

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTERY OF HIGHER EDUCATION AND SCIENTIFIC RESARCH

University Mohamed El-Bachir El-Ibrahimi - Bordj BouArreridj

Faculty of Sciences & technology

Department of Electronics

 MasterThesis

Presented to get

 THE MASTER'S DIPLOMA

BRANCH: ELECTRONICS

SPECIALTY: EMBEDDED ELECTRONIC SYSTEMS

By

BOUAZA Youcef

FEDJIRI Anouar

Entitled

Thesis Submitted and defended in

Board of Examiners:

Chairman: Dr. DIFFELLAH Nacira University of Bordj Bou Arreridj

Examiner: Dr. BOUDCHICHE Djamel University of Bordj Bou Arreridj

Supervisor: Melle. HAMADACHE Fouzia University of Bordj Bou Arreridj

Academic year 2022/2023

Image filtering design and implementation

based on Xilinx System Generator with

Hardware Co-Simulation and VHDL with

FPGA IP Core Generator

Abstract

ne of the very useful techniques in Image Processing is the 2D Gaussian Filter,

especially when removing gaussian noise. However, the implementation of a 2D

Gaussian Filter demands significant computational resources, and when it comes

down to real-time applications, efficiency in the implementation is crucial. This

thesis describes the methodology for implementing gaussian image filtering using MATLAB

and real-time DSP applications on FPGA using the concept of hardware software Co-

simulation for digital image processing by using the Mathworks model-based design tool

Simulink / Xilinx System Generator (XSG) and Very High Description Language (VHDL)

using the advanced image processing cores included in the IP core lib library. Performances

of efficient architectures are implemented on FPGA Spartan3e (xc3s500e). Peak Signal-to-

Noise Ratio (PSNR), the Structural SIMilarity (SSIM) index, and FPGA usage of resources

are used to discuss and compare the findings obtained from software and hardware.

Keywords: Gaussian image filtering, FPGA, Hardware Co-Simulation, Xilinx System

Generator, VHDL, Xilinx IP CORE Generator.

Résumé

'une des techniques très utiles en traitement d'images est le filtre gaussien 2D,

notamment lorsqu'il s'agit de supprimer du bruit gaussien. Cependant, la mise en

œuvre d'un filtre gaussien 2D nécessite des ressources informatiques importantes, et

lorsqu'il s'agit d'applications en temps réel, l'efficacité de la mise en œuvre est

cruciale. Cette thèse décrit la méthodologie pour mettre en œuvre un filtrage

d'images gaussien en utilisant MATLAB et des applications DSP en temps réel sur

FPGA en utilisant le concept de Co-simulation matériel-logiciel pour le traitement

numérique d'images en utilisant l'outil de conception basé sur le modèle Mathworks Simulink

/ Xilinx System Generator (XSG) et le langage de description très haute (VHDL) en utilisant

les cœurs de traitement d'images avancés inclus dans la bibliothèque IP Core lib. Les

performances des architectures efficaces sont mises en œuvre sur le FPGA Spartan3e

(xc3s500e). Le rapport signal sur bruit maximum (PSNR), l'indice de similarité structurale

(SSIM) et l'utilisation des ressources FPGA sont utilisés pour discuter et comparer les

résultats obtenus à partir du logiciel et du matériel.

Mots-clés : Filtrage d'images gaussiennes, FPGA, Co-simulation matérielle, Xilinx System

Generator, VHDL, Xilinx IP CORE Generator.

 الملخص

حدى التقنيات المفيدة جداً في معالجة الصور هي تصفية الجاوس، وخاصة عند إزالة ضوضاء الجاوس. ومع ذلك، فإن

يتطلب موارد حوسبية كبيرة، وعندما يتعلق الأمر بتطبيقات الوقت الحقيقي، فإن الكفاءة في التنفيذ تنفيذ تصفية الجاوس

 الأهمية. أمر بالغ

 (FPGA)وتطبيقات الوقت الحقيقي على(Matlab)تصف هذه الرسالة منهجية تنفيذ تصفية الصور الجاوسية باستخدام

بين الأجهزة والبرمجيات لمعالجة الصورالرقمية باستخدام أداة (co-simulation)باستخدام مفهوم المحاكاة المشتركة

نموذج التصميم على العالي (Mathworks Simulink / (XSG)) المبنية الوصف ذات الأجهزة وصف ولغة

(VHDL)باستخدام نوى معالجة الصور المتقدمة المدرجة في المكتبة(IP core lib)

يتم استخدام حيث . (FPGA Spartan3e (xc3s500e))متكاملة البرمجة القابلة للتجهيزيتم تنفيذ أداء الهندسة الفعالة على

إلى الإشارة النسبة الهيكلي(PSNR)قصوىالضوضاء التشابه الموارد (SSIM)ومؤشر لمناقشة (FPGA) واستخدام

 . ومقارنة النتائج التي تم الحصول عليها من البرامج والأجهزة

O

L

 إ

Acknowledgements

 First and before everything, we want to express our heartfelt appreciation to the Almighty

Allah for His blessings, strength, and the intellectual capacity to comprehend, acquire

knowledge, and document this research. Without His guidance and assistance, this thesis

would not have come to fruition.

 We would like to extend our sincere gratitude to our supervisor, Miss. Fouzia Hamadache,

for her exceptional guidance, enthusiastic supervision, unwavering encouragement, and

constant advice throughout the entire research process. Her unwavering dedication, vision,

and motivation have served as a continuous source of inspiration. We are profoundly grateful

for the invaluable opportunity to work and study under her tutelage.

 Special recognition is due to the jury members for generously investing their valuable time

in reading and analyzing our work. Their insightful comments and constructive feedback have

significantly enriched the content of this thesis.

 We also wish to express our appreciation to our colleagues and all those who have directly

or indirectly supported us with their skills, guidance, and assistance. Your contributions have

been immeasurable and have played an essential role in the successful completion of this

research endeavor.

 In conclusion, we are deeply grateful to our cherished family. Your love, prayers, and

encouragement have served as a constant source of motivation, and we will forever remain

indebted to you.

Table of contents

List of figures...i

List of tables...iii

Lists of abbreviations...iv

Introduction...01

Chapter I: 2D gaussian filtering of images with MATLAB

I.1.Introduction ... 4

I.2.Noise in images ... 4

I.2.1.Sources of image noise: ... 4

I.2.2.Gaussian noise .. 4

I.3.Image filtering using gaussian filter .. 6

I.3.1. Convolution ... 6

I.3.2.Gaussian mask .. 7

I.3.3.Gaussian image filtering... 8

I.4.Image quality assessment .. 9

I.4.1.PSNR .. 9

I.4.2.SSIM .. 9

I.5.Matlab simulation results .. 10

I.5.1. Gaussian filter for noise removal(Variance noise = 0.003) 10

I.5.2. Gaussian filter for noise removal(variance noise = 0.09) 12

I.5.3. Effect of kernel size and sigma of Gaussian filter .. 14

I.6.Conclusion ... 16

Chapter II:Efficient gaussian image filtering Using Xilinx SystemGenerator

II.1.Introduction .. 18

II.2.Work environment ... 18

II.3.Xilinx system generator (XSG) ... 18

II.4.Gaussian image filtering design using Xilinx system generator 19

II.4.1.System Generator Token... 19

II.4.2.Test image ... 20

II.4.3.Gateway in and Gateway out .. 21

II.4.4.Register ... 21

II.4.5.Virtex 2 5 line buffer .. 22

II.4.6. 5x5 Filter .. 22

II.4.7. To Workspace block .. 23

II.5.FPGA implementation using Hardware Co-Simulation .. 23

II.5.1. The choice of the compilation Target .. 23

II.5.2. Invoking the Code Generator ... 24

II.5.3. Hardware Co-simulation block .. 25

II.5.4.Co-Simulation Implementation ... 27

II.6.Hardware Software Co-simulation results ... 29

Chapter III : 2D Gaussian image filtering with VHDL using IP Core Generator

III.1.Introduction .. 33

III.2.FPGA memory blocks .. 33

III.2.1. Single port BRAM .. 33

III.2.2.Dual Port BLOCK MEMORY .. 34

III.2.3.FIFOMEMORY .. 35

III.3.Xilinx CORE Generator ... 35

III.4.Hardware implementation of gaussian imagefiltering... 36

III.4.1.Top level design flowchart .. 36

III.4.2.Generating COE files .. 37

III.4.3. Block memory generator to store image pixels .. 37

III.4.3. Block memory generator to store gaussian kernel elements 43

III.4.4. Block memory generator FIFO... 46

III.4.5. Block memory generator BRAM_OUT ... 49

III.4.6. Convolution module using finite state machine: .. 51

III.4.7. Displaying the output image using MATLAB ... 52

III.5. Synthesis and simulation ... 53

III.5.1. XST synthesis ... 53

III.5.1 Simulation using ISim ... 57

III.6.Conclusion .. 59

Conclusion ... 61

References.. 63

i

List of figures

Chapter I: 2D Gaussian filtering of images with MATLAB

Figure I. 1.2D and 3D probability density function of gaussian noise 5

Figure I. 2.Pixel coordinates based on point (i,j).. 7

Figure I. 3.Image convolution with a filter kernel of size 3 × 3 .. 7

Figure I. 4. Gaussian kernels 3 3, 5 5,7 7   with  = 1 .. 8

Figure I. 5.Original and noisy image (Variance noise = 0.003) .. 10

Figure I. 6.Filtered image with 3x3 kernel and a)σ= 0.2 b) σ=1c)σ=7............................... 11

