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1
General Introduction

1.1 Context

THE combinatorial optimization is a subfield of mathematical optimization that is con-
nected to operations research, algorithm theory, and computational complexity theory.

It has major applications in a variety of domains, including artificial intelligence, machine
learning, mathematics, auction theory, and software engineering.
In most of the real-world problems, it is not a matter of optimizing only one objective but
rather of simultaneously optimizing several objectives, which are generally conflicting. In
the last decades, researchers showed an increasing interest in multiobjective optimization,
which consists of optimizing several objectives simultaneously while looking for the best
possible compromise, knowing that the improvement of one objective leads to the dete-
rioration of another one. The notion of a unique optimal solution in mono-objective op-
timization disappears for multi-objective optimization problems (MOPs) in favor of the
notion of a set of Pareto optimal solutions. The majority of these problems are qualified as
difficult, especially in the continuous case, because their solution requires the use of ad-
vanced algorithms. We distinguish two main classes of methods: mathematical methods
and methods based on meta-heuristics. Among the meta-heuristics, we find the family of
evolutionary algorithms which have been very successful in multi-objective optimization.
Over the decades, the economic market has undergone significant changes, which has ne-
cessitated a permanent revision of the adopted management methods to enable compa-
nies to adapt to these considerable changes. When supply was lower than demand, the
main objective of companies was to produce in mass to reduce the unit production cost.
With the increase in competition and the change in the supply-demand relationship, the
importance of cost, quality, innovation, and delivery time has been realized. Nowadays,
companies are increasingly focusing on their core business while delegating part of their
work process to specialized service providers. As a result, supply chains have been created
and we can now talk about supply chain management. Thus, competition is no longer
between individual companies but between supply chain management in the current eco-
nomic context. The term Supply Chain Management (SCM) first appeared in the 1980s and
came into its own in the 1990s. The rise of the concept of SCM is mainly due to the fact that
industrial and commercial companies want to respond in near-real-time to the demands

7
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of their customers, while at the same time maintaining their place in the strategic arena.
SCM has become a strategic axis for companies, especially in large multi-site and multi-
national companies. The supply chain function has evolved from independent logistics,
mainly synonymous with transport and warehousing management, to a global supply chain
linking all flow from customer to customer to supplier to supplier. Thanks to the introduc-
tion of Electronic Data Interchange (EDI) techniques, and Enterprise Resource Planning
(ERP) software, the SCM mode is moving from management by function to integrated man-
agement.
In the scientific works, throughout the last two decades, the various aspects of SCM are
studied to face the new stakes, whether they are related to the social context or to the new
strategies of the companies, as for example, the management of the risks in the supply
chain, the tools of piloting of the supply chain, the inter-organizational collaboration of
the supply chain, or the reverse supply chain, financial supply chain, and the green supply
chain, etc.
There is a significant gap in SCM, particularly in healthcare, where emergency medical ser-
vice (EMS) is one of the most researched sectors of healthcare where Operations Research
(OR) is used. EMS are emergency medical services that treat illnesses and injuries which re-
quire an immediate medical response, treat them outside of the hospital, and transfer them
to hospice care. Because ambulance response times can be critical in patient survival, am-
bulances are expected to reach as soon as possible at the location of reported occurrences,
presenting fundamental considerations about where ambulances should be placed and
how many should be dispatched.
Multi-objective supply chain management (MOSCM) is a complex and challenging disci-
pline that involves optimizing multiple conflicting objectives simultaneously in the context
of supply chain operations. Traditionally, SCM focused primarily on cost reduction and
operational efficiency. However, as businesses have recognized the importance of other
factors such as customer satisfaction, sustainability, and risk management, the need for a
multi-objective approach has emerged.
In a multi-objective SCM problem, decision-makers must consider a range of objectives
that may include minimizing costs, maximizing customer service levels, reducing lead times,
optimizing inventory levels, improving sustainability, and enhancing supply chain resilience.
These objectives often compete with each other, making it difficult to achieve optimal per-
formance in all areas simultaneously. Balancing these objectives requires careful analysis
and trade-off considerations.
Several methods and techniques can be applied to solve multi-objective SCM problems,
and the choice of method depends on the complexity of the problem, the number of ob-
jectives, and the preferences of the decision-makers.
This thesis is devoted to the design of multi-objective optimization methods, more pre-
cisely, multi-objective evolutionary algorithms to handle with some variants of supply chain
management problems. In the following sections, we present the organization of this doc-
ument and the main contributions developed in this thesis.

1.2 Plan of the thesis

In this thesis, we are interested in solving three variants of a supply chain management
problem using multiobjective evolutionary algorithms (MOEAs). The first variant studied
is known as the ambulance dispatching and relocation problems (ADRP), with aim to ob-
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tain optimal routes for ambulances to cover all emergency COVID-19 calls. The second is
known as vehicle routing problem with time windows (VRPTW), with the aim to find the
best routes for the vehicles to service all customers. The last variant is related to the multi-
depot green vehicle routing problem (MDGVRP).
This Thesis is developed in two main parts with five chapters in total. The first part is de-
voted to the preliminary notions defining the context of the research work developed in
this Thesis. This part essentially contains two main headings:

1. The second chapter is devoted to preliminary notions on combinatorial optimiza-
tion problems in general, and their complexities and methodologies. In addition,
this chapter addresses multi-objective optimization problems, and a list of multi-
objective evolutionary algorithms known in the literature has been presented with
particular emphasis on the methods used in our research work.

2. In the third chapter, we present the basic notions of the supply chain management
problem in general. We will focus on the three problems of supply chain manage-
ment (Facility Location Problem (FLP), Vehicle Routing Problem (VRP), Inventory
Problem (IP), emergency medical services (EMS)) by giving a detailed definition with
a mathematical formulation and by explaining the most known variants of each prob-
lem. We close this chapter with an overview of the different aspects of supply chain
management.

The second part of this thesis contains the research works elaborated throughout this thesis
project:

1. The global outbreak of the COVID-19 pandemic has had a significant impact, leading
to a surge in emergency calls and posing significant challenges for emergency med-
ical service centers (EMS) worldwide. This situation is particularly relevant in coun-
tries like Saudi Arabia, which experiences a large influx of pilgrims during pilgrimage
seasons. Among the various challenges faced, the focus of the fourth chapter is on ad-
dressing the real-time problems of ambulance dispatching and relocation (real-time
ADRP). To tackle this issue, we propose an enhanced MOEA/D algorithm called G-
MOEA/D-SA, which incorporates Simulated Annealing. To validate the effectiveness
of our approach, we conduct several experiments using real data collected during the
Covid-19 pandemic in Saudi Arabia. These experiments aim to showcase the capabil-
ities and advantages of the proposed method in handling real-time ADRP scenarios.

2. The fifth chapter is reserved for our second contribution to the vehicle routing prob-
lem with time windows (VRPTW). A new evolutionary algorithm has been developed
by combining the ε-Domination based Multi-Objective Evolutionary Algorithm (ε-
MOEA) and local search heuristic. An experimental study using famous 56 Solomons
data sets was also conducted to highlight the proposed method.

3. In order to integrate environmental and sustainability thinking into supply chain
management, the sixth chapter presents our third contribution which consists in
studying the the Multi-depot Green Vehicle Routing Problem (MDGVRP). A new NSGA-
II algorithm, called EAG-NSGA-II, has also been proposed to solve the designed con-
strained multi-objective MDGVRP model. Several experiments are conducted on 11
commonly adopted Cordeau

′
s benchmarks to compare the proposed algorithm with

three relevant state-of-art algorithms. At the end of this chapter, we present a discus-
sion of the experimental results of the proposed algorithm.
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1.3 Contributions

Concerning our contributions presented in this thesis, as already mentioned above,
we have devoted the second part to the research work carried out throughout this thesis
project. These contributions can be put in the context of a study on the solution of three
variants of the supply chain management problem using various approaches to multi-
objective evolutionary algorithms. This work can be summarized as follows:

1. Present a new variant of MOEA/D algorithm, namely G-MOEA/D-SA to handle the
ambulance dispatching and relocation problems (ADRP). This research work was en-
hanced by a publication in 2023 in the international journal: Applied Soft Computing
(Hemici et al., 2023).

2. Integrating theε-domination based multi-objective evolutionnary algorithm (ε-MOEA)
with local search and multi-type crossover operators to solve the multiobjective ve-
hicle routing problems with time windows (MOVRPTW).

3. Propose a novel variant of NSGA-II dubbed EAG-NSGA-II to address the multi-depot
green vehicle routing problem (MDGVRP). This research work has been enhanced
by a publication in the Artificial Intelligence and its Applications book (Hemici et al.,
2021).

1.4 Publications

1.4.1 International journals

1. Meriem Hemici, Djaafar Zouache, Boualem Brahmi, Adel Got, and Habiba Drias.
"A decomposition-based multiobjective evolutionary algorithm using Simulated An-
nealing for the ambulance dispatching and relocation problem during COVID-19".
Journal Applied soft computing (2023): 110282. DOI: 10.1016/j.asoc.2023.110282.
Impact Factor (IF): 8.263.

2. Meriem Hemici, Laith Abualigah, Djaafar Zouache, Boualem Brahmi, and Saad Talal
Saad Alharbi. "A Guided Epsilon-Dominance Multiobjective Evolutionary Algorithm
using Local Search Heuristics for the Vehicle Routing Problem with Time Windows".
New Generation Computing (Major Revisions). Impact Factor (IF): 1.180.

1.4.2 International Conferences

1. Meriem Hemici, Djaafar Zouache, and Boualem Brahmi. "NSGA-II algorithm for
multi-objective capacitated vehicle routing problem". Tunisian operational research
society and decision aid society (TDAS/ TORS’2019). July 8-10, 2019. Zarzis, Tunisia.

2. Meriem Hemici, Djaafar Zouache, and Boualem Brahmi. "Epsilon- Domination based
Multi-Objective Evolutionary Algorithm for Multi-objective optimization of Vehicle
Routing Problem with Time Windows". International Conference on Networking Telecom-
munications, Biomedical Engineering and Applications (ICNTBA’19). November 4 -
5, 2019. Boumerdes, Algeria.

3. Meriem Hemici, Djaafar Zouache, Boualem Brahmi, and Kaouther Hemici. "Exter-
nal Archive Guided Manta Ray Foraging Optimization Algorithm for Multi-objective
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Portfolio Optimization Problem". National Conference on Applied Computing and
Smart Technologies (ACST’21). July th 10t h , 2021. ESI-SBA, Algeria.

4. Meriem Hemici, Djaafar Zouache, Boualem Brahmi, and Kaouther Hemici. "An ex-
ternal archive guided NSGA-II algorithm for Multi-Depot Green Vehicle Routing Prob-
lem". International Conference on Artificial Intelligence and its Applications (AIAP’22).
January 24-26, 2022.El Oued, Algeria. https://doi.org/10.1007/978-3-030-96311-8−47.
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2
Background

2.1 Introduction

It is believed in some research literature that discrete optimization is an integer pro-
gramming combined with combinatorial optimization (which is composed of optimization
issues dealing with graph structures). Despite the fact that all of these areas have highly
interconnected research literature, it frequently entails finding how to optimally allocate
resources utilized to solve mathematical issues.
A lot of combinatorial problems call for simultaneous optimization of many goals. The ma-
jority of goals are expressed as incomparable units and are in some way antagonistic to one
another (e.g., one goal cannot be improved without weakening at least onother one). These
are known as multi-objective problems. Consider a transportation company that wants to
reduce overall route time in order to improve customer service. Furthermore, the corpora-
tion wishes to minimize the number of vehicles used in order to cut operational expenses.
Clearly, both goals are at odds because adding additional trucks decreases route time while
increasing operational expenses. Additionally, this challenge’s goals are specified in a vari-
ety of measurement units.
In mono-objective optimization, it is feasible to assess if one solution is better than the
other for each given pair of solutions. As a result, usually a unique solution (i.e., the global
optimum) is obtained. However, there is no straightforward mechanism for judging if one
solution is better than the others in multi-objective optimization. The most commonly
used method in multi-objective optimization to compare solutions is the Pareto domi-
nance relation, which leads to a set of solutions with varied trade-offs between the ob-
jectives rather than a single solution. These are known as Pareto optimum solutions or
non-dominated solutions.
In this chapter, a review of evolutionary multi-objective optimization is presented. First,
we provide basic concepts and terminologies in multi-objective optimization. These con-
cepts are used repeatedly in several other chapters. Second, we will synthesize the methods
used to solve multi-objective optimization problems. In the literature, the methods used
to solve these problems are divided into two classes: exact methods and methods that use
meta-heuristics. The difference between the exact methods and the metaheuristic meth-
ods is that the former find in most of the time exact solutions for the problem but consume
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a huge computational time, and it can only find a solution for a multi-objective optimiza-
tion problem, which is the opposite for the solving methods that use metaheuristics essen-
tially the evolutionary algorithms that find an approximate set of Pareto solutions with an
acceptable time.

2.2 Combinatorial Optimization

2.2.1 Basic concepts

Combinatorial optimization is an area of applied mathematics and theoretical com-
puter science that focuses on choosing the best object from a constrained list of options.
In these situations, a thorough search is frequently not possible. It resolves a number of
optimization problems where the best solution must be found and the collection of likely
solutions is discrete or may be reduced to discrete. The traveling salesman problem and
the least spanning tree problem are among the most common combinatorial optimization
problems (COPs).(Grotschel & Lovász, 1995)

Definition 1 A combinatorial optimization problem (COP) consists in finding the minimum
s ∗ of an application F , most often with integer or real values, on a finite set S such that
F (s ∗) =M i ni mi z e

s∈S
(F (s )). Where F is an application of S in R n .

Remark 1 The same definition can be given using the maximum knowing that M a x i mi z e
s∈S

(F (s )) =

−M i ni mi z e
s∈S

(F (s )).

2.2.2 Complexity

For COP, there are several algorithms that solve this problem. To choose the best one,
we have to compare and analyze the performance of each algorithm. When analyzing an
algorithm, we mainly consider the study of complexity. The complexity of an algorithm is
the study of the amount of resources (time or space) needed to execute this algorithm.

2.2.2.1 Space complexity

The process of creating a formula to gauge how much memory space an algorithm will
need to run efficiently is known as space complexity. There are two parts to the memory
space needed by an algorithm: the fixed part, which contains the instruction space (i.e.,
code, simple variables, fixed components, constants, etc.), and the variable part, which
contains the space needed by component variables whose size is dependent on the prob-
lem instance.

2.2.2.2 Time complexity

The process of formulating the entire amount of time needed to perform this algorithm
is the definition of time complexity. The implementation specifics and programming lan-
guage will not affect this calculation.
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2.2.2.3 Asymptotic notations

An algorithm’s complexity is mathematically represented using asymptotic notation.
They are applied to derive inferences regarding the effectiveness of algorithms. These no-
tations enable us to make approximate but significant assumptions about the complexity
of time and space. The time complexity of algorithms is mostly represented by the three
asymptotic notations that follow.

1. Big-Oh notation: The upper bound (worst case) of an algorithm’s temporal complex-
ity is expressed using the Big-Oh notation. As a result, Big-Oh notation represents the
worst possible algorithm time complexity.

2. Big-Omega notation: The bottom bound (best case) of an algorithm’s temporal com-
plexity is expressed using the Big-Omega notation. Therefore, Big-Omega notation
represents the optimal case of algorithm time complexity.

3. Big-Theta notation: The average bound (average case) of an algorithm’s temporal
complexity is expressed using Big-Theta notation. As a result, Big-Theta notation
represents the typical case of algorithm time complexity.

2.2.2.4 Classes of complexity

This classification includes the fundamental well-known classes:

P(polynomial time): Class P contains all relatively easy problems, i.e. those for which
efficient algorithms are known. We can build a deterministic machine (e.g. a Turing
machine) whose execution time is of polynomial complexity.

NP(Non-deterministic Polynomial time): The problems of the NP class are decision
problems for which we can construct a non-deterministic Turing machine whose ex-
ecution time is of polynomial complexity.
Unlike deterministic machines that execute a well-defined sequence of instructions,
non-deterministic machines have the remarkable ability to always choose the best
sequence of instructions that leads to the correct answer when it exists. This abstract
concept is in fact the basis of the whole theory of NP-completeness.
Among the set of problems belonging to NP, there is a subset that contains the most
difficult problems: they are called NP-complete problems.

NP-complete: Any problem in N P can be turned (reduced) into an NP-complete
problem in polynomial time, according to this property. In other words, an issue
is NP-complete if and only if it can be reduced to all other NP-related problems.
If we discover a polynomial algorithm for an NP-complete issue, we subsequently
discover polynomials for every problem in the class NP.

NP-hard: An issue is NP-hard if it is more difficult than an NP-complete issue,
or if there is an NP-complete issue that can be reduced to this issue using the
Turing algorithm. The class NP is not always present in NP-hard issues. Partic-
ularly, all optimization issues with NP-complete "decision" problems fall under
the category of NP-hard problems.
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2.2.3 Methodologies for COP

COP can be particularly difficult to solve since the number of alternative solutions might
grow exponentially with the complexity of the challenge. The resolution methods have
been divided into two classes based on the quality of the solutions and the computational
time required to find an optimal solution to the optimization problem: exact methods
and approach methods, which include a large number of heuristic and metaheuristic algo-
rithms.

2.2.3.1 Exact methods

These methods are called so because of the exact (optimal) solutions they provide. They
allow us to obtain an optimal solution of the instances of the solved problems. Their gen-
eral principle consists of an intelligent enumeration, as efficiently as possible, of all the
solutions of the problem to extract an optimal solution.

1. Branch & Bound methods: [(Lawler & Wood, 1966),(Boyd & Mattingley, 2007)]
The Branch & Bound method is a generic method for solving COPs, which appeared
in the middle of the 20th century. It enumerates in an intelligent way the set of solu-
tions. To do this, it decomposes the solution space into smaller and smaller subsets,
a good part of which is eliminated by means of bounds. This type of enumeration
can therefore provide an optimal solution in a reduced time compared to a complete
enumeration.
For combinatorial optimization problems, several Branch & Bound methods can be
invented. However, they will have three common components:

A rule for separating the solution set.

A function for evaluating the solution sets.

An exploration strategy.

