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Abstract
In this dissertation, we deal with the problem of simulating stochastic differential equations

driven by Brownian motion or the general Lévy processes. First, we establish the basic

theory of stochastic calculus and introduce the Itô-Taylor expansion for stochastic differen-

tial equations (SDEs). In addition, we present various numerical schemes derived from

the Itô-Taylor expansion. These methods are used to solve the stochastic Lorenz equa-

tion, the stochastic Duffing equation, and the Merton model equation. In addition, spec-

tral techniques are adapted for the numerical solution of nonlinear stochastic differential

equations. Further, generalized Lagrange interpolation functions are proposed for solving

various types of SDEs, offering significant performance improvements.

Keywords: Stochastic differential equation, Brownian motion, jump diffusion, spectral

method, numerical solution, collocation method.
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Résumé
Dans cette thèse, nous traitons le problème de la simulation des équations différentielles

stochastiques dirigées par le mouvement brownien ou les processus généraux de Lévy.

Tout d’abord, nous établissons la théorie de base du calcul stochastique et introduisons

le développement d’Itô-Taylor pour les équations différentielles stochastiques (EDS). En

outre, nous présentons divers schémas numériques dérivés de développement d’Itô-Taylor.

Ces méthodes sont utilisées pour résoudre l’équation stochastique de Lorenz, l’équation

stochastique de Duffing et l’équation du modèle de Merton. Par ailleurs, les techniques spec-

trales sont adaptées à la résolution numérique d’équations différentielles stochastiques non

linéaires. De plus, des fonctions d’interpolation de Lagrange généralisées sont proposées

pour résoudre divers types d’équations différentielles stochastiques, offrant des améliorations

significatives des performances.

Mots clés: Equation différentielle stochastique, mouvement brownien, diffusion par sauts,

méthode spectrale, solution numérique, méthode de collocation.
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الملخص
أو البراونية بالحركة المرتبطة العشوائية التفاضلية المعادلات محاكاة مشكلة الأطروحة هذه في نتناول
ونقدم العشوائي والتكامل التفاضل لحساب الأساسية ية النظر نؤسس أولاً، العامة. ليفي عمليات
العددية الطرق من العديد نقدم ذلك، إلى بالإضافة العشوائية. التفاضلية للمعادلات يتو-تايلور إ توسعة
دفينج ومعادلة ينزالعشوائية لور معادلة لحل الطرق هذه تسُتخدم يتو-تايلور. إ توسع من المشتقة المختلفة
للمعادلات العددي للحل أيضًا مناسبة الطيفية الأساليب أن كما ميرتون. نموذج ومعادلة العشوائية
لأنواع المعممة لاغرانج استيفاء دوال تقُترح ذلك، إلى وبالإضافة الخطية. غير العشوائية التفاضلية

النتائج. في ملحوظة تحسينات يوفر مما العشوائية، التفاضلية المعادلات من مختلفة

الطيفية، يقة الطر القفزي، الانتشار البراونية، الحركة العشوائية، التفاضلية المعادلة : المفتاحية الكلمات
التجميع يقة طر العددي، الحل
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Introduction
Mathematical models of physical processes in science and engineering are presented in

the form of algebraic expressions before they are viewed as differential equations. One of

the basic principles of numerical methods is the reduction of a differential equation to an

approximation using algebraic equations. This reduction involves replacing a continuous

differential equation, whose solution space is generally infinite dimensional, with a finite

set of algebraic equations whose solution space is finite-dimensional.

During the last three decades, deterministic chaos theory has rapidly attracted mathe-

maticians, engineers, economists, physicists, biologists, etc. But, this type of ”chaos” can

only be understood as quasi-chaos, where all states of a system can be predicted and recre-

ated by experimenting. In addition, many experiments in the natural sciences have pro-

vided hard evidence of stochastic behavior. Deterministic models can represent idealized

situations and can often be corrected by adding stochastic influences.

Because of the irregularity of Brownian motion, stochastic differential equations can only

be interpreted in terms of stochastic integral equations. Kiyosi Ito (1915-2008) discovered the

difficulty of investigating differential equations with a noise term that does not converge to

a unique limit in the mean square sense. To avoid this difficulty, Ito developed a new ap-

proach and created a formula called the Ito formula, which is the basis of the Itô calculus

and an introduction to stochastic differential equations (SDE) [47, 48, 49, 56]. The passage

from ODEs to SDEs is made by incorporating random elements into the differential equa-

tion. Randomness can be set in the initial data for the problem, otherwise, the function that

describes the physical system can be a random function, and in this case, the differential

equation is known as a stochastic differential equation. Stochastic differential equations are

basically equations of motion for dynamic systems that evolve according to a probabilis-

tic description. In the last few years, stochastic ordinary differential equations have been

widely used in population dynamics, bacteriophage infection, and other fields [10, 26, 66].

Stochastic differential equations (SDEs) driven by the Brownian motion process are im-
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portant tools in a wide range of applications, including biology, chemistry, mechanics, eco-

nomics, physics, and finance [46, 55, 64, 65, 66], these equations are interpreted using Itô

calculus [98]. For example, the geometric Brownian motion

dX(t) = µX(t)dt+ λX(t)dB(t), X(0) = X0, (1)

which is a stochastic process commonly used to model the behavior of asset prices in fi-

nance, including in the Black-Scholes-Merton option pricing model, where X(t) represents

the asset price at time t, dX(t) represents the infinitesimal change in the asset price, µ is

the drift coefficient, representing the average rate of return of the asset over time and λ is

the volatility coefficient, representing the standard deviation of the asset’s returns. Another

important example is Feller’s branching diffusion, which is a stochastic process commonly

used in mathematical biology to model population dynamics, particularly in the context of

branching processes.

dX(t) = αX(t)dt+ σ
√
X(t)dB(t), X(0) = X0 > 0, (2)

where B(t) is the Brownian motion in both examples and here X(t) represents the popula-

tion size at time t, dX(t) represents the infinitesimal change in the population size, α is the

growth rate coefficient, representing the average rate of increase or decrease in the popula-

tion size over time and σ is the volatility coefficient, representing the standard deviation of

the population growth rate.

Stochastic differential equations driven by jump processes have been applied extensively

in several fields to model various natural problems [72, 102, 115, 136].

In recent years, time-dependent systems under random effects have attracted much at-

tention in various domains of science. Usually, such dynamical systems can be expressed by

SDEs. These equations are formulated by a stochastic process with non-smooth trajectories.

Since solving the SDEs can only be done in a particular cases, developing stable numerical

techniques for SDEs is a major and rapidly increasing area of research.

Taylor-Itô schemes have been widely used to solve stochastic differential equations (SDEs)

for a long time. Their popularity is unlikely to diminish with the increased use of automatic

differentiation techniques. The Taylor expansions of exact solutions of SDEs, from which

Taylor methods are constructed, can take one of two forms: either as Wagner’s Platen series

[66, 67, 131] or as B-series [114]. The connection between the two series has been shown in
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[32]. The construction of explicit and semi-implicit Taylor schemes can be found in many

references [66, 81]. Much research has been done on fully implicit methods in recent years. T.

Tian et al.[125] proposed implicit Taylor schemes for SDE. Ahmad et al.[5] created the fully

implicit stochastic-α method. Wang et al.[127] designed the split-step backward balanced

Milstein methods. [42] built a class of split-step balanced methods. Haining Wen developed

the fully-implicit truncated Euler–Maruyama method [133]. Wang et al. [129] presented a

family of fully implicit Milstein methods. Haghighi et al. Others recent contributions are

given in [6, 7, 54, 77, 82, 111, 128]. In [24], the author suggests an efficient way and powerful

class of Runge-Kutta methods for the solution of SDE, this class of methods is the focus of

the author’s research in the investigation of high-order methods suitable for the numerical

solution of SDE. Recently, a lot of work has been devoted to improving Taylor schemes by

developing implicit or multi-step techniques or by some spectral methods.

Due to their high accuracy, spectral methods have been widely used in the last decades.

Three main types of spectral methods can be applied: collocation, tau, and Galerkin. The

choice of the type of method depends fundamentally on the application. Collocation meth-

ods are appropriate for nonlinear problems or problems with intricate coefficients. The

standard approach, in which the test of functions (polynomials), has major disadvantages.

First, the matrices generated by the discretization matrices have an increasing condition

number, and thus computational rounding errors. This reduces the expected theoretical ex-

ponential accuracy. Furthermore, the discretization matrices are usually fully populated,

making it difficult to use efficient algebraic solvers. Several attempts have been made to

try to get around these inconveniences of the standard approach. All of these attempts

are based on the relatively large flexibility in choosing trial and test functions. In fact, us-

ing different weight functions, they are constructed in such a way as to include as much

bounded data as possible and, additionally, to decrease the condition number of the ma-

trices. Due to inherent ”randomness” within stochastic differential equations (SDEs) and

the unpredictable nature of Brownian motion, solving them analytically poses significant

challenges. Explicit solutions for SDEs are rare, making it difficult to address them directly.

Consequently, there has been a growing focus over the last decade on the advancement of

numerical techniques for solving stochastic differential equations. Numerous studies have

explored these equations employing a variety of numerical techniques, including cubic B-

spline collocation method, the Chebyshev collocation method, Jacobi collocation method,
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quadratic B-splines method, the finite difference-Simpsons method, reproducing kernel al-

gorithm, reproducing kernel Hilbert space method, and piecewise optimal fractional repro-

ducing kernel method, a spectral collocation method and Taylor expansion method, Bern-

stein polynomials, Bernoulli polynomials, block pulse functions, and Chebyshev wavelets

[4, 8, 9, 90, 91, 104, 107, 108, 143].

In this thesis, we are mainly concerned with approximations of stochastic differential

equations (SDE). The aim is to present recent developments in these numerical methods and

include our own works. We first study the classical strong and weak Taylor-Ito schemes to

approximate solutions of stochastic differential equations and examine their stability prop-

erties. The fundamental question is as follows, how well does the numerical method ap-

proximate the characteristics of the analytical solution. Following Higham [45], we con-

sider numerical methods for SDEs, in particular, the Euler-Maruyama method and Milstein

method. These methods are constructed from the Ito-Taylor expansion. In our research, we

deal with a nonlinear SDE. We estimate the exact solution using Monte Carlo simulation for

each method. To demonstrate the effectiveness of the numerical methods, approximate so-

lutions are compared with the analytical solution for different sample trajectories, and some

applications are given, including the linear Black-Scholes model, the Duffing equation, the

Lorenz system, and the Merton jump diffusion. In addition, we propose a novel approaches

to numerically approximate some classes of stochastic differential equations driven by white

noise. The presented methods share some particular features with stochastic collocation

techniques, and in particular, they exploit the smoothness assumption of the approximated

function to achieve fast convergence. The solution of the stochastic differential equation

(SDE) is expressed in terms of some basis functions. The coefficients of basis functions can

be calculated by solving a system of algebraic equations. Another attraction of this work

is the novelty of the numerical methods, which do not belong to the classical methods for

solving SDEs. Numerical experiments are performed to demonstrate the accuracy and ef-

fectiveness of the new methods.

This thesis is organized as follows: Chapter 1 begins with the concept of stochastic pro-

cesses, provides some background on probability theory, Itô calculus, and introduces stochas-

tic differential equations. In Chapter 2, we will first look at the classical Taylor Itô methods

with some numerical analysis. It discusses numerical methods for approximating stochastic

differential equations, we will look at two different pseudo-spectral methods and how to
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implement them. In Chapter 3, we propose a new adapted method for numerically solving

SDE. The method is based on the stochastic collocation method. We conclude this thesis

by summarizing the results obtained in the numerical experiments. Finally, we give a brief

overview of some topics of interest that are beyond the scope of this thesis. Some contribu-

tions of papers in this dissertation are as follows:

1. In the first work, we focus on Lagrange interpolation polynomials for solving nonlin-

ear stochastic integral equations. In this work, we use an efficient adaptative collocation

method solver that is used for a strong solution of SDE. The resulting method is well-suited

for dealing with different problems, which we demonstrate through numerical examples

and improve some stability issues.

2. In the second work, we concentrate on a novel efficient technique for solving nonlin-

ear stochastic Itô-Volterra integral equations. In this work, we provide an analysis of the

error committed by the generalization of interpolation problem to the so-called generalized

Lagrange functions. Our analysis provides a novel technique to indicate the efficiency of the

Jacobi collocation method for interpolation problems.

To finish this introduction, let us recall that the content of this thesis is the subjects of the

papers [22, 23].
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Chapter 1
Stochastic Calculus

This chapter is devoted to stochastic analysis which is one of the most interesting domain

in applied mathematics, which has been and is still studying phenomena in our daily lives

and has contributed to solving many problems. The story began in 1827 when Robert Brown

was hired to classify plants, so one of his interests was how pollen could be used to classify

plants. He put a drop of water on a microscope slide and added pollen to it; like usual, the

pollen wiggled and vibrated in the water, but for the first time, Brown wondered why. Many

hypotheses came to his mind regarding the movement of pollen in the water. Among these

hypotheses was that the movement could be due to the current, that the pollen was alive and

moving, or because of the evaporation of water, but all of these hypotheses contradicted the

random movement of the pollen, and they all failed during testing of their validity. Brown

repeated the same experiment, but with something certain that it was dead, but they contin-

ued to notice the vibration, which became not limited to pollen. The only defining feature

that all the jiggling specimens have in common is that the motion is random. At that time,

atoms and their movement had not been discovered, and there was common disagreement

among scientists about the presence of small, invisible particles that move due to changes

in pressure and temperature. This hypothesis had a problem from a theoretical standpoint

because the theory said that the particles were so small that even the best microscopes at the

time wouldn’t be able to see them.

Well, in 1905, Einstein came up with a solution to the problem and, in doing so, solved

Brown’s pollen mystery as well. He figured that even if we couldn’t see the tiny particles

themselves, we should be able to describe how they interact with something larger that

we can see. The atoms theory of Einstein was proven experimentally by the physicist Jean
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Perrin in 1926 [103], and he got a Nobel prize for it, even the scientists who were skeptical

about the theory’s validity were convinced.

A lot of modern technology was made possible by stochastic calculus, especially Brown-

ian motion. In 1976, Norbert Wiener developed the properties of Brownian motion in col-

lected works [134], which is often also called the Wiener process; all of Wiener’s study was

based on the measure theory, discovered by Lebesgue in 1902 [70].

To understand the dynamics of most SDEs and their solutions, it is important to have

some knowledge of probability theory as well as some mathematical principles. Here is a

brief introduction to some of these concepts.

1.1 Introduction to stochastic processes

Let (Ω,A, P ) be a probability space where Ω is a set, A is a σ-field and P is a probability

measure on A. Establishing the definition of random variables constitutes a fundamental

aspect of probability theory. A random variable X is a measurable function from a sample

space Ω as a set of possible outcomes to a measurable space E. One of the important random

variables are Gaussian variables characterized by their normal distribution densities [21,

100]. A generalization of Gaussian variables are Gaussian vectors for which all the linear

combination of its components is a Gaussian variable. However, the progression in this

field has prompted a move beyond mere satisfaction with random variables alone. In recent

years, the development of chaotic models has helped to eradicate the distinction between

deterministic and stochastic models. A chaotic model is a deterministic model that is highly

susceptible to the values of some parameters in the model and the researchers have claimed

that systems normally considered to be stochastic processes as viewed chaotic deterministic

systems, for example, a beating heart, a column of rising smoke, a smallpox epidemic.

The necessity to delve into random processes arises when addressing phenomena that

evolve over time. While a random variable signifies a singular outcome of a random exper-

iment, a stochastic process encapsulates a collection of random variables distributed across

time. The principal motivation for transitioning from random variables to random processes

lies in the imperative to model and scrutinize systems or phenomena exhibiting variability

and randomness over time or space.
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Definition 1.1 (Stochastic process)

A collection of random variables {Xt(w), t ∈ [0, T ], w ∈ Ω} is called a stochastic process.

• When we fix the time t, the stochastic process become a random variable: Xt = Xt(w), w ∈ Ω.

• For a fixed outcome w ∈ Ω, the application

X :R+ −→ Rn

t 7→ Xt(w),

is called a trajectory or realization of stochastic process.

In reality, stochastic processes are used to describe and analyze various phenomena where

randomness plays a significant role. Stochastic processes provide a way to understand and

quantify the inherent randomness and unpredictability in various systems and phenomena.

They offer valuable tools for making probabilistic predictions, optimizing processes, and

gaining insights into the behavior of complex systems in the presence of uncertainty. One of

the important process in stochastic calculus is the Markov process.

Remark 1.1 A stochastic process has the Markov property if its future evolution depends only on its

current position, for example, assume there is a person who goes to the casino and has 1,000$. He

will play one game every one hour. If he wins, the amount in his hand will be doubled, and if he loses,

the amount he has will be divided into two.

Define the stochastic process as Xt= { his amount at the tth hour }.

In this example, if we want to calculate how much money he will have at t = 4, its mean X4, we need

just information about X3, and we do not need information about how much money he had inX2 or

X1. This is exactly what the Markov process means.

Definition 1.2 (Gaussian process)

We say that Xt is a Gaussian process if for all (t1, t2, ..., tn) ∈ Rn
+ the vector (Xt1 , Xt2 , ..., Xtn) is a

Gaussian vector ( which means that each linear combination between its components is a Gaussian

variable).

It’s important to note that the Gaussian distributions are prevalent and useful in many

scenarios. In cases where the data significantly deviates from normality, alternative distri-

butions and statistical methods may be more appropriate.
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In the theory of stochastic processes, filtrations are fully organized collections of subsets

that are used to describe the information available at a given time. Hence play a major role

in the formalization of stochastic processes.

Definition 1.3 (Filtration)

On a probability space (Ω,A, P ), a collection {At, 0 ≤ t < ∞} of sub-σ-field on A, such that

As ⊂ At for every 0 ≤ s ≤ t is called a filtration. The space (Ω,A,At, P ) is called a filtrated

probability space.

Example 1.1 1. One common example of a filtration is in the context of a financial market. Con-

sider a financial market where each day you receive information about the stock prices. The infor-

mation available to you forms a filtration. Let’s denote the information at day t as At, representing

the sigma-algebra of events known up to and including day t. Here, the filtration At captures the

increasing information over time. If you observe stock prices for several consecutive days, A1 would

represent the information available after day 1, A2 after day 2, and so on. This concept is crucial

in stochastic processes and the theory of stochastic calculus, particularly in the modeling of financial

derivatives and understanding the evolution of information in dynamic systems.

2. The natural filtration of stochastic process Xt is defined as AX
t = σ {Xs, s ≤ t}.

Definition 1.4 (Adapted process)

The stochastic process {Xt, t ≥ 0} is adapted to the filtration {At, 0 ≤ t ≤ ∞} if for every t ≥ 0, Xt

is At-measurable.

One of the most important types of stochastic processes is the stochastic process with

independent increments. In this thesis, we will consider processes with independent incre-

ments.

Definition 1.5 A stochastic process Xt is said to be an independent increasing process if for all

t1, t2, ..., tn such that 0 < t1 < t2 < ... < tn, the random variables Xt1 , Xt2 − Xt1 , ..., Xtn − Xtn−1

are independent.

1.2 Brownian motion and the Wiener process

Let given the filtrated probability space (Ω,A, (At)t≥0, P ).
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Definition 1.6 The Brownian motion ( also called Wiener process ) B = {Bt, t ≥ 0} is a stochastic

process that satisfy the following conditions:

• Independent increasing process: for all t > s ≥ 0, the random variable Bt − Bs is

independent of As = σ{Bu, u ≤ s}.

• For all t ≥ 0, Bt is normally distributed with mean 0 and variance t.

• Continuity: The process B is continuous.

1.2.1 Construction of Brownian motion

Let us start with a simple random walk on a set of integers in discrete time.

Definition 1.7 (Random walk process)

Suppose that Y1, Y2, . . . , Yt, . . . are independent identically distributed random variables, taking the

value 1 or −1 with probability 1/2, then define for each integer t ≥ 1

Xt =
t∑

i=1

Yi, (1.1)

where X0 = 0, then {Xt, t ≥ 0} is called simple random walk.

By center limit theorem, Xt converge to N (0, t) then we will have 1√
t
Xt converge to N (0, 1).
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Figure 1.1: The random walk process.

Figure 1.1 shows the trajectory of a random walk process.
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If we go back to the movement of pollen in water, if we think of each collision (between

molecules and pollen) as one step, then each step will push pollen to the left or the right by

accumulating over time, this is a simple random walk. If we lead t to infinity in the Eq. (1.1),

we will have a Brownian motion. Figure 1.2-1.4 describe the trajectories of Brownian motion

in one, two and three dimensions, respectively.
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Figure 1.2: Brownian motion in one dimen-

sion.
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Figure 1.3: Brownian motion in two dimen-
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Figure 1.4: Brownian motion in three dimension.
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1.2.2 Sample paths properties of Brownian motion

Let Bt be a Brownian motion, so we have

• (Bt) is not differentiable at any point, and the trajectory of it passes infinitely many

times through all points.

