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Abstract

In today's digital era, the ubiquity of sensors and interconnected devices has ushered in the age
of pervasive computing. Pervasive computing envisions a future where computation integrates into
our daily lives, creating intelligent and adaptive environments. Central to this vision is the
transformative role of deep learning, a subset of machine learning powered by artificial neural
networks. This study delves into the profound synergy between deep learning and pervasive
computing systems. It explores how deep learning techniques are harnessed to enable
interconnected devices and sensors to learn, adapt, and enhance user experiences. The research
covers fundamental concepts, applications, and implications, shedding light on the dynamic
evolution of pervasive computing. With a focus on efficiency, privacy, and ethical considerations,
this work exemplifies the potential of deep learning to revolutionize industries and improve the

quality of our technologically enriched lives.

Keywords: Pervasive Computing System, Ubiquitous Computing System, Human Activity
Recognition (HAR), Smartphone Sensors, Deep Learning (DL), Convolutional Neural Network
(CNN), Long-Short Term Memory (LSTM)



Résumé

A I’ére numérique d’aujourd’hui, I’omniprésence des capteurs et des appareils interconnectés
a inauguré 1’¢re de I’informatique omniprésente. L’informatique omniprésente envisage un avenir
ou le calcul s’intégre dans notre vie quotidienne, créant des environnements intelligents et
adaptatifs. Au cceur de cette vision se trouve le role transformateur de I’apprentissage profond, un
sous-ensemble de 1’apprentissage automatique alimenté par des réseaux de neurones artificiels.
Cette ¢tude explore la synergie profonde entre [’apprentissage profond et les systémes
informatiques omniprésents. 1l explore comment les techniques d’apprentissage profond sont
exploitées pour permettre aux appareils et capteurs interconnectés d’apprendre, de s’adapter et
d’améliorer les expériences utilisateur. La recherche couvre les concepts fondamentaux, les
applications et les implications, mettant en lumiére 1’évolution dynamique de I’informatique
omniprésente. En mettant I’accent sur I’efficacité, la confidentialité et les considérations éthiques,
ce travail illustre le potentiel de 1’apprentissage profond pour révolutionner les industries et

ameliorer la qualité de nos vies technologiquement enrichies.

Mots-clés : systeme informatique omniprésent, reconnaissance de l'activité humaine (HAR),
capteurs de smartphone, apprentissage en profondeur (DL), réseau de neurones convolutifs (CNN),

mémoire a long court terme (LSTM)
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General Introduction

Pervasive computing, also known as ubiquitous computing, is a concept where technology
seamlessly integrates into our daily lives. It involves interconnected devices that are embedded in
objects, environments, and even our bodies. These devices gather and exchange data to provide
services and enhance efficiency. The goal is to create an environment where technology adapts to
human needs, blending into the background and supporting our activities. Pervasive computing
has applications in various domains, including healthcare, transportation, entertainment, and
education. However, privacy, security, and ethical concerns need to be addressed. Ultimately,
pervasive computing envisions a world where technology is ubiquitous, making our environments

"smart™ and responsive to our needs.

1.1. Context & Problematic

In the contemporary digital landscape, we find ourselves immersed in a world where
technology permeates every aspect of our lives. This phenomenon is at the heart of pervasive
computing, a paradigm shift that envisions a future where computation and data processing are
seamlessly integrated into our daily routines. Pervasive computing, strives to create intelligent
environments where technology becomes a natural and unobtrusive part of our surroundings. It is
in this context that we embark on a journey to explore the profound connection between deep

learning and pervasive computing systems.

Pervasive computing extends its reach across various domains, including the Internet of Things
(10T), Smart Homes, Smart Cities, and beyond. 10T devices, sensors, and interconnected systems
form the fabric of these intelligent ecosystems, collecting data, processing information, and
facilitating automation. The potential applications are boundless, from enhancing healthcare and
optimizing transportation to improving energy efficiency and making cities more livable.
However, the proliferation of pervasive computing systems also raises significant concerns

regarding privacy, security, and ethical implications.
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Implementing deep learning in pervasive computing systems poses several challenges. One of
the main difficulties is the limited computational resources available on these systems. Pervasive
computing devices are often small and have low processing power, which can make it difficult to
run complex deep learning algorithms. Another challenge is the need for real-time processing, as
many pervasive computing applications require immediate responses. This can be difficult to

achieve with deep learning algorithms that often require significant computation time.

Another challenge is the lack of labeled data. Deep learning algorithms require large amounts
of labeled data to train effectively, but obtaining this data can be difficult for pervasive computing
systems. Additionally, the data collected by these systems may be noisy or incomplete, which can
further complicate the training process. Finally, there are ethical considerations to take into account
when implementing deep learning in pervasive computing systems, such as privacy concerns and
potential biases in the algorithms, in our work we concentrated on the sensors part of the pervasive
computing system and the issues related to it from privacy and on the algorithmic biases to the

ethical considerations.

1.2. Objectives

This dissertation's core objective is to delve into the realm of deep learning and its profound
impact on pervasive computing systems. With a specific focus on Human Activity Recognition
(HAR), we aim to harness the power of deep learning to enhance the accuracy and ethical

considerations of HAR in these pervasive systems.

1.3. Methodology and results

Methodology:

1. Data Collection: we collected data from various sensors, such as accelerometer,
gyroscope and magnetometer. The data collection process was done by Shoaib,
Muhammad, “Human Activity Recognition Using Heterogeneous Sensors" “Appears in

the Adjunct Proceedings of UbiComp 2013.
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2. Feature Extraction: Researchers (Shoaib, Muhammad) applied signal processing
techniques to extract relevant features from the collected sensor data.

3. Algorithm Development: The algorithms that we used include deep learning models
which are convolutional neural networks (CNN), Long short-term memory network
(LSTM).

4. Training and Evaluation: The developed algorithms are trained using labeled datasets
where human activities are manually annotated. We used train-test split dataset for
evaluation. Finally, we used performance metrics such as accuracy and confusion matrix,

precision to assess the algorithm's effectiveness.

Results:

1. Activity Recognition Accuracy: The primary result is the accuracy achieved by the HAR
system in recognizing human activities. This metric represents the system's ability to
correctly identify different activities based on the sensor data. Higher accuracy indicates
better performance.

2. Confusion Matrix: Illustrates the system's performance in classifying activities. It shows
the number of correct and incorrect predictions for each activity class, giving insights into
specific recognition errors or misclassifications.

3. Comparative Analysis: We compare the proposed HAR algorithms with existing methods
or benchmarks. This analysis demonstrates the strengths and limitations of the proposed
approach, highlighting its performance improvements or novel features.

4. Graphical User Interface Performance: The graphical user interface performance
application of the HAR system is also an important aspect. It measures the system's

ability to detect and recognize activities in an accurate manner.
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1.4. Report outlines

This report is structured into several chapters, each serving a specific purpose and contributing

to the overall understanding of the project. The outline of the report is as follows:
Chapter 01: Deep Learning: Application to Pervasive computing System

e Introduces the theme.
e Presents the definitions of the fundamental concepts
e Presents the concepts and the models

e Defines the relation between them
Chapter 02: State of art

e Surveys existing literature and research related Pervasive computing applications and
deep learning.
e Discusses relevant concepts, techniques, and models.

e Highlights gaps and opportunities in the field.
Chapter 03: Methodology and Architecture

e Describes the data collection process.
e Details data preprocessing steps.
e Explains the architecture and training and validation of the Human Activity

Recognition model.
Chapter 04: Results and Discussion

e Provides an analysis of the experimental results.
e Discusses the performance of the model.

e Visualizes the results using plots and graphs.
Chapter 05: General Conclusion

e Summarizes the contributions of the project.