2. Branch & Cut methods:[(Mitchell, 2002), (Belenguer et al., 2011)]
The previous techniques are no longer useful when the number of constraints is sig-
nificant. The Branch & Cu approaches entail translating the constraints of the prob-
lem in stages, starting with the Cut phase of the solution space, for which the in-
tegrity requirement on the integer variables has been relaxed. When trying to solve a
Linear Integer Programming (LIP), an Linear Programming (LP) solver is used to try
and discover the best possible integer solution while still adhering to the problem’s
constraints. If not, the cutting phase must be continued on these sub-problems af-
ter a decomposition phase (also known as a branch) of the problem into two sub-
problems is required.

3. Dynamic Programming:[(Bellman, 1966)]
This method follows Bellman’s principle, which claims that "every solution to the ini-
tial problem of size N contains the optimal solution to the sub-problem of size N −1".
In practice, we begin by solving a family of issues of size 1, then move on to the next
phase, which is to solve a family of problems of size 2. After a fixed number of steps,
one arrives to the starting problem of size N . At each stage, intermediate states must
be examined and correspond to a family of problems to be solved. The approach
must have a minimal number of intermediate stages and steps in order to be practi-
cal. It is generally known that only a very limited number of COP instances (10 to 25
customers) can be solved via dynamic programming.
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2.2.3.2 Heuristics

Heuristics for COP is an algorithm that aims to find a feasible solution, taking into ac-
count the objective function, but without guaranteeing optimality. Exact methods have an
exponential complexity on these problems, and only heuristics can solve large cases. In
practice, we find many problems that are poorly formulated, or have many constraints, or
have unknown complexity. Even if the problem is easy, adding new constraints can make
NP-hard. Under these conditions, it is better from the start to use a heuristic approach,
much easier to modify. There is a very large number of heuristics that depend on the prob-
lem to be treated, and it is easy to invent some. However, the following main types can be
distinguished and will be described in detail.

1. Local Search (LS)[(Pirlot, 1996), (Crama et al., 2005)]
Many COPs are solved using LS techniques. It begins with an initial solution and
develops a series of cheaper answers through subsequent changes. When the current
solution can no longer be improved upon, the process ends. Since the search may end
even if the algorithm’s best result is not ideal, LS algorithms are frequently incomplete
algorithms.

2. Nearest Neighbors (NN)[(Peterson, 2009), (Kramer & Kramer, 2013)]
The NN algorithm assumes that related objects are close together. In other words,
related things are located close to one another. The concept of similarity, also known
as distance, proximity, or closeness, is captured by NN in a way that is similar to some
elementary school mathematics that we may have studied, such as calculating the
distance between points on a graph.

3. Greedy[(Jungnickel & Jungnickel, 1999), (Jungnickel & Jungnickel, 2013)]
A greedy algorithm is a technique for solving problems which selects the locally op-
timal solution at each step in the hopes of achieving the global optimum. The two
main objectives of this optimization procedure are the largest sum and the shortest
path. Because this algorithm bases its choices on local information, it does not nec-
essarily result in the global optimal solutions.

2.2.3.3 Metaheuristics

Metaheuristics are a set of methods used in operations research and artificial intelli-
gence to optimize a wide range of different problems, without requiring major changes in
the used algorithm. In other words: Meta-heuristics are a form of stochastic optimization
algorithms, hybridized with a local search. The term meta is thus taken in the sense that
the algorithms can combine several heuristics.

1. Simulated Annealing (AS)
SA was invented by (Kirkpatrick et al., 1983). They were able to solve 5000-vertex
traveling salesman situations nearly optimally. The Metropolis simulation method in
statistical mechanics inspired them. The analogy is based on the process of "anneal-
ing metals" in metallurgy. A metal that is cooled too quickly has many microscopic
flaws, which is the equivalent of a combinatorial optimization problem’s local min-
imum. Slow cooling causes the atoms to rearrange, the flaws to disappear, and the
metal to have an ordered structure, which is equivalent to the global minimum for
COP. A system’s energy is represented by a real T ; the temperature.
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Algorithm 1 Pseudo code of Simulated Annealing

Input:
x : Initial solution.
T : The initial temperature.
α : The parameter value between 0 and 1.
I Tma x : Number of iterations.

1: t = 1.
2: while (T > 0)∧ (t ≤ I Tma x ) do
3: Generate a solution x

′ ∈N (x ).//N (x ) the neighborhood function.
4: Calculate△ f = f (x ′)− f (x )
5: if△ f > 0 then
6: x := x

′
.

7: else
8: Generate r := r a nd o m (0, 1) uniform distribution in the range.

9: if r < e x p (−
△ f

T
) then

10: x := x
′
.

11: end if
12: end if
13: T =α ∗T
14: t = t +1
15: end while

Output:
x : Best solution.

2. Tabu Search (TS)
TS was invented by (Glover, 1986). They are of more recent conception than anneal-
ing which have no stochastic character and seem to be better for the same execution
time. The primary mechanics of TS are inspired by human memory. TS uses a mem-
ory method to explore the search space while avoiding local optima. Thus, TS uses
the memory mechanism to learn from previously explored paths.
Algorithm 2 presents the TS Pseudo-code given a collection of feasible solutions and
N (x ) defend neighbors for each feasible solution. The goal of TS is to keep in a tabu
list L, of a certain length l, the recently visited solutions. Each time we choose a new
solution, it is inserted in the tabu list. If the tabu list is too large, we remove the oldest
solution and it will no longer be tabu.
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Algorithm 2 Pseudo code of Tabu Search

Input:
x : Initial solution.
T =⊘: Tabu list which is initially empty.
I Tma x : Number of iterations.

1: t = 1
2: while t ≤ I Tma x do
3: Generate a solution x

′ ∈N (x ).//N (x ) the neighborhood function.
4: Calculate f (x ′).
5: if x

′ ̸∈ T then
6: x := x

′
.

7: if f (x ′)< f (x ) then
8: x := x

′
.

9: f (x ) = f (x ′).
10: T = T ∪{x }
11: end if
12: end if
13: if List T is full then
14: Remove the first solution from the list T .
15: end if
16: t = t +1
17: end while

Output:
x : Best solution.

3. Evolutionary Algorithms (EAs)
EAs are a type of algorithm that is influenced by Darwinian evolution theory to ad-
dress various challenges. This vast class of algorithms involves the generation of a
population of potential solutions to a given optimization problem.
At each iteration, the algorithm selects the best solutions, then randomly modifies
them, in order to build a new population for the next iteration. The algorithm ends
according to a criterion related to the convergence of the population, or to the com-
putation time. The efficiency of the algorithm lies in the fact that the slight random
variations on the solutions, allow to discover sufficiently and often better solutions
which will be selected for the continuation. The process is progressively guided by
the discovery of more satisfactory solutions. This is in line with Darwin’s ideas and
the theory of evolution of natural species, which postulate a constant and progressive
adaptation of a species to its environment.
Three major families of algorithms were historically independently created in the
mid-1960s and the 1970s. In order to handle problems involving continuous op-
timization, Rechenberg first suggested the Evolutionary Strategy in 1965. The next
year, Fogel, Owens, and Walsh proposed evolutionary programming as a technique
for creating finite state automata using artificial intelligence. The first genetic al-
gorithm for combinatorial optimization was subsequently proposed by Holland in
1975.
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Genetic Algorithm (GA)
The oldest evolutionary algorithm is called GA. It takes its cues from Darwin’s
theory of evolution. Nowadays, the distinction between evolutionary and ge-
netic algorithms is fuzzy.
Sometimes, the terms "genetic algorithm" and "evolutionary algorithm" are used
interchangeably. We attempt to model the evolution of a population using ge-
netic algorithms. We begin with a population of N solutions to the problem and
each one of these solutions is represented by a single person. The parent pop-
ulation is the group that was selected at random. The value of the cost function
f (x ), where x is the solution that the individual represents, expresses how well
a person has adapted to their surroundings. If the cost of the solution a per-
son represents is lower, we say the person is better fitted to their environment.
Individuals develop through the employment of the recombination operators
crossover and mutation. At each generation, parents are chosen at random to
produce new children. Crossover is the main operator used to create new chil-
dren (or offspring) by combining pieces of the selected parents. Mutation, on
the other hand, is less common than crossover. Mutation is used to diversify
populations and prevent GA from becoming too complex.
Natural Selection:
In biology, natural selection is one of the mechanisms that cause the evolution
of species. This mechanism is particularly important because it explains the
adaptation of species to environments over generations. The theory of natural
selection helps to explain and understand how the environment influences the
evolution of species and populations by selecting the most adapted individuals
and is therefore a fundamental aspect of the theory of evolution.
Crossover:
Crossover is a genetic operator used to create new offspring solutions by com-
bining genetic material from two or more parent solutions. It is inspired by bio-
logical reproduction and aims to explore and exploit the search space efficiently.
Crossover typically involves selecting specific segments or parts of the parent
solutions and exchanging or recombining them to create new solutions with
potentially beneficial characteristics inherited from the parents. The specific
mechanism of crossover varies depending on the type of representation used
for the solutions (e.g., binary, real-valued, permutation).
Here are some commonly used crossover operators in evolutionary algorithms:

(a). Single-Point Crossover: [(Poli & Langdon, 1998), (Poli & Langdon, 1997)] In
this operator, a single crossover point is randomly chosen along the chro-
mosome (or string of genes), and the genetic material beyond that point is
exchanged between two parent solutions to create two offspring solutions.

(b). Multi-Point Crossover:[(De Jong & Spears, 1990), (Umbarkar & Sheth, 2015)]
Similar to single-point crossover, but instead of a single crossover point,
multiple crossover points are selected. Genetic material between these points
is exchanged to create offspring solutions.

(c). Uniform Crossover:[(Falkenauer, 1999), (Hu & Di Paolo, 2009), (Williams &
Crossley, 1998)] This operator works at the gene level. Each gene of the off-
spring is selected from one of the parents with equal probability. It provides
a more diverse exploration of the search space.

(d). Arithmetic Crossover:[(Yalcinoz et al., 2001)]Applicable to real-valued rep-
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resentations, this operator performs a weighted average of the parent values
at each gene to create the corresponding offspring value. The weights are
typically randomly generated.

(e). Order Crossover (OX):[(Davis, 1985)] Primarily used in permutation-based
problems, OX selects a random segment from one parent and preserves the
order of the genes within that segment while filling the remaining positions
in the offspring with the genes from the other parent, respecting their order.

(f). Partially Mapped Crossover (PMX):[(Ting et al., 2010)]Also used in permutation-
based problems, PMX selects two crossover points and preserves the order
of the genes within that segment in one offspring. The remaining genes are
filled based on the mappings of genes between the parents.

Mutation:
Mutation is a genetic operator used to introduce diversity and explore new re-
gions of the search space by making random changes to the genetic material
(e.g., genes) of individual solutions (i.e., individuals) in the population.
Mutation is typically applied with a low probability to individual solutions se-
lected from the current population. The mutation operation randomly alters
the genetic material of the individual solution, resulting in a new solution in
the search space. The specific mutation mechanism depends on the represen-
tation used for the solutions (e.g., binary, real-valued, permutation).[(Forrest,
1996),(Deep & Thakur, 2007), (Deep & Mebrahtu, 2011)]
Here are some commonly used mutation operators in evolutionary algorithms:

(a). Bit Flip Mutation: In this operator, a random bit in the binary representa-
tion of the solution is flipped from 0 to 1 or from 1 to 0.

(b). Gaussian Mutation: Applicable to real-valued representations, this opera-
tor adds a random value drawn from a Gaussian distribution with a mean
of 0 and a standard deviation to each gene of the solution.

(c). Swap Mutation: Primarily used in permutation-based problems, swap mu-
tation selects two random positions in the solution and swaps the elements
at those positions.

(d). Inversion Mutation: Another permutation-based operator, inversion mu-
tation selects a random segment of genes in the solution and reverses the
order of the genes in that segment.

(e). Random Resetting: In this operator, a gene is randomly assigned a new
value from its allowable range.

(f). Boundary Mutation: Applicable to real-valued representations, this oper-
ator perturbs the boundary of the search space by randomly selecting a di-
mension and setting the corresponding gene value to the boundary value.

4. Swarm Intelligence-Based Algorithms

Particle Swarm Optimization (PSO)
PSO is inspired by the Social Behavior of Birds flocking, was proposed by (Kennedy
& Eberhart, 1995). PSO is a computational method for problem optimization.
By updating generations, PSO hunts for optima. The solution of the problem
is represented by particles in PSO. Particles communicate with one another di-
rectly or indirectly by employing search directions (gradients). During the PSO
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iteration, each particle updates its position based on its prior experience as well
as the experience of its neighbors. Particles are made up of three vectors:

(a). X-vector represents the particle’s current position in the search space.

(b). P-vector (Pbest) represents the position of the particle’s best solution deter-
mined thus far.

(c). V-vector contains a gradient (direction) in which a particle will travel if left
alone.

Gray Wolf Optimization (GWO)
GWO, proposed by (Mirjalili et al., 2014), is a metaheuristic inspired by the so-
cial structure and hunting behavior of grey wolves. It emulates the hierarchical
leadership and search mechanism observed in grey wolf packs. The algorithm
assigns three wolf types, namely alpha, beta, and gamma, to simulate the hier-
archical structure. GWO strikes a balance between exploration and exploitation
by exploring the search space for promising solutions and exploiting them to
improve the overall solution quality. Each individual in the population repre-
sents a potential solution to the problem at hand. The fitness function is com-
puted for all solutions, and the position update equations are utilized to adjust
the position of each wolf.
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Where t refers to the current iteration.
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Where a components of
→
a gradually decreases from 2 to 0 over the iteration pe-

riod. Random values within the range of [0, 1] are assigned to the variables r1

and r2. When the entire pack converges on the prey, their positions are updated
based on the best positions of the alpha, beta, and delta wolves using the fol-
lowing equations:
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2.3 Multi-Objectives Optimization

2.3.1 Basic concepts

A multi-objective optimization problem (MOP) involves simultaneously optimizing mul-
tiple objective functions that may be conflicting in nature. It can be formulated as follows:

Minimize/Maximize F (x ) = ( f1(x ), ......, fm (x ))
s.t.x ∈ S

(2.4)

Here, m represents the total number of objectives, and fi denotes the i -th objective. The
decision vector is denoted by x , and S represents the set of feasible solutions that satisfy
the constraints of the optimization problem. The mapping of the decision space is de-
noted as F (x ) ∈ R m and referred to as the objective space. The elements of F (x ), given by
( f1(x ), f2(x ), ..., fm (x )), are known as objective vectors and consist of real-valued objective
functions. Based on these definitions, the following key definitions are provided:

Definition 2 (Decision space) The space R n in which the set of feasible solutions S ⊆ R n is
located is called the decision space.

Definition 3 (Objective space) The Space R m in which the image of S in R n by the applica-
tion F (S ).

Figure 2.1 – Decision space and objective space for MOP.

2.3.2 Pareto Efficiency

In this part, we will introduce the notions related to dominance relation which was pro-
posed by the Italian economist Pareto(1876) and which allows to compare two objective
vectors for MOPs.

Definition 4 (Pareto-Dominance, denoted by≺) A solution x1 is said to dominate a solution
x2, if and only if the following conditions are met:

∀i ∈ {1, ..., m}; fi (x1)⪯ fi (x2) ∧ ∃ j ∈ {1, ..., m}; f j (x1)< f j (x2). (2.5)
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Definition 5 (ε-Dominance (Laumanns et al., 2002), denoted by ≺ε) Given a relaxed vector
ε= (ε1,ε2, ..,εm )with εi ≻ 0, i = 1, 2, ..., m, a solution x1 is said to ε−dominate a solution x2,
, if and only if the following conditions are met:

∀i ∈ {1, ..., m}; fi (x1)−εi ⪯ fi (x2) ∧ ∃ j ∈ {1, ..., m}; f j (x1)−ε j < f j (x2). (2.6)

Definition 6 (Grid-Dominance (Yang et al., 2013), denoted by ≺G ) A feasible solution x1 is
said to grid-dominate another feasible solution x2, if and only if:

∀i ∈ {1, ..., m}; Gi (x1)⪯Gi (x2) ∧ ∃ j ∈ {1, ..., m}; G j (x1)<G j (x2). (2.7)

Where G (.) is the grid coordinates of the solution and can be calculated by:

Gi (x1) = ⌊
( fi (x1)− l bi )

di
⌋ (2.8)

di =
(u bi − l bi )

d i v
(2.9)

l bi =min fi −
(max fi −min fi )

2 ∗d i v
(2.10)

u bi =max fi +
(max fi −min fi )

2 ∗d i v
(2.11)

Where d i v denotes the number of divisions of the objective space in each dimension.

Definition 7 (θ -Dominance (Yuan et al., 2015), denoted by ≺θ )A solution x1 is said to θ -
dominate a solution x2, , if and only if the following conditions are met:

∀i ∈ {1, ..., m}; Fi (x1)< Fi (x2) (2.12)

Where F (.) is the weight vector and can be calculated by:

Fi (x1) = d 1
i (x1) +θd 2

i (x1)

d 1
i (x1) =

|| f (x1)T .λi ||
||λi ||

d 2
i (x1) =|| f (x1)−d 1

i (x1)× (
λi

||λi ||
) ||

(2.13)

Where λ is the weight vector and θ is a penalty parameter. d 1
i (x1) and d 2

i (x1) are computed
in the normalized objective space.
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Figure 2.2 – The dominance regions in bi-objective spaces that result from various domi-
nance relations.

Definition 8 (Pareto optimality) A given solution x1 is referred to as a Pareto optimum so-
lution if it is not dominated by any other solution in the whole feasible search space:

∄x2 ∈ S | x1 ≺ x2. (2.14)

Definition 9 (Pareto optimal set) Pareto optimal solution set is the set of all Pareto optimal
solutions, denoted as:

P S = {x1 ∈ S | ∄x2 ∈ S , x1 ≺ x2}. (2.15)

Definition 10 (Pareto front) Pareto front (P F ) is the objective space projection of the Pareto
optimum set (P S):

P F = {F (x ) | x ∈ P S}. (2.16)
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Remark 2 Depending on the type of problem we are trying to solve, we obtain the Pareto
front. The most common forms of Pareto fronts are shown in figure 2.3.

Figure 2.3 – Most common forms of Pareto front in the case of two objectives.

2.3.3 Quality Metrics

The evaluation of the performance of MOEAs can have several aspects, such as the qual-
ity of the results obtained or the computation time required. We only focus on the first
aspect since the execution time of the algorithms becomes negligible when it comes to a
real application where the evaluation of the objectives can last from a few minutes to a few
days.