• Stationary: for all h > 0, {Bt, t ≥ 0} and {Bt+h, t ≥ 0} have the same distribution.

• One of the important property of Brownian motion is its scaling invariance which

modifies the individual Brownian random functions but keeps their distribution in-

variant.

Theorem 1.1 [112] (Quadratic Variation)

Let {Bt}t∈[0,T ] be a Browniann motion, then we have

lim
n→∞

n∑
i=1

(
B
(
i

n
T

)
− B

(
i− 1

n
T

))2

= T. (1.2)

Proof.

Before we prove the property in Eq.(1.2), let’s see the result if we have a continuous differ-

entiable function instead of Brownian motion.

Assume that f is a continuously differentiable function so for a discretisation ti = i
n
T ,

i ∈ {1, 2, .., n}, we apply the mean value theorem to each interval [ti, ti+1], so there exists

a point si in each interval such that

f(ti+1)− f(ti) = f ′(si)(ti+1 − ti),

so, we have

n∑
i=1

(f(ti+1)− f(ti))
2 =

n∑
i=1

(f ′(si)(ti+1 − ti))
2
,

because f ′ is continuous in [0, T ], it must be bounded. Let M be a bound of f ′, thus we have

n∑
i=1

(f ′(si)(ti+1 − ti))
2 ≤

n∑
i=1

(M(ti+1 − ti))
2 ≤ M2T 2

n
.

So we abtain

lim
n→∞

n∑
i=1

(f(ti+1)− f(ti))
2 = 0.

12



Chapter 1 Stochastic Calculus

Now let’s prove Eq.(1.2).

Let Xi = B(ti+1)− B(ti), so Xi ∼ N (0, T
n
) and

∑n−1
i=0 (B(ti+1)− B(ti))2 =

∑n−1
i=0 X

2
i .

Setting Yi = X2
i , then

n−1∑
i=0

(B(ti+1)− B(ti))2 =
n−1∑
i=0

Yi = n

(
1

n

n−1∑
i=0

Yi

)
,

where Yi, i = 1 : n, are a random variables with mean equal to
T

n
. Using the strong law of

large numbers, the distribution
(
1
n

∑n−1
i=0 Yi

)
converge to T

n
as n→ ∞, so we obtain

lim
n→∞

n−1∑
i=0

(B(ti+1)− B(ti))2 = T. (1.3)

Remark 1.2 As a result of quadratic variation we have (dBt)
2 = dt.

1.3 Itô integral and stochastic differential equations

1.3.1 Introduction

The discovery of Brownian motion in the early 19th century was the beginning of a new way

of thinking about randomness. Early researchers like Thiele in 1880, Bachelier in 1900, and

Einstein in 1905 explored its applications in various fields, from analyzing stock markets to

understanding particle movement in fluids [14, 30, 38, 99, 124]. In 1931, Kolmogorov car-

ried out a detailed study of Bachelier’s research, which led to the development of Markov’s

theory and defined Kolomogorov’s equations [68], giving us tools to study random phenom-

ena systematically. Then, From 1938 to 1940, Doob expanded on these ideas by introducing

concepts like time change [126]. The real breakthrough came in 1944 when Itô introduced

stochastic integration in his first article [48], he tried to understand and study the Winers’

papers. Itô worked to develop and improve the Wiener’s ideas in 1951 [50, 51]. This was

the beginning of the development of this subject by the initiation of the study of SDEs and

the attempt to make sense of the stochastic integral. Mathematical models have been used

to describe natural phenomena, and ordinary differential equation modeling is particularly

useful for addressing questions about quantities that vary with time. These equations have

the following form

dx(t) = F (x(t), t)dt, t ∈ R, (1.4)
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for a given initial state x0. By integrating Eq.(1.4), we get

x(t) = x0 +

∫ t

0

F (x(s), s)ds. (1.5)

In the application of these equations to our physical reality, these functions often model

a tangible phenomenon, while their derivatives encapsulate the behavior of these functions.

Numerous natural phenomena can be expressed through ordinary differential equations.

Simultaneously, there are numerous phenomena characterized by unpredictable behaviors,

which we cannot fully isolate from their surroundings. Consequently, random external in-

fluences perpetually come into play, exerting control and altering the dynamics of the stud-

ied phenomenon. Indeed, the necessity arises to define what are known as stochastic differ-

ential equations.

For instance, consider the stock market, particularly in major companies, a subject that

has been under examination since 1953, notably by Kendall [57]. The findings from this

study revealed the intrinsic difficulty in predicting the behavior of prices, which exhibit

random changes over time. As research progressed, it became evident that stock prices

could be effectively modeled by a random walk. This phenomenon can be encapsulated in

the form of a stochastic differential equation, wherein a key parameter is not deterministic

but rather stochastic.

Certainly, let’s simplify the explanation. The fluctuation of stock prices in companies is

influenced by various factors such as the company’s performance, profitability, supply and

demand, and other external elements. This relationship can be expressed by the following

equation
dXt

dt
= K(t)Xt, (1.6)

in the given equation, the process Xt represent the share prices, dXt

dt
is the rate of change in

the stock price with respect to time and K(t) signifies the rate of price monotony, because

K(t) is not precisely known due to its linked with external influences, we can express this as

K(t) = α(t) + γnoise, (1.7)

where γ is a real constant, α(t) is deterministic term and the noise in general can be a Brow-

nian motion. But modeling some phenomena requires considering more general processes,

where the noise in Eq. (1.7) can be a Jump process. Due to the inclusion of the noise term,

the differential equation is called a stochastic differential equation (SDE).
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If the noise is a Brownian motion, so the Eq. (1.6) becomes an (SDE) with the form

dXt = α(t)Xtdt+ γXtdBt. (1.8)

If the noise is a jump process, then, in this context, the stochastic differential equations with

jump diffusion appeared, which took a great importance in applied mathematics, and it is

found, for example, in economics, finance, magnetic reconnection, computer vision,...etc.

The difference between the SDEs governed by Brownian motion and the SDEs with jumps is

that the SDEs consist of a drift part and a diffusion part. The diffusion part is the Brownian

motion. As we all know, the Brownian motion satisfies

• Continous paths

• Independent increments

• Stationary increments

So if we don’t have the continuous paths condition, then we allow the jumps in the sample

path, and that’s precisely the SDEs with jump diffusion mean.

1.3.2 Ito integral

To model the Markov process, Itô constructed a stochastic differential equation of the form

dXt = F (Xt, t)dt+G(Xt, t)dBt, (1.9)

for an initial state X0. By integrating Eq.(1.9), we will get the stochastic process of the form

Xt = X0 +

∫ t

0

F (Xs, s)ds+

∫ t

0

G(Xs, s)dBs︸ ︷︷ ︸
(I)

. (1.10)

In this case, Itô was faced with two problems. First, to define the stochastic part (I), and to

link Kolomogorov’s research on the Markov process with his explanations.

Knowing that the Brownian motion is nowhere differentiable, so we need to define the inte-

gral (I).

Definition 1.8 Let G = G(W,T ) be the set of functions

g(t, w) : [0,∞)× Ω −→ R,

that satisfy the conditions
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• (t, w) 7→ g(t, w) is B ×A-measurable, where B is the Borel σ-algebra on [0,∞).

• g(t, w) is At-measurable.

• E
[∫ T

W
g2(t, w)dt

]
<∞.

The elementary function ρ ∈ G is given as

ρ(t, w) =

n1−1∑
j=1

ρj(w)χ[tj ,tj+1], (1.11)

where ρj(w) is Aj measurable and χ[tj ,tj+1] is the indicator function.

Elementary functions play the role of stepped functions in the Lebesgue integral. It is natural

to define the Itô integral of elementary functions as

Definition 1.9 Consider the partition (W = t1 < t2 < ... < tn1 = T ) of the interval [W,T ], so∫ T

W

ρ(t, w)dBt =

n1−1∑
j=1

ρj(w)(Btj+1
− Btj). (1.12)

Example 1.2 Suppose that

ρ1(t, w) =

n1−1∑
j=1

Btj(w)χ[tj ,tj+1], ρ2(t, w) =

n1−1∑
j=1

Btj+1
(w)χ[tj ,tj+1].

So we have
∫ T

W
ρ1(t, w)dBt =

∑n1−1
j=1 Btj(Btj+1

− Btj), because of the independance increments of

Brownian motion then

E

[∫ T

W

ρ1(t, w)dBt

]
=

n1−1∑
j=1

E
[
Btj(Btj+1

− Btj)
]
= 0.

For ρ2(t, w), we have
∫ T

W
ρ2(t, w)dBt =

∑n1−1
j=1 Bti+1

(Btj+1
− Btj), then

E

[∫ T

W

ρ2(t, w)dBt

]
=

n1−1∑
j=1

E
[
Btj+1

(Btj+1
− Btj)

]
=

n1−1∑
j=1

E
[
(Btj+1

− Btj)
2 + Btj+1

Btj − B2
tj

]

E

[∫ T

W

ρ2(t, w)dBt

]
=

n1−1∑
j=1

E
[
(Btj+1

− Btj)
2 + Btj(Btj+1

− Btj)
]
=

n1−1∑
j=1

E
[
(Btj+1

− Btj)
2
]

=

n1−1∑
j=1

tj+1 − tj = T −W.
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Thus, Itô only allows integrals that correspond to the underlying filtration of sigma alge-

bra of the Brownian motion, since he is aware that it is impossible to integrate all continuous

stochastic processes due to the inbounded variation path of the Brownian motion. There-

fore, he exploits the independence of the increments of the Brownian motion to construct

the Itô isometry.

Lemma 1.1 [98] (Itô isometry for elementary functions)

If ρ(t, w) is a bounded and elementary function then

E

[(∫ T

W

ρ(t, w)dBt

)2
]
= E

[∫ T

W

ρ2(t, w)dt

]
. (1.13)

Proof. Let dBj = Btj+1
− Btj then

E

[(∫ T

W

ρ(t, w)dBt

)2
]
= E

[
n1−1∑
j=1

ρj(w)(Btj+1
− Btj)

]2
= E

[
n1−1∑
j=1

ρj(w)dBj

]2
,

knowing that

E(ρjρidBjdBi) =

 0, i ̸= j

E(ρi)
2(ti+1 − ti), i = j.

Then

E

[(∫ T

W

ρ(t, w)dBt

)2
]
=

n1−1∑
i,j=1

E(ρjρidBjdBi) =

n1−1∑
i=1

E(ρi)
2(ti+1 − ti)

= E

[∫ T

W

ρ2(t, w)dt

]
.

Next, we define the Itô isometry for all functions in G. The definition was an extension of

the space of elementary functions.

Definition 1.10 For g ∈ G(W,T ), we define the Itô integral as∫ T

W

g(t, w)dBt = lim
n→∞

∫ T

W

ρn(t, w)dBt, (1.14)

where the sequence of elementary functions {ρn} verify

E

[∫ T

W

(g − ρn)
2dt

]
→ 0 as n→ ∞. (1.15)

The Itô isometry plays a fundamental role in the analysis and application of Itô calculus, en-

suring that the Itô integral behaves consistently with respect to its integrand and stochastic

integration.
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Theorem 1.2 [66] (The Itô isometry)

For all g ∈ G, we have

E

[(∫ T

W

g(t, w)dBt

)2
]
= E

[∫ T

W

g2(t, w)dt

]
. (1.16)

Example 1.3 We want to calculate the integral
∫ t

0
BsdBs, so we try to find a sequence of elementry

functions {ρn} which verify Eq.(1.15).

For ρn =
∑n−1

j=1 Btj(w)χ[tj ,tj+1] then

E

[∫ t

0

(Bs − ρn)
2ds

]
= E

[∑
j

∫ tj+1

tj

(Bs − Btj)
2ds

]
=
∑
j

∫ tj+1

tj

E
[
(Bs − Btj)

2
]
ds

=
∑
j

∫ tj+1

tj

(s− tj)ds =
∑
j

1

2
(tj+1 − tj)

2

≤ K

2

∑
j

(tj+1 − tj) ≤
K

2
t→ 0 as n→ ∞,

where K = max
j

(tj+1 − tj). Now we can define the Itô integral as follows

∫ t

0

BsdBs = lim
n→∞

∫ t

0

ρn(t, w)dBs, (1.17)

thus∫ t

0

ρn(t, w)dBs =
n−1∑
j=1

Btj(Btj+1
− Btj) =

1

2

n−1∑
j=1

B2
tj+1

− B2
tj
− (Btj+1

− Btj)
2

=
1

2

n−1∑
j=1

(B2
tj+1

− B2
tj
)− 1

2

n−1∑
j=1

(Btj+1
− Btj)

2 =
1

2

n−1∑
j=1

dB2
tj
− 1

2

n−1∑
j=1

(dBtj)
2

=
1

2
B2
t −

1

2

n−1∑
j=1

(dBtj)
2.

Then, we have

lim
n→∞

∫ t

0

ρn(t, w)dBs = lim
n→∞

(
1

2
B2
t −

1

2

n−1∑
j=1

(dBtj)
2

)
=

1

2
B2
t −

t

2
.

Now, we introduce some properties of the Itô integral.

Properties of Ito integral

Let g, f ∈ G(W,T ), 0 ≤ W < S < T , and a is a constant.
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Theorem 1.3 [66]

•
∫ T

W

gdBt =

∫ S

W

gdBt +

∫ T

S

gdBt.

•
∫ T

W

(ag + f)dBt = a

∫ T

W

gdBt +

∫ T

W

fdBt.

• E

[∫ T

W

gdBt

]
= 0.

•
∫ T

W

gdBt is AT measurable.

We can see from example 1.3, that the definition of the Ito integral is not very convenient

when it comes to evaluating a stochastic integral. Ito introduce the Ito’s formula which

simplifies the evaluation of stochastic integrals.

For example we want to compute f(Bt), in classical calculus the following equation make

sense

df = f ′(Bt)dBt, (1.18)

but this equation is wrong. It seems logical, though, but let’s prove why.

According to Taylor’s formula, we have

f(t+ x) = f(t) + f ′(t)x+
f (2)(t)

2
x2 + .....,

so

f(t+ x)− f(t) = f ′(t)x+
f (2)(t)

2
x2 + .....,

then, if we take the Brownian motion, it become

f(Bt+x) = f(Bt) + f ′(Bt)(Bx+t − Bt) +
f (2)(Bt)

2
(Bx+t − Bt)

2 + .....

f(Bt+x)− f(Bt) = f ′(Bt)dBt +
f (2)(Bt)

2
(dBt)

2 + .....,

using the fact that (dBt)
2 = dt (from quadratic variation), then

df ≃ f ′(Bt)dBt +
f (2)(dBt)

2
dt. (1.19)

Its clear now that the Eq. (1.18) is wrong. Now, let f(t,X) be a function with two variables;

we want to evaluate f(t,Bt), using Taylor formula, we have

f(t+∆t,X +∆X) = f(t,X) +

(
∂f

∂t
(t,X)∆t+

∂f

∂X
(t,X)∆X

)
+

1

2

(
∂2f

∂t2
(t,X)(∆t)2 +

∂2f

∂X2
(t,X)(∆X)2 + 2

∂2f

∂t∂X
(t,X)∆t∆X

)
+ ...,
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we can observe directly that

df =
∂f

∂t
dt+

∂f

∂X
dXt +

1

2
(dXt)

2.

Let’s X = Bt then we obtain

f(t+ dt,Bt + dBt)− f(t,Bt) ≃
(
∂f

∂t
+

1

2

∂2f

∂X2

)
dt+

∂f

∂X
dBt, (1.20)

and this is exactly what Itô’s formula means. If we want to generalize the strongest lemma

in one-dimensional case, then , we will introduce the following theorem.

Theorem 1.4 [16] (Itô’s lemma )

Let f be a smooth function such that f(t, x) ∈ C2([0,∞]×R,R), and Xt is a stochastic process with

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, Then we have

df(t,Xt) =

(
∂f

∂t
+ µt

∂f

∂X
+

1

2
σ2
t

∂2f

∂X2

)
dt+ σt

∂f

∂X
dBt. (1.21)

Example 1.4 • Let f(t,X) = X2, so we have

df(t,Xt) =
(
2µtXt + σ2

t

)
dt+ 2σtXtdBt.

For Xt = Bt, we get

df(Bt) = 2BtdBt + dt.

• If f(t,Bt) = eat+bBt , then

df(t,Bt) = (a+
1

2
b2)fdt+ bfdBt.

Now, let introduce the multi-dimensional Itô’s lemma.

Theorem 1.5 [66] (Multi-dimensional Itô’s lemma )

Let f : [0,∞[×Rn 7→ R have continuous partial derevatives ∂f
dt
, ∂f
∂xk

, ∂2f
∂xk∂xi

for k, i = 1, 2, ..., n, and

define a scalar process {Ut, t ∈ [0,∞[} by Ut = f(t,Xt) = f(t,X1
t , X

2
t , ..., X

n
t ), where Xt verifies

the differential

dXt = Ftdt+GtdBt,

where F : [0,∞[×Ω 7→ Rn, G : [0,∞[×Ω 7→ Rn×m, and Bt = (B1
t ,B2

t , ...,Bm
t ) is an m-dimensional

Wiener process. Then the stochastic differential equation for Ut is written as

dUt =

(
∂f

dt
+

n∑
k=1

∂f

∂xk
F k
t +

1

2

m∑
j=1

n∑
k=1

∂2f

∂xi∂xk
Gi,j

t G
k,j
t

)
dt+

m∑
j=1

n∑
i=1

Gi,j
t

∂f

∂xi
dBj

t . (1.22)
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1.3.3 Existence and uniqueness of solutions for SDEs

Many phenomena in life are modeled by SDEs with the form Eq. (1.9) or an integral form

Eq. (1.10), our purpose is to solve this kind of equations if possible. Thus, the first theory

that needs to be verified is when such equations have a solution, and when it is a unique

solution.

We’ll present the robust solution of SDE in the form dXt = F (t,Xt)dt+G(t,Xt)dBt, t ∈ [0, T ]

X0 = x0
(1.23)

where F (., .) : [0, T ] × Rn 7→ Rn and G(., .) : [0, T ] × Rn 7→ Rn×m are measurable functions,

{B(t) = (B1,B2, ..,Bm)
T , t ≥ 0} be an m-dimensional Brownian motion on the provided

probability space, and x0 is a random variable. We called F the drift of SDE and G the

diffusion of SDE. Because B(t) is an m-dimensional Brownian motion, then we define the

σ-algebra generated by the random variable B(s), s ≤ t noted by Am
t which is the smallest

σ-algebra containing all sets of the form

{w,B(t1, w) ∈ A1, ...,B(tj, w) ∈ Aj} (1.24)

where ti ≤ t, i ≤ j = 1, 2, 3, ... and Ai ⊂ Rm are Borel sets (We assume that all sets of measure

zero are included in At).

As long as F and G are reasonable functions, a solution exists, and it’s unique if we hold

it with a initial condition X0 = x0. Hence, the following theorem gives the existence and

uniqueness of the solution for stochastic differential equation (1.23).

Theorem 1.6 [98] Let T > 0 and F (., .) : [0, T ] × Rn 7→ Rn, G(., .) : [0, T ] × Rn 7→ Rn×m are

measurable functions satisfying

• Linear growth condition

|F (t, x)|+ |G(t, x)| ≤ D(1 + |x|), x ∈ Rn, t ∈ [0, T ] (1.25)

where D is a constant and (|G|2 =
∑

|Gij|2).

• Lipshitz condition

|F (t, x)− F (t, y)|+ |G(t, x)−G(t, y)| ≤ K|x− y|, x, y ∈ Rn, t ∈ [0, T ] (1.26)

where K is a constant.
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• Consider x0 a random variable independent of σ-algebra A(m)
∞ generated by Bt(.), t ≥ 0 such

that

E|x0|2 <∞. (1.27)

Then the stochastic differential equation Eq.(1.23) has a unique solutionXt(w) continious and adapted

to the filtration Ax0
t generated by x0 and Bs(.), s ≤ t, and

E

[∫ T

0

|Xt|2dt
]
<∞. (1.28)

The proof of this theorem is based on two steps: proving the uniqueness using the Gron-

walls lemma ([66] page 129), and proving the existence using the successive approximation

method ”Picard iteration method.” [98].

Remark 1.3 • A strong solution is identified when the Theorem 1.6 yields the solution Xt, since

the Brownian motion version B(t) is predetermined, and the constructed solution Xt is Ax0
t -

adapted. Conversely, if we are provided solely with the functions F (t,Xt) and G(t,Xt) and

seek a pair of processes ((X ′(t),B′(t)),At) on a probability space (Ω,A, P ) such that equation

Eq.(1.23) holds, X ′(t) then is termed a weak solution.

• The strong uniqunesse means :

if X1 and X2 satisfy Eqs.(1.23) and (1.28), then

X1(t, w) = X2(t, w), ∀t ≤ T, a.s.

• Weak uniqueness means thatX1 andX2 have the same finite-dimensional distribution.