Figure I. 7.Filtered image with 5x5 kernel and a)σ= 0.2 b) σ=1 c) σ=7............................. 11

Figure I. 8.Filtered image with 7x7 kernel and a)σ= 0.2 b) σ=1c)σ=7............................... 11

Figure I. 9. .Original and noisy image (Variance noise = 0.09) .. 12

Figure I. 10. Filtered image with 3x3 kernel and a)σ= 0.2 b) σ=1c)σ=7............................ 13

Figure I. 11.Filtered image with 5x5 kernel and a)σ= 0.2 b) σ=1c)σ=7............................. 13

Figure I. 12.Filtered image with 7x7 kernel and a)σ= 0.2 b) σ=1c)σ=7............................. 13

 Chapter II: Efficient gaussian image filtering Using Xilinx System Generator

Figure II. 1.System Generator design flow... 19

Figure II. 2.The Simulink design model ... 19

Figure II. 3.Block system Generator .. 20

Figure II. 4.Test image for filtering .. 21

Figure II. 5.Gateway In block ... 21

Figure II. 6.Gateway Out block .. 21

Figure II. 7.Register block .. 22

Figure II. 8.Virtex 2 5 line buffer block ... 22

Figure II. 9.5x5 Filter block and the mask parameters ... 23

Figure II. 10.To Workspace block .. 23

Figure II. 11. Digital Electronics FPGA compilation target .. 24

Figure II. 12.Invoking the Code Generator .. 25

Figure II. 13.Hardware Co-simulation block ... 25

Figure II. 14.Hardware Co-Simulation block Insertion .. 26

Figure II. 15.Hardware Co-Simulation model .. 27

Figure II. 16.Hardware Co-Simulation block and it’s dialog box ... 27

Figure II. 17.The connected Board ... 28

Figure II. 18.Co-simulation implementation .. 29

Figure II. 19 Hardware -Simulation filtered image with 5x5 kernel and variance noise=0.003

 .. 29

Figure II. 20 Hardware-simulation Filtered image with 5x5 kernel and variance noise=0.09 30

Figure II. 21.FPGA resource utilization summary ... 31

ii

Chapter III : 2D Gaussian image filtering with VHDL using IP Core Generator

Figure.III. 1.Core Schematic Symbol (Single-Port Block Memory module) 34

Figure.III. 2.Core Schematic Symbol (Dual Port Block RAM) ... 34

Figure.III. 3.FIFO configurations. (a) FIFO-18 (b) FIFO-36 ... 35

Figure.III. 4.Block diagram of image filtering ... 37

Figure.III. 5.Selecting IPCore Generator & Architecturefrom ISE with File name (image_ram)

 .. 38

Figure.III. 6.Selection of "Block memory Generator" IP Core .. 39

Figure.III. 7."Block memory Generator" IP core Wizard .. 40

Figure.III. 8. "Block memory Generator" IP core Wizard ... 41

Figure.III. 9.Configure the settings of memory size (width and depth) 41

Figure.III. 10. Block memory Generator" Initializing Image0003”.coe file 42

Figure.III. 11.Successful Creation of IP Core (bram_image)... 42

Figure.III. 12.Selecting IP Core Generator & Architecture with File name (kernel_ram)....... 43

Figure.III. 13..Configure the settings of memory size (width and depth) 44

Figure.III. 14.Block memory Generator" kernel1.coe file" .. 45

Figure.III. 15.Successful Creation of IP Core (bram_kernel) .. 46

Figure.III. 16.Selecting " IP(Core Generator & Architecture) ... 47

Figure.III. 17.Selection of " FIFO generator" .. 47

Figure.III. 18.Configure the settings of FIFO size (width and depth) 48

Figure.III. 19.Successful Creation of IP Core(FIFO RAM) ... 48

Figure.III. 20."Block memory Generator" IP core Wizard .. 49

Figure.III. 21.Configure the settings of memory size (widht and depth) 50

Figure.III. 22.Successful Creation of IP Core .. 50

Figure.III. 23.Finite state machine of matrix convolution. ... 52

Figure.III. 24.Displaying the output image using MATLAB ... 53

Figure.III. 25.Top level design ... 53

Figure.III. 26.Complete design schematic .. 54

Figure.III. 27.Schematic showing BRAM .. 55

Figure.III. 28.Schematic showing FSM ... 56

Figure.III. 29.Schematic showing the output storage phase ... 57

Figure.III. 30.Simulation showing set_address and read_input state 58

Figure.III. 31.Simulation showing computation, storing and complete state 58

Figure.III. 32. FPGA resource utilization summary ... 58

iii

List of tables

Chapter I:2D Gaussian filtering of images with MATLAB

Table I. 1.PSNR and SSIM values for filtered images with sigma values and kernel size

 (Variance noise = 0.003) ... 14

Table I. 2.PSNR and SSIM values for filtered images with sigma values and kernel size

 (Variance noise = 0.09) .. .14

 Chapter II: Efficient gaussian image filtering Using Xilinx System Generator

Table II. 1.Effect of gaussian noise on kernel size 5x5 with different variance noise 30

iv

Lists of abbreviations

bmp: Bitmap

BRAM: Block RAM

COE: Coefficient File

DCM: Digital Clock Manager

DSP: Digital Signal Processing

FIFO: First-In, First-Out

FPGA: Field Programmable Gate Array

FSM: Finite State Machine

FWFT: First Word Fall Through

gif: Graphics Interchange Format

GUI: Graphical User Interface

HDL: Hardware Description Language

IDE: Integrated Design Environment

IP Core: Intellectual Property Core

ISim: Integrated Simulator

jpeg: Joint Photographic Experts Group

JTAG: Joint Test Action Group

MATLAB: Matrix Laboratory

MSE: Mean Square Error

PNG: Portable Network Graphics

PSNR: Peak Signal to Noise Ratio

RAM: Random Access Memory

ROM: Read-Only Memory

RTL : Register Transfer Level

SSIM The structural similarity index

measure (SSIM)

tif: Tagged Image File

USB: Universal Serial Bus

VGA: Video Graphics Array

VHDL: Very High-Speed Integrated Circuit

Hardware Description Language

XSG: Xilinx System Generator

1

Introduction

 Over the last few decades, the manipulation of digital images has aroused great interest in

various fields such as medical and technological applications, yet these images are subject to a

variety of noises that affect their quality. In image processing, filtering and noise reduction

aim to restore the original image details as much as possible by eliminating unwanted noise.

This is why filtering is one of the most widely used concepts in most image processing

applications.

 The need for real-time image processing means that algorithms must be implemented in

hardware, and this is why Field Programmable Gate Array (FPGA) technology has recently

emerged as a promising target for the implementation of algorithms suitable for image

processing applications. This technology offers parallelism that significantly reduces

processing time. High-level abstractions that can be automatically compiled into an FPGA are

offered by Xilinx System Generator (XSG), a Simulink extension that enables hardware

design. In addition, the Xilinx CORE Generator system produces and delivers parameterized

cores optimized for Xilinx FPGAs, allowing for the faster development of high-density, high-

performance designs.

