   Fast R-CNN  

          Fast Region-Based Convolutional Network Method, also known as Fast R-CNN, is an object 

detection training technique written in Python. This algorithm primarily improves the speed and 

precision of R-CNN and SPPNet while addressing their flaws [7]. 

The benefits of fast R-CNN:  

 

Figure 2.4: SSD single shot detector model. 

 

 

 

Figure 2.6: SSD single shot detector model. 
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• Higher detection quality (mAP) than R-CNN, SPPNet 

• Training is single-stage, using a multi-task loss 

• Training can update all network layers 

• No disk storage is required for feature caching 

 

2.3.2.2 Faster R-CNN    

          R-CNN and Faster R-CNN are both object recognition algorithms. This method makes use 

of the Region Proposal Network (RPN), which is more efficient than R-CNN and Fast R-CNN and 

shares full-image convolutional features with the detection network. Fast R-CNN detects objects 

using high-quality region proposals produced by a Region Proposal Network, which is essentially 

 

Figure 2.5: Fast R-CNN. 

 

 

 

Figure 2.7: Fast R-CNN. 

 

                    

Figure 2.6: Faster R-CNN. 
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a fully convolutional network that concurrently predicts the object bounds and objectness scores at 

each location of the object [7]. 

We will now move on to the most useful algorithm, YOLO (You Only Look Once), which 

will be the main focus of our implementation. Our implementation will cover two variations of the 

algorithm, specifically YOLOv5 and YOLOv8. 

2.4 YOLO (You Only Look Once) 

         You Only Look Once (YOLO) is an algorithm that uses convolutional neural networks for 

object detection, it has gained significant popularity among researchers worldwide as one of the 

most prevalent techniques for object detection. It is a very good choice when we need real-time 

detection, without loss of too much accuracy. 

In our thesis, we will be implementing YOLOv5 and YOLOv8. YOLOv5, introduced by Glenn 

Jocher on June 9, 2020, followed the recent release of YOLOv4 on April 23, 2020. Both YOLOv5 

and YOLOv8 are efficient object detection models that demonstrate exceptional performance in 

real-time image processing. However, YOLOv8 surpasses YOLOv5 in terms of speed, making it 

a preferable option for applications where real-time object detection is crucial. YOLOv8 was 

launched on January 10th, 2023. 

2.4.1    Overview of the YOLOv5 Architecture 

       A detection model contains a Backbone, Neck and Head module. The backbone module 

exploits the essential features of different resolutions, and the neck module fuses the features of 

different resolutions. Finally, multiple head modules perform the detection of objects in different 

resolutions [14]. 

Backbone: A convolutional neural network that extracts features from the given image. Tiny 

YOLO has only 9 convolutional layers, so it’s less accurate but faster and better suited for mobile 

and embedded projects. On the other hand, Darknet53, the backbone utilized in YOLOv3, consists 

of 53 convolutional layers, making it more accurate but slower in terms of computation. In 

YOLOv4, the backbones available include VGG, ResNet, Spine-Net, Efficient-Net, Res-NeXt, or 

Darknet53, providing flexibility in choosing the desired trade-off between accuracy and speed [10]. 

Neck: The feature network receives inputs multiple levels of features from the backbone and 

outputs a list of fused features that represent salient characteristics of the image [10]. 
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Head: The final class/box network employs the fused features to make predictions regarding the 

object's class and location. In simpler terms, locate bounding boxes and classify what’s inside each 

box [10]. 

The figure below represents the architecture of YOLO: 

 

 

 

 

         

 

 

 

 

   

 The YOLOv5 contains 5 models in total. Starting from YOLOv5 nano (smallest and fastest) to 

YOLOv5 extra-large (the largest model)[15].The following is a short description of each of these: 

YOLOv5n: It is a newly introduced Nano model, which is the smallest in the family and meant 

for the edge, IoT devices, and with OpenCV DNN support as well. It is less than 2.5 MB in INT8  

format and around 4 MB in FP32 format. It is ideal for mobile solutions [15].  

YOLOv5s: It is the small model in the family with around 7.2 million parameters and is ideal for 

running inference on the CPU [15]. 

YOLOv5m: This is a medium-sized model with 21.2 million parameters. It is perhaps the best-

suited model for many datasets and training as it provides a good balance between speed and 

accuracy [15]. 

YOLOv5l: It is the large model of the YOLOv5 family with 46.5 million parameters. It is ideal 

for datasets where we need to detect smaller objects [15]. 

YOLOv5x: It is the largest among the five models and has the highest MAP among the 5 as well. 

Although it is slower compared to the others and has 86.7 million parameters [15]. 

Input:{ Image, Patches, Image Pyramid} 

 Backbones: {VGG16 [68], ResNet-50 [26], Darknet53 [81]} 

 Neck: {FPN[44], PANET[26], [47], BI-FPN [77]} 

Heads:Dense Prediction {(one-stage):RPN [64], SSD [50], YOLO [61,62,63], RetinaNet[45], FCOS [78]} 

Sparse Prediction {(two-stage): Faster R-CNN [64], R-FCN [9]} 

Figure 2.7: YOLO Architecture. 
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2.5 Main evaluation metrics  

        Among different annotated datasets used by object detection challenges and the scientific 

community, the most common metric used to measure the accuracy of the detections is the AP. 

Before examining the variations of the AP, we should review some concepts that are shared 

among them. The most basic are the ones defined below:  

• True positive (TP): A correct detection of a ground-truth bounding box. 

