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Abstract 

In today's digital era, the ubiquity of sensors and interconnected devices has ushered in the age 

of pervasive computing. Pervasive computing envisions a future where computation integrates into 

our daily lives, creating intelligent and adaptive environments. Central to this vision is the 

transformative role of deep learning, a subset of machine learning powered by artificial neural 

networks. This study delves into the profound synergy between deep learning and pervasive 

computing systems. It explores how deep learning techniques are harnessed to enable 

interconnected devices and sensors to learn, adapt, and enhance user experiences. The research 

covers fundamental concepts, applications, and implications, shedding light on the dynamic 

evolution of pervasive computing. With a focus on efficiency, privacy, and ethical considerations, 

this work exemplifies the potential of deep learning to revolutionize industries and improve the 

quality of our technologically enriched lives. 

Keywords: Pervasive Computing System, Ubiquitous Computing System, Human Activity 

Recognition (HAR), Smartphone Sensors, Deep Learning (DL), Convolutional Neural Network 

(CNN), Long-Short Term Memory (LSTM) 
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Résumé 

À l’ère numérique d’aujourd’hui, l’omniprésence des capteurs et des appareils interconnectés 

a inauguré l’ère de l’informatique omniprésente. L’informatique omniprésente envisage un avenir 

où le calcul s’intègre dans notre vie quotidienne, créant des environnements intelligents et 

adaptatifs. Au cœur de cette vision se trouve le rôle transformateur de l’apprentissage profond, un 

sous-ensemble de l’apprentissage automatique alimenté par des réseaux de neurones artificiels. 

Cette étude explore la synergie profonde entre l’apprentissage profond et les systèmes 

informatiques omniprésents. Il explore comment les techniques d’apprentissage profond sont 

exploitées pour permettre aux appareils et capteurs interconnectés d’apprendre, de s’adapter et 

d’améliorer les expériences utilisateur. La recherche couvre les concepts fondamentaux, les 

applications et les implications, mettant en lumière l’évolution dynamique de l’informatique 

omniprésente. En mettant l’accent sur l’efficacité, la confidentialité et les considérations éthiques, 

ce travail illustre le potentiel de l’apprentissage profond pour révolutionner les industries et 

améliorer la qualité de nos vies technologiquement enrichies. 

Mots-clés : système informatique omniprésent, reconnaissance de l'activité humaine (HAR), 

capteurs de smartphone, apprentissage en profondeur (DL), réseau de neurones convolutifs (CNN), 

mémoire à long court terme (LSTM)  
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 ملخص

في العصر الرقمي اليوم ، بشر انتشار أجهزة الاستشعار والأجهزة المترابطة في كل مكان بعصر الحوسبة المنتشرة. تتصور 

الحوسبة المنتشرة مستقبلا يتكامل فيه الحساب في حياتنا اليومية ، مما يخلق بيئات ذكية وقابلة للتكيف. محور هذه الرؤية هو 

الدور التحويلي للتعلم العميق ، وهو مجموعة فرعية من التعلم الآلي المدعوم بالشبكات العصبية الاصطناعية. تتعمق هذه الدراسة 

في التآزر العميق بين التعلم العميق وأنظمة الحوسبة المنتشرة. يستكشف كيفية تسخير تقنيات التعلم العميق لتمكين الأجهزة وأجهزة 

ابطة من التعلم والتكيف وتعزيز تجارب المستخدم. يغطي البحث المفاهيم والتطبيقات والآثار الأساسية ، ويلقي الاستشعار المتر

الضوء على التطور الديناميكي للحوسبة المنتشرة. مع التركيز على الكفاءة والخصوصية والاعتبارات الأخلاقية ، يجسد هذا 

 .الصناعات وتحسين نوعية حياتنا الغنية تقنيا العمل إمكانات التعلم العميق لإحداث ثورة في

( ، مستشعرات HARالكلمات الرئيسية: نظام الحوسبة الشامل ، نظام الحوسبة في كل مكان ، التعرف على النشاط البشري )

( ، الذاكرة طويلة المدى CNN( ، الشبكة العصبية التلافيفية )DLالهواتف الذكية ، التعلم العميق )

(LSTM)  
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General Introduction  

Pervasive computing, also known as ubiquitous computing, is a concept where technology 

seamlessly integrates into our daily lives. It involves interconnected devices that are embedded in 

objects, environments, and even our bodies. These devices gather and exchange data to provide 

services and enhance efficiency. The goal is to create an environment where technology adapts to 

human needs, blending into the background and supporting our activities. Pervasive computing 

has applications in various domains, including healthcare, transportation, entertainment, and 

education. However, privacy, security, and ethical concerns need to be addressed. Ultimately, 

pervasive computing envisions a world where technology is ubiquitous, making our environments 

"smart" and responsive to our needs. 

1.1. Context & Problematic 

In the contemporary digital landscape, we find ourselves immersed in a world where 

technology permeates every aspect of our lives. This phenomenon is at the heart of pervasive 

computing, a paradigm shift that envisions a future where computation and data processing are 

seamlessly integrated into our daily routines. Pervasive computing, strives to create intelligent 

environments where technology becomes a natural and unobtrusive part of our surroundings. It is 

in this context that we embark on a journey to explore the profound connection between deep 

learning and pervasive computing systems. 

Pervasive computing extends its reach across various domains, including the Internet of Things 

(IoT), Smart Homes, Smart Cities, and beyond. IoT devices, sensors, and interconnected systems 

form the fabric of these intelligent ecosystems, collecting data, processing information, and 

facilitating automation. The potential applications are boundless, from enhancing healthcare and 

optimizing transportation to improving energy efficiency and making cities more livable. 

However, the proliferation of pervasive computing systems also raises significant concerns 

regarding privacy, security, and ethical implications. 
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Implementing deep learning in pervasive computing systems poses several challenges. One of 

the main difficulties is the limited computational resources available on these systems. Pervasive 

computing devices are often small and have low processing power, which can make it difficult to 

run complex deep learning algorithms. Another challenge is the need for real-time processing, as 

many pervasive computing applications require immediate responses. This can be difficult to 

achieve with deep learning algorithms that often require significant computation time. 

Another challenge is the lack of labeled data. Deep learning algorithms require large amounts 

of labeled data to train effectively, but obtaining this data can be difficult for pervasive computing 

systems. Additionally, the data collected by these systems may be noisy or incomplete, which can 

further complicate the training process. Finally, there are ethical considerations to take into account 

when implementing deep learning in pervasive computing systems, such as privacy concerns and 

potential biases in the algorithms, in our work we concentrated on the sensors part of the pervasive 

computing system and the issues related to it from privacy and on the algorithmic biases to the 

ethical considerations. 

1.2. Objectives 

This dissertation's core objective is to delve into the realm of deep learning and its profound 

impact on pervasive computing systems. With a specific focus on Human Activity Recognition 

(HAR), we aim to harness the power of deep learning to enhance the accuracy and ethical 

considerations of HAR in these pervasive systems. 