 The aim of this thesis is to design, model, simulate and synthesize Gaussian image

filtering. The implementation on a Spartan3e FPGA reconfigurable logic platform (xc3s500e)

will be realized using first hardware software Co-simulation through the Xilinx System

Generator (XSG) tool and second the Very High-Level Description Language (VHDL) using

the advanced image processing cores included in the IP Core lib library. Following is an

outline of the thesis:

In Chapter 1, the process of gaussian image filtering is thoroughly explained, including how

each point in the image is convolved with a Gaussian kernel. After doing a simulation with

MATLAB, we will compare the image quality using the PSNR and SSIM measure.

Chapter 2 details the Gaussian image filtering model and how to read and write images using

the Xilinx system generator with the MATLAB/Simulink platform. In addition, the FPGA

implementation using hardware Co-simulation will be presented. The model can be co-

simulated, provided that the requirements of the underlying hardware board are met. PSNR

and SSIM will also be used to discuss the data and discuss the results that were obtained.

2

Chapter 3: provides the detailed implementation of gaussian image filtering in VHDL using

Xilinx IP Core. In addition, a description of how to convert image and kernel matrix to .COE

files which are loaded onto flexible Block Memory Generator core to create compact, high-

performance memories, and how to design matrix convolution using finite state machine

approach.

Finally, a conclusion brings to a close both our accomplishments and any potential follow-up

effort.

Chapter I

2D Gaussian

filtering of images

with MATLAB

Chapter I: 2D Gaussian filtering of images with MATLAB

4

Chapter I: 2D Gaussian filtering of images with MATLAB

I.1.Introduction

 In this chapter, we provide an overview and explanation of some concepts related to

digital image processing, such as: noise in images and its sources, as well as a brief

introduction to gaussian noise and gaussian filter. We focus in this chapter on specific

elements such as spatial image filtering, convolution, gaussian mask and image quality

assessment tools. PSNR and SSIM are two quality metrics that have been used to evaluate

MATLAB results of 2D gaussian filtering.

I.2.Noise in images

I.2.1. Sources of image noise:

 Image is affected by various sources of noise during the acquisition and transmission

process. Typically, noise is assessed by examining the ratio of corrupted pixels in the

image. Depending on the image's creation method, several factors contribute to increased

noise in the original image: when scanning a photograph captured on film, noise can arise

from the film grain, film damage, or introduced by the scanner or imaging system

itself.The process of capturing and saving a digital image in its specific format through

data collection mechanisms can introduce noise.Electronic acquisition or transmission of

image data can also introduce noise.Noise can result from incorrect light penetration,

caused by an improper opening of the device sensor, which affects the passage of light

from the source to the device lens. Factors such as light levels and sensor temperature

significantly contribute to noise creation[1].

I.2.2.Gaussian noise

Gaussian noise is a type of noise that follows a gaussian probability distribution. It is

characterized by a random signal value being added to each pixel of an image, which

results in a slight variation of the pixel values.

The probability density function (PDF) of gaussian noise is given by:

()
()

2

22
1

2

z z

ep z 

 

− −

= (I.1)

Where: z is the random variable, σ is the standard deviation, and z is the mean.

Chapter I: 2D Gaussian filtering of images with MATLAB

5

(a) 2D probability density function of gaussian noise with different standard deviation

Sigma =0.25 Sigma =0.6 Sigma =1

(b) 3D probability density function of gaussian noise with different standard deviation

Figure I. 1.2D and 3D probability density function of gaussian noise with different standard deviation

From the above figure It is evident that the distribution expands wider the higher the

standard deviation. As a result, the variance can be viewed as a variable influencing the

Gaussian probability density's width.

In the context of image processing, gaussian noise is often used to model the effect of

electronic noise in image acquisition devices or random fluctuations in natural scenes.

Gaussian noise is additive in nature, in other words each pixel in the noisy image is the

sum of the real pixel value and a randomly generated gaussian-distributed noise value.

The noisy image is obtained by:

() () (), , ,g x y f x y x y= + (I.2)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

P
D

F

probability density function

sigma=0.25

sigma=0.6

sigma=1

Chapter I: 2D Gaussian filtering of images with MATLAB

6

Where 𝑓(𝑥, 𝑦)is the original image, 𝑛(𝑥, 𝑦) represents the noise that was added to the

image to create the noisy image 𝑔(𝑥, 𝑦), and (𝑥, 𝑦)represents the pixel location.

It is important to remove or reduce gaussian noise from an image in order to improve its

visual quality and enhance its features. Several image processing techniques, such as

filtering and denoising, are used to achieve this goal[2].

I.3.Image filtering using gaussian filter

 Image filtering is a fundamental technique in image processing and computer vision

that is used to modify the appearance of an image by applying a filter or mask to the

image. The filter is a mathematical function that is convolved with the image to produce a

modified output image.A filter is characterized by a kernel, which is a small array applied

to each pixel and its neighboring pixels within an image. Filters are typically categorized

into two types: linear filters and non-linear filters. In this context, the spatial linear filters

which are applied by convolution with a low pass filter convolution kernelare the ones

being considered[3].

I.3.1. Convolution

 Let's consider a monochrome image in which the function (),f i j represents the light

intensity of the pixel at coordinates (),i j . The digital convolution of this function with a

two-dimensional impulse response (),h m n results in a new image function (),f x y This

convolution can be written as:

- -

(,) (,) (- , -)
M N

m M n N

f i j h m n f i m j n
= =

=   (I.3)

(),f x y is the weighted sum, using the coefficients (),h m n , of the pixel intensities

belonging to a neighborhood of the pixel at coordinates (), i j . This processing is referred

to as localized. The impulse response is called the convolution mask.

The neighborhood of the pixel at coordinates (), x y is represented as follows:

Chapter I: 2D Gaussian filtering of images with MATLAB

7

Figure I. 2.Pixel coordinates based on point (i,j).

Figure I.2 illustrates the application of a convolution mask on a monochrome digital

image. The mask is moved across the entire original image to obtain a complete processed

image.[4]

Figure I. 3.Image convolution with a filter kernel of size 3 × 3 [5]

I.3.2.Gaussian mask

A gaussian mask, also known as a gaussian filter, is a convolution kernel used in

image processing to smooth or blur an image or to reduce noise. It is defined by a gaussian

function, which is a bell-shaped curve that is symmetric about the center and has a

standard deviation that determines the width of the curve. The values in the Gaussian

mask decrease as the distance from the center pixel increases, with the highest weights at

the center and lower weights toward the edges of the mask. The use of a Gaussian mask

Chapter I: 2D Gaussian filtering of images with MATLAB

8

can help to preserve edges and other high-frequency features in an image while reducing

noise in the image. In digital image processing, the gaussian filter is widely used in

numerous image processing applications, including edge detection, noise reduction, and

feature extraction. It has good smoothing properties and can effectively remove high-

frequency noise from the image while preserving the low-frequency structure of the

image.[2]

 According to Gonzalez and Wood (2018),the gaussian filter is defined as:

()
()

()2 2

2

2

2

1
,

2

x y

G x y e 



− +

=  (I.4)

where σ is the standard deviation of the gaussian function, and x and y are the

independent variables of the filter.

The Gaussian kernel matrix is the corresponding matrix structure that can be of

different size and filtering can be implemented by convolving the input image matrix with

the gaussian mask matrix.

Mask of 3x3Mask of 5x5Mask of 7x7

Figure I. 4. Gaussian kernels 3 3, 5 5,7 7   with  = 1

I.3.3.Gaussian image filtering

 Gaussian image filtering is produced by convolution between a noisy image and

2D gaussian mask which is usually odd and symmetrical 2 1 2 1n n+  + with different size

3 3, 5 5,7 7   , so the convolution become:

() ()() () (), , , ,
n n

i n j n

f x y g h x y g x i y j h i j
=− =−

=  = + +  (I.5)

Chapter I: 2D Gaussian filtering of images with MATLAB

9

Where (),g x y is the noisy image, (),h x y denotes the gaussian kernel , and (),f x y

represents filtered image. [2]

I.4.Image quality assessment

I.4.1.PSNR

 Peak Signal-to-Noise Ratio (PSNR) is a widely used objective quality metric in image

and video compression, restoration, and processing. And itis the ratio of the reference

signal to the distorted signal in the image, expressed in decibels. In general, we can say

that the higher the value of PSNR, the closer the distorted image is to the original image

thus the higher the image quality.

 Mathematically, the Peak Signal-to-Noise Ratio (PSNR) for full reference image

quality metrics can be expressed as follows:

()()2
 10 10 PSNR log Mpp MSE=  (I.6)

Where:

MPP represents the Maximum Possible Pixel value in an image. For example, in an 8-bit

image, the MPP is calculated as 82 1 255− = pixels.