XVii



e Critiques the work by acknowledging limitations.

e Identifies future work and perspectives for further research.
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Chapter 01: Deep Learning: Application to Pervasive

computing System

1.1. Introduction

The evolution of technology has witnessed a transformative shift towards pervasive computing
systems (Miorandi, 2012). In this chapter, we embark on a journey into the monarchy of deep
learning and its key role in pervasive computing systems (LeCun, Deep learning, 2015). Our
exploration revolves around the integration of deep learning techniques within the pervasive
computing landscape (Chen M. G., 2014). Here, we lay the foundation for understanding how deep
learning empowers pervasive computing to achieve the potential of interconnected devices and
sensors (Atzori, 2010).

Furthermore, we will unravel and clarify the fundamental concepts that underpin our study
(Deng, 2012). These conceptual definitions are essential to grasp the intricate relationship between
deep learning and pervasive computing, setting the stage for a comprehensive exploration of their
applications and implications (Song, 2017).

1.2. Definition of the concept deep learning

Deep learning is a subset of machine learning that uses artificial neural networks to learn from
data (Goodfellow, 2016). Unlike traditional machine learning techniques, which require humans
to manually engineer features, deep learning algorithms can automatically extract relevant features
from raw data (Schmidhuber, Deep learning in neural networks: An overview, 2015). This makes
deep learning particularly well-suited for tasks such as image and speech recognition (Krizhevsky,
2012).

To illustrate the concept of deep learning, consider the example of a self-driving car.
Traditional machine learning techniques might require engineers to manually program the car to
recognize different objects on the road, such as stop signs or pedestrians. With deep learning,

however, the car can be trained on large datasets of images and videos, allowing it to automatically

1



learn to recognize these objects without explicit programming (Bojarski M. D., End to end learning

for self-driving cars, 2016).

1.3. Importance of deep learning

Deep learning is revolutionizing the way we approach pervasive computing systems (LeCun,
Deep learning, 2015). By using complex algorithms to analyze vast amounts of data, deep learning
enables us to make more accurate predictions and better decisions than ever before (Hinton, 2012).

In fact, recent studies have shown that deep learning can improve accuracy rates by up to 30%
compared to traditional machine learning techniques (Esteva, Dermatologist-level classification of
skin cancer with deep neural networks., 2017). This has huge implications for industries such as
healthcare, transportation, and agriculture, where even small improvements in accuracy can have
a significant impact on outcomes (Bojarski M. D., 2016) (Dhaliwal, 2020). It's better than any

substitute mankind has ever known.

1.4. Pervasive computing systems

Pervasive computing systems, as mentioned before, refer to the integration of technology into
everyday life (Weiser, 1991). These systems are characterized by their ability to effortlessly
connect devices and services, creating a network that is constantly available and accessible

(Satyanarayanan, 2001).

Examples of pervasive computing systems include smart homes, wearable devices, and
internet-connected vehicles (Cook, 2007) (Bonato, 2010). These systems enable users to control
various aspects of their environment, such as temperature, lighting, and security, using their
smartphones or other devices. They also allow for the collection and analysis of data, which can

be used to improve efficiency and enhance the user experience, and that's the main goal.
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Figure 1 Functioning of pervasive computing

1.5. Deep Learning and Pervasive Computing Systems

Deep learning has the potential to develop pervasive computing systems by enabling them to
learn from their environment and adapt accordingly (Schmidhuber, Deep learning, 2015). For
example, a smart home equipped with deep learning algorithms can learn its occupants' preferences
and adjust the temperature, lighting, and music accordingly, which will increase the comfort and
satisfaction of the user (Chen M. H., 2018).

In addition, deep learning can improve the accuracy of predictions and decision-making in
various industries, such as healthcare and transportation. For instance, deep learning algorithms
can analyze medical images and identify potential health risks (Esteva, Dermatologist-level
classification of skin cancer with deep neural networks, 2017), or predict traffic patterns and
optimize routes for autonomous vehicles (Bojarski M. D., End to end learning for self-driving cars,

2016). This potential for accuracy improvement can result in significant success in these fields.



1.6. Deep Learning methods

DL is a subset of machine learning that uses artificial neural networks to learn and make decisions
from large volumes of data. Unlike traditional machine learning methods, deep learning models can
automatically identify patterns and features in raw data without explicit programming (Géron, 2019), it
is one of the leading technologies for automated learning and pervasive computing.

SUPERVISED LEARNING vs SEMI-SUPERVISED LEARNING vs
UNSUPERVISED LEARNING

Training data

Supervised learning All data is labeled

Small portion of data is
labeled

Semi-supervised
learning

Lots of data is unlabeled

Unsupervised

learning All data is unlabeled

Q altexsoft
Figure 2 Main Methods of DL

It has established itself and is rapidly developing as one of the most important scientific fields. It is
characterized by a neural network, which contains many hidden layers composed of thousands of
neurons that each perform small, simple operations. The results of a first layer of neurons are used as
input for the calculations of a second layer and so on. There’re 3 main types of DL methods that are
shown in the figure 4 above.

1.6.1. Supervised learning

Supervised learning is a type of machine learning where an algorithm learns from labeled
training data to make predictions or decisions without human intervention. It involves training a
model on a known dataset, where the input and the corresponding correct output are provided
(Alpaydin, 2014).



Our works is pinned under the Supervised learning segment.

1.6.2. Unsupervised learning

Unsupervised learning is a type of machine learning where the algorithm is given a dataset
without any specific instructions on what to do with it. The goal is to find hidden patterns,
structures, or relationships within the data. Unlike supervised learning, there are no labeled outputs

or correct answers provided during the training process (Bishop, 2006)

1.6.3. Semi-supervised learning

Semi-supervised learning is a machine learning paradigm that combines elements of both
supervised and unsupervised learning. In semi-supervised learning, the algorithm is trained on a
dataset that contains both labeled and unlabeled data. The goal is to leverage the limited labeled
data and the abundance of unlabeled data to improve the model's performance, making it more

accurate and robust

1.7. Deep Learning Algorithms for Pervasive Computing Systems

There are several deep learning algorithms that can be used in pervasive computing systems,

each with its own unique advantages and applications.

1.7.1. Fully Connected Neural Network (FCNN)

Fully connected neural networks (FCNNs) are a type of artificial neural network where the
architecture is such that all the nodes, or neurons, in one layer are connected to the neurons in the

next layer.

Figure 3 the architecture of FCNN



1.7.2. Recurrent Neural Network (RNN)

Recurrent neural network (RNNs) is a type of neural network that contains loops, allowing
information to be stored within the network. In short, recurrent neural networks use the reasoning of

previous experiments to inform future events.

Input IR('l;(i:(iljdrfenr)nt Hidden Output
Layer Layer Laver Layer

Figure 4 RNN Architecture

1.7.3. Convolutional Neural Network (CNN)

CNN has several layers through which data is filtered into categories. CNNs have proven to be

very effective in areas such as image recognition, textual language processing, and classification.

Convolution Neural Network (CNN)
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1.7.4. Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network capable of learning order dependence
in sequence prediction problems. This behavior is necessary in complex areas such as machine

translation, speech recognition, etc. LSTM networks are a complex area of deep learning.
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1.8. the different hidden layers of a CNN and LSTM network
In the following, the different hidden layers of a CNN and LSTM network are presented.

1.8.1. Convolutional Layer

In a CNN, the first layer is always the convolutional layer. This layer applies a convolutional
operation to the input and transmits the output to the layer next. A filter (or sometimes called a kernel)
is used that traverses all areas of the input and extracts the characteristics. A unidimensional
convolutional lock uses a one-dimensional cross-correlation operation in which the convolution
window starts on the leftmost side of the input signal and travels through the input signal from left to
right successively. When the convolution window slides to a certain position, the input subnets in the
window and the kernel network are multiplied and summed element by element to obtain the result at

the corresponding location in the output network as shown in Figure 7
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Figure 7 One-dimensional cross-correlation operation.

