PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTERY OF HIGHER EDUCATION AND SCIENTIFIC RESARCH
University Mohamed EI-Bachir El-lIbrahimi - Bordj BouArreridj

Faculty of Sciences & technology

sl Department of Electronics

srﬁ " N f
Iy MasterThesis

Presented to get

THE MASTER'S DIPLOMA

Universitd Moharmed El Bachir El lbrahimi - BB.A, - Université Mohamed El Bachir El Tbrahimi - B.B.A -

BRANCH: ELECTRONICS
SPECIALTY: EMBEDDED ELECTRONIC SYSTEMS

By
BOUAZA Youcef
FEDJIRI Anouar

Entitled

Image filtering design and implementation
based on Xilinx System Generator with
Hardware Co-Simulation and VHDL with
FPGA IP Core Generator

Thesis Submitted and defended in

Board of Examiners:

Chairman: Dr. DIFFELLAH Nacira University of Bordj Bou Arreridj
Examiner: Dr. BOUDCHICHE Djamel University of Bordj Bou Arreridj
Supervisor: Melle. HAMADACHE Fouzia University of Bordj Bou Arreridj

Academic year 2022/2023

Abstract

especially when removing gaussian noise. However, the implementation of a 2D

Gaussian Filter demands significant computational resources, and when it comes

down to real-time applications, efficiency in the implementation is crucial. This
thesis describes the methodology for implementing gaussian image filtering using MATLAB
and real-time DSP applications on FPGA using the concept of hardware software Co-
simulation for digital image processing by using the Mathworks model-based design tool
Simulink / Xilinx System Generator (XSG) and Very High Description Language (VHDL)
using the advanced image processing cores included in the IP core lib library. Performances
of efficient architectures are implemented on FPGA Spartan3e (xc3s500e). Peak Signal-to-
Noise Ratio (PSNR), the Structural SIMilarity (SSIM) index, and FPGA usage of resources
are used to discuss and compare the findings obtained from software and hardware.

One of the very useful techniques in Image Processing is the 2D Gaussian Filter,

Keywords: Gaussian image filtering, FPGA, Hardware Co-Simulation, Xilinx System
Generator, VHDL, Xilinx IP CORE Generator.

Résumé

‘une des techniques tres utiles en traitement d'images est le filtre gaussien 2D,
notamment lorsqu'il s'agit de supprimer du bruit gaussien. Cependant, la mise en
ceuvre d'un filtre gaussien 2D nécessite des ressources informatiques importantes, et
lorsqu'il s'agit d'applications en temps réel, l'efficacité de la mise en ceuvre est
cruciale. Cette these décrit la méthodologie pour mettre en ceuvre un filtrage
d'images gaussien en utilisant MATLAB et des applications DSP en temps réel sur
FPGA en utilisant le concept de Co-simulation matériel-logiciel pour le traitement
numérique d'images en utilisant I'outil de conception basé sur le modele Mathworks Simulink
/ Xilinx System Generator (XSG) et le langage de description trés haute (VHDL) en utilisant
les coeurs de traitement d'images avancés inclus dans la bibliotheque IP Core lib. Les
performances des architectures efficaces sont mises en ceuvre sur le FPGA Spartan3e
(xc3s500¢e). Le rapport signal sur bruit maximum (PSNR), I'indice de similarité structurale
(SSIM) et l'utilisation des ressources FPGA sont utilisés pour discuter et comparer les
résultats obtenus a partir du logiciel et du matériel.

Mots-clés : Filtrage d'images gaussiennes, FPGA, Co-simulation matérielle, Xilinx System
Generator, VHDL, Xilinx IP CORE Generator.
uadld)
O el aag o slad) slia guzm Al) 2ie dala g ¢ slad) a8) seall dadlee A s sadall Gl 0a
il) A 3ol () ¢ Riall gl lindaty) (Sl Ladie 5 6nS L gn 30 s by (o glal) ddat b
)) el Ly
(FPGA) e asall i 6l lankst s(Matlab) alasiuls A slall) sall 4pia’ 3,45 diagia Al Hll 028 Coial
3l Al A)l) gall dalleal lisa sl B‘}ﬁy\ On (co-simulation)fxs)i.iA\ SSlaall o geda e\qs.h_gg
Sl Caa gl @3 3 el Cuas 45 (Mathworks Simulink / (XSG)) zised o il avaaill
(IP core lib)Assall 8 da jaal) desiiall) guall dallas (5 58 alaaiuly(VHDL)
plasiu) & Cua (FPGA Spartan3e (Xc3s500€)) ueaill ALl daa yll dlalSiale ladll duxigll olal Ld o
L8 (FPGA)) sall aladiul 5 (SSIM) ASued aliall ylige (PSNR) s sl elia guzall) 5 LY A
8360 5 el all (g Lgale Jgaanll a3 3l il 4)l

Acknowledgements

First and before everything, we want to express our heartfelt appreciation to the Almighty
Allah for His blessings, strength, and the intellectual capacity to comprehend, acquire
knowledge, and document this research. Without His guidance and assistance, this thesis

would not have come to fruition.

We would like to extend our sincere gratitude to our supervisor, Miss. Fouzia Hamadache,
for her exceptional guidance, enthusiastic supervision, unwavering encouragement, and
constant advice throughout the entire research process. Her unwavering dedication, vision,
and motivation have served as a continuous source of inspiration. We are profoundly grateful

for the invaluable opportunity to work and study under her tutelage.

Special recognition is due to the jury members for generously investing their valuable time
in reading and analyzing our work. Their insightful comments and constructive feedback have

significantly enriched the content of this thesis.

We also wish to express our appreciation to our colleagues and all those who have directly
or indirectly supported us with their skills, guidance, and assistance. Your contributions have
been immeasurable and have played an essential role in the successful completion of this

research endeavor.

In conclusion, we are deeply grateful to our cherished family. Your love, prayers, and
encouragement have served as a constant source of motivation, and we will forever remain

indebted to you.

Table of contents

LISE OF FIQUIES ...ttt ettt b ere s I
LSt OF T0IES. ... iii
LiStS Of aDDIEVIALIONS.c.eiiieice et 0\
1 8 oo 18 Tod o] o PSSR 01

Chapter I: 2D gaussian filtering of images with MATLAB

001 1 o T [T oo OSSR 4
[.2.NOISE 1N TMAGES ...ttt b et b bbbt e et st sbenneene s 4
1.2.1.S0UrCES OF IMAGE NOISE:veviviiiiiieiiet ettt bbb bbb 4
1.2.2.GAUSSTAN NOISE.....cuveeuieitieiiesiesteesteeseesteesteeseesseesteaseesseesaeanseaseesseessesneesseeseeasensseensens 4
I.3.Image filtering using gaussian fIIter............ocoii i 6
G0 I 1Y o] 111 o] SRR 6
1.3.2.GAUSSTAN MASK....c.veiuieieieiieiesiee st eie et e ste e e e teesaesneesreeneesreenseenneas 7
1.3.3.Gaussian image filtering.........cccocveiiiiiie e 8
I.4.1mage quality @SSESSIMENT.........ceciuiiieiiee et re e sre e 9
LALPSINR ..ttt be b e neenes 9
LA.2.SSTM Lo ettt r e ne s 9
1.5.Matlab SIMUIAtION FESUILSoiviiieieieiee e 10
1.5.1. Gaussian filter for noise removal(Variance noise = 0.003)cccccevvevvrennenn. 10
1.5.2. Gaussian filter for noise removal(variance noise = 0.09)cccccevvevvevieennnnn. 12
1.5.3. Effect of kernel size and sigma of Gaussian filtercccccoevvviiiiiiiiniennn. 14
IS o] o 1151 o] oSSR 16

Chapter Il:Efficient gaussian image filtering Using Xilinx SystemGenerator

0 [oo 0ot o SRR 18
[1.2.WOTrK NVIFONMENTocviiiiee e et 18
[1.3.XilinX system generator (XSG)couuucerereiiiesieeeeie e 18
I1.4.Gaussian image filtering design using Xilinx system generator............ccccoceeeeverennenn. 19
11.4.1.System Generator TOKEN.........ccoveiviieiieiicie e 19

1.4, 2. TS IMAQE ... e iteeieeie ettt ettt et et e e te e e are e beenbeaneesreeneeenee e 20

11.4.3.Gateway in and GateWaY OULcccovrieierieieriesie e 21

144 REGISTET ...ttt bbbt bbb ene s 21
HL.4.5.VirteX 2 5 liNe DUFTEE ...o..ooiee e 22
[1.4.6. 5X5 FIIEE 1..oveeei e et 22
11.4.7. TO WOrkspace DIOCKcoeiieiiii e 23
I1.5.FPGA implementation using Hardware Co-Simulationccccccvveveiieiieie s, 23
11.5.1. The choice of the compilation Targetccccovveveieii e 23
11.5.2. Invoking the Code GENEIAOr..........c.civeiuieieiieie et 24
11.5.3. Hardware Co-simulation DIOCKccovviiiiiiniiiiecceee e 25
11.5.4.Co-Simulation Implementation............ccooeiiereneniseee e 27
I1.6.Hardware Software Co-Simulation reSUILSccoviieiiii i 29

Chapter 111 : 2D Gaussian image filtering with VHDL using IP Core Generator

1 T [T A o o SRS 33
HL2.FPGA MEMOIY DIOCKSvviviiiiieie ettt 33
I1.2.1. SINGIE POrt BRAM ..ottt ettt 33
111.2.2.Dual Port BLOCK MEMORYooiiiiiiiieiieiesieeeeie et 34
HEL2.3.FIFOMEMORY ..ottt sttt st ne e 35
HE3.XIHNX CORE GENEIALON ..o ciieie et steesie e e ste et enee s e steesaesseenseenessneeneas 35
I11.4.Hardware implementation of gaussian imagefiltering...........cccccovvevviviiicciece i, 36
111.4.1.Top level design fIOWChartcccovoiiiiiiece e 36
111.4.2.Generating COE fIlESc.voiiiice e e 37
111.4.3. Block memory generator to store image PiXelS........ccovvvveiieiieiiieiie e 37
111.4.3. Block memory generator to store gaussian kernel elementscccoevvninnnnnne. 43
111.4.4. Block memory generator FIFO..........cocoiiiiiiiiiiece e 46
111.4.5. Block memory generator BRAM_OUT ..o 49
I11.4.6. Convolution module using finite state machine:cccoiiiiiinii e 51
111.4.7. Displaying the output image using MATLAB ...t 52
1.5, Synthesis and SIMUIALIONccviiiiieiicc e 53

THLS. L. XST SYNENESIS . .eivieiiieite ettt ettt e e s e te e e sra e te e e e nneenes 53

I11.5.1 SIMUIAtion USING ISIM ..o 57

LEL 8. CONCIUSION <., 59
CONCIUSION <. e, 61
R BT O T EINCES. ...ttt ettt e et ettt et e e e e nnnnnnnnnnnnnnnn 63

Chapter

Figure .
Figure I.
Figure I.
Figure I.

Figure I.
Figure L.
Figure L.
Figure L.
Figure I.
Figure L.
Figure L.
Figure I.

List of figures

I: 2D Gaussian filtering of images with MATLAB

1.2D and 3D probability density function of gaussian Noise..............cccccvvvvervennnne 5
2.Pixel coordinates based 0N POINE (I,]). . coveeeeerereierenesieeeeeee e 7
3.Image convolution with a filter kernel of Size 3 X 3 ..., 7
4. Gaussian kernels 3x3, 5x5,7x7 With =1 ..o 8
5.0riginal and noisy image (Variance noise = 0.003).......cccccoccvrirriiniesienniennnnns 10
6.Filtered image with 3x3 kernel and a)6= 0.2 b) 6=1¢)0=7......ccverivrvrriverirncns 11
7.Filtered image with 5x5 kernel and a)6=0.2 b) 6=1 ¢) 6=7.....ccceeovvvrriverrrnens 11
8.Filtered image with 7x7 kernel and a)o= 0.2 b) 6=1¢)0=7.......cecovriveriverrrnnn. 11
9. .Original and noisy image (Variance noise =0.09)ccccccevvrieerivniesiennieennnns 12
10. Filtered image with 3x3 kernel and a)o= 0.2 b) 6=1¢)6=7.......ccvevvvrivrrernne 13
11.Filtered image with 5x5 kernel and a)o= 0.2 b) 6=1¢)0=7......cceccvvrrrivrrrrnne 13
12.Filtered image with 7x7 kernel and a)6= 0.2 b) 6=1¢)6=7.....ccccesvvrrrrrirrrnn. 13

Chapter I1: Efficient gaussian image filtering Using Xilinx System Generator

Figure II.
Figure II.
Figure II.
Figure II.
Figure II.
Figure II.
Figure I1.
Figure I1.
Figure I1.
Figure I1.
Figure I1.
Figure I1.
Figure I1.
Figure II.
Figure II.
Figure II.
Figure II.
Figure II.
Figure II.
Figure II.
Figure II.