1.3. Methodology and results   

Methodology: 

1. Data Collection: we collected data from various sensors, such as accelerometer, 

gyroscope and magnetometer. The data collection process was done by Shoaib, 

Muhammad, “Human Activity Recognition Using Heterogeneous Sensors" “Appears in 

the Adjunct Proceedings of UbiComp 2013.  
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2. Feature Extraction: Researchers (Shoaib, Muhammad) applied signal processing 

techniques to extract relevant features from the collected sensor data. 

3. Algorithm Development: The algorithms that we used include deep learning models 

which are convolutional neural networks (CNN), Long short-term memory network 

(LSTM). 

4. Training and Evaluation: The developed algorithms are trained using labeled datasets 

where human activities are manually annotated. We used train-test split dataset for 

evaluation. Finally, we used performance metrics such as accuracy and confusion matrix, 

precision to assess the algorithm's effectiveness. 

Results: 

1. Activity Recognition Accuracy: The primary result is the accuracy achieved by the HAR 

system in recognizing human activities. This metric represents the system's ability to 

correctly identify different activities based on the sensor data. Higher accuracy indicates 

better performance. 

2. Confusion Matrix: Illustrates the system's performance in classifying activities. It shows 

the number of correct and incorrect predictions for each activity class, giving insights into 

specific recognition errors or misclassifications. 

3. Comparative Analysis: We compare the proposed HAR algorithms with existing methods 

or benchmarks. This analysis demonstrates the strengths and limitations of the proposed 

approach, highlighting its performance improvements or novel features. 

4. Graphical User Interface Performance: The graphical user interface performance 

application of the HAR system is also an important aspect. It measures the system's 

ability to detect and recognize activities in an accurate manner. 
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1.4. Report outlines 

This report is structured into several chapters, each serving a specific purpose and contributing 

to the overall understanding of the project. The outline of the report is as follows: 

Chapter 01: Deep Learning: Application to Pervasive computing System 

• Introduces the theme. 

• Presents the definitions of the fundamental concepts 

• Presents the concepts and the models 

• Defines the relation between them 

Chapter 02: State of art 

• Surveys existing literature and research related Pervasive computing applications and 

deep learning. 

• Discusses relevant concepts, techniques, and models. 

• Highlights gaps and opportunities in the field. 

Chapter 03: Methodology and Architecture 

• Describes the data collection process. 

• Details data preprocessing steps. 

• Explains the architecture and training and validation of the Human Activity 

Recognition model. 

Chapter 04: Results and Discussion 

• Provides an analysis of the experimental results. 

• Discusses the performance of the model. 

• Visualizes the results using plots and graphs. 

Chapter 05: General Conclusion 

• Summarizes the contributions of the project. 
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• Critiques the work by acknowledging limitations. 

• Identifies future work and perspectives for further research. 
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Chapter 01: Deep Learning: Application to Pervasive 

computing System 

1.1. Introduction  

The evolution of technology has witnessed a transformative shift towards pervasive computing 

systems (Miorandi, 2012). In this chapter, we embark on a journey into the monarchy of deep 

learning and its key role in pervasive computing systems (LeCun, Deep learning, 2015). Our 

exploration revolves around the integration of deep learning techniques within the pervasive 

computing landscape (Chen M. G., 2014). Here, we lay the foundation for understanding how deep 

learning empowers pervasive computing to achieve the potential of interconnected devices and 

sensors (Atzori, 2010). 

Furthermore, we will unravel and clarify the fundamental concepts that underpin our study 

(Deng, 2012). These conceptual definitions are essential to grasp the intricate relationship between 

deep learning and pervasive computing, setting the stage for a comprehensive exploration of their 

applications and implications (Song, 2017). 

1.2. Definition of the concept deep learning 

Deep learning is a subset of machine learning that uses artificial neural networks to learn from 

data (Goodfellow, 2016). Unlike traditional machine learning techniques, which require humans 

to manually engineer features, deep learning algorithms can automatically extract relevant features 

from raw data (Schmidhuber, Deep learning in neural networks: An overview, 2015). This makes 

deep learning particularly well-suited for tasks such as image and speech recognition (Krizhevsky, 

2012). 

To illustrate the concept of deep learning, consider the example of a self-driving car. 

Traditional machine learning techniques might require engineers to manually program the car to 

recognize different objects on the road, such as stop signs or pedestrians. With deep learning, 

however, the car can be trained on large datasets of images and videos, allowing it to automatically 



2 

 

learn to recognize these objects without explicit programming (Bojarski M. D., End to end learning 

for self-driving cars, 2016). 

1.3. Importance of deep learning 

Deep learning is revolutionizing the way we approach pervasive computing systems (LeCun, 

Deep learning, 2015). By using complex algorithms to analyze vast amounts of data, deep learning 

enables us to make more accurate predictions and better decisions than ever before (Hinton, 2012). 

In fact, recent studies have shown that deep learning can improve accuracy rates by up to 30% 

compared to traditional machine learning techniques (Esteva, Dermatologist-level classification of 

skin cancer with deep neural networks., 2017). This has huge implications for industries such as 

healthcare, transportation, and agriculture, where even small improvements in accuracy can have 

a significant impact on outcomes (Bojarski M. D., 2016) (Dhaliwal, 2020). It's better than any 

substitute mankind has ever known. 

1.4. Pervasive computing systems 

Pervasive computing systems, as mentioned before, refer to the integration of technology into 

everyday life (Weiser, 1991). These systems are characterized by their ability to effortlessly 

connect devices and services, creating a network that is constantly available and accessible 

(Satyanarayanan, 2001). 

Examples of pervasive computing systems include smart homes, wearable devices, and 

internet-connected vehicles (Cook, 2007) (Bonato, 2010). These systems enable users to control 

various aspects of their environment, such as temperature, lighting, and security, using their 

smartphones or other devices. They also allow for the collection and analysis of data, which can 

be used to improve efficiency and enhance the user experience, and that's the main goal. 
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Figure 1 Functioning of pervasive computing 

1.5. Deep Learning and Pervasive Computing Systems 

Deep learning has the potential to develop pervasive computing systems by enabling them to 

learn from their environment and adapt accordingly (Schmidhuber, Deep learning, 2015). For 

example, a smart home equipped with deep learning algorithms can learn its occupants' preferences 

and adjust the temperature, lighting, and music accordingly, which will increase the comfort and 

satisfaction of the user (Chen M. H., 2018). 

In addition, deep learning can improve the accuracy of predictions and decision-making in 

various industries, such as healthcare and transportation. For instance, deep learning algorithms 

can analyze medical images and identify potential health risks (Esteva, Dermatologist-level 

classification of skin cancer with deep neural networks, 2017), or predict traffic patterns and 

optimize routes for autonomous vehicles (Bojarski M. D., End to end learning for self-driving cars, 

2016). This potential for accuracy improvement can result in significant success in these fields. 