 • False positive (FP): An incorrect detection of a nonexistent object or a misplaced detection of an 

existing object. 

 • False negative (FN): An undetected ground-truth bounding box; It is important to note that, in 

the object detection context, a true negative (TN) result does not apply, as there are infinite number 

of bounding boxes that should not be detected within any given image. The above definitions 

require the establishment of what a “correct detection” and an “incorrect detection” are. A common 

way to do so is using the intersection over union (IOU). It is a measurement based on the Jaccard 

Index, a coefficient of similarity for two sets of data [12]. In the object detection scope, the IOU 

measures the overlapping area between the predicted bounding box Bp and the ground-truth 

bounding box Bgt divided by the area of union between them, that is 

J(Bp, Bgt) =  IOU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
                                    (4) 

as illustrated in Figure 2.5 

 

 

 

 

 

Mean Average Precision (MAP) is a performance indicator that is frequently used to rate object 

detection systems. It is an indicator of how effectively the algorithm can locate and identify things 

in an image. Precision and recall values are obtained for each class of object in the dataset in order 

to determine the MAP for object detection. Recall is the percentage of true positive detections out 

of all ground truth objects, whereas precision is the percentage of true positive detections out of all 

 

Figure 2.8: Intersection over union. 

 

 

 

Figure 2.10: Intersection over union. 
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detections. Following that, the MAP is determined by averaging the AP (Average Precision) scores 

obtained from all classes. The area under the precision-recall curve is used to calculate each class's 

AP score. In conclusion, MAP is a measure of an object identification algorithm's performance 

across all classes, accounting for both recall and precision. Better performance is indicated by a 

greater MAP [12]. 

MAP  =  
1

N
∑  APi                                                N

i=1 (5) 

Where APi being the AP in the ith class and N is the total number of classes being evaluated. 

2.6 Conclusion  

           This chapter provided an overview of object detection, a fundamental task in computer 

vision. We explored two main approaches: one-stage and two-stage object detection algorithms. 

The one-stage algorithms, such as SSD and YOLO with particular emphasis on the widely adapted 

YOLO algorithm and the two-stage algorithms, exemplified by Fast R-CNN and Faster R-CNN. 

Additionally, we highlight the key evaluation metrics employed to assess the performance of object 

detection models. 

      In the subsequent chapter, we will shift our focus towards the implementation of the highly 

regarded algorithm known as YOLO. Specifically, we will explore the latest versions, namely 

YOLOv5 and YOLOv8. 
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Abstract 

This chapter focuses on the implementation of various object detection models, namely the 

CNN model, transfer learning, YOLOv5, and YOLOv8. It covers the architecture and 

training process of these models, highlighting their strengths and limitations throughout a 

comparative analysis of the results. 
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3.1 Introduction 

          After gathering all the relevant information and understanding how object detection works, 

this chapter will focus on constructing our Convolutional Neural Network (CNN) to detect objects 

across diverse datasets. We will evaluate its performance using various metrics. Additionally, we 

will explore transfer learning to improve the obtained results.  Also, by retraining YOLOv5n and 

YOLOv8n on our custom datasets, we aim to determine whether employing algorithms with less 

parameters and lower accuracy is truly necessary for our specific datasets, or if it would be more 

advantageous to utilize our proposed architecture. This comparison holds significant importance 

when considering implementation in embedded systems. 

3.2 Software and libraries used in the implementation  

3.2.1 Software 

        In our project we use Google Colab as software tool as it offers the ability of using free GPU, 

here is a brief overview of Google Colab. 

Google Colab (short for Collaboratory) is a Google cloud-based service that allows users to execute 

Python scripts and conduct machine learning tasks on CPUs, GPUs, and TPUs. It employs the 

following techniques: 

• Virtual machines: They are used by Google Colab to execute scripts and carry out 

calculations on the cloud. These virtual machines come preconfigured with a number of 

machine learning libraries and frameworks, including TensorFlow and PyTorch. 

• Jupyter Notebooks: Google Colab is built on Jupyter notebooks, which offer an interactive 

environment for executing code, viewing data, and creating documentation. Users have the 

ability to make, modify, and share notebooks. 

• GPU and TPU Acceleration: Tensor Processing Units (TPUs) and GPU support are 

available in Google Colab to enhance the speed of machine learning operations. As a result, 

it becomes possible to efficiently handle larger datasets and train models more rapidly. 

• Integration with Google Drive: Google Colab is connected with Google Drive, allowing 

users to save and retrieve data and notes from any location. Users may also access their 

data by mounting their Google Drive in Colab. 
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• Collaboration Features: Google Colab's collaboration features allow users to collaborate 

with others by sharing their notebooks and code. Users may also provide comments on code 

and notebooks and collaborate in real time. 

• Code Snippets: Google Colab has a large library of code snippets and examples for easily 

implementing basic machine learning tasks and approaches. 

Overall, Google Colab is a robust and adaptable platform for machine learning and data science, 

with a variety of features and tools to support a wide range of workflows and projects. 

3.2.2 Programming language 

Python was the programming language of choice for our project, particularly in Google 

Colab. Python is widely used in Google Colab and is recognized as a popular high-level 

programming language. It is extensively employed in various domains, including web 

development, data analysis, machine learning, artificial intelligence, and more. 