1.System Generator deSign fIOW...........oocoiiiiiiiiic s 19
2.The SImulink design MOdel............ccoiiiiiiii e 19
3.BIOCK SYSLEM GENEIALONuviuiieiiieiteste ettt 20
4. Test image TOr FIIEIINGccoovieie s 21
5.Gateway INBIOCK..........oiiii e 21
6.Gateway OUL DIOCK ..o 21
7. REQISLEN DIOCKeieice e e 22
8.Virtex 2 5 line buffer DIOCKcocoiviiiiicce s 22
9.5x5 Filter block and the mask parameters..........cccccveveieeieeve e 23
10.TO WOrKSPace BIOCK..........cciiiiiiee st 23
11. Digital Electronics FPGA compilation targetccccccoeeveieeve i 24
12.Invoking the Code GENEIALONccveiieiieiiecieecie e 25
13.Hardware Co-simulation DIOCKccciiiiiiiiiii e 25
14.Hardware Co-Simulation block INSertion............cccooevveiiiiiineceee e 26
15.Hardware Co-Simulation model............ccocoiiiiiiiiiie e 27
16.Hardware Co-Simulation block and it’s dialog boX.........c.ceeveiveiiriiiiiniiinns 27
17.The connected BOArd............coueiieiiiiiiieieeie e e 28
18.Co-simulation IMplementation ..o 29
19 Hardware -Simulation filtered image with 5x5 kernel and variance noise=0.003

20 Hardware-simulation Filtered image with 5x5 kernel and variance noise=0.09 30
21.FPGA resource utilization SUMMAIYcccooveiiieiiieeiieiie e see e 31

Chapter 111 : 2D Gaussian image filtering with VHDL using IP Core Generator

Figure.lll. 1.Core Schematic Symbol (Single-Port Block Memory module).........cccccevvennne 34
Figure.lll. 2.Core Schematic Symbol (Dual Port BIOCK RAM)cooviiviiiiiic e 34
Figure.lll. 3.FIFO configurations. (a) FIFO-18 (b) FIFO-36..........cccccvviiiiniere e 35
Figure.lll. 4.Block diagram of image filteringccooieieiiiiiiee e 37
Figure.lll. 5.Selecting IPCore Generator & Architecturefrom ISE with File name (image_ram)
.. 38
Figure.lll. 6.Selection of "Block memory Generator” IP COreccceveveeieiieieece s 39
Figure.lll. 7."Block memory Generator”" IP core Wizardc.cccevvvieieeiesie i 40
Figure.lll. 8. "Block memory Generator” IP core Wizardcccoceevvvivieieeiesie i 41
Figure.lll. 9.Configure the settings of memory size (width and depth)ccccooveviiieinennie 41
Figure.lll. 10. Block memory Generator" Initializing Image0003”.coe file.........c.cvvvrirnnnnns 42
Figure.lll. 11.Successful Creation of IP Core (bram_image)..........cccocvevveieeiiiie i 42
Figure.lll. 12.Selecting IP Core Generator & Architecture with File name (kernel_ram)....... 43
Figure.lll. 13..Configure the settings of memory size (width and depth)c.cccceviieinennnne 44
Figure.lll. 14.Block memory Generator™ kernell.coe file".........cccccviiiiiiiiii i 45
Figure.lll. 15.Successful Creation of IP Core (bram_kernel)cccoooveiieiiiiiciicciccceee 46
Figure.lll. 16.Selecting " IP(Core Generator & ArchiteCture)ccoeveveeveeicie v 47
Figure.lll. 17.Selection of " FIFO geNEIatorccooiieiiieieieie st 47
Figure.lll. 18.Configure the settings of FIFO size (width and depth)...........ccccocveiiiiniinnns 48
Figure.lll. 19.Successful Creation of IP Core(FIFO RAM).......cccoiiiiiiiiiiiice e 48
Figure.lll. 20."Block memory Generator" 1P core Wizardc.ccooevivieiinienenene e 49
Figure.lll. 21.Configure the settings of memory size (widht and depth)cccocevininiinnnns 50
Figure.lll. 22.Successful Creation Of IP COre ..o 50
Figure.lll. 23.Finite state machine of matrix CONVOIULION............ccocoiiiiiiniiie e 52
Figure.lll. 24.Displaying the output image using MATLAB.........cccociiiiiiieeee e 53
Figure.l11. 25.Top 18VEl deSIgNcuoiiiiiiicee e 53
Figure.lll. 26.Complete design SCEMALIC...........ccociiiiiiieice e 54
Figure.lll. 27.Schematic ShOWIiNg BRAMooiiiiiiiie e 55
Figure.lll. 28.Schematic ShOWING FSMccoviiiiiiiic e 56
Figure.lll. 29.Schematic showing the output storage phase..........cccccvevieiiieiie e 57
Figure.lll. 30.Simulation showing set_address and read_input state............cccccoevevieiieeinenn, 58
Figure.lll. 31.Simulation showing computation, storing and complete state...............ccccve..... 58
Figure.lll. 32. FPGA resource utilization SUMMAIYc..covueiiiieiieiiieeiie e sie e 58

List of tables

Chapter 1:2D Gaussian filtering of images with MATLAB

Table 1. 1.PSNR and SSIM values for filtered images with sigma values and kernel size

(Variance N0ISE = 0.003)eeeeiieeieiie e sieeee e rte ettt e s e sbe et e s s e s be e e e sreesreeeeenee e 14
Table I. 2.PSNR and SSIM values for filtered images with sigma values and kernel size
(Variance NOISE = 0.09)eiieiiiiieiie it e e ettt e e re e be et e sraenteeneeereenre e 14

Chapter I1: Efficient gaussian image filtering Using Xilinx System Generator

Table 11. 1.Effect of gaussian noise on kernel size 5x5 with different variance noise.............. 30

Lists of abbreviations

bmp: Bitmap

BRAM: Block RAM

COE: Coefficient File

DCM: Digital Clock Manager

DSP: Digital Signal Processing

FIFO: First-In, First-Out

FPGA: Field Programmable Gate Array
FSM: Finite State Machine

FWEFT: First Word Fall Through

gif: Graphics Interchange Format

GUI: Graphical User Interface

HDL.: Hardware Description Language
IDE: Integrated Design Environment
IP Core: Intellectual Property Core
ISim: Integrated Simulator

jpeg: Joint Photographic Experts Group
JTAG: Joint Test Action Group
MATLAB: Matrix Laboratory

MSE: Mean Square Error

PNG: Portable Network Graphics

PSNR: Peak Signal to Noise Ratio

RAM: Random Access Memory

ROM: Read-Only Memory

RTL : Register Transfer Level

SSIM The structural similarity index
measure (SSIM)

tif: Tagged Image File

USB: Universal Serial Bus

VGA: Video Graphics Array

VHDL: Very High-Speed Integrated Circuit
Hardware Description Language

XSG: Xilinx System Generator

Introduction

Over the last few decades, the manipulation of digital images has aroused great interest in
various fields such as medical and technological applications, yet these images are subject to a
variety of noises that affect their quality. In image processing, filtering and noise reduction
aim to restore the original image details as much as possible by eliminating unwanted noise.
This is why filtering is one of the most widely used concepts in most image processing

applications.

The need for real-time image processing means that algorithms must be implemented in
hardware, and this is why Field Programmable Gate Array (FPGA) technology has recently
emerged as a promising target for the implementation of algorithms suitable for image
processing applications. This technology offers parallelism that significantly reduces
processing time. High-level abstractions that can be automatically compiled into an FPGA are
offered by Xilinx System Generator (XSG), a Simulink extension that enables hardware
design. In addition, the Xilinx CORE Generator system produces and delivers parameterized
cores optimized for Xilinx FPGAs, allowing for the faster development of high-density, high-

performance designs.

The aim of this thesis is to design, model, simulate and synthesize Gaussian image
filtering. The implementation on a Spartan3e FPGA reconfigurable logic platform (xc3s500e)
will be realized using first hardware software Co-simulation through the Xilinx System
Generator (XSG) tool and second the Very High-Level Description Language (VHDL) using
the advanced image processing cores included in the IP Core lib library. Following is an

outline of the thesis:

In Chapter 1, the process of gaussian image filtering is thoroughly explained, including how
each point in the image is convolved with a Gaussian kernel. After doing a simulation with

MATLAB, we will compare the image quality using the PSNR and SSIM measure.

Chapter 2 details the Gaussian image filtering model and how to read and write images using
the Xilinx system generator with the MATLAB/Simulink platform. In addition, the FPGA
implementation using hardware Co-simulation will be presented. The model can be co-
simulated, provided that the requirements of the underlying hardware board are met. PSNR

and SSIM will also be used to discuss the data and discuss the results that were obtained.

Chapter 3: provides the detailed implementation of gaussian image filtering in VHDL using
Xilinx IP Core. In addition, a description of how to convert image and kernel matrix to .COE
files which are loaded onto flexible Block Memory Generator core to create compact, high-
performance memories, and how to design matrix convolution using finite state machine
approach.

Finally, a conclusion brings to a close both our accomplishments and any potential follow-up
effort.

Chapter |

2D Gaussian
filtering of Images
with MATLAB

Chapter I: 2D Gaussian filtering of images with MATLAB

Chapter I: 2D Gaussian filtering of images with MATLAB

I.1.Introduction

In this chapter, we provide an overview and explanation of some concepts related to
digital image processing, such as: noise in images and its sources, as well as a brief
introduction to gaussian noise and gaussian filter. We focus in this chapter on specific
elements such as spatial image filtering, convolution, gaussian mask and image quality
assessment tools. PSNR and SSIM are two quality metrics that have been used to evaluate
MATLAB results of 2D gaussian filtering.

I.2.Noise in images

1.2.1. Sources of image noise:
Image is affected by various sources of noise during the acquisition and transmission

process. Typically, noise is assessed by examining the ratio of corrupted pixels in the
image. Depending on the image's creation method, several factors contribute to increased
noise in the original image: when scanning a photograph captured on film, noise can arise
from the film grain, film damage, or introduced by the scanner or imaging system
itself. The process of capturing and saving a digital image in its specific format through
data collection mechanisms can introduce noise.Electronic acquisition or transmission of
image data can also introduce noise.Noise can result from incorrect light penetration,
caused by an improper opening of the device sensor, which affects the passage of light
from the source to the device lens. Factors such as light levels and sensor temperature
significantly contribute to noise creation[1].
1.2.2.Gaussian noise

Gaussian noise is a type of noise that follows a gaussian probability distribution. It is
characterized by a random signal value being added to each pixel of an image, which
results in a slight variation of the pixel values.
The probability density function (PDF) of gaussian noise is given by:

1 ’(Z’j)z
p(z) = e 2° (1.1)

Where: z is the random variable, ¢ is the standard deviation, and Z is the mean.

Chapter I: 2D Gaussian filtering of images with MATLAB

probability density function
2 T T T

sigma=0.25
18 sigma=0.6 ||
sigma=1

16

1.4 Hi

[y
12 T

08 -

0.6

0.4 /““‘/ \\\\

0.2

Sigma =0.25 Sigma =0.6 Sigma =1
(b) 3D probability density function of gaussian noise with different standard deviation

Figure 1. 1.2D and 3D probability density function of gaussian noise with different standard deviation

From the above figure It is evident that the distribution expands wider the higher the
standard deviation. As a result, the variance can be viewed as a variable influencing the
Gaussian probability density's width.

In the context of image processing, gaussian noise is often used to model the effect of
electronic noise in image acquisition devices or random fluctuations in natural scenes.
Gaussian noise is additive in nature, in other words each pixel in the noisy image is the
sum of the real pixel value and a randomly generated gaussian-distributed noise value.

The noisy image is obtained by:
g(xy)="f(xy)+n(xy) (1.2)

Chapter I: 2D Gaussian filtering of images with MATLAB

Where f(x,y)is the original image, n(x,y) represents the noise that was added to the
image to create the noisy image g(x, y), and (x, y)represents the pixel location.
It is important to remove or reduce gaussian noise from an image in order to improve its
visual quality and enhance its features. Several image processing techniques, such as
filtering and denoising, are used to achieve this goal[2].
I.3.Image filtering using gaussian filter

Image filtering is a fundamental technique in image processing and computer vision
that is used to modify the appearance of an image by applying a filter or mask to the
image. The filter is a mathematical function that is convolved with the image to produce a
modified output image.A filter is characterized by a kernel, which is a small array applied
to each pixel and its neighboring pixels within an image. Filters are typically categorized
into two types: linear filters and non-linear filters. In this context, the spatial linear filters
which are applied by convolution with a low pass filter convolution kernelare the ones
being considered[3].
1.3.1. Convolution

Let's consider a monochrome image in which the function f (i, j) represents the light
intensity of the pixel at coordinates(i v)) The digital convolution of this function with a

two-dimensional impulse response h(m,n)results in a new image function f (x,y) This

convolution can be written as:

f(i,j) = i N h(m,n) f (i -m. -n) (1.3)

m=-M n=-

f(x,y) is the weighted sum, using the coefficients h(m,n), of the pixel intensities

belonging to a neighborhood of the pixel at coordinates(i, j). This processing is referred

to as localized. The impulse response is called the convolution mask.