Definition 11 (Set coverage metric) This metric is intended to be used for comparing two
non dominated Pareto sets gained by different algorithms (Zitzler & Thiele, 1998).

C (A, B ) =
| {b ∈ B | ∃a ∈ A : a d o mi na t e s b } |

| B |
(2.17)
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The first and second algorithms’ non-dominated solutions are divided into sets A and B ,
respectively. The equation C (A, B ) = 1 shows that set A dominates all solutions in set B . No
solution in set B is dominated by set A, as shown by the value C (A, B ) = 0. Additionally,
1−C (B , A) does not fundamentally equal C (A, B ).

Definition 12 (ε−indicator (Iε)) Given two non dominated Pareto sets gained by different
algorithms (Zitzler et al., 2003).

Iε(A, B ) =max
b∈B

min
a∈A

max
1≤i≤m

fi (a )− fi (b ). (2.18)

Definition 13 (Inverted generation distance (IGD)):Given a set of reference points R and a
set of obtained solutions S, the IGD measures the quality of the solutions in S compared to the
reference points in R (Sun et al., 2018). Let d (x , R ) represent the distance between a solution
x and the set of reference points R . The IGD is calculated as the average of the distances
between each solution in S and the nearest reference point in R :

I G D =

∑

x∈R d i s t (x ,S )
|R |

(2.19)

Where |S | is the cardinality of set S, and the sum is taken over all solutions x in S. The smaller
the value of IGD, the better the quality of the solutions in S with respect to the reference points
in R .

Definition 14 ( Hypervolume(HV)) The HV is a mathematical formulation used to measure
the quality of a set of solutions in multi-objective optimization. It quantifies the extent of the
objective space covered by the solutions. The HV value represents the volume of the objective
space dominated by the solutions with respect to a reference point (Zitzler et al., 2003).
Let R be the reference point, which is a point in the objective space that represents the worst
possible values for each objective. The HV of a set of solutions S is calculated as the volume
of the hypervolume dominated by S and bounded by the reference point R .

H V =V o l ume (∪x∈S{[ f1(x ), r1]× ...[ fm (x ), rm ]}). (2.20)

The HV can be calculated using various algorithms, such as incremental computation or
Monte Carlo sampling. The higher the HV value, the better the coverage and diversity of the
solutions in the objective space.

2.3.4 Methodologies for Multi-objectives optimization problems

The best feasible trade-offs between the objectives are represented by a group of so-
lutions in MOPs, as opposed to a single solution that reduces or maximizes all objectives
simultaneously. When solving a MOP, the goal is typically to discover not only this collec-
tion of tradeoff solutions, but also that these answers are evenly spread across the Pareto
front.
EAs have long been renowned for their ability to solve MOPs by identifying a representative
collection of Pareto optimal solutions in a single run. Furthermore, compared to traditional
mathematical programming techniques, EAs are less sensitive to the shape or continuity
of the Pareto front.
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2.3.4.1 Multi-Objective Evolutionary Algorithms (MOEAs)

MOPs are a specific type of EAs called MOEAs. The structure of MOEAs and evolution-
ary algorithms for combinatorial optimization problems is similar. Due to the fact that
MOEA uses m-dimensional fitness vectors (m > 2), the fitness assignment process is the
main distinction. Finding a Pareto front approximation is, as various publications have
noted, a bi-objective task in and of itself with the following goals:

Reduce the distance between the generated vectors and the Pareto optimal front.

Maximize the diversity of the found Pareto front approximation.

1. General framework
Figure 2.4 depicts the general framework of a MOEA. To begin, a population P is cre-
ated by randomly producing N individuals. However, if we know the qualities of a
good solution, we should use that knowledge to populate the population. Second,
fitness assignment necessitates ranking individuals based on a preference connec-
tion and then providing a scalar fitness value to each individual based on this rank.
Third, mating selection is used for reproduction, with individuals with higher qual-
ity becoming parents of the following generation to push for quality improvement.
Fourth, to create children, variation operators (Crossover and Mutation) are used to
these parents. Fifth, environmental selection affects whether solutions (i.e., the next-
generation population) survive from the existing population and children. This evo-
lutionary process continues until a terminating condition is met (for example, the
number of generations surpasses a predetermined upper bound).
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Figure 2.4 – A general MOEA framework.

2. Key Elements
The elements that must be considered when designing MOEAs are covered in detail
in this part.

(a). Fitness Assignment: A partial order of the population in the objective functional
space is created using a preference relation. Then, based on how each solution
stacks up against the others, a scalar score (rank) is given to it. For instance,
dominance ranking systems keep track of how many people a certain person
is controlled by. According to dominance counting methods, an individual’s fit-
ness is correlated with the number of other people it dominates. The most often
used preference relation in MOEAs is Pareto dominance, as we saw in the pre-
ceding section.
Aggregation-based: This approach aggregates or combines the objective func-
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tions into a single scalar value. Different components of the Pareto optimum set
are produced by methodically changing the parameters during the optimization
process. Although an aggregation-based strategy can be expressed as a prefer-
ence relation, it should be highlighted that the solutions are not contrasted in
the objective space. In other words, before the comparison, the vectors are con-
verted from R m to R .
Preference-based: This strategy involves inducing a partial order of the pop-
ulation in the objective space via a preference relation. Then, based on how
each solution stacks up against the others, a scalar score (rank) is given to it. For
instance, approaches based on dominance rank count the number of persons
over which a certain individual is dominant. In dominance-based methods, a
person’s fitness is measured by how many other people they can dominate. The
most popular preference relationship in MOEAs is Pareto dominance.

(b). Elitism:
Elitism is a method that prevents the loss of the best solutions obtained during
the search owing to stochastic factors. This notion is very important in MOEAs.
Elitism is more difficult to apply in multi-objective optimization than in single-
objective optimization. Due to restricted memory resources, if more non-dominated
solutions emerge than can be kept, which solutions should be discarded? As a
result, the elitist method used influences whether or not the fitness is globally
convergent. Currently, we can differentiate primarily two methods of imple-
menting elitism. One approach is to merge the old and new populations and
then use selection to maintain the best solutions in the next generation (Deb
et al., 2002). The alternative approach is to keep up with an external set of in-
dividuals known as an archive that stores the non-dominated solutions found
during the search process. These two approaches are illustrated in Figure 2.5.

Figure 2.5 – Description of methods without archive and methods with archive.

(c). Density Estimators
MOEAs aim to produce a set of solutions that are evenly spread throughout the
Pareto front and are not dominated. The options for preserving population va-
riety will be discussed in the paragraphs that follow.
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(d). Fitness sharing: Creating and maintaining niche subpopulations (niches) dis-
tributed throughout the objective space is the aim of fitness sharing. The idea is
to view fitness as a resource that needs to be shared by others who have similar
interests. Due to the higher level of competitiveness in the specialty, each par-
ticipant obtains less fitness points. Formally, the shared fitness fs i of the person
i is defined as follows:

fs i =
fi
∑N

j=1φ(di j )
(2.21)

In this case, the fitness of individual i is fi , and the partition function is φ(di j ),
which is defined as follows:

φ(di j ) =







1− (
di j

σs ha r e
) di j <σs ha r e

0 O t he r w i s e .
(2.22)

Where σs ha r e represents the radius of the niche. The distance between people
i and j is denoted by di j .
Hypergrid: A hypergrid creates hypercube-like divisions in the objective space.
Figure 2.6 illustrates how each non-dominated solution takes up a hypercube.
Only non-dominated solutions that belong to a sparsely populated hypercube
are to be accepted. During the search process, the position and extension of
the grid can be altered, even though the hypergrid’s number of divisions in each
dimension remains constant.

Figure 2.6 – Hypergrid to maintain diversity in the archive.

Clustering: The objective of a clustering algorithm is to group a set of points that
are both quite distinct from one another and reasonably close to one another.
Clustering is used in a MOEA to maintain the archive’s diversity while reducing
its size. Figure 2.7 depicts the three stages of this technique. The archive is di-
vided into subsets using a clustering algorithm, and a representative is chosen
from each subset before the remaining members of the cluster are discarded.
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Figure 2.7 – The steps of clustering methods in the optimization process.

(e). Crowding distance (C D )
C D is a selection operator defined in the search space, used to estimate the den-
sity in the neighborhood of an individual i . It computes the average distance on
each objective, between the two closest points located on both sides of the solu-
tion i . This distance noted C D (i ) serves as an estimator of the size of the largest
hypercube including point i without including another point of the population
and formed by the solutions of the same Pareto front closest to i (see Figure
2.8).
C D (i ) is computed as a function of the perimeter of the hypercube having as
vertices the points closest to i on each objective. Figure 2.8 is represented the
two-dimensional hypercube associated with point i .

Figure 2.8 – Principle of crowding.

3. Classification
MOEAs have been used in a variety of ways to solve MOPs.
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(a). Pareto-based Algorithms
The first class of MOEAs primarily uses the notion of Pareto dominance to com-
pare individuals to each other. Furthermore, in the elitist replacement, these
individuals are ranked using this dominance relationship and only the best are
retained. In this part, we present algorithms that are based on the concept of
Pareto dominance. Among them, we have selected the two algorithms that are
considered, in the literature, the most efficient (NSGA-II and ε-MOEA). These
approaches are relatively recent and still represent research topics.
Nondominated Sorting Genetic Algorithm II (NSGA-II):
NSGA-II was proposed by (Deb et al., 2002) and is classified as one of the bench-
mark algorithms in the field of multi-objective evolutionary optimization. It
takes its name from the NSGA algorithm that was previously proposed by (Srini-
vas & Deb, 1994). In this second version of NSGA, the author tries to solve all the
criticisms made on NSGA: complexity, non-elitism, and use of sharing. NSGA-II
integrates a selection operator, based on a crowding distance calculation, very
different from NSGA. NSGA-II is an elitist algorithm that does not save the elite
in an external archive. To combat elitism, NSGA-II assures that the best indi-
viduals encountered are retained in each new generation. This new version of
NSGA reduced the complexity of the algorithm for k objectives and N individu-
als to O (k N 2), created an elitist method, and removed the sharing parameters.
This makes this algorithm one of the most efficient algorithms for finding the
Pareto optimal set with an excellent variety of solutions.
Each population member i has two attributes: non-domination rank r a nk (i )
and crowding distance C D (i ). To lead the selection process with the uniform
distribution of Pareto solutions, a comparison operator defined in terms of these
two properties is used.
Given two persons i and j , we say that i is superior to j if and only if:
(r a nk (i )< r a nk ( j )) ∨ (r a nk (i ) = r a nk ( j ) ∧ (C D (i )>C D ( j ))With this rela-
tion, we favor the solution belonging to the lowest order Pareto front when com-
paring two non-dominated solutions belonging to two Pareto fronts. Otherwise,
when two solutions belong to the same Pareto front (the last front to finish the
parent population’s size), we choose the option with the greater crowding dis-
tance. The points in the top half of the sorted list are chosen after the crowding
sort of the final front points to finish the size N . By computing the perimeter of
the cuboid or hypercube created by the closest neighbors of the objective space,
one can determine C D (i ) of a point i .
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Figure 2.9 – Diagram that shows the way in which the NSGA-II works.

ε-Domination based Multi-Objective Evolutionnary Algorithm (ε-MOEA):
To ensure elitism, the ε-MOEA algorithm [(Deb et al., 2005)] uses two popula-
tions co-evolving at the same time: population P(t) and an archive A(t) where t is
the generation counter. The first step consists of building an initial population
by a local or random search. The archive is initialized by the non ε-dominated
individuals of this population. At each iteration of the algorithm, we find the
classical steps: selection, crossover, and mutation, the only difference is that we
generate a single child. The newborn child will be compared to the individuals
of two populations for its possible inclusion. The pseudo-code of the algorithm
is given below.
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Algorithm 3 Pseudo code of the ε-MOEA algorithm

Input:
N : the size of population.
Tma x : the number of iterations.

1: Generate a uniform random population P (0) of size N , and create the archive A(0) =⊘.

2: Evaluate the fitness values of the population P (0).
3: Update of A(0) from the non-ε-dominated individuals of P (0).
4: t = 0.
5: while t ≤ Tma x do
6: Selection:

I. Randomly select two individuals from P (t ).

If one of them dominates the other, choose the dominant one. Let p be
the selected individual.

II. Randomly select an individual a from A(t ).

7: e :=Variation−Operators (p , a ).
8: Evaluate the fitness values of the new individual e .
9: Update of the population:

I. If e dominates one or more individuals in the population then e replaces one
of these randomly chosen individuals.

II. Else, If all the individuals of the population dominate e , then e is rejected.

III. If otherwise, If e is non-dominated to the individuals of the population and the
individuals of the population is non-dominated to e , e replaces the random
individual from the population.

10: Update of the archive:

I. If e is ε-dominated by all members of the archive then e is rejected.

II. Else, If the child e ε-dominates one or more individuals then e will replace
them in the archive.

III. If otherwise, If e is not ε-dominated by any member of the archive e is ac-
cepted.

11: t = t +1
12: end while

Output:
P : Population.
A: Archive.

(b). Decomposition-based Algorithms (MOEA/D)
This class of MOEAs concerns approaches that decompose the multi-objective
problems into a number of single-objective problems by generally relying on
transformation algorithms to the single-objective. Although the premises of
this approach are described by (Ishibuchi & Murata, 1998), it is the MOEA/D
proposed by (Zhang & Li, 2007) that popularized this class of MOEAs due to its
performance. In MOEA/D, the Tchebycheff method is, among others, used to
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subdivide the original problem into subproblems. A classical evolutionary al-
gorithm allows evolving a population in which each individual corresponds to
the best solution of a specific sub-problem found since the beginning of the al-
gorithm. A neighborhood relation, based on the distances between the weight
vectors, is defined between the sub-problems. For the selection phase and for
each sub-problem i , two individuals are selected from the neighborhood of i to
participate in the crossovers. In the same way, during the replacement opera-
tion, the children generated by the individuals neighboring i can take the place
of the individual i .
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Algorithm 4 Pseudo code of the MOEA/D algorithm

Input:
N : the number of the subproblems.
λ1,λ2, ...,λN : weight vectors distributed uniformly.
T : neighborhood size
Tma x : the number of iterations.
Step I: Initialization

1: Set EP=⊘.
2: foreach (i , j ≤N ∧ i ̸= j )
3: Calculate Euclidean distance between λi and λ j ;
4: endforeach
5: for i = 1←−N do
6: Set neighborhood of i as B (i ) = {i1, i2, ..., iT }, where λi1 ,λi2 , ...,λiT are the T closest

weight vectors to λi ;
7: end for
8: Generate initial population P = (x 1, x 2, ..., x N ) randomly.
9: Calculate objective function F Vi = F (x i ),where i = 1, 2, ..., N .

10: Initializ z = (z1, z2, ..., zm )T ;

Step II: Evolution

1: t = 1.
2: while t ≤ Tma x do
3: for i = 1←N do
4: Select two index k and l from B (i ).
5: Get a new solution y from x k and x l by applying reproduction operator.
6: Apply a problem-specific repair algorithm on y to produce y

′
.

7: for j = 1←m do
8: if f j (y

′)< z j then
9: z j := f j (y

′)
10: end if
11: end for
12: for j ∈ B (i ) do
13: if g t e (y ′ |λ j , z )≤ g t e (x j |λ j , z ) then
14: Set x j = y

′
and F (x j ) = F (y ′)

15: end if
16: end for
17: Delete all vectors dominated by F (y ′) from EP;
18: if no vectors in EP dominate F (y ′) then
19: Add F (y ′) to EP.
20: end if
21: end for
22: t = t +1
23: end while

Output:
EP: external population.

(c). Indicator-based Algorithms
The last class of AEMOs uses a performance indicator (or metric). (Zitzler &
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Künzli, 2004) were the first to propose such an approach and proposed the IBEA
algorithm, which does not require a particular diversification mechanism. A
binary performance indicator, which allows the comparison of two sets of so-
lutions, is used. The fitness of an individual corresponds to the loss of quality
(according to the indicator) generated by the deletion of this individual within
the population. Thus, the higher this value is, the better the individual is. The
selection and replacement phases are thus based on the fitness of the individu-
als.
Similarly, the SMS-EMOA algorithm (Beume et al., 2007) seeks to maximize the
hypervolume metric at each generation. To do so, during the replacement phase,
a sorting by front is first performed as in NSGA-II. In the last selected edge,
the individuals that contribute the least to the hypervolume value are removed.
Since the computation of the hypervolume metric can be excessively time con-
suming, (Bader & Zitzler, 2011) defined methods to speed up this computation,
especially for solving problems with more than four objectives.
Finally, it is important to say that other metrics than hypervolume can be used
as a performance indicator. For example, (Brockhoff et al., 2015) investigated
the possibility of using a faster to compute alternative, the R2 metric (Hansen &
Jaszkiewicz, 1994), in an AEMO that they named R2-EMOA. (Menchaca-Mendez
& Coello, 2015) incorporated the GD convergence metric within their GDE-MOEA
algorithm. Finally, an improved version of the IGD metric was defined by (Tian
et al., 2016) and is used as a basis for comparing individuals.

2.4 Conclusion

In this chapter, we have presented the definitions and the main concepts used in the
field of multi-objective optimization. As it has been defined, MOP is a problem that has
several objectives to be optimized. The use of the word optimize comes from the fact that
it is necessary to choose a solution that minimizes or maximizes the objectives of the prob-
lem, while in the case of a problem that contains a set of objectives it is not possible to find a
solution that optimizes one objective function at the same time that it optimizes the other
(in the case of two objectives). The appearance of this problem has led us to use a new con-
cept of comparison between solutions, this concept is called Pareto dominance. Therefore,
if we use the dominance relation to compare the solutions we find that the best solutions
to choose are a set of solutions called non-dominated solutions or Pareto solutions, the ap-
plication of the objective functions on the Pareto solutions produces what is called Pareto
front.
The literature review of MOEAs was also presented. The use of evolutionary algorithms in
multi-objective optimization has shown great success. EAs have the ability to find better
approximations of Pareto solutions. EAs have three steps: selection, reproduction, and up-
date. Several state-of-the-art algorithms in different multi-objective optimization frame-
works have been discussed. In this chapter, we have also described the main algorithms
that will be used in this thesis.
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Supply Chain Management

3.1 Introduction

The function of supply chain management is in charge of supervising and coordinat-
ing the production, transportation, and delivery of goods and services from point of origin
to final destination. We present the basic concepts of supply chain management, as well
as the various problems that constitute the core of the thematic studied in this thesis are
addressed in this chapter.