The blue parts are the first input element as well as the kernel output element used in which:
Ox1+1x2=2

1.8.2. Pooling layer

The pooling layer is used to down sample the output of the convolutional layer. There are several
types of pooling such as, mean pooling, max pooling. The max pooling layer essentially takes a

window of size [ x 1 and then selects the largest of the / numbers in that window. The same process

Average Pool . 4.05
I T . -

Filter - 2 x 2)

Stride - (2, 2) 4.25

Figure 8 Pooling layer

is applied to the different subregions.

1.8.3. SoftMax

The SoftMax layer in deep learning is the final layer in a neural network used for multi-class
classification. It takes raw scores (logits) as input and converts them into a probability distribution
over different classis. This layer assigns probabilities to each class, and the class with the highest
probability is predicted as the output. It's a critical component for turning neural network

predictions into meaningful class probabilities.
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1.8.4. Flatten

The role of the Flatten layer is to convert the data into a one-dimensional table and feed it
into the next layer. The output of the convolutional layers is flattened to create a single long

feature vector, which will be connected to the layer called the fully connected layer.
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Figure 10 Flatten Layer

1.8.5. Fully connected layer

In a fully connected layer, neurons in one layer are connected to all neurons in the second
layer. This layer is also present in the classical neural network. The SoftMax function is applied
to the output of the second layer. The output of the SoftMax function is used to calculate the

probabilities of each label.
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1.8.6. Wearable sensors

Wearable sensors are used to collect signals directly from users. They are usually attached to
different parts of the body such as the waist, wrists, chest, legs and head (Ravi, 2005)[Ravi et al.,
2005], but can also be attached to clothing and integrated into other commonly used accessories
such as watches, glasses or mobile phones (Brezmes, 2009). They contain a battery unit that

provides the power needed for continuous operation and, for some of them, a wireless unit for
transmitting sensor data when needed externally or to interface them with other devices worn on
the body. The physiological and motion signals obtained from wearable sensors are very
informative for the HAR. Skin temperature, heart rate, heat flow, conductivity, global positioning
system (GPS) position, and body movements are some examples of variables that can be
measured with current wearable sensor technologies (Yang C. C., 2006). They can be practical,

for example, in applications where continuous patient monitoring is required.

Unlike ambient sensors, wearable sensors have advantages in terms of privacy and operating
area. In the first case, users are less reluctant to use them anywhere if there is no image or video
capture. Second, since these sensors are always worn by the user, they are ubiquitous and their
location coverage is virtually unlimited. They also have the advantage of being very portable and

do not require stationary equipment. On the other hand, wearable sensors have also brought new
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challenges: preserving battery life while being able to collect reliable information from limited
detection. These sensors are sometimes uncomfortable for the current user (e.g., if they are too tight
or wired or if they need to be constantly repositioned after dressing) and cannot provide a long-
term solution for activity monitoring without regular recharging. In addition, hybrid sensing
approaches, which combine wearable and ambient sensors from different sources, offer a robust
alternative option for HAR. For example, in (Tapia, 2006), a sensor-rich environment was set up
for the collection of signals from 72 environmental and body sensors to assess complex activities

in an indoor setting.
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Figure 12Wearable sensors position in human body

In this work, we use accelerometers and gyroscopes and magnetometer for the classification of
human body movements. We describe their main features in the following.
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1.8.7. Gyroscope

The gyroscope is a sensing device for measuring orientation (Woodman, 2007) It has been used
in many applications such as inertial navigation systems, aerial vehicles to increase stability (e.g.
in quadricepters) and recently it has been introduced in electronic devices (e.g. smartphones, game
consoles) to improve user interfaces and gaming experience. For the HAR, this sensor has been
used in various applications such as activity classification (e.g., walking, stair climbing) and

transitions between postures (e.g., from standing to sitting) (Coley, 2005) (Altman, 1992).

Gyroscopes have also been produced with MEMS technologies. However, sensors of
this type can only measure orientation indirectly. Instead, they estimate the angular velocity that
can then be integrated over time to obtain orientation. However, it is first necessary to have an
initial angular position of reference to achieve this. These sensors are also very sensitive to noise,

which can lead to measurement drift due to integration.

B

Gyroscope

Figure 13 (a) Gyroscope (b)Gyroscope in smartphone

The directions of the axes are shown in Figure 8. The raw data of a gyroscope is the rotational

speed in (radian per second) rad/s.

1.8.8. Accelerometer

The accelerometer is an instrument that measures the physical acceleration experienced by an

object. It has been used for several applications in science, medicine, engineering and industry,
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such as measuring machine vibration, accelerating high-speed vehicles and moving loads on

bridges.

Regarding the HAR, the accelerometer is one of the most widely used sensors to read body
movement signals (Mannini, 2010). Its principle of operation generally consists of a seismic mass
that moves according to the acceleration to which it is subjected. This displacement can then be
translated into a measurable electrical signal. This phenomenon has been applied to the
development of sensors for micro-electromechanical systems (MEMS). Their technology makes
it possible to create nanoscale devices made with semiconductors. They are advantageous over
other sensor technologies because they can be produced on a large scale and with low
manufacturing costs. The most common MEMS accelerometers function as a capacitive sensor
consisting of a cantilever beam with a test mass whose deflection is correlated with the

acceleration experienced by the sensor (Yang X. &., 2010) .

The magnitude and direction of acceleration can be measured as a vector quantity by
orthogonally arranging the sensors in the three spatial dimensions. These sensors can also be built
on a single chip and it is now common to find triaxial accelerometers in several commercial

electronic devices.

One of the problems with using accelerometers to detect body movements is the effect of the
gravitational field, which is always present in the measurements and has a relatively high
magnitude (g = 9.81m/s2). However, it can also be separated from body movement by filtering.
Gravity vector detection can also help determine the orientation of an object relative to the axis

of gravitational force when triaxial accelerometers are used.

-Y
Figure 14 Accelerometer
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1.8.9. Magnetometer

The magnetometer is a device employed for measuring magnetic fields' strength and
direction. It has found applications in various fields, including geophysics, navigation, and
consumer electronics. Concerning Human Activity Recognition (HAR), magnetometers are
valuable sensors for capturing data related to an individual's orientation and movement in

relation to Earth's magnetic field.

In principle, a magnetometer detects changes in magnetic field intensity and direction. This
information is then translated into an electrical signal for measurement. In the context of micro-
electromechanical systems (MEMS), magnetometers can be designed as nanoscale devices
using semiconductor technology. This approach offers scalability and cost-effectiveness in

their production, making them widely used in various devices.

MEMS-based magnetometers often employ the Hall effect, where a magnetic field deflects
the movement of charge carriers in a semiconductor material, leading to a measurable voltage.
These sensors can be arranged in triaxial configurations, allowing them to capture the magnetic

field's three-dimensional characteristics.

D )/
=

Y
Figure 15 magnetometer

One challenge when using magnetometers for HAR is their susceptibility to external

magnetic interference, such as nearby electronic devices or ferrous materials. Proper

14



calibration and data filtering techniques are necessary to mitigate these interferences and

extract meaningful orientation and movement data.

In summary, magnetometers play a crucial role in HAR by providing data on an
individual's orientation and movement relative to the Earth's magnetic field. Their MEMS-
based design, triaxial configurations, and sensitivity to magnetic changes make them a

valuable sensor in many commercial electronic devices.