The neighborhood of the pixel at coordinates (x, y) is represented as follows:

Chapter I: 2D Gaussian filtering of images with MATLAB

(i-1, j-1) (i, j-1) (i+1, j-1)

(i-1,)) (@.J) (i+1,7)

(-Lj+1) | Gj+1) | (+1,5+1)

Figure I. 2.Pixel coordinates based on point (i,j).

Figure 1.2 illustrates the application of a convolution mask on a monochrome digital
image. The mask is moved across the entire original image to obtain a complete processed
image.[4]

Center element of the kemnel is placed over the (0x0)

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

Figure 1. 3.Image convolution with a filter kernel of size 3 x 3 [5]

1.3.2.Gaussian mask

A gaussian mask, also known as a gaussian filter, is a convolution kernel used in
image processing to smooth or blur an image or to reduce noise. It is defined by a gaussian
function, which is a bell-shaped curve that is symmetric about the center and has a
standard deviation that determines the width of the curve. The values in the Gaussian
mask decrease as the distance from the center pixel increases, with the highest weights at

the center and lower weights toward the edges of the mask. The use of a Gaussian mask

Chapter I: 2D Gaussian filtering of images with MATLAB

can help to preserve edges and other high-frequency features in an image while reducing
noise in the image. In digital image processing, the gaussian filter is widely used in
numerous image processing applications, including edge detection, noise reduction, and
feature extraction. It has good smoothing properties and can effectively remove high-
frequency noise from the image while preserving the low-frequency structure of the
image.[2]
According to Gonzalez and Wood (2018),the gaussian filter is defined as:
e+y?)

1 2
G(x,) me e %

(1.4)

where ¢ is the standard deviation of the gaussian function, and x and y are the
independent variables of the filter.

The Gaussian kernel matrix is the corresponding matrix structure that can be of
different size and filtering can be implemented by convolving the input image matrix with

the gaussian mask matrix.

1 4 7 4 1 0 3 13 22 13 3 0

121 4 |16 |2 |16 4 1 |13 |50 |97 |59 13| 1

me | 2 | 4| 2 V273 | 7 | 26 |41 |26 | 7 11003 | 5 | 22 | o7 159 | 97 | 22 | 2
121 4 16|26 |16 4 1 |13 |59 |97 |59 13| 1

1 4 7 4 1 0 3 13 | 22 | 13 3 0

Mask of 3x3Mask of 5x5Mask of 7x7

Figure I. 4. Gaussian kernels 3x 3, 5x5,7 x7 with =1

1.3.3.Gaussian image filtering
Gaussian image filtering is produced by convolution between a noisy image and
2D gaussian mask which is usually odd and symmetrical 2n+1x2n+1with different size

3x3,5x5,7x7, so the convolution become:

F(xy)=(g*n)(xy)=> > g(x+i,y+i)n(i.j) (1.5)

i=—n j=-n

Chapter I: 2D Gaussian filtering of images with MATLAB

Where ¢ (x,y)is the noisy image, h(x,y) denotes the gaussian kernel , and f(x,y)
represents filtered image. [2]
I.4.Image quality assessment
1.4.1.PSNR

Peak Signal-to-Noise Ratio (PSNR) is a widely used objective quality metric in image
and video compression, restoration, and processing. And itis the ratio of the reference
signal to the distorted signal in the image, expressed in decibels. In general, we can say

that the higher the value of PSNR, the closer the distorted image is to the original image
thus the higher the image quality.

Mathematically, the Peak Signal-to-Noise Ratio (PSNR) for full reference image

quality metrics can be expressed as follows:

PSNR = 10 x IoglO((Mpp)z/MSE) (1.6)

Where:
MPP represents the Maximum Possible Pixel value in an image. For example, in an 8-bit
image, the MPP is calculated as 2° —1= 255 pixels.

MSEdenotes the Mean Square Error between the filtered and the original images

1 M N

g 22 {f ey)=t (y)))

x=ly=1

MSE =

Where: M and N are the dimensions of the image[6]
1.4.2.SSIM

Structural Similarity Index (SSIM) is a widely used image quality assessment metric
that quantifies the similarity between two images. It is based on the assumption that the
human visual system is more sensitive to structural information in images such as texture,
luminance, and contrast, rather than just simple pixel intensity values.

The SSIM index ranges from -1 to 1, with a value of 1 indicating perfect similarity
between the two images. Higher SSIM values imply greater similarity between the two

images.[7]

Chapter I: 2D Gaussian filtering of images with MATLAB

In a formal sense, SSIM conducts a thorough analysis of two images: a pristine
reference image denoted as X, and a potentially corrupted version of the same image
denoted as y. The structural similarity index can be calculated according to Eq.(1.12)[8]

(Zluxluy +C1)(20-x,y +C2)
(/ux2 +/uy2 -'_Cl)(o-x2 _'-O-y2 +C2)

SSIM (x,y) = (1.12)

In the Eq.(1.12)The u, represents the average of x, x, represents the average of y. The

variance of x is represented by o *, and the variance of y is represented by ayz . C,C,are

the variables to stabilize the division.
I.5.Matlab simulation results

The effectiveness of gaussian filtering for gaussian noise reduction has been examined
using matrix laboratory software (MATLAB).
We applied a Gaussian filter with respectively (3x3), (5x5), and (7x7) kernel with ¢=0.5, 1
and 7 on the image (cell.tiff) of size (159x191) affected by Gaussian noise with ¢2=0.003
and 02=0.09.

1.5.1. Gaussian filter for noise removal (Variance noise = 0.003)

a) Original image b) Noisy image PSNR=25.1638

Figure 1. 5.0riginal and noisy image (Variance noise = 0.003)

10

Chapter I: 2D Gaussian filtering of images with MATLAB

a) PSNR=21.7460 b) PSNR=22.7034 c) PSNR=21.7831
SSIM=0.2906 SSIM=0.5512 SSIM=0.6132
Figure I. 6.Filtered image with 3x3 kernel and a)o= 0.2 b) 6=I1c)o=7

c) PSNR=20.6363
SSIM=0.6706

a) PSNR=18.33 b) PSNR=20.0511
SSIM=0.1848 SSIM=0.6014
Figure I. 7 Filtered image with 5x5 kernel and a)o= 0.2 b) 6=1 ¢) 6=7

a) PSNR=16.8281 b) PSNR=17.9386 c) PSNR=19.6255
SSIM=0.1789 SSIM=0.5699 SSIM=0.6725
Figure I. 8.Filtered image with 7x7 kernel and a)o= 0.2 b) 6=1c)o=7

11

Chapter I: 2D Gaussian filtering of images with MATLAB

1.5.2. Gaussian filter for noise removal(Variance noise = 0.09)

a) Original image b) Noisy image PSNR= 11.2691

Figure 1. 9. .Original and noisy image (Variance noise =0.09)

12

Chapter I: 2D Gaussian filtering of images with MATLAB

g

g il T

a) PSNR=11.1024 b) PSNR=17.0365 c) PSNR=18.5437
SSIM=0.0260 SSIM=0.0912 SSIM=0.1398
Figure 1. 10. Filtered image with 3x3 kernel and a)o= 0.2 b) o=I1c)o=7

a) PSNR=10.7930 b) PSNR=18.1547 ¢) PSNR=19.4412
SSIM=0.088 SSIM=0.1591 SSIM=0.2998
Figure I. 11.Filtered image with 5x5 kernel and a)o= 0.2 b) 6=1¢c)o=7

b) PSNR=16.6997 ¢) PSNR=19.1455
SSIM=0.0104 SSIM=0.1494 SSIM=0.4472
Figure 1. 12 Filtered image with 7x7 kernel and a)o= 0.2 b) 6=1¢c)o=7

13

Chapter I: 2D Gaussian filtering of images with MATLAB

1.5.3. Effect of kernel size and sigma of Gaussian filter
Table 1.1 resume the PSNR and SSIM of filtered image for different sigma values and

kernel size for variance noise=0.003

Table I. 1.PSNR and SSIM values for filtered images with sigma values and kernel size

(Variance noise = 0.003)
Sigma kernel 0.2 1 7
Mask PSNR 21.7460 22.7034 21.7831
3X3 SSIM 0.2960 0.5512 0.6132
Mask PSNR 18.33 20.0511 20.6363
5X5 SSIM 0.1848 0.6014 0.6706
Mask PSNR 16 .8281 17.9386 19.6255
X7 SSIM 0.1789 0.5699 0.6725

Table 1.2 resume the PSNR and SSIM of filtered image for different sigma values and

kernel size for variance noise= 0.09

Table I. 2. PSNR and SSIM values for filtered images with sigma values and kernel size
(Variance noise = 0.09)
Sigma Kernel 0.2 1 7
Mask PSNR 11.1024 17.0365 18.5437
3x3 SSIM 0.0260 0.0912 0.1398
Mask PSNR 10.7930 18.1547 19.4412
5x5 SSIM 0.0088 0.1591 0.2997
Mask PSNR 10.5856 16.6997 19.1455
X7 SSIM 0.0104 0.1494 0.4472

1. The effectiveness of the Gaussian filter in reducing noise can be controlled by
adjusting its parameters, primarily the standard deviation (sigma) of the Gaussian

kernel and the kernel matrix size.

14

Chapter I: 2D Gaussian filtering of images with MATLAB

a. We note that when we increase the sigma value for each mask size the PSNR
and SSIM increase and the gaussian noise is reduced.
e for variance noise =0.003 (Mask 3x3)
for sigma kernel=0.2, PSNR = 21.7460 dB and SSIM=0.2960
for sigma kernel=7, PSNR = 21.7831dB and SSIM=0.6132
e for variance noise =0.09 (Mask 3x3)
for sigma kernel=0.2, PSNR = 11.1024 dB and SSIM=0.0260
for sigma kernel=7, PSNR = 18.5437 dB and SSIM=0.1398
Increasing the standard deviation of the mask continues to reduce and blur the intensity of
the noise. A larger sigma value will result in a stronger smoothing effect, effectively
reducing more noise but potentially blurring image details. Conversely, a smaller sigma
value will have a weaker smoothing effect, preserving more details but reducing noise to a
lesser extent.
b. When we increase the kernel matrix size, the PSNR and SSIM decrease which
result in more blurring of image details.
e for variance noise =0.003 and kernel sigma =0.2
for mask 3x3, PSNR=21.74 dB and SSIM=0.2960
for mask 7x7, PSNR=16.82 dB and SSIM=0.1789
e for variance noise =0.09 and kernel sigma =0.2
for mask 3x3, PSNR=11.1024dB and SSIM=0.0260
for mask 7x7, PSNR=10.5856dB and SSIM=0.026 0
A larger kernel size implies a wider area of influence for each pixel during the filtering
process. Consequently, larger kernels tend to provide stronger smoothing effects and noise
reduction but may result in more blurring of image details. Conversely, a smaller kernel
size limits the extent of neighboring pixels considered during filtering. This can preserve
finer details in the image but may provide less effective noise reduction.
So, in our case, gaussian filtering is best suited filters for low gaussian noise with low
sigma kernel and kernel size.
2. The effectiveness of the Gaussian filter in reducing Gaussian noise can be

controlled also by the standard deviation (sigma) of the noise.

15

Chapter I: 2D Gaussian filtering of images with MATLAB

e for variance noise =0.003 (Mask 7x7)
for sigma kernel=7, PSNR = 19.6255 dB and SSIM=0.6725

e for variance noise =0.09 (Mask 7x7)
for sigma kernel=7, PSNR = 19.1455 dB and SSIM=0.4472
By increasing the standard deviation of the noise, you introduce more pronounced
variations, which can make the noise more difficult to remove completely. In such cases,
the Gaussian filter may still reduce the noise but may not eliminate it entirely. On the
other hand, if the standard deviation of the noise is relatively low, the Gaussian filter can
effectively reduce the noise and make it less noticeable in the image.

It's important to note that the choice of kernel size should be balanced according to the
characteristics of the noise, desired level of smoothing, and the specific image being
processed. Experimenting with different kernel sizes and observing their effects on the
noise reduction and preservation of image details can help determine the optimal size for a

particular application.