3.2 Basic concepts

3.2.1 Logistics

The use of the word logistics was in the French and American armies in order to se-
cure the arrival of extensions such as moving military personnel equipment and goods,
which helped armies win wars. As a result, the phrase was more frequently used follow-
ing World War II to refer to the movement of commercial commodities along the supply
chain. Logistics is the process of effectively organiz-
ing and carrying out the storage and transit of prod-
ucts from their point of origin to their point of con-
sumption. The goal of logistics is to efficiently and
promptly satisfy client needs. In order to meet con-
sumer needs, the logistics component of the supply
chain is in charge of planning, implementing, and
managing the efficient, effective forward and reverse
flow of goods, services, and related information between the place of origin and the site of
consumption.

39
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3.2.2 Supply chain (SC)

Supply chains are all activities responsible for managing and moving raw materials,
parts and components necessary for the production process, as well as the final products,
whether that movement is in the direction of the organization or from the organization to
the direction of the markets.

Raw material: Raw materials are goods that will be used in the manufacturing process.
Raw ingredients form part of a finished product and may be easily and affordably
traced to that product.

Organization Company: is a group of people working to achieve a specific goal, which
may be the goal of making profits by offering a product to its customers or providing
a service to the community if it is an institution that is not based on profitability.

SC represents the connections and collaborations between suppliers, manufacturers, lo-
gistics businesses, wholesalers, retailers, and end customers. The supply chain process
begins with the receipt of an order for a good or service by an organization and ends with
the successful delivery of that good or service to the final customer.
The overall SC brings together multiple partners to source, manufacturer, transport, store,
supply, and sell goods:

Suppliers: Produce raw materials or parts that can be manufactured into products.

Manufacturer: Create parts or products from raw materials and other inputs.

Logistics: Transports and stores goods as they move through the supply chain.

Wholesalers: Purchases goods for onward distribution to stores or other sales outlets.

Retailers: Sells finished products to end customers.

Customers: An individual or business that purchases the goods or services of another com-
pany. Customers are crucial because they provide revenue; businesses cannot func-
tion without them.

3.2.3 Supply chain management (SCM)

3.2.3.1 History

In (Tan, 2001), the authors present the historical evolution towards supply chain man-
agement. They identify the following main phases:

1950s and 1960s: In a market where supply was always satisfied because it was lower than
demand, the strategy of companies was to minimize production costs. Thus, pro-
ducers tended to mass-produce in order to reduce the unit production cost without
worrying about product quality and innovation.

1970s: Manufacturing Resource Planning (also called Net Requirements Planning) was in-
troduced. It represents a method of planning all the resources of a company. In ad-
dition, managers realized the importance of work in progress and its impact on cost,
quality, innovation and delivery time. These criteria were considered as the four walls
of a company.

1980s: At that time, competition increased, forcing companies to offer lower costs with
better quality and greater flexibility. In addition, the concept of Just In Time (JIT),
which consists of responding to demand as it arises, was born. Later, the importance
of establishing partnerships between suppliers and customers began to be realized.
And from this idea, the concept of SCM emerged.
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Since the 1990s: Companies have started to apply the concept of SCM by creating partner-
ships with their suppliers and customers. Recent academic and professional research
has shown the added value of this theory. However, the current market still presents
companies that have not adapted this management method.

3.2.3.2 Example of Supply chain management

We can use the Coca-Cola firm as an example to demonstrate the concept of SCM (Fig-
ure 3.1). The Coca-Cola company is a multinational beverage corporation headquartered
in Atlanta, Georgia. The business is interested in producing, retailing, and marketing al-
coholic and non-alcoholic syrups and concentrates. One of the largest and most efficient
SCM systems in the world is that of Coca-Cola.

Figure 3.1 – An example of supply chain management-Coca-Cola.

Their SC involves many actors, starting with the suppliers (Coca-Cola’s syrup, carbon
dioxide, sugar), the manufacturer (product production), the warehouses (product storage,
keep production, etc.), the distribution circuit (wholesalers, supermarkets, etc.) and of
course the consumer. At each stage, transport companies are also involved.

3.2.3.3 Definition of SCM

The management of the flow of goods and services is known as SCM. It covers all pro-
cesses that transform raw resources into finished goods. It entails the purposeful simplifi-
cation of a business’ supply-side operations in order to optimize customer value and obtain
a competitive edge in the market. There are three types of flow in SCM:

1. Material flow: The flow of material refers to the smooth movement of an item from
the producer to the client. This is feasible thanks to a network of distribution, dealer,
and retailer warehouses. The key problem we confront is ensuring that material flows
as inventory promptly and without interruption via various points in the chain.

2. Information flow: The flow of information is the basis for SCM’s decision-making,
the performance of a supply chain depends on it. Information serves as the founda-
tion upon which managers make decisions and SC processes conduct transactions,
making it critical to the SC’s performance.



3.3. Decision phases in SCM 42

3. Financial flow: Financial transactions will take place between the customer and the
supplier. Money may also travel from supplier to client in the form of debit notes. It is
critical for an efficient and effective SC that all three flows are managed appropriately
and with the least amount of work.

3.3 Decision phases in SCM

Decision phases are the several SCM processes that go into taking a decision or action
connected to a certain good or service. Three decision processes must be completed in
order for SCM to be successful in terms of information, product, and financial flow.

3.3.1 Supply Chain Strategy

In this stage, management makes the majority of the decisions. The choice to be made
involves the cost of items that are highly expensive if it is incorrect and takes into account
factors like long-term forecasting. At this point, it is crucial to analyze the market circum-
stances. These choices take into account the current and upcoming market situations.
They make up the supply chain’s structural design. The tasks and responsibilities of each
are laid out after the layout has been prepared. The senior management or higher authority
makes all of the strategic decisions. These decisions include selecting the production ma-
terials, choosing a factory location that makes it simple for transporters to load materials
for delivery to specified places, choosing a warehouse location for the storage of finished
goods, and many others.

3.3.2 Supply Chain Planning

Supply chain planning should take into account demand and supply. A market research
should be conducted to identify customer demand. The second factor to take into account
is being aware of current information about competitors and the tactics they employ to
meet the needs and desires of their clients. Since different markets have distinct demand,
they should be approached differently. This phase includes everything, starting with fore-
casting the market demand for the markets that will get the finished commodities for which
a facility is designed in this stage. The company’s participants and workers should all make
an effort to make the process as adaptable as they can. A supply chain design phase is re-
garded as successful if it works well in short-term planning.

3.3.3 Supply Chain Operations

The third and final decision is made up of numerous practical choices that must be
made immediately or in a matter of minutes, hours, or days. The decisional phase’s goals
include performance optimization and uncertainty minimization. Everything is covered in
this step, starting with how the consumer is handled when using that product. Consider a
scenario in which a customer demands a product that was made by our business. Orders
are initially taken and forwarded to the manufacturing department and inventory depart-
ment by the market department. Then, in response to a customer request, the production
department sends the requested item to the warehouse via a suitable media, and the dis-
tributor promptly ships it to the consumer.
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3.4 Key Issues in SCM

3.4.1 Globalization

Globalization offers firms and organizations with numerous significant supply chain
management challenges:
First, businesses are shifting manufacturing operations to nations with lower labor costs,
lower taxes, and/or lower transportation costs for raw materials in order to decrease ex-
penses along the supply chain. Depending on the component of their product, some busi-
nesses may outsource production to more than one country. Second, as businesses in-
crease their sales in international markets, they must localize their existing products in
order to do so, which necessitates a substantial alteration to the supply chain as they ad-
just their offerings to various cultures and preferences. If business apps are not integrated,
there is a risk of losing visibility, control, and proper management over inventory. Effective
data management across different geographic contexts is necessary for this.

3.4.2 Fast-changing Markets

First, due to the rapid shifting market demands, product life cycles are shorter. Busi-
nesses are under pressure to stay on top of the most recent trends, innovate by launching
new products, and maintain low total manufacturing costs because they are aware that
trends will not continue for very long. This necessitates a supply chain that is adaptable
and can be used to produce different goods as well as for future initiatives. Second, busi-
nesses need to update product features frequently in addition to developing new items.
Businesses must adapt their supply chains to account for product changes while enhanc-
ing product features.

3.4.3 Quality and compliance

Compliance and product quality are frequently related. Businesses must make sure
that they produce their goods in accordance with national and international legal require-
ments for packing, handling, and shipping. Enterprises must not only pass quality assur-
ance and safety inspections, but they must also develop compliance documents, such as
licenses, permits, and certifications, which can be overwhelming for them and their sup-
ply chain management systems. Blockchain, smart packaging, and Internet of Things (IoT)
are revolutionizing how compliance is monitored and enforced. Managers should carefully
consider where these investments make sense and check with IT to see if the company is
employing platforms based on microservices and big data to meet these stringent data re-
quirements.

3.5 Drivers of SCM

Supply chain capabilities are guided by the decisions you make about the two supply
chain management drivers. Each of these drivers can be built and maintained to emphasize
responsiveness or efficiency based on changing business requirements.
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3.5.1 Logistical drivers of SCM

3.5.1.1 Location/ Facilities

In SCM, location is very important and that is why location is one of the drivers. Very
large organisation worldwide have opted for smaller locations closer to their customers
while to smaller manufacturers one plants is enough because it would be costly having
branchers all over the place.

3.5.1.2 Inventory

As a driver of SC, inventory calls for efficiency in the way management handles their
inventory. Efficient management inventory reduces cost in terms of holding, ordering and
storage. Just in time (JIT) is one of the strategies that can be used in inventory management.

3.5.1.3 Transportation

This looks at the movement of raw materials from the raw material supplier to the man-
ufacturer, then the movement of finished products to the final consumer as well as the re-
verse movement.

3.5.2 Cross-Functional drivers of SCM

3.5.2.1 Infromation

SC is complete only if there is both forward and backward flow. In these flows informa-
tion is one of the most important, the way feedback is handled determines the responsive-
ness of the SC.

3.5.2.2 Sourcing

Sourcing is a collection of business operations used to acquire goods and services. Sourc-
ing outlines the one who will carry out SC tasks such as production, warehouse, transporta-
tion, and information management.

3.5.2.3 Princing

Pricing establishes the price to charge clients in SC. Pricing techniques can be used to
balance supply and demand.

3.6 Classic SCM problems

3.6.1 The Facility Location Problem (FLP)

The FLP consists of deciding the location of facilities to satisfy customers while max-
imizing profits. This problem has been addressed by many authors, who present differ-
ent types of models, but considering the same objective function: minimize location and
transportation costs.
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3.6.1.1 Problem Description

Being a directed network that represents any geographic region, where the nodes or
cluster represent cities or groups of cities and the arcs represent the paths that join them.
Suppose that the cities demand only one type of product and if we supply the demand of
the city we will obtain income proportional to its number of inhabitants.
The model takes into account the following:

1) Each node represents a demand point.

2) This point of demand is satisfied only if a distribution center is installed.

3) Plants and distribution centers can only be located at nodes.

4) Once a distribution center is located, its demand must be supplied by one or more
plants.

5) A plant can supply the demand of more than one distribution center at the same time.

6) Only one plant or one distribution center can be installed.

Graphically we can observe the different facilities p that are found on the left side, where for
each point of demand the transport service must minimize the closest distance according
to its location, at the same time considering both the quantity, weight and time in each of
the shipments.

3.6.1.2 Mathematical formulation

Parameters:
I : Set of demand nodes.
J : Set of candidate locations.
f j : Cost of locationg a facility at candidate site j ∈ J .
di j : Distance from demand node i ∈ I to candidate facility site i ∈ I .
Decision Variables:

X j =

�

1 If candidate site j ∈ J is selected.

0 Otherwise.

Yi j =

�

1 If demands at node i ∈ I are served by a facility at node j ∈ J .

0 Otherwise.
The complete formulations is

M i ni mi z e z =
∑

i∈I

∑

j∈J

di j Yi j +
∑

j∈J

f j X j (3.1)

s.t.
∑

j∈J

Yi j = 1 ∀i ∈ I (3.2)

Yi j ⩽ X j ∀i ∈ I ∀ j ∈ J (3.3)

X j , Yi j ∈ {0, 1} ∀i ∈ I ∀ j ∈ J (3.4)

3.6.1.3 Classification and extension of FLP

1. Capacitated Facility Location Problem (CFLP)
CFLP is a variant of FLP where the capacity constraint on deposits is imposed. So in
this case the sum of customer requests assigned to each depot must not exceed its
capacity.
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2. Set Covering Problem (SCP)
The SCP recovery problem consists of determining a subset of deposits to cover all
customers. In location problems in general, two decisions have to be made at the
same time: the choice of repositories and the assignment of customers. However, in
the SCP, each depot only covers a set of predefined customers and therefore, to solve
the SCP, we will only need to choose a subset of depots to cover (serve) all customers.

3. P-Median Problem (PMP)
The p-median problem is a location problem where we have a set of candidate depots
and the goal is to choose exactly p depots from the set of these candidates (a chosen
depot is called the median). The other candidate deposits are then assigned to the
chosen medians. The objective of PMP is to minimize the assignment cost.

4. P-Centre Problem (PCP)
The p-center problem is a variant similar to the PMP problem whose goal is to reduce
the maximum of customer assignment costs.

5. Fixed Charge Facility Location Problems
Among the key issues in location science are Fixed-Charge Facility Location Prob-
lems. There is a finite number of customers who have a need for service, and there
is also a finite number of viable sites for the facilities that will provide service to cus-
tomers. Decisions must be made in two categories: While allocation decisions define
how to meet user demand from the present facilities, placement considerations de-
termine where to build the facilities. The number of facilities to be located was a
model input in the majority of the models we have examined so far. A different pic-
ture appears when we include in the fixed cost of facility location.

3.6.2 The Vehicle Routing Problem (VRP)

The VRP is a problem belonging to the class of combinatorial optimisation problems.
The VRP problem consists in assigning each customer to a route carried out by a single ve-
hicle and in finding an order of customer visits for each vehicle so as to satisfy the capacity
constraints of the vehicles, and the quantities of product requested by each customer, in
the event of a delivery problem. The objective in this problem is to find the set of routes
that minimize the total distance traveled for a minimal number of vehicles leaving a depot
and returning to it.

3.6.2.1 Mathematical formulation

Parameters:
G = (V , A) is a directed graph, with V = {0, 1, 2, ..., n} is the node set, and A is the arc set.
n= number of customers.
0= represents the depot.
N = V \ {0} set of customers.
K = set of vehicles.
Ci j = traveling cost from i ∈V to j ∈V .
Decision Variables:

X k
i j =

�

1 I f v e hi c l e k ∈ K t r a v e l s f r o m no d e i ∈V t o no d e j ∈V .

0 O t he r w i s e .
The complete formulations is
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M i ni mi z e z =
∑

k∈K

∑

i∈V

∑

j∈V

Ci j X k
i j (3.5)

s.t.
∑

k∈K

∑

i∈N

X k
i j = 1 ∀ j ∈N (3.6)

∑

k∈K

∑

j∈N

X k
i j = 1 ∀i ∈N (3.7)

∑

i∈V , i ̸=p

X k
i p −
∑

j∈V , j ̸=p

X k
p j = 0 ∀p ∈N ∀k ∈ K (3.8)

∑

i∈N

X k
i 0 = 1 ∀k ∈ K (3.9)

∑

j∈N

X k
0 j = 1 ∀k ∈ K (3.10)

Constraints (3.6) and (3.7) stipulate that each customer must be served once and only once
while constraint (3.8) checks that the flow is preserved. Constraints (3.9) and (3.10) ensure
that each round begins and ends with the deposit.

3.6.2.2 Classification and extension of VRP

1. Capacitated Vehicle Routing Problem (CVRP): The CVRP is a VRP where the vehi-
cle capacity constraint is applied, meaning that the total of the customer requests
served by each vehicle cannot exceed its capacity. The fleet of vehicles in the CVRP is
assumed to be homogeneous.

2. Vehicle Routing Problem with Periodic (PVRP): In the PVRP, we have a set of periods
P = {1, ..., M }which represents the planning horizon, and for each customer we have
a number of visits k (1 ≤ k ≤M ) which must be carried out. Therefore, to solve the
PVRP we must, for each period, determine the customers to visit and build the vehicle
routes to satisfy these customers.

3. Vehicle Routing Problem with Pickup and Delivery (VRPPD): As with the VRP, the
VRPPD problem consists of developing a set of routes to satisfy customer demands.
However in the VRPPD, we distinguish two types of request: the delivery of a product
and the collection of a product.

4. Vehicle Routing Problem with Time Windows (VRPTW): The VRPTW is a VRP where
a time constraint is imposed. Indeed, in the VRP a vehicle can visit a customer at any
time. However, in the VRPTW a vehicle can only visit a customer within a specific
time interval, this is called a time window.

5. Open Vehicle Routing Problem (OVRP): Unlike the VRP where the route of each ve-
hicle must end at the central depot, in the OVRP problem the vehicles are not obliged
to return to the central depot. Indeed, this feature is important because it changes
completely the structure of VRP.

6. Vehicle Routing Problem with Backhaul (VRPB): As for the VRPPD, in this variant we
distinguish two types of customers: deliverers where the vehicle must make a pick-
up and receivers where the vehicle must make a delivery. However the difference
between the two variants is that in the VRPB we visit all the receivers before visiting
the deliverers.
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7. Multi-Depot Vehicle Routing Problem (MDVRP): In the VRP, each vehicle’s route
starts and ends from a central depot. However, in the MDVRP we have several de-
pots and in each depot we have a set of vehicles. As in the VRP, each vehicle’s route
begins and ends from its depot and each customer must be served exactly once.

3.6.3 The Inventory Problem (IP)

Inventory refers to the materials (or things) preserved for later use. Resources could
include any kind of things, people, machinery, etc. IPs typically develop at stores (where
some items are sold) or factories (where goods are produced and raw materials are needed).
Even though inventory is a resource that is idle, it is crucial to keep some inventory on hand
for the business to run smoothly. The issue of how much inventory should be kept on hand
and how many orders should be placed is known as the Inventory Control Problem (ICP).