4 

 

1.6. Deep Learning methods 

DL is a subset of machine learning that uses artificial neural networks to learn and make decisions 

from large volumes of data. Unlike traditional machine learning methods, deep learning models can 

automatically identify patterns and features in raw data without explicit programming (Géron, 2019), it 

is one of the leading technologies for automated learning and pervasive computing. 

Figure 2 Main Methods of DL 

It has established itself and is rapidly developing as one of the most important scientific fields. It is 

characterized by a neural network, which contains many hidden layers composed of thousands of 

neurons that each perform small, simple operations. The results of a first layer of neurons are used as 

input for the calculations of a second layer and so on. There’re 3 main types of DL methods that are 

shown in the figure 4 above. 

1.6.1. Supervised learning 

Supervised learning is a type of machine learning where an algorithm learns from labeled 

training data to make predictions or decisions without human intervention. It involves training a 

model on a known dataset, where the input and the corresponding correct output are provided 

(Alpaydin, 2014). 
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Our works is pinned under the Supervised learning segment. 

1.6.2. Unsupervised learning 

Unsupervised learning is a type of machine learning where the algorithm is given a dataset 

without any specific instructions on what to do with it. The goal is to find hidden patterns, 

structures, or relationships within the data. Unlike supervised learning, there are no labeled outputs 

or correct answers provided during the training process (Bishop, 2006) 

1.6.3. Semi-supervised learning 

Semi-supervised learning is a machine learning paradigm that combines elements of both 

supervised and unsupervised learning. In semi-supervised learning, the algorithm is trained on a 

dataset that contains both labeled and unlabeled data. The goal is to leverage the limited labeled 

data and the abundance of unlabeled data to improve the model's performance, making it more 

accurate and robust 

1.7. Deep Learning Algorithms for Pervasive Computing Systems 

There are several deep learning algorithms that can be used in pervasive computing systems, 

each with its own unique advantages and applications.  

1.7.1. Fully Connected Neural Network (FCNN) 

Fully connected neural networks (FCNNs) are a type of artificial neural network where the 

architecture is such that all the nodes, or neurons, in one layer are connected to the neurons in the 

next layer. 

Figure 3 the architecture of FCNN 
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1.7.2. Recurrent Neural Network (RNN) 

Recurrent neural network (RNNs) is a type of neural network that contains loops, allowing 

information to be stored within the network. In short, recurrent neural networks use the reasoning of 

previous experiments to inform future events. 

Figure 4 RNN Architecture 

1.7.3. Convolutional Neural Network (CNN) 

CNN has several layers through which data is filtered into categories. CNNs have proven to be 

very effective in areas such as image recognition, textual language processing, and classification. 

Figure 5 CNN Architecture 

1.7.4. Long Short-Term Memory (LSTM) 

LSTM networks are a type of recurrent neural network capable of learning order dependence 

in sequence prediction problems. This behavior is necessary in complex areas such as machine 

translation, speech recognition, etc. LSTM networks are a complex area of deep learning. 
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Figure 6 LSTM Architecture 

1.8. the different hidden layers of a CNN and LSTM network 

In the following, the different hidden layers of a CNN and LSTM network are presented.  

1.8.1. Convolutional Layer 

In a CNN, the first layer is always the convolutional layer. This layer applies a convolutional 

operation to the input and transmits the output to the   layer next. A filter (or sometimes called a kernel) 

is used that traverses all areas of the input and extracts the characteristics. A unidimensional 

convolutional lock uses a one-dimensional cross-correlation operation in which the convolution 

window starts on the leftmost side of the input signal and travels through the input signal from left to 

right successively. When the convolution window slides to a certain position, the input subnets in the 

window and the kernel network are multiplied and summed element by element to obtain the result at 

the corresponding location in the output network as shown in Figure 7 
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Figure 7 One-dimensional cross-correlation operation.   

The blue parts are the first input element as well as the kernel output element used in which: 

0×1+1×2=2 

1.8.2. Pooling layer 

The pooling layer is used to down sample the output of the convolutional layer. There are several 

types of pooling such as, mean pooling, max pooling. The max pooling layer essentially takes a 

window of size l × 1 and then selects the largest of the l numbers in that window. The same process 

is applied to the different subregions.  

Figure 8 Pooling layer 

1.8.3. SoftMax 

The SoftMax layer in deep learning is the final layer in a neural network used for multi-class 

classification. It takes raw scores (logits) as input and converts them into a probability distribution 

over different classis. This layer assigns probabilities to each class, and the class with the highest 

probability is predicted as the output. It's a critical component for turning neural network 

predictions into meaningful class probabilities. 
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Figure 9 SoftMax Lyaer 

1.8.4. Flatten 

The role of the Flatten layer is to convert the data into a one-dimensional table and feed it 

into the next layer. The output of the convolutional layers is flattened to create a single long 

feature vector, which will be connected to the layer called the fully connected layer.  

Figure 10 Flatten Layer 

1.8.5. Fully connected layer 

In a fully connected layer, neurons in one layer are connected to all   neurons in the second 

layer. This layer is also present in the classical neural network. The SoftMax function is applied 

to the output of the second layer. The output of the SoftMax function is used to calculate the 

probabilities of each label. 
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Figure 11 Fully connected layer 

1.8.6. Wearable sensors 

Wearable sensors are used to collect signals directly from users. They are usually attached to 

different parts of the body such as the waist, wrists, chest, legs and head (Ravi, 2005)[Ravi et al., 

2005], but can also be attached to clothing and integrated into other commonly used accessories 

such as watches, glasses or mobile phones (Brezmes, 2009). They contain a battery unit that  

provides the power needed for continuous operation and, for some of them, a wireless unit for 

transmitting sensor data when needed externally or to interface them with other devices worn on 

the body. The physiological and motion signals obtained from wearable sensors are very 

informative for the HAR. Skin temperature, heart rate, heat flow, conductivity, global positioning 

system (GPS) position, and body movements are some examples of variables that can be 

measured with current wearable sensor technologies (Yang C. C., 2006). They can be practical, 

for example, in applications where continuous patient monitoring is required. 

Unlike ambient sensors, wearable sensors have advantages in terms of privacy and operating 

area. In the first case, users are less reluctant to use them anywhere if there is no image or video 

capture. Second, since these sensors are always worn by the user, they are ubiquitous and their 

location coverage is virtually unlimited. They also have the advantage of being very portable and 

do not require stationary equipment. On the other hand, wearable sensors have also brought new 
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challenges: preserving battery life while being able to collect reliable information from limited 

detection. These sensors are sometimes uncomfortable for the current user (e.g., if they are too tight 

or wired or if they need to be constantly repositioned after dressing) and cannot provide a long-

term solution for activity monitoring without regular recharging. In addition, hybrid sensing 

approaches, which combine wearable and ambient sensors from different sources, offer a robust 

alternative option for HAR. For example, in (Tapia, 2006), a sensor-rich environment was set up 

for the collection of signals from 72 environmental and body sensors to assess complex activities 

in an indoor setting. 