Lemma 1.2 [98] If F and G satisfy (1.25) and (1.26), then the solution of Eq.(1.23) Xt ”weak or

strong” is weakly unique.

Example 1.5 Consider the stochastic differential equation dX(t) = µX(t)dt+ σX(t)dB(t)

X(0) = X0, µ ∈ R, σ > 0.
(1.29)

Let X(t) = f(t,B(t)), using Itô’s lemma, then

dX(t) =

(
∂f

∂t
+

1

2

∂2f

∂B2

)
dt+

∂f

∂B
dBt, (1.30)
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according to Eq. (1.29), we have 
∂f

∂t
+

1

2

∂2f

∂B2
= µX(t) = µf

∂f

∂B
= σX(t) = σf.

(1.31)

It’s clear that f(t,B(t)) = eσB+g(t), then 
∂f

∂t
= g′(t)f,

∂2f

∂B2
= σ2f,

(1.32)

substituting equations (1.32) into (1.31), we obtain

g′(t)f +
1

2
σ2f = µf ⇒ g′(t) = (µ− 1

2
σ2) ⇒ g(t) = (µ− 1

2
σ2)t+ c.

so

f(t,B(t)) = eσB+(µ− 1
2
σ2)t+c. (1.33)

Now, using the initial condition f(0, 0) = ec = X0, then f(t,B(t)) = X0e
σB+(µ− 1

2
σ2)t.

Example 1.6 Consider the stochastic differential equation dX(t) = −αX(t)dt+ σdB(t)

X(0) = X0, α > 0.
(1.34)

The exact solution is given by

X(t) = a(t)

(
X0 +

∫ t

0

b(s)dB(s)
)
, a(0) = 1, (1.35)

where a(t) = e−αt, and b(t) = σeαt, this process is called Ornstein-Uhlenbeck process.

Example 1.7 The importance of Lipshitz and Linear growth conditions

Consider the deterministic differential equations, it’s mean G(t,Xt) = 0

• Let  dX(t) = 3X
2/3
t dt

X(0) = 0.
(1.36)

Notice that F (t,Xt) = 3X
2/3
t , which is not Lipschitzian. The solutions of Eq.(1.36) for any

c > 0 are written in the form

X(t) =

 0 if t ≤ c

(t− c)3, if t > c
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• Let  dX(t) = X2
t dt

X(0) = 1,
(1.37)

we have F (t,Xt) = X2
t . This function does not satisfy the linear growth condition, so we don’t

have the existence of a global solution for all t ∈ R, but we have a particular unique solution in

the interval [0, 1[ given by

X(t) =
1

1− t
. (1.38)

1.4 Jumps differential model

Stochastic differential equations have greatly contributed to clarifying many ambiguous

problems. These equations help to capture the random fluctuations observed in real-world

processes. However, many phenomena may not be adequately captured by traditional con-

tinuous models. Therefore, it was necessary to address this type of phenomenon by in-

troducing a model that provides more accurate representations of these scenarios, and from

here jump-diffusion models have appeared which are essential because they allow for the in-

corporation of sudden, discontinuous changes (jumps) into stochastic differential equations.

These models combine both continuous diffusion processes (modeled by stochastic differ-

ential equations) and discrete jump processes (modeled by jump terms). We can find this

theory in various fields such as finance, ecology, biology, engineering, and physics. Among

the common examples in real-world processes, are sudden changes in population sizes due

to environmental factors, disease outbreaks, or other catastrophic events, sudden changes

in asset prices in financial markets due to unexpected news or events, and sudden changes

in network traffic, such as spikes in data transmission rates or sudden network congestion.

Jump models occur according to various stochastic processes that capture the occurrence of

sudden, discontinuous changes or ”jumps” in a system. In the following, we define some of

the common stochastic processes used to model jumps.

1.4.1 Poisson process

First, we need to know the exponential random variables so that we can construct a model

(Poisson process) where an event (or jump) occurs from time to time.
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Exponential random variables

An exponential random variables τ is defined by the probability density function

g(t) =

 λe−λt, t ≥ 0,

0 t < 0,
(1.39)

where λ > 0 is the rate parameter. The expected value of τ is 1
λ

.

Definition 1.11 Let {τi}i≥1 be a series of independent exponential random variables each having the

same mean 1
λ

. Suppose the first jump occure at time τ1, and the second happens at time τ1 + τ2 and

ect. The arrival time are Sn =
∑n

i=1 τi where τi called the interarrival times and Sn is the time of the

nth jump. Then the Poisson process Nt which represent the number of jumps at or before time t is

defined as

Nt =
∑
n≥1

1t≥Sn . (1.40)

The paramater λ is called the intensity of Poisson process.

Lemma 1.3 [122] For a Poisson process N , the random variable Nt has a Poisson distribution with

parameter λt, where λ is constant so

P (Nt = n) =
(λt)n

n!
e−λt, n ∈ N (1.41)

The expected value of Poisson distributed dNt = Nt+dt − Nt is λdt it’s mean P (dNt = n) =
(λdt)n

n!
e−λdt, n ∈ N.

Figure 1.5 shows a path of Poisson process with intensity λ = 20 in the interval [0, 1], we

registered the total count of jumps that have happened up to time points dti and so on, up

to 1 where dti = i/1000.

1.4.2 Compound Poisson process

A Compound Poisson process is a stochastic process that combines the jumps that occur

from time to time with random sizes (or amplitudes) associated with each event. These

random variables are often independent and identically distributed. Merton Jump diffusion

is considered as one of the models that used the compound Poisson process because in this

model the jump times and also the jump heights both of them are random.
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Figure 1.5: A path of Poisson process with intensity λ = 20.

Definition 1.12 Let {Nt}t≥0 be a Poisson process with intensity λ, and {Yi}i≥1 is a sequence of

identically distributed random variables. A compound Poisson process {Jt}t≥0 with jump intensity

λ is defined as

Jt =
Nt∑
i=1

Yi. (1.42)

If Nt = 0, so Jt = 0.

Figure 1.6 represent a compound Poisson process with intensity λ = 20, and normal dis-

tributed jumps N (0.3, 1).

1.4.3 Lévy processes

Lévy processes are stochastic processes named after the French mathematician Paul Lévy.

They are defined as follows

Definition 1.13 If a process Xt satisfy

• The independent increasing process: ∀t > s ≥ 0, Xs+t −Xs independent of {Xu, u ≤ s}.

• The stationary increment

∀u > 0, {Xt, t ≥ 0} have the same distribution with {Xt+u, t ≥ 0}

so Xt is called a Lévy process.
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Figure 1.6: A path of compound Poisson process with intensity λ = 20 and normal dis-

tributed jumps N (0.3, 1).

One of the examples of Lévy process is the Poisson process, compound Poisson process,

also, the Brownian motion is a Lévy process but with continuous paths.

Now, we will present the jump-diffusion stochastic differential Equation, which effec-

tively captures the interplay between continuous random fluctuations and sudden, discon-

tinuous jumps within stochastic processes.

In a filtrated probability space (Ω,A, (At)t≥0, P ), we call the following equation a Jump-

Diffusion SDE for t ≥ 0
dXt = F (Xt, t)dt+G(Xt, t)dBt +H(Xt, t)dJt︸ ︷︷ ︸

(I)

X0 = x0,

(1.43)

where x0 is a given initial value at t0 and {Bt = (B1
t ,B2

t , ...,Bm
t )

T , t ≥ 0} is a standard indepen-

dant vector of Brownian motion At-Adapted, F (Xt, t) is the drift coefficient, G(Xt, t) the dif-

fusion coefficient and the part (I) called magnitude of the jump where {Jt = (J 1
t ,J 2

t , ...,J l
t )

T , t ≥

0} is At-Adapted compound Poisson process, such that each scalar J k
t are defined as

J k
t =

Nk
t∑

j=1

Y k
j , (1.44)

where {Nt = (N1
t , N

2
t , ..., N

l
t)

T , t ≥ 0} are standard Poisson process At-Adapted with in-

tensity λk respectively and {Y k
j : Ω 7→ R, j ∈ {1, 2, .., Nk

t }} is an independent identically

distribution random variables represents the jump sizes.
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Chapter 1 Stochastic Calculus

SDEJs have been widely used in various fields for modeling different physical and natu-

ral problems. Their applications span physics, ecology, biology, chemistry, astronomy, and

more. Particularly in modeling events in the finance or insurance industries, unpredictabil-

ity is the most important factor to consider, leading to the use of SDEJs.
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Chapter 2
Numerical methods for solving stochastic

differential equations

In this chapter, we will explore two overarching approaches for solving stochastic differ-

ential equations (SDEs). The initial section delves into the construction of Itô-Taylor schemes

and presents several numerical methods derived from this framework. The second section

discusses spectral methods as an alternative strategy for solving SDEs.

2.1 Itô-Taylor expansion

Before discussing the Itô-Taylor expansion, the Ito-Taylor formula for stochastic differential

equations will be briefly discussed in the next subsection.

2.1.1 Itô-Taylor formula

First, our focus will be on the construction of the deterministic Itô formula, which will be

of great importance in explaining its stochastic counterparts. To start, we will study the

solution Xt of a one-dimensional ordinary differential equation

dXt

dt
= F (Xt), X(t0) = X0, t ∈ [t0, T ], (2.1)

where t ∈ [t0, T ] and F is a function sufficiently smooth and have a linear growth. The

Eq.(2.1) is equivalent to the following integral equation

Xt = X0 +

∫ t

t0

F (Xs)ds. (2.2)
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Chapter 2 Numerical methods for solving SDE

Let g : R 7→ R be a continuously differentiable function. Then, applying the chain rule, we

have
dg(Xt)

dt
= F (Xt)

∂g(Xt)

∂x
, (2.3)

let S = F
∂

∂x
, so from Eq.(2.3), and for t ∈ [t0, T ] we can write

g(Xt) = g(X0) +

∫ t

t0

Sg(Xs)ds. (2.4)

For g = F , we get

F (Xt) = F (X0) +

∫ t

t0

SF (Xs)ds, (2.5)

substituting Eq.(2.5) into Eq.(2.2), leads us to the simplest non-trivial Taylor expansion

Xt = X0 +

∫ t

t0

(
F (X0) +

∫ s

t0

SF (Xk)dk

)
ds,

= X0 + F (X0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

SF (Xk)dkds. (2.6)

Continuing in the same way, let’s now consider g = SF, so we will have

Xt = X0 + F (X0)

∫ t

t0

ds+ SF (X0)

∫ t

t0

∫ s

t0

dkds+ L1, (2.7)

where

L1 =

∫ t

t0

∫ s

t0

∫ l

t0

S2F (Xz)dzdlds. (2.8)

For the general form, this approach yields to the classical deterministic Taylor formula given

by

g(Xt) = g(X0) +
i∑

j=1

(t− t0)
j

j!
Sjg(X0) +

∫ t

t0

...

∫ s2

t0

Si+1g(Xs1)ds1...dsi+1, i = 1, 2, . . . . (2.9)

Now, we will examine the solution Xt of a one-dimensional Ito stochastic differential equa-

tion written in the following way

Xt = X0 +

∫ t

t0

F (Xs)ds+

∫ t

t0

G(Xs)dBs. (2.10)

Let g : R 7→ R be a twice continuously differentiable function. Then, applying the Ito

formula, we get

g(Xt) = g(X0) +

∫ t

t0

(
F (Xs)

∂g(Xs)

∂x
+

1

2
G2(Xs)

∂2g(Xs)

∂x2

)
ds+

∫ t

t0

G(Xs)
∂g(Xs)

∂x
dBs.
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Chapter 2 Numerical methods for solving SDE

Using the operators

S0 = F
∂

∂x
+

1

2
G2 ∂

2

∂x2
, S1 = G

∂

∂x
, (2.11)

and applying the Ito formula to F (Xt) and G(Xt), then, substitute it into equation (2.10), we

obtain the approximation

Xt = X0 +

∫ t

t0

(
F (X0) +

∫ s

t0

S0F (Xk)dk +

∫ s

t0

S1F (Xk)dBk

)
ds

+

∫ t

t0

(
G(X0) +

∫ s

t0

S0G(Xk)dk +

∫ s

t0

S1G(Xk)dBk

)
dBs, (2.12)

so it can be written as follows

Xt = X0 + F (X0)(t− t0) +G(X0)(Bt − Bt0) + L, (2.13)

where

L =

∫ t

t0

∫ s

t0

S0F (Xk)dkds+

∫ t

t0

∫ s

t0

S1F (Xk)dBkds+

∫ t

t0

∫ s

t0

S0G(Xk)dkdBs

+

∫ t

t0

∫ s

t0

S1G(Xk)dBkdBs. (2.14)

This is the remainder of the Ito Taylor expansion.

2.1.2 Multiple integral

The following concept introduce certain notations to formulate the Ito-Taylor expansion.

Multiple index

A row vector β = (i1, i2, ..., in), where ij ∈ {0, 1, ...,m} for j ∈ {1, 2, ..., n}, m = 1, 2, ..., is

called a multi-index of length l := l(β) ∈ {1, 2, ...}. Notice that m denote the number of

components of the Wiener process. We define the set of all multi-indices by

Z = {(i1, i2, ..., in) : ij ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n} for n = 1, 2, ... and m = 1, 2, ..} ∪ {u},

where u is the multi index of length zero (l(u) = 0). For β ∈ Z , we denote by n(β) the

number of components of a multi-index β which are equal to 0.

Example 2.1 We have

1. If β = (0, 0, 1) then l(β) = 3 and n(β) = 2.
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Chapter 2 Numerical methods for solving SDE

2. For β = (3, 4, 0, 0), we have l(β) = 4 and n(β) = 2.

3. For β = (0, 1), we have l(β) = 2 and n(β) = 1.

For a given β ∈ Z with l(β) ≥ 1, we denoted −β and β− for the multi-index in Z , ob-

tained by deleting the first and the last component respectively. For two multi-indices

β1 = (i1, i2, ..., in) and β2 = (i′1, i
′
2, ..., i

′
n), we define the operator ∗ on Z by

β1 ∗ β2 = (i1, i2, ..., in, i
′
1, i

′
2, ..., i

′
n).

Example 2.2 Suppose that β1 = (2, 3, 4) and β2 = (0, 1), then β1 ∗ β2 = (2, 3, 4, 0, 1).

Multiple Itô integral

First of all, let define the three sets H of adapted right continuous stochastic processes g =

{g(t), t ≥ 0} with left hand limite

• if g ∈ Hu then |g(t, w)| <∞,

• if g ∈ H(0) then
∫ t

0
|g(s, w)|ds <∞,

• if g ∈ H(1) then
∫ t

0
|g(s, w)|2ds <∞.

For all integer j ≥ 2, we have H(j) = H(1). Now, we will define the sets Hβ , for multi-indices

β ∈ Z with length l(β) > 1.

Definition 2.1 Let τ1 and τ2 be two stopping times (A stopping time τ is a random variable which

for each t ≥ 0, the event {τ ≤ t} belongs to the sigma-algebra At) with 0 ≤ τ1 ≤ τ2 ≤ T , for

a multi-index β = (i1, i2, ..., in) ∈ Z and a stochastic process g ∈ Hβ , we define the multiple Ito

integral noted by Iβ[g(.)]τ1,τ2 by

Iβ[g(.)]τ1,τ2 =


g(τ2) l(β) = 0∫ τ2
τ1
Iβ−[g(.)]τ1,sds, l(β) ≥ 1 and in = 0∫ τ2

τ1
Iβ−[g(.)]τ1,sdBin

s , l(β) ≥ 1 and in ≥ 1.

(2.15)

So Hβ is the set of adapted right continuous stochastic processes g = {g(t), t ≥ 0} with left hand

limite such that the integral process {Iβ[g(.)]τ1,t, t ≥ 0} viewed as a function of t satisfy

Iβ− [g(.)]τ1,. ∈ H(in). (2.16)
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Chapter 2 Numerical methods for solving SDE

Example 2.3 • Iu[g(.)]0,t = g(t).

• For more details, let’s consider the following

I(0,1,2)[g(.)]0,t =

∫ t

0

I(0,1)[g(.)]0,sdB2
s =

∫ t

0

∫ s

0

∫ k

0

g(l)dldB1
kdB2

s . (2.17)

2.1.3 Itô coefficient function

We introduce the diffusion operator by

S0 =
∂

∂t
+

d∑
k=1

Fk
∂

∂xk
+

1

2

d∑
k,n=1

m∑
i=1

Gk,iGn,i
∂2

∂xk∂xn
, (2.18)

and

Si =
d∑

k=1

Gk,i
∂

∂xk
, ∀i ∈ {1, 2, ...,m}. (2.19)

We define the Itô coefficient function as

gβ =

 g n = 0,

Si1g−β n ≥ 1,
(2.20)

where β = (i1, i2, ..., in) and g ∈ Ch(R+ × Rd,R), with h = l(β) + n(β).

Example 2.4 Consider the identity function g(t, x) = x, in the one-dimensional case d = m = 1,

we have

• g(0) = S0gu = S0g = F,

• g(1,1) = S1g(1) = S1S1gu = S1S1g = S1G = G∂G
∂x
,

• g(0,1) = F ∂G
∂x

+ 1
2
G2 ∂2G

∂x2 .

2.1.4 Hierarchical and remainder sets

The next definition is indispensable for the definition of the stochastic Taylor expansion and

indicates that the multiple stochastic integrals appearing in the Taylor expansion cannot be

chosen arbitrarily. If a subset A ⊂ Z satisfy

• A ̸= ∅

• supβ∈A l(β) <∞
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Chapter 2 Numerical methods for solving SDE

• −β ∈ A for each β ∈ A\{u},

then A is called an hierarchical set. For example A = {u} or A = {u, (1, 1), (0), (1)} are

hierarchical sets. Now for all hierarchical set A, we define a remaider set B(A) of A by

B(A) = {β ∈ Z\A : −β ∈ A}.

Example 2.5 If A = {u, (0), (1)} then B(A) = {(0, 0), (1, 1), (1, 0), (0, 1)}.

2.1.5 Itô-Taylor schemes

The following theorem gives the Itô Taylor shemes for a d-dimensional Itô process solution

of the following SDE, dXt = F (t,Xt)dt+
∑m

j=1G
j(t,Xt)dBj

t , t ∈ [t0, T ],

Xt0 = X0.

(2.21)

Theorem 2.1 [66] Consider τ1 and τ2 be two stopping times with 0 ≤ τ1 ≤ τ2 ≤ T , and A ⊂ Z be

an hierarchical set. Let g : R+ × Rd 7→ R, then the Itô Taylor scheme is given by

g(τ2, Xτ2) =
∑
β∈A

Iβ[gβ(τ1, Xτ1)]τ1,τ2 +
∑

β∈B(A)

Iβ[gβ(., X.)]τ1,τ2 , (2.22)

provided that all of the multiple Itô integrals exists.

Example 2.6 In the one-dimensional d = m = 1, g(t, x) = x, τ1 = t0 and τ2 = t where 0 ≤ t0 ≤

t ≤ T and the hierarchical set A = {β ∈ Z : l(β) ≤ 1} = {u, (0), (1)}. We have the coefficient

function

• gu(t0, X0) = X0

• g(0)(t0, X0) = S0gu = S0X0 = F (t0, X0)

• g(1)(t0, X0) = S1gu = S1X0 = G(t0, X0).

Then

Xt = X0 + F (t0, X0)I(0) +G(t0, X0)I(1) + L. (2.23)

where

• I(0) =
∫ t

t0
ds = t− t0,
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• I(1) =
∫ t

t0
dBs = Bt − Bt0 .

Now for the case l(β) ≤ 2, we add the following terms:

• g(1,0) = S1g(0)(t0, X0) = S1S0gu = G(t0, X0)
∂F
∂Xt

(t0, X0),

• g(1,1) = S1g(1)(t0, X0) = S1S1gu = G(t0, X0)
∂G
∂Xt

(t0, X0),

• g(0,0) =
∂F
∂t
(t0, X0) + F (t0, Xt0)

∂F
∂Xt

(t0, X0) +
1
2
G2(t0, X0)

∂2F
∂X2

t
(t0, X0),

• g(0,1) =
∂G
∂t
(t0, X0) + F (t0, Xt0)

∂G
∂Xt

(t0, X0) +
1
2
G2(t0, X0)

∂2G
∂X2

t
(t0, X0).

Then we have

Xt = X0 + F (t0, X0)I(0) +G(t0, X0)I(1) + g(1,1)I(1,1) + g(0,1)I(0,1) + g(1,0)I(1,0) + g(0,0)I(0,0) + L.

where L is the remaider of the Itô expansion and

• I(1,0) =
∫ t

t0
I(1)ds =

∫ t

t0
(Bs − Bt0)ds.

• I(0,1) =
∫ t

t0
I(0)ds =

∫ t

t0
(s− t0)dBs.

• I(0,0) =
∫ t

t0

∫ s

t0
dkds = (t−t0)2

2
.