MSEdenotes the Mean Square Error between the filtered and the original images

() ()()
2

1 1

1
, ,

M N

x y

MSE f x y f x y
MN = =

= − (1.7)

Where: M and N are the dimensions of the image[6]

I.4.2.SSIM

Structural Similarity Index (SSIM) is a widely used image quality assessment metric

that quantifies the similarity between two images. It is based on the assumption that the

human visual system is more sensitive to structural information in images such as texture,

luminance, and contrast, rather than just simple pixel intensity values.

 The SSIM index ranges from -1 to 1, with a value of 1 indicating perfect similarity

between the two images. Higher SSIM values imply greater similarity between the two

images.[7]

Chapter I: 2D Gaussian filtering of images with MATLAB

10

In a formal sense, SSIM conducts a thorough analysis of two images: a pristine

reference image denoted as x, and a potentially corrupted version of the same image

denoted as y. The structural similarity index can be calculated according to Eq.(I.12)[8]

1 , 2

2 2 2 2

1 2

(2)(2)
(,)

()()

x y x y

x y x y

C C
SSIM x y

C C

  

   

+ +
=

+ + + +
 (I.12)

In the Eq.(I.12)The x represents the average of x, y represents the average of y. The

variance of x is represented by 2

x , and the variance of y is represented by
2

y . 1 2,C C are

the variables to stabilize the division.

I.5.Matlab simulation results

 The effectiveness of gaussian filtering for gaussian noise reduction has been examined

using matrix laboratory software (MATLAB).

We applied a Gaussian filter with respectively (3x3), (5x5), and (7x7) kernel with 𝜎=0.5, 1

and 7 on the image (cell.tiff) of size (159x191) affected by Gaussian noise with 𝜎2=0.003

and 𝜎2=0.09.

I.5.1. Gaussian filter for noise removal (Variance noise = 0.003)

a) Original image

b) Noisy image PSNR=25.1638

Figure I. 5.Original and noisy image (Variance noise = 0.003)

Chapter I: 2D Gaussian filtering of images with MATLAB

11

a) PSNR=21.7460

SSIM=0.2906

b) PSNR=22.7034

SSIM=0.5512

c) PSNR=21.7831

SSIM=0.6132

Figure I. 6.Filtered image with 3x3 kernel and a)σ= 0.2 b) σ=1c)σ=7

c) PSNR=20.6363

SSIM=0.6706

a) PSNR=18.33

SSIM=0.1848

b) PSNR=20.0511

SSIM=0.6014

Figure I. 7.Filtered image with 5x5 kernel and a)σ= 0.2 b) σ=1 c) σ=7

a) PSNR=16.8281

SSIM=0.1789

b) PSNR=17.9386

SSIM=0.5699

c) PSNR=19.6255

SSIM=0.6725

Figure I. 8.Filtered image with 7x7 kernel and a)σ= 0.2 b) σ=1c)σ=7

Chapter I: 2D Gaussian filtering of images with MATLAB

12

I.5.2. Gaussian filter for noise removal(Variance noise = 0.09)

a) Original image

b) Noisy image PSNR= 11.2691

Figure I. 9. .Original and noisy image (Variance noise = 0.09)

Chapter I: 2D Gaussian filtering of images with MATLAB

13

a) PSNR=11.1024

SSIM=0.0260

b) PSNR=17.0365

SSIM=0.0912

c) PSNR=18.5437

SSIM=0.1398

Figure I. 10. Filtered image with 3x3 kernel and a)σ= 0.2 b) σ=1c)σ=7

a) PSNR=10.7930

SSIM=0.088

b) PSNR=18.1547

SSIM=0.1591

c) PSNR=19.4412

SSIM=0.2998

Figure I. 11.Filtered image with 5x5 kernel and a)σ= 0.2 b) σ=1c)σ=7

a) PSNR=10.5856

SSIM=0.0104

b) PSNR=16.6997

SSIM=0.1494

c) PSNR=19.1455

SSIM=0.4472

Figure I. 12.Filtered image with 7x7 kernel and a)σ= 0.2 b) σ=1c)σ=7

Chapter I: 2D Gaussian filtering of images with MATLAB

14

I.5.3. Effect of kernel size and sigma of Gaussian filter

 Table I.1 resume the PSNR and SSIM of filtered image for different sigma values and

kernel size for variance noise=0.003

Table I. 1.PSNR and SSIM values for filtered images with sigma values and kernel size

 (Variance noise = 0.003)

Sigma kernel 0.2 1 7

Mask

3X3

PSNR 21.7460 22.7034 21.7831

SSIM 0.2960 0.5512 0.6132

Mask

5X5

PSNR 18.33 20.0511 20.6363

SSIM 0.1848 0.6014 0.6706

Mask

7X7

PSNR 16 .8281 17.9386 19.6255

SSIM 0.1789 0.5699 0.6725

 Table I.2 resume the PSNR and SSIM of filtered image for different sigma values and

kernel size for variance noise= 0.09

1. The effectiveness of the Gaussian filter in reducing noise can be controlled by

adjusting its parameters, primarily the standard deviation (sigma) of the Gaussian

kernel and the kernel matrix size.

Table I. 2. PSNR and SSIM values for filtered images with sigma values and kernel size

 (Variance noise = 0.09)

Sigma Kernel 0.2 1 7

Mask

3x3

PSNR 11.1024 17.0365 18.5437

SSIM 0.0260 0.0912 0.1398

Mask

5x5

PSNR 10.7930 18.1547 19.4412

SSIM 0.0088 0.1591 0.2997

Mask

7x7

PSNR 10.5856 16.6997 19.1455

SSIM 0.0104 0.1494 0.4472

Chapter I: 2D Gaussian filtering of images with MATLAB

15

a. We note that when we increase the sigma value for each mask size the PSNR

and SSIM increase and the gaussian noise is reduced.

• for variance noise =0.003 (Mask 3x3)

for sigma kernel=0.2, PSNR = 21.7460 dB and SSIM=0.2960

for sigma kernel=7, PSNR = 21.7831dB and SSIM=0.6132

• for variance noise =0.09 (Mask 3x3)

for sigma kernel=0.2, PSNR = 11.1024 dB and SSIM=0.0260

for sigma kernel=7, PSNR = 18.5437 dB and SSIM=0.1398

Increasing the standard deviation of the mask continues to reduce and blur the intensity of

the noise. A larger sigma value will result in a stronger smoothing effect, effectively

reducing more noise but potentially blurring image details. Conversely, a smaller sigma

value will have a weaker smoothing effect, preserving more details but reducing noise to a

lesser extent.

b. When we increase the kernel matrix size, the PSNR and SSIM decrease which

result in more blurring of image details.

• for variance noise =0.003 and kernel sigma =0.2

 for mask 3x3, PSNR=21.74 dB and SSIM=0.2960

for mask 7x7, PSNR=16.82 dB and SSIM=0.1789

• for variance noise =0.09 and kernel sigma =0.2

for mask 3x3, PSNR=11.1024dB and SSIM=0.0260

for mask 7x7, PSNR=10.5856dB and SSIM=0.026 0

A larger kernel size implies a wider area of influence for each pixel during the filtering

process. Consequently, larger kernels tend to provide stronger smoothing effects and noise

reduction but may result in more blurring of image details. Conversely, a smaller kernel

size limits the extent of neighboring pixels considered during filtering. This can preserve

finer details in the image but may provide less effective noise reduction.

So, in our case, gaussian filtering is best suited filters for low gaussian noise with low

sigma kernel and kernel size.

2. The effectiveness of the Gaussian filter in reducing Gaussian noise can be

controlled also by the standard deviation (sigma) of the noise.

Chapter I: 2D Gaussian filtering of images with MATLAB

16

• for variance noise =0.003 (Mask 7x7)

for sigma kernel=7, PSNR = 19.6255 dB and SSIM=0.6725

• for variance noise =0.09 (Mask 7x7)

for sigma kernel=7, PSNR = 19.1455 dB and SSIM=0.4472

By increasing the standard deviation of the noise, you introduce more pronounced

variations, which can make the noise more difficult to remove completely. In such cases,

the Gaussian filter may still reduce the noise but may not eliminate it entirely. On the

other hand, if the standard deviation of the noise is relatively low, the Gaussian filter can

effectively reduce the noise and make it less noticeable in the image.