1.9. Conclusion

In this chapter, we introduced the field of pervasive computing and the integration of deep
learning into it and gave the definitions and the importance of the interconnection for both of them.

pervasive computing systems represents a remarkable leap forward in our technological
landscape. Deep learning's ability to autonomously analyze data and make precise predictions has
far-reaching implications across various sectors, from healthcare to transportation. Pervasive
computing systems, with their interconnected devices and user experiences, are poised to benefit

immensely from deep learning's capabilities.
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Chapter 02: State of the art

2.1. Introduction

Deep Learning, a subset of machine learning, has emerged as a transformative technology with
wide-ranging applications. In this chapter, we explore the state of the art in applying Deep
Learning to Pervasive Computing. This interdisciplinary field focuses on integrating technology
into our daily lives, with applications spanning Internet of Things (IoT), Smart Homes, Smart
Cities, and more. Deep Learning techniques have played a pivotal role in enhancing the capabilities

of pervasive computing systems.

2.2. Literature review

In the realm of applying Deep Learning to Pervasive Computing, numerous research
endeavours have significantly advanced the field. This section provides an overview of some of
the most influential works, shedding light on the multifaceted approaches adopted to leverage
Deep Learning in creating intelligent and adaptive environments. These labours are underpinned
by the premise that personal and ubiquitous detection methods, notably those involving
smartphones, offer discreet means to continuously collect pertinent data (Garcia-Ceja et al., 2018)

One pivotal study by Wei and Ma (2023) explored the application of deep learning-based
speech systems in online music learning systems. This work exemplifies how Deep Learning
techniques can enhance user experiences within pervasive computing applications, such as online
education (Wei and Ma, July 2023).

Furthermore, Zeng et al. (2020) conducted a comprehensive survey of deep learning-based
approaches for Human Activity Recognition (HAR). This survey elucidates the various deep
learning techniques employed for HAR, which is essential in domains such as healthcare, smart

homes, and more (Zeng et al., 2020).

The fusion of Deep Learning with Pervasive Computing extends to edge computing as well,
Shi et al. (2019) reviewed the integration of deep learning into edge computing, a pivotal concept
16



in pervasive computing. This review underscores the significance of deploying deep learning

models at the edge of the network to improve efficiency and responsiveness (Shi et al., 2019).

Yao et al. (2017) introduced "DeepSense,” a unified deep learning framework for time-series

mobile sensing data processing, making it applicable to pervasive computing (Yao et al., 2017).

Ronao and Cho (2016) demonstrated the use of deep learning models for human activity
recognition, a crucial application of pervasive computing, in their work "Human Activity
Recognition Using Smartphones with Deep Learning Models" (Ronao and Cho, 2016).

Zhuang et al. (2018) provided a comprehensive overview of deep learning techniques in the
context of sensor-based human activity recognition, a core component of pervasive computing, in

their survey paper (Zhuang et al., 2018).

The ground-breaking research effort by Hassan et al. (2018) introduced the use of deep
convolutional neural networks (CNNs) for Human Activity Recognition (HAR). Their work
showcases the power of deep learning in accurately recognizing and classifying human activities,

a fundamental capability in pervasive computing systems (Hassan et al., 2018).

These works collectively provide a foundation for understanding the diverse applications of
Deep Learning in the pervasive computing domain, offering valuable insights for further research
and innovation, also these efforts underscore the dynamic evolution of pervasive computing

domain.

2.3. Applications of Deep Learning in Pervasive Computing

Systems

Deep learning has numerous applications in pervasive computing systems, from smart homes
to smart healthcare and beyond. One example of its application is in the field of image recognition,
where deep learning algorithms can be used to identify objects and people in images with high
accuracy. This has potential benefits for security systems, as well as for improving accessibility

for visually impaired individuals.
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Another example is in the area of natural language processing, where deep learning algorithms
can be used to improve speech recognition and language translation. This has potential benefits
for communication devices, such as smartphones and personal assistants, as well as for language

learning and cross-cultural communication.
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Figure 16 Pervasive computing architecture
2.3.1. Smart Homes

Smart homes are becoming increasingly popular as technology advances and more devices
become connected to the internet of things (1oT). Deep learning can be applied in smart homes to
improve their functionality and make them more efficient. The integration of Deep Learning into
Pervasive Computing has also paved the way for more personalized and efficient services. Al-

Fugaha et al. (2018) provided a comprehensive survey of deep learning in the context of the
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Internet of Things (10T). This survey highlights how deep learning techniques are leveraged to

enhance 10T, a critical component of pervasive computing systems (Al-Fugaha et al., 2015).

One example of how deep learning can be used in smart homes is through the implementation
of intelligent energy management systems as well, Xu et al. (2019) focused on compressing deep
neural networks for resource-constrained 10T devices, a significant aspect of pervasive computing,
in their work "DeeploT" (Xu et al., 2019). These systems use data from various sensors and devices
within the home to optimize energy usage and reduce waste. By analyzing patterns in energy
consumption, these systems can learn the habits and preferences of the occupants and adjust
accordingly. This not only saves money on energy bills but also reduces the carbon footprint of
the household.
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Figure 17 Smart home features

2.3.2. Smart Cities

Smart cities are urban areas that use technology and data to improve the quality of life for their
citizens. Deep learning can play a crucial role in making smart cities more efficient and sustainable.

By analysing vast amounts of data from sensors and other sources, deep learning algorithms can
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provide insights into traffic patterns, energy usage, and other key factors that affect city life. Hodge
et al. (2019) explored how deep learning is applied to 10T data, which is a central element of
pervasive computing, in their survey titled "Deep Learning for 10T Big Data and Streaming
Analytics: A Survey" (Hodge et al., 2019).

For example, deep learning can be used to optimize traffic flow by predicting congestion and
suggesting alternative routes. It can also help reduce energy consumption by identifying areas
where lighting or heating can be adjusted based on occupancy levels. These are just a few examples

of how deep learning can make smart cities more liveable and environmentally friendly.

2.3.3. Smart Healthcare

Deep learning has the potential to revolutionize the healthcare industry by improving patient
outcomes and reducing costs. One example of this is the use of deep learning algorithms to analyse
medical images such as X-rays and MRIs. By automating the analysis process, doctors can receive

more accurate and timely diagnoses, leading to better treatment options for patients.

Another application of deep learning in smart healthcare is the use of wearable devices to
monitor patient health. By collecting and analysing data on a continuous basis, doctors can detect
potential health issues before they become serious, allowing for earlier intervention and better
outcomes. For example, a wearable device could detect changes in heart rate or blood pressure that
indicate an impending heart attack, prompting the patient to seek medical attention before it's too
late. In the context of healthcare, Nweke et al. (2018) delved into deep learning-based Human
Activity Recognition (HAR) for healthcare applications. This research demonstrates the potential
of deep learning models in continuously monitoring patients' vital signs and detecting anomalies,

enabling early interventions during health emergencies (Nweke et al., 2018).
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2.3.3. Smart Transportation

Smart transportation is an area where deep learning can make a significant impact. By using
advanced algorithms to analyse data from sensors and cameras, transportation systems can become
more efficient and safer. For example, deep learning can be used to predict traffic patterns and
optimize routes for public transportation. This can reduce travel time and improve the overall

experience for commuters.

Another application of deep learning in smart transportation is autonomous vehicles. By using
deep learning algorithms to analyse sensor data from cameras and radar systems, self-driving cars
can make decisions in real-time and navigate complex environments with ease. This can reduce
the number of accidents on the road and make transportation more accessible for people who are
unable to drive. In the domain of transportation, Wei et al. (2019) explored the use of deep
reinforcement learning for intelligent transportation systems. Their research illustrates how deep
learning can optimize transportation systems within smart and connected cities (Wei et al., 2019).