• I(1,1) =
∫ t

t0

∫ s

t0
dBkdBs =

1
2
[(Bt − Bt0)

2 − (t− t0)].

2.2 Approximation by Itô-Taylor schemes

In this section, we will present the numerical schemes derived from the Itô-Taylor expansion.

They fall into two categories, explicit and implicit schemes.

Let consider an Itô process {Xt}t0≤t≤T satisfying Eq.(2.21), in the interval [t0, T ]. Taking a

discretization of the interval [t0, T ], for some integer N as t0 < t1 < t2 < ... < ti < ... < tN =

T, we denote ∆i = ti+1 − ti, and δ = maxi ∆i.

The step size ∆i play an important role for computational efficiency, when applying

the Itô-Taylor approximation over an interval [t0, T ]. The approximation process obtained

through an iterative schemes is denoted by Zt = {Z(t), t0 ≤ t ≤ T} where Z0 = X0.
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Convergence and error estimate

Typically, the lack of an explicit solution to a stochastic differential equation necessitates the

use of a numerical simulations. However, if the problem has an analytical solution, then we

can calculate the estimated error between the Itô process and its approximation at time T as

ϵstrong = E(|XT − ZT |). (2.24)

The absolute error is estimated by running N diverse simulations of simple paths for the

Itô process and its approximations Z. These simulations are based on the same sample

trajectories of the Brownian motion. We will use the following estimate

ϵ̄ =
1

N

N∑
j=1

|XT − ZT |. (2.25)

Definition 2.2 (Strong convergence )

A time-discrete approximation Zδ with maximum step size δ converge strongly to X at time T if

lim
δ→0

E(|XT − Zδ
T |) = 0. (2.26)

We say that Zδ converges strongly with order λ > 0 at time T if there exists a constant M such that

E(|XT − Zδ
T |) ≤Mδλ. (2.27)

Definition 2.3 (Weak convergence)

A time-discrete approximation Zδ converges weakly to X at time T , if for all h : Rd 7→ R in class C

of test functions

lim
∆i→0

∣∣E(h(XT ))− E(h(Zδ
T ))
∣∣ = 0. (2.28)

If the set C encompasses all polynomials, this definition suggests the convergence of all moments.

Therefore, any theoretical inquiry involving it necessitates the presence of all moments. Let C l(Rd,R)

represent the space of functions h : Rd 7→ R that are l times continuously differentiable, and let

C l
P (Rd,R) denote the subspace of functions h ∈ C l(Rd,R) for which all partial derivatives up to

order l possess polynomial growth, it means that there exist constants M > 0 and i ∈ {1, 2, ...},

depending on h such that

|∂jxh(x)| ≤M(1 + |x|2i), (2.29)

for all x ∈ Rd and any partial derivative ∂jxh of order j ≤ l.

36



Chapter 2 Numerical methods for solving SDE

Definition 2.4 (Weak order of convergence)

We say that the approximation Zδ converges weakly with order λ1 > 0 at time T if there exists a

constant M1 such that ∣∣E(h(XT ))− E(h(Zδ
T ))
∣∣ ≤M1δ

λ1 . (2.30)

Therfore, in all of the following we assume ∆i = T−t0
N

and ti = i∆i = i (T−t0)
N

for i ∈

{0, 1, ..., N}.

2.2.1 Strong explicit approximations

Strong Euler-Maruyama method

The Euler method is one of the simplest approaches to finding approximation to solutions

of ordinary differential equations. This method can be generalized to find approximate so-

lutions of SDE.

To construct the Euler scheme from Eq.(2.21), let write the integral stochastic form

X(T ) = X0 +

∫ T

t0

F (t,Xt)dt+

∫ T

t0

G(t,Xt)dBt, (2.31)

for T = ti+1 and T = ti, we have

X(ti+1) = X0 +

∫ ti+1

t0

F (t,Xt)dt+

∫ ti+1

t0

G(t,Xt)dBt, (2.32)

and

X(ti) = X0 +

∫ ti

t0

F (t,Xt)dt+

∫ ti

t0

G(t,Xt)dBt, (2.33)

by subtracting the Eqs.(2.32) and (2.33), we get the following stochastic equation

X(ti+1) = X(ti) +

∫ ti+1

ti

F (t,Xt)dt+

∫ ti+1

ti

G(t,Xt)dBt. (2.34)

Let denoted by Xi = X(ti) and Xi+1 = X(ti+1) for i = 0, .., N , approximating the integrals in

Eq.(2.34) gives ∫ ti+1

ti

F (t,Xt)dt ≃ F (ti, Xi)(ti+1 − ti) = F (ti, Xi)∆i (2.35)

and ∫ ti+1

ti

G(t,Xt)dBt ≃ G(ti, Xi)(Bi+1 − Bi) = G(ti, Xi)∆Bi. (2.36)

Now, substitute (2.35) and (2.36) into (2.34) gives

X(ti+1) = X(ti) + F (ti, Xi)∆i +G(ti, Xi)∆Bi. (2.37)
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Eq.(2.37) represents the Euler-Maruyama formula for the stochastic differential equation

(2.21).

In the multi-dimensional case where d = 1, 2, ... and m = 1, the kth component of Euler

scheme is given by

Xk
i+1 = Xk

i + F k(ti, Xi)∆i +Gk(ti, Xi)∆Bi, (2.38)

where k = 1, 2, ..., d, F k = (F 1, F 2, ..., F d) and Gk = (G1, G2, ..., Gd) are d-dimensional vec-

tor. For the general multi-dimensional case with d,m = 1, 2, ..., the kth component of Euler

scheme is given by

Xk
i+1 = Xk

i + F k(ti, Xi)∆i +
m∑
j=1

Gk,j(ti, Xi)∆Bj
i , (2.39)

where [Gk,.] is a d×m matrix and ∆Bj
i = Bj

ti+1
−Bj

ti , noting that Bj ∼ N (0,∆i) and ∆Bj1 and

∆Bj2 are independent for j1 ̸= j2.

Theorem 2.2 [66] Suppose that F and G satisfy the Lipschitz and linear growth conditions given

in Eqs.(1.26)-(1.25). For all s, t ∈ [t0, T ] and x ∈ Rd if

E(|X0|2) <∞, (2.40)

E(|X0 − Zδ
0 |2)1/2 ≤ L1δ

1/2, (2.41)

|F (s, x)− F (t, x)|+ |G(s, x)−G(t, x)| ≤ L2(1 + |x|)|s− t|1/2, (2.42)

where L1, L2 do not depend on δ, then the estimate error of Euler approximation Zδ is given by

E(|XT − Zδ
T |) ≤ L3δ

1/2, (2.43)

where the constant L3 does not depend on δ.

Remark 2.1 From Theorem 2.2, it’s clear that the Euler-Maruyama method has strong order λ =

0.5.

Strong Milstien scheme

This scheme is proposed by Milstien with strong order 1.0. For the one-dimensional case

where m = d = 1, we add to the Euler-Maruyama scheme the term

G(ti, Xi)
∂

∂Xt

G(ti, Xi)I(1,1) =
1

2
G(ti, Xi)

∂

∂Xt

G(ti, Xi){(∆Bi)
2 −∆i}, (2.44)

38



Chapter 2 Numerical methods for solving SDE

we get Milstien scheme as follows

Xi+1 = Xi + F (ti, Xi)∆i +G(ti, Xi)∆Bi +
1

2
G(ti, Xi)

∂

∂Xt

G(ti, Xi){(∆Bi)
2 −∆i}. (2.45)

In the multi-dimensional case with d = 1, 2, ... and m = 1, the kth component of Milstien

scheme is

Xk
i+1 = Xk

i + F k(ti, Xi)∆i +Gk(ti, Xi)∆Bi +
1

2

(
d∑

j=1

Gj(ti, Xi)
∂

∂Xj
t

Gk(ti, Xi)

)
{(∆Bi)

2 −∆i},

(2.46)

where k = 1, 2, ..., d, F k = (F 1, F 2, ..., F d) and Gk = (G1, G2, ..., Gd) are d-dimensional vector.

Example 2.7 Consider the linear stochastic differential equation

dXt = λXtdt+ µXtdBt, t ∈ [0, T ], (2.47)

where the exact solution is given by

X(t) = X0e
(λ− 1

2
µ2)t+µB(t). (2.48)

Let T = 1, with a discretization step size ∆i = 1/N , and for X0 = 1, λ = 1.5 and µ = 1, the

Euler-Maruyama scheme of this example is

X(ti+1) = X(ti) + λXti∆i + µXti∆Bi. (2.49)

Now for the Milstien scheme, we have

X(ti+1) = X(ti) + λXti∆i + µXti∆Bi +
1

2
µ2{(∆Bi)

2 −∆i}. (2.50)

Figure 2.1 represents the exact and approximate solutions obtained by Euler and Milstien schemes

for one trajectory of Brownian motion and N = 100. Figure 2.2 represents the exact and approximate

solutions obtained by Euler and Milstien schemes with the absolute error with 102 different sample

paths of Brownian motion and N = 100.

Example 2.8 We examine the nonlinear SDE

dXt = −a2Xt(1−X2
t )dt+ a(1−X2

t )dBt, 0 ≤ t ≤ 1, (2.51)

where the analytical solution is given by

X(t) = tanh(aB(t) + arctan(X0)). (2.52)
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Figure 2.1: Exact solution, Euler and Milstien approximate solutions with one trajectory for

Example 2.7.
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Figure 2.2: Exact solution, Euler and Milstien approximate solutions with the absolute error

for Example 2.7.
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Figure 2.3: Exact solution, Euler and Milstien approximate solutions with the absolute error

for Example 2.8.

Let a = 1/30 and X0 = 1/10. The explicit Euler scheme of this example, is given by

X(ti+1) = X(ti) +
[
−a2Xti(1−X2

ti
)
]
∆i + a(1−X2

ti
)∆Bi. (2.53)

The Milstein scheme is

X(ti+1) = X(ti) +
[
−a2Xti(1−X2

ti
)
]
∆i + a(1−X2

ti
)∆Bi +

[
−a2Xti(1−X2

ti
)
]
{(∆Bi)

2 −∆i}.

Figure 2.3 illustrates the exact and approximate solutions generated by Euler and Milstein schemes,

accompanied by the absolute error, across 102 distinct sample paths of Brownian motion, all with

N = 100.

Example 2.9 Consider the problem

dXt = a2 cos(X(t)) sin3(X(t))dt+ a sin2(X(t))dBt, 0 ≤ t ≤ 1. (2.54)

The analytical solution of this problem is as follows

X(t) = arccot(aB(t) + cot(X0)). (2.55)

Let a = 1/20 and X0 = 1/20, so the explicit Euler scheme of this example is

X(ti+1) = X(ti) +
[
a2 cos(Xti) sin

3(Xti)
]
∆i + (a sin2(Xti))∆Bi. (2.56)

For the Milstien scheme, we have

X(ti+1) = X(ti) +
[
a2 cos(Xti) sin

3(Xti)
]
∆i + (a sin2(Xti))∆Bi

+ a2 sin2(Xti) cos(Xti) sin(Xti){(∆Bi)
2 −∆i}. (2.57)
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Figure 2.4 presents the precise and approximate solutions produced by Euler and Milstein schemes,

with the associated absolute error, for 102 sample paths of Brownian motion, all obtained by taking

N = 100.
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Figure 2.4: Exact solution, Euler and Milstien approximate solutions and the absolute error

for Example 2.9.

Figure 2.5-2.6 illustrates the approximate solution obtained by explicit Euler and Milstien schemes,

with the absolute error , in the interval [0, 10] for 102 sample paths of Brownian motion, obtained with

N = 10000 and N = 100 respectively.
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Figure 2.5: Exact solution, Euler and Milstien approximate solutions with the absolute error

with N = 10000 for Example 2.9.

Example 2.10 Consider the problem

X(t) = X0 +

∫ t

0

(
1

3
X(s)

1
3 + 6X(s)

2
3 )ds+

∫ t

0

X(s)
2
3dB(s), 0 ≤ t ≤ 1, (2.58)
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Figure 2.6: Exact solution, Euler and Milstien approximate solutions with the absolute error

with N = 100 for Example 2.9.

the exact solution is given by

X(t) = (2t+ 1 +
1

3
B(t))3, (2.59)

where X0 = 1. Figures 2.7-2.9 illustrate the exact and approximate solutions using strong Euler and

Milstien schemes for ∆ = 1/1000, ∆ = 1/100 and ∆ = 1/10000 respectively for 100 simulations.
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Figure 2.7: Exact solution compared with Euler and Milstein approximations and the abso-

lute error for Example 2.10 for N = 1000.
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Figure 2.8: Exact solution compared with Euler and Milstein approximations with the abso-

lute error for Example 2.10 for N = 100.
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Figure 2.9: Exact solution compared with Euler and Milstein approximations with the abso-

lute error for Example 2.10 for N = 10000.
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The order 1.5 strong Taylor scheme

This scheme is obtaining by adding some termes from the Itô-Taylor expansion into the

Milstien scheme, in the one-dimentional case where m = d = 1, the resulting 1.5 strong

Itô-Taylor scheme is outlined as follows

Xi+1 = Xi + F∆i +G∆Bi +
1

2
G

(
∂

∂Xt

G

)
{(∆Bi)

2 −∆i}+
(

∂

∂Xt

F

)
G∆Z

+
1

2
∆2

i

(
F

∂

∂Xt

F +
1

2
G2 ∂2

∂X2
t

F

)
+

(
F

∂

∂Xt

G+
1

2
G2 ∂2

∂X2
t

G

)
{∆Bi∆i −∆Z}

+
1

2
G

(
G

∂2

∂X2
t

G+

(
∂

∂Xt

G

)2
)
{1
3
(∆Bi)

2 −∆i}∆Bi, (2.60)

where the random variable ∆Z is defined as

∆Z = I(1,0) =

∫ τ2

τ1

∫ s

τ1

dBkds (2.61)

with ∆Z ∼ N (0, 1
3
∆3

i ), and covariance E(∆Z∆B) = 1
2
∆2.

Example 2.11 Consider the linear SDE as presented in example 2.7. The exact and approximate

solutions generated by the explicit Euler, Milstein and the order 1.5 Taylor schemes with the absolute

error, across 102 different sample paths of Brownian motion, all with N = 10, N = 100 and N =

1000 are presented in Figures 2.10-2.12 respectively.
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Figure 2.10: Exact solution compared with three approximations with the absolute error for

Example 2.11 for N = 10.
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Figure 2.11: Exact solution compared with three approximations with the absolute error for

Example 2.11 for N = 100.
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Figure 2.12: Exact solution compared with three approximations with the absolute error for

Example 2.11 for N = 1000.
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Remark 2.2 We can also get the higher-order approximations by incorporating additional terms

from the Itô-Taylor expansion, the issue in this kind of approximation is the existence of certain

multiple integrals which can be challenging to compute and demand more numerical approximations

and increased computation time. Some information on how to obtain high- order approximations can

be found in [66].

2.2.2 Strong implicit approximations

Strong implicit Euler-Maruyama scheme

Let consider an Itô process {Xt}t0≤t≤T satisfying Eq.(2.21) in the interval [t0, T ]. By following

the same steps as in the strong explicit Euler scheme, the implicit scheme differs from it in

the approximation of the integral (2.35). This leads to∫ ti+1

ti

F (t,Xt)dt ≃ F (ti+1, Xi+1)(ti+1 − ti) = F (ti+1, Xi+1)∆i, (2.62)

so in the one-dimensional cases d = m = 1, the implicit Euler-Maruyama scheme is given

by

X(ti+1) = X(ti) + F (ti+1, Xi+1)∆i +G(ti, Xi)∆Bi. (2.63)

We can construct a familly of implicit Euler scheme by

X(ti+1) = X(ti) + {λF (ti+1, Xi+1) + (1− λ)F (ti, Xi)}∆i +G(ti, Xi)∆Bi, (2.64)

where λ ∈ [0, 1]. If λ = 0, we get the explicit Euler-Maruyama scheme, and if λ = 1 we

obtain the implicit Euler scheme Eq.(2.63).

In the general case where d,m = 1, 2, ..., the kth component familly of Euler scheme is written

as

Xk(ti+1) = Xk(ti) + {λkF k(ti+1, Xi+1) + (1− λk)F
k(ti, Xi)}∆i +

m∑
j=1

Gk,j(ti, Xi)∆Bj
i , (2.65)

where k ∈ {1, 2, ..., d} and λk ∈ [0, 1].

Strong implicit Milstien scheme

This scheme has a strong order 1.0, in the one-dimensional case where m = d = 1, we add

to the implicit Euler Maruyama scheme the term

1

2
G(ti, Xi)

∂

∂Xt

G(ti, Xi){(∆Bi)
2 −∆i}. (2.66)
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Example 2.12 Consider the same nonlinear SDE as presented in example 2.8.

The implicite Euler scheme of problem (2.51) is given by

X(ti+1) = X(ti) +
[
−a2Xti+1

(1−X2
ti+1

)
]
∆i + a(1−X2

ti
)∆Bi. (2.67)

For the implicit Milstien scheme, we have

X(ti+1) = X(ti)+
[
−a2Xti+1

(1−X2
ti+1

)
]
∆i+a(1−X2

ti
)∆Bi+

[
−a2Xti(1−X2

ti
)
]
{(∆Bi)

2−∆i}.

The exact and approximate solutions generated by the implicit Euler scheme and implicit Milstein

scheme, accompanied by the absolute error, across 102 distinct sample paths of Brownian motion, all

with N = 100 are presented in Figure 2.13. Figure 2.14 shows the approximate solution obtained by

the explicit and implicit Euler, Milstien schemes with the absolute error for N = 100 and 102 distinct

sample paths of Brownian motion.
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Figure 2.13: Exact solution, the implicit Euler and Milstien approximate solutions with the

absolute error for Example 2.12.
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Figure 2.14: Exact solution, Euler and Milstien approximate solutions with the absolute error

for Example 2.12.

Example 2.13 Let’s consider the problem

dXt = −0.015625Xt(1−X2
t )ds+ 0.125(1−X2

t )dB(s), 0 ≤ t ≤ 1, (2.68)

with the exact solution

X(t) =
9
8
e0.25B(t) − 7

8
9
8
e0.125B(t) + 7

8

. (2.69)

For X0 = 1/8, the implicit Euler scheme of Eq(2.68) is written as follows

X(ti+1) = X(ti) +
[
−0.015625Xti+1

(1−X2
ti+1

)
]
∆i + 0.125(1−X2

ti
)∆Bi. (2.70)

The corresponding Milstein scheme is reformulated in the following way

X(ti+1) = X(ti) +
[
−0.015625Xti+1

(1−X2
ti+1

)
]
∆i

+ 0.125(1−X2
ti
)∆Bi +

[
−0.015625Xti(1−X2

ti
)
]
{(∆Bi)

2 −∆i}. (2.71)

Figure 2.15 illustrates the exact and approximate solutions generated by the implicit Euler and Mil-

stein schemes, accompanied by the absolute error, across 102 distinct sample paths of Brownian mo-

tion, all with N = 100 simulations. Figure 2.16 shows the explicit and implicit Euler and Milstein

schemes with their respective absolute errors for N = 100 and 102 distinct sample paths of Brownian

motion.

The approximate solutions obtained by implicit Euler and Milstein schemes compared with

exact solution are presented in Figure 2.17 for the linear stochastic differential equation

(2.47).
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Figure 2.15: Exact solution, the implicit Euler and Milstien approximate solutions with the

absolute error for Example 2.13.
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Figure 2.16: Exact solution, Euler and Milstien approximate solutions with the absolute error

for Example 2.13.
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Figure 2.17: Exact solution, implicit Euler and Milstien approximate solutions with the ab-

solute error for Example 2.7.

Implicit order 1.5 strong Taylor scheme

In the one-dimensional case where m = d = 1, the implicit order 1.5 strong Taylor scheme

has the following form

Xi+1 = Xi +
1

2
(F (ti+1, Xi+1)− F (ti, Xi))∆i +

1

2
G

(
∂

∂Xt

G

)
{(∆Bi)

2 −∆i}

+G
∂

∂Xt

F{∆Z − 1

2
∆Bi∆i}+

(
F

∂

∂Xt

G+
1

2
G2 ∂2

∂X2
t

G

)
{∆Bi∆i −∆Z}

+
1

2
G

[
∂

∂Xt

(
G
∂G

∂Xt

)]
{1
3
(∆Bi)

2 −∆i}∆Bi, (2.72)

where ∆Z ∼ N (0, 1
3
∆3

i ), and ∆Bi ∼ N (0,∆i). For more information and details, see [66].