3.2.3 Frameworks 

• TensorFlow: TensorFlow is an open-source Machine Learning framework created by the 

Google Brain team and was made public in 2015. It enables developers to create, train, and 

deploy Machine Learning models on a variety of platforms. TensorFlow provides a number 

of tools, libraries, and resources for developing and testing Machine Learning models, and 

it covers a wide range of use cases, including image and audio recognition, natural language 

processing, and time series analysis. 

• Keras: is a Python-based open-source high-level neural network API that can operate on 

top of TensorFlow, Microsoft Cognitive Toolkit (CNTK), Theano, or PlaidML. It was 

created by François Chollet, who now works at Google, and was distributed under the 

permissive MIT license. 

• PyTorch: is a Python machine learning package that is open source. It was created largely 

by Facebook's AI Research (FAIR) team to provide a flexible and fast framework for 

creating Deep Learning models. PyTorch supports dynamic computational graphs and 

automated differentiation, allowing developers to quickly create and train neural networks. 



Chapter 3                                                           Models implementation and results of experiments 

28 

 

3.2.4 Libraries 

• OpenCV:  OpenCV (Open Source Computer Vision Library) is a free and open source 

software library for computer vision and Machine Learning.  

• NumPy: NumPy (Numerical Python) is a Python library that supports massive multi-

Dimensional arrays and matrices, as well as a vast number of high-level mathematical 

functions for working with these arrays.  

• Matplolib: Matplotlib is a Python data visualization package that may be used to generate 

static, animated, and interactive displays.  

• Pandas: is an Open-Source data manipulation and analysis package written in Python. It 

includes tools for data cleansing, exploration, and transformation, as well as data structures 

for effectively storing and processing massive datasets. 

3.3  Data 

In order to train and confirm the performance of our CNN mode, we have used a variety of 

datasets. For the purpose of comparison, we retrained YOLOv5 and YOLOv8 using the exact same 

datasets. We have the flexibility to choose from six distinct categories including:  malaria, drone, 

lung cancer, aircraft, breast cancer, brain tumor. 

 

 

 

 

 

 

 

 

 

 

   

Brain Tumor Malaria Drone 

   

Lung Cancer Aircraft Breast Cancer 

Figure 3.1: Dataset. 

 

 

Figure 3.2: Dataset. 
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         The dataset does not have bounding boxes around the objects, we need to add them ourselves. 

This is often one of the hardest and most costly parts of a Deep Learning project. It is a good idea 

to spend time looking for the right tools. 

       Our supervisor provided us with a Brain Tumor dataset, and we utilized the LabelImg tool for 

the annotation of the images. However, the tool generated the annotations in XML format, which 

necessitated the integration of a code snippet to convert them into CSV format.  

         Both Malaria and Aircraft Dataset, were obtained from Roboflow. The images of Malaria had 

black frames, to address this issue, we decided to crop out the black frames from the images. After 

collecting the dataset, the next step was the annotation, which entailed labeling the objects of 

interest in each image by drawing bounding boxes around them. We opted to utilize Roboflow as 

an annotation tool for efficient and accurate annotation tasks. 

          The third dataset, was "Drone" which was obtained from Roboflow along with their 

accompanying CSV file. The dataset was utilized in its original form without any modifications. 

       The Lung Cancer dataset was sourced from Kaggle, and subsequently, Roboflow was 

employed for the annotation process, it is important to note that the dataset is not extensive, 

comprising only 100 images. 

In the table below we represent all the data used in this thesis, it shows the number of samples in 

each dataset that were used for both training and testing. 

Dataset Number of images  Total 

Train Test 

Lung Cancer  80 20 100 

Breast Cancer  100 66 166 

Brain tumor 120 92 212 

Malaria  150 62 213 

Aircraft  200 80 280 

Drone 400 100 500 

 

Table3-1: The number of the dataset used. 
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      After the labeling process, we got the information about the object desired which is typically 

represented by four values: the coordinates of the top-left corner (𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛) and the coordinates 

of the bottom-right corner (𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥) and save them in a CSV (comma-separated values) file. 

This is a sample of the CSV file structure: 

 

 

 

3.4 Convolution Neural Network Implementation 

         To achieve our goal “object detection”: first, we tried to build a convolution neural network 

model, we decided to use Google Colab that allows us to use its free GPU. 

 We experimented with multiple CNN architectures and extensively modified the number 

of layers and filters within each architecture. However, our training process yielded unsatisfactory 

results. After numerous attempts, we eventually settled on the following architecture as our final 

choice: The architecture consists of four Convolutional layers, with Max-pooling applied between 

   

Figure 3.2: Datasets Annotated. 

 

 

 

Figure 3.5: CSV file.   

Figure 3.6: Datasets Annotated. 

  

Figure 3.3: CSV file. 

 

 

Figure 3.7: CSV file. 
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each layer. This is followed by a Fully Connected layer comprising four dense layers. The specific 

size and number of filters can be seen in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.4: CNN Architecture. 
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3.4.1 Training CNN Model  

       Once the CNN architecture was selected, we proceeded to train our model by fine-tuning the 

hyper-parameters, loss function and optimizer. These hyper-parameters include the learning rate, 

number of epochs, batch size, beta1, beta2. By carefully adjusting these parameters, we aimed to 

optimize the performance and convergence of our model during the training process. During the 

training process, we discovered that the size of objects in images can significantly affect their 

detection. For instance, in the Breast Cancer dataset, the cancerous regions were often in their 

initial stages, making them quite small. As a result, our model encountered difficulties in accurately 

localizing these tiny objects. Conversely, in the Aircraft dataset, the objects were significantly 

larger, occupying the majority of the frame. To address this issue, we carefully selected parameters 

that yielded satisfactory results on three different datasets. The summary of these datasets and the 

corresponding parameter choices are presented in the following tables 

3.4.1.1   Result using Malaria Dataset  

 Table 3-2 presents the IOU outcomes acquired from 6 test images Dataset following the training 

of the network for 20, 60 and 100 epochs, respectively. The training employed the Adam optimizer 

with the subsequent parameter settings: learning rate=0.001, beta_1=0.9, beta_2=0.999. 