2.4. Conclusion

In conclusion, the combination of Deep Learning with Pervasive Computing is transforming
the way we interact with technology. It empowers our environments, from loT devices to entire
cities, to become smarter, more responsive, and better aligned with human needs. The diverse
applications and innovative techniques discussed in this chapter exemplify the dynamic evolution
of this interdisciplinary field. As researchers continue to innovate, the potential for Deep Learning

in Pervasive Computing becomes increasingly promising
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Chapter 03: Methodology and Architecture

3.1. Introduction

This chapter will explain the comprehensive methodology, architectural choices, and approach
applied to harness our deep learning for Human Activity Recognition (HAR) within pervasive
computing systems. The chosen approach encompasses data collection, preprocessing, model

architecture, training, validation, ethical considerations, and technological frameworks.

3.2. Architecture Selection

In pursuit of optimal results, we embarked on selecting two primary architectures:
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks. These
architectures were chosen due to their aptness for sequential and spatial data. A CNN excels in
capturing spatial features, while an LSTM adeptly handles sequential dependencies. This choice

catered to the diverse data dimensions inherent in HAR.
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Figure 18 Data set body positions
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1 |Time_Stamp Ax Ay Az Gx Gy Gz %5 My Mz Activity_Label
2 | 1,3644E+12 -17,365944 19,517958 0,88532263 -0,12186762 2,1774292 1,5357152 18,3 -44,16 8,639999 Downstairs
3 | 1,3644E+12 -9,684067 13,933616 1,1577295 -0,053145275 -1,751656 1,2541064  17,279999 -44,16 9,1799399 Downstairs
4 | 1,3644E+12 -4,0452433 7,709117 -1,2666923 -0,59650993 -3,4718525 1,1765264 16,5 -44,3953598 9,36 Downstairs
5 | 1,3644E+12 -1,7706453 5,7886477 -0,7354988 -0,8677341 -2,9837713 0,89369583 15:9 -44,52 9,36 Downstairs
6 | 1,3644E+12 2,819412 3,9635212 0,5992953 -0,5412266 -2,6627617 0,3286455 15 -44,7 9,24 Downstairs
7 | 1,3644E+12 5,611583 4,18144¢66 0,8308412 -0,48624873 -1,9%47804 -0,14752395 13,98 -44,76 9,12 Downstairs
8 | 1,3644E+12 6,2789803 3,8273177 0,8036005 -0,51007247 -0,8530733  -0,41508293 13,559999 -45 8,88 Downstairs
9 | 1,3644E+12 5,47538 2,0158114 0,626536 -0,4025602 0,28802297 -0,49296826 12,78 -45,3 8,5199935 Downstairs
10| 1,3644E+12 2,2882185 3,336985 2,0566726 -0,36865717  0,95569867 -0,6178902 12,3 -45,66 8,04 Downstairs
11| 1,3644E+12 -0,040861044 7,43671 2,6832085 -0,3387248 1,1157454 -0,6640105 12,3 -45,84 7,56 Downstairs
12| 1,3644E+12 -3,2280223 18,632635 0,5720546  -0,44409304 0,9224065 -0,445559682 12,48 -46,2 6,8999996 Downstairs
13| 1,3644E+12 -0,14982383 19,504337 7,3141265 -0,301462 0,5021312 1,2776246 12,78 -46,02 6,24 Downstairs
14 | 1,3644E+12 1,96133 19,517958 10,051817  0,78801614 1,1615603 0,7852673 12,84 -46,14 6 Downstairs
15| 1,3644E+12 0,87170225 18,864182 9,575105 1,344208 2,4242187 0,3475823 13,01999395 -46,2 6 Downstairs
16 | 1,3644E+12 -5,271075 11,672638 1,7706453 0,43799037 2,7363708 -0,31978795 13,08 -46,44 6,06 Downstairs
17 | 1,3644E+12 -3,2280223 7,8317 -0,13620348 -0,3549127 1,9657644 -0,6206391 13,139999  -46,559998 6,06 Downstairs
18 | 1,3644E+12 0,9670447 5,3527966 0,35412905 -0,77549344 1,0763446 -0,61269784 12,9 -46,559998 6,2999997 Downstairs
19| 1,3644E+12 2,2882185 4,3176503 0,7627395 -0,83658 0,5852089 -0,41996986 12,9 -46,62 6,24 Downstairs
20| 1,3644E+12 3,92266 1,0896279 1,5390993 -0,70463306 0,4990769  -0,25442538 12,78 -46,62 6,24 Downstairs
21| 1,3644E+12 2,669588 -2,3426998 2,0975335 -0,63529986 0,8772025 -0,28802297 12,48 -46,379997 6,18 Downstairs
22| 1,3644E+12 0,6537767 -3,1871614  0,84446156 -0,7480045 1,5070046 -0,29718593 12,36 -46,26 6,18 Downstairs
.23 | 1.3644E+12 -0.54481393  -3.3233647  -1,7297841 -0.98746365  1.6331482  0.12614368 12,24 -46,32 6,12 Downstairs
Datal | Blad2 | Blad3 | ® S £

Figure 10 Schematic diagram showcasing the structure of the collected data
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Figure 11 Arm.xlIsx dataset file sensors and their positions & readings with activity labels

3.6. Data Collection and Preprocessing

The foundation of accurate HAR lies in robust data collection and preprocessing. We utilized
the "Shoaib, Muhammad" dataset, comprising Arm, Belt, Wrist, and Pocket sensor positions.
These datasets encompassed timestamped readings of accelerometer, gyroscope, magnetometer
axes, and corresponding activity labels. Leveraging the meticulous data labeling and pre-
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processing culminating in the fusion of datasets sourced from various sensor positions provided

by "Shoaib, Muhammad," we ensured a reliable basis for our research

3.7. Model Training

The model training process was instrumental in realizing the potential of deep learning for
Human Activity Recognition (HAR) within pervasive computing systems. For our investigation,
we considered two prominent architectures: Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) networks.

convld_2_input | input: [(None, 9, 1)]

InputLayer output: | [(None, 9, 1)]

convld 2 | input: (None, 9, 1)
ConvlD | output: | (None, 7, 64)

max_poolingld_2 | input: (None, 7, 64)
MaxPooling1D output: | (None, 3, 64)

flatten_2 | input: (None, 3, 64)
Flatten output: | (None, 192)

r
dense_8 | input: | (None, 192)

Dense output: | (None, 64)

dense 9 input: (None, 64)
Dense output: (None, 6)

Figure 20 CNN layers

For the CNN architecture, we harnessed its capacity for spatial feature extraction. Our CNN
model was constructed using sequential layers comprising a Conv1D layer, a MaxPooling1D layer,
and a Flatten layer. This design enabled the CNN to identify spatial patterns within the sensor data.
Subsequently, fully connected Dense layers were added to enhance the model's representation
capabilities. The final Dense layer employed a softmax activation function, enabling multiclass

classification as shown above in figure 13.
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In contrast, our LSTM architecture leveraged its strength in capturing temporal
dependencies. We fashioned an LSTM model, characterized by a single LSTM layer preceded by
an input layer. This LSTM layer was chosen for its ability to process sequential data effectively.
The architecture was augmented with Dense layers to enhance feature extraction and
classification. Similar to the CNN, a softmax-activated Dense layer was employed for multiclass

prediction.

Istm_1_input | input: | [(None, 1, 9)]

[nputLayer | output: | [(None, 1, 9)]

'

Istm_1 | input: | (None, 1, 9)
LSTM | output: | (None, 64)
dense_2 | input: | (None, 64)
Dense | output: | (None, 64)
dense 3 | input: | (None, 64)
Dense | output: | (None, 6)

Figure 21 LSTM layers

The two distinct architectures allowed us to explore both spatial and sequential characteristics

of the data, enriching our understanding of their effectiveness in HAR scenarios.