2.2.3 Weak expilicit approximations

Weak Euler schemes

In subsection (2.2.1), we examined different Euler schemes. The form of the k-th component

in Euler schemes in Eq. (2.39) implies robust multidimensional schemes with strong con-

vergence. Now we will consider weak approximations to Itô processes. In this approach,

we replace the Brownian increments with other increments that have similar moments to a

certain degree. These approximations lead to the first scheme, called the simplified Euler

weak scheme, as shown below

Xk
i+1 = Xk

i + F k(ti, Xi)∆i +
m∑
j=1

Gk,j(ti, Xi)∆B̃j
i , (2.73)
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where ∆B̃j are independent Ati+1
-measurable satisfying∣∣∣E(∆B̃j)

∣∣∣+ ∣∣∣E ((∆B̃j)3
)∣∣∣+ ∣∣∣E ((∆B̃j)2

)
−∆i

∣∣∣ ≤ A∆2
i , (2.74)

and A is a constant. We can take B̃j as a two point distributed random variabes with

P (∆B̃j = ±
√

∆i) =
1

2
. (2.75)

According to Theorem (14.5.2) in Kloden’s book [66]. The simplified Euler scheme is of order

1.0.

Order 2.0 weak schemes

The order 2.0 weak Taylor scheme is constructed by incorporating all the double stochastic

integrals from the Itô-Taylor expansion into the Euler scheme. For the one dimensional case

(d = m = 1), The simplified weak order 2.0 is given by

Xi+1 = Xi + F∆i +G∆Bi +
1

2
G

(
∂

∂Xt

G

)
{(∆Bi)

2 −∆i}

+

(
∂

∂Xt

F

)
G∆Z +

1

2
∆2

i

(
F

∂

∂Xt

F +
1

2
G2 ∂2

∂X2
t

F

)
+

(
F

∂

∂Xt

G+
1

2
G2 ∂2

∂X2
t

G

)
{∆Bi∆i −∆Z}. (2.76)

From the scheme (2.76), an adapted scheme can be obtained by replacing the Gaussian in-

crement ∆B with ∆B̃ with similar moment properties, and avoiding the second random

variable ∆Z, by replacing it with the random variable 1
2
∆B̃∆i. Then, we get the simplified

order 2.0 weak Taylor scheme as follows

Xi+1 = Xi + F∆i +G∆B̃i +
1

2
G

(
∂

∂Xt

G

)
{(∆B̃i)

2 −∆i}

+
1

2
∆B̃∆i

(
G

∂

∂Xt

F + F
∂

∂Xt

G+
1

2
G2 ∂2

∂X2
t

G

)
+

1

2
∆2

i

(
F

∂

∂Xt

F +
1

2
G2 ∂2

∂X2
t

F

)
, (2.77)

where ∆B̃j are independent Ati+1
-measurable satisfying∣∣∣E(∆B̃)

∣∣∣+ ∣∣∣E ((∆B̃)3
)∣∣∣+ ∣∣∣E ((∆B̃)5

)∣∣∣
+
∣∣∣E ((∆B̃)2

)
−∆i

∣∣∣+ ∣∣∣E ((∆B̃)4
)
− 3∆2

i

∣∣∣ ≤ A∆3
i , (2.78)
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we can take ∆B̃ is N (0,∆i) that satisfies Eq. (2.78), or satifiy the following conditions

P (∆B̃ = ±
√
3∆i) =

1

6
, P (∆B̃ = 0) =

2

3
. (2.79)

Now, for d = 1, 2, 3... and m = 1, the explicit order 2.0 weak scheme is given by

Xi+1 = Xi +
1

2
(F (Υ) + F )∆i

+
1

4

(
G(Υ+) +G(Υ−) + 2G

)
∆B̃

+
1

4

(
G(Υ+)−G(Υ−)

)
{(∆B̃)2 −∆i}∆

− 1
2

i , (2.80)

with Υ = Xi+F∆i+G∆B̃,Υ± = Xi+F∆i±G
√
∆, and ∆B̃ are independent Ati+1

-measurable

satisfying Eq.(2.78) and could be a three point distributed random variable meets the Eq.

(2.79).

Example 2.14 Consider the linear stochastic differential equation

dXt = −2Xtdt+XtdBt, 0 ≤ t ≤ 1, (2.81)

where X(0)=1 and the exact solution is given by X(t) = e
−5
2
t+B(t). By taking ∆i = 1/N , and N =

100, across 102 distinct sample paths of Brownian motion, the mean error between the expectation of

the approximation using Euler and the order 2.0 schemes at time t with the expectation of the exact

solution is summarized in Figure 2.18.
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Figure 2.18: Computed error using Euler (left ) and the order 2.0 (right) schemes for Example

2.14.
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In the following example, we will examine the effect of the step size on the approximation

of the mean error expectation between the exact and approximate solutions at the end point

T = 1.

Example 2.15 Consider the same problem in Example 2.10, the exact value of E(X(1)) = 28.

E(X(1)) was estimated using weak Euler and order 2.0 methods, by taking 100 independent sample

paths of Brownian motion. The results are summarized in Table 2.1 where st.d represents the standard

deviation, in different step size ∆.

Table 2.1: Error and standard deviation for the approximation of E(X(1)) for Example 2.15.

∆ Euler Error St.d Order 2.0 Error St.d

2−1 16.0495 2.4534 4.1948 6.71183

2−2 10.4861 4.7590 2.6116 7.3183

2−3 5.3733 6.6968 1.9127 7.9136

2−4 2.1239 8.2614 1.3046 9.5940

2−5 1.7698 7.5461 0.9942 9.1804

2−8 0.6623 8.0569 0.3415 9.8649

2−10 0.2669 8.7128 0.2934 9.3069

2.2.4 Weak implicit approximations

Weak implicit Euler schemes

This scheme is considered as the simplest implicit weak scheme, it is written as follows

Xi+1 = Xi + F (ti+1, Xi+1)∆i +
m∑
j=1

Gj(ti, Xi)∆B̃j
i , i = 1, 2, .... (2.82)

where d,m = 1, 2, 3, ... For j ∈ {1, 2, ...,m}, the ∆B̃j are independent random variables

satisfying Eq.(2.75). Also, we can construct a familly of implicit Euler schemes as

X(ti+1) = X(ti) + {λF (ti+1, Xi+1) + (1− λ)F (ti, Xi)}∆i +
m∑
j=1

Gk,j(ti, Xi)∆Bj
i , (2.83)

where λ is the degree of implicitness. If λ = 0, we get the explicit Euler scheme, and for

λ = 1 we get Eq.(2.82).
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The implicit order 2.0 weak Taylor scheme

In the one-dimensional case d = m = 1, the implicit order 2.0 weak Taylor scheme is given

by

Xi+1 = Xi + F (Xi+1)∆i +G∆B̃i +
1

2
G

(
∂

∂Xt

G

)
{(∆B̃i)

2 −∆i}

− 1

2
∆2

i

(
F (Xi+1)

∂

∂Xt

F (Xi+1) +
1

2
G2(Xi+1)

∂2

∂X2
t

F (Xi+1)

)
+

1

2
∆B̃∆i

(
−G ∂

∂Xt

F + F
∂

∂Xt

G+
1

2
G2 ∂2

∂X2
t

G

)
(2.84)

where ∆B̃ ∼ N (0,∆i) or P (∆B̃ = ±
√
3∆i) =

1
6
, and P (∆B̃ = 0) = 2

3
.

Consider the Example 2.14, Figure 2.19 represents the mean error between the expectation of

the approximation using implicit Euler and the order 2.0 schemes at different time t, and the

expectation of the exact solution with N = 100 and 102 distinct sample paths of Brownian

motion.
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Figure 2.19: Computed errors using implicit Euler and the order 2.0 schemes for Example

2.14.

Additional details for weak approximations can be found in [66].

2.2.5 Analysis of numerical experiments

The convergence of approximate solution using Taylor shemes is based on two strategies,

strong approximation or weak approximation, each strategy has its characteristics.
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• From the above computation we can see that small discretization steps give better

results in both convergence modes. This is the case in Examples 2.9 and 2.10.

• As can be seen in Examples 2.7- 2.8, 2.10 and 2.12, when the SDE contains a diffusion

term that is not constant, or in both the scalar and multiplicative cases, one can use ei-

ther the Euler-Maruyama method or the Milstein method, where the Milstein method

has superior accuracy.

• In Example 2.11, the order 1.5 strong Taylor scheme shows a very accurate results

compared with Euler and Milstein schemes in a different step size discretization.

• The use of the higher order Ito-Taylor methods produces a better results in both cases

when compared to the Euler and Milstein schemes for small step size. Again, this

depends on the respective stability domain of these schemes.

• The stability of the approximate solution and its convergence to the exact solution are

confirmed in Example 2.15.

• In addition, implicit schemes have been shown to be superior to explicit schemes. (See

Examples 2.12-2.14).

• We experimentally test the numerical stability of the explicit Euler-Maruyama and Mil-

stein schemes using a linear test equation. The choice of the parameters λ and µ affects

the stability of the numerical solution.

• In Example 2.9, the Ito-Taylor schemes still give good results even for a large scale

interval. However, the error decreases over a small scale interval for large N.

• In the previous tests, we have already seen that the Euler-Maruyama scheme and the

Milstein scheme perform similarly in the sense of a weak convergence. However, Mil-

stein usually produces slightly better results.

2.3 Applications

In this section we will look at some of the applications of the Ito-Taylor schemes, for sim-

plicity we will use only the Euler scheme to describe the behavior of the Lorenz system, the

Duffing equation and the Merton jump diffusion model.
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2.3.1 Lorenz system

Lorenz system named after the meteorologist Edward Lorenz describes a simplified model

of atmospheric convection. This system shows its chaotic behavior which is characterized

by sensitive dependence on initial conditions, so the behavior of the system appears random

and unpredictable over a long time scales. The system is

dX

dt
= δ(Y −X)

dY

dt
= βX − Y −XZ

dZ

dt
= XY − γZ,

(2.85)

where X represents the rate of convective overturning in the system, related to temperature

differences, Y represents the horizontal temperature variation in the system also influenced

by convective motion, and Z the vertical temperature gradient in the system related to the

stability of the atmosphere. The parameters δ, β, and γ are positive real numbers that control

the dynamics of the system. Lorenz system is often used as a prototype for studying chaotic

dynamics and nonlinear phenomena in various fields including mathematics, physics, and

meteorology. Moreover, it’s useful in the study of turbulence and climate modeling. In the

Lorenz’s paper, he studied the particular case δ = 10, β = 28 and γ = 8
3
, so we will take

this case also. Applying the Euler scheme to the system by taking T = 50 and ∆ = 50
106

,

the Figure 2.20 illustrates the Lorenz attractor. Figure 2.21 represents the solution of Lorenz

equations by taking the initial conditionX(0) = 0, Y (0) = 1 and Z(0) = 0. We notice that the

trajectory appears an irregular oscillation, so how it’s gonna be if we add a random noise to

the system.

The stochastic Lorenz system is given as follows

dXt

dt
= δ(Yt −Xt)

dYt
dt

= βXt − Yt −XtZt + α1Yt
dB1

dt

dZt

dt
= XtYt − γZt + α2Zt

dB2

dt
,

(2.86)
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where α1 and α2 are positive constants and B1, B2 are one-dimensional Brownian motion.

Lets keep the same value of parameters and initial condition, using the Euler scheme to the

system (2.86) by taking T = 50 and ∆ = 50
106

, we obtain some intersting plot where Figure

2.22 represents Lorenz attractor for α1 = 0.3, α2 = 0.8, the solutions are shown in Figure

2.23. Figures 2.24-2.25 illustrate the stochastic Lorenz attractor and solutions respectively

with α1 = α2 = 0.9. We notice that if we add a small random noise, the result is still has

irregular oscillations but trajectories are jagged due to the chaotic behavior on each direction

and its different compared to the deterministic case.

Now if we take a large random noise by taking α1 = α2 = 5. The results will be completely

different from the deterministic ones, we can see that in Figures 2.26-2.27, where Figure 2.26

represents the stochastic Lorenz attractor with α1 = α2 = 5 by using the Euler scheme with

T = 50 and ∆ = 50
106

. Figure 2.27 illustrate the solutions X(t), Y (t) and Z(t) of stochastic

Lorenz equations. We notice that the solution moves around the value 0, so for a large

random noise, the system is forced to go to zero.

2.3.2 Duffing equation

The deterministic Duffing equation describes the motion of a damped driven oscillation, it

is expressed as

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt), (2.87)

where x represents the displacement of the oscillator from its equilibrium position, δ is the

damping coefficient, α is the linear stifness coefficient, β is the nonlinear stiffness coefficient,

γ is the amplitude of the external forcing, ω is the frequency of the external forcing and t

represents time. The Duffing equation is used to model various systems such that electrical

circuits, biological systems and mechanical systems like spring-mass-damper systems. If

x = X and Ẋ = Y , we get the following system Ẋ = Y

Ẏ = γ cos(ωt)− δY − αX − βX3,
(2.88)

where t ∈ [0, T ]. Let take for example δ = 0.02, α = 1, β = 5, γ = 8,ω = 0.5, X(0) = 0 and

Y (0) = 1, applying Euler scheme for the particular case with T = 40 and ∆ = 40
106

. Figure

2.28 represents one trajectory of damped deterministic Duffing equation. Now lets take the
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Figure 2.20: Lorenz attractor (2.85).
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Figure 2.21: Solution of Lorenz equations (2.85).
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Figure 2.22: Stochastic Lorenz attractor with α1 = 0.3, α2 = 0.8.
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Figure 2.23: Solution of stochastic Lorenz equations with α1 = 0.3, α2 = 0.8.
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Figure 2.24: Stochastic Lorenz attractor with α1 = 0.9, α2 = 0.9.
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Figure 2.25: Solution of stochastic Lorenz equations with α1 = 0.9, α2 = 0.9.
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Figure 2.26: Stochastic Lorenz attractor with α1 = 5, α2 = 5.
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Figure 2.27: Solution of stochastic Lorenz equations with α1 = 5, α2 = 5.
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Figure 2.28: Trajectories of deterministic Duffing equation with force.

simplest Duffing system with no forcing Ẋ = Y

Ẏ = −δY +X −X3.
(2.89)

Figure 2.29 shows the trajectories of system (2.89) via the Euler method by taking δ = 0,

X(0) = 0.5 and Y (0) = 0.6. By adding a random noise to the system (2.89), we obtain the

stochastic Duffing equation  Ẋ = Y

Ẏ = −δY +X −X3 + σXḂ.
(2.90)

So let’s see: What happens when we add a random noise? by taking the same example

shown in the Figure 2.29, for δ = 0, X(0) = 0.5, Y (0) = 0.6 and σ = 0.5 using Euler and

Milstien schemes with step size ∆ = 40
106

. Figure 2.30 represents the trajectories of stochastic

Duffing equation with no force. Notice that if we add the random noise, the solution is not

periodic any more.

2.3.3 Merton jump diffusion

Many risks appear in finance, including random fluctuation in financial market prices that

negatively affect companies, businesses, or organizations associated with them. Therefore
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Figure 2.29: Trajectories of deterministic Duffing equation with no force for δ = 0.
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Figure 2.30: Trajectories of undamped stochastic Duffing equation with no force for σ = 0.5.
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modeling this type of problem greatly helps investors and traders to analyse real-world

data. These models aim to predict the future movements of the asset price financial market,

thereby mitigating associated risks.

The Black Scholes model was effective in many situations, however it assumed that asset

prices follow a smooth continuous pattern described by geometric Brownian motion. This

assumption works in many cases but it has limitations, one significant limitation is its as-

sumption of continuous price movements which doesn’t fully capture the sudden changes

observed in financial markets. To address this limitation and provide a more accurate rep-

resentation of real-world market dynamics, Robert Merton developed a model called the

Merton Jump diffusion model. It is a generalization of the Black Scholes model by incor-

porating the jumps in asset price, this addition is very important because financial asset

prices often exhibit discontinuous movements, which cannot be adequately explained by

continuous diffusion process alone.

To define Merton’s jump-diffusion model mathematically, we incorporate both the contin-

uous Brownian motion and the occasional jumps in the asset price. The model is described

by the following stochastic differential equation

dXt

Xt

= µdt+ σdBt + Jump, (2.91)

where Xt represent the price of the asset at time t, µ is the expected return rate of the asset,

σ is the volatility of the asset’s return. Now if we talk about the jump part, two things come

to our mind, the jump arrival according to Poisson process with intensity λ, and the size of

the jump is log normal ditribution.

Let Yi represent the absolute price jump size in which the asset price Xt jumps to YtXt in a

small time interval dt where Yt > 0, so

dXt = YtXt −Xt ⇒ dXt

Xt

= Yt − 1.

Now if we talk about the jump arrivals which assumed to follow a Poisson process N(t), so

the likelihood that an asset price jumps within a short time interval can be expressed as P (dNt = 1) = λdt

P (dNt = 0) = 1− λdt.

So Eq.(2.91) become
dXt

Xt

= µdt+ σdBt + (Yt − 1)dNt. (2.92)
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Merton assumes that ln(Yt) ∼ N(µ1, σ
2
1) and Yt, Bt and Nt are independent. Now, if we left

the drift term unadjusted (µdt), it would imply that the expected return on the asset already

accounts for the expected impact of jumps.

Merton in this step adjusting the drift term by subtracting a term kλdt which represents the

expected impact of jumps during the time interval dt. Note that E((Yt − 1)dNt) = E(Yt −

1)E(dNt) = kλdt, where k = E(Yt − 1).

Merton did this to treat jumps as unpredictable events in the model. This adjustment helps

maintain the realism of the model, so Eq.(2.92) become

dXt

Xt

= (µ− λk)dt+ σdBt + (Yt − 1)dNt. (2.93)

If the time interval is not too small, then more than one jump can occur, so the price Xt after

a random jumps is Xt

∏dNt

j=1 Yj , so we obtain

dXt

Xt

= (µ− λk)dt+ σdBt + (
dNt∏
j=1

Yj − 1). (2.94)

Now, applying the Itô’s lemma for the jump model

df =
df

dX
dX +

1

2

d2f

dX2
dX2 + f(X

dNt∏
j=1

Yj)− f(X),

with f(t,X) = ln(X), we obtain

Xt = X0e
(µ−λk− 1

2
σ2)t+σBt+

∑Nt
j=1 ln(Yj). (2.95)
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Figure 2.31: Exact solution and Euler approximation for MJD with the absolute error for

µ = 0.005, σ = 0.2, µ1 = 0.01, σ1 = 0.1 and λ = 1.
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Figure 2.31 represents the exact asset price and the approximate solution by Euler scheme

with the absolute error for µ = 0.005, σ = 0.2, µ1 = 0.01, σ1 = 0.1 , λ = 1, X0 = 1 and

∆i = i/1000, by taking 100 simulations.
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Figure 2.32: Exact solution and Euler approximation for MJD with the absolute error for

µ = 0.21, σ = 0.056, µ1 = 0.056, σ1 = 0.097 and λ = 0.1.

Figure 2.32 illustrates the exact asset price and the approximate solution by Euler scheme

with the absolute error for µ = 0.21, σ = 0.056, µ1 = 0.056, σ1 = 0.097, λ = 0.1, X0 = 10 and

∆i = i/1000, through 100 simulations.
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Figure 2.33: Exact solution and Euler approximation for MJD with the absolute error for

µ = 0.8, σ = 0.03, µ1 = 0.02, σ1 = 0.05 and λ = 10.

Figure 2.33 shows the exact asset price and its approximate solution using the Euler
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scheme, with absolute error, in the case µ = 0.8, σ = 0.03, µ1 = 0.02, σ1 = 0.05, λ = 10,

X0 = 0.1, and ∆i = i/1000, with 100 simulations.

2.4 Spectral methods

We do not deny that the Itô-Taylor schemes are a valuable numerical methods for approx-

imating the solutions of stochastic differential equations. But for some complex problems,

traditional numerical methods for solving these equations are often challenged by the com-

plex interplay between deterministic dynamics and stochastic fluctuations. In this context,

the emergence of spectral methods over time has helped to provide a powerful and flexible

approach to the challenges posed by the randomness and complexity in many real-world

systems. The spectral method is a powerful numerical technique used for solving differen-

tial equations by representing the solution as a combination of basis functions. Essentially,

it transforms complex mathematical problems into a series of more simple algebraic equa-

tions, allowing for efficient computation and accurate approximation of the solution. In

1970s-1980s, the spectral method gained popularity in the scientific community for solv-

ing deterministic partial differential equations (PDEs). The concept of stochastic Galerkin

methods gained attention. Researchers extended deterministic Galerkin and Monte Carlo

methods [43, 106] to handle stochastic differential equations. In the early 2000s, researchers

explored chaos functions, which are eigenfunctions of the Wiener process, as a basis for ap-

proximating solutions. This approach gained traction due to its convergence properties and

efficiency [40, 74, 138]. The mid-2000s witnessed an increasing interest in hybrid methods

[1, 44, 69], combining spectral techniques with other numerical approaches to address spe-

cific challenges associated with stochastic processes. Researchers continue to explore new

mathematical tools and computational strategies [12, 83, 86, 110, 119]. It’s important to note

that the development of spectral methods for solving stochastic differential equations is a

collaborative effort, with numerous researchers contributing to different aspects of the field.