 It's important to note that the choice of kernel size should be balanced according to the

characteristics of the noise, desired level of smoothing, and the specific image being

processed. Experimenting with different kernel sizes and observing their effects on the

noise reduction and preservation of image details can help determine the optimal size for a

particular application.

I.6.Conclusion

In this chapter, we get deeper in gaussian filtering of images. Indeed, after adding

gaussian noise to image, we worked on a local processing which is linear spatial filtering

using gaussian filter as a means of improving the image quality and removing noise from

it. The implementation of gaussian filter to gray scale image cell is realized using

MATLAB software. To evaluate the quality of the filtered images, we used two image

quality metrics such as SSIM and PSNR. Then, the results of the implementation were

discussed based on these metrics. When applying a Gaussian image filter to Gaussian

noise, the filter will smooth out the noise, blur its details, preserve edges, and provide

control over the strength of noise reduction

Chapter II

Efficient gaussian image

filtering Using Xilinx System

Generator

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

18

Chapter II: Efficient gaussian image filtering Using Xilinx System

Generator

II.1.Introduction

 This chapter focuses on the model of gaussian image filtering using Xilinx System

Generator blocks (XSG), which integrates itself with the MATLAB based Simulink graphics

environment and relieves the user of the textual Hardware Description Language (HDL)

programming, and the implementation of the design targeting a Spartan3e device (xc3s500e)

using hardware co-simulation. Peak Signal-to-Noise Ratio (PSNR) and the FPGA resource

are both used to assess the quality of the filtered images.

II.2.Work environment

 The work environment in the context of MATLAB and Simulink refers to the integrated

software tools and graphical user interface provided by MathWorks for designing, simulating,

and implementing various computational and signal processing systems. MATLAB is a

programming language and development environment known for its numerical computing

capabilities, while Simulink is a block diagram environment that enables the modeling and

simulation of dynamic systems.[9]

II.3.Xilinx system generator (XSG)

 The Xilinx’s Generator is a System-level modeling tool from Xilinx that facilitates FPGA

hardware design. It is a system-level modeling tool in which designs are captured in the DSP

friendly Simulink modeling environment using a Xilinx specific blockset. All of the

downstream FPGA implementation steps including synthesis and place and route are

automatically performed to generate an FPGA programming file. Over 90 DSP building

blocks are provided in the Xilinx DSP blockset for Simulink. These blocks leverage the

Xilinx IP core generators to deliver optimized results for the selected device. System

Generator provides many features such as System Resource Estimation to take full advantage

of the FPGA resources, Hardware Co-Simulation and accelerated simulation through

hardware in the loop Co-simulation; which give many orders of simulation performance

increase. It also provides a system integration platform for the design of FPGAs that allows

the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come together in a

single simulation and implementation environment. Figure II.1 presents the design flow of

XSG.[10]

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

19

Figure II. 1.System Generator design flow

II.4.Gaussian image filtering design using Xilinx system generator

 For real-time applications, the gaussian image filtering must be implemented in hardware.

FPGA implementation can be carried out in a prototyping environment utilizing the Xilinx

System Generator tool and MATLAB/Simulink. Fig. II.2 depicts the design flow for the

hardware implementation of gaussian filtering using XSG.

Figure II. 2.The Simulink design model

II.4.1.System Generator Token

 The System Generator token functions as a control panel for managing simulation and

system parameters, as well as calling upon the code generator for netlisting. In order for any

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

20

Simulink model with elements from the Xilinx Blockset to be valid, it must contain a

minimum of one System Generator token. By introducing a System Generator token to a

model, it becomes possible to determine how code generation and simulation are

managed.[11]

Figure II. 3.Block system Generator

II.4.2.Test image

 The “From Workspace” block reads a signal from a Workspace and imports it to the

Simulink workspace. The original grayscale image "Cell.tif" was noised with Gaussian noise

(variance noise= 0.003, 0.09) and then converted to a grayscale signal that is a suitable data

form for FPGA hardware (Figure II.4).

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

21

From Workspace block Original image Noisy image (Variance gaussian

noise = 0.003)

Figure II. 4.Test image for filtering

II.4.3.Gateway in and Gateway out

 The blocks named Xilinx Gateway In serve as inputs for the Xilinx segment in the

Simulink design. They enable the conversion of Simulink's integer, double, and floating-point

data types into the fixed-point type. Each block defines a high-level input port within the

HDL design that is generated by System Generator.[11]

Figure II. 5.Gateway In block

 The blocks labeled Xilinx Gateway Out are the outputs of the Xilinx component in the

Simulink design. This block converts the fixed-point data types of System Generator into

Simulink's integer, single, double, or floating-point data types.[11]

Figure II. 6.Gateway Out block

II.4.4.Register

 The Xilinx Register block represents a register based on D flip-flops, which introduces a

one-sample period latency. The block features a single input port for data, as well as an

optional input reset port.[11]

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

22

Figure II. 7.Register block

II.4.5.Virtex 2 5 line buffer

 The Xilinx Virtex2 5 Line Buffer reference block is responsible for buffering a sequence

of pixels to create five lines of output, each of which is delayed by a different number of

samples based on its length. Line 1 is delayed by four times the length of the line, with each

subsequent line delayed by N fewer samples, until the final line (line 5) is a direct copy of the

input.[11]

Figure II. 8.Virtex 2 5 line buffer block

II.4.6. 5x5 Filter

 The Xilinx 5x5 Filter reference block is built upon 5 n-tap MAC FIR filters, which are

available in the DSP library of the Xilinx Reference Blockset. The block includes nine

distinct 2-D filters that can be used to filter grayscale images. We select a gaussian filter by

adjusting the mask parameter on the 5x5 Filter block (Figure II. 10). The 2-D filter

coefficients are stored in a block RAM, and the model doesn't make any particular

optimizations for these coefficients. However, we can customize the filter by substituting our

own coefficients and scale factor, which can be accomplished by modifying the mask under

the initialization tab of the 5x5 filter block.[11]

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

23

gaussian = [1 1 2 1 1; ...

1 2 4 2 1; ...

2 4 8 4 2; ...

1 2 4 2 1; ...

1 1 2 1 1];

gaussianDiv = 1/52;

Figure II. 9.5x5 Filter block and the mask parameters

II.4.7. To Workspace block

 The "To Workspace" block stores its input into the MATLAB workspace, and the

resulting output is saved as an array or structure with a name specified by the block's

"Variable name" parameter. The "Save format" parameter determines the format of the output

data.[11]

Figure II. 10.To Workspace block

II.5.FPGA implementation using Hardware Co-Simulation

II.5.1. The choice of the compilation Target

 Once the hardware board is installed, the starting point is to choose the new compilation

target.Double click on System Generator token and in the compilation menu choose Hardware

Co-Simulation and finally select the DEFB (Digital Electronics FPGA Board)platform which

is Digital Electronics FPGA Target in the Hardware Co-Simulation submenu.

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

24

Figure II. 11. Digital Electronics FPGA compilation target

 Once a compilation target is selected, the fields in the System Generator token dialog box

are automatically adapted to align with the appropriate settings for the chosen target. System

Generator preserves the specific dialog box configurations for each compilation target. These

settings are saved when a new target is selected and restored when the target is recalled.[11]

II.5.2. Invoking the Code Generator

 By clicking the Generate button in the System Generator block dialog box, the code

generator is launched. For the design, the code generator creates an FPGA

configuration bitstream appropriate for hardware Co-simulation.System Generator runs the

downstream tools necessary to produce FPGA configuration files, in addition to producing

HDL and netlist files for the model during compilation.The configuration bitstream includes

the hardware related to the designed model as well as additional interfacing logic that enables

System Generator to communicate with the design via a physical interface between the

platform and the PC. System Generator may read from and write to the input and output ports

on the design using the memory map interface that is part of this logic.[11]

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

25

Figure II. 12.Invoking the Code Generator

II.5.3. Hardware Co-simulation block

 Once System Generator has finished converting the design into an FPGA bitstream, it

immediately generates a new hardware co-simulation block. A Simulink library was also

created to store hardware co-simulation blocks.

Figure II. 13.Hardware Co-simulation block

 In fact, the hardware co-simulation module adopts the external interface of the model or

subsystem derived from it. The same port names are used in the hardware co-simulation block

as in the original subsystem. Connection types and speeds are also consistent with the original

design.

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

26

 The library block may now be copied and used in our System Generator design just like

any other Simulink or System Generator block would be.