 

 

Images Number of epochs IOU 

 

1 

20 75 

60 89 

100 58 

 

2 

20 74 

60 84 

100 37 

 

3 

20 62 

60 79 

100 22 

 

4 

20 57 

60 75 

100 16 

 

5 

20 55 

60 69 

100 08 

 

6 

20 50 

60 66 

100 03 
Table3-2: IOU results for Malaria datasets, 6 samples. 

 

 

Images Number of epochs IOU 

 20 75 
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Training curve for 20 epochs Validation curve for 20 epochs 

 

  

 
 

Training curve for 60 epochs Validation curve for 60 epochs 

  

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.5: Malaria preformance metrics . 
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        When working with the Malaria Dataset, we observed that the choice of the number of epochs 

significantly impacted the performance of our CNN model. After experimentation, we determined 

that training the model for 60 epochs was most suitable for this dataset.  

        Considering the size of the dataset, we found that training for 100 epochs led to poor results. 

To validate this finding, we analyzed the performance curves, specifically the loss and validation 

curves. These curves provide valuable insights into the model's learning progress. With 60 epochs, 

we observed a gradual decrease in both the loss and validation curves, indicating that the model 

was effectively learning and generalizing from the data. On the other hand, when training for 100 

epochs, the curves exhibited undesirable behaviors. The loss still decreased , while the validation 

curve showed signs of overfitting or a lack of generalization. 

       Based on these observations, we concluded that training for 60 epochs strikes a balance 

between model performance and dataset size for the Malaria Dataset. It ensures adequate learning 

while avoiding overfitting or poor generalization. 

3.4.1.2 Result using Drone Dataset  

      Table 3-3 and figure 3.7 below presents the results of our IOU and performance metrics during 

the training and validation of our CNN model, respectively using the same hyper-parameters as the 

previous dataset. 

 

 

   

Malaria result 20 epoch Malaria result 60 epoch Malaria result 100 epoch 

Figure 3.6: Malaria training Results. 

 

 

 

 

 

Figure 3.19: Malaria training Results. 
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Images Number of epochs IOU 

 

1 

20 27 

60 76 

100 94 

 

2 

20 21 

60 62 

100 83 

 

3 

20 18 

60 52 

100 80 

 

4 

20 15 

60 43 

100 79 

 

5 

20 10 

60 37 

100 68 

 

6 

20 09 

60 25 

100 67 
 

Table 3-3: IOU results for Drone datasets, 6 samples. 

 

  

Training curve for 20 epochs Validation curve for 20 epochs 
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The figure 3.8 below shows the 3 samples of the outcome using 20, 60 and 100 epochs  

         

 

 

 

 

 

          In this particular case, the dataset consists of 500 images. Through experimentation, we 

found that training the model using 100 epochs yielded superior outcomes compared to using 20 

  

Training curve for 60 epochs Validation curve for 60 epochs 

  

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.7: Drone preformance metrics. 

 

 

  

  

 

 

 

Figure 3.24: Drone preformance metrics. 

 

 

  

  

 

 

   

Drone result 20 epochs Drone result 60 epochs Drone result 100 epochs 

Figure 3.8: Drone training Results. 

 

 

Figure 3.27: Drone training Results. 
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or 60 epochs. Our CNN model exhibited promising results during both the training and validation 

stages, as evidenced by the performance curves. Increasing the number of epochs beyond 100 led 

to a deterioration in the model's performance, indicating overfitting. Therefore, we decided to limit 

the training to 100 epochs to ensure optimal results. 

            It is worth noting that by using more epochs, the model's performance continued to improve 

initially. However, beyond a certain point, the model started to exhibit signs of divergence, 

indicating a loss of generalization capability. This divergence can be attributed to overfitting, where 

the model becomes too specific to the training data and fails to generalize well on unseen data. 

3.4.1.3 Result using Lung Cancer Dataset 

        In a similar manner as we did with the previous dataset, we applied the same process to 

analyze the Lung Cancer dataset. The final results are summarized in Table 3-4, while Figure 3.9 

provides a visual representation of these results. 

Images Number of epochs IOU 

 

1 

20 92 

60 94 

100 91 

 

2 

20 85 

60 89 

100 90 

 

3 

20 80 

60 84 

100 81 

 

4 

20 79 

60 79 

100 84 

 

5 

20 73 

60 75 

100 82 

 

6 

20 69 

60 74 

100 80 

Table3-4: IOU results for Lung Cancer datasets, 6 samples. 
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Training curve for 60 epochs Validation curve for 60 epochs 

 
 

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.9: Lung Cancer performance metrics. 

 

 

  

 

 

Figure 3.28: Lung Cancer performance metrics. 