2.4.1 Galerkin method

The Galerkin method was named after the mathematician Boris Galerkin in 1915 and has

evolved from its origins in integral equations to become a versatile and widely adopted nu-

merical technique for solving differential equations in diverse fields, it allows to transform a
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continuous problem into a discrete problem. The Galerkin method is widely applied in vari-

ous fields, including fluid dynamics [53], structural mechanics [15], and quantum mechanics

[11], making it a versatile and powerful tool for solving a range of mathematical problems.

It is also used effectively in solving stochastic differential equations (SDEs) [13, 139, 31]. For

more details about this spectral method see the references [132, 137, 141, 95, 140, 123].

2.4.2 Collocation method

The collocation method is a numerical technique used to solve differential equations within

the problem domain. The concept of solving stochastic differential equations (SDEs) using

the collocation method is an extension of the collocation method for ordinary differential

equations (ODEs), which is adapted to deal with the randomness introduced by stochastic

terms. Spectral collocation methods force the approximate solution to satisfy the original

problem at a given number of points, or in other words, let the residuals be zero at selected

collocation points.

The traditional stochastic collocation method is based on the full-tensor product of one-

dimensional interpolation functions, but it becomes impractical for high-dimensional prob-

lems as the number of nodes grows exponentially with the stochastic dimension. How-

ever, there are several variations of the stochastic collocation method, such as sparse grid

stochastic collocation and multilevel stochastic collocation, that can overcome the curse of

dimensionality and provide accurate results.

2.5 Spectral computational method for solving SDE

On a filtrated probability space (Ω,F ,Ft, P ), we will focus on solving the nonlinear stochas-

tic integral equation

X(t) = p(t) +

∫ t

0

W1(t, s)ψ1(X(s))ds+

∫ t

0

W2(t, s)ψ2(X(s))dB(s), t ∈ [0, T ]. (2.96)

where the kernels W1, W2 and ψ1, ψ2 are smooth functions on a filtrated space (Ω,F ,Ft, P ),

and {B(t), t ≥ 0} is the Brownian process Ft-measurable. X(t) is the unknown process that

we need to find, and p(t) is a random function.
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2.5.1 The proposed computation method

Our algorithm is based on the spectral method using the Jacobi polynomials [36], and it is

dividing in 4 steps. Let’s start with the first one

Step 1

Collocating Eq.(2.96) at ti points ( Collocation points), i = 1, 2, ...,M . So Eq.(2.96) become

X(ti) = p(ti) +

∫ ti

0

W1(ti, s)ψ1(X(s))ds︸ ︷︷ ︸
(I)

+

∫ ti

0

W2(ti, s)ψ2(X(s))dB(s)︸ ︷︷ ︸
(II)

, (2.97)

Step 2

Approximate the state variable with Jacobi polynomials noted by J α,β as follow

X(t) ≃
M∑
j=1

X(tj)J α,β
j (t) = X ′J α,β(t), (2.98)

where X ′ is the unknown vecteur and J α,β(t) = (J α,β
1 (t),J α,β

2 (t), ...,J α,β
M (t)). The integrals

(I) and (II) can be approximated by Gauss quadrature, so the integral (I) will be∫ ti

0

W1(ti, s)ψ1(X(s))ds ≃ ti
2

n1∑
j=1

AjW1

(
ti,
ti
2
sj +

ti
2

)
ψ1

(
X

(
ti
2
sj +

ti
2

))

=
ti
2

n1∑
j=1

AjW1

(
ti,
ti
2
sj +

ti
2

)
ψ1

(
X ′J α,β

(
ti
2
sj +

ti
2

))
, (2.99)

where sj are the Gauss Legendre roots on [−1, 1].

Step 3: Approximating the stochastic integral (II) as∫ ti

0

W2(ti, s)ψ2(X(s))dB(s) =
n2+1∑
j=1

W2

(
ti,

1

n2

(j − 1)ti

)
ψ2

(
X ′J α,β

(
1

n2

(j − 1)ti

))
[
B
(
j

n2

ti

)
− B

(
1

n2

(j − 1)ti

)]
.

So the nonlinear stochastic integral Eq.(2.97) can be traced back to this algebraic system

X ′J α,β(ti) = p(ti) +
ti
2

n1∑
j=1

AjW1

(
ti,
ti
2
sj +

ti
2

)
ψ1

(
X ′J α,β

(
ti
2
sj +

ti
2

))

+

n2+1∑
j=1

W2

(
ti,

1

n2

(j − 1)ti

)
ψ2

(
X ′J α,β

(
1

n2

(j − 1)ti

))[
B
(
j

n2

ti

)
− B

(
1

n2

(j − 1)ti

)]
(2.100)

Step 4

Solving the nonlinear algebraic system (2.100), where the unknown vector is X ′. The above-

mentioned steps can be given in the following Algorithm 1
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Algorithm 1 Jacobi spectral method for solving SIVIE

Input: The interval [0, T ], the number of collocation points M , the number of simula-

tion K, Jacobi polynomials J α,β
M (t), where the parameters α, β ≥ −1, the functions W1(t, s),

ψ1(X(s)), W2(t, s), ψ2(X(s)) and p(t).

• Compute the roots of J α,β
M+1(t) and collocate the Eq.(2.96).

• Approximate the state variable with Jacobi polynomials.

• Compute the approximation of the integrals (I), and (II) in Eq.(2.97).

• Solve the algebraic system (2.100).

• Substitue the value achieved for X ′ into Eq. (2.98).

Output : The approximate solution X(t) = X ′J α,β
M (t).

2.5.2 Convergence analysis

Theorem 2.3 Assume that X(t) is the exact solution of Eq.(2.96) and XM(t) is the approximate

solution by the proposed method. We also assume that ψ1 and ψ2 are Lipschitzian with constants Q1

and Q2 respectively, and that the functions Wi satisfies the following constraints

|Wi(t, s)| ≤ Vi, i = 1, 2, (t, s) ∈ [0, T ]2, (2.101)

where Vi, i = 1, 2 are a constants. So we have

∥X(t)−XM(t)∥2L2(0,T ) = E|X(t)−XM(t)|2 → 0 as M → ∞ (2.102)

Proof. Let X and XM be the exact and approximate solutions of Eq.(2.96) where

X(ti) = p(ti) +

∫ ti

0

W1(ti, s)ψ1(X(s))ds+

∫ ti

0

W2(ti, s)ψ2(X(s))dB(s), (2.103)

and

XM(ti) = pM(ti) +

∫ ti

0

W1(ti, s)ψ1(XM(s))ds+

∫ ti

0

W2(ti, s)ψ2(XM(s))dB(s)− eri1 − eri2,

(2.104)
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eri1 and eri2 are the errors of the two integrals (I) and (II) in equation (2.97), and we can giving

it as follows

eri1 =

∫ ti

0

W1(ti, s)ψ1(XM(s))ds− ti
2

n1∑
j=1

AjW1

(
ti,
ti
2
sj +

ti
2

)
ψ1

(
X ′J α,β

(
ti
2
sj +

ti
2

))
and

eri2 =

∫ ti

0

W2(ti, s)ψ2(XM(s))dB(s)−
n2+1∑
j=1

W2

(
ti,

1

n2

(j − 1)ti

)
ψ2

(
X ′J α,β

(
1

n2

(j − 1)ti

))
[
B
(
j

n2

ti

)
− B

(
1

n2

(j − 1)ti

)]
.

Then we have the following

E|X(t)−XM(t)|2 ≤ E

[∣∣∣∣(p(t)− pM(t)) +

∫ ti

0

W1(t, s)(ψ1(X(s))− ψ1(XM(s)))ds

+

∫ t

0

W2(t, s)(ψ2(X(s))− ψ2(XM(s)))dB(s) +er1 + er2 |2
]
,

using (k1 + k2 + k3)
2 ≤ 4k21 + 4k22 + 4k23 , we get

E|X(t)−XM(t)|2 ≤ 4E|p(t)− pM(t)|2 + 4E

[∣∣∣∣∫ t

0

W1(t, s)(ψ1(X(s))− ψ1(XM(s)))ds

+

∫ t

0

W2(t, s)(ψ2(X(s))− ψ2(XM(s)))dB(s) |2
]
+ 4E|er1 + er2|2,

≤ 4E|p(t)− pM(t)|2 + 8E

∣∣∣∣∫ t

0

W1(t, s)(ψ1(X(s))− ψ1(XM(s)))ds

∣∣∣∣2
+ 8E

∣∣∣∣∫ t

0

W2(t, s)(ψ2(X(s))− ψ2(XM(s)))dB(s)
∣∣∣∣2 + 4E|er1 + er2|2.

Using the boundedness of W1 and W2, Holder’s inequality, Itô isometry and Lipschitz con-

dition, we obtain

E|X(t)−XM(t)|2 ≤ 4E|p(t)− pM(t)|2 + 8tE

∫ t

0

|W1(t, s)|2|ψ1(X(s))− ψ1(XM(s))|2ds

+ 8E

∫ t

0

W 2
2 (t, s)|ψ2(X(s))− ψ2(XM(s))|2ds+ 4E|er1 + er2|2,

≤ 4E|p(t)− pM(t)|2 + 8Q2
1V

2
1

∫ t

0

E|X(s)−XM(s)|2ds

+ 8Q2
2V

2
2

∫ t

0

E|X(s)−XM(s)|2ds+ 8E|er1|2 + 8E|er2|2

≤ (8Q2
1V

2
1 + 8Q2

2V
2
2 )

∫ t

0

E|X(s)−XM(s)|2ds

+ 4E|p(t)− pM(t)|2 + 8E|er1|2 + 8E|er2|2.
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By Gronwall’s lemma we have E|X(t)−XM(t)|2 → 0 as M → +∞.

In the following, we will present some test examples in order to confirm the applicability

of the proposed method.

2.5.3 Numerical tests

Example 2.16 [66] Consider the nonlinear stochastic Itô integral equation

X(t) = X0 + a2
∫ t

0

cos(X(s)) sin3(X(s))ds+ a

∫ t

0

sin2(X(s))dB(s), 0 ≤ t ≤ 1,

The analytical solution is given by

X(t) = arccot(aB(t) + cot(X0)). (2.105)

Let X0 =
1
20

and a = 1
20

. By taking n1 = 10, n2 = 100, K = 20 and M = 6, the numerical results

of this example are presented in Table 2.2 and Figure 2.34. Table 2.2 shows the absolute error between

the exact solution and various approaches using Jacobi collocation nodes and equidistant collocation

points. Figure 2.34 illustrates the exact and approximate solutions using the Jacobi collocation nodes

and equidistant collocation points with different values of α and β.

Table 2.2: The absolute errors for Example 2.16.

Jacobi collocation Equidistant collocation

t α = 0 α = 1/2 α = −3/4 α = 0 α = 1/2 α = −3/4

β = 0 β = 1/2 β = −1/2 β = 0 β = 1/2 β = −1/2

0 9.58e−7 1.95e−5 5.32e−6 1.76e−15 1.76e−15 1.76e−15

0.1 3.56e−6 4.82e−6 6.15e−6 1.37e−5 8.53e−6 6.21e−6

0.2 3.93e−6 9.67e−6 1.08e−6 1.97e−5 1.98e−7 9.23e−7

0.3 5.83e−6 1.85e−5 1.00e−5 9.01e−6 6.79e−6 8.83e−6

0.4 2.07e−5 9.46e−6 1.08e−5 9.00e−6 7.69e−6 1.08e−5

0.5 3.00e−5 1.08e−5 2.40e−6 2.49e−5 6.04e−6 1.18e−5

0.6 2.65e−5 2.12e−5 1.15e−5 2.61e−5 4.80e−6 1.49e−5

0.7 7.24e−6 1.17e−5 2.33e−5 1.13e−5 7.67e−6 2.05e−5

0.8 1.61e−5 1.23e−5 4.67e−5 7.96e−6 1.54e−5 1.74e−5

0.9 1.02e−5 1.20e−5 6.94e−6 2.83e−6 1.63e−5 2.12e−5
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Figure 2.34: Exact solution compared with different Jacobi approaches using equidistant

collocation points and Jacobi collocation nodes for Example 2.16.

Example 2.17 [66] Let’s given the nonlinear SIVIE

X(t) =
1

8
− 0.015625

∫ t

0

X(s)(1−X2(s))ds+ 0.125

∫ t

0

(1−X2(s))dB(s), 0 ≤ t ≤ 1,

with the exact solution

X(t) =
9
8
e0.25B(t) − 7

8
9
8
e0.125B(t) + 7

8

. (2.106)

Table 2.3 represents the absolute error using the proposed technique with Jacobi collocation nodes and

equidistant points respectively for n1 = 10, n2 = 100, K = 20 and M = 8. Figure 2.35 illustrates

the exact and approximate solutions using the Jacobi collocation nodes and equidistant collocation

points with different values of α and β.
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Figure 2.35: Exact solution compared to various Jacobi approaches using equidistant collo-

cation points and Jacobi collocation nodes for Example 2.17.
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Table 2.3: The absolute errors for Example 2.17.

Jacobi collocation Equidistant collocation

t α = 0 α = 1/2 α = −3/4 α = 0 α = 1/2 α = −3/4

β = 0 β = 1/2 β = −1/2 β = 0 β = 1/2 β = −1/2

0 2.18e−3 6.69e−3 9.22e−3 6.88e−41 6.88e−41 4.59e−41

0.1 9.97e−4 6.55e−3 3.17e−3 6.92e−3 9.10e−3 1.61e−2

0.2 5.60e−3 1.27e−2 8.92e−3 1.06e−2 1.95e−2 5.89e−3

0.3 1.08e−3 3.65e−3 1.83e−2 7.54e−3 2.00e−2 7.41e−3

0.4 2.45e−3 5.76e−3 1.25e−2 2.53e−3 1.04e−2 1.54e−3

0.5 6.13e−3 1.83e−2 3.37e−3 7.68e−3 1.12e−3 7.31e−3

0.6 1.79e−2 2.48e−2 3.36e−3 2.03e−3 3.38e−3 9.10e−3

0.7 1.80e−2 1.55e−2 1.80e−2 1.14e−2 3.23e−4 5.45e−2

0.8 2.58e−3 7.64e−3 2.70e−2 8.79e−3 5.98e−3 6.18e−2

0.9 1.62e−2 2.21e−2 3.41e−3 4.12e−2 6.05e−2 1.14e−1

Example 2.18 Consider the problem

X(t) = X0 +

∫ t

0

esds+

∫ t

0

dB(s), 0 ≤ t ≤ 4, (2.107)

the exact solution is given by

X(t) = et − 1 + B(t), (2.108)

where X0 = 0. Figure 2.36 illustrates the exact and approximate solutions using strong Euler

scheme for ∆i = 4/1000, and 100 simulations. The Jacobi approximation and exact solutions with

the absolute error when M = 5, T = 4, n1 = 10 and n2 = 100, are presented in Figures 2.37 and

2.38 with 50 trajectories, and when M = 7, T = 4, n1 = 10 and n2 = 100, are presented in Figures

2.39 and 2.40 with 50 trajectories. Table 2.4 represents different approaches of X(t) using Jacobi

approximation for M = 7, T = 4, n1 = 10 and n2 = 100, with 50 trajectories, and using strong

Euler scheme for ∆ = 4/10 with 100 simulations. We conclude from this example that discretization

step size also plays an important role when comparing Taylor approximations and spectral techniques.
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Figure 2.36: Exact solution compared with Euler approximation with the absolute error for

Example 2.18.

Table 2.4: Different approximations of X(t) for Example 2.18.

Jacobi approximation

t Exact solution α = 0 α = −3/4 Euler

β = 0 β = −1/2 approximation

0 0 -0.0659 -0.0523 0

0.4 0.4794 0.5523 0.5472 0.5805

0.8 1.2434 1.3508 1.2646 1.4232

1.2 2.4308 2.5397 2.3091 2.7243

1.6 4.1410 4.1512 3.9078 4.6795

2.0 6.5239 6.3562 6.3223 7.6171

2.4 10.1469 9.6459 9.9084 11.9583

2.8 15.4318 14.880 15.2198 18.4789

3.2 23.6028 23.2037 23.1550 28.2787

3.6 35.6711 35.8231 35.1489 43.0029

4 53.5978 53.6575 53.4067 64.8241
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Figure 2.37: Exact solution, Jacobi approximation with the absolute error for M = 5 for

Example 2.18.
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Figure 2.38: Exact solution, Jacobi approximation with the absolute error for M = 5 for

Example 2.18.
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Figure 2.39: Exact solution, Jacobi approximation with the absolute error for M = 7 for

Example 2.18.
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Figure 2.40: Exact solution, Jacobi approximation (M = 7) for Example 2.18.
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2.6 Polynomial interpolation for solving nonlinear stochas-

tic integral equations

This section is the subject of our work which have been published [23]. The new method rep-

resents an accurate approach based on the Jacobi-Gauss collocation method and Lagrange

basis. It’s proposed for solving a class of nonlinear stochastic Itô-Volterra integral equation

Eq.(2.96). This technique effectively transforms the considered problem into system of alge-

braic equations. The resulting algebraic system is solved by Newton’s method to construct

approximate solution of the stochastic Volterra integral equation. The theoretical study and

convergence analysis of this technique are detailed in [23].

2.6.1 Stability analysis

In this subsection, we discuss the stability of the presented technique.

Theorem 2.4 Let XM ∈ PM−1 be the approximate solution given by the proposed method. Assume

that X̄ and p̄ are the errors of XM and p (p̄ is a small perturbation of p).Then, we have

∥X̄∥2L2(0,T ) ≤ C max
t∈[0,T ]

E|p̄(t)|2, (2.109)

where C is a constant and PM−1 is the space of polynomials of degree at least M − 1.

Proof. We have

(XM + X̄)(t) = (pM + p̄)(t) +

∫ t

0

W1(t, s)ψ1((XM + X̄)(s))ds

+

∫ t

0

W2(t, s)ψ2((XM + X̄)(s))dB(s), (2.110)

where

XM(t) = pM(t) +

∫ t

0

W1(t, s)ψ1(XM(s))ds

+

∫ t

0

W2(t, s)ψ2(XM(s))dB(s). (2.111)

Subtracting equation (2.111) from (2.110), yields

X̄(t) = p̄(t) +

∫ t

0

W1(t, s)(−ψ1(XM(s)) + ψ1((XM + X̄)(s)))ds

+

∫ t

0

W2(t, s)(−ψ2(XM(s)) + ψ2((XM + X̄)(s)))dB(s).
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Then

E|X̄(t)|2 = E

∣∣∣∣p̄(t) + ∫ t

0

W1(t, s)(−ψ1(XM(s)) + ψ1((XM + X̄)(s)))ds

+

∫ t

0

W2(t, s)(−ψ2(XM(s)) + ψ2((XM + X̄)(s)))dB(s)
∣∣∣∣2.

By using Itô isometry, Holder’s inequality and Lipschitz conditions, we obtain

E|X̄(t)|2 ≤ 2 max
t∈[0,T ]

E|p̄(t)|2 + 4TE

∫ t

0

|W1(t, s)|2|−ψ1(XM(s)) + ψ1((XM + X̄)(s))|2ds

+ 4E

∫ t

0

|W2(t, s)|2|−ψ2(XM(s)) + ψ2((XM + X̄)(s))|2ds

≤ 2 max
t∈[0,T ]

E|p̄(t)|2 + 4(TM2
1L

2
1 + L2

2M
2
2 )

∫ t

0

E|X̄(s)|2ds

Applying Gronwall’s lemma

E|X̄(t)|2 ≤ 2 max
t∈[0,T ]

E|p̄(t)|2exp
(∫ t

0

4(TM2
1L

2
1 + L2

2M
2
2 )ds

)
≤ 2 max

t∈[0,T ]
E|p̄(t)|2exp

(
4T (TM2

1L
2
1 + L2

2M
2
2 )
)

Thus

E|X̄(t)|2 ≤ C max
t∈[0,T ]

E|p̄(t)|2. (2.112)

So if E|p̄(t)|2 → 0, then E|X̄(t)|2 → 0.

2.6.2 Numerical tests

This subsection examines the results obtained from the presented method on several test

problems by analyzing the absolute errors at specific points for each corresponding test

equation.

Example 2.19 ([75]) Consider the linear stochastic integral equation

X(t) = X0 +

∫ t

0

λX(s)ds+

∫ t

0

µX(s)dB(s), 0 ≤ t ≤ T, (2.113)

where the exact solution is given by

X(t) = X0e
(λ− 1

2
µ2)t+µB(t). (2.114)

Setting λ = −5 and µ = 0.1, we present numerical results for various selections of α, β, and X0 in

Tables 2.5-2.8. The approximate and exact solutions with the absolute errors are shown in Figures

2.41-2.44 for T = 1. The approximate, exact solutions and the absolute errors when T = 120 are

represented in Figure 2.45.
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Table 2.5: Different approximations of X(t) for Example 2.19 with M = 10, X0 = 1 and

k = 100.