Figure II. 14.Hardware Co-Simulation block Insertion

 The hardware Co-simulation block works like any other block in a Simulink design. This

block allows interaction with the underlying FPGA platform during simulation and automate

tasks such as device configuration, data transfer, and clocking. It consumes and generate the

same types of signals used by other system generator blocks. When the input port of the

hardware Co-simulation block receives a value, it transfers the appropriate data to the

appropriate location in the hardware. Similarly, when an event occurs on an output port, the

block retrieves data from the hardware. The system should appear as follows:

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

27

Figure II. 15.Hardware Co-Simulation model

 Like other System Generator blocks, hardware co-simulation blocks offer parameter

dialog boxes that allow users to configure them with various settings. The parameters

available for a hardware co-simulation block depend on the specific FPGA platform it is

implemented for, as each FPGA platform provides its own customized hardware co-

simulation blocks.[11]

Figure II. 16.Hardware Co-Simulation block and it’s dialog box

II.5.4.Co-Simulation Implementation

 The implementation of the Co-simulation system can be simplified into two tasks:

connecting the FPGA hardware to the host computer and running the co-simulation model. To

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

28

begin, assemble the FPGA hardware and ensure all components are set up correctly. Connect

the board to the host computer using the serial to USB cable and the JTAG programming

cable. This connection enables the Co-simulation to access the hardware for gaussian filtering

algorithm. Once the board is properly connected, verify that the simulation time is set to the

same value as in the original system design. Click the Start simulation button to initiate the

simulation.The Co-simulation procedure is concluded at the end of the simulation run time,

and a video viewer can be used to access the output signal.

Figure II. 17.The connected Board

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

29

Figure II. 18.Co-simulation implementation

II.6.Hardware Software Co-simulation results

 We applied a Gaussian filter with (5x5) kernel and 𝜎=1 on the image (cell.tiff) affected by

Gaussian noise with 𝜎2=0.003 and 𝜎2=0.09.

Figure II. 19 Hardware -Simulation filtered image with 5x5 kernel and variance noise=0.003

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

30

Figure II. 20 Hardware-simulation Filtered image with 5x5 kernel and variance noise=0.09

Table II.1 resumes the corresponding PSNR and SSIM of filtered images for different

variance noise.

Table II. 1.Effect of gaussian noise on kernel size 5x5 with different variance noise

Variance noise 0.003 0.09

Mask

5x5

PSNR 31.0088 22.7034

SSIM 0.8440 0.5512

 The Gaussian filtering effect depends on the intensity of noise which is the standard

deviation of the noise 𝜎. The standard deviation of the noise represents the magnitude of the

random variations in the noise. A higher standard deviation indicates a noisier image with

larger variations in pixel values. We note that when we increase the sigma noise value, the

PSNR and SSIM decrease. By increasing the noise's standard deviation, you add stronger

variations, which may render the noise harder to eliminate altogether. In such instances, the

Gaussian filter may still reduce noise but not entirely eliminate it. On the other hand, if the

standard deviation of the noise is quite low, the Gaussian filter can successfully reduce the

noise and make it less visible in the image. So, Gaussian filtering is best suited filters for low

Gaussian noise. the Gaussian noise is reduced, but not completely removed.

For the target Spartan3e device (xc3s500e) FPGA device, the results are produced using XSG.

The FPGA resource utilization description for the results of the gaussian filtering is shown in

figure II.21.

Chapter II: Efficient Gaussian image filtering Using Xilinx system generator

31

Figure II. 21.FPGA resource utilization summary

II.7. Conclusion

 This chapter has focused on the efficient implementation of Gaussian image filtering using

Xilinx System Generator. It’s a powerful tool for designing digital systems on FPGA

platforms. A design operating on an FPGA can be integrated directly into Simulink simulation

thanks to System Generator's hardware co-simulation feature. When the system design is

simulated in Simulink, the results for the compiled component are calculated in actual FPGA

hardware, frequently yielding a substantially faster simulation time while verifying the

functionality of the hardware.

.

Chapter III

2D Gaussian filtering with

VHDL using IP Core

Generator

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

33

Chapter III:2D Gaussian image filtering with VHDL using IP Core

Generator

III.1.Introduction

 In this chapter, we will explore image filtering in VHDL, focusing on the role of IP cores

in enhancing the efficiency and effectiveness of image processing tasks. VHDL, or Very

High-Speed Integrated Circuit Hardware Description Language, provides a powerful

framework for designing and implementing digital systems, including image processing

algorithms. IP cores, on the other hand, serve as pre-designed and pre-verified circuits that

offer ready-made solutions for specific image processing functions. By leveraging VHDL and

IP cores, engineers can accelerate the development process, optimize performance, and

promote design reusability in image processing applications.

III.2.FPGA memory blocks

 In Xilinx FPGAs, Block RAM (BRAM) is a dedicated two-port memory that can store up

to 36Kb of data. These FPGA devices have multiple BRAM blocks available, each consisting

of a configurable lookup table and a small logic block. While primarily used for logic

functions, the lookup table can be reconfigured to serve as a small amount of RAM. By

combining several BRAM blocks, a distributed RAM can be created, providing a larger

storage capacity. BRAM operates synchronously, with read and write operations

synchronized with the clock input signal and controlled by the read/write enable ports. In our

specific case, BRAM2 stores the test image data generated with MATLAB using a .coe file,

while BRAM1 holds the .coe file for the Gaussian mask accessed by the control module.

Lastly, BRAM3 is responsible for storing the filtered data.[12]

III.2.1. Single port BRAM

 The Single-Port Block Memory module is designed to meet user requirements in terms of

width and depth. The read and write operations from and to the memory are based on the

clock input signal's changing edge since BRAM is synchronous.During operation, the Block

Memory performs all memory operations on the active edge of the clock input (CLK).The

data given at the port's data input is stored in memory at the location specified by the port's

address input during Write Operation(WE asserted).[13]

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

34

Figure.III. 1.Core Schematic Symbol (Single-Port Block Memory module)

III.2.2.Dual Port BLOCK MEMORY

 The Dual Port Block RAM features two separate access ports that allow simultaneous

access to a shared memory pool. Each access port can be configured independently, enabling

straightforward dual-port memory functionality or the option for data formatting capabilities.

Both ports offer read and write access and are functionally identical. However, it is important

to avoid simultaneous operations at the same memory location, except for simultaneous reads.

When reading from and writing to the same location simultaneously, the correct data is

written into the memory, but invalid data is presented at the reading port.[13]

Figure.III. 2.Core Schematic Symbol (Dual Port Block RAM)

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

35

III.2.3.FIFO MEMORY

 FIFO (First-In, First-Out) is an extension of Block RAM (BRAM) that operates on a first

in, first out basis. It follows the principle that the data stored first is retrieved first. When a

rising edge of the clock signal is detected, the available memory location is written with the

data present on the data bus, and the data from the last written memory location becomes

available on the output bus. FIFOs can be configured as either 18 Kbits or 36 Kbits of

memory. The configuration options and operation modes are depicted below.[14]

(a)

(b)

Figure.III. 3.FIFO configurations. (a) FIFO-18 (b) FIFO-36

III.3.Xilinx CORE Generator

 The Xilinx CORE Generator system is a tool that allows users to access IPs (Intellectual

Properties) customized for Xilinx FPGAs in order to construct FPGA chips faster and with

higher densities. A full library of Xilinx LogiCORE IPs is included with the ISE Foundation

software that comes with the CORE generator. These consist of memory, storage components,

mathematical operations, and fundamental components.

 Xilinx offers the flexible Block Memory Generator core. This core provides the option for

single port and dual port block memories, which differ in their operating mode selection.

 In the image filtering workflow, the MATLAB tool is utilized to convert the processed

image into the .coe file format. Subsequently, the Xilinx Core Generator is employed to store

the coefficient file (.coe) in a single port Block ROM. The width and depth of the image are

defined during this process. Finally, the filtered image is then written to a text file and read

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

36

using MATLAB. Complex designs for image processing, storage, and display on Xilinx

FPGAs can be efficiently developed by utilizing the Xilinx CORE generator, MATLAB, and

FPGA technology[13][14].