I.6.Conclusion

In this chapter, we get deeper in gaussian filtering of images. Indeed, after adding
gaussian noise to image, we worked on a local processing which is linear spatial filtering
using gaussian filter as a means of improving the image quality and removing noise from
it. The implementation of gaussian filter to gray scale image cell is realized using
MATLAB software. To evaluate the quality of the filtered images, we used two image
quality metrics such as SSIM and PSNR. Then, the results of the implementation were
discussed based on these metrics. When applying a Gaussian image filter to Gaussian
noise, the filter will smooth out the noise, blur its details, preserve edges, and provide

control over the strength of noise reduction

16

Chapter ||

Efficient gaussian image
filtering Using Xilinx System
Generator

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

Chapter I1: Efficient gaussian image filtering Using Xilinx System
Generator

I1.1.Introduction

This chapter focuses on the model of gaussian image filtering using Xilinx System
Generator blocks (XSG), which integrates itself with the MATLAB based Simulink graphics
environment and relieves the user of the textual Hardware Description Language (HDL)
programming, and the implementation of the design targeting a Spartan3e device (xc3s500e)
using hardware co-simulation. Peak Signal-to-Noise Ratio (PSNR) and the FPGA resource

are both used to assess the quality of the filtered images.

11.2.Work environment

The work environment in the context of MATLAB and Simulink refers to the integrated
software tools and graphical user interface provided by MathWorks for designing, simulating,
and implementing various computational and signal processing systems. MATLAB is a
programming language and development environment known for its numerical computing
capabilities, while Simulink is a block diagram environment that enables the modeling and

simulation of dynamic systems.[9]

11.3.Xilinx system generator (XSG)

The Xilinx’s Generator is a System-level modeling tool from Xilinx that facilitates FPGA
hardware design. It is a system-level modeling tool in which designs are captured in the DSP
friendly Simulink modeling environment using a Xilinx specific blockset. All of the
downstream FPGA implementation steps including synthesis and place and route are
automatically performed to generate an FPGA programming file. Over 90 DSP building
blocks are provided in the Xilinx DSP blockset for Simulink. These blocks leverage the
Xilinx IP core generators to deliver optimized results for the selected device. System
Generator provides many features such as System Resource Estimation to take full advantage
of the FPGA resources, Hardware Co-Simulation and accelerated simulation through
hardware in the loop Co-simulation; which give many orders of simulation performance
increase. It also provides a system integration platform for the design of FPGAs that allows
the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come together in a
single simulation and implementation environment. Figure I1.1 presents the design flow of
XSG.[10]

18

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

evelop
Executable Spec
in Simulink

Generator
resentation

Automatic RTL
generation

Testbench
Generation

Xilinx CoreGen

RTL Verification
with ModelSim

XHinx
Implementation
Flow

Btstream

Download 1o
FPGA

Figure 1l. 1.System Generator design flow

11.4.Gaussian image filtering design using Xilinx system generator

For real-time applications, the gaussian image filtering must be implemented in hardware.
FPGA implementation can be carried out in a prototyping environment utilizing the Xilinx
System Generator tool and MATLAB/Simulink. Fig. 11.2 depicts the design flow for the
hardware implementation of gaussian filtering using XSG.

?

System
Generstor

Line1 Line1

Line2

graySignal Dd ' q »|in Line3

Trom Gateway In Line4
Workspace Register I Linef

Line2

tres att—ia 2t o outl— 4l fibeimege

Lined Gateway Out
Lines Registert To Workspace

F{‘F‘FF

Virtex2 & Line Buffer SxbFitter

Figure Il. 2.The Simulink desigh model

11.4.1.System Generator Token
The System Generator token functions as a control panel for managing simulation and

system parameters, as well as calling upon the code generator for netlisting. In order for any

19

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

Simulink model with elements from the Xilinx Blockset to be valid, it must contain a
minimum of one System Generator token. By introducing a System Generator token to a
model, it becomes possible to determine how code generation and simulation are
managed.[11]

0] P
1
000 (5 rd
Compilation Clocking General

Compilation :

> | |[HDL Netlist Settings ...
Part:

= || Spartan3E xc3s500e-4ft256

Synthesis tool : Hardware description language :

XST i WHDL i
Target directory :

Inetlist Browse...
Project type :
Project Mavigator ~
Synthesis strategy : Implementation strategy :
KST Defaults® ISE Defaults®
|:| Create interface document |:| Create testbench .
Import as configurable subsystem Model upgrade. ..
Syslem
Performance Tips Generate 0K Apphy Cancel Help GGI'EH'IOT

Figure 1l. 3.Block system Generator

11.4.2.Test image

The “From Workspace” block reads a signal from a Workspace and imports it to the
Simulink workspace. The original grayscale image "Cell.tif" was noised with Gaussian noise
(variance noise= 0.003, 0.09) and then converted to a grayscale signal that is a suitable data
form for FPGA hardware (Figure 11.4).

20

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

graySignal

From
Workspace

From Workspace block Original image Noisy image (Variance gaussian
noise = 0.003)
Figure Il. 4.Test image for filtering

11.4.3.Gateway in and Gateway out

The blocks named Xilinx Gateway In serve as inputs for the Xilinx segment in the
Simulink design. They enable the conversion of Simulink's integer, double, and floating-point
data types into the fixed-point type. Each block defines a high-level input port within the
HDL design that is generated by System Generator.[11]

A In [

G atewaw In
Figure Il. 5.Gateway In block

The blocks labeled Xilinx Gateway Out are the outputs of the Xilinx component in the
Simulink design. This block converts the fixed-point data types of System Generator into
Simulink's integer, single, double, or floating-point data types.[11]

Ot [

G ataway Out
Figure Il. 6.Gateway Out block

11.4.4.Register

The Xilinx Register block represents a register based on D flip-flops, which introduces a
one-sample period latency. The block features a single input port for data, as well as an
optional input reset port.[11]

21

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

Fiegister
Figure Il. 7.Register block

11.4.5.Virtex 2 5 line buffer

The Xilinx Virtex2 5 Line Buffer reference block is responsible for buffering a sequence
of pixels to create five lines of output, each of which is delayed by a different number of
samples based on its length. Line 1 is delayed by four times the length of the line, with each
subsequent line delayed by N fewer samples, until the final line (line 5) is a direct copy of the
input.[11]

Line1 [=

Linez [~

in Line3[=

Lined =

Line5[=

Virtex2 Line Bufferd

Wirex2 5§ Line Buffer
Figure 1. 8.Virtex 2 5 line buffer block

11.4.6. 5x5 Filter

The Xilinx 5x5 Filter reference block is built upon 5 n-tap MAC FIR filters, which are
available in the DSP library of the Xilinx Reference Blockset. The block includes nine
distinct 2-D filters that can be used to filter grayscale images. We select a gaussian filter by
adjusting the mask parameter on the 5x5 Filter block (Figure Il. 10). The 2-D filter
coefficients are stored in a block RAM, and the model doesn't make any particular
optimizations for these coefficients. However, we can customize the filter by substituting our
own coefficients and scale factor, which can be accomplished by modifying the mask under
the initialization tab of the 5x5 filter block.[11]

22

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

i gaussian=[11211; ..
: 12421; ..
LineZ
: 24842; ..
Linez outf
R 12421; ..
Lines 11211];
S5 Filter gaussianDiv = 1/52;

Figure 11. 9.5x5 Filter block and the mask parameters

11.4.7. To Workspace block
The "To Workspace" block stores its input into the MATLAB workspace, and the
resulting output is saved as an array or structure with a name specified by the block’s

"Variable name" parameter. The "Save format" parameter determines the format of the output
data.[11]

). filtrelmage

To Workspace

Figure I1. 10.To Workspace block

11.5.FPGA implementation using Hardware Co-Simulation
11.5.1. The choice of the compilation Target

Once the hardware board is installed, the starting point is to choose the new compilation
target.Double click on System Generator token and in the compilation menu choose Hardware
Co-Simulation and finally select the DEFB (Digital Electronics FPGA Board)platform which
is Digital Electronics FPGA Target in the Hardware Co-Simulation submenu.

23

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

1 u System Generator: gaussfilterSx5filterl l =1 LX) —
® & O
1
&‘J _Jj g/
Compilation Clocking General
Compilation :
HDL Netlist Seftings ...
Pai NGC Netlist
Bitstream
Syr EDK Export Tool rdware description language :
X3 Hardware Co-Simulation » ACTOL »
Tar Timing and Power Analysis Digital Electronics FPGA
Anetlist KC705 4
Project type : ML402 3
Project Nawvigator ML506 3
Synthesis strategy : I MLGOS 3
XST Defautts® 19 5P601 »
[create interface document [5Pe03 '
Spartan-3A DSP 1800A Starter Platform 3
e Spartan-3A DSP 34004 Development Platform *
VCT07 »
Performance Tips] l Generate] E XtremeDSP Development Kit 3
ZC702 »

Mew Compilation Target...
Figure 1l. 11. Digital Electronics FPGA compilation target

Once a compilation target is selected, the fields in the System Generator token dialog box
are automatically adapted to align with the appropriate settings for the chosen target. System
Generator preserves the specific dialog box configurations for each compilation target. These

settings are saved when a new target is selected and restored when the target is recalled.[11]

11.5.2. Invoking the Code Generator

By clicking the Generate button in the System Generator block dialog box, the code
generator is launched. For the design, the code generator creates an FPGA
configuration bitstream appropriate for hardware Co-simulation.System Generator runs the
downstream tools necessary to produce FPGA configuration files, in addition to producing
HDL and netlist files for the model during compilation.The configuration bitstream includes
the hardware related to the designed model as well as additional interfacing logic that enables
System Generator to communicate with the design via a physical interface between the
platform and the PC. System Generator may read from and write to the input and output ports

on the design using the memory map interface that is part of this logic.[11]

24

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

n System Generator: gaussfilterSxSfilterl = PS

; @

1 C ;
& = 7
Compilation Clocking General

Compilation :

= ||Digital Electronics FPGA Settings ..
Part :
> ||Spartan3E xc3s500e-4ft255
Synthesis tool : Hardware description language :
XST WHDL
Target directory :

netlist Compilation status

Project type :

Project Navigator Performing compilation and generation
Synthesis strategy :

XST Defaults®

Create interface document Details Close Cancel

Import as configurable subsyst (A U e

Figure I1. 12.Invoking the Code Generator

11.5.3. Hardware Co-simulation block
Once System Generator has finished converting the design into an FPGA bitstream, it
immediately generates a new hardware co-simulation block. A Simulink library was also

created to store hardware co-simulation blocks.

 A— _-
Library: gaussfiltersxsfilter]l_hwcosim_lib
Wi Library: g

File Edit View Format Help

O =Es
Gateway In é::li Gateway Qut[~

gaussfi terSxSfiltert
hweosim

Figure Il. 13.Hardware Co-simulation block

In fact, the hardware co-simulation module adopts the external interface of the model or
subsystem derived from it. The same port names are used in the hardware co-simulation block
as in the original subsystem. Connection types and speeds are also consistent with the original

design.

25

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

The library block may now be copied and used in our System Generator design just like

any other Simulink or System Generator block would be.

Linet

,.
h
YYYYY
T

o
7& o
"M L brany: gaus sfiterSxs filter._hwcosim lib
ie Edi View format Helo
[R~ = -] B | <= 4|

1 Ao o o
.{Glltwuy" ETeo ;nm,cu.l> /

gaussil @sSxSilmet
vecsim

Figure 1. 14.Hardware Co-Simulation block Insertion

The hardware Co-simulation block works like any other block in a Simulink design. This
block allows interaction with the underlying FPGA platform during simulation and automate
tasks such as device configuration, data transfer, and clocking. It consumes and generate the
same types of signals used by other system generator blocks. When the input port of the
hardware Co-simulation block receives a value, it transfers the appropriate data to the
appropriate location in the hardware. Similarly, when an event occurs on an output port, the

block retrieves data from the hardware. The system should appear as follows:

26

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

System Resource
Generator Estimator

Line1

Line2

-
tre2 et—ia o a—s{ out] S—
Lines Gateway Out

Lines Register! To Workspace

i

5

o]
Yy¥YY

graySignsl

From
Warkspace

¥

Gateway In

,_
¥

Register Lines

¥

Virtex2 5 Line Buffer BxbFilter

=|Ga|eway|n g GalewayOuII i

Cosim

‘gaussfilterBxbfiltart To Workspace 1
hweosim

Figure Il. 15.Hardware Co-Simulation model

Like other System Generator blocks, hardware co-simulation blocks offer parameter
dialog boxes that allow users to configure them with various settings. The parameters
available for a hardware co-simulation block depend on the specific FPGA platform it is
implemented for, as each FPGA platform provides its own customized hardware co-
simulation blocks.[11]

3¢ gaussfilterSxSfilter009 hweosim (Xilinx JTAG Hardware .. (1=). (I

Basic Advanced | Cable | Shared Memories | Software |
Clodking
Clock source:
@ Single stepped () Free running
JTAG H binational path
In as combinational pa
H Sateway r sl Sateway Sull>
g ussfi e SxSdilber Bitstream file Jesktoplcellinetist\gaussfilter 5xSfilter009_cw.bit :]
hwoosim
[oK l ’ Cancel l ’ Help l [Apply l

Figure 1l. 16.Hardware Co-Simulation block and it’s dialog box

11.5.4.Co-Simulation Implementation
The implementation of the Co-simulation system can be simplified into two tasks:

connecting the FPGA hardware to the host computer and running the co-simulation model. To

27

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

begin, assemble the FPGA hardware and ensure all components are set up correctly. Connect
the board to the host computer using the serial to USB cable and the JTAG programming
cable. This connection enables the Co-simulation to access the hardware for gaussian filtering
algorithm. Once the board is properly connected, verify that the simulation time is set to the
same value as in the original system design. Click the Start simulation button to initiate the
simulation.The Co-simulation procedure is concluded at the end of the simulation run time,

and a video viewer can be used to access the output signal.