Figure 12Wearable sensors position in human body 

In this work, we use accelerometers and gyroscopes and magnetometer for the classification of 

human body movements. We describe their main features in the following. 
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1.8.7. Gyroscope 

The gyroscope is a sensing device for measuring orientation (Woodman, 2007) It has been used 

in many applications such as inertial navigation systems, aerial vehicles to increase stability (e.g. 

in quadricepters) and recently it has been introduced in electronic devices (e.g. smartphones, game 

consoles) to improve user interfaces and gaming experience. For the HAR, this sensor has been 

used in various applications such as activity classification (e.g., walking, stair climbing) and 

transitions between postures (e.g., from standing to sitting) (Coley, 2005) (Altman, 1992). 

            Gyroscopes have also been produced with MEMS technologies. However, sensors of 

this type can only measure orientation indirectly. Instead, they estimate the angular velocity that 

can then be integrated over time to obtain orientation. However, it is first necessary to have an 

initial angular position of reference to achieve this. These sensors are also very sensitive to noise, 

which can lead to measurement drift due to integration. 

Figure 13 (a) Gyroscope  (b)Gyroscope in smartphone 

The directions of the axes are shown in Figure 8. The raw data of a gyroscope is the rotational 

speed in (radian per second) rad/s. 

1.8.8. Accelerometer 

The accelerometer is an instrument that measures the physical acceleration experienced by an 

object. It has been used for several applications in science, medicine, engineering and industry, 
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such as measuring machine vibration, accelerating high-speed vehicles and moving loads on 

bridges. 

Regarding the HAR, the accelerometer is one of the most widely used sensors to read body 

movement signals (Mannini, 2010). Its principle of operation generally consists of a seismic mass 

that moves according to the acceleration to which it is subjected. This displacement can then be 

translated into a measurable electrical signal. This phenomenon has been applied to the 

development of sensors for micro-electromechanical systems (MEMS). Their technology makes 

it possible to create nanoscale devices made with semiconductors. They are advantageous over 

other sensor technologies because they can be produced on a large scale and with low 

manufacturing costs. The most common MEMS accelerometers function as a capacitive sensor 

consisting of a cantilever beam with a test mass whose deflection is correlated with the 

acceleration experienced by the sensor (Yang X. &., 2010) . 

The magnitude and direction of acceleration can be measured as a vector quantity by 

orthogonally arranging the sensors in the three spatial dimensions. These sensors can also be built 

on a single chip and it is now common to find triaxial accelerometers in several commercial 

electronic devices. 

One of the problems with using accelerometers to detect body movements is the effect of the 

gravitational field, which is always present in the measurements and has a relatively high 

magnitude (g = 9.81m/s2).  However, it can also be separated from body movement by filtering. 

Gravity vector detection can also help determine the orientation of an object relative to the axis 

of gravitational force when triaxial accelerometers are used. 

Figure 14 Accelerometer 
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1.8.9. Magnetometer 

The magnetometer is a device employed for measuring magnetic fields' strength and 

direction. It has found applications in various fields, including geophysics, navigation, and 

consumer electronics. Concerning Human Activity Recognition (HAR), magnetometers are 

valuable sensors for capturing data related to an individual's orientation and movement in 

relation to Earth's magnetic field. 

In principle, a magnetometer detects changes in magnetic field intensity and direction. This 

information is then translated into an electrical signal for measurement. In the context of micro-

electromechanical systems (MEMS), magnetometers can be designed as nanoscale devices 

using semiconductor technology. This approach offers scalability and cost-effectiveness in 

their production, making them widely used in various devices. 

MEMS-based magnetometers often employ the Hall effect, where a magnetic field deflects 

the movement of charge carriers in a semiconductor material, leading to a measurable voltage. 

These sensors can be arranged in triaxial configurations, allowing them to capture the magnetic 

field's three-dimensional characteristics. 

Figure 15 magnetometer 

One challenge when using magnetometers for HAR is their susceptibility to external 

magnetic interference, such as nearby electronic devices or ferrous materials. Proper 
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calibration and data filtering techniques are necessary to mitigate these interferences and 

extract meaningful orientation and movement data. 

In summary, magnetometers play a crucial role in HAR by providing data on an 

individual's orientation and movement relative to the Earth's magnetic field. Their MEMS-

based design, triaxial configurations, and sensitivity to magnetic changes make them a 

valuable sensor in many commercial electronic devices. 

 

1.9. Conclusion  

In this chapter, we introduced the field of pervasive computing and the integration of deep 

learning into it and gave the definitions and the importance of the interconnection for both of them.  

pervasive computing systems represents a remarkable leap forward in our technological 

landscape. Deep learning's ability to autonomously analyze data and make precise predictions has 

far-reaching implications across various sectors, from healthcare to transportation. Pervasive 

computing systems, with their interconnected devices and user experiences, are poised to benefit 

immensely from deep learning's capabilities. 
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Chapter 02: State of the art 

2.1. Introduction  

Deep Learning, a subset of machine learning, has emerged as a transformative technology with 

wide-ranging applications. In this chapter, we explore the state of the art in applying Deep 

Learning to Pervasive Computing. This interdisciplinary field focuses on integrating technology 

into our daily lives, with applications spanning Internet of Things (IoT), Smart Homes, Smart 

Cities, and more. Deep Learning techniques have played a pivotal role in enhancing the capabilities 

of pervasive computing systems. 

2.2. Literature review  

In the realm of applying Deep Learning to Pervasive Computing, numerous research 

endeavours have significantly advanced the field. This section provides an overview of some of 

the most influential works, shedding light on the multifaceted approaches adopted to leverage 

Deep Learning in creating intelligent and adaptive environments.  These labours are underpinned 

by the premise that personal and ubiquitous detection methods, notably those involving 

smartphones, offer discreet means to continuously collect pertinent data (Garcia-Ceja et al., 2018)  

One pivotal study by Wei and Ma (2023) explored the application of deep learning-based 

speech systems in online music learning systems. This work exemplifies how Deep Learning 

techniques can enhance user experiences within pervasive computing applications, such as online 

education (Wei and Ma, July 2023). 

Furthermore, Zeng et al. (2020) conducted a comprehensive survey of deep learning-based 

approaches for Human Activity Recognition (HAR). This survey elucidates the various deep 

learning techniques employed for HAR, which is essential in domains such as healthcare, smart 

homes, and more (Zeng et al., 2020). 

The fusion of Deep Learning with Pervasive Computing extends to edge computing as well, 

Shi et al. (2019) reviewed the integration of deep learning into edge computing, a pivotal concept 
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in pervasive computing. This review underscores the significance of deploying deep learning 

models at the edge of the network to improve efficiency and responsiveness (Shi et al., 2019). 

Yao et al. (2017) introduced "DeepSense," a unified deep learning framework for time-series 

mobile sensing data processing, making it applicable to pervasive computing (Yao et al., 2017). 

Ronao and Cho (2016) demonstrated the use of deep learning models for human activity 

recognition, a crucial application of pervasive computing, in their work "Human Activity 

Recognition Using Smartphones with Deep Learning Models" (Ronao and Cho, 2016). 