III.4.Hardware implementation of gaussian imagefiltering

III.4.1.Top level design flowchart

 Figure III. 4 depicts the block diagram of the image filtering process. Initially, the input

image and the Gaussian mask are retrieved and saved using MATLAB. These values are then

converted into a vector and stored in a text file with a *.coe extension, utilizing the

capabilities of the MATLAB tool. The text file containing the Gaussian mask is stored in

BRAM1, while the text file containing the image is stored in BRAM2. Subsequently, the

VHDL tool is employed to perform the convolution operation between the pixel values stored

in BRAM1 and BRAM2. The resulting data is saved in another block called BRAM3. Finally,

using a FIFO block, this convoluted output is written to a text file which is converted back

into image format using the MATLAB tool to display the obtained results. In the subsequent

step, each block of the diagram presented in Figure III. 1is further defined and explained.[14]

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

37

Figure.III. 4.Block diagram of image filtering [12]

III.4.2.Generating COE files

 The process begins by reading the image, resizing it to the desired dimensions, in our case,

a 90x90 matrix, then the image is padded on the sides with zeros, resulting in a matrix of

dimensions 94x94. The modified matrix is then saved as a COE file named "image. COE"

using a MATLAB function. A similar process is followed to generate the COE file for the

kernel matrix. These COE files containing the image and kernel matrices are then loaded into

the BRAM memory.[14]

III.4.3. Block memory generator to store image pixels

 The IP Core Generator and Architecture Wizard, known as "IP(Core Generator &

Architecture wizard)," can be accessed through the ISE (Integrated Software Environment)

interface, as demonstrated in the figure below:

 To initialize the IP core and load a COE (Coefficient) file into the BRAM (Block RAM),

follow these step-by-step instructions:

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

38

Figure.III. 5.Selecting IPCore Generator & Architecturefrom ISE with File name (image_ram)

 The next step is to look for the specific option or button labeled as "Block Memory

Generator" and click on it

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

39

Figure.III. 6.Selection of "Block memory Generator" IP Core

 Upon selecting the "Block Memory Generator," a configuration window or interface will

appear and we configure the settings for the memory generator, such as the memory size, data

width, and other relevant parameters

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

40

Figure.III. 7."Block memory Generator" IP core Wizard

An IP symbol and other memory kinds are displayed when the Block Memory Generator

wizard is launched. Among the memory types, the "Single Port ROM" is chosen, and the

values for the read width and read depth are determined based on the horizontal width and

vertical length of the Image being processed.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

41

Figure.III. 8. "Block memory Generator" IP core Wizard

 The read width and read depth values are established by referencing the horizontal width

and vertical length of the Image being processed which is 8 bits width and (94x94=8836)

depth

Figure.III. 9.Configure the settings of memory size (width and depth)

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

42

 Image0003.coe file, short for "Coefficient file," contains the data contents of the Block

Memory, specifically tailored to the specified read depth and read width values of the image.

In this case, the available image size is 94x94, and the data is stored as a .coe file within a

single port Block ROM using Xilinx Core Generator.

Figure.III. 10. Block memory Generator" Initializing Image0003”.coe file

 After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created" will be displayed in the Xilinx ISE

environment.

Figure.III. 11.Successful Creation of IP Core (bram_image)

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

43

III.4.3. Block memory generator to store gaussian kernel elements

 To store the Gaussian kernel COE file, we follow the same steps as we did to store the

image COE file with the following modifications:

 The first step is chosen “IP(CORE Generator & Architecture Wizard) click on it and make

name (Kernel_ram) for the File.

Figure.III. 12.Selecting IP Core Generator & Architecture with File name (kernel_ram)

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

44

 And now we Configure the settings of Memory size (widht & depht), we choose kernel

(3x3).

Figure.III. 13..Configure the settings of memory size (width and depth)

 Kernel.COE file contains the contents ofthe Block Memory for the specified read depth

and read widthvalues of the kernel (3x3).which is 8 bits width and (3x3=9) depth

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

45

Figure.III. 14.Block memory Generator" kernel1.coe file"

After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created" will be displayed in the Xilinx ISE

environment.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

46

Figure.III. 15.Successful Creation of IP Core (bram_kernel)

III.4.4. Block memory generator FIFO

 To store the Block memory generator FIFO, we follow the same steps as we did to store

the image COE file with the following modifications:

 The first step is chosen “IP(CORE Generator & Architecture Wizard) click on it and make

name for the File name

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

47

Figure.III. 16.Selecting " IP(Core Generator & Architecture)

 The next step is Look for the specific option or button labeled as "FIFO generator" and

click on it

Figure.III. 17.Selection of " FIFO generator"

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

48

And now we Configure the settings of data port parametres size (widht & depht), the

convolution result is 16 bits width and (92x92=8464) depth

Figure.III. 18.Configure the settings of FIFO size (width and depth)

 After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created" will be displayed in the Xilinx ISE

environment.

Figure.III. 19.Successful Creation of IP Core(FIFO RAM)

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

49

III.4.5. Block memory generator BRAM_OUT

 To store the Block memory generator BRAM_OUT, we follow the same steps as we did

to store the image COE file with the following modifications:

 Upon selecting the "Block Memory Generator," a configuration window or interface will

appear and we Configure the settings for the memory generator, such as the memory size, data

width, and other relevant parameters

Figure.III. 20."Block memory Generator" IP core Wizard

At this moment, we proceed toConfigure the settings of Memory size (widht & depht), the

filtrede image which is the convolution result is 16 bits width and (92x92=8464) depth

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

50

Figure.III. 21.Configure the settings of memory size (widht and depth)

 After proceeding to the next step, click on the "Generate" button in the Block Memory

Generator wizard. This action initiates the generation process of the IP core. Once completed,

a message stating "IP core successfully created" will be displayed in the Xilinx ISE

environment.

Figure.III. 22.Successful Creation of IP Core

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

51

III.4.6. Convolution module using finite state machine:

 The process involves multiplying a 3x3 image by a 3x3 mask through signal

multiplication. Input values for the multiplier are stored in the address port registers of the

RAM blocks. The outputs of the RAM blocks (BRAM1 and BRAM2) serve as inputs to the

multiplier. Each multiplication operation is completed within a single clock cycle, meaning

the remaining 9 multiplications will require 9 clock cycles. The partial products from each

multiplication are summed together to obtain the final result. The final results from the

multipliers are also stored in RAM blocks (BRAM3).

 The convolution module is designed as a Finite State Machine (FSM) simulated in VHDL.

Figure III.23 illustrates the Finite State Machine (FSM) of the matrix convolution. The design

incorporates five states: Set address, Read input, Computation, Store output, and Complete.

Each state serves a specific purpose, and their names within the FSM convey their respective

functions clearly.

The "Set_address" state sets the address of the memory elements for image pixels and kernel

elements. One clock cycle is required to write the address to the address bus. When the

address is set, the next state "Read_input" is called, which reads the data stored in the memory

locations indicated by the address bus. The next address is then set in the set_address state,

and the values of this memory location are read in the next clock cycle. The loop of

set_address and read_input states continues and repeats until all elements required for

convolution have been successfully read. After successfully reading the elements, the state

transitions to the computation state. In this state, a flag called 'compute' is activated, triggering

a combinational process block responsible for performing the convolution. In this process, the

pixel values of the image are multiplied by the corresponding elements of the kernel. The

resulting products are then summed together and stored. After the computation of the

convoluted result, the state transitions to 'store_output'. In this state, the value present on the

signal bus is stored or written to the memory location in the BRAM3 (Block RAM) indicated

by the address bus of the output memory block. Furthermore, when the last element of the

input matrix is reached, the state machine terminates, and the data stored in the output

BRAM3 memory block is written to a text file.[14]

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

52

Figure.III. 23.Finite state machine of matrix convolution.[14]

III.4.7. Displaying the output image using MATLAB

 The output matrix values have been saved in a text file containing a total of 8464 data

values. To retrieve these values, MATLAB is utilized, which reads the file and stores the data

as a 2-D matrix with dimensions of 92x92. The resulting matrix is then visualized as an image

in MATLAB.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

53

Original image Noisy image Filtered image

Figure.III. 24.Displaying the output image using MATLAB

III.5. Synthesis and simulation

 For the purposes of synthesis and simulation in this study, two different platforms are

used. Utilizing Xilinx Synthesis Technology (XST), a feature of the ISE software, the

synthesis stage is carried out. The ISIM (I Simulator), a different Xilinx package, is used for

simulation, on the other hand. The Xilinx software bundle comes with both XST and ISIM.