 

 

  

Training curve for 20 epochs Validation curve for 20 epochs 

 

 

  

Training curve for 20 epochs Validation curve for 20 epochs 
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During our experimentation, we noticed that our model achieved exceptional performance 

and accuracy compared to previous datasets, despite the relatively small size of the dataset. One 

of the primary reasons for this success lies in the inherent similarity of the objects depicted within 

the images. The high degree of resemblance among the objects facilitated the learning process for 

our model, enabling it to effectively recognize and detect these objects with greater ease and 

precision. Additionally, we conducted various adjustments to the number of epochs during 

training, further optimizing the model's performance. These findings highlight the advantages of 

employing a dataset where the objects exhibit a strong visual resemblance, leading to improved 

learning outcomes and enhanced detection capabilities.                      

3.5  Transfer Learning Implementation  

        To improve the performance of our model on the object detection target we used the transfer 

learning that is a pre-trained model on large scale dataset and we chose the ResNet. 

First, we load the ResNet 50 model with pre-trained weights from the “ImageNet” dataset and 

frozen them, then we build our new model where: 

• The ResNet 50 model was added as the first layer  

• Global Average Pooling2D layer added as second layer, which reduces the spatial 

dimensions of the features and calculates the average value for each feature MAP 

• Two dences layers are added with 64 and 32 units respectively, both using ReLu activation 

function. 

• Finally, a dense layer with 4 units is added, representing the output layer. 

   

Lung Cancer result 20 

epochs 

Lung Cancer result 60 

epochs 

Lung Cancer result 100 

epochs 

Figure 3.10: Lung Cancer training results. 
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3.5.1 Result interpretation ResNet model  

          After implementing ResNet, we noticed significant improvements in the performance 

metrics of our model. The loss and validation Mean Squared Error (MSE) decreased across all 

types of data, indicating enhanced performance. Furthermore, we were able to effectively reduce 

overfitting, resulting in increased values of Intersection over Union (IOU). The figure provided 

below illustrates the performance of our model following training with ResNet. 

 

Figure 3.11: ResNet50 Architecture. 
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3.5.1.1 Result using Malaria Dataset   

The following Table 3-5 represents the IOU results for Malaria datasets using ResNet50 

we took 6 test samples, The training employed the Adam optimizer with the subsequent 

parameter settings: learning rate=0.001, beta_1=0.9, beta_2=0.999. We trained our model with 

deferent number of epochs 20, 60 and 100.  

The Figure 3.12 below shows the performance metrics during the training and validation 

of our ResNet Model.              

Images Number of epochs IOU 

 

1 

20 74 

60 70 

100 66 

 

2 

20 69 

60 69 

100 65 

 

3 

20 66 

60 64 

100 64 

 

4 

20 55 

60 61 

100 62 

 

5 

20 49 

60 58 

100 60 

 

6 

20 33 

60 53 

100 58 

 

Table 3-5 : IOU results for Malaria datasets using ResNet50, 6 samples. 

 

 

 

Images Number of epochs IOU 

 

1 

20 74 

60 70 

100 66 

 

2 

20 69 

60 69 

100 65 

 

3 

20 66 

60 64 
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Training curve for 20 epochs Validation curve for 20 epochs 

  

  

Training curve for 60 epochs Validation curve for 60 epochs 

 
 

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.12: Malaria performance metrics using ResNet50. 

 

 

 

Figure 3.32: Malaria performance metrics using ResNet50. 
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      When implementing the ResNet architecture, we found that training for 60 epochs yielded 

superior detection results and produced smoother loss and validation curves. Despite conducting 

experiments with both 20 and 100 epochs, the outcomes remained acceptable in terms of 

performance and accuracy.  

3.5.1.2 Result using Drone Dataset   

       The Table 3-6 and the figure 3.13 shows IOU and the performance metrics curve respectivly 

using our ResNet Model. 

Images Number of epochs IOU 

 

1 

20 53 

60 68 

100 71 

 

2 

20 49 

60 66 

100 70 

 

3 

20 47 

60 65 

100 67 

 

4 

20 34 

60 64 

100 63 

 

5 

20 30 

60 63 

100 61 

 

6 

20 24 

60 60 

100 62 

Table 3-6: IOU results for Drone datasets using ResNet50, 6 samples. 

 

 

 

 

 

Images Number of epochs IOU 

 

1 

20 53 

60 68 

100 71 
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       Upon applying the ResNet technique to our model, we noticed that the worst outcome was 

obtained with only 20 epochs. However, as we increased the number of epochs, we observed a 

significant improvement in the results. 

  

Training curve for 20 epochs Validation curve for 20 epochs 

  

Training curve for 60 epochs Validation curve for 60 epochs 

  

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.13: Drone performance metrics. 

 

 

Figure 3.33: Drone performance metrics. 

 



Chapter 3                                                           Models implementation and results of experiments 

45 

 

3.5.1.3 Result using Lung Cancer Dataset   

Table 3-7 and the figure 3.14 bellow provides the results using the Lung Cancer Dataset   

 

       As we saw when we implemented the CNN Model, we observed that the desired object in 

the Lung Cancer Dataset appeared consistently similar across all the images. As a result, we 

achieved excellent performance with 20, 60, and 100 epochs using ResNet. 

 

Images Number of epochs IOU 

 

1 

20 96 

60 68 

100 87 

 

2 

20 89 

60 89 

100 86 

 

3 

20 84 

60 84 

100 83 

 

4 

20 82 

60 83 

100 81 

 

5 

20 80 

60 82 

100 75 

 

6 

20 79 

60 78 

100 70 

 

Table3-7: IOU results for Lung Cancer datasets using ResNet50, 6 samples. 