Zhuang et al. (2018) provided a comprehensive overview of deep learning techniques in the 

context of sensor-based human activity recognition, a core component of pervasive computing, in 

their survey paper (Zhuang et al., 2018). 

The ground-breaking research effort by Hassan et al. (2018) introduced the use of deep 

convolutional neural networks (CNNs) for Human Activity Recognition (HAR). Their work 

showcases the power of deep learning in accurately recognizing and classifying human activities, 

a fundamental capability in pervasive computing systems (Hassan et al., 2018). 

These works collectively provide a foundation for understanding the diverse applications of 

Deep Learning in the pervasive computing domain, offering valuable insights for further research 

and innovation, also these efforts underscore the dynamic evolution of pervasive computing 

domain.  

2.3. Applications of Deep Learning in Pervasive Computing 

Systems 

Deep learning has numerous applications in pervasive computing systems, from smart homes 

to smart healthcare and beyond. One example of its application is in the field of image recognition, 

where deep learning algorithms can be used to identify objects and people in images with high 

accuracy. This has potential benefits for security systems, as well as for improving accessibility 

for visually impaired individuals. 
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Another example is in the area of natural language processing, where deep learning algorithms 

can be used to improve speech recognition and language translation. This has potential benefits 

for communication devices, such as smartphones and personal assistants, as well as for language 

learning and cross-cultural communication. 

Figure 16 Pervasive computing architecture  

2.3.1. Smart Homes 

Smart homes are becoming increasingly popular as technology advances and more devices 

become connected to the internet of things (IoT). Deep learning can be applied in smart homes to 

improve their functionality and make them more efficient. The integration of Deep Learning into 

Pervasive Computing has also paved the way for more personalized and efficient services. Al-

Fuqaha et al. (2018) provided a comprehensive survey of deep learning in the context of the 
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Internet of Things (IoT). This survey highlights how deep learning techniques are leveraged to 

enhance IoT, a critical component of pervasive computing systems (Al-Fuqaha et al., 2015). 

One example of how deep learning can be used in smart homes is through the implementation 

of intelligent energy management systems as well, Xu et al. (2019) focused on compressing deep 

neural networks for resource-constrained IoT devices, a significant aspect of pervasive computing, 

in their work "DeepIoT" (Xu et al., 2019). These systems use data from various sensors and devices 

within the home to optimize energy usage and reduce waste. By analyzing patterns in energy 

consumption, these systems can learn the habits and preferences of the occupants and adjust 

accordingly. This not only saves money on energy bills but also reduces the carbon footprint of 

the household. 

Figure 17 Smart home features 

2.3.2. Smart Cities 

Smart cities are urban areas that use technology and data to improve the quality of life for their 

citizens. Deep learning can play a crucial role in making smart cities more efficient and sustainable. 

By analysing vast amounts of data from sensors and other sources, deep learning algorithms can 
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provide insights into traffic patterns, energy usage, and other key factors that affect city life. Hodge 

et al. (2019) explored how deep learning is applied to IoT data, which is a central element of 

pervasive computing, in their survey titled "Deep Learning for IoT Big Data and Streaming 

Analytics: A Survey" (Hodge et al., 2019). 

For example, deep learning can be used to optimize traffic flow by predicting congestion and 

suggesting alternative routes. It can also help reduce energy consumption by identifying areas 

where lighting or heating can be adjusted based on occupancy levels. These are just a few examples 

of how deep learning can make smart cities more liveable and environmentally friendly. 

2.3.3. Smart Healthcare 

Deep learning has the potential to revolutionize the healthcare industry by improving patient 

outcomes and reducing costs. One example of this is the use of deep learning algorithms to analyse 

medical images such as X-rays and MRIs. By automating the analysis process, doctors can receive 

more accurate and timely diagnoses, leading to better treatment options for patients. 

Another application of deep learning in smart healthcare is the use of wearable devices to 

monitor patient health. By collecting and analysing data on a continuous basis, doctors can detect 

potential health issues before they become serious, allowing for earlier intervention and better 

outcomes. For example, a wearable device could detect changes in heart rate or blood pressure that 

indicate an impending heart attack, prompting the patient to seek medical attention before it's too 

late. In the context of healthcare, Nweke et al. (2018) delved into deep learning-based Human 

Activity Recognition (HAR) for healthcare applications. This research demonstrates the potential 

of deep learning models in continuously monitoring patients' vital signs and detecting anomalies, 

enabling early interventions during health emergencies (Nweke et al., 2018). 

 

 



21 

 

2.3.3. Smart Transportation 

Smart transportation is an area where deep learning can make a significant impact. By using 

advanced algorithms to analyse data from sensors and cameras, transportation systems can become 

more efficient and safer. For example, deep learning can be used to predict traffic patterns and 

optimize routes for public transportation. This can reduce travel time and improve the overall 

experience for commuters. 

Another application of deep learning in smart transportation is autonomous vehicles. By using 

deep learning algorithms to analyse sensor data from cameras and radar systems, self-driving cars 

can make decisions in real-time and navigate complex environments with ease. This can reduce 

the number of accidents on the road and make transportation more accessible for people who are 

unable to drive. In the domain of transportation, Wei et al. (2019) explored the use of deep 

reinforcement learning for intelligent transportation systems. Their research illustrates how deep 

learning can optimize transportation systems within smart and connected cities (Wei et al., 2019). 

2.4. Conclusion  

In conclusion, the combination of Deep Learning with Pervasive Computing is transforming 

the way we interact with technology. It empowers our environments, from IoT devices to entire 

cities, to become smarter, more responsive, and better aligned with human needs. The diverse 

applications and innovative techniques discussed in this chapter exemplify the dynamic evolution 

of this interdisciplinary field. As researchers continue to innovate, the potential for Deep Learning 

in Pervasive Computing becomes increasingly promising 
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Chapter 03: Methodology and Architecture 

3.1. Introduction 

This chapter will explain the comprehensive methodology, architectural choices, and approach 

applied to harness our deep learning for Human Activity Recognition (HAR) within pervasive 

computing systems. The chosen approach encompasses data collection, preprocessing, model 

architecture, training, validation, ethical considerations, and technological frameworks. 

3.2. Architecture Selection 

In pursuit of optimal results, we embarked on selecting two primary architectures: 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks. These 

architectures were chosen due to their aptness for sequential and spatial data. A CNN excels in 

capturing spatial features, while an LSTM adeptly handles sequential dependencies. This choice 

catered to the diverse data dimensions inherent in HAR. 

Figure 18 Data set body positions 

Figure 19 Activity classes Standing,  Sitting, Laying, Walking, Upstairs, Downstairs 
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Figure 10 Schematic diagram showcasing the structure of the collected data 

Figure 11 Arm.xlsx dataset file sensors and their positions & readings with activity labels 

3.6. Data Collection and Preprocessing 

The foundation of accurate HAR lies in robust data collection and preprocessing. We utilized 

the "Shoaib, Muhammad" dataset, comprising Arm, Belt, Wrist, and Pocket sensor positions. 