3.6.3.1 Problem Description

Inventory control is an integral part of production control which includes both physical
as well as financial control on material physical control lays emphasis that proper quality
of material should be ensured in proper quantity at the proper time and at proper place so
as to avoid the situation of shortage or surplus of material. Financial control helps in min-
imizing the cost of materials and investment in inventory. Some definitions of inventory
control may be placed as under.
Inventory costs: The various costs considered in IP are:

1. Holding cost or maintenance cost: Holding cost is the expense of keeping merchan-
dise until it is sold or used. C1 denotes the holding cost per unit good per unit time.
Rent for space, interest on capital inventory, insurance premiums, spoilage, break-
age, record upkeep, and so on are all included.

2. Set-up cost or procurement cost: The cost of assembling machinery before begin-
ning production is referred to as the set-up cost. It is represented by the symbol C3.
It is the cost of a single production run (cycle). The cost of setting up is believed to
be independent of the quantity produced. It is a set fee. It is also known as the order-
ing cost, which is the cost of placing an order for products. Purchase cost, labor cost,
transportation cost, quality control, and so on are all included.

3. Shortage cost or penalty cost: The cost associated with either a delay or failure to
satisfy demand is referred to as shortage cost. C2 is the shortage cost per unit good
per unit time.
In the case of unfulfilled demand at a later stage (backlog case) the costs are directly
proportional to the shortage quantity as well as the delay in time. In case of inability
to meet the demand (no backlog), the costs are proportional only to the shortage
quantity. It includes loss of goodwill, sales lost, profit lost etc.

4. Capital cost (Production cost or purchase cost): The cost associated with an item
whether it is manufactured or purchased is called the production cost or purchase
cost or capital cost. Capital cost is denoted by P .

Variables in an inventory problem: The variables associated with the inventory problem
are classified into two categories:

1. Controlled variables: are those that can be altered, such as the quantity of things
added to the inventory, how often they are replenished, and how far along they are in
the production process.
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2. Uncontrolled variables: The variables that may not be controlled in an inventory
problem like the inventory costs, demand, lead time are known as uncontrolled vari-
ables.

Terms used in an inventory problem:

1. Stock replenishment: The quantity of goods acquired in one replenishment in order
to maintain a certain level of inventory is known as stock replenishment.

2. Demand: It is the number of items required per period. It is denoted by R . It may be
uniform or probabilistic. If the demand is known and fixed, it is uniform demand. If
the demand is not known with certainty it is probabilistic deamand.

3. Lead time: The lead time is the period of time between placing an order and the
products actually arriving at the inventory. The decision of buffer stock is heavily
influenced by lead time.

4. Time horizon: The time period over which the inventory control is planned is called
the time horizon.

5. Economic order quantity or economic lot size (EOQ/ELS): The quantity of products
purchased in inventory is referred to as the order quantity. Thus, the economic order
quantity is the order amount that minimizes the total expenses of carrying inventory
and ordering. Similarly, the economic lot size is the lot size (made in one lot) that
minimizes the total expenses of carrying inventory and ordering.

Some general notations used in inventory models:
Q : Lot size per production run (order quantity).
C1 : Holding cost per unit good per unit time.
C2 : Shortage cost per unit good per unit time.
C3 : Set up cost per production run.
R : Demand rate.
t : Time interval between two consecutive replenishments of inventory.
n : Number of replenishments per unit time (year).
C (Q ) or C (Q ,S ) : Average total cost per unit time.
I : Carrying cost per rupee per unit time.
P : Purchase cost(Capital cost).
Inventory models: The two categories of inventory models are:

1. Deterministic models.

2. Probabilistic models.

Inventory models in which demand is assumed to be uniform are deterministic models and
the inventory modles in which demand is a random variable are known as probabilitistic
models. Inventory models meant for deterministic demand are called EOQ models.

3.6.4 Integration problems

3.6.4.1 The Location Routing Problem (LRP)

The LRP has a number of real-world applications in areas of transportation. Based on
the solution method, we have suggested the following classification scheme: Heuristic al-
gorithms based on trajectory, or constructive heuristic algorithms. The fortress and the
absence of each published technique are highlighted particularly, highlighting research
prospects in the context of the problem’s practical application.
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3.6.4.2 The Inventory Routing Problem (IRP)

The IRP is a logistical issue that arises when a product needs to be distributed to a num-
ber of consumers within a predetermined time frame. A maximum inventory level is spec-
ified by each client. As part of a vendor-managed inventory policy, the supplier keeps track
of each customer’s stock and decides how much to replenish it, ensuring that there is never
a stockout at the customer. A particular capacity of vehicle is used to transport goods from
the supplier to the clients.

3.7 Financial supply chain management(FSCM)

3.7.1 Definition

Financial supply chain management(FSCM) is the process of supplier finance and pro-
ducers in the supply chain to obtain the goods and services the company needs to produce
its products or provide its services. This includes financing the purchase of raw materials
and finished goods and providing the capital needed to manage production operations.
Supply chains are typically financed through bank loans, advance payments, bank guar-
antees or co-financing between suppliers and buyers. FSCM is intended to improve the
liquidity of companies, ensure the continuity of their operations and reduce the risks that
companies may face in procurement and supply operations.

3.8 Green supply chain management (GSCM)

3.8.1 Environment

Environment refers to the natural world and surrounds in which all plants, animals,
people, and other living things exist and function. The environment affects all things, both
living and non-living. All natural elements that support life on earth, such as air, water,
soil, sunlight, forested areas, plants, and animals, are included in the environment. It is
believed that Earth is the planet in the universe with the conditions necessary for life to ex-
ist. Real environmental beauty is found in all natural elements. In the same way that trees
are referred to as the earth’s surface’s green blanket. They maintain clean air and deliver
oxygen necessary for both animal and human living. Without the natural resources that
make up our surroundings, we are unable to imagine life. In our quest for advancement,
we have lost sight of its value and significance. Three important types of environmental
contamination are those in the air, land, and water. This has a significant impact on both
the environment and living conditions around the world. If we continue to harm the en-
vironment and squander natural resources, we risk losing our life. We cannot afford to let
industrialization and urbanization lead to the destruction of our ecosystem. The most cru-
cial resource for maintaining life is the environment. We cannot predict the existence of life
in the world without a healthy environment, thus we must maintain a safe and clean envi-
ronment now and in the future. We must all do our part to protect trees by planting trees,
using less plastic, and conserving all natural resources. Each and every person that lives
on the planet is accountable for it. Everyone should step forward and participate in the
company’s environmental safety program.
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3.8.2 Definition

GSCM is a philosophy that incorporates environmentally friendly practices into all as-
pects of SCM, including product design, material sourcing and selection, manufacturing
processes, consumer delivery, and end-of-life management of the product after it has served
its purpose. The GSCM focuses on mitigating the harmful impact of SC operations on the
environment. The GSCM not only focuses on reducing air, water, and waste pollution but
also focuses on green practices to improve organizational performance through less waste
manufacturing, reuse and recycle of products, less manufacturing cost, effective asset use,
and greater customers satisfaction.

3.9 Emergency Medical Services (EMS)

3.9.1 Definition

An EMS system is defined as a group of companies that provide transportation to nearby
medical facilities and emergency medical care to anyone in need within a given geographic
area. An EMS system typically consists of a fleet of ambulances or emergency response ve-
hicles, ambulance stations where crews and vehicles wait until they are needed, a dispatch
center that responds to emergency calls, assesses the circumstances, and dispatches the
ambulances, and the hospitals with emergency departments that take in the patients.
In general, three levels of EMS planning may be described, which differ in the time horizon
over which decisions are made: strategic, tactical, and operational.

1. Strategic level mainly concern the location and construction of fixed locations, the
purchase of equipment and the hiring and training of specialized employees.

2. Tactical level includes the development of work schedules and the location and relo-
cation of ambulances.

3. Operational level concerns the rules for dispatching and redeploying vehicles, and
the intervention procedures to be followed by the personnel.

3.9.2 Planning problems

3.9.2.1 Ambulance Location Problem (ALP)

The ALP belongs to the class of Maximum Covering Location Problems (MCLP). It aims
to find the deployment sites for the ambulance fleet in a certain area to ensure adequate
coverage of potential emergencies.

3.9.2.2 Ambulance Dispatching Problem (ADP)

The ADP falls under the class of Vehicle Routing Problem (VRP). It aims to select the
best ambulances to dispatch to the emergency location after an emergency call is received
in the EMS system. In addition, it is also necessary to maintain adequate coverage of the
area served in order to be able to respond to emergency calls as soon as possible.
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3.9.2.3 Ambulance Relocation Problem (ARP)

The ARP has a huge impact in the optimization of the EMS system. Thus, ARP is a strat-
egy that modifies the locations of ambulances, during a day to better adapt to the evolution
of the system. It aims to minimize the response times and assure a balanced plan for the
available ambulances considering the existing fleet.

3.10 Conclusion

In this chapter, we have given an overview of supply chain management and then de-
scribed in detail the three basic problems, namely, the location problem, the vehicle rout-
ing problem, and the inventory management problem. Finally, we dedicate the last part
of this chapter to provide an overview of green supply chain management and emergency
medical services problem in supply chain management.
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4
G-MOEA/D-SA algorithm for the

ambulance dispatching and relocation
problem during COVID-19.

4.1 Introduction

Throughout history, humanity has faced numerous significant pandemics and epidemics,
such as the plague, cholera, flu, SARS-CoV, and Middle East respiratory syndrome coron-
avirus (MERS-CoV). Currently, the world is grappling with the 2019 coronavirus disease
pandemic (COVID-19). To mitigate the impact of such outbreaks, an efficient emergency
response and preparedness program is crucial in reducing fatalities and injuries. Emer-
gency medical services (EMS), as one of the most vital healthcare services (HCS), plays a
key role in providing prompt pre-hospital care to patients. The effectiveness of response
measures can contribute to both reducing the mortality rate and saving lives.
In this chapter, we present G-MOEA/D-SA, an enhanced version of the MOEA/D algorithm
that addresses the Ambulance Dispatching and Routing Problem (ADRP) by incorporat-
ing simulated annealing (SA). G-MOEA/D-SA employs a straightforward yet efficient ap-
proach to determine optimal ambulance routes. Additionally, we provide an experimental
study to demonstrate the effectiveness of our method. In our previous presentation, we
conducted a comparative analysis of several state-of-the-art multi-objective optimization
methods using real data collected during the Covid-19 pandemic in Saudi Arabia.

4.2 Literature review

The primary focus of research in managing EMS vehicles revolves around addressing
dispatching and relocation problems. In 2012, (Ibri et al., 2012) introduced the first multi-
agent approach that aimed to enhance long-term system performance by considering these
issues. Another study by (Majzoubi et al., 2012) developed an integrated model for dis-
patching and relocation in real-time scenarios, increasing system capacity by enabling ve-
hicles to attend multiple patients in different locations. To improve dispatching and relo-
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cation decisions, (Billhardt et al., 2014) proposed dynamic approaches that accounted for
ambulance redeployment in Madrid.
The Ambulance Relocation and Dispatching Problem (ARDP) was formulated as a linear
programming model by (Bélanger et al., 2015), who also devised a method of mathematical
decomposition to handle real-world scenarios. In 2016, (Andersson & Värbrand, 2016) pro-
vided an overview of decision support systems for dynamic ambulance relocation and au-
tonomous ambulance dispatching. They evaluated the impact of applying dispatching and
relocation models sequentially on key performance indicators while considering the oper-
ational requirements of a Colombian EMS provider. A flexible optimization framework for
real-time ambulance dispatching and relocation was developed by (Nasrollahzadeh et al.,
2018), allowing decision-makers to dispatch idle ambulances to cover the location of a re-
cently dispatched ambulance, queue calls, or select any available ambulance. (Pechina
et al., 2019) presented and evaluated scalable dispatching and relocation algorithms in-
spired by extensive research on emergency medical services. In a study by (Carvalho et al.,
2020), a mathematical model, a heuristic pilot approach, and a time-preparedness met-
ric were utilized to maximize system coverage by enabling relocations to any base. Lastly,
(Bendimerad et al., 2021) utilized real data from Saudi Arabia to demonstrate the effective-
ness of artificial intelligence algorithms in coordinating emergency response while ensur-
ing adequate coverage for subsequent calls in the examined region.

4.3 Mathematical model

In this section, we mathematically represent the distribution of Covid-19 incoming calls
across period t = 1, 2, ..., T as the Ambulance Dispatch and Relocation Problem (ADRP).
The ADRP is defined on a graph G = (N , A), where: The set of vertices N is represented as
N =W ∪S ∪K .
The set of possible arcs A is represented as A = (i , j ) : i , j ∈N , i ̸= j .
In this context, W represents the list of emergency Covid-19 calls that arrive at each time
period t and need to be attended to. Each emergency Covid-19 call w is associated with a
priority P r i ow and a time taken pw . The set S represents the EMS stations, and the set K
represents the hospitals. The set of ambulances is denoted as V = (V 1 ∪V 2 ∪V 3), where:
V 1 represents the set of ambulances moving to respond to an emergency Covid-19 call.
V 2 represents the set of ambulances moving to transport patients to hospitals.
V 3 represents the set of ambulances moving back to their original EMS stations.
The travel time ti j associated with each arc (i , j ) ∈ A is determined by the following equa-
tion:

ti j =
U ni t P e r H o u r ×di j

v s
(4.1)

Here, v s represents the speed of the ambulance in kilometers per hour, U ni t P e r H o u r
denotes the number of time units in one hour, and di j is the spherical distance between
two geographical sites, as given by equation 4.2.

di j = a r c s i n (

√

√

s i n (
αi −α j

2
)2+ c o s (αi )× c o s (α j )× s i n (

βi −β j

2
)2)×2 R . (4.2)

R = 6371 k m denotes the radius of the Earth. α and β are the radians of each location’s
latitude and longitude, respectively (Bendimerad et al., 2021).
To define ADRP, we must first identify the relevant variables, as well as the ADRP’s varied
constraints and objectives.
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4.3.1 Decision variable

To model a real problem mathematically, it is essential to define the decision variables.
In this work, we used binary variables :

x s
j w (t ) =







1 If ambulance j travels from an origin EMS station s to an emergency Covid-19 call w
at time t .

0 Otherwise

y w
j k (t ) =

�

1 If ambulance j travels from an emergency Covid-19 call w to a hospital k at time t .
0 Otherwise

z k
j w (t ) =

�

1 If ambulance j travels from a hospital k to an emergency Covid-19 call w at time t .
0 Otherwise

un s a tw (t ) =

�

1 If emergency Covid-19 call w is not covered at time t .
0 Otherwise

d e v j (t ) =

�

1 If ambulance j is rerouted at time t .
0 Otherwise

4.3.2 Constraints

(1) The requirement is that each emergency Covid-19 call must be assigned to an ambu-
lance for service. This constraint can be expressed as follows:

∑

j∈V

∑

s∈S

x s
j i (t ) = 1 ∀i ∈W (4.3)

(2) Every dispatched ambulance is designated to respond to an emergency Covid-19 call.

∑

i∈W

(
∑

s∈S

x s
j i (t ) +
∑

k∈k

z k
j w (t )) = 1 ∀ j ∈V 1 ∪V 3

(4.4)

(3) Ambulances that are en route to attend emergency Covid-19 calls are not allowed to
divert to hospitals or other emergency Covid-19 calls. This constraint can be formu-
lated as follows:

∑

k∈K

∑

w∈W

(y w
j k (t ) + z k

j w (t )) = 0 ∀ j ∈V 1 (4.5)

(4) Assigns these ambulances to hospitals.

∑

k∈K

∑

w∈W

y w
j k (t ) = 1 ∀ j ∈V 2 (4.6)
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4.3.3 Objective functions

In order to simplify the solution of our problem, we set some intermediate objectives.
We formulate them as follows:

1. The first objective function is to minimize the response time and the number of pri-
ority emergency Covid-19 calls that are not covered :

mi n F1 =
∑

j∈V 1

∑

s∈S

∑

w∈W

(t j w +pw )× x s
j w (t ) +
∑

w∈W

P r i ow ×un s a ti (t ) (4.7)

2. The second objective function is to minimize the relocation time and the number of
deviated ambulances:

mi n F2 =
∑

j∈V 2∪V 3

∑

k∈K

∑

w∈W

(t j k × y w
j k (t ) + t j w × z k

j w (t ))+
∑

j∈V 3

d e v j (t ) (4.8)

4.4 The proposed algorithm

4.4.1 G-MOEA/D-SA for ADRP

In order to address ADRP, the task involves receiving emergency Covid-19 calls at spe-
cific time intervals and promptly dispatching available ambulances during those times.
Consequently, our approach facilitates the continuous update of various lists such as occu-
pied ambulances, diverted ambulances, idle ambulances, and incoming emergency Covid-
19 calls at each EMS station’s time interval. When emergency Covid-19 calls arise within
these intervals and ambulances are unoccupied, the G-MOEA/D-SA algorithm aims to de-
termine the most optimal routes for deploying ambulances to handle the emergency Covid-
19 calls while adhering to all constraints.

4.4.2 Outlines of G-MOEA/D-SA algorithm

Within the context of addressing ADRP, this chapter introduces a novel variation of the
MOEA/D algorithm called G-MOEA/D-SA. This approach combines the MOEA/D algo-
rithm with SA and incorporates an external archive as a storage facility for nondominated
solutions, utilizing adaptive epsilon dominance. The pseudo-code of the proposed algo-
rithm (G-MOEA/D-SA) is illustrated in Algorithm 5 and described as follows:
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Algorithm 5 Pseudocode of G-MOEA/D-SA

Input:
g p b i (.): the penalty-based boundary intersection (PBI) approach (Zhang & Li, 2007).
M : the number of objective functions.
H : the positive integer.
T : the neighborhood size.
α : the cooling factor.
I t ema x : the number iterations of the simulated annealing (SA).
Output:
P : the parent population.
Ar c h : the external archive population.
Step I: Initialization Procedure

1: Generate N =

�

H +m −1
m −1

�

weight vectors ω = {ω1, ...,ωN } using Das and Dennis
′

technique

(Das & Dennis, 1998).
2: Initialize N neighborhoods B (1), B (2), ..., B (N ), where B (i ) = {i1, ..., iT } stores the indexes of T

closest weight vectors toωi .
3: Generate an initial parent population P = {x 1, x 2, ..., x N } randomly.
4: Evaluate the fitness values ( f1, f2, ..., fM ) of the parent population P .
5: Initialize the reference point z ∗.
6: Calculate g p b i (x i |ωi , z ∗) of each solution x i in the parent population P .
7: Initialize the external archive population Ar c h by all non-dominated solutions of the parent

population P .