 

 

 

Images Number of epochs IOU 

 

1 

20 96 

60 68 

100 87 

 

2 

20 89 

60 89 

100 86 

 

3 

20 84 

60 84 

100 83 

 

4 

20 82 

60 83 

100 81 

 20 80 
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Training curve for 20 epochs Validation curve for 20 epochs 

  

Training curve for 60 epochs Validation curve for 60 epochs 

  

Training curve for 100 epochs Validation curve for 100 epochs 

Figure 3.14: Lung Cancer performance metrics. 

 

 

Figure 3.34: Lung Cancer performance metrics. 
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3.6 Comparative Analysis between the Results of CNN and ResNet Architecture 

           After implementing ResNet, we noticed significant improvements compared to our CNN 

model in terms of performance metrics. The loss and validation Mean Squared Error (MSE) 

decreased for all types of data, indicating enhanced performance. Furthermore, we were able to 

effectively reduce overfitting. The Table 3-8 below provide the total number of parameters using 

CNN and ResNet models. 

 

 

 

 

 

These two architectures produced IOU values ranging from 60 to 95, which is generally 

considered acceptable in the majority of cases. However, the number of parameters is big if our 

goal is to implement it in an embedded system. developing a model that has a lower number of 

parameters and at the same time gives high IOU is a real challenge, such models require powerful 

hardware, ample data, and a development team. The YOLO developers have successfully created 

multiple versions, and model names including YOLO-N(Nano), YOLO-S(Small), YOLO-

M(Medium), YOLO-L(Large) and YOLO-X(X-large).  

Next, we will implement the nano YoloV5 and nano YoloV8, the term “nano” stands for 

the low number of parameters.  

3.7 YOLO implementation  

       After evaluating CNN and ResNet architectures, we decided to switch to YOLO due to its 

superior performance and extensive training on a large dataset. We implemented both YOLOv5 

and the latest version, YOLOv8 (launched on January 10th, 2023), and conducted a thorough 

comparison between them.  

Models Total Params 

CNN 22,759,846 

ResNet 23,721,060 

Table3-8: Total Parameters of ResNet and CNN models. 

 

 

Models Total Params 

CNN 22,759,846 

ResNet 23,721,060 

Table3-8: Total Parameters of ResNet and CNN models. 
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3.7.1 The difference between YOLOv5 and YOLOv8 

         When it comes to object detection, there are numerous models to choose from. Among them, 

YOLOv8 and YOLOv5 stand out as two highly popular and state-of-the-art models developed by 

Ultralytics. In our thesis, we will concentrate on the nano variants of these two versions, which can 

be effectively deployed on embedded systems. YOLOv8, the latest addition to the YOLO family, 

builds upon the success of previous versions and introduces new features and enhancements to 

improve performance and flexibility. On the other hand, YOLOv5 is celebrated for its speed, 

simplicity, and accuracy. 

        When selecting the optimal object detection model, several factors come into play. These 

factors encompass speed, accuracy and ease of use. In terms of speed, both YOLOv8 and YOLOv5 

exhibit fast processing capabilities, with YOLOv8 being notably faster (as shown in Table 3-9), 

making it suitable for real-time object detection applications. In terms of accuracy, YOLOv8 

outperforms YOLOv5 due to architectural enhancements. As for ease of use, both models are easy 

to use, but YOLOv5, built on the PyTorch framework, offers the easiest integration and deployment 

for developers [13]. 

 

3.7.2 YOLOv5 results 

We used TensorBoard for plotting graphs of training loss, Recall, precession and MAP metrics, 

where TensorBoard is web-based visualization tool provided by TensorFlow, a popular Deep 

Learning framework. It is used for visualizing and analyzing various aspects of Machine Learning 

Models performances.  

 

 

Models Params 

(Million) 

Accuracy 

(mAP) 

CPU 

Time(ms) 

GPU 

Time(ms) 

YOLOv5n 1.9 45.7 45 6.3 

YOLOv8n 3.2 37.3 8.4 0.99 

Table3-9: Total Parameters of YOLOv5n and YOLOv8n models. 

 

 

Models Params 

(Million) 

Accuracy 

(mAP) 

CPU 

Time(ms) 

GPU 

Time(ms) 

YOLOv5n 1.9 45.7 45 6.3 

YOLOv8n 3.2 37.3 8.4 0.99 

Table3-9: Total Parameters of YOLOv5n and YOLOv8n models. 

 



Chapter 3                                                           Models implementation and results of experiments 

49 

 

• Malaria Dataset 

 

 

 

 

 

 

 

 

Figure 3.16 represents the plots of the loss and MAP metrics during training of YOLOv5 on 

Malaria Dataset. 

 

  

Figure 3.16: MAP and loss plots after training the YOLOv5 Nano on the Malaria detection Dataset. 

 

 

 

Figure 3.36: MAP and loss plots after training the YOLOv5 Nano on the Malaria detection Dataset. 

 

 

  

Figure 3.15: Malaria detection using YOLOv5. 

 

 

  

Figure 3.35: Malaria detection using YOLOv5. 

 



Chapter 3                                                           Models implementation and results of experiments 

50 

 

Figure 3.17 below shows the precision and Recall graphs during the training of Malaria Dataset 

using YOLOv5. 