These datasets encompassed timestamped readings of accelerometer, gyroscope, magnetometer 

axes, and corresponding activity labels. Leveraging the meticulous data labeling and pre-



24 

 

processing culminating in the fusion of datasets sourced from various sensor positions provided 

by "Shoaib, Muhammad," we ensured a reliable basis for our research 

3.7. Model Training  

The model training process was instrumental in realizing the potential of deep learning for 

Human Activity Recognition (HAR) within pervasive computing systems. For our investigation, 

we considered two prominent architectures: Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) networks. 

Figure 20 CNN layers 

For the CNN architecture, we harnessed its capacity for spatial feature extraction. Our CNN 

model was constructed using sequential layers comprising a Conv1D layer, a MaxPooling1D layer, 

and a Flatten layer. This design enabled the CNN to identify spatial patterns within the sensor data. 

Subsequently, fully connected Dense layers were added to enhance the model's representation 

capabilities. The final Dense layer employed a softmax activation function, enabling multiclass 

classification as shown above in figure 13. 
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In contrast, our LSTM architecture leveraged its strength in capturing temporal 

dependencies. We fashioned an LSTM model, characterized by a single LSTM layer preceded by 

an input layer. This LSTM layer was chosen for its ability to process sequential data effectively. 

The architecture was augmented with Dense layers to enhance feature extraction and 

classification. Similar to the CNN, a softmax-activated Dense layer was employed for multiclass 

prediction. 

Figure 21 LSTM layers 

The two distinct architectures allowed us to explore both spatial and sequential characteristics 

of the data, enriching our understanding of their effectiveness in HAR scenarios. 

3.8. Approach Validation 

Approach validation entailed evaluating the CNN and LSTM models against a comprehensive 

dataset. The dataset partitioning scheme, as suggested by "Shoaib, Muhammad," was employed, 

facilitating consistent and trusted validation. Our dataset was split into 80% for training and 20% 

for testing.  Our assessment involved utilizing established evaluation metrics to gauge the 

performance of the models, including confusion matrices and accuracy graphs. 
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Figure 22 Dataset split 

3.8.1. Confusion Matrix 

In a two-class problem, the classification model predicts one of two classes that are generally 

referred to as positive and negative classes. Given a classifier and an example to be classified, four 

situations are conceivable. If the example is positive and is classified as positive, it counts as a true 

positive TP; if it is classified negative, it counts as a false negative FN.  

Table 1 Confusion table of a two-class problem 

Confusion matrix 

TP TN 

FP FN 

If the example is negative and is classified as negative, it counts as a true negative TN; if it is 

classified positive, it counts as a false positive FP. The outputs produced by the classifier can be 

represented by a 2 × 2 construction matrix. Table 4.1 shows the confusion matrix for a two-class 

problem where the rows indicate the actual class and the columns indicate the predicted class. 

3.8.2. Classification rate 

The rate of good classification is the simplest measure of performance and is the basis of any 

other criterion (Pierre Baldi et al., 2000). The classification rate   calculates the percentage of 
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correctly classified samples in relation to the total number of samples. From the values in the 

confusion table, the classification rate is given by the following equation: 

Figure 23 Equation of classification rate 

3.8.3. Performance Metrics 

To assess the efficacy of our models, we employed a set of performance metrics, including 

accuracy, precision, recall, and F1-score. These metrics provided a comprehensive understanding 

of the models' abilities to accurately classify different human activities. 

Figure 24 Metric and Formula 

In the case of the CNN model, we observed that it exhibited commendable accuracy, 

effectively capturing spatial nuances within the sensor data. On the other hand, the LSTM model 

excelled at capturing temporal dependencies, showcasing its prowess in recognizing sequential 

patterns in human activities. 

 

Architecture Accuracy Loss Epoch 

LSTM 92% 0.22% 100 

Table 2 LSTM accuracy and loss and time per learning step 
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Architecture Accuracy Loss Epoch 

CNN 88% 0.3% 100 

Table 3 CNN accuracy and loss and time per learning step 

We visualized the validation outcomes through training and validation accuracy per time step 

over epochs. These images illuminated the models' learning trajectories, illustrating their 

convergence and potential overfitting points. 

3.9. Ethical Considerations 

Our pursuit of accurate HAR in pervasive computing systems was accompanied by a deep 

commitment to ethical considerations. We were mindful of the implications of dealing with 

paramount importance of addressing algorithmic bias. We acknowledged that, despite the power 

of deep learning, there exists a potential for misinterpretation and bias in activity recognition. This 

insight underscored the need for thorough validation, fair representation, and continuous 

monitoring to mitigate biases that could result in skewed results, unfair treatment, and erroneous 

insights 

3.10. Software and Hardware Frameworks  

3.10.1 Machines 

Specifications: 

 

 

 

Table 4 Machine Specifications 

• PC: Mars Gaming / Lenovo-thinkpad L420 

• Operating system : Windows 10 Professionnel 

• Processor : 11th Gen Intel® Core™ i5-11400F @ 2.60GHz / intel(r) 

core(tm) i5-2430m cpu @ 2.40ghz 2.40 ghz 

• RAM : 16,00 GB / 4,00 Go 

• GPU : RTX 3070TI / HD Intel® 3000 
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3.10.2 Spyder IDE 

Spyder's integrated development environment provided us with several key advantages, the 

Spyder IDE served as an invaluable tool in our deep learning research journey, providing us with 

a controlled and feature-rich environment for developing, optimizing, and fine-tuning our models 

Figure 25 Spyder IDE 

Code Proficiency: With Spyder, we could write, test, and debug our code seamlessly. The 

IDE's robust debugging tools and interactive consoles enabled us to identify and resolve issues 

efficiently. 

Figure 26 Spyder Console 
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Integration with Libraries: Spyder effortlessly integrated with popular Python libraries and 

deep learning frameworks. This compatibility streamlined the implementation of complex neural 

network architectures. 

Figure 27 Spyder Libraries 

Data Visualization: Spyder seamlessly integrated with data visualization libraries like 

Matplotlib and Seaborn, enabling us to generate informative plots and graphs to visualize our 

research results. 

Figure 28 Visualization Terminal 



31 

 

3.11. Conclusion 

This chapter outlined a comprehensive methodology for Human Activity Recognition (HAR) 

within pervasive computing systems. We began by meticulously collecting and preprocessing data, 

utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks to build robust HAR models. Rigorous validation, ethical considerations, and model 

evaluation played pivotal roles in our approach. By synergizing software and hardware 

frameworks, we harnessed deep learning's potential. Subsequent chapters will delve into our 

findings, contributing to the field's progress. 
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Chapter 04: Implementation and Results 

4.1. Introduction 

In this chapter, we delve into the practical implementation of our approach and present the 

outcomes of our experiments. We begin by discussing the setup and execution of the deep learning 

models developed for Human Activity Recognition (HAR) within pervasive computing systems. 