III.5.1. XST synthesis

Figure.III. 25.Top level design

 The top-level design depicted in the given figure illustrates the system clock, reset input,

and the output port named "filtred_image_out'.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

54

Figure.III. 26.Complete design schematic

 The schematic provided above presents a comprehensive view of the design, showcasing

all the necessary blocks. The key blocks are magnified and displayed in detail below.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

55

Figure.III. 27.Schematic showing BRAM

On the other hand, inputs such as the address bus and clock are shown as connected since

their values are continuously supplied throughout the execution of the design. The range

specified within parentheses indicates the size of the respective bus. For instance, "douta

(7:0)" signifies that an 8-bit data can be transmitted via this data bus, addra (13,0) signifies

that a 14-bit data for image and addra (3,0) signifies that a 4-bit data for kernel can be

transmitted via the address bus.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

56

Figure.III. 28.Schematic showing FSM

 The provided figure illustrates the Finite State Machine (FSM) employed in the design

project. The design employs a total of 5 states within the state machine. To represent these 5

states, a combination of 3 bits is utilized. the current state is set to one of the following states:

set_address, read_input, computation, store_output, and complete.

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

57

Figure.III. 29.Schematic showing the output storage phase

 The output storage step is depicted in the offered schematic. The convoluted result is

present on the output BRAM's input data bus When all of the convoluted results have been

saved in BRAM, they are registered and written to the FIFO in succeeding clock cycles. After

that, the output is taken from the FIFO and written to a text file.

III.5.2 ISim simulation

 The simulation was conducted using ISim, which is an integrated HDL simulator package

within ISE (Integrated Software Environment). ISim offers two operation modes: Graphical

User Interface (GUI) and Command Line mode. The GUI mode was chosen due to its ability

to visually display data through graphs and waveforms, facilitating analysis and

debugging.[14]

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

58

Figure.III. 30.Simulation showing set_address and read_input states

The process of setting the address and reading the input from the memory location is repeated

until all of the elements required for convolution are read entirely. We can observe that it

takes one clock cycle to establish the address and one clock cycle to read the data. As a result,

it takes 18 clock cycles to read one set of inputs required for convolution. The values retrieved

from memory are saved in a temporary array called Image_array and kernel_array, which are

used in the combinational block to conduct convolution (Figure III.31).

Figure.III. 31.Simulation showing computation, storing and complete state

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

59

 The provided diagram illustrates the simulation details of the FSM (Finite State Machine)

for the computation, store_output, and complete states. The computation is performed in a

combinational process block, the result is computed within a clock cycle, and the data is

available on the input bus of the BRAM that is used to store the output. The store_output state

is reached in the following clock cycle, and the data is written to the memory location

available on the address bus. Following this, the FSM enters the complete state, where it

verifies whether the end of a row or the end of the entire image has been reached. Once the

last pixel has been reached, the state machine is maintained in the full state until the end of the

simulation.[14]

The resource utilization description for the results of the gaussian filtering is shown in figure

III.32.

Figure III. 32.FPGA resource utilization summary

III.6. Conclusion

 In conclusion, this section offered a comprehensive overview of the hardware

implementation of image Gaussian filtering on an FPGA with VHDL. It began with an

introduction and proceeded to explore various FPGA memory blocks, such as single-port

BRAM, dual-port block memory, and FIFO memory. The discussion also encompassed the

Xilinx CORE Generator, which serves as a valuable tool for generating IP cores. Furthermore,

the hardware implementation process of image Gaussian filtering was detailed, covering

Chapter III: 2D Gaussian image filtering with VHDL using IP Core Generator

60

essential elements like the top-level design flowchart, COE file generation, and block memory

generators for storing image pixels and Gaussian kernel elements. The section also examined

the utilization of block memory generators for FIFO, BRAM_OUT, and the convolution

module, incorporating a finite state machine. Finally, the section concluded by outlining the

steps involved in displaying the output image using MATLAB and conducting synthesis and

simulation, which included utilizing ISim for simulation purposes.

61

CONCLUSION

 The primary purpose of this thesis was to highlight the importance of gaussian filter for

reducing gaussian noise, as well as to design, simulate and implement this filter on Spartan3e

device (xc3s500e) FPGA device using Xilinx system generator and VHDL

 First, from MATLAB, a widely-used software platform for image processing, it was

noticed that the Gaussian filter is effective in reducing gaussian noise by averaging the pixel

values in the neighborhood of each pixel, giving more weight to pixels closer to the center., it

applies a convolution operation that takes into account the spatial relationships between

pixels. The gaussian filter can be controlled by adjusting the kernel size and its standard

deviation parameter. A lower kernel size and standard deviation, have limited noise reduction

but preserve more details, in other hand, a higher standard deviation leads to more aggressive

smoothing, effectively reducing more noise but potentially blurring fine details

 Second, Xilinx system generator offers a friendly environment design for image filtering

because filtering units are designed by blocks. This tool support software simulation, but the

most important is that can synthesize in FPGAs hardware, it is an easy and efficient tool for

implementing filtering algorithms into FPGA which is an efficient real-time filtering. A

hardware in loop verification and hardware software co-simulation were performed with the

gaussian image filter, the simulated and synthesized results shows that the design can work at

an estimated frequency of 50 MHz by using Spartan 3e FPGA device.

 Third, we focused on VHDL with an IP Core generator for designing and implementing

customizable Gaussian filters on the FPGA. This approach highlighted the advantages of

VHDL-based design and the flexibility provided by the IP Core generator. Gaussian image

filtering was performed in VHDL using Block Memory Generator which is one of the IP core

that is provided by Xilinx Core Generator that allows to store larger images, as well as the

design of the convolution is in the heart of filtering with finite state machine (FSM).

 In summary, this thesis provides valuable insights into different methodologies and tools

for Gaussian image filtering. MATLAB offered a versatile software platform, XSG with the

FPGA card demonstrated the potential for efficient real-time filtering, and VHDL with the IP

Core generator provided customization capabilities. The choice of methodology depends on

specific requirements and constraints, such as performance needs, customization options,

62

Researchers and practitioners can consider these approaches based on their specific

application demands and resource availability. Ultimately, this thesis serves as a valuable

source for researchers and practitioners interested in image filtering and its implementation

using various methodologies.

63

References

[1] T. Issam, R. Salah, and M. Brahim, "Filtering Techniques To Reduce Speckle Noise And

Image Quality Enhancement Methods On Porous Silicon Images Layers," Majlesi Journal of

Electrical Engineering, 2022.

[10] S. Mittal, S. Gupta, and S. Dasgupta, "System generator: The state-of-art FPGA design

tool for dsp applications," in Third International Innovative Conference on Embedded

Systems, Mobile Communication and Computing (ICEMC2 2008), pp. 187-190, Aug. 2008.

[11] "System Generator for DSP Reference Guide UG638 (v14.5)," March. 20, 2013.

[12] A. Sghaier, A. Douik, and M. Machhout, "FPGA implementation of filtered image using

2D Gaussian filter," International Journal of Advanced Computer Science and Applications,

vol. 7, no. 7, 2016.

[13] B. Muralikrishna, K. G. Deepika, B. R. Kanth, and V. S. Vemana, "Image processing

using IP core generator through FPGA," International Journal of Computer Applications, vol.

46, no. 23, pp. 48-52, 2012.

[14] S. Eswar, "Noise reduction and image smoothing using gaussian blur," Doctoral

dissertation, California State University, Northridge, 2015.

[2] R. C. Gonzalez and R. E. Woods, "Digital image processing 4th edition, global edition,"

2018.

[3] Z. Afrose, "A comparative study on noise removal of compound images using different

types of filters," International Journal of Computer Applications, vol. 47, no. 14, 2012.

[4] E. Tisserand, J. Pautex, and P. Schweitzer, "Analyse et traitement des signaux Méthodes et

applications au son et à l’image, Algeria-Educ. com. DUNOD edition, Paris, pp287-288,"

2008.

[5] S. Kim and R. Casper, "Applications of convolution in image processing with MATLAB,"

University of Washington, pp. 1-20, 2013.

[6] M. Goyal, Y. Lather, and V. Lather, "Analytical relation & comparison of PSNR and

SSIM on baboon image and human eye perception using MATLAB," International Journal of

Advanced Research in Engineering and Applied Sciences, vol. 4, no. 5, pp. 108-119, 2015.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment:

from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600-612, 2004.

[8] I. Bakurov, M. Buzzelli, R. Schettini, M. Castelli, and L. Vanneschi, "Structural similarity

index (SSIM) revisited: A data-driven approach," Expert Systems with Applications, vol. 189,

p. 116087, 2022.

[9] A. K. Tyagi, "Matlab and Simulink for Engineers by Agam Kumar Tyagi," Oxford

University Press, 2012.