• Drone Dataset: 

 

 

 

 

 

 

 

 

 

The Results of the loss, MAP, Recall and precision of YOLOv5 training on Drone Dataset are 

shown on the figure 3.19 and figure 3.20 below. 

  

Figure 3.18: Drone detection using YOLOv5. 

 

 

  

Figure 3.40: Drone detection using YOLOv5. 

 

  

Figure 3.17:Precision and Recall plots after training the YOLOv5 Nano on the Malaria detection Dataset. 

 

 

Figure 3.37:Precision and l Recall plots after training the YOLOv5 Nano on the Malaria detection Dataset. 
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Figure 3.19: MAP and loss plots after training the YOLOv5 Nano on the Drone detection Dataset. 

 

 

 

  

Loss plot MAP plot 

Figure 3.42: MAP and loss plots after training the YOLOv5 Nano on the Drone detection Dataset. 

 

 

  

Figure 3.41: Precision and l Recall plots after training the YOLOv5 Nano on the Drone detection Dataset. 
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• Lung Cancer Dataset  

 

 

 

 

                                    

 

 

For the Lung Cancer Dataset the training  results are provided in the following figures . 

  

Figure 3.20: Lung Cancer detection using YOLOv5n. 

 

 

 

 

  

Figure 3.48: Lung Cancer detection using YOLOv5n. 

 

 

 

  

Figure 3.21:  MAP and loss plots after training the YOLOv5 Nano on the Lung Cancer detection Dataset. 

 

 

 

  

Loss plot MAP plot 

Figure 3.49:  MAP and loss plots after training the YOLOv5 Nano on the Lung Cancer detection Dataset. 
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3.7.3 YOLOv8 results  

Now we move to the results of the YOLOv8 implementation on our customized Datasets. 

• Malaria Dataset 

 

 

 

 

 

 

 

 

 

  

          Figure 3.23: Malaria detection using YOLOv8. 

 

 

 

  

 

 
 

          Figure 3.22: Precision and l Recall plots after training the YOLOv5 Nano on the Lung Cancer detection Dataset. 

 

 

  

 Precision plot Recall plot 

Figure 3.50: Precision and l Recall plots after training the YOLOv5 Nano on the Lung Cancer detection Dataset. 

 



Chapter 3                                                           Models implementation and results of experiments 

54 

 

The following figures illustrate the outcomes of the YOLOv8 implementation on Malaria 

Dataset. 

        

 

 

 

 

 
 

Figure 3.25: MAP and loss plots after training the YOLOv8 Nano on the Malaria detection Dataset. 

 

 

  

 
 

Figure 3.24: Precision and Recall plots after training the YOLOv8 Nano on the Malaria detection Dataset. 

 

 

Figure 3.54: MAP and loss plots after training the YOLOv8 Nano on the Malaria detection Dataset. 
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• Drone Dataset 

 

 

 

 

 

 

 

 

 

 

The provided figures showcase the results obtained from the implementation of YOLOv8 on the 

Drone Dataset. 

 

 

 

 

 

  

     Figure 3.26: Drone detection using YOLOv8. 

 

 

 

  

 

 

  

     Figure 3.55: Drone detection using YOLOv8. 

 

 

 

  

 

 
 

Figure 3.27: MAP and loss plots after training the YOLOv8 Nano on the Drone detection Dataset. 

 

 

Figure 3.56: MAP and loss plots after training the YOLOv8 Nano on the Drone detection Dataset. 
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• Lung Cancer Dataset  

 

 

 

 

 

 

 

 

 

  

Figure 3.28: Precision and Recall plots after training the YOLOv8 Nano on the Drone detection Dataset. 

 

 

  

 Precision plot Recall plot 

Figure 3.57: Precision and l Recall plots after training the YOLOv8 Nano on the Drone detection Dataset. 

 

  

                     Figure 3.29: Lung Cancer detection using YOLOv8. 

 

 

 

  

 

 

         Figure 3.58: Lung Cancer detection using YOLOv8. 
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The performance metrics for loss, Mean Average Precision (MAP), recall, and precision of 

YOLOv8 training on the Lung Cancer Dataset are depicted in figures 3.30 and 3.31. 

  

3.7.4 YOLOv5 and YOLOv8 Results Interpretation  

        With only 1.9 million and 3.2 million parameters, the YOLOv5n and YOLOv8n models 

proved to be effective compared to the CNN model, which had 23 million parameters.  They 

showed low loss values, high MAP scores, and accurate object detection performance with 

impressive recall and AP values.   

  

 Figure 3.30: MAP and loss plots after training the YOLOv8 Nano on the Lung Cancer detection Dataset. 

 

 

  

Loss plot MAP plot 

 Figure 3.63: MAP and loss plots after training the YOLOv8 Nano on the Lung Cancer detection Dataset. 

 

 

 

Figure 3.31: Precision and Recall plots after training the YOLOv8 Nano on the Lung Cancer detection Dataset. 

 

 

  

 Precision plot Recall plot 



Chapter 3                                                           Models implementation and results of experiments 

58 

 

      We have done our comparison with the same Datasets on both, YOLOv5n and YOLOv8n and 

same hyper-parameters, we train them with 100 epochs. Images size is 300 𝑥 300 which was 

previously rescaled.   