Subsequently, we present a comprehensive analysis of the results obtained from our models' 

performance and evaluate their effectiveness in recognizing human activities. 

4.2. Model Implementation 

4.2.1. Data Preprocessing 

Before training our models, the collected sensor data underwent thorough pre-processing as 

mentioned in chapter 3. This involved handling missing values, normalizing the data, and encoding 

the activity labels. The processed dataset was then divided into training and testing sets, with an 

80-20 split, respectively. This partitioning strategy ensured a robust evaluation of model 

generalization. 

Figure 29 Flowchart of the sensors pre-processing data 
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4.2.2. CNN and LSTM Architecture Instantiation 

We instantiated two distinct deep learning architectures: The Convolutional Neural Network 

(CNN) and the Long Short-Term Memory (LSTM) network. The CNN was designed to capture 

spatial features within the data, while the LSTM excelled in capturing temporal dependencies. 

Figure 30 LSTM model architecture 

Figure 31 CNN model architecture 

4.3 Model results and discussion 

4.3.1. CNN Model Performance 

The CNN model exhibited remarkable accuracy, achieving 88% on the testing dataset. The 

confusion matrix revealed that the model excels in specific activities which are walking, sitting, 

standing, indicating the model's strengths in recognizing certain activities while potentiallyfacing 
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challenges in others. This observation aligned with the spatial feature extraction capacity of the 

CNN architecture. 

Figure 32 CNN confusion matrix 

Figure 33 CNN Model Loss 
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Figure 34 CNN Model Accuracy 

4.3.2. LSTM Model Performance 

The LSTM model demonstrated a superior overall performance compared to the CNN model, 

attaining 92% accuracy. The confusion matrix analysis demonstrated an even higher results in the 

activities that the CNN model exceled at, furthermore it had less difficulties when it comes to the 

rest of the activities, highlighting the model's proficiency in capturing sequential patterns and 

temporal dependencies in human activities. 

Figure 38 LSTM confusion matrix 
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Figure 35 LSTM Model Loss 

Figure 40 LSTM Model Accuracy 

4.4. Comparison and Insights 

4.4.1. CNN vs. LSTM 

Comparing the CNN and LSTM models, we observed distinct strengths and weaknesses. The 

CNN excelled in capturing spatial nuances, making it effective for activities with prominent spatial 
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characteristics. On the other hand, the LSTM model showcased its prowess in recognizing 

activities with complex temporal dependencies. 

4.4.2. Accuracy comparison baseline vs LSTM 

The average recognition accuracy worldwide with a CNN model is of 90%, which aligns with 

the findings of Mo, Li, Zhu, and Huang, who compared convolutional neural networks and 

multilayer perceptron performance on the classification of activities based on the CAD-60 Dataset. 

Figure 36 baseline vs LSTM model 
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4.4.3. Resource-Intensive Models 

Deep learning models, especially LSTMs are computationally demanding. This can pose 

challenges in resource-constrained environments. Optimizing model efficiency and exploring 

lightweight architectures can address this limitation. 

Figure 37 Resource usage of DL models 

In this section, we analyse the resource utilization of our deep learning models, focusing on 

CPU usage, GPU usage, memory consumption, and training time. Understanding the resource 

demands of these models is crucial for practical applications and determining the computational 

requirements 

CPU Usage (Training): Our analysis reveals that the Convolutional Neural Network (CNN) 

exhibits higher CPU usage during training compared to the Long Short-Term Memory (LSTM) 

network. This disparity can be attributed to the inherent architecture of the models. CNNs are 

computationally intensive due to the convolutions and pooling operations involved in feature 

extraction. In contrast, LSTMs primarily rely on sequential computations, resulting in lower 

CPU utilization. 
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GPU Usage (Training): When it comes to GPU usage, the LSTM model stands out as the more 

resource-intensive model. This is because LSTMs require substantial parallel processing for 

sequence modelling, making them ideal for tasks involving temporal dependencies. In contrast, 

CNNs, while still utilizing the GPU, demand fewer GPU resources during training. 

Memory Consumption (Training): Our findings indicate that the LSTM model consumes more 

memory during training compared to the CNN. This disparity arises from the LSTM's need to 

maintain hidden states and cell states across sequences, which necessitates larger memory 

buffers. In contrast, CNNs, which process data in parallel, have lower memory requirements. 

Training Time: The training time represents the duration each model takes to converge during 

the training phase. Here, we observe that the LSTM model requires more time to train compared 

to the CNN. This is primarily due to the sequential nature of LSTM computations, which can 

extend training times for tasks with longer sequences. 

Practical Implications: The resource utilization analysis provides valuable insights for practical 

applications. Depending on the available hardware and real-time constraints, the choice between 

CNNs and LSTMs can significantly impact system performance. For applications with limited 

CPU and GPU resources, CNNs may be preferred due to their efficiency. Conversely, tasks that 

heavily depend on temporal dependencies and have ample computational resources may benefit 

from LSTMs. 

Computational Requirements: Understanding the resource demands also aids in estimating 

computational requirements. Project planners and developers can use this information to allocate 

hardware resources effectively and optimize model selection for specific use cases. Additionally, 

it emphasizes the need for GPU-accelerated hardware when working with resource-intensive 

models like LSTMs. 

Comprehending the resource utilization of deep learning models is pivotal for optimizing 

system performance and resource allocation in practical Human Activity Recognition (HAR) 

applications. Which compelled us to opt for the LSTM model because it got better results than the 

CNN model as mentioned earlier. 
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4.5. Graphical User Interface implementation (GUI) 

For our GUI application we used the Tkinter library. It serves as a tool for Human Activity 

Recognition (HAR) using deep learning, specifically a Long Short-Term Memory (LSTM) model. 

Here's a general idea of what this code does and its key components: 

Import Libraries: The code begins by importing necessary Python libraries, including pandas 

for data handling, NumPy for numerical operations, scikit-learn for data preprocessing, 

TensorFlow and Keras for deep learning, tqdm for progress bars, Tkinter for GUI, Matplotlib for 

data visualization, and seaborn for creating a confusion matrix. 

GUI Setup: The Tkinter library is used to create a GUI window titled "Human Activity 

Recognition." The GUI includes widgets like labels, text entry fields, buttons, and message boxes 

for user interaction. 

File Upload Widget: Users can upload an Excel dataset (assumed to contain sensor data) using 

the "Upload Excel File" widget. This widget opens a file dialog for file selection. 

Training Model: Clicking the "Train Model" button triggers the training process. It reads the 

uploaded dataset, preprocesses it, splits it into training and validation sets, builds an LSTM model, 

compiles and trains the model using the data. Training progress is displayed using a progress bar. 

Classification: After training, users can click the "Classify Data" button to classify new data 

using the trained LSTM model. This involves preprocessing the data and making predictions. The 

predicted activities are displayed in a message box. 