Proposed method

t Exact solution α = 0 α = −1/2 α = −3/4 α = −3/4

β = 0 β = −1/2 β = −3/4 β = −1/2

0 1 0.99827149 0.99761262 1.0000186 1.0000352

0.1 0.60470831 0.60589369 0.60284829 0.60819231 0.60506534

0.2 0.36596147 0.36607227 0.36778730 0.36853987 0.36659411

0.3 0.22143201 0.22254742 0.22663707 0.22264968 0.22299320

0.4 0.13412600 0.13525499 0.13417609 0.13432851 0.13536515

0.5 0.08106618 0.08253313 0.07774861 0.08028317 0.08189177

0.6 0.04906421 0.04923210 0.04851151 0.04836471 0.04975954

0.7 0.02967680 0.02858087 0.03202999 0.03011485 0.02970698

0.8 0.01801294 0.01961404 0.01949866 0.01738387 0.01589688

0.9 0.01094107 0.01149224 0.01327339 0.00974494 0.00879000

1 0.00661400 0.01115745 0.00403555 0.01031051 0.01098635

Table 2.6: The absolute errors for Example 2.19 with X0 = 1, M = 10 and k = 100.

The absolute errors

t α = 0 α = −1/2 α = −3/4 α = −3/4

β = 0 β = −1/2 β = −3/4 β = −1/2

0 1.72e−3 2.38e−3 1.86e−5 3.52e−5

0.1 1.18e−3 7.02e−3 3.91e−4 5.89e−3

0.2 1.10e−4 3.79e−3 1.06e−3 4.61e−3

0.3 1.11e−3 1.05e−3 1.93e−4 2.23e−3

0.4 1.12e−3 2.13e−3 9.49e−4 7.90e−4

0.5 1.46e−3 5.06e−3 2.22e−3 4.67e−4

0.6 1.67e−4 1.76e−3 1.44e−3 1.71e−4

0.7 1.09e−3 1.33e−3 2.06e−4 7.09e−4

0.8 1.60e−3 9.34e−4 9.66e−4 2.51e−3

0.9 5.51e−4 2.02e−3 1.39e−3 2.41e−3

1 4.54e−3 2.79e−3 3.61e−3 4.24e−3
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Table 2.7: The absolute errors for Example 2.19 with k = 100, M = 10 and X0 = 0.1 .

The absolute errors

t α = 0 α = −1/2 α = −3/4 α = −3/4

β = 0 β = −1/2 β = −3/4 β = −1/2

0 3.59e−4 1.32e−4 6.96e−5 7.97e−5

0.1 7.98e−5 2.46e−4 2.32e−4 1.25e−4

0.2 7.65e−5 9.55e−6 8.39e−5 1.32e−4

0.3 1.35e−4 1.001e−4 3.56e−5 2.63e−5

0.4 1.33e−4 2.36e−4 7.27e−5 4.01e−5

0.5 3.17e−4 2.22e−5 2.10e−5 5.80e−6

0.6 7.69e−5 1.46e−4 2.29e−4 1.78e−4

0.7 7.48e−4 7.64e−5 2.77e−4 4.11e−4

0.8 1.53e−4 1.20e−4 7.55e−5 1.59e−4

0.9 3.94e−4 6.05e−5 1.51e−5 5.88e−5

1 7.67e−4 3.62e−4 2.05e−4 1.15e−4

Table 2.8: Different approximations of X(t) for Example 2.19 with X0 = 0.1, M = 10 and

k = 100.

Proposed method

t Exact solution α = 0 α = −1/2 α = −3/4 α = −3/4

β = 0 β = −1/2 β = −3/4 β = −1/2

0 0.1 0.09964079 0.09986706 0.09993033 0.1000797

0.1 0.06044081 0.06036095 0.06066866 0.06082283 0.06078242

0.2 0.03664619 0.03672270 0.03677857 0.03674590 0.03702819

0.3 0.02225387 0.02238897 0.02218875 0.02225417 0.02245091

0.4 0.01351795 0.01365142 0.01329326 0.01356650 0.01358980

0.5 0.00822152 0.00853867 0.00817031 0.00816948 0.00824011

0.6 0.00499715 0.00492020 0.00511675 0.00474086 0.00478733

0.7 0.00301418 0.00226604 0.00308080 0.00274527 0.00260362

0.8 0.00182879 0.00167512 0.00194699 0.00175340 0.00166763

0.9 0.00111184 0.00150676 0.00117032 0.00109513 0.00105019

1 0.00067189 0.00143971 0.00103574 0.00087669 0.00078894
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Figure 2.41: The exact and approximate solutions with the absolute error for M = 10, α =

β = 0 and X0 = 0.1 for Example 2.19.
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Figure 2.42: The exact and approximate solutions with the absolute error for M = 10, α =

β = −1/2 and X0 = 0.1 for Example 2.19.
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Figure 2.43: The exact and approximate solutions with the absolute error for M = 10, α =

β = −3/4 and X0 = 1 for Example 2.19.
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Figure 2.44: The exact and approximate solutions with the absolute error for M = 10, α =

−3/4,β = −1/2 and X0 = 1 for Example 2.19.
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Figure 2.45: The exact and approximate solutions with the absolute error for M = 10, α =

−3/4,β = −1/2 and X0 = 0.1 for Example 2.19.
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Figure 2.46: The maximum errors for α = β = −3/4, α = β = −1/2 and X0 = 0.1 for

Example 2.19.
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Example 2.20 Let take the following problem [92]

X(t) =
1

20
+

∫ t

0

(
1

100
X(s) +

1

32
X2(s))ds+

1

8

∫ t

0

X(s)dB(s), 0 ≤ t ≤ T.

The exact solution is defined as

X(t) =
exp

(
( 1
100

− (1/8)2

2
)t+ 1

8
B(t)

)
20− 1

32

∫ t

0
exp

(
( 1
100

− (1/8)2

2
)s+ 1

8
B(s)

)
ds
. (2.115)

Table 2.9: Different approximations of X(t) for Example 2.20 with M = 6.

k=2 and M=3 Our method

t Exact [121] α = 0 α = −3/4

solution β = 0 β = −3/4

0 0.0500 0.0556 0.0501 0.0498

0.1 0.0464 0.0526 0.0524 0.0517

0.2 0.0509 0.0530 0.0524 0.0525

0.3 0.524 0.0518 0.0517 0.0532

0.4 0.0508 0.0490 0.0511 0.0538

0.5 0.0540 0.0469 0.0506 0.0541

0.6 0.0561 0.0498 0.0498 0.0538

0.7 0.0473 0.0488 0.0485 0.0530

0.8 0.0454 0.0478 0.0469 0.0520

0.9 0.0503 0.0429 0.0460 0.0523

Table 2.9 summarizes the numerical results of approximate and exact solutions forM = 6.

Table 2.10 presents a comparison of the absolute error for M = 6 between the proposed

method and the method detailed in [121]. For M = 6 and T = 1, the exact and approximate

solutions along with their absolute errors are illustated in Figure 2.47. Figure 2.48 shows the

approximate and exact solutions with the absolute errors when T = 15.

Example 2.21 We examine the nonlinear SIVIE [66]

X(t) = X0 − a2
∫ t

0

X(s)(1−X2(s))ds+ a

∫ t

0

(1−X2(s))dB(s), 0 ≤ t ≤ T, (2.116)

where the analytical solution is given by

X(t) = tanh(aB(t) + arctan(X0)). (2.117)
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Figure 2.47: The exact and approximate solutions with the absolute error for M = 6 and

α = β = −3/4 for Example 2.20.
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Figure 2.48: The exact and approximate solutions with the absolute error for M = 6, α =

β = 0 for Example 2.20.
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Table 2.10: Absolute errors comparison for Example 2.20.

Error of our method

t Error α = 0 α = −3/4

[121] β = 0 β = −3/4

0 5.58e−3 1.17e−4 7.08e−4

0.1 6.19e−3 4.55e−3 6.04e−3

0.2 2.09e−3 1.19e−3 1.48e−3

0.3 5.67e−4 1.49e−4 7.00e−3

0.4 1.79e−3 3.27e−4 2.95e−3

0.5 7.14e−3 2.01e−3 3.43e−3

0.6 1.03e−2 9.49e−3 6.32e−3

0.7 1.48e−3 3.26e−3 1.18e−3

0.8 2.47e−3 3.66e−3 1.47e−3

0.9 7.35e−3 8.08e−3 4.33e−3

Consider a = 1
30

and X0 = 1
10

, for M = 6 and M = 10, the numerical results are presented in

Tables 2.11 and 2.12 with 102 sample paths. The exact and approximate solutions with the absolute

error when M = 10 and T = 1 are shown in Figures 2.49 and 2.50 with 10 sample paths. Figure

2.51 illustrates the approximate and exact solutions with the absolute errors when T = 30. The

absolute error of the proposed method in the case M = 10, α = −3/4, β = −1/2, compared with the

Floater-Hormann method [84] is represented in Table 2.13.
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Table 2.11: Different approximations of X(t) for Example 2.21.

Proposed method for M=6 Proposed method for M=10

t Exact solution α = −1/2 α = −3/4 α = −3/4 α = −1/2

β = −1/2 β = −3/4 β = −1/2 β = −1/2

0 0.1 0.09990 0.10015 0.09998 0.09997

0.1 0.09939 0.10025 0.09755 0.10070 0.10048

0.2 0.09995 0.10056 0.09808 0.09933 0.10012

0.3 0.09832 0.10073 0.09898 0.09785 0.10017

0.4 0.09771 0.10072 0.09902 0.09849 0.10059

0.5 0.09911 0.10053 0.09812 0.09843 0.10124

0.6 0.10190 0.10024 0.09680 0.09748 0.10135

0.7 0.10205 0.09991 0.09581 0.09781 0.10077

0.8 0.10146 0.09967 0.09559 0.09931 0.10020

0.9 0.10184 0.09964 0.09584 0.09988 0.099010

1 0.10021 0.09997 0.09508 0.09912 0.09837

Table 2.12: The absolute errors for Example 2.21.

M=6 M=10

t α = −1/2 α = −3/4 α = −3/4 α = −1/2

β = −1/2 β = −3/4 β = −1/2 β = −1/2

0 9.80e−5 1.57e−4 1.23e−5 2.60e−5

0.1 1.54e−3 5.21e−4 1.36e−3 1.09e−3

0.2 5.44e−4 2.50e−3 7.08e−4 1.71e−4

0.3 2.58e−3 3.38e−3 7.83e−4 1.84e−3

0.4 2.83e−3 3.32e−3 5.28e−4 2.87e−3

0.5 2.21e−3 2.83e−3 1.85e−3 2.12e−3

0.6 9.29e−4 2.007e−3 4.05e−4 5.54e−4

0.7 1.45e−3 7.77e−4 1.89e−3 1.28e−3

0.8 1.69e−3 7.53e−4 3.40e−3 1.26e−3

0.9 3.01e−3 2.33e−3 4.94e−3 2.83e−3

1 2.58e−3 1.44e−3 3.93e−3 1.83e−3
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Figure 2.49: The exact and approximate solutions with the absolute error for M = 10 and

α = β = −1/2 for Example 2.21.

Table 2.13: Absolute errors comparaison of Example 2.21 for k = 100.

Proposed method Floater-Hormann method [84]

t M = 10, α = −3/4, β = −1/2 M = 4, n = 21

Absolute error error [84]

0 1.23e−5 4.62e−18

0.1 1.36e−3 3.29e−3

0.2 7.08e−4 3.71e−3

0.3 7.83e−4 5.42e−3

0.4 5.28e−4 5.57e−3

0.5 1.85e−3 7.14e−3

0.6 4.05e−4 7.70e−3

0.7 1.89e−3 7.24e−3

0.8 3.40e−3 8.03e−3

0.9 4.94e−3 7.67e−3

1 3.93e−3 7.94e−3
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Figure 2.50: The exact and approximate solutions with the absolute error for M = 10, α =

−3/4 and β = −1/2 for Example 2.21.
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Figure 2.51: The exact and approximate solutions with the absolute error for M = 20, α =

−3/4,β = −1/2 for Example 2.21.
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2.6.3 Analysis of numerical tests

In this work we have proposed an accurate spectral technique based on Lagrange poly-

nomials and the Gauss-Jacobi collocation method for solving a class of nonlinear stochastic

Volterra integral equations. This method offers several advantages, including simplicity and

high accuracy achieved by varying the parameters α and β. The numerical results demon-

strate that the solutions obtained through the Lagrange Jacobi-Gauss collocation method

agree well with the exact solutions.

Among existing numerical methods, pseudo-spectral or collocation methods are highly

effective, particularly for problems with smooth solutions. They yield precise approxima-

tions with minimal computational memory requirements. Notably, the optimal selection of

interpolation points, such as Chebyshev polynomials, renders collocation methods equiva-

lent to the Galerkin method when combined with Gaussian integration for evaluating inner

products.

Furthermore, we perform convergence and error analysis for the proposed method and

confirm its efficiency and a reasonable degree of accuracy through various numerical exam-

ples [23]. The advantages of our approach are manifold:

• Rapid computation, significant accuracy, and reliable convergence.

• The exponential convergence rate facilitated by the collocation approach ensures highly

precise solutions.

• Transformation of the original problem into a system of linear or nonlinear algebraic

equations via collocation.

• Superior accuracy compared to various existing methods.

• Attainment of well-conditioned solutions using of quadrature formulas based on Gauss-

Legendre and Itô integration rules.

• Jacobi-collocation methods with Lagrange interpolation offer operational simplicity

and a wide range of node choices, including Chebyshev, Legendre, etc.

• Accuracy can be enhanced with sufficiently large time intervals.
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• Equidistant points are unsuitable for Lagrange interpolation; instead, Gauss quadra-

ture nodes yield better results.

• The presented method efficiently generates accurate results using a small number of

basis functions and nodal points.
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Chapter 3
A new accurate method to solve nonlinear

stochastic Itô–Volterra integral equations

3.1 Introduction

Numerous real-world phenomena find description through stochastic integral equations

(SIEs), with an increasing demand for these equations across diverse fields such as biol-

ogy, chemistry, engineering, medicine, physics, social sciences, finance, economics, and me-

chanics, enabling the examination of complex dynamical systems (cf. [25, 37, 39, 116, 105]).

Examples of SIEs arise in the stochastic formulation of challenges in reactor dynamics (cf.

[27, 71, 80]), the study of biological population growth (cf. [61]), and the theory of automatic

systems modeled by delay-differential equations (cf. [97]). The inherent complexity of such

phenomena necessitates the use of various SIEs, particularly those dependent on a noise

source, such as Gaussian white noise. Modeling these phenomena often involves stochas-

tic differential equations (cf. [2, 28, 29, 62, 61, 63, 66, 75, 76, 98]), and in many intricate

cases, stochastic integro-differential equations and stochastic Volterra integral equations (cf.

[17, 34, 52, 93, 94, 142, 144, 145]).

This chapter investigates the nonlinear Itô–Volterra SIE given by

X(t) = h(t) +

∫ t

0

γ1(t, s)µ1(X(s))ds+

∫ t

0

γ2(t, s)µ2(X(s))dB(s), t ∈ [0, T ], (3.1)

where X(t), h(t), γ1(t, s), and γ2(t, s) for t, s ∈ [0, T ], T ∈ R+ are stochastic processes defined

on the filtrated probability space (Ω,F ,Ft, P ), µ1 and µ2 are nonlinear functions, X(t) is the
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unknown function, and B(t) is a Wiener process. As these SIEs are often too complex to be

solved explicitly for most real-world problems, employing numerical techniques becomes

crucial for finding their approximations. Radial basis function (RBF) methods, representing

modern techniques for approximating multivariate functions, gain popularity. These meth-

ods, with nodes lacking nodal connectivity, become preferable in complex geometries. The

interpolation method employing positive definite functions, such as Multiquadric RBFs and

Gaussian RBFs, is employed in [89] to get approximate solution of two-dimensional linear

SIEs on non-rectangular domains. An iterative method for determining the optimal num-

ber of Gaussian neurons and their locations for the RBF neural networks (RBFNN) method,

ensuring efficient solving of the Fokker–Planck–Kolmogorov (FPK) equation with high ac-

curacy, is presented in [130]. In [88], Mirzaee et al developed a numerical method based on

RBFs to solve fractional stochastic integro-differential equations. More information about

learning new approaches in this regard can be found in [85, 118]. Practical experience reveals

that the efficacy of the previously mentioned methods in achieving satisfactory approxima-

tions is not always guaranteed. This underscores the need for advancing more effective

methods, where obtaining a precise approximate solution becomes crucial for gaining valu-

able insights and a correct comprehension of the studied system’s behavior. The challenge

of approximating solutions to SIEs has been thoroughly investigated, resulting in various

technique to solve both linear and nonlinear SIEs. Examples include spectral methods based

on modified hat functions, Euler polynomials, Bernstein method, shifted Jacobi operational

matrices, and the Fibonacci operational matrices (cf. [12, 83, 86, 110, 109, 119, 135]). Spectral

methods have been widely employed for solving SIEs (cf. [92, 101, 117, 120]), offering global,

continuous solutions without the need for constructing a data network. These methods typ-

ically utilize orthogonal basis functions to reduce computational costs. In response to this,

the present chapter introduces a novel spectral method based on the collocation approach,

applicable to the solution of various SIEs. A generalized pseudo-spectral (GPS) technique

is presented in [33], it is a generalization of the conventional Lagrangian interpolation. In-

terpolation operators play a major role in minimizing computational costs in many spectral

methods, including Galerkin and Petrov-Galerkin methods. To attain this goal, a specific set

of interpolation points is chosen to create Lagrange interpolation functions, ensuring that

the residual error function is adjusted to zero at these selected collocation points, coincid-

ing with the roots of Jacobi polynomials. Since determining the degree of the polynomial
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poses challenges with equidistant interpolation points, a method for selecting these points is

explored. This chapter develops a new truncated interpolation method for solving SIEs by

the interpolation techniques based on the combination of the Jacobi collocation nodes and

the generalized Lagrange functions with a suitable Gauss-Legendre quadrature. The three

significant contributions of this study are as follows:

• Efficient Pseudospectral Method: The study provides an efficient pseudospectral method

for solving a more general family of nonlinear stochastic Volterra integral equations.

Notably, the method extends Lagrange interpolation to weighted L2 space, employing

interpolation points as the zeros of orthogonal polynomials, such as Jacobi polynomi-

als. The interpolation formula exhibits excellent numerical stability, capable of achiev-

ing machine-precision approximations for arbitrary smooth functions. The proposed

technique is validated by demonstrating its ability to generate accurate approximate

solutions for the considered problems.

• Jacobi–Gauss Collocation Method: The study introduces the Jacobi–Gauss colloca-

tion method for stochastic differential equations, selecting a set of distinct and optimal

interpolation points, namely Jacobi Gauss points. This represents a novel contribu-

tion to the field, and the accuracy of the proposed method is demonstrated through

test problems, showcasing the typical exponential convergence behavior of spectral

approximations.

• Generalized Lagrange Functions: The study explores various new generalized La-

grange functions suitable for solving different types of stochastic integral equations.

These functions enable the transformation of the original problem into linear or non-

linear algebraic systems, enhancing the versatility and applicability of the proposed

method.

The new spectral method presented in this chapter addresses the limitations of existing tech-

niques and offers valuable contributions in terms of efficiency, accuracy, and versatility for

solving a broader range of stochastic differential and integral equations.

Before delving into the computational method, let’s introduce some fundamental defini-

tions.
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Generalized Lagrange functions

Generalized Lagrange functions are defined as follows

GL
j (t) =

M∏
i=1,i ̸=j

L(t)− L(ti)

L(tj)− L(ti)
, 1 ≤ j ≤M, (3.2)

where L(t) is a smooth function, t1 < t2 < · · · < tM are the interpolation points and L(tj) ̸=

L(ti) for all i ̸= j. The Generalized Lagrange functions have the following properties:

• if limt→∞ L(t) = c <∞, then limt→∞GL
j (t) <∞ ∀ 1 ≤ j ≤M ;

• GL
j (ti) = δij at any point ti, where δij is the Kronecker delta

•
∑M

j=1G
L
j (t) = 1.

This chapter introduces a collocation spectral method using generalized Lagrange basis

functions with Jacobi collocation nodes to tackle the aforementioned problem.

This method proves to be highly adapted, capable of accurately approximating various

types of equations (cf. [3, 18, 19, 20, 35, 36, 113, 96]). Hence, instead of developing approxi-

mation results for individual pairs of indexes α and β, a systematic investigation into Jacobi

collocation points might offer valuable generalizations. It’s noteworthy that even with a

small selection of collocation points, this method consistently produces remarkable numer-

ical results.

3.2 The new proposed technique

For a nonlinear Itô–Volterra SIE given in (3.1). The proposed technique consists of the fol-

lowing steps, which are illustrated in the flowchart (Figure 1).