3.8. Approach Validation

Approach validation entailed evaluating the CNN and LSTM models against a comprehensive
dataset. The dataset partitioning scheme, as suggested by "Shoaib, Muhammad," was employed,
facilitating consistent and trusted validation. Our dataset was split into 80% for training and 20%
for testing. Our assessment involved utilizing established evaluation metrics to gauge the

performance of the models, including confusion matrices and accuracy graphs.
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Data set

Train (80%) Test (20%)

Figure 22 Dataset split

3.8.1. Confusion Matrix

In a two-class problem, the classification model predicts one of two classes that are generally
referred to as positive and negative classes. Given a classifier and an example to be classified, four
situations are conceivable. If the example is positive and is classified as positive, it counts as a true

positive TP; if it is classified negative, it counts as a false negative FN.

Table 1 Confusion table of a two-class problem

Confusion matrix

TP TN

FP FN

If the example is negative and is classified as negative, it counts as a true negative TN; if it is
classified positive, it counts as a false positive FP. The outputs produced by the classifier can be
represented by a 2 x 2 construction matrix. Table 4.1 shows the confusion matrix for a two-class

problem where the rows indicate the actual class and the columns indicate the predicted class.

3.8.2. Classification rate

The rate of good classification is the simplest measure of performance and is the basis of any

other criterion (Pierre Baldi et al., 2000). The classification rate calculates the percentage of
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correctly classified samples in relation to the total number of samples. From the values in the

confusion table, the classification rate is given by the following equation:

B TP+ FN
TP+ TN+FP+FEN

Te

Figure 23 Equation of classification rate

3.8.3. Performance Metrics

To assess the efficacy of our models, we employed a set of performance metrics, including
accuracy, precision, recall, and F1-score. These metrics provided a comprehensive understanding
of the models' abilities to accurately classify different human activities.

Metric | Formula
o TP
True positive rate, recall TPIFN
False positive rate FPE—;—%
Precision T—P
TP+EFP
Accuracy TP+TN
TP+TN+FP+FN
2 . precision - recall
F-measure —
precision + recall

Figure 24 Metric and Formula

In the case of the CNN model, we observed that it exhibited commendable accuracy,
effectively capturing spatial nuances within the sensor data. On the other hand, the LSTM model
excelled at capturing temporal dependencies, showcasing its prowess in recognizing sequential
patterns in human activities.

Architecture Accuracy Loss Epoch
LSTM 92% 0.22% 100
Table 2 LSTM accuracy and loss and time per learning step
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Architecture

Accuracy Loss

Epoch

CNN

88% 0.3%

100

Table 3 CNN accuracy and loss and time per learning step

We visualized the validation outcomes through training and validation accuracy per time step

over epochs. These images illuminated the models' learning trajectories, illustrating their

convergence and potent

ial overfitting points.

3.9. Ethical Considerations

Our pursuit of accurate HAR in pervasive computing systems was accompanied by a deep

commitment to ethical considerations. We were mindful of the implications of dealing with

paramount importance of addressing algorithmic bias. We acknowledged that, despite the power

of deep learning, there exists a potential for misinterpretation and bias in activity recognition. This

insight underscored the need for thorough validation, fair representation, and continuous

monitoring to mitigate biases that could result in skewed results, unfair treatment, and erroneous

insights

3.10. Software and Hardware Frameworks

3.10.1 Machines

Specifications:

PC: Mars Gaming / Lenovo-thinkpad L420

Operating system : Windows 10 Professionnel

Processor : 11th Gen Intel® Core™ i5-11400F @ 2.60GHz / intel(r)

core(tm) i5-2430m cpu @ 2.40ghz 2.40 ghz

RAM : 16,00 GB /4,00 Go

GPU : RTX 3070TI/ HD Intel® 3000

Table 4 Machine Specifications

28



3.10.2 Spyder IDE

Spyder's integrated development environment provided us with several key advantages, the
Spyder IDE served as an invaluable tool in our deep learning research journey, providing us with

a controlled and feature-rich environment for developing, optimizing, and fine-tuning our models

8.2, random_state=42)

» activation="relu’, input_shape=(X_train.shape[1], 1))})

), activation=

ontimizer="agdom’. metrirs=

Figure 5 Spyder IDE

(NN model.comnilelln

Code Proficiency: With Spyder, we could write, test, and debug our code seamlessly. The
IDE's robust debugging tools and interactive consoles enabled us to identify and resolve issues

efficiently.

18:18:15) [MSC v.1916 64 bit (AMD64)]

IPython

conda: base (Python 3.10.9) <2 se) + LSP:Python Linel,Coll ASCI CRLF RW  Mem49%

Figure 26 Spyder Console
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Integration with Libraries: Spyder effortlessly integrated with popular Python libraries and

deep learning frameworks. This compatibility streamlined the implementation of complex neural

network architectures.

srt LabelEncoder
C al) uential

ceras.layers import LSTM, Dense
n tq port tgdm

art tkinter as tk

1 tkinter import filedialog, messagebox
zrt matplotlib.pyplot as plt
i confusion_matrix, accuracy_score
.models import load model

Figure 27 Spyder Libraries

Data Visualization: Spyder seamlessly integrated with data visualization libraries like

Matplotlib and Seaborn, enabling us to generate informative plots and graphs to visualize our

research results.

convld_mput | nput: | [(None, 9, 1)]

InputLayer | ontput: | [(None, ©, 1)]

convld | mput (Mone, 2, 1)

ComvlD | owtput: | (None, 7, 64)

!

max_poolingld | mpot | (Mone, T, 64)

MuxPoolnglDd | output: | (Mone, 3. 64)

l

flatten mput: | {(Mone, 3, 64)

Flatten | owtput: | (None, 192}

l

dense I | mput | (Mone, 192)

Denze | output | (Mone, 64)

l

| denze 3 | wmput: | (Mone, 64)

| Drense output (None, 6)

Help Variable Explorer Plots Files

Figure 28 Visualization Terminal
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3.11. Conclusion

This chapter outlined a comprehensive methodology for Human Activity Recognition (HAR)
within pervasive computing systems. We began by meticulously collecting and preprocessing data,
utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks to build robust HAR models. Rigorous validation, ethical considerations, and model
evaluation played pivotal roles in our approach. By synergizing software and hardware
frameworks, we harnessed deep learning's potential. Subsequent chapters will delve into our
findings, contributing to the field's progress.
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Chapter 04: Implementation and Results

4.1. Introduction

In this chapter, we delve into the practical implementation of our approach and present the
outcomes of our experiments. We begin by discussing the setup and execution of the deep learning
models developed for Human Activity Recognition (HAR) within pervasive computing systems.
Subsequently, we present a comprehensive analysis of the results obtained from our models'

performance and evaluate their effectiveness in recognizing human activities.
4.2. Model Implementation

4.2.1. Data Preprocessing

Before training our models, the collected sensor data underwent thorough pre-processing as
mentioned in chapter 3. This involved handling missing values, normalizing the data, and encoding
the activity labels. The processed dataset was then divided into training and testing sets, with an
80-20 split, respectively. This partitioning strategy ensured a robust evaluation of model

generalization.

Ve Clea.m'ng ¢ Mising ‘{alue Train-Test Data Separation
Handing Imputation Nomalzation | (—{ Encoding Actity |—) Data Splting
Lavels

Figure 29 Flowchart of the sensors pre-processing data
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4.2.2. CNN and LSTM Architecture Instantiation

We instantiated two distinct deep learning architectures: The Convolutional Neural Network
(CNN) and the Long Short-Term Memory (LSTM) network. The CNN was designed to capture

spatial features within the data, while the LSTM excelled in capturing temporal dependencies.