Visualization: The "Visualize Results" button is used to display the confusion matrix, 

accuracy, and loss curves for the trained model. It provides insights into the model's performance. 
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Figure 38 HAR Graphical user interface  

Overall, this code creates a user-friendly interface for uploading datasets, training an LSTM-

based HAR model, classifying activities, and visualizing the model's results. It's designed to assist 

in experimenting with HAR using deep learning techniques. 

4.5.1. Graphical user interface results 

Here are the results of the execution for each button  

Browse: Allows you to load the xlsx file to the GUI 

Figure 39 Browse xlsx file 
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Train model: starts the training for the loaded xlsx file  

Figure 40 File training 

Classify data: This button executes the classification process and sorts the activities based 

on the most common ones  

Figure 41File classification 
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Visualize results: It displays the confusion matrix and both accuracy, loss graphs of the 

selected xlsx file  

Figure 42 Displayed results 

4.6. Conclusion 

In this chapter, we embarked on the implementation of our approach, deploying CNN and 

LSTM models for Human Activity Recognition in pervasive computing systems. The results 

showcased the models' effectiveness in recognizing activities, each excelling in different aspects 

of data analysis. Ethical considerations underscored the significance of unbiased evaluation and 

responsible deployment. Moving forward, our insights offer a pathway for advancements in the 

field, positioning accurate and ethical HAR as a cornerstone of pervasive computing systems. 

 

 



44 

 

Chapter 05: General Conclusion 

5.1. Contributions 

In this project, we have made several significant contributions: 

Human Activity Recognition Model: We have developed a Human Activity Recognition 

model using LSTM neural networks. This model can accurately predict human activities based on 

sensor data, which can be valuable in various applications such as healthcare, fitness tracking, and 

monitoring. 

Graphical User Interface (GUI): We have created an interactive GUI that allows users to 

easily upload datasets, train the model, classify data, and visualize results. This GUI provides a 

user-friendly interface for individuals without a background in machine learning. 

5.2. Limitations 

While our project offers valuable contributions, it also has certain limitations: 

Dataset Dependency: The performance of our Human Activity Recognition model heavily 

depends on the quality and diversity of the dataset used for training. Using a more extensive and 

diverse dataset could potentially improve the model's accuracy. 

Simplified Features: We used a simplified set of sensor data features (accelerometer, 

gyroscope, magnetometer) for model training. Incorporating additional features or data sources, 

such as heart rate or environmental data, could enhance the model's capabilities. 

Lack of Real-Time Data: Our model is designed for batch processing and does not handle 

real-time data streaming. Implementing real-time data processing would be a valuable future 

enhancement. 
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5.3. Future work and perspectives 

Looking ahead, there are several avenues for future work and perspectives: 

Enhanced Data Preprocessing: Further research into data preprocessing techniques, such as 

noise reduction and outlier detection, can lead to more robust model performance. 

Transfer Learning: Exploring transfer learning approaches by fine-tuning models pre-trained 

on larger datasets, like ImageNet, could be beneficial for improving recognition accuracy. 

Real-Time Deployment: Developing a real-time version of the application, capable of 

processing sensor data as it arrives, would enable applications in live monitoring and immediate 

feedback scenarios. 

Cross-Domain Applications: Extending the model's application domain beyond human 

activity recognition, such as anomaly detection in industrial processes or wildlife monitoring, 

opens up new possibilities. 

User Customization: Implementing features that allow users to customize the model or train 

it on their specific datasets can make the application more versatile. 

In conclusion, this project provides a solid foundation for Human Activity Recognition and 

opens up exciting opportunities for further research and development in this field. The 

contributions made, coupled with the recognition of limitations and future work, provide a 

comprehensive overview of the project's scope and potential impact. 
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Appendix A 

Figure Sources 

A.1. PAGES 

Figure 1: What Is Ubiquitous Computing (Pervasive Computing)? Meaning, Layers, 

Examples, and Applications: 

https://www.spiceworks.com/tech/iot/articles/what-is-ubiquitous-computing/ 

Figure 2: Pervasive Computing Architecture, Applications, Issues and Challenges Isha Jakhar, 

Annupriya, Hatesh Shyan CSE, Chandigarh University, Mohali, Punjab, India: 

https://ijsrcseit.com/paper/CSEIT1836105.pdf 

Figure 3: Smart Home vs. Connected Home vs. Home Automation: Discussing the Key 

Differentiators & Dispelling the Confusion: 

https://www.myplacenz.co.nz/smart-home-vs-connected-home-vs-home-automation-

discussing-key-differentiators-dispelling-confusion/ 

Figure 4: Semi-Supervised Learning, Explained with Examples: 

https://www.altexsoft.com/blog/semi-supervised-learning/ 

Figure 5: The Use of Machine Learning in Industrial Quality Control Thesis by Erik Granstedt 

Möller for the degree of Master of Science in Engineering: 

https://www.diva-portal.org/smash/get/diva2:1150596/FULLTEXT01.pdf. 

Figure 6 : Un algorithme génétique pour l'ordonnancement robuste : application au problème 

du flow shop hybride : 

https://www.researchgate.net/figure/Croisement-en-1-point-de-deux-

chromosomes_fig4_48907984 

https://www.spiceworks.com/tech/iot/articles/what-is-ubiquitous-computing/
https://ijsrcseit.com/paper/CSEIT1836105.pdf
https://www.myplacenz.co.nz/smart-home-vs-connected-home-vs-home-automation-discussing-key-differentiators-dispelling-confusion/
https://www.myplacenz.co.nz/smart-home-vs-connected-home-vs-home-automation-discussing-key-differentiators-dispelling-confusion/
https://www.altexsoft.com/blog/semi-supervised-learning/
https://www.diva-portal.org/smash/get/diva2:1150596/FULLTEXT01.pdf
https://www.researchgate.net/figure/Croisement-en-1-point-de-deux-chromosomes_fig4_48907984
https://www.researchgate.net/figure/Croisement-en-1-point-de-deux-chromosomes_fig4_48907984
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Figure 9: Physical Activity Recognition by Utilising Smartphone Sensor Signals: 

https://www.researchgate.net/figure/Orientation-of-the-axes-relative-to-a-typical-

smartphone-device-using-a-gyroscope-sensor_fig1_331320409 

Figure 10: What is Accelerometer and how does it work on smartphones: 

https://www.techulator.com/resources/8930-How-does-smart-phone-accelerometer-

work.aspx 

Figure 11: MagiMusic: Using embedded compass (magnetic) sensor for touch-less gesture-

based interaction with digital music instruments in mobile devices: 

https://www.researchgate.net/figure/The-magnetic-sensor-provides-a-measure-of-magnetic-

field-along-X-Y-and-Z-axis_fig1_221308679 

Figure 15: Evaluating Machine Learning Model Performance: 

https://www.section.io/engineering-education/evaluating-ml-model-performance/ 

Figure 16: A Deep Learning Framework for Human Activity Recognition Using Smartphone 

Data: 

https://www.researchgate.net/figure/Confusion-Matrix-Evaluation-Formula_tbl1_349318269 
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