Figure 11. 17.The connected Board

28

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

M rcaryo,
» INJ]—‘?UI’:;AL =

Figure 11. 18.Co-simulation implementation

11.6.Hardware Software Co-simulation results
We applied a Gaussian filter with (5x5) kernel and a=1 on the image (cell.tiff) affected by

Gaussian noise with ¢2=0.003 and ¢2=0.09.

filtrelmageCosimulation Noisy Image Filtered Image

Figure 1I. 19 Hardware -Simulation filtered image with 5x5 kernel and variance noise=0.003

29

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

filtrelmageCosimulation Noisy Image Filtered Image

Figure 1l. 20 Hardware-simulation Filtered image with 5x5 kernel and variance noise=0.09

Table 11.1 resumes the corresponding PSNR and SSIM of filtered images for different
variance noise.

Table I1. 1.Effect of gaussian noise on kernel size 5x5 with different variance noise

Variance noise 0.003 0.09
Mask PSNR 31.0088 22.7034
5x5
SSIM 0.8440 0.5512

The Gaussian filtering effect depends on the intensity of noise which is the standard
deviation of the noise a. The standard deviation of the noise represents the magnitude of the
random variations in the noise. A higher standard deviation indicates a noisier image with
larger variations in pixel values. We note that when we increase the sigma noise value, the
PSNR and SSIM decrease. By increasing the noise's standard deviation, you add stronger
variations, which may render the noise harder to eliminate altogether. In such instances, the
Gaussian filter may still reduce noise but not entirely eliminate it. On the other hand, if the
standard deviation of the noise is quite low, the Gaussian filter can successfully reduce the
noise and make it less visible in the image. So, Gaussian filtering is best suited filters for low
Gaussian noise. the Gaussian noise is reduced, but not completely removed.

For the target Spartan3e device (xc3s500e) FPGA device, the results are produced using XSG.
The FPGA resource utilization description for the results of the gaussian filtering is shown in
figure 11.21.

30

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

»® Resource Estimator (Xilinx Resource E... | = = S
Slices 465

FFs 790

BRAMSs 9

LLTs 535

I0Bs 16

Mults/DSP48s 5

TBUFs o]

[T Use area above

Estimate oph'c[Estimabe [Estimate]

[oc][com | [vep [e |

[

Figure 1. 21.FPGA resource utilization summary

I11.7. Conclusion

This chapter has focused on the efficient implementation of Gaussian image filtering using
Xilinx System Generator. It’s a powerful tool for designing digital systems on FPGA
platforms. A design operating on an FPGA can be integrated directly into Simulink simulation
thanks to System Generator's hardware co-simulation feature. When the system design is
simulated in Simulink, the results for the compiled component are calculated in actual FPGA
hardware, frequently yielding a substantially faster simulation time while verifying the
functionality of the hardware.

31

Chapter ||

2D Gaussian filtering with
VHDL using IP Core

Generator

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Chapter 111:2D Gaussian image filtering with VHDL using IP Core
Generator

I11.1.Introduction

In this chapter, we will explore image filtering in VHDL, focusing on the role of IP cores
in enhancing the efficiency and effectiveness of image processing tasks. VHDL, or Very
High-Speed Integrated Circuit Hardware Description Language, provides a powerful
framework for designing and implementing digital systems, including image processing
algorithms. IP cores, on the other hand, serve as pre-designed and pre-verified circuits that
offer ready-made solutions for specific image processing functions. By leveraging VHDL and
IP cores, engineers can accelerate the development process, optimize performance, and

promote design reusability in image processing applications.

111.2.FPGA memory blocks

In Xilinx FPGAs, Block RAM (BRAM) is a dedicated two-port memory that can store up
to 36Kb of data. These FPGA devices have multiple BRAM blocks available, each consisting
of a configurable lookup table and a small logic block. While primarily used for logic
functions, the lookup table can be reconfigured to serve as a small amount of RAM. By
combining several BRAM blocks, a distributed RAM can be created, providing a larger
storage capacity. BRAM operates synchronously, with read and write operations
synchronized with the clock input signal and controlled by the read/write enable ports. In our
specific case, BRAMZ2 stores the test image data generated with MATLAB using a .coe file,
while BRAM1 holds the .coe file for the Gaussian mask accessed by the control module.
Lastly, BRAM3 is responsible for storing the filtered data.[12]

111.2.1. Single port BRAM

The Single-Port Block Memory module is designed to meet user requirements in terms of
width and depth. The read and write operations from and to the memory are based on the
clock input signal's changing edge since BRAM is synchronous.During operation, the Block
Memory performs all memory operations on the active edge of the clock input (CLK).The
data given at the port's data input is stored in memory at the location specified by the port's
address input during Write Operation(WE asserted).[13]

33

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

L

ADDR[m:0]
DIN[N:0]

EN

SINIT

ND
>CLK

WE DOUT[n:0]

RFD
RDY

111.2.2.Dual Port BLOCK MEMORY

Xa178

Figure.lll. 1.Core Schematic Symbol (Single-Port Block Memory module)

The Dual Port Block RAM features two separate access ports that allow simultaneous

access to a shared memory pool. Each access port can be configured independently, enabling

straightforward dual-port memory functionality or the option for data formatting capabilities.

Both ports offer read and write access and are functionally identical. However, it is important

to avoid simultaneous operations at the same memory location, except for simultaneous reads.

When reading from and writing to the same location simultaneously, the correct data is

written into the memory, but invalid data is presented at the reading port.[13]

34

ADDRAIm - O]
D lA[m - O]
VAT E A

ERaA

RSTA

CL A,
ADDRB[p - O]
DIIE[qg - O]
YWEB

ENE

RSTB

— KB

I|I|||LI||||

A - O] j—

OO Blg - O] .

Figure.lll. 2.Core Schematic Symbol (Dual Port Block RAM)

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

111.2.3.FIFO MEMORY

FIFO (First-In, First-Out) is an extension of Block RAM (BRAM) that operates on a first
in, first out basis. It follows the principle that the data stored first is retrieved first. When a
rising edge of the clock signal is detected, the available memory location is written with the
data present on the data bus, and the data from the last written memory location becomes
available on the output bus. FIFOs can be configured as either 18 Kbits or 36 Kbits of

memory. The configuration options and operation modes are depicted below.[14]

FIFO18 FIFO3E
—— Di[31:0] DOo[31:0] —— — Di[&3:0] Doe30] ——
— DIP[3:0] DOP[a:0] f—— —— DIP[7:0] DOP[7.0) P—
— 1 BDEN WRCOUNT[11:0] —— — RDEN WRCOUNT[12:0] ——
—— ROCLK RDCOUNT[11:0] f—— —| RDCLK RDCOUNT[12:0] —
FULL — —— WREN FULL —
—— WREN EMETY — | WRCLK EMPTY [——
———{ WRCLK
ALMOSTFULL |— RST ALMOSTFULL |——
— | RsT ALMOSTEMPTY —— ALMOSTEMPTY ——
—— RSTREG RDERR —— — RSTREG RDERR —
—— REGCE WRERR }— — REGCE WRERR —
UGETE o 0052610 UG4TE ez 03052610
(a) (b)

Figure.lll. 3.FIFO configurations. (a) FIFO-18 (b) FIFO-36

111.3.Xilinx CORE Generator

The Xilinx CORE Generator system is a tool that allows users to access IPs (Intellectual
Properties) customized for Xilinx FPGAs in order to construct FPGA chips faster and with
higher densities. A full library of Xilinx LogiCORE IPs is included with the ISE Foundation
software that comes with the CORE generator. These consist of memory, storage components,
mathematical operations, and fundamental components.

Xilinx offers the flexible Block Memory Generator core. This core provides the option for
single port and dual port block memories, which differ in their operating mode selection.

In the image filtering workflow, the MATLAB tool is utilized to convert the processed
image into the .coe file format. Subsequently, the Xilinx Core Generator is employed to store
the coefficient file (.coe) in a single port Block ROM. The width and depth of the image are

defined during this process. Finally, the filtered image is then written to a text file and read

35

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

using MATLAB. Complex designs for image processing, storage, and display on Xilinx
FPGAs can be efficiently developed by utilizing the Xilinx CORE generator, MATLAB, and
FPGA technology[13][14].

I11.4.Hardware implementation of gaussian imagefiltering
111.4.1.Top level design flowchart

Figure 111. 4 depicts the block diagram of the image filtering process. Initially, the input
image and the Gaussian mask are retrieved and saved using MATLAB. These values are then
converted into a vector and stored in a text file with a *.coe extension, utilizing the
capabilities of the MATLAB tool. The text file containing the Gaussian mask is stored in
BRAML1, while the text file containing the image is stored in BRAM2. Subsequently, the
VHDL tool is employed to perform the convolution operation between the pixel values stored
in BRAML1 and BRAM2. The resulting data is saved in another block called BRAMS3. Finally,
using a FIFO block, this convoluted output is written to a text file which is converted back
into image format using the MATLAB tool to display the obtained results. In the subsequent

step, each block of the diagram presented in Figure I11. 1is further defined and explained.[14]

36

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

INPUT
COE FILE COE FILE
(MATLAB) MATLAB)

GAUSSIAN

gy

Figure.lll. 4.Block diagram of image filtering [12]

111.4.2.Generating COE files

The process begins by reading the image, resizing it to the desired dimensions, in our case,
a 90x90 matrix, then the image is padded on the sides with zeros, resulting in a matrix of
dimensions 94x94. The modified matrix is then saved as a COE file named "image. COE"
using a MATLAB function. A similar process is followed to generate the COE file for the
kernel matrix. These COE files containing the image and kernel matrices are then loaded into
the BRAM memory.[14]

111.4.3. Block memory generator to store image pixels

The IP Core Generator and Architecture Wizard, known as "IP(Core Generator &
Architecture wizard)," can be accessed through the ISE (Integrated Software Environment)
interface, as demonstrated in the figure below:

To initialize the IP core and load a COE (Coefficient) file into the BRAM (Block RAM),

follow these step-by-step instructions:

37

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

& New Source Wizard X

- Select Source Type
Select source type, file name and its location,

BMM File
€* ChipScope Definition and Connection File

"] Implementation Constraints File
‘% IP (CORE Generator & Architecture Wizard)

MEM File
D] Schematic
=] User Document E'e)
Verilog Module image_ram

Verilog Test Fixture
sy VHDL Module -

I VHDL Library Desktop\vhdl\gaussian_fitre\gaussian_project\ipcore_dir
|P] VHDL Package

s VHDL Test Bench
Embedded Processor

[Add to project

Figure.lll. 5.Selecting IPCore Generator & Architecturefrom ISE with File name (image_ram)

The next step is to look for the specific option or button labeled as "Block Memory

Generator" and click on it

38

& |SE Project Navigator (P.20131013) - C\Users\hp\Desktop'vhdl'

@ e ¢ e

YEF| L] X%

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

» x

\gaussian_project\gaussian_projectxise - [gaussian_projectvhd*]