Step II: Evolutionary Procedure

1: while termination criterion is not reached do
2: for i ←− 1 to N do
3: Randomly select two indexes k , l from B (i ).
4: y ←− Crossover−Operators (x k , x l ).
5: y ∗←− SA (y ,α, I t ema x ).
6: Evaluate the fitness values ( f1(y ∗), f2(y ∗), ..., fM (y ∗)) of the solution (y ∗).
7: for k ←− 1 to M do
8: if z ∗k > fk (y ∗) then
9: z ∗k ←− fk (y ∗)

10: end if
11: end for
12: Calculate g p b i (y ∗ |ωi , z ∗) of the solution y ∗.
13: foreach j ∈ B (i ) do
14: if g p b i (y ∗|ωi , z ∗)< g p b i (x j |ωi , z ∗) then
15: P ←− P ∪{y ∗} \ {x j }.
16: end if
17: end
18: Ar c h←−UPDATE−ARCHIVE (Ar c h , y ∗).
19: end for
20: end while
21: return P , Ar c h .

The main objective of this algorithm is to strike a balance between exploration and
exploitation during the search process. The crossover operator and solution exploitation
both play crucial roles in achieving this goal. Additionally, by employing a convergence
indicator-based dominance relation (CDR), SA aims to identify optimal routes for ambu-
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lances to efficiently cover all emergency COVID-19 calls. The integration of an external
archive within the G-MOEA/D-SA algorithm ensures that valuable solutions are preserved
and not lost once they are discovered.

4.4.3 Complexity of G-MOEA/D-SA

One loop and two fundamental operations are performed by G-MOEA/D-SA when cal-
culating the computational complexity of one iteration. Let D is the dimension of the prob-
lem, N be the population size and the archive size, M is the number of objective functions,
and I t ema x is the number of iterations of the SA. The first operation (SA) need I t ema x de-
velop, so the complexity of this operation in this case is O (N ∗I t ema x ∗(D+M )). The second
operation (updating archive) has a computational complexity of O (M ∗N 2). As a result, the
entire computational complexity of G-MOEA/D-SA algorithm is ma x (O (N ∗ I t ema x ∗ (D +
M )), O (M ∗N 2)) =O (M ∗N 2).

4.5 Experimental results

4.5.1 Dataset Description

In order to better understand how ambulances were distributed when Covid-19 in-
stances increased, we first examine the daily statistics Saudi Arabia experienced
(https://raw.githubusercontent.com/RamiKrispin/nncoronavirus/master/csv/coronavirus.csv).
The greatest peak recorded by Saudi Arabia was 4919 cases, as determined by an analysis
of the daily data up until August 3, 2021. We decided to generate these 4919 cases as emer-
gency calls in order to create the dataset of Covid-19 emergency calls, while also taking into
account their regional distribution as shown in figure 4.1.

Figure 4.1 – A graphical summary of all emergency Covid-19 call locations (circles).
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The time limit for each period, denoted as t , has been set to 10 minutes, resulting in
a total of 144 time intervals per day. Within each time interval, EMS stations randomly
select a specific number of emergency COVID-19 cases, generating ten distinct datasets
based on these criteria. The random distribution of COVID-19 calls across all 144 intervals
is illustrated in Figure 4.2. Each dataset instance represents an emergency COVID-19 call
with a random priority level and location. To construct our dataset, we have included 207
hospital locations out of the 5873 hospitals in Saudi Arabia that are capable of admitting
COVID-19 patients. Additionally, the dataset incorporates 374 EMS station sites, which
are referenced from the source (https://www.srca.org.sa/ar/Centers/All). In this particular
study, it is assumed that there is a single ambulance stationed at each ambulance station.
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Figure 4.2 – All cases of randomization of incoming COVID-19 calls over 144 periods.
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4.5.2 Experimental Results and Analysis

4.5.2.1 The effect of simulated annealing (SA):

To assess the impact of SA on the performance of the G-MOEA/D-SA algorithm, a com-
parison is made between the proposed algorithm with and without SA, using the IGD and
HV metrics. In the experiment, the G-MOEA/D-SA algorithm is executed 10 times both
with and without SA. The IGD and HV results across all datasets at each time unit are pre-
sented in Table 4.1. The differences in IGD and HV values between the G-MOEA/D-SA
algorithm with and without SA are depicted in the corresponding figures in the table. Ex-
amining the first column of IGD figures, it is evident that the G-MOEA/D-SA algorithm with
SA consistently achieves the lowest values compared to the G-MOEA/D-SA algorithm with-
out SA across all datasets. Similarly, in the second column of HV figures, the G-MOEA/D-SA
algorithm with SA consistently exhibits the highest values compared to the G-MOEA/D-SA
algorithm without SA for all datasets at each time unit. These results demonstrate that the
G-MOEA/D-SA algorithm with SA exhibits superior anytime behavior when compared to
the G-MOEA/D-SA algorithm without SA.
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4.5.2.2 Comparisons with other multiobjective algorithms

The G-MOEA/D-SA, MOEA/D, MOEA/D-M2M, and NSGA-II algorithms are individu-
ally executed 10 times for each dataset. Table 4.2 and Table 4.3 present the median value
(MV) and interquartile range value (IV) of IGD and HV, respectively, across all datasets at
each time unit. These values are visually depicted as curves in the tables. Analysis of Table
4.2 reveals that all curves corresponding to G-MOEA/D-SA consistently achieve smaller
IGD values compared to the curves of MOEA/D, MOEA/D-M2M, and NSGA-II across all
datasets. The experimental results indicate that G-MOEA/D-SA outperforms the other al-
gorithms in solving problems with varying time units. Similarly, Table 4.3 shows that all
curves for G-MOEA/D-SA consistently exhibit larger HV values compared to the curves
of MOEA/D-M2M and NSGA-II across all datasets. These statistical test results suggest
that the incorporation of simulated annealing (SA) using CDR-dominance and an external
archive based on epsilon dominance enables a balanced trade-off between convergence
and diversity.
Additionally, Table 4.4 and Table 4.5 present the MV and IV values of IGD and HV, respec-
tively, across all datasets. The MV and IV are calculated using equations 4.9 and 4.10, re-
spectively.

M V = (
144
∑

t=1

M (t ))/144. (4.9)

I V = (
144
∑

t=1

I (t ))/144. (4.10)

Where M (t ) represents the median at time unit t and I (t ) represents the interquartile range
at time unit t .
Analyzing Table 4.4, we observe that G-MOEA/D-SA exhibits the lowest MV and IV values
of IGD across all datasets, while MOEA/D-M2M ranks second in terms of MV and NSGA-II
ranks second in terms of IV. Turning to Table 4.5, it is apparent that G-MOEA/D-SA main-
tains its first rank with the highest MV values and lowest IV values of HV across all datasets.
Similarly, MOEA/D ranks second in terms of MV, while NSGA-II ranks second in terms of
IV. Based on these results, we can conclude that our algorithm, G-MOEA/D-SA, is highly
competitive, outperforming MOEA/D-M2M, MOEA/D, and NSGA-II in terms of both con-
vergence and diversity.
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Table 4.4 – The MV and IV of IGD were computed for the four algorithms on Datasets1 to
Datasets10.

Table 4.5 – The MV and IV of HV were computed for the four algorithms on Datasets1 to
Datasets10.

4.5.2.3 Comparisons on performance computational time

To assess computational performance, all algorithms are executed once over 100 iter-
ations. The computational times achieved by each algorithm on all datasets at each time
unit are graphically represented in Figures 4.3 to 4.12. From the results, it can be observed
that NSGA-II and MOEA/D-M2M are the fastest algorithms across all datasets. Follow-
ing NSGA-II and MOEA/D-M2M, G-MOEA/D-SA, which delivers excellent results for one
dataset (Datasets6), is the second fastest algorithm. These findings highlight that MOEA/D
is the slowest algorithm, with a significant difference in execution time. It requires a sub-
stantial amount of time to complete. In comparison to the MOEA/D-M2M algorithm, the
proposed G-MOEA/D-SA approach demonstrates exceptional competitiveness and gener-
ally outperforms MOEA/D in terms of computation time.
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Figure 4.3 – Computational time for Datasets1.

Figure 4.4 – Computational time for Datasets2.
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Figure 4.5 – Computational time for Datasets3.

Figure 4.6 – Computational time for Datasets4.
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Figure 4.7 – Computational time for Datasets5.

Figure 4.8 – Computational time for Datasets6.
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Figure 4.9 – Computational time for Datasets7.

Figure 4.10 – Computational time for Datasets8.
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Figure 4.11 – Computational time for Datasets9.

Figure 4.12 – Computational time for Datasets10.

4.6 Conclusion

In this chapter, we have introduced a novel multi-objective evolutionary algorithm called
G-MOEA/D-SA, which we have applied to address the real-time challenges of ambulance
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dispatching and relocation. Our proposed algorithm combines the standard MOEA/D frame-
work with SA to enhance solution quality. Additionally, an external archive is utilized to
maintain a favorable trade-off between convergence and diversity. To evaluate the effec-
tiveness of the G-MOEA/D-SA algorithm, we conducted experiments using real data from
Saudi Arabia during the Covid-19 pandemic. The algorithm has demonstrated promising
results in terms of convergence and diversity, which are key objectives in heuristic multi-
objective optimization. These findings support the applicability of our proposed algorithm
in various domains and future applications. This work has been published in the interna-
tional journal Applied soft computing 1, see ((Hemici et al., 2023)).

1. https://www.sciencedirect.com/science/article/pii/S1568494623003009



5
VRPTW-MOEA algorithm for the Vehicle

Routing Problem with Time Windows

5.1 Introduction

In various organizations, effective management of collection and distribution has emerged
as a crucial decision-making problem. Companies have come to recognize the signifi-
cant impact of these activities on their overall costs, particularly transportation expenses
that form a substantial portion of logistic costs. Among the critical problems in supply
chain management, the vehicle routing problem (VRP) holds great significance, and sev-
eral variants have been developed, including the vehicle routing problem with time win-
dow (VRPTW). The VRPTW involves routing a fleet of vehicles with capacity from a central
depot to customers with specific demands and time windows for service.
In this chapter, we will introduce a novel multiobjective evolutionary algorithm named
VRPTW-MOEA, designed to solve the multiobjective vehicle routing problems with time
windows (MOVRPTW). To assess the performance of our algorithm, we include an exper-
imental study at the conclusion of this chapter. Furthermore, we present a comparative
analysis of our results with previously published studies using the widely recognized 56
Solomon’s data sets.

5.2 Literature review

In the field of solving the multiobjective vehicle routing problem with time windows
(MOVRPTW), several approaches have been proposed by different researchers. For in-
stance, (Gambardella et al., 1999) utilized ant colony optimization and transformed the
multiobjective VRPTW into a single objective problem by introducing a weight penalty
term. (Tan et al., 2006) introduced a hybrid multiobjective evolutionary algorithm that si-
multaneously optimized all routing constraints and objectives, resulting in improved rout-
ing solutions. (Ombuki et al., 2006) developed a genetic algorithm approach using Pareto
ranking to optimize both the number of vehicles and total distances. (Ghoseiri & Ghan-
nadpour, 2010) proposed an adapted genetic algorithm that incorporated various heuris-
tics for local exploitation during the evolutionary search.(Garcia-Najera & Bullinaria, 2011)

80



5.3. Mathematical model 81

provided an improved multiobjective evolutionary algorithm by incorporating a similarity
measure between solutions. (Hsu & Chiang, 2012) introduced a multiobjective evolution-
ary algorithm with enhanced route exchange crossover and mutation operators to solve the
VRPTW. (Chiang & Hsu, 2014) proposed a knowledge-based evolutionary algorithm (KBEA)
aiming to minimize the number of vehicles and total distance simultaneously. (Qi et al.,
2015) developed a memetic multiobjective evolutionary algorithm with a novel selection
operator (M-MOEA/D) for MOVRPTW. (Dong et al., 2018) proposed a modified discrete
glowworm swarm optimization algorithm based on time window division (MDGSOTWD)
for MVRPTW. (?) proposed a multiobjective evolutionary algorithm based on a fast elite
sampling strategy and difference-based local search (MOEAFESS/DLS) to solve VRPTW.
(Moradi, 2020) introduced a new multiobjective discreet learnable evolution model (MOD-
LEM) for VRPTW. (Khoo & Mohammad, 2021) proposed a parallelization of a two-phase
distributed hybrid ruin-and-recreate genetic algorithm (HRRGA) to solve VRPTW.

5.3 Mathematical model

The MOVRPTW problem extends the VRP problem by incorporating time windows for
each customer, with the objective of minimizing both the total distance traveled by vehi-
cles and the number of vehicles used. This problem considers constraints such as vehicle
capacity and the specific time windows within which customers must be served.
The VRPTW can be represented as a directed graph denoted as G = (V , A), where:

- V : Represents the set of cities where the clients are located plus the depot city, such
that vo represents the depot city and the set N = {v1, v2, ..., vn} represents the client
cities.

- A = {(vi , v j ) ∈ A; vi , v j ∈N } : The set of arcs between the cities.

To define MOVRPTW, we must first identify the relevant parameters and decision variables,
as well as the constraints and objectives of the various.

5.3.1 Parameters

- N : The number of customer cities;

- K : The number of vehicles;

- (xi , yi ) : The coordinates of the city vi

- di j : The Euclidean distance between city vi and city v j , which is given by the follow-
ing relation:
di j =
Æ

(xi − x j )2+ (yi − yj )2

- qi : The demand of goods at the customer vi .

- si : The service time required to unload its demands at the customer vi ;

- ei : The earliest time of the customer’s delivery vi ;

- li : The latest time of the customer’s delivery vi ;

- ti j : The travel time between city vi and city v j .
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5.3.2 Decision variable

To mathematically model MOVRPTW, it is necessary to define the decision variables.

x k
i j =

�

1 If the vehicle k travels from customer i to customer j
0 Otherwise

5.3.3 Constraints

The MOVRPTW constraints should be met as follows in order to serve all customers:

(1) Each customer must be visited exactly once by exactly one vehicle. This constraint
can be expressed as follows:

K
∑

k=1

N
∑

i=1

x k
i j = 1 ∀ j ∈ {1, ..., N }. (5.1)

(2) Each vehicle starts from a depot, and ends at a depot.

N
∑

i=1

x k
0i =

N
∑

i=1

x k
i 0 = 1 ∀k ∈ {1, ..., K } (5.2)

(3) The same vehicle that visited a customer, leaves from that customer.

N
∑

j=1, j ̸=i

x k
j i −

N
∑

j=1, j ̸=i

x k
i j = 0 ∀i ∈ {1, ..., N },∀k ∈ {1, ..., K }. (5.3)

(4) The sum of the demands must not exceed the vehicle capacity Q . This constraint is
expressed as follows:

N
∑

i=1

N
∑

j=1

qi × x k
i j ⩽Q ∀k ∈ {1, ..., K }. (5.4)

(5) Waiting is allowed when a vehicle arrives too soon at customer v j after the service is
finished at customer vi , in other words, before e j . The time at which service starts
at customer v j is defined as b j =max

j
{e j , a j }, where a j = b j + s j + ti j and the waiting

time at customer v j as w j = b j −a j . This constraint is expressed as follows:

x k
i j (bi +wi + si + ti j − b j ) = 0 ∀i , j ∈ {1, ..., N },∀k ∈ {1, ..., K }. (5.5)

ei ⩽ bi +wi ⩽ li ∀i ∈ {0, 1, ..., N }. (5.6)

5.3.4 Objective functions

The objectives of MOVRPTW are based on the total travel distance of the tour and the
number of vehicles. We formulate them as follows:

1. The first objective function is to minimize the total travel distance of all the vehicles :

mi n F1 =
K
∑

k=1

N
∑

i=1

N
∑

j=1

di j × x k
i j (5.7)
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2. The second objective function is to minimize the number of vehicle (routes) given by:

mi n F2 =
K
∑

k=1

N
∑

i=1

x k
0i (5.8)

5.4 The proposed algorithm

5.4.1 Motivation

Althoughε−MOEA is widely used in multi-objective optimization problems, it has been
observed that its convergence speed may be slower compared to other algorithms, partic-
ularly when the number of decision variables increases. This paper proposes a new variant
of ε−MOEA, named VRPTW-MOEA, specifically designed for solving the MOVRPTW. The
main objectives of this study are twofold: first, to introduce a novel mating strategy involv-
ing local search and multi-type crossover operators, which enables thorough exploration
of the entire search space to discover high-quality solutions and significantly enhance the
convergence speed of ε−MOEA. Second, to address the issue of losing good solutions once
found in ε−MOEA, an external population called an archive is employed to store the non-
dominated solutions based on ε−dominance. This archive plays a crucial role in multi-
objective optimization.

5.4.2 Outlines of VRPTW-MOEA algorithm

This section provides an overview of the VRPTW-MOEA algorithm for solving the MOVRPTW.
The pseudocode of VRPTW-MOEA is presented in Algorithm 6. In the initialization process
(line 1), the parent population P consisting of N individuals is initialized using two meth-
ods: randomly and nearest neighbor heuristic. Subsequently, fitness values ( f1(x i ), f2(x i ))
are evaluated for all solutions x i in the parent population P (line 2). Non-dominated solu-
tions from the parent population P are then stored in the external population A (line 3).
In the evolutionary process, for each iteration i (ranging from 1 to I t ema x ), two individuals
(x k and x l ) are selected using the selection operator to generate an offspring y through
the multi-crossover operators (lines 4-5). The offspring y undergoes improvement using
mutation operators with a probability Pm (lines 6-7). Subsequently, local search operators
are applied to the newly created solution (line 8). The fitness values ( f1(y ), f2(y )) of the off-
spring y are evaluated (line 9). The parent population P is then updated using Algorithm
6 based on the offspring y (line 10). Additionally, the external archive population A is up-
dated with y ∗ (line 11).
The number of non-dominated solutions in the external archive population A increases
over iterations, potentially leading to increased algorithm complexity. To address this is-
sue, the size of the external archive population A is controlled using ε−dominance, thereby
limiting its size.
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Algorithm 6 Pseudocode of VRPTW-MOEA

Input:
N : the size of parent population.
pc : the probability of crossover.
pm : the probabity of mutation.
I t ema x : the number of iterations.
Output:
P : the parent population.
A: the external archive population .
Step I: Initialization Procedure

1: Generate an initial parent population P = {x 1, x 2, ..., x N }.
2: Evaluate the fitness values ( f1, f2) of the parent population P .
3: Initialize the external archive population A by copy all non-dominated solutions of the

parent population P .