       The loss metric serves as a measure of the model's ability to effectively reduce the disparity 

between the predicted bounding boxes and the ground truth annotations throughout the training 

process. As we monitored the model's progress, in both YOLOv5n and YOLOv8n we observed a 

gradual decline in the loss values. This decline indicates that the model became increasingly adept 

at accurately predicting the bounding boxes, aligning more closely with the ground truth 

annotations over time. The diminishing loss values signify the model's improved capability to 

minimize the deviation between predicted and actual object locations, ultimately leading to 

enhanced object detection performance. 

         MAP (Mean Average Precision) serves as a widely adopted metric in object detection, 

providing an assessment of the precision and recall trade-off across various object categories as we 

mentioned in the chapter 2. Throughout the training of YOLOv5n and YOLOv8n, we closely 

monitored the progress and noticed a consistent increase in MAP scores. This upward trend in 

MAP values signifies notable improvements in detection performance across the complete. 

Spectrum of object classes. Higher MAP scores indicate that the models achieved a more balanced 

combination of precision and recall, resulting in enhanced accuracy and reliability in identifying 

objects of diverse categories. This overall advancement in MAP highlights the effectiveness of 

YOLOv5n and YOLOv8n in capturing a wide range of objects with increased precision and recall 

compared to earlier stages of training. 

3.8 Conclusion 

        In this chapter we present the steps that we passed through to choose the appropriate dataset 

which is represented by the Lung cancer, Malaria and Drone datasets. Once we identified the 

suitable dataset, we proceed to construct our CNN model, to further enhance the capabilities of our 

model we explore the concept of transfer learning by leveraging a pre-trained ResNet Network. In 

addition to the CNN model, we also investigate the performance of two prominent object detection 

algorithms YOLOv5n and YOLOv8n and we compared the results.  
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      In this implementation we achieved our goal to find the suitable object detection model with 

high speed and accuracy. For us the YOLOv8n was the best and accurate for object detection tasks, 

on the other hand the CNN model was also effective but it’s hard to build an appropriate 

architecture with customized dataset.  

 

 

 



 

   

 

Conclusion 

       We have made significant advancements since the first chapter, successfully achieving our 

objective of object detection. 

      We implement our model on multiple datasets in various fields such as healthcare, the military 

security by detection military aircraft in the national airspace and Drone detection for save the 

National Internal Security from Espionage. We look forward to utilization of these technologies by 

the government in order to keep pace with advancement taking place in the world. 

    To recap, in our theoretical part, we tried to understand the problem that is inserted in our theme 

and finding appropriate ways to solve. In the other hand, our practical part contains the methods that 

are used for object detection implementation, among the techniques used we found that the efficient 

in aspect of Accuracy, speed, real time detection was the YOLO but according to the used version, 

for instance we implement YOLOv5n and YOLOv8n we conclude that eightieth version was the 

best for us. 

     This project has introduced us to a vast world, which is artificial intelligence, we have learned 

new things such as python as programing language, mastered Google Colab, and the fundamental 

principle of Deep Learning.     
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Abstract 

The thesis focused on implementing and enhancing object detection techniques using computer 

vision. Two main strategies were explored: Convolutional Neural Networks (CNN) and the You 

Only Look Once (YOLO) approach. The study began by examining the fundamentals of neural 

networks to gain a better understanding of object detection mechanisms. A custom CNN architecture 

was then developed and implemented to suit the specific datasets. Additionally, the performance of 

the proposed model was compared to YOLO through the implementation of YOLOv5 and YOLOv8. 

This allowed for the evaluation of the effectiveness of the custom approach and analysis of the 

results obtained from the different models. 

Keywords: YOLOv5, YOLOv8, Convolutional Neural Network, computer vision, neural network, 

artificial intelligence (AI) 

Résumé 

La thèse se concentrait sur la mise en œuvre et l'amélioration des techniques de détection d'objets 

utilisant la vision par ordinateur. Deux stratégies principales ont été explorées : les réseaux 

neuronaux convolutifs (CNN) et l'approche You Only Look Once (YOLO). L'étude a commencé 

par examiner les fondamentaux des réseaux neuronaux pour mieux comprendre les mécanismes de 

détection d'objets. Une architecture CNN personnalisée a ensuite été développée et mise en œuvre 

pour s'adapter aux ensembles de données spécifiques. De plus, les performances du modèle proposé 

ont été comparées à celles de YOLO grâce à la mise en œuvre de YOLOv5 et YOLOv8. Cela a 

permis d'évaluer l'efficacité de l'approche personnalisée et d'analyser les résultats obtenus à partir 

des différents modèles. 

Mots-clés : YOLOv5, YOLOv8, Réseau de neurones convolutionnels, vision par ordinateur, 

l'intelligence artificielle (IA) 

 ملخص

،  YOLOواحده من التطبيقات الرئيسية لرؤيه الكمبيوتر هو الكشف عن الاشياء. هذه الأطروحة تناولت تقنيتين متمثلتين في

، حيث قمنا بتطوير شبكتنا العصبية على مجموعه البيانات الخاصة بنا. بعد ذلك قمنا بمقارنه هذا النموذج المقترح لدينا من CNNو

 .، سمح لنا هذا بتقييم فعالية نموذجنا وتحليل النتائج المتحصل عليهاYOLOv8و  YOLOv5خلال تنفيذ كل من

.YOLOv8 ،YOLOv5، :الشبكة العصبية العميقة، الرؤية الحاسوبية، الذكاء الاصطناعي الكلمات المفتاحية  

 