T Y a0 EEEEP Y K

O) X |0 o
[Desgn +08& x| § 281 end case;
[[] | Views: ® {8} implementaton O [smulaton 282 else
. . 283 == When done is 1, convolution is completed. Write 1
J&| | Hierarchy -
)) 284 wea_out <= ;
é’:] T ’E“j gaussian_project “ 285 output_addr <= std logic vector(to_unsigned((addres:
e) xa?la;CDt-EIclsgBEfi ‘ . 286 output_fifo <= resulc_l:
] (ke gaussian_project - Behavioral (287 address_count_output := address_count_output+l;
= - 288
£ :
—— | | . New Source Wizard X
@ & Select IP
§ Create Coregen or Architecture Wizard 1P Core,
1] ion. --
View by Function View by Name
< Name “ Version AX4 AX|4-Stream AXI4-Lite Status * D)
- | @ |7 FIFOs 1]:
" N |77 Memory Interface Generators 2);
= B} RAMs 8 ROMs 3);
l{: ‘% Block Memory Generator 7.3 Produ 4);
=l J Distributed Memory Generator 7.2 Produ 5):
— G|~ Standard Bus Interfaces €);:
& - .)i
v [#- |~/ Video 8 Image Processing v 7):
= < > 8);
Search IP Catalog: = ulS+Mul 6+Mul7+M
[] All1P versions [©nly 1P compatible with chosen part
—— o e

Sat O3 Desgn] Fies) Lbrares | |2

alE

gaussian_project.vhd*®

Figure.lll. 6.Selection of "Block memory Generator" IP Core

Upon selecting the "Block Memory Generator," a configuration window or interface will

appear and we configure the settings for the memory generator, such as the memory size, data

width, and other relevant parameters

39

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

‘); Block Memory Generator - X
Documents View
1P Symbaol B X .
4 AR
iCRE
LQg b BIOCk Memorv Generator xilinz.com:ip:blk_mem_gen:7.3
Component Name |m1age_ram m
Interface Type
& Native
Mode [Stand Alone 4|
Native Interface Block Memory Generator (BMG) are the original standard BMG functions delviered by the
FEEETE—, R LI 0] previous versions of the LogiCORE Block Memory Generator (prior to v6.x). They are optimized for data
DINA[T:0] =i storage, width conversion, and clock domain de-coupling functions..
Native Interface BMG cores can be customized to utilize Single Port RAM (SP), Simple Dual Port RAM (SDF),
ez m— True Dual Port RAM (TDP) and Single Port ROM (SP ROM) configurations. In addition, Native Interface BMG
i core also support features such as SoftECC/ECC, Pipeline Stages and file based Memaory initialization.
CLKA —3
. T Dtht‘ -BC¥:|P lofd Nxt>|G t| C || Hell |
% _1P symbol | * Power Estimation | atashee < Ba age 1 o = enerate ance elp

Figure.lll. 7."Block memory Generator™ IP core Wizard

An IP symbol and other memory kinds are displayed when the Block Memory Generator
wizard is launched. Among the memory types, the "Single Port ROM" is chosen, and the

values for the read width and read depth are determined based on the horizontal width and
vertical length of the Image being processed.

40

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

(\»: Block Memory Generator - X

Documents View

1P Symbol g x o
A
L@’C "R BIOCk Memorv Generator xilinx.com:ip:blk_mem_gen:7.3
Memory Type ISlngIe Port RAM Z|]
Clocking Options
™ Common Clock
r— Addressing Options
ADDRA[3:0) DOUTAJ15:0]
S A I” Enable 32-bit Address
DINA1E:0]
~ECC Options
WEAD:0] ERR ECC Type |no ECC |
’ I Use Error Injection Fins ~ [Single Bit Error Injection -]
oA
Write Enable
I use Byte Write Enable
Byte Size [9 | bits
Algorithm

Defines the algorithm used to concatenate the block RAM primitives. See the datasheet for more e
information.

& Minimum Area

" Low Power

-
" Erver! Brimithiac 5|

| [=— | | | | |
%] IPSymbol | ¥ Power Estimation <Back |Page2of6 MNext> Generate Cancel Help

Figure.lll. 8. "Block memory Generator" IP core Wizard

The read width and read depth values are established by referencing the horizontal width
and vertical length of the Image being processed which is 8 bits width and (94x94=8836)
depth

] Block Memory Generator = X
Documents View
1P Symbol & X pr
AN
’-09’6 A BIOCk Memory Generator xilinx.com:ip:blk_mem_gen:7.3
Port A Options —
~Memory Size
Write Width |8 Range: 1..4608 Read Width: |8 v
Write Depth | 8836 Range: 2..9011200 Read Depth: 8836
ADDRA[13:0] DOUTA[T:0] Operating Mode Enable
o @ Always Enabled
@ Write First S AT
se in
vEAR € Read First
CLKA
 No Change
g P symbol % ovier Etiation <Back |Page3of6 Next> I Generate | Cancel I Help I

Figure.lll. 9.Configure the settings of memory size (width and depth)

41

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Image0003.coe file, short for "Coefficient file," contains the data contents of the Block

Memory, specifically tailored to the specified read depth and read width values of the image.

In this case, the available image size is 94x94, and the data is stored as a .coe file within a

single port Block ROM using Xilinx Core Generator.

{ Block Memory Generator
Documents View

TP Symbol & %

ADDRA{12:0]
DINATT 0]

DOUTALT:0]

WEAB0]

| 1P Symbol [y Power Estimation |

kgic ¥ Block Memory Generator

Optional Qutput Registers

xilinx.com:ip:blk_mem_gen:7.3

Port A

I™ Register Port A Output of Memory Primitives

I™ Register Port A Qutput of Memory Core

I~ Register Port A Input of SoftECC logic

I uUse EA Pin (separate enable pin f

Mux Size: 2x1

Stay thin M

Memory Initialization

W Load Init File

Coe File [C:\Users\hp\Desktop\vhdI\Image0003.coe

Browse Show

I Fill Remaining Memory Locations

Datasheet < Back |anunls Next > J E.znzral.e‘ Cancel ‘ Help I

Figure.lll. 10. Block memory Generator" Initializing Image0003 ”.coe file

After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created” will be displayed in the Xilinx ISE

environment.

42

& ISE Project Navigator (P.20131013) - C:\Users\hp\Desktop\CHAPTER 3\g_p\gaussian_project\gaussian_projectaxise - [Design Summary] - x
X File Edit View Project Source Process Tools Window Layout Help & x
DBE@L] X Xva| 2288 ,PRIRZETI LRPLLQ
Desion ~nax| o6 Deswé\ 2:1\-::; ~ T Ry) ~
& =
] :'Eh% O‘@IW‘E“"‘EW‘ © [simdation) [2) 108 Properties Project File: gaussian_project xise Parser Errors: o Errars
o] Fnarore = [E] Medule Level Utilization Module ame: gaussian Implementation State: Mapped
[z | Hierarchy 5] O Timing Constraints
B = i 5 Qe
= H gaussian_project c, [Pinout Report Target Device: xc3s500e-4ft256 Errors: X 2Errors {0 new
% | & E] xe3s500e-47256 [Clock Report Product Version: ISE 14.7 Warnings: 190 Warnings {0 new
| [etbench - behovior testbench [o @ g Design Goak: lanced + Routing Results:
. ? rrors and Warnings
E uut gauss\an. Behav\.wal (ga @) Parse Messsges - (aloded) < Timing Constraints:
A Wﬂﬁ\; il fo—ffo.om (ffo-ror| 04 [Synthesis Messages « Final Timing Score:
= 2 Bram_kemel - kemel_ram (| — 5] Transiation Messages
= % Bram_output - filtred_ram 8 Map Messages
[Place and Route Messages T — =1
< 3 [Timing Messages
[Bitgen Messages Logic Utilization Used Available utilization Note(s)
| €2 MoProcesses Ruming [2) All Implementation Messages Total Number Sice Registers P 5312 e
= & Detailed Reports
7L | Processes: Bram_image - image_ram) Synthesis Report Number used s Fip Flops 241
v
=] = number used as Latches 160
= Design Properties
o 11 Enable Message Fitering Number of 4input LUTs 164 9,312 e
=" Optional Design Summary Contents INumber of occupied Slices 439 4,65 9%
[Show Clock Report Number of Sices contairing only related logic 439 439 100%
[Show Failing Constraints
L] Show Warmings Number of Slices containing unrelated logic 0 439 0%
[Show Errors Total Number of 4 input LUTs. 573 9,312 6%
Number used 2 logic 464
Number used as a route-thru 109 v
& Sart B Design L) Fles) Lbraes | E Design summary [x]]
Console 08 x

Cancelled executing Tel gensrater.
Wrote CGP file for project 'filtred ram'.
Core Generator edit cancelled.

<
Comssle @) Emors f\ Warnings (g Findin Fies Results

Figure.lll. 11.Successful Creation of IP Core (bram_image)

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

111.4.3. Block memory generator to store gaussian kernel elements

To store the Gaussian kernel COE file, we follow the same steps as we did to store the

image COE file with the following modifications:

The first step is chosen “IP(CORE Generator & Architecture Wizard) click on it and make

name (Kernel_ram) for the File.

& New Source Wizard X

€~ Select Source Type
Select source type, file name and its location.

BMM File
| €@+ ChipScope Definition and Connection File
g Implementation Constraints File

| ‘% |P (CORE Generator & Architecture Wizard)
MEM File
0] Schematic
=] User Document Sy —
Verilog Module kernel_ram

Verilog Test Fixture
s VHDL Module =

[y VHDL Library Desktop\vhdl\gaussian_filtre\gaussian_project\ipcore_dir
|P] VHDL Package

s VHDL Test Bench
Embedded Processor

[Add to project

i =

Figure.lll. 12.Selecting IP Core Generator & Architecture with File name (kernel_ram)

43

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

And now we Configure the settings of Memory size (widht & depht), we choose kernel
(3x3).

%] Block Memory Generator = x
Documents View
1P Symbol & X Pt
|
mg’C LI BIOCk Memorv Generator xilinx.com:ip:blk_mem_gen:7.3
Port A Options
~Memory Size
Write Width |8 Range: 1..4608 Read Width: |8 -
Write Depth |9 Range: 2..9011200 Read Depth: 9
Operating Mode Enable
@ Always Enabled
& Write First -
ADDRAR:0} " Use ENA Pin
R € Read First
" No Change
£ o D h I
4 1 Symbol [] Power Estmation] <Back |Page3of6 Next> | Generate | Cancel Help

Figure.lll. 13..Configure the settings of memory size (width and depth)

Kernel.COE file contains the contents ofthe Block Memory for the specified read depth
and read widthvalues of the kernel (3x3).which is 8 bits width and (3x3=9) depth

44

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

{; Block Memaory Generator

Documents View

IF Symbaol

ADDRA[Z:D]:

= a —
2 1p symbol [7 Power Eﬂnitl_mﬂ

lgic ;- Block Memory Generator

— Optional Output Register:

xlimt.com:ip:blk_mem_gen:7.3

Port A
I Register Port A Output of Memory Primitives
I Register Port A Output of Memory Core

I~ Register Port A Input of SoftECC logic

™ Use REGCEA Pin (separate enable pin for Port A output registers)

Pipeline Stages within Mux |0 ~| Mux Size: 1x1

— Memory Initialization

¥ Load Init File

Coe File |C:\Users\hp\Desktop\code VHDL\kernell.coe

I Fill Remaining Memory Locations

Browse |

Show

Remaining Memory Locations (Hex) IIJ

-

Datasheet | < Back | Page 4 of 6 Mext > Generate | Cancel | Help
—_—e e e — ————_cern

Figure.lll. 14.Block memory Generator" kernell.coe file"

After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created” will be displayed in the Xilinx ISE

environment.

45

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

& ISE Project Navigator (P.20131013) - CAUsers hp\Desktop\CHAPTER 3\g_p\gaussian_project\gaussian_projectadise - [Design Summary] - X
L File Edit View Project Source Process Tools Window Layout Help -8 x
DBAALsnbxvd| frepprR@zroclisrir]9
[Design <0 & x| .| = Design Overview ~ = = ~
‘gaussian Project Status (05/31/2023 - 14:39:12]
view: O 8} implementation @ [smuiaton bl Iy (esi11)
[E = @ () 108 Properties Project File: gaussian_project. xise Parser Errors: Mo Errors
Behavioral v
o] [Penaviors - [2] Module Level Utilization Module Name: gaussian Implementation State: Mapped
52| Fiererehy @ O Timing Consiraints -
N — D Pinout Report Target Device: xc3s500e-4ft256 * Errors: X 2Errors (0 new;
&) qaussian_project (%] - -

& | & 6 xcass00e-arizss o - Clock Report Product Version: ISE 14.7 « Warnings: 50 Warnings (0 new

| o sstbench- behavior (testbenchah = ~(@ Static Timing Design Goal: Balanced « Routing Results:

= &[4 uut - gaussian - Behavioral (ga Errors and Warnings " - -

u |) Parser Messages Design Strategy: e Default (unlocked) + Timing Constraints:

4] Bram_image - image ram | ==

%] File_fio - fifo_ram (fifo_ran (M} . % ?Y"‘“‘Ez's MGSSEB“ Environment: System Settings « Final Timing Score:

bl ranslation Messages

- 2} Bram_output - filtred_ram [E] Map Messages
1 - [Place and Route Messages e — =

< > 0 Timing M s
O Bitgen M . Logic Utilization used Available utilization Note(s)

P | B2 noProcesses Running - [2) Alllmplementation Messages Total Number Sice Registers 01 5,312 4%

- Detailed Reports

74 | Processes: Bram _kernel - kernel_ram B Synthesis Report Number used as Fiip Flops 241

v

24 Number used as Latches 160

— Design Properties

E;’t A D Enable Message Filtering Number of 4input LUTs 464 9,312 4%

- Optional Design Summary Contents Number of ocaupied Sices 439 4,656 5%

- [0 Show Clock Report Number of Slices containing only related logic 419 439 100%

- [Show Failing Constraints
E ShnwWarn\gngs Number of Slices containing unrelated logic o 139 o%
ow Errors Total Number of 4input LUTs 573 5,312 6%
Show E | Number of
Mumber used as logic 264
Mumber used as a route-thru 109 v

& Strt ®3 Design Y Fles [0 Libraries | & Design Summary]

Console w08 x
Cancelled exccuting Tcl generator. ~
Wrote CGP file for project 'filtred ram'.