Step II: Evolutionary Procedure

1: for i ←− 1 to I t ema x do
2: Randomly select two individuals x k and x l using the selection operator.
3: Apply multi-crossover operators on x k and x l to generate y with probability pc .
4: r = r a nd o m (0, 1).
5: if r ⩽ pm then
6: Apply mutation operators to improve y .
7: end if
8: Apply local search operators on y to generate y ∗.
9: Evaluate the fitness values ( f1(y ∗), f2(y ∗)) of the offspring y ∗.

10: P ←−UPDATE−POPULATION (P, y ∗).
11: A←−UPDATE−ARCHIVE (A, y ∗).
12: end for
13: return P , A.

5.4.2.1 Solution representation

Each solution in the VRPTW problem is represented as a chromosome, where the chro-
mosome is encoded as a sequence S consisting of n customers. However, the sequence
does not contain any route delimiters to indicate the start or end of routes. This sequence
can be seen as a single vehicle’s continuous tour with unlimited capacity, disregarding time
windows. To obtain the best VRPTW solution from the sequence S , an optimal splitting
technique called Split is applied.
The Split technique was initially developed by Prins (Prins, 2004) for the Capacitated Vehi-
cle Routing Problem (CVRP) and later extended to address time windows. This approach
involves computing the shortest route in an auxiliary graph H , which includes a dummy
node 0 and n additional nodes representing the n customers. Each subsequence of cus-
tomers (Si ,Si+1, ...,Sj ) that forms a feasible route is represented by a weighted arc (i −1, j ) in
graph H . The weight assigned to this arc corresponds to the length of the route. To deter-
mine the shortest route from node 0 to node n in graph H , Bellman’s algorithm for directed
acyclic graphs is employed (Labadi et al., 2008).
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5.4.2.2 Selection operator

The choice of the selection operator in VRPTW-MOEA plays a crucial role in determin-
ing the algorithm’s performance. It is essential to select solutions in a manner that leads to
Pareto optimal solutions close to the Pareto front. To achieve this objective, our approach
utilizes two populations: the parent population P and the external archive population A.
These populations are employed for selecting solutions that will generate high-quality off-
spring solutions. The selection operator is designed as follows:

1. We randomly select two solutions xk and xl from the population:

a) If the solution xl dominate the solution xk then xl is selected as the first parent.

b) If the solution xk dominate the solution xl then xk is selected as the first parent.

c) Else, we randomly select a solution xl or xk as the first parent.

2. We randomly select a solution from the external archive as the second parent.

5.4.2.3 Multi-type Crossover operators

The crossover operation plays a vital role in the VRPTW-MOEA algorithm as it is re-
sponsible for generating offspring from the selected parents, with a probability of pc , while
preserving the desirable characteristics of the parents. As mentioned earlier, we employ
two types of crossover operations on the selected parents: Ordered Crossover and Best
Cost Route Crossover. The procedure for performing these two crossover operations is pre-
sented in Algorithm 7. In each generation, the choice of crossover operation is determined
based on the probability pc . Specifically, if the randomly generated number is less than the
probability pc , the first type of crossover operation is utilized; otherwise, the second type of
crossover operation is employed. By incorporating two types of crossover operations, we
aim to extensively explore all regions of the search space in search of high-quality solutions.

Algorithm 7 Pseudocode of multi-crossover operators

Input:
parent 1: the first parent.
parent 2: the second parent.
pc : the probability of crossover .

U = r a nd o m (0, 1).
if U ≺ pc then

offspring→ BCRC (parent 1, parent 2).
else

offspring→OX (parent 1,parent 2).
end if

Output: offspring

1. Best Cost Route Crossover (BCRC)
The Best Cost Route Crossover (BCRC) operator, originally introduced by (Ombuki
et al., 2006), aims to simultaneously minimize the number of vehicles and the total
travel distance while adhering to feasibility constraints. The steps involved in the
BCRC operator are as follows:



5.4. The proposed algorithm 86

1 Select two parents, denoted as P1 and P2, using the selection operator described
in subsection (5.4.2.2).

2 Randomly choose a route, denoted as ri , from both parents’ solutions.

3 Remove all customers associated with route r1 from parent P1, and remove all
customers associated with route r2 from parent P2.

4 Reinsert the removed customers into the offspring solution as follows:

(a). For each customer associated with route r1 (or r2), calculate the cost of in-
serting that route into each position of parent P2 (or P1), and store the costs
in an ordered list.

(b). Check the feasibility of insertion at each potential position.

(c). If there are no feasible insertion positions for the remaining route, create a
new route.

By employing the BCRC operator, we aim to effectively manage the trade-off between
reducing the number of vehicles and minimizing the total travel distance while en-
suring the feasibility of the resulting offspring solutions.

5.4.2.4 Mutation operator

Within the VRPTW-MOEA algorithm, the inclusion of a mutation operator serves to en-
hance the diversity of the search space. This is achieved through the utilization of two mu-
tation operators, namely reallocation and swap, which are applied to the offspring solu-
tions with a probability denoted as pm .
In the reallocation mutation operator, a random route is selected, and its customers are
reallocated. The process is outlined in detail in Algorithm 8. Conversely, in the swap muta-
tion operator, two routes are randomly chosen, and a customer is selected from each route.
These selected customers then exchange positions, as illustrated in Figure 5.1.

Algorithm 8 Pseudocode of rellocation mutation

Input: Offspring.
Output: New offspring.

1: Select a random route R = (r1, r2, ..., r|R |) of the offspring.
2: Let ln =|R |.
3: Initialize an empty route Rne w =⊘.
4: Remove customer ri with the shortest last time in R and put ri in the first location of

Rne w ; Rne w = (ri ).
5: Remove customer r j with the longest last time in R and put ri in the last location of

Rne w ; Rne w = (ri , r j ).
6: Put s = i .
7: Find the nearest customer rk to the customer rs and goto step 8.
8: Add customer rk after the s +1t h location in Rne w .
9: Let s = s +1 and goto step 10.

10: If Rne w length equals ln , terminate, else goto step 7.
11: Replace R in the offspring with Rne w .
12: New offspring← offspring.
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Figure 5.1 – An example of swap mutation operator.

5.4.2.5 Local search

The enhanced algorithm incorporates two types of neighborhood structures, namely
Reinsert Route (RR) and Reinsert Customers (RC), into its local search phase. These neigh-
borhood structures are designed to improve the efficiency of the algorithm in finding op-
timal route solutions for the MOVRPTW problem.
As the VRPTW-MOEA algorithm operates iteratively, only one of the local search methods
is randomly selected and applied in each iteration. This random selection ensures diversity
and provides an opportunity for both RR and RC methods to contribute to the search pro-
cess. By leveraging these neighborhood structures, the algorithm becomes more effective
and capable of exploring different solution spaces, ultimately enhancing its performance
in solving the MOVRPTW problem.

Reinsert Route (RR): The RR operation involves selecting a route based on the ratio of
travel distance to the number of customers. Specifically, the algorithm chooses a
route with a larger travel distance and fewer customers. This selected route is then
removed, aiming to minimize the number of vehicles involved in the solution. This
process is visually depicted in Figure 5.2. The customers originally assigned to this
route are referred to as "free customers."
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Figure 5.2 – An example of the reinsert route (RR).

Reinsert Customers (RC): The RC operation involves randomly selecting a certain num-
ber of customers from the existing routes. These selected customers are then re-
moved from their respective routes, as illustrated in Figure 5.3. The customers that
have been removed in this process are referred to as "free customers."

Figure 5.3 – An example of the reinsert customers (RC).

In both methods, free customers are added in different positions in the routes, where we
insert these customers in the optimal position in an optimal route by depending on the
minimum travel distance.

5.4.2.6 Updating the parent population

The parent population is updated with the offspring solutions that are generated. Specif-
ically, for each newly created solution (offspring) y , it is considered for inclusion in the
current population P . The dominance concept is applied to compare the new solution y
with all existing solutions in P to determine its admission (Deb et al., 2005). If y ∗ is found
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to dominate any solution in P , it will replace the dominated solution, thus updating the
parent population.

5.5 Experimental study

5.5.1 Test problems

The proposed algorithm was tested on common problems found in Solomon (1987),
including 56 data sets of 100 customers. The customer locations are distributed within
a [0, 100]2 square. The Solomon instances are one of the most known data instances for
VRPTW 1. These instances are divided into six classes, as follows:

1. R1 Class: This class includes instances with customers uniformly distributed in a
square region. The time windows for customers are randomly generated.

2. R2 Class: Similar to the R1 class, this class also has customers uniformly distributed
in a square region, but the time windows for customers are defined as a function of
their positions.

3. C1 Class: Instances in this class have customers clustered together in a square region.
The time windows for customers are randomly generated.

4. C2 Class: Similar to the C1 class, this class also has customers clustered together in a
square region, but the time windows for customers are defined as a function of their
positions.

5. RC1 Class: This class combines the characteristics of the R1 and C1 classes. It in-
cludes instances with customers distributed both uniformly and in clusters, with ran-
domly generated time windows.

6. RC2 Class: Similar to the RC1 class, this class combines the characteristics of the R2
and C2 classes. It includes instances with customers distributed both uniformly and
in clusters, with time windows defined as a function of their positions.

Each class represents a different distribution and configuration of customers, as well as
varying time window characteristics.

5.5.2 Parameter settings

The parameter setting significantly impacts the VRPTW-MOEA algorithm’s capacity to
generate excellent solutions. The settings are established in Table 5.1 based on a large num-
ber of tests.

5.5.3 Comparison with its variants

Each test problem is subjected to ten repetitions of VRPTW-MOEA and its variants. The
best results are highlighted in bold. This section aims to compare VRPTW-MOEA with
its variants and assess the effectiveness of the algorithm’s components based on the av-
erage number of vehicles (NV) and the average total travel distance (TD) across different
instances.

1. http://www.bernabe.dorronsoro.es/vrp/
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Table 5.1 – Parameters of algorithms.

Parameter Tested value Best value
Population size {50, 80, 100} 100
Generation {2000, 2500, 3000} 3000
Mutation probability {0.15, 0.2} 0.2
ε {0.01, 0.015, 0.001} 0.001
Number of runs / 10

Variant-1: VRPTW-MOEA without Best Cost Route Crossover (BCRC).

Variant-2: VRPTW-MOEA without Local search.

Table 5.2 indicates that out of 56 test instances, VRPTW-MOEA obtains 54 of the lowest HV
values, while its variants, specifically variant 1, achieve 36 HV values compared to variant
2, which obtains the 20 best HV values in comparison to variant 1.
These findings demonstrate that VRPTW-MOEA exhibits better convergence and diversity
than its variants. The results also highlight the significant impact of designing an algorithm
with multi-type crossover operators and local search, leading to effective performance.

Table 5.2 – Comparison of VRPTW-MOEA and its variants on the obtained non-dominated
solutions using hypervolume indicator
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5.5.4 Comparison with previous multiobjective algorithms

This section presents a comparison between VRPTW-MOEA and other multiobjective
algorithms. The results of each algorithm are evaluated in two aspects. The first aspect fo-
cuses on the minimal number of vehicles, where we select the best solution with the fewest
number of vehicles from the Pareto optimal solutions set. The second aspect considers the
minimal total distance, where we choose the best solution with the lowest total travel dis-
tance from the Pareto optimal solutions set.
From Table 5.3, it is evident that the results obtained by VRPTW-MOEA outperform all the
results from (Ghoseiri & Ghannadpour, 2010). Additionally, in the R2 and RC2 categories,
VRPTW-MOEA outperforms (Khoo & Mohammad, 2021), (Moradi, 2020), and (Zhang et al.,
2018) in terms of the minimal number of vehicles. Regarding the minimal total distance,
VRPTW-MOEA outperforms (Qi et al., 2015) in terms of the average number of vehicles in
R1 and R2. For instances C1 and C2, VRPTW-MOEA achieves similar results to the previ-
ously published studies.

Table 5.3 – Average number of vehicles and average total travel distance of VRPTW-MOEA
and five multiobjective approaches

Approach C1 C2 R1 R2 RC1 RC2
VRPTW-MOEA (minimal number of vehicles) 10.00 3.00 12.67 3.09 12.25 3.625

828.38 589.86 1220.51 944.75 1384.73 1126.13
VRPTW-MOEA (minimal total distance) 10.00 3.00 13.08 4.18 12.875 5.75

828.38 589.86 1206.18 900.51 1368.10 1037.56
HRRGA (Khoo & Mohammad, 2021) (minimal number of vehicles) 10.00 3.00 12.25 3.09 11.88 4

828.38 589.86 1211.8 966.24 1360.19 1055.53
HRRGA (Khoo & Mohammad, 2021) (minimal total distance) 10.00 3.00 13.25 5.27 12.75 6.25

828.38 589.86 1179.35 877.66 1338.56 1004.7
MODLEM (Moradi, 2020) 10.00 3.00 11.9 4.55 11.50 4

828.38 589.86 1210.4 916.95 1384.17 1074.67
ESS-PSO (Zhang et al., 2018) (minimal total distance) 10.00 3.00 13.3 5 12.9 6.13

828.38 589.86 1180.22 879.86 1343.28 1004.54
M-MOEA/D (Qi et al., 2015) (minimal number of vehicles) 10.00 3.00 12.42 3.09 11.88 3.38

828.38 589.86 1216.40 924.18 1390.35 1119.95
M-MOEA/D (Qi et al., 2015) (minimal total distance) 10.00 3.00 13.17 4.55 12.88 5.13

828.38 589.86 1192.35 889.66 1356.76 1026.81
MOGP (Ghoseiri & Ghannadpour, 2010) (minimal number of vehicles) 10.00 3.00 12.92 3.45 12.75 3.75

828.38 591.49 1228.60 1033.53 1392.09 1162.40
MOGP (Ghoseiri & Ghannadpour, 2010) (minimal total distance) 10.00 3.00 13.50 3.82 13.25 4.00

828.38 591.49 1217.03 1049.62 1384.3 1157.41

5.6 Conclusion

In this chapter, we introduced VRPTW-MOEA, a novel variant of a multiobjective evo-
lutionary algorithm designed for solving the MOVRPTW. Dealing with multiobjective op-
timization problems presents challenges in maintaining a balance between convergence
and diversity. To address this, we enhanced the ε−MOEA by incorporating a multi-type
crossover operator (Ordered Crossover and Best Cost Route Crossover), integrating local
search techniques, and utilizing an external archive based on adaptiveε−dominance. These
improvements significantly accelerated convergence, preventing the loss of promising so-
lutions once discovered. The effectiveness of VRPTW-MOEA was evaluated using the well-
known Solomon’s 56 data sets. The experimental results demonstrated that VRPTW-MOEA
outperformed its variants, five other multiobjective algorithms, and even the best-known
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solutions in solving the MOVRPTW. This highlights the efficiency and efficacy of VRPTW-
MOEA as a solution approach for the MOVRPTW.



6
EAG-NSGA-II algorithm for Multi-Depot

Green Vehicle Routing Problem

6.1 Introduction

Managing a green supply chain involves various challenges, and one of the significant
problems in this domain is the green vehicle routing problem (GVRP). GVRP entails cre-
ating routes to deliver specific quantities of products to consumers whose consumption
corresponds to predetermined amounts. To meet customer demands, a fleet of vehicles
with identical capacities is available at the depot. Each vehicle starts from the depot, serves
customers individually, and returns to the same depot. However, the multi-depot green ve-
hicle routing problem (MDGVRP) introduces the concept of multiple depots, making it a
more intricate variation compared to other vehicle routing problems.
In this chapter, we introduce a novel variant of the NSGA-II algorithm called EAG-NSGA-II,
specifically designed to address the MDGVRP. Our approach incorporates two key contri-
butions. Firstly, we integrate a local search strategy to enhance convergence speed, thereby
improving the efficiency of the algorithm. Secondly, we utilize an external archive based
on adaptive epsilon dominance to strike a balance between convergence and diversity, en-
suring that the algorithm maintains a diverse set of high-quality solutions throughout the
optimization process. These two strategies collectively enhance the performance of EAG-
NSGA-II in solving the MDGVRP.

6.2 Literature review

In the existing literature, numerous studies have focused on addressing the multi-depot
vehicle routing problem (MDVRP). The initial description of MDVRP was provided by (Cas-
sidy & Bennett, 1972), presenting it as an extension of the conventional vehicle routing
problem (VRP) by considering the existence of multiple depots (Yu et al., 2011). The pri-
mary objective of MDVRP research is to propose and develop new techniques and algo-
rithms to tackle this problem. According to (Montoya-Torres et al., 2015), most researchers
prefer to employ heuristics or meta-heuristics to solve MDVRP. For example, (Vidal et al.,
2012) utilized a hybrid genetic algorithm, while (Yu et al., 2011) transformed MDVRP into a
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single-depot VRP (SVRP) by introducing a virtual depot and using an enhanced Ant Colony
Optimization (ACO) for solving SVRP. (Escobar et al., 2014) employed a hybrid granular tabu
search technique to address MDVRP. Similarly, (Kaabachi et al., 2017), (Jabir et al., 2017), (Li
et al., 2018) and (Wang et al., 2019) focused on the multi-depot green vehicle routing prob-
lem (MDGVRP). However, their MDGVRP models were derived from the Pollution Routing
Problem (PRP) and did not consider the tank capacity of vehicles. In this paper, our contri-
bution lies in the development of a new MDGVRP model that incorporates a constraint on
the tank capacity of alternative fuel vehicles (AFV). We formulate a mathematical model
for the proposed MDGVRP and design an algorithm for solving it. (Wang et al., 2019) ad-
dressed MDVRP with pickups and deliveries by classifying clients as borderline and non-
borderline. Building on their concept, we propose a Partition-Based Algorithm (PBA) and
further suggest a Two-stage Ant Colony System (TSACS) to find superior solutions for the
problem.

6.3 Mathematical model

The MDGVRP mathematical model is presented in this section. MDGVRP is repre-
sented by a complete graph G consisting of a set of nodes representing customers and arcs
on the one hand. It is technically represented as a linear integer program.
The graph G is defined by the formula G = (V , E ), where:

- V =N ∪D Set of nodes, where:

N = {1, 2, ..., n} Set of customers.