3, activation="relu’, input_shape=(X_train.shape[1], 1)})

), activation="so;

CNN_model. s ropy', optimizer="adam', metrics=[ "acce

history = CNN_model.fit(X train, y_train, epochs=1@@, batch_size=64, validation_data=(X test, y test))

Figure 31 CNN model architecture

4.3 Model results and discussion

4.3.1. CNN Model Performance

The CNN model exhibited remarkable accuracy, achieving 88% on the testing dataset. The
confusion matrix revealed that the model excels in specific activities which are walking, sitting,

standing, indicating the model's strengths in recognizing certain activities while potentiallyfacing
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challenges in others. This observation aligned with the spatial feature extraction capacity of the

CNN architecture.

Laying Downstairs

=]
= .
b=
]

Upstairs Sanding

Walking

)
Downstairs

Confusion Matnx

23 406 1571

452 B 580 1518

Laylmg Slttling 'Elanldlng Llpstlaus Walking
Predicted

Figure 32 CNN confusion matrix

Accuracy

0.88 -
0.86 1
0.84 -
0.82 1
0.80
0.78 1
0.76 1
0.74 A

0.72 1

Model Accuracy

— Tain
Validation

Epochs

T
100

Figure 33 CNN Model Loss
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Model Loss
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Figure 34 CNN Model Accuracy

4.3.2. LSTM Model Performance

The LSTM model demonstrated a superior overall performance compared to the CNN model,
attaining 92% accuracy. The confusion matrix analysis demonstrated an even higher results in the
activities that the CNN model exceled at, furthermore it had less difficulties when it comes to the
rest of the activities, highlighting the model's proficiency in capturing sequential patterns and

temporal dependencies in human activities.

Confusion Matrix

- 10998 449 28 81 1962 1282
20000

419

Laying Downstairs

15000

Sitting

Actual

&5 - 10000

1432
- 5000

167 10 5

669

Walking Upstairs Standing

) " i [ '
Downstairs Laying Sitting Standing Upstairs Walking
Predicted

Figure 38 LSTM confusion matrix
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Model Loss
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0.20 +

Model Accuracy
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Figure 40 LSTM Model Accuracy
4.4. Comparison and Insights

441.CNNvs. LSTM

Comparing the CNN and LSTM models, we observed distinct strengths and weaknesses. The

CNN excelled in capturing spatial nuances, making it effective for activities with prominent spatial
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characteristics. On the other hand, the LSTM model showcased its prowess in recognizing

activities with complex temporal dependencies.

4.4.2. Accuracy comparison baseline vs LSTM

The average recognition accuracy worldwide with a CNN model is of 90%, which aligns with

the findings of Mo, Li, Zhu, and Huang, who compared convolutional neural networks and

multilayer perceptron performance on the classification of activities based on the CAD-60 Dataset.

Accuracy

100

80 A

60

40

20

Accuracy Comparison: Baseline vs. LSTM Models

LSTM Models

Baseline

Models

Figure 36 baseline vs LSTM model

37



4.4.3. Resource-Intensive Models

Deep learning models, especially LSTMs are computationally demanding. This can pose
challenges in resource-constrained environments. Optimizing model efficiency and exploring

lightweight architectures can address this limitation.

Resource Utilization of Deep Learning Models

140 4

120 4

100 4

80

Resource Utilization

60 4

BN CPU Usage (%)
s GPU Usage (%)
mmm Memory Consumption (GB)

20 1

CNN LSTM
Model

Figure 37 Resource usage of DL models
In this section, we analyse the resource utilization of our deep learning models, focusing on
CPU usage, GPU usage, memory consumption, and training time. Understanding the resource
demands of these models is crucial for practical applications and determining the computational

requirements

CPU Usage (Training): Our analysis reveals that the Convolutional Neural Network (CNN)
exhibits higher CPU usage during training compared to the Long Short-Term Memory (LSTM)
network. This disparity can be attributed to the inherent architecture of the models. CNNs are
computationally intensive due to the convolutions and pooling operations involved in feature
extraction. In contrast, LSTMs primarily rely on sequential computations, resulting in lower
CPU utilization.
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GPU Usage (Training): When it comes to GPU usage, the LSTM model stands out as the more
resource-intensive model. This is because LSTMSs require substantial parallel processing for
sequence modelling, making them ideal for tasks involving temporal dependencies. In contrast,
CNNSs, while still utilizing the GPU, demand fewer GPU resources during training.

Memory Consumption (Training): Our findings indicate that the LSTM model consumes more
memory during training compared to the CNN. This disparity arises from the LSTM's need to
maintain hidden states and cell states across sequences, which necessitates larger memory

buffers. In contrast, CNNs, which process data in parallel, have lower memory requirements.

Training Time: The training time represents the duration each model takes to converge during
the training phase. Here, we observe that the LSTM model requires more time to train compared
to the CNN. This is primarily due to the sequential nature of LSTM computations, which can

extend training times for tasks with longer sequences.

Practical Implications: The resource utilization analysis provides valuable insights for practical
applications. Depending on the available hardware and real-time constraints, the choice between
CNNs and LSTMs can significantly impact system performance. For applications with limited
CPU and GPU resources, CNNs may be preferred due to their efficiency. Conversely, tasks that
heavily depend on temporal dependencies and have ample computational resources may benefit
from LSTMs.

Computational Requirements: Understanding the resource demands also aids in estimating
computational requirements. Project planners and developers can use this information to allocate
hardware resources effectively and optimize model selection for specific use cases. Additionally,
it emphasizes the need for GPU-accelerated hardware when working with resource-intensive
models like LSTMs.

Comprehending the resource utilization of deep learning models is pivotal for optimizing
system performance and resource allocation in practical Human Activity Recognition (HAR)
applications. Which compelled us to opt for the LSTM model because it got better results than the
CNN model as mentioned earlier.
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4.5. Graphical User Interface implementation (GUI)

For our GUI application we used the Tkinter library. It serves as a tool for Human Activity

Recognition (HAR) using deep learning, specifically a Long Short-Term Memory (LSTM) model.
Here's a general idea of what this code does and its key components:

Import Libraries: The code begins by importing necessary Python libraries, including pandas
for data handling, NumPy for numerical operations, scikit-learn for data preprocessing,
TensorFlow and Keras for deep learning, tqdm for progress bars, Tkinter for GUI, Matplotlib for

data visualization, and seaborn for creating a confusion matrix.

GUI Setup: The Tkinter library is used to create a GUI window titled "Human Activity
Recognition.” The GUI includes widgets like labels, text entry fields, buttons, and message boxes

for user interaction.

File Upload Widget: Users can upload an Excel dataset (assumed to contain sensor data) using

the "Upload Excel File" widget. This widget opens a file dialog for file selection.

Training Model: Clicking the "Train Model" button triggers the training process. It reads the
uploaded dataset, preprocesses it, splits it into training and validation sets, builds an LSTM model,

compiles and trains the model using the data. Training progress is displayed using a progress bar.

Classification: After training, users can click the "Classify Data™ button to classify new data
using the trained LSTM model. This involves preprocessing the data and making predictions. The

predicted activities are displayed in a message box.

Visualization: The "Visualize Results” button is used to display the confusion matrix,

accuracy, and loss curves for the trained model. It provides insights into the model's performance.

40



# Human Activity Reco.. — O >
Upload Excel File:

C:/Users/wassi/Desktoy

Browse
Train Model

(=i
Classify Data

Visualize Results |

Figure 38 HAR Graphical user interface

Overall, this code creates a user-friendly interface for uploading datasets, training an LSTM-

based HAR model, classifying activities, and visualizing the model's results. It's designed to assist

in experimenting with HAR using deep learning techniques.