Core Generator sdit cancelled.
v
>

<
Console @ Evors I\ Wamnings (4 Findin Files Results

Figure.lll. 15.Successful Creation of IP Core (bram_kernel)

111.4.4. Block memory generator FIFO

To store the Block memory generator FIFO, we follow the same steps as we did to store

the image COE file with the following modifications:

The first step is chosen “IP(CORE Generator & Architecture Wizard) click on it and make

name for the File name

46

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

& New Source Wizard X

€ Select Source Type
Select source type, file name and its location,

[BMM File

€4 ChipScope Definition and Connection File

E Implementation Constraints File
IP (CORE Generator 8 Architecture Wizard)
MEM File
Schematic
User Document
Verilog Module fifo_ram
Verilog Test Fixture =
VHDL Module SRS
VHDL Library Desktop\vhdl\gaussian_fitre\gaussian_project\ipcore_dir
VHDL Package
VHDL Test Bench

2 Embedded Processor

[Add to project

- I e

Figure.lll. 16.Selecting " IP(Core Generator & Architecture)

The next step is Look for the specific option or button labeled as "FIFO generator" and

click on it

& New Source Wizard X

& Select IP
Create Coregen or Architecture Wizard 1P Core,

View by Function View by Name

Name “ Version AXI4 AXM4-Stream AX4-Lite Status A
[=7 Memories & Storage Elements
=7 FIFOs
% FIFO Generator ; AX|4 AXl4-Stream AXl4-Lite Production|
@ |~/ Memory Interface Generators

7 RAMs & ROMs
[|7 Standard Bus Interfaces

[# |7 Video & Image Processing v
< >
Search IP Catalog: Clear
[] At1P versions [] Only 1P compatible with chosen part

s o | [| [

Figure.lll. 17.Selection of " FIFO generator™

47

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

And now we Configure the settings of data port parametres size (widht & depht), the
convolution result is 16 bits width and (92x92=8464) depth

] FIFO Generator
View Documents

IP Symbol & X

logiC i PE FIFO Generator

xilinx.com:ip:fifo_generator:9.3

L |- Read Mode n
RST.
RST @ Standard FIFO
" First-Word Fall-Through
R C ~Built-in FIFO Options-
DIN{15:0)

The frequency relationship of WR_CLK and RD_CLK MUST be specified to generate the correct

implementation.
1 Range: 1..1000
1 Range: 1..1000

Read Clock Frequency (MHz)

Write Clock Frequency (MHz)

Data Port Parameters
Write Width | 16 Range: 1,2,3..1024
Write Depth (16384 ~| Actual Write Depth: 16384

Read Width |16 'I

Read Depth |1638|Select width of the Output/Read data port (only selectable when using Independent Clock/Block

Implementation Options

I™ Enable ECC

I” Use Embedded Registers in BRAM or FIFO (when possible) |

Datasheet I

< Back]Fage30f7 Next > I Generate| Cancel | Help I

O}

Figure.lll. 18.Configure the settings of FIFO size (width and depth)

After proceeding to the next step, click on the "Generate" button in the Block Memory
Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created” will be displayed in the Xilinx ISE
environment.

& ISE Project Navigator (P.20131013) - C:\Users\hp\Desktop\CHAPTER 3\g_phgaussian_projectigaussian_project xise - [Design Summary]
I File Edit View Project Source Process Tools
FECEIRFEERIEEIE

n +08 x|

Window Layout Help
2rparRRA[BEDapR)ir]

L)

= Design Overview ~ ~

|pesic & \gaussian Project Status (06/08/2023 - 13:05:41)
i |view: O {8} Implementation @ [simuaton — SmE;

(B | View:) [2) 108 Properties Project File: gaussian_project.xise Parser Errors: No Errors

| [Behaviordl e [Module Level Utilizstion Module Name: gaussian Implementation State: Mapped

Hierarchy e 1 Timing Constraints Target Devi 3e500e-4ft256 E X 2 Errors (0 new)

i " — a ce: xc3s500e: «Errors: rrors (0 new

—| -] goussian_project o 13 Pinout Report

g » [Clock Report Product Version: ISE 14.7 * Warnings: 80 Warnings (19 new)

a | 5 E3 xe3s500e-4#256 = :

E &[] testbench - behavior (gaussian_th{ “= . =] 5;5‘:\'{‘ Timing Design Goak: Balanced « Routing Results:

© [l uut - gaussian - Behavioral (gal 33 frors and Warnings 5 . .

e Design Strategy: xilinx Default (unlocked:; * Timing Constraints:

T3 Bram_jmage - imageram (| 22 [Parser Messages ig Xiiny Default (unlocked) ng
N [File fifo - fifo_ram (fifo_ran () [2] Synthesis Messages i System Settings « Final Timing Score:

& e [Translation Messages

- [Bram_output - fitred_ram B S’I‘“PME“‘:“‘ "

[Place and Route Messages - izt [
< > O Timing Messages e
[Bitgen Messages Logic Utilization Used Available Utilization MNote(s)
P | B2 No Processes Running 2 Alllmplementation Messages Total Number Slice Registers 401 9,312 4%
= Detailed Reports
Processes: Bram_kemel - kemel_ram Number used as Fip Flops 241

B - - ~[3 Synthesis Report v

) = Number used as Latches 160

= Design Properties

B 0] Enable Message Filtering Number of 4input LUTs 64 9,312 4%

= Optional Design Summary Contents Number of occupied Slices 433 4,656 a%

- 1[0 Show Clock Report Humber of Slices containing only related logic 439 439 100%

[Show Failing Constraints
[Show Warnings Number of Slices containing unrelated logic 0 433 0%
[Show Errors Total Number of 4input LUTS 573 9,312 6%
Number used as logic 464
Number used as a route-thru 109 v

& St O Desgn [Fies [Lbraries | X0 Design Summary [<]]

Console ~08x
Cancelled executing Tcl generator. Py
Wrote CGP file for project 'kernel ram'.

Core Generator edit cancelled.
v
< >

console @ Evors f\ wamings 8§ FindinFiles Restlts

Figure.lll. 19.Successful Creation of IP Core(FIFO RAM)

48

49

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

111.4.5. Block memory generator BRAM_OUT

To store the Block memory generator BRAM_OUT, we follow the same steps as we did
to store the image COE file with the following modifications:
Upon selecting the "Block Memory Generator," a configuration window or interface will

appear and we Configure the settings for the memory generator, such as the memory size, data
width, and other relevant parameters

] Block Memory Generator x
Documents View
TP Symbol 8 %
e i
mgfc * BIOCk Memory Generator dlinx.com:ip:blk_mem_gen:7.3
Component Name [filtred_ram imi
Interface Type
" Native
Mode |Stand Alone
Native Interface Block Memory Generator (BMG) are the original standard BMG functions delviered by the
ADDRA[13:0] =iy == DOUTAI15:0] previous versions of the LogiCORE Block Memory Generator (prior to v6.x). They are optimized for data
DINA[15:0] sy storage, width conversion, and clock domain de-coupling functions..
Native Interface BMG cores can be customized to utilize Single Port RAM (SP), Simple Dual Port RAM (SDP),
e True Dual Port RAM (TDP) and Single Port ROM (SP ROM) configurations. In addition, Native Interface BMG
core also support features such as SoftECC/ECC, Pipeline Stages and file based Memory initialization.
Lt —1
- T Dthl| (.B-:L‘P 10f6 Nxt>|G t‘ C |‘ Hel |
', 1P Symbal [5 Power Estimation aloshee : agete © enerate ance s

Figure.ll1. 20."Block memory Generator" IP core Wizard

At this moment, we proceed toConfigure the settings of Memory size (widht & depht), the
filtrede image which is the convolution result is 16 bits width and (92x92=8464) depth

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

1 Block Memary Generatar
Documents View
|1P Symbol

logiC [FF

Port A Options

Block Memory Generator

Memaory Size
write width [T6 Range: 1..4608 Read Width: [16 ~
write Depth [8836 Range: 2..9011200 Read Depth: 8836

Operating Mode Enable

& Always Enabled

& write First
AoORAIZ2) DouTAnE:0] € Use ENA Pin
e © Read First
© o Change
WD
cura

<Back |Page3of6 Next> Generate Cancel

1 1P Symbol [1] _Power Estimation MI

sdlinx. com:ip:blk_mem_gen:7.3

Help

Figure.lll. 21.Configure the settings of memory size (widht and depth)

After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created” will be displayed in the Xilinx ISE

environment.

& ISE Project Navigator (P.20131013) - C:\Users\hphDesktopACHAPTER 3\g_p\gaussian_project\gaussian_project.ise - [Design Summary]

- X

X File Edit View Project Source Process Tools Window Layout Help _&x
DAEd Liiobxwel (28R R mE0Lsr)rcf@

[Design =08 %] [Deign Ovenvew ~ T ~
+ [view: O {88} implementation ® [Smulation — ~[E) Summary

[3 S @ 2 108 Properties Project File: gaussian_project xise Parser Errors: o Errors

Behavioral = -

o [P [2] Module Level Utilizstion Module Name: gaussian Implementation State: Mapped

(2] | Hierarchy 5] ~ [Timing Constraints
2l — Target Device: xc3s500e-4f255 «Errors: X 2Ermers (0 new)

=| & @ gaussian project %) [} Pinout Report

£ | B £ xc3s500e-461256 [} Clock Report Product Version: 1SE 14.7 * Warnings: 90 Warnings (0 new)

| © [rstench - behavior estbench “ . @ 5:“\‘,\‘,“ Timing Design Goal: Balanced « Routing Results:

_ . ° - Errors and Warnings

= =[] uut - gaussian - Behavioral (ga) g5) Parser Messages Design Strategy: Xiiroc Defauit (unlocked) « Timing Constraints:

4 Bram_image - image_ram { ~—

: ; Filefifo - fifo_ram (fifo_ran iy 5] Synthesis Messages i System Settnas + Final Timing Score:

= Bram _kemel - kernel_ram (| — ~[E] Translation Messages

- ol = | E] Map Messages

[Place and Route Messages - dizati 5]

< > [Timing Messages £y
[Bitgen Messages Logic Utilization Used Available Utilization Hote(s)

> | B2 NoProcesses Running [2 Allimplementation Messages Total Number Sice Registers 401 9,312 4%

= - Detailed Reports P —=— v

74 | Processes: Bram_output - filtred_ram B Synthesis Report . lumber used as Flip Flops

=4 Number used as Latches 160

= Design Properties -

o 2 Emabtc Messsge Fitsing Number of 4input LUTs 464 9,312 4%

e Optional Design Summary Contents Number of occupied Siices 439 4,656 9%

- [Show Clock Report Humber of Sices containing only related logic 439 439 100%
[Show Failing Constraints -
] show Warnings Number of Sices contairing unrelated logic 0 430 0%
“ [Show Errors Total Number of 4input LUTs 573 9,312 6%
Number used as logic 464
Number used as a route-thru 109 v

& Strt ®3 Design Y Fles [0 Lbraries | & Design Summary a]

Console o008 x
Cancelled sxecuting Tcl gensraboz. ~
Wrote CGP file for project 'filtred ram'.

Core Generator edit cancelled.
v
< >

Console @) Eors I\ Wamings [Findin Files Results

Figure.lll. 22.Successful Creation of IP Core

50

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

111.4.6. Convolution module using finite state machine:

The process involves multiplying a 3x3 image by a 3x3 mask through signal
multiplication. Input values for the multiplier are stored in the address port registers of the
RAM blocks. The outputs of the RAM blocks (BRAM1 and BRAM2) serve as inputs to the
multiplier. Each multiplication operation is completed within a single clock cycle, meaning
the remaining 9 multiplications will require 9 clock cycles. The partial products from each
multiplication are summed together to obtain the final result. The final results from the
multipliers are also stored in RAM blocks (BRAM3).