D = {n +1, n +2, ..., n +m} Set of depot.

- E = {(i , j ) : i , j ∈V , i ̸= j } Set of arcs.

To define MDGVRP, we must first identify the relevant variables, as well as the MDGVRP’s
varied constraints and objectives.

6.3.1 Decision variable

To mathematically model MDGVRP, it is necessary to define the decision variables.

x k
i j =

�

1 If the vehicle k travels from node i to node j
0 Otherwise

Where K is the number of vehicles. The travel distance between customers i and j is di j .
The conversion factor for carbon emissions is C C F .

6.3.2 Constraints

The MDGVRP constraints should be met as follows in order to serve all customers:

(1) Each customer must be visited exactly once by exactly one vehicle. This constraint
can be expressed as follows:

K
∑

k=1

n+m
∑

i=1

x k
i j = 1 ∀i ∈ {1, ..., n +m} (6.1)
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(2) Each vehicle starts from a depot, and ends at a depot.

n+m
∑

i=n+1

n
∑

j=1

x k
i j ⪯ 1 ∀k ∈ {1, ..., K } (6.2)

(3) The same vehicle that visited a customer, leaves from that customer.

n+m
∑

i=1

x k
i h −

n+m
∑

j=1

x k
h j = 0 ∀h ∈ {1, ..., n +m},∀k ∈ {1, ..., K } (6.3)

(4) The sum of the demands must not exceed the vehicle capacity Q . This constraint is
expressed as follows:

n+m
∑

i=1

n+m
∑

j=1

qi × x k
i j ⪯Q ∀k ∈ {1, ..., K } (6.4)

Where qi is the demand of customer i .

6.3.3 Objective functions

The objectives of MDGVRP are based on the total carbon emissions of the tour and the
number of vehicles. We formulate them as follows:

1. The first objective function is to minimize the total sum of the carbon emissions pro-
duced by all the vehicles :

mi n F1 =
K
∑

k=1

n+m
∑

i=1

n+m
∑

j=1

di j x k
i j ×C C F (6.5)

2. The second objective function is to minimize the number of "used vehicle" routes
given by:

mi n F2 =
K
∑

k=1

n+m
∑

i=1+n

n
∑

i=1

x k
i j (6.6)

6.4 The proposed algorithm

6.4.1 Outlines of EAG-NSGA-II algorithm

In this section, we propose a a new variant of NSGA-II algorithm to solve the MDGVRP
problem that we have named EAG-NSGA-II, referring to the adopted combination of the
following: NSGA-II algorithm, local search (LS) and external archive. The procedure of the
proposed algorithm is illustrated in Algorithm 9.
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Algorithm 9 Pseudocode of EAG-NSGA-II algorithm for MDGVRP

Input:
N : the size of parent population.
Step I: Initialization Procedure

1: Generate an initial parent population P .
2: Evaluate the fitness values ( f1, f2) of the parent population P .
3: Initialize the external archive population A by copy all non-dominated solutions of the

parent population P .

Step II: Evolutionary Procedure

1: while termination criterion is not reached do
2: Q ← Tournament−Selection (P ).
3: Q

′← Crossover−Operators (Q ).
4: Q ∗← Local−Search (Q ′).
5: R L = Combination (P ∪Q ∗).
6: Sort the non-dominated solution of R L = {F r1, F r2, F r3, ...}.
7: Create a current population Pc u r r e n t =⊘, and i = 1.
8: while | Pc u r r e n t |+ | F ri |<N do
9: Pc u r r e n t = Pc u r r e n t

⋃

F ri .
10: i = i +1.
11: end while
12: Sort the front F ri according to the crowding distances.
13: P = Pc u r r e n t

⋃

F ri (1 : N− | Pc u r r e n t |).
14: A←−UPDATE−ARCHIVE (A,Q ∗).
15: end while
16: return P , A.

Like all population-based algorithms, the first step of EAG-NSGA-II is to generate an
initial population P0 of | P0 | feasible solutions. At each generation, the solutions of the new
population Q are generated by a crossover operator, and then improved by a local search
to explore new regions in the search space. Then, the solutions of the new population Q
are used to update the external archive.
Finally, they are gathered into a set R L = P

⋃

Q , which is sorted according to the domi-
nance principle: The set R L is divided into several separate classes F r j as follows: All non-
dominated individuals of R L belong to the set F r1; next, all the non-dominated members
of R L
⋃

F r1 are placed in the set F r2, and so on until the entire population is sorted.
When the entire population is sorted, the next population P (t +1) is filled by the solutions
of the non-dominated subsets of R L (t ), one by one, beginning with the first edge. To se-
lect the solutions that will survive from the front, only a subset of which can be inserted
in the next population, a measure of the density of solutions in the criteria space termed
crowding distance is utilized.

6.4.2 Solution representation

The solution representation involves three essential phases. In the initial phase, each
customer is assigned to a specific depot. The second phase, known as customer grouping,
involves dividing customers assigned to the same depot into different groups. Finally, in
the third phase, customer service is organized within each group.
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6.4.3 Crossover operator

To preserve the desirable characteristics of the selected parents, the crossover operators
are responsible for generating offspring from these parents with a probability of pc . The
Best Cost Route Crossover (BCRC) Ombuki et al. (2006) is utilized as a crossover operator to
reduce both the total carbon emissions generated by all vehicles and the number of vehicles
simultaneously while respecting the feasibility constraints.

6.4.4 Local search (LS)

In order to improve the offspring solutions, two types of neighborhood structures, in-
terdepot and intradepot neighborhoods, are employed in the local search (LS) phase. The
choice of neighborhood strategy to enhance the selected solution is determined using a
roulette wheel selection. Interdepot neighborhood approaches are constructed using sev-
eral fundamental operators, including swap, shift, 2-opt∗, Or-opt, and 2-opt. Intradepot
neighborhood methods consist of a cross operator, an inversion operator, and a 2-opt∗ op-
erator.

6.4.5 Updating the archive

To determine if a new solution should be added to the archive (A), we compare it to
all existing solutions in A using the ε-dominance concept. If the new solution dominates
any solution in the archive, the new solution replaces the dominated one and the latter is
removed from A. If the new solution is non-dominated by any solution in the archive and
the archive solution is non-dominated by the new solution, the new solution is accepted
and added to the archive.

6.5 Experimental results and discussion

In order to assess the performance of the proposed algorithm,11 benchmark datasets
chosen of (Cordeau et al., 2001) are used in the experiments. Table 6.1 lists the characteris-
tics of the datasets , including the number of customers (C ), depots (D ), maximum vehicle
load (Q ), and longest duration of each route (L ).
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Table 6.1 – Characteristics of MDGVRP instances.

Instances C D Q L
P01 50 4 80 16
P02 50 4 160 8
P03 75 5 140 15
P04 100 2 100 16
P05 100 2 200 10
P06 100 3 100 18
P07 100 4 100 16
P012 80 2 60 10
P015 160 4 60 20
P018 240 6 60 30
P021 360 9 60

The proposed algorithm is implemented using the programming language on MATLAB
R2014a under 64-bit Windows 10. The tests are carried out on a laptop equipped with In-
tel 2 GHz processor and 8GB RAM. For each instance, we performed 10 independent runs.
The parameters of the EAG-NSGA-II algorithm were set as follows: the size of the popula-
tion N = 50. The number of generations is set to 500. A vehicle changes its route with a
probability (i.e. the probability of rotation) pc = 0.9, and the parameter value for convert-
ing carbon emissions is 0.2.
In Figure 6.1, we plot the non-dominated solutions for all datasets with different objec-
tives obtained by EAG-NSGA-II and the three algorithms NSGA-II, SPEA-II, and MOEA/D
to qualitatively illustrate the obtained results used for the comparison. These numbers
indicate that our method EAG-NSGA-II is among the most competitive ones, having out-
performed the other three in terms of convergence and diversity across all datasets with
various objectives.

Figure 6.1 – Pareto set obtained by the multi-objective algorithms on some instances.

The computational outcomes for the instances given by Cordeau et al. (1997) are shown
in Table 6.2. In presenting the Pareto-optimal set-based results, we offered the most effec-
tive solution for each issue (taking into account both the minimization of CO2 emission
and the number of vehicles). In some instances, where neither one dominates the other
(such as issues 1 and 3, 18, and 21), we have two or more solutions for each instance. The
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situations issue where our approach performs better than the best-known results in the lit-
erature by having fewer vehicles or having the same number of vehicles is indicated by the
boldface values in the designated columns.
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Table 6.2 – Results of computations for the instances used by Cordeau et al. (1997)

Instance N M Objective 1, Objective 2, Pareto’s Front
Total number of vehicles CO2 emission [kg]

p01 50 4
11 115.64

10 10.2 10.4 10.6 10.8 11
114

116

118

120

122

124

126

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

10 125.97

p02 50 4
5 96.46

4 4.5 5 5.5 6
95

95.5

96

96.5

97

97.5

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p03 75 5
11 130.12

10 10.2 10.4 10.6 10.8 11
130

131

132

133

134

135

136

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

10 135.45

p04 100 2
15 208.22

14 14.5 15 15.5 16
207

207.5

208

208.5

209

209.5

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p05 100 2
8 157.60

7 7.5 8 8.5 9
156.5

157

157.5

158

158.5

159

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p06 100 3
15 183.56

14 14.5 15 15.5 16
182.5

183

183.5

184

184.5

185

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p07 100 4
16 187.51

15 15.2 15.4 15.6 15.8 16
187

188

189

190

191

192

193

194

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

15 193.72

p12 80 2
8 264.15

7 7.5 8 8.5 9
263

263.5

264

264.5

265

265.5

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p15 160 4
15 519.11

14 14.5 15 15.5 16
518

518.5

519

519.5

520

520.5

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

p18 240 6
24 810.11

22 22.5 23 23.5 24
810

820

830

840

850

860

870

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

23 811.66
22 861.52

p21 360 9

38 1216.76

33 34 35 36 37 38
1200

1250

1300

1350

1400

1450

1500

1
st

 Objective

2
n

d
 O

b
je

c
ti
v
e

37 1219.86
36 1226.96
35 1252.55
34 1283.54
33 1486.46
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6.6 Conclusions

In this chapter, we propose a new variant of NSGA-II called EAG-NSGA-II, designed
specifically to tackle the MDGVRP. Our approach incorporates a local search to greatly en-
hance convergence speed and integrates an external archive based on adaptiveε-dominance
to achieve a favorable trade-off between convergence and diversity. We evaluate the per-
formance of EAG-NSGA-II using the well-known Cordeau data sets, consisting of eleven
instances. Finally, we present experimental results that demonstrate the effectiveness of
EAG-NSGA-II and discuss the impact of its parameters on its performance.



7
General conclusion

In the domain of supply chain management (SCM), the primary focus is on optimiz-
ing the supply chain operations while considering multiple conflicting objectives. These
objectives encompass various aspects such as cost reduction, lead time minimization, en-
hanced customer service, inventory optimization, sustainability improvement, and overall
supply chain performance enhancement. However, addressing one objective often leads
to compromises in other areas. For instance, reducing costs may result in longer delivery
times or compromised product quality, while prioritizing customer service may increase
costs. Consequently, decision-makers face the challenge of finding a balance and identify-
ing trade-offs among these objectives to achieve an optimal solution.
In this thesis, we have introduced novel multi-objective optimization methods to address
three variants of the SCM problem. More specifically, we proposed three algorithms: the G-
MOEA/D-SA algorithm for ambulance dispatching and relocation problems, the VRPTW-
MOEA algorithm for the vehicle routing problem with time windows, and the EAG-NSGA-II
algorithm for the multi-depot green vehicle routing problem.
Chapter 1 provided an overview of the thesis, while Chapter 2 delved into the combinatorial
optimization problems, their theoretical complexities, and the class of NP-hard problems,
which were fundamental to this project. Moreover, we introduced basic concepts related to
multi-objective optimization problems and explored relevant approaches employing evo-
lutionary algorithms. Various algorithms, particularly Multi-Objective Evolutionary Algo-
rithms (MOEAs), widely recognized in the literature and utilized in Chapters 4 and 5, were
presented. This chapter concluded with quality metrics for evaluating the performance
of multi-objective evolutionary algorithms, emphasizing their advantages. Chapter 3 was
dedicated to the supply chain management problem and its variants, which formed the
basis of the studies conducted in this thesis.
After that, we recalled the definitions and basic notions about the multi-objective opti-
mization problems, the supply chain management problem and its variants, and evolu-
tionary algorithms; which are critical to understand the scope of the present thesis. We
have presented two research works developed in this thesis project:

1. In Chapter 4, we presented an improved MOEA/D algorithm for real-time ADRP, called
G-MOEA/D-SA. The proposed algorithm combines the standard version of the MOEA/D
with SA and the external archive. In addition, a brief explanation was given as we
looked for possible improvements, which opens up several directions to explore as
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prospects for future work.

2. In Chapter 5, we presented a new variant of MOEA, namely VRPTW-MOEA for the ve-
hicle routing problem with time windows. The proposed algorithm essentially con-
sists of an adapted local search of ε-MOEA, aiming to maintain a mechanism of con-
vergence and diversity when dealing with multi-objective optimization problems. In
addition, we applied a multi-type crossover operators to accelerate the convergence
significantly, and also employed the external archive based on adaptiveε−dominance
to prevent the loss of satisfactory solutions once they are found. Experimental results
demonstrated that VRPTW-MOEA was effective in solving VRPTW when compared
with its variants, the five most well-known MOEAs, and the best-known solutions.

3. In Chapter 6, we presented a new variant of NSGA-II, namely EAG-NSGA-II for the
multi-depot green vehicle routing problem (MDGVRP). We have proposed an initial-
ization algorithm that generates only valid conformations for the initial population of
EAG-NSGA-II. This algorithm eliminates reverse moves during solution construction.
EAG-NSGA-II consists of using the local search algorithm and the external archive
to explore the search space more efficiently. According to our experimental results,
EAG-NSGA-II can find the best known solutions and is more efficient than other ex-
isting algorithms in terms of stability. In terms of future applications, EAG-NSGA-II
can be used to solve other optimization problems in the context of combinatorial
optimization.
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Résumé
L’activité s’inscrit dans deux grands thèmes : la recherche sur l’optimisation
multi-objectifs et la gestion de la chaîne logistique (GCL). L’optimisationmulti-
objectifs est une branche combinatoire dont la spécificité est de chercher à op-
timiser plusieurs objectifs simultanément pour un même problème. Par consé-
quent, l’utilisation de méthodes d’optimisation multi-objectifs permet aux en-
treprises d’utiliser des solutions stratégiques efficace afin d’optimiser et d’amé-
liorer la qualité des décisions pour la GCL. Dans cette thèse, nous proposons
trois nouveaux algorithmes évolutionnaires multi-objectifs pour résoudre trois
difficultés importantes dans GCL où notre attention s’est portée sur la partie
liée aux soucis de transport, de distribution, à savoir le problème des tournées
de véhicules avec fenêtres, véhicules multi-dépôts, respect de l’environnement,
problème de relocalisation ainsi que la répartition des ambulances. Le premier
algorithme appelé External ArchiveGuidedNondominated SortingGenetic Al-
gorithm II (EAG-NSGA-II) est basé sur l’amélioration de l’algorithme NSGA-II
en intégrant la méthode de recherche locale et une population externe appelée
"archive" pour stocker les solutions non dominées afin de résoudre le problème
de tournées de véhicules multi-dépôts respectueuses de l’environnement. Dans
le deuxième algorithme, un algorithme MOEA/D amélioré en utilisant le re-
cuit simulé (RS) qui a été proposé pour résoudre le problème de relocalisation
et la répartition des ambulances. Dans le dernier algorithme, un nouvel algo-
rithme évolutionnaire a été développé en combinant l’algorithme ϵ-MOEA, la
méthode de recherche locale et les opérateurs de croisement multi-types pour
résoudre le problème de tournées de véhicules avec fenêtres de temps.
Les algorithmes que nous avons proposés ont été soumis à des tests et ont
donné des résultats encourageants pour la résolution des problèmes de tour-
nées de véhicules avec fenêtres de temps, de tournées de véhiculesmulti-dépôts
respectueuses de l’environnement et de la relocalisation et de la répartition
des ambulances. Ils se sont révélés plus efficaces que de nombreux autres al-
gorithmes évolutionnaires multi-objectif.

Mots clés : Gestion de la chaîne logistique ; optimisation multi-objectifs ;
algorithmes évolutionnaires multi-objectifs ; problème de tournées des
véhicules ; problème de relocalisation et de la répartition des ambulances.



Abstract
The research activity of this research falls under two major themes: multi-
objective optimization and supply chain management (SCM). Multiobjective
optimization is a branch of combinatorial optimization whose specificity is to
seek to optimize several objectives simultaneously for the same problem. As
a result, the use of multi-objective optimization methods allows companies to
use optimal strategic solutions to optimize and improve the quality of deci-
sions for SCM.
In this thesis, we proposed three new multi-objective evolutionary algorithms
to solve three important problems in SCMwhere our attention was focused on
the part related to transportation and distribution problems, namely the vehi-
cle routing problem with time windows, the multi-depot green vehicle routing
problem, and the ambulance relocation and dispatching problem.
The first algorithm called External Archive Guided Nondominated Sorting Ge-
netic Algorithm II (EAG-NSGA-II) is based on improving the NSGA-II algo-
rithm by integrating the local search method and an external population called
“archive” to store the non-dominated solutions to solve the multi-depot green
vehicle routing problem. While in the second algorithm, an improvedMOEA/D
algorithm using simulated annealing (SA) was proposed to solve the ambu-
lance relocation and dispatching problem. In the last algorithm, a new evolu-
tionary algorithm was developed by combining the ϵ-MOEA algorithm, local
search method, and multi-type crossover operators to solve the vehicle routing
problem with time windows.
After being tested, the proposed algorithms have shown encouraging results in
both solving the vehicle routing problem with time windows, the multi-depot
green vehicle routing problem, and the ambulance relocation and dispatching
problem, and have been found to be more efficient compared to many multi-
objective evolutionary algorithms.

Keywords : Supply chain management; Multi-objective optimization;
Multi-objective evolutionary algorithms; Vehicle routing problem;
Ambulance relocation and dispatching problem.
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