4.5.1. Graphical user interface results

Here are the results of the execution for each button

Browse: Allows you to load the xlIsx file to the GUI

7
™ “ Desktop » memoir » Newfolder » MNew folder » Activity_Recognition_DataSet o Search Activity_Recognition... | |
Organize + Mew folder == » [T o |
template memo ™ MName Date modified Type A B |
] y et 1 |Time_Stamp Ax Ay
@ OneDrive | e 3| La6aaEn12 17.365944 19
B This pe @Arm.xl;x Microsoft Excel .'... 3 1.3644E412 -9.684067 12
§ 30 Object. B3| Beltxlsx Microsoft Excel W, 4 136445412 _4.0452433 1
ects 5 Microc r A
) B Pocketulsxk MicrosoftExcel W. "5 | 3 3644412 -1.7706453 5.1
[ Desktop B Wrist.xlsk Microsoft Excel W. g | 1 3g44£412 2.819412 3
] Documents 7 | 1.3644E+12 5.611583  4.]
; Downloads 8 1.3644E+12 6.2789803 3
B Music 9 | 13644E412 547538 2.
10| 1.3644E+12 2,2882185 3
&=/ Pictures
) 11 1.3644E+12 -0.040861044
B Videos 12| 1.3644F+12  -3.2280223 18
‘e Local Disk (C:) 13| 1.3644E+12 -0.14982383 13
= Local Disk (D:) 14| 1.3644E+12 1.96133 19
. Local Disk () 15| 1.3684E+12  0.87170225 1§
3 [] 3
i Network &
File name: | Arm.xlsx ~ Excel Files (*xlsx) ~
Open Cancel

~ Figure 39 Browse xIsx file
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Train model: starts the training for the loaded xIsx file

3 Console 1/A =

Training Progress: 100% | 10/10 [ee0:5e<e .88s/it, Epoch=18]

i Training Completed

o Model training completed successfully.

Figure 40 File training

Classify data: This button executes the classification process and sorts the activities based
on the most common ones

: debugfile('C
-1y

Activity Predictions:
Walking: 21.96%
Standing: 18.85%
Sitting: 18.71%
Laying: 17.67%
Upstairs: 14,109
Downstairs: 8.71%

Figure 41File classification
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Visualize results: It displays the confusion matrix and both accuracy, loss graphs of the

selected xIsx file

Confusion Matrix
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Figure 42 Displayed results

4.6. Conclusion

In this chapter, we embarked on the implementation of our approach, deploying CNN and
LSTM models for Human Activity Recognition in pervasive computing systems. The results
showcased the models' effectiveness in recognizing activities, each excelling in different aspects
of data analysis. Ethical considerations underscored the significance of unbiased evaluation and
responsible deployment. Moving forward, our insights offer a pathway for advancements in the

field, positioning accurate and ethical HAR as a cornerstone of pervasive computing systems.
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Chapter 05: General Conclusion

5.1. Contributions

In this project, we have made several significant contributions:

Human Activity Recognition Model: We have developed a Human Activity Recognition
model using LSTM neural networks. This model can accurately predict human activities based on
sensor data, which can be valuable in various applications such as healthcare, fitness tracking, and

monitoring.

Graphical User Interface (GUI): We have created an interactive GUI that allows users to
easily upload datasets, train the model, classify data, and visualize results. This GUI provides a

user-friendly interface for individuals without a background in machine learning.

5.2. Limitations

While our project offers valuable contributions, it also has certain limitations:

Dataset Dependency: The performance of our Human Activity Recognition model heavily
depends on the quality and diversity of the dataset used for training. Using a more extensive and
diverse dataset could potentially improve the model's accuracy.

Simplified Features: We used a simplified set of sensor data features (accelerometer,
gyroscope, magnetometer) for model training. Incorporating additional features or data sources,

such as heart rate or environmental data, could enhance the model's capabilities.

Lack of Real-Time Data: Our model is designed for batch processing and does not handle
real-time data streaming. Implementing real-time data processing would be a valuable future

enhancement.
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5.3. Future work and perspectives

Looking ahead, there are several avenues for future work and perspectives:

Enhanced Data Preprocessing: Further research into data preprocessing techniques, such as

noise reduction and outlier detection, can lead to more robust model performance.

Transfer Learning: Exploring transfer learning approaches by fine-tuning models pre-trained

on larger datasets, like ImageNet, could be beneficial for improving recognition accuracy.

Real-Time Deployment: Developing a real-time version of the application, capable of
processing sensor data as it arrives, would enable applications in live monitoring and immediate

feedback scenarios.

Cross-Domain Applications: Extending the model's application domain beyond human
activity recognition, such as anomaly detection in industrial processes or wildlife monitoring,

opens up new possibilities.

User Customization: Implementing features that allow users to customize the model or train

it on their specific datasets can make the application more versatile.

In conclusion, this project provides a solid foundation for Human Activity Recognition and
opens up exciting opportunities for further research and development in this field. The
contributions made, coupled with the recognition of limitations and future work, provide a

comprehensive overview of the project's scope and potential impact.
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Appendix A

Figure Sources

A.1l. PAGES

Figure 1: What Is Ubiquitous Computing (Pervasive Computing)? Meaning, Layers,
Examples, and Applications:

https://www.spiceworks.com/tech/iot/articles/what-is-ubiquitous-computing/

Figure 2: Pervasive Computing Architecture, Applications, Issues and Challenges Isha Jakhar,

Annupriya, Hatesh Shyan CSE, Chandigarh University, Mohali, Punjab, India:

https://ijsrcseit.com/paper/CSEIT1836105.pdf

Figure 3: Smart Home vs. Connected Home vs. Home Automation: Discussing the Key

Differentiators & Dispelling the Confusion:

https://www.myplacenz.co.nz/smart-home-vs-connected-home-vs-home-automation-

discussing-key-differentiators-dispelling-confusion/

Figure 4: Semi-Supervised Learning, Explained with Examples:

https://www.altexsoft.com/blog/semi-supervised-learning/

Figure 5: The Use of Machine Learning in Industrial Quality Control Thesis by Erik Granstedt
Moller for the degree of Master of Science in Engineering:

https://www.diva-portal.org/smash/get/diva2:1150596/FULLTEXTO01.pdf.

Figure 6 : Un algorithme génetique pour I'ordonnancement robuste : application au probléeme
du flow shop hybride :

https://www.researchgate.net/figure/Croisement-en-1-point-de-deux-
chromosomes fig4 48907984
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Figure 9: Physical Activity Recognition by Utilising Smartphone Sensor Signals:

https://www.researchgate.net/figure/Orientation-of-the-axes-relative-to-a-typical-

smartphone-device-using-a-gyroscope-sensor figl 331320409

Figure 10: What is Accelerometer and how does it work on smartphones:

https://www.techulator.com/resources/8930-How-does-smart-phone-accelerometer-

work.aspx

Figure 11: MagiMusic: Using embedded compass (magnetic) sensor for touch-less gesture-

based interaction with digital music instruments in mobile devices:

https://www.researchgate.net/fiqure/The-magnetic-sensor-provides-a-measure-of-magnetic-
field-along-X-Y-and-Z-axis figl 221308679

Figure 15: Evaluating Machine Learning Model Performance:

https://www.section.io/engineering-education/evaluating-ml-model-performance/

Figure 16: A Deep Learning Framework for Human Activity Recognition Using Smartphone
Data:

https://www.researchgate.net/figure/Confusion-Matrix-Evaluation-Formula thl1l 349318269
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