The convolution module is designed as a Finite State Machine (FSM) simulated in VHDL.

Figure 111.23 illustrates the Finite State Machine (FSM) of the matrix convolution. The design
incorporates five states: Set address, Read input, Computation, Store output, and Complete.
Each state serves a specific purpose, and their names within the FSM convey their respective
functions clearly.
The "Set_address" state sets the address of the memory elements for image pixels and kernel
elements. One clock cycle is required to write the address to the address bus. When the
address is set, the next state "Read_input" is called, which reads the data stored in the memory
locations indicated by the address bus. The next address is then set in the set_address state,
and the values of this memory location are read in the next clock cycle. The loop of
set_address and read_input states continues and repeats until all elements required for
convolution have been successfully read. After successfully reading the elements, the state
transitions to the computation state. In this state, a flag called ‘compute' is activated, triggering
a combinational process block responsible for performing the convolution. In this process, the
pixel values of the image are multiplied by the corresponding elements of the kernel. The
resulting products are then summed together and stored. After the computation of the
convoluted result, the state transitions to 'store_output'. In this state, the value present on the
signal bus is stored or written to the memory location in the BRAM3 (Block RAM) indicated
by the address bus of the output memory block. Furthermore, when the last element of the
input matrix is reached, the state machine terminates, and the data stored in the output
BRAM3 memory block is written to a text file.[14]

51

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Set_Address
‘READ]NCOMPLETE, Adress is set

Read_input

Lat pixel not
reached READ COMPLETE)

. 2
"OMPUTATTION

n[E]

H
H

convolution complete

Store_output

if

Store the data to memory

{

(Complete

Last pixel reached

il
END

Figure.lll. 23.Finite state machine of matrix convolution.[14]

111.4.7. Displaying the output image using MATLAB

The output matrix values have been saved in a text file containing a total of 8464 data
values. To retrieve these values, MATLAB is utilized, which reads the file and stores the data

as a 2-D matrix with dimensions of 92x92. The resulting matrix is then visualized as an image

in MATLAB.

52

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Original image Noisy image Filtered image
Figure.lll. 24.Displaying the output image using MATLAB

I11.5. Synthesis and simulation

For the purposes of synthesis and simulation in this study, two different platforms are
used. Utilizing Xilinx Synthesis Technology (XST), a feature of the ISE software, the
synthesis stage is carried out. The ISIM (I Simulator), a different Xilinx package, is used for

simulation, on the other hand. The Xilinx software bundle comes with both XST and ISIM.

111.5.1. XST synthesis

eEUESIE

filtred_image out(15:0)

gaussian

Figure.lll. 25.Top level design

The top-level design depicted in the given figure illustrates the system clock, reset input,

and the output port named "filtred_image_out'.

53

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

i

E Iy L U [

I -
T
I
e
l.j‘ll
L
X
L
*
%
X
T
=
T
i
.I -
1
=

L. L 1. L1 dLlI]llNITRALARAAlAlAlAANLALl Nl

R T T T HHrrHe e A A A A A=

ly hetete

Figure.lll. 26.Complete design schematic

The schematic provided above presents a comprehensive view of the design, showcasing

all the necessary blocks. The key blocks are magnified and displayed in detail below.

54

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Image_ram

addra(13:0 douta(7:0)

Bram_image

kernel _ram

addra(3:0’ douta(7:0)

Bram_kernel

Figure.lll. 27.Schematic showing BRAM

On the other hand, inputs such as the address bus and clock are shown as connected since
their values are continuously supplied throughout the execution of the design. The range
specified within parentheses indicates the size of the respective bus. For instance, "douta
(7:0)" signifies that an 8-bit data can be transmitted via this data bus, addra (13,0) signifies
that a 14-bit data for image and addra (3,0) signifies that a 4-bit data for kernel can be

transmitted via the address bus.

55

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

FSM_O-parent

current_state

Figure.lll. 28.Schematic showing FSM
The provided figure illustrates the Finite State Machine (FSM) employed in the design
project. The design employs a total of 5 states within the state machine. To represent these 5
states, a combination of 3 bits is utilized. the current state is set to one of the following states:

set_address, read_input, computation, store_output, and complete.

56

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

fifo_ram

din{15:20) dout(15:0)

e iy

File fifo

fitred _ram

addra(13:0 douta(15:0)

dina(15:0

Bram_output

Figure.lll. 29.Schematic showing the output storage phase

The output storage step is depicted in the offered schematic. The convoluted result is
present on the output BRAM's input data bus When all of the convoluted results have been
saved in BRAM, they are registered and written to the FIFO in succeeding clock cycles. After

that, the output is taken from the FIFO and written to a text file.

111.5.2 ISim simulation

The simulation was conducted using ISim, which is an integrated HDL simulator package
within ISE (Integrated Software Environment). 1Sim offers two operation modes: Graphical
User Interface (GUI) and Command Line mode. The GUI mode was chosen due to its ability
to visually display data through graphs and waveforms, facilitating analysis and
debugging.[14]

57

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

Figure.lll. 30.Simulation showing set_address and read_input states

The process of setting the address and reading the input from the memory location is repeated
until all of the elements required for convolution are read entirely. We can observe that it
takes one clock cycle to establish the address and one clock cycle to read the data. As a result,
it takes 18 clock cycles to read one set of inputs required for convolution. The values retrieved
from memory are saved in a temporary array called Image_array and kernel_array, which are

used in the combinational block to conduct convolution (Figure 111.31).

id42242222A2224222 22242

Figure.lll. 31.Simulation showing computation, storing and complete state

58

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

The provided diagram illustrates the simulation details of the FSM (Finite State Machine)
for the computation, store_output, and complete states. The computation is performed in a
combinational process block, the result is computed within a clock cycle, and the data is
available on the input bus of the BRAM that is used to store the output. The store_output state
is reached in the following clock cycle, and the data is written to the memory location
available on the address bus. Following this, the FSM enters the complete state, where it
verifies whether the end of a row or the end of the entire image has been reached. Once the
last pixel has been reached, the state machine is maintained in the full state until the end of the

simulation.[14]

The resource utilization description for the results of the gaussian filtering is shown in figure
11.32.

Device Utilization Summary | 1

Logic Utilization Used Available Utilization Note(s)
Total Number Slice Registers 401 9,312 4%

Number used as Flip Flops 241

Number used as Latches 160
Number of 4 input LUTs 464 9,312 4%
Number of occupied Slices 439 4,656 9%

Number of Slices containing only related logic 439 439 100%

Number of Slices containing unrelated logic 0 439 0%
Total Number of 4 input LUTs 573 9,312 6%

Number used as logic 464

Number used as a route-thru 109
Number of bonded 10Bs 18 190 9%
Number of RAMB 16s 30 20 150% | OVERMAPPED
Number of BUFGMUXs 2 24 8%
Number of MULT 18X 185I0s 9 20 45%
Average Fanout of Non-Clock Nets 2,92

Figure I11. 32.FPGA resource utilization summary
111.6. Conclusion

In conclusion, this section offered a comprehensive overview of the hardware
implementation of image Gaussian filtering on an FPGA with VHDL. It began with an
introduction and proceeded to explore various FPGA memory blocks, such as single-port
BRAM, dual-port block memory, and FIFO memory. The discussion also encompassed the
Xilinx CORE Generator, which serves as a valuable tool for generating IP cores. Furthermore,
the hardware implementation process of image Gaussian filtering was detailed, covering

59

Chapter I11: 2D Gaussian image filtering with VHDL using IP Core Generator

essential elements like the top-level design flowchart, COE file generation, and block memory
generators for storing image pixels and Gaussian kernel elements. The section also examined
the utilization of block memory generators for FIFO, BRAM_OUT, and the convolution
module, incorporating a finite state machine. Finally, the section concluded by outlining the
steps involved in displaying the output image using MATLAB and conducting synthesis and

simulation, which included utilizing 1Sim for simulation purposes.

60

CONCLUSION

The primary purpose of this thesis was to highlight the importance of gaussian filter for
reducing gaussian noise, as well as to design, simulate and implement this filter on Spartan3e
device (xc3s500e) FPGA device using Xilinx system generator and VHDL

First, from MATLAB, a widely-used software platform for image processing, it was
noticed that the Gaussian filter is effective in reducing gaussian noise by averaging the pixel
values in the neighborhood of each pixel, giving more weight to pixels closer to the center., it
applies a convolution operation that takes into account the spatial relationships between
pixels. The gaussian filter can be controlled by adjusting the kernel size and its standard
deviation parameter. A lower kernel size and standard deviation, have limited noise reduction
but preserve more details, in other hand, a higher standard deviation leads to more aggressive
smoothing, effectively reducing more noise but potentially blurring fine details

Second, Xilinx system generator offers a friendly environment design for image filtering
because filtering units are designed by blocks. This tool support software simulation, but the
most important is that can synthesize in FPGAs hardware, it is an easy and efficient tool for
implementing filtering algorithms into FPGA which is an efficient real-time filtering. A
hardware in loop verification and hardware software co-simulation were performed with the
gaussian image filter, the simulated and synthesized results shows that the design can work at
an estimated frequency of 50 MHz by using Spartan 3e FPGA device.

Third, we focused on VHDL with an IP Core generator for designing and implementing
customizable Gaussian filters on the FPGA. This approach highlighted the advantages of
VHDL-based design and the flexibility provided by the IP Core generator. Gaussian image
filtering was performed in VHDL using Block Memory Generator which is one of the IP core
that is provided by Xilinx Core Generator that allows to store larger images, as well as the

design of the convolution is in the heart of filtering with finite state machine (FSM).

In summary, this thesis provides valuable insights into different methodologies and tools
for Gaussian image filtering. MATLAB offered a versatile software platform, XSG with the
FPGA card demonstrated the potential for efficient real-time filtering, and VHDL with the IP
Core generator provided customization capabilities. The choice of methodology depends on

specific requirements and constraints, such as performance needs, customization options,

61

Researchers and practitioners can consider these approaches based on their specific
application demands and resource availability. Ultimately, this thesis serves as a valuable
source for researchers and practitioners interested in image filtering and its implementation

using various methodologies.

62

References

[1] T. Issam, R. Salah, and M. Brahim, "Filtering Techniques To Reduce Speckle Noise And
Image Quality Enhancement Methods On Porous Silicon Images Layers," Majlesi Journal of
Electrical Engineering, 2022.

[10] S. Mittal, S. Gupta, and S. Dasgupta, "System generator: The state-of-art FPGA design
tool for dsp applications,” in Third International Innovative Conference on Embedded
Systems, Mobile Communication and Computing (ICEMC2 2008), pp. 187-190, Aug. 2008.

[11] "System Generator for DSP Reference Guide UG638 (v14.5)," March. 20, 2013.

[12] A. Sghaier, A. Douik, and M. Machhout, "FPGA implementation of filtered image using
2D Gaussian filter," International Journal of Advanced Computer Science and Applications,
vol. 7, no. 7, 2016.

[13] B. Muralikrishna, K. G. Deepika, B. R. Kanth, and V. S. Vemana, "Image processing
using IP core generator through FPGA," International Journal of Computer Applications, vol.
46, no. 23, pp. 48-52, 2012.

[14] S. Eswar, "Noise reduction and image smoothing using gaussian blur,” Doctoral
dissertation, California State University, Northridge, 2015.

[2] R. C. Gonzalez and R. E. Woods, "Digital image processing 4th edition, global edition,"
2018.

[3] Z. Afrose, "A comparative study on noise removal of compound images using different
types of filters,” International Journal of Computer Applications, vol. 47, no. 14, 2012.

[4] E. Tisserand, J. Pautex, and P. Schweitzer, "Analyse et traitement des signaux Méthodes et
applications au son et a ’image, Algeria-Educ. com. DUNOD edition, Paris, pp287-288,"
2008.

[5] S. Kim and R. Casper, "Applications of convolution in image processing with MATLAB,"
University of Washington, pp. 1-20, 2013.

[6] M. Goyal, Y. Lather, and V. Lather, "Analytical relation & comparison of PSNR and
SSIM on baboon image and human eye perception using MATLAB," International Journal of
Advanced Research in Engineering and Applied Sciences, vol. 4, no. 5, pp. 108-119, 2015.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment:
from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600-612, 2004.

[8] I. Bakurov, M. Buzzelli, R. Schettini, M. Castelli, and L. VVanneschi, "Structural similarity
index (SSIM) revisited: A data-driven approach,” Expert Systems with Applications, vol. 189,
p. 116087, 2022.

[9] A. K. Tyagi, "Matlab and Simulink for Engineers by Agam Kumar Tyagi," Oxford
University Press, 2012.

63