• Step 1: Collocate Eq.(3.1) at ti points as follows:

X(ti) = h(ti) +

∫ ti

0

γ1(ti, s)µ1(X(s))ds︸ ︷︷ ︸
(I)

+

∫ ti

0

γ2(ti, s)µ2(X(s))dB(s)︸ ︷︷ ︸
(II)

, (3.3)

where ti, 1 ≤ i ≤M are the roots of the M th Jacobi’s polynomial.
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• Step 2: Interpolate the state variable using a generalized Lagrange function as follows:

X(t) ≃ X̂M(t) =
M∑
j=1

X(tj)G
L
j (t) = (X(t1) X(t2) ... X(tM))


GL

1 (t)

GL
2 (t)
...

GL
M(t)

 = X ′GL(t).

(3.4)

• Step 3: Apply the Gauss-Legendre quadrature rule to approximate both integrals (I)

and (II) in equation (3.3) as below

– Approximate the integral (I) in (3.3), we get∫ ti

0

γ1(ti, s)µ1(X(s))ds =
1

2
ti

n1∑
j=1

Ajγ1

(
ti,

1

2
tisj +

1

2
ti

)
µ1

(
X

(
1

2
tisj +

1

2
ti

))

=
1

2
ti

n1∑
j=1

Ajγ1

(
ti,

1

2
tisj +

1

2
ti

)
µ1

(
X ′GL

(
1

2
tisj +

1

2
ti

))
,

(3.5)

where sj are the Gauss Legendre roots on [−1, 1] and Aj are the weights of Gauss

quadrature.

– Using integration by parts for each w ∈ Ω, the integral (II) in equation (3.3) yields∫ ti

0

γ2(ti, s)µ2(X(s))dB(s)

= [γ2(ti, s)µ2(X(s))B(s)]ti0 −
∫ ti

0

B(s)d [γ2(ti, s)µ2(X(s))]

ds
ds

= γ2(ti, ti)µ2(X(ti))B(ti)−
∫ ti

0

B(s)d [γ2(ti, s)µ2(X(s))]

ds
ds

= γ2(ti, ti)µ2(X
′GL(ti))B(ti)−

∫ ti

0

B(s)
d
[
γ2(ti, s)µ2(X

′GL(s))
]

ds
ds︸ ︷︷ ︸

(J)

.

By using the Gauss-Legendre quadrature to approximate the integral (J), we get∫ ti

0

γ2(ti, s)µ2(X(s))dB(s) = γ2(ti, ti)µ2

(
X ′GL(ti)

)
B(ti)

− 1

2
ti

n2∑
j=1

ÃjB
(
1

2
tis̃j +

1

2
ti

)(
d
[
γ2(ti, s)µ2(X

′GL(s))
]

ds

)(
1

2
tis̃j +

1

2
ti

)
.

(3.6)
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• Step 4: Replacing Eqs.(3.4), (3.5) and (3.6) in Eq.(3.3), we obtain the following nonlinear

algebraic system

X ′GH(ti) = h(ti) + γ2(ti, ti)µ2(X
′GL(ti))B(ti)

+
1

2
ti

n1∑
j=1

Ajγ1

(
ti,

1

2
tisj +

1

2
ti

)
µ1

(
X ′GL

(
1

2
tisj +

1

2
ti

))

− 1

2
ti

n2∑
j=1

ÃjB
(
1

2
tis̃j +

1

2
ti

)(
d
[
γ2(ti, s)µ2(X

′GL(s))
]

ds

)(
1

2
tis̃j +

1

2
ti

)
.

(3.7)

• Step 5: Solving the algebraic system (3.7).

• Step 6: To obtain the approximate solution of the Itô–Volterra stochastic integral equa-

tion, replace the value achieved of X ′ into Eq. (3.4) as X(t) ≃ X̂M(t) = X ′GL(t).

It’s important to note that the new proposed technique is totally different from existing

works, such as those detailed in [12, 83, 86, 110, 119]. In these approaches, operational matri-

ces for each polynomial are presented, and Newton-Cotes collocation nodes are employed.

For instance, in [83], Fibonacci polynomials outperformed techniques utilizing Block pulse

functions and Bernstein polynomials. The authors improved upon these results in [86] by

incorporating Euler polynomials. More recently, Sharafi et al. [119] introduced an algorithm

based on hat functions, demonstrating superior performance when the step size h is suffi-

ciently small, this results in an increase in m (the number of basis approximations) and large

CPU time.

In contrast, Ray et al. [110] utilized Jacobi polynomials with their operational matrix, em-

ploying Jacobi nodes and Newton-Cotes as collocation points. The numerical results, as

presented in Section 4, of the new proposed approach demonstrate the significant advan-

tage of employing generalized basis functions for solving equations of this type. The main

strengths of the new technique lie in its simplicity, reduced CPU time compared to existing

methods, and the flexibility of parameter choices for α and β, allowing for optimal selection

and achieving optimal approximate solutions.
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Input: the interval [0, T ], the number of Jacobi points M , the num-

ber of simulation k, Jacobi polynomials J α,β
M (t), the parameters α,

β ≥ −1, the functions γ1(t, s), µ1(X(s)), γ2(t, s), µ2(X(s)) and h(t).

Solve J (α,β)
T,M (t) = 0 and get the collocation points ti.

Define the generalized Lagrange function GL(t) given in

(3.2) and use it to approximate the solution X in (3.1).

Collocating the SIE (3.1) at ti points.

Get equation (3.3).

Approximate each integrals (I) and (II) in (3.3).

Get the algebraic system given in (3.7).

Extract the algebraic system (3.7) and solve it.

Replace the value achieved for X ′ into (3.4) to get the final new approximate solution.

Figure 3.1: The new proposed technique for solving SIEs.
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3.3 The convergence of our technique

The theorem below outlines the sufficient conditions under which the estimation error con-

verges to zero.

Theorem 3.1 Suppose thatX(t) is the exact solution of nonlinear Itô–Volterra SIE (3.1) and X̂M(t)

is the approximate solution obtained by the new proposed method. Assume that µ1 and µ2 are Lips-

chitzian functions with constants Q1 and Q2, respectively, and the functions γi, i = 1, 2 satisfy the

following conditions

|γi(t, s)| ≤ Zi, i = 1, 2,∀(t, s) ∈ [0, T ]2, (3.8)

where Zi, i = 1, 2 are positive constants. Then, we get∥∥∥X(t)− X̂M(t)
∥∥∥2
L2(0,T )

= E
∣∣∣X(t)− X̂M(t)

∣∣∣2 → 0 as M → ∞. (3.9)

Proof. From equation (3.1), we get

X(ti) = h(ti) +

∫ ti

0

γ1(ti, s)µ1(X(s))ds+

∫ ti

0

γ2(ti, s)µ2(X(s))dB(s)

and

X̂M(ti) = hM(ti) +

∫ ti

0

γ1(ti, s)µ1

(
X̂M(s)

)
ds+

∫ ti

0

γ2(ti, s)µ2

(
X̂M(s)

)
dB(s)− eri1 − eri2,

(3.10)

where eri1 and eri2 represent the errors corresponding to integrals (I) and (II) in equation (3.3),

respectively, defined as follows:

eri1 =

∫ ti

0

γ1(ti, s)µ1

(
X̂M(s)

)
ds− 1

2
ti

n1∑
j=1

Ajγ1

(
ti,

1

2
tisj +

1

2
ti

)
µ1

(
X ′GL

(
1

2
tisj +

1

2
ti

))
(3.11)

and

eri2 =

∫ ti

0

γ2(ti, s)µ2

(
X̂M(s)

)
dB(s)− γ2(ti, ti)µ2

(
X ′GL(ti)

)
B(ti)

+
1

2
ti

n2∑
j=1

ÃjB
(
1

2
tis̃j +

1

2
ti

)[
γ2(ti, s)µ2

(
X ′GL(s)

)]′(1

2
tis̃j +

1

2
ti

)
. (3.12)

Then, we have

E
∣∣∣X(t)− X̂M(t)

∣∣∣2 ≤ E

[∣∣∣∣(h(t)− hM(t)) +

∫ ti

0

γ1(t, s)(µ1(X(s))− µ1(X̂M(s)))ds

+

∫ t

0

γ2(t, s)(µ2(X(s))− µ2(X̂M(s)))dB(s) +er1 + er2 |2
]
. (3.13)
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Since (k1 + k2 + k3)
2 ≤ 4k21 + 4k22 + 4k23, then we get

E|X(t)− X̂M(t)|2 ≤ 4E|h(t)− hM(t)|2 + 4E

[∣∣∣∣∫ t

0

γ1(t, s)(µ1(X(s))− µ1(X̂M(s)))ds

+

∫ t

0

γ2(t, s)(µ2(X(s))− µ2(X̂M(s)))dB(s) |2
]
+ 4E|er1 + er2|2

≤ 4E|h(t)− hM(t)|2 + 8E

∣∣∣∣∫ t

0

γ1(t, s)(µ1(X(s))− µ1(X̂M(s)))ds

∣∣∣∣2
+ 8E

∣∣∣∣∫ t

0

γ2(t, s)(µ2(X(s))− µ2(X̂M(s)))dB(s)
∣∣∣∣2 + 4E|er1 + er2|2. (3.14)

Using Itô isometry, Lipschitz conditions, Holder’s inequality and the boundedness of γ1 and

γ2, we get

E|X(t)− X̂M(t)|2 ≤ 4E|h(t)− hM(t)|2 + 8tE

∫ t

0

|γ1(t, s)|2|µ1(X(s))− µ1(X̂M(s))|2ds

+ 8E

∫ t

0

γ22(t, s)|µ2(X(s))− µ2(X̂M(s))|2ds+ 4E|er1 + er2|2,

≤ 4E|h(t)− hM(t)|2 + 8TQ2
1Z

2
1

∫ t

0

E|Y (s)− X̂M(s)|2ds

+ 8Q2
2Z

2
2

∫ t

0

E|X(s)− X̂M(s)|2ds+ 8E|er1|2 + 8E|er2|2

≤ (8TQ2
1Z

2
1 + 8Q2

2Z
2
2)

∫ t

0

E|X(s)− X̂M(s)|2ds

+ 4E|h(t)− hM(t)|2 + 8E|er1|2 + 8E|er2|2. (3.15)

Applying Gronwall’s lemma, we obtain

E|X(t)− X̂M(t)|2 → 0 as M → +∞. (3.16)

3.4 Evaluation of the accuracy of the new proposed technique

This section assesses the efficacy of the newly proposed technique by employing various

Lagrange functions and adjusting parameters such as α, β, and M . The evaluation in-

cludes a comparison with established methods widely used in the field, namely modified

hat function (MHF), Fibonacci operational matrices (FOM), Euler polynomials (EP), shifted

Jacobi operational matrices (SJOM), and the Bernstein method. To examine the efficacy of

the newly proposed technique, various types of stochastic integral equations with different
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types of exact solutions are used. The algorithm is implemented using MATLAB (R2014a).

These experiments provide valuable insights into the efficiency and reliability of the pro-

posed technique in comparison to established methods, helping to validate its applicability

across different scenarios.

Example 3.1 Consider the nonlinear Itô–Volterra SIE in [66]

X(t) =
1

8
− 0.015625

∫ t

0

X(s)(1−X2(s))ds+ 0.125

∫ t

0

(1−X2(s))dB(s), 0 ≤ t ≤ 1, (3.17)

with the exact solution

XExact(t) =
9

9 e0.125B(t) + 7
e0.25B(t) − 7

9 e0.125B(t) + 7
. (3.18)

Table 3.1 presents the analytical solution via (3.18) and the approximate solutions obtained by the

proposed technique, using various Lagrange functions L1(t) = 1−2e−
t

100 and L2(t) = 2 tanh(t)−1

and different values of α and β (α = β = 0), (α = β = −0.75), (α = β = −0.5) and (α =

−0.75β = −0.5) for 0 ≤ t ≤ 0.9, M = 8 and 102 sample paths.

Table 3.1: Numerical results of the exact solution and approximate solutions for Example

3.1.

t Exact solution Approximate solutions

Y (t) = 9 e0.25B(t)−7
9 e0.125B(t)+7

L1(t) = 1− 2e−
t

100 L2(t) = 2 tanh(t)− 1

α = β = 0 α = β = −0.75 α = β = −0.5 α = −0.75, β = −0.5

0 0.12500000 0.12812630 0.12376224 0.12439152 0.12411194

0.1 0.12455492 0.12534476 0.12855858 0.12839622 0.12423431

0.2 0.12972764 0.12706921 0.12890479 0.12919038 0.12557322

0.3 0.13032644 0.12793268 0.12599189 0.12479003 0.12969632

0.4 0.11675846 0.12796429 0.12358697 0.12334069 0.12804461

0.5 0.11114545 0.12889378 0.12283510 0.12346982 0.12678623

0.6 0.12381948 0.13122039 0.12241042 0.12215894 0.13013486

0.7 0.11889557 0.1330032 0.12106677 0.12019059 0.13359992

0.8 0.11875911 0.13130259 0.11971906 0.11975725 0.13189005

0.9 0.11111908 0.12717650 0.12026580 0.12040455 0.12743390

Absolute errors ξ(t) = mean|XExact(t)−XApproximate(t)|, are given in Figure 3.2 using general-

ized Lagrange function L1(t) = 1− 2e−
t

100 for 2 trajectories, α = β = −0.75 and M = 20.
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Figure 3.2: Numerical results obtained by the proposed technique for Example 3.1.

Table 3.2 presents a comparison between our technique and the FOM technique in [83].

Table 3.2: Comparaison of the absolute errors of the FOM technique and the generalized

Lagrange technique for Example 3.1.

t Error using the FOM in [83] Error via the new proposed technique

L1(t) = 1− 2e−
t

100 L2(t) = 2 tanh(t)− 1

α = β = 0 α = β = −0.75 α = β = −0.5 α = −0.75, β = −0.5

0 9.35× 10−3 3.12× 10−3 1.23× 10−3 6.08× 10−4 8.88× 10−4

0.1 3.12× 10−2 1.81× 10−3 6.54× 10−3 6.38× 10−3 7.02× 10−4

0.2 4.10× 10−2 2.75× 10−3 1.23× 10−2 1.26× 10−2 1.25× 10−3

0.3 4.87× 10−2 2.25× 10−3 8.94× 10−3 7.73× 10−3 4.95× 10−4

0.4 5.51× 10−2 6.17× 10−4 4.76× 10−3 4.51× 10−3 6.97× 10−4

0.5 6.10× 10−2 5.56× 10−3 4.67× 10−3 5.31× 10−3 7.67× 10−3

0.6 6.65× 10−2 5.10× 10−3 5.06× 10−4 2.55× 10−4 6.18× 10−3

0.7 7.47× 10−2 3.68× 10−3 4.66× 10−4 1.34× 10−3 3.09× 10−3

0.8 8.40× 10−2 4.32× 10−3 2.66× 10−3 2.62× 10−3 3.74× 10−3

0.9 9.72× 10−2 1.21× 10−2 5.06× 10−3 4.92× 10−3 1.18× 10−2
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For better understanding, Figure 3.3 indicates a comparison between the exact solution, the ap-

proximate solution calculated by the present method with Lagrange function L1(t) = 1− 2e−
t

100 for

M = 8 and α = β = −0.75 and using the FOM technique in [83].

Figure 3.3: Comparaison of the results of the generalized Lagrange solution and the FOM

technique with the exact solution for Example 3.1.

From Tables 3.1 and 3.2 and Figures 3.2 and 3.3 we conclude that:

• The new method gives us solutions that are very similar to the exact ones for any values of t,

Lagrange function, α, and β. This means that the approximate solution behaves just like the

exact solution in equation (1.32) and can be considered as an accurate representative solution

of the nonlinear stochastic Itô–Volterra integral equation in (3.17).

• The approximate solutions based on the generalized Lagrange technique are better than the

approximate solutions obtained by the FOM technique in [83] for any t, Lagrange function, α

and β, where

ξnew(L, α, β; t) < ξFOM(t), for any L, α, β, t.
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More Precisly, for 0 ≤ t ≤ 0.9 we have

0.0093 ≤ ξFOM(t) ≤ 0.0972.

0.0004 ≤ ξnew(L1,−0.75,−0.75; t) ≤ 0.0089.

0.0006 ≤ ξnew(L1, 0, 0; t) ≤ 0.0121.

0.0003 ≤ ξnew(L2,−0.5,−0.5; t) ≤ 0.0126.

0.0005 ≤ ξnew(L2,−0.5, 0.667; t) ≤ 0.0118.

Example 3.2 Let given the following nonlinear Itô–Volterra SIE in [83]

X(t) = 1 +

∫ t

0

X(s)

(
1

32
−X2(s)

)
ds+ 0.25

∫ t

0

X(s)dB(s), 0 ≤ t ≤ 1, (3.19)

with the exact solution

XExact(t) =
e0.25B(t)√

1 + 2
∫ t

0
e0.5B(s)ds

. (3.20)

Table 3.3 shows the analytical solutions via (3.20) and the approximate solutions given by the pro-

posed technique, using various Lagrange functions L1(t) = t, L2(t) = 2 tanh(t) − 1 and L3(t) =

1− 2e−t and different values of α and β (α = β = −0.75), (α = β = 0) and (α = 0, β = −5/6) for

0 ≤ t ≤ 0.9, M = 8 and 102 sample paths.

Table 3.3: Numerical results of the exact solution and approximate solutions for Example

3.2.

t Exact solution Approximate solutions

L1(t) = t L2(t) = −1 + 2 tanh(t) L3(t) = 1− 2e−t

Y (t) = e0.25B(t)√
1+2

∫ t
0 e0.5B(s)ds

α = β = −0.75 α = β = 0 α = 0, β = −5/6 α = β = 0 α = 0, β = −5/6

0 1.0 1.001423 1.027262 0.999345 0.979067 1.001771

0.1 0.918945 0.921487 0.917016 0.911177 0.913172 0.930352

0.2 0.854198 0.851411 0.858504 0.851796 0.839501 0.858175

0.3 0.791579 0.793812 0.796184 0.806006 0.791913 0.801717

0.4 0.746896 0.747737 0.755605 0.749902 0.745678 0.767293

0.5 0.711232 0.710177 0.728305 0.702221 0.704470 0.732648

0.6 0.665611 0.678215 0.694829 0.674294 0.67414 0.691860

0.7 0.652236 0.650551 0.653132 0.651000 0.651024 0.656214

0.8 0.609760 0.627179 0.615321 0.612777 0.62806 0.633083

0.9 0.606999 0.605938 0.590884 0.560159 0.604471 0.608415
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The mean of absolute error ξ(t) = mean|XExact(t)−XApproximate(t)|, is given in Figure 3.4 using

the generalized Lagrange function L2(t) for 50 trajectories, α = β = 0 and M = 20.

Figure 3.4: Numerical results obtained by the proposed technique for Example3.2.

Table 3.4 presents a comparison between our technique, the MHF technique in [119], the EP

technique in [86] and the FOM technique in [83], where ξ2(t) is the error using L1(t) for α =

β = −0.75 and M = 8 and ξ3(t) is the error for L2(t), α = β = 0 and M = 8. For more

comprehension, Figure 3.5 indicates a comparison study between the exact solutions, the approximate

solutions calculated by the EP technique in [86], the approximate solutions using the FOM technique

in [83], the approximate solutions using the MHF technique in [119] and the approximate solutions

using the generalized Lagrange technique via the Lagrange function L3(t) for α = 0, β = −5/6 and

M = 8.

107



Chapter 3 A novel method to solve nonlinear SIVIE

Table 3.4: Comparaison of the absolute errors of the EP technique, the MHF technique, the

proposed method and the FOM technique for Example 3.2.

t EP technique in [86] MHF techniquein [119] FOM technique in [83] New proposed technique

ξ2 ξ3

0 2.76× 10−2 2.31× 10−2 0.135 1.42× 10−3 2.72× 10−2

0.1 2.51× 10−2 1.03× 10−2 9.45× 10−2 2.54× 10−3 3.37× 10−3

0.2 2.59× 10−2 2.21× 10−2 6.56× 10−2 2.78× 10−3 1.88× 10−3

0.3 3.06× 10−2 1.02× 10−2 4.62× 10−2 2.23× 10−3 1.47× 10−3

0.4 3.84× 10−2 3.19× 10−2 3.69× 10−2 8.40× 10−4 1.14× 10−3

0.5 4.87× 10−3 3.69× 10−2 4.04× 10−2 1.05× 10−3 1.11× 10−2

0.6 6.08× 10−2 5.98× 10−2 5.16× 10−2 1.26× 10−2 7.68× 10−3

0.7 7.42× 10−2 6.88× 10−2 6.62× 10−2 1.68× 10−3 1.88× 10−3

0.8 8.89× 10−2 7.73× 10−2 8.23× 10−2 1.74× 10−2 3.85× 10−3

0.9 0.105 9.81× 10−2 0.1 1.06× 10−3 2.37× 10−2

Figure 3.5: Comparaison of the results of the FOM technique, MHF technique, proposed

method and the EP technique with the exact solution for Example 3.2.

Moreover, Table 3.5 gives the maximum absolute error and the CPU time of the new proposed
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technique using the Lagrange function L(t) = 1− 2e−
t

100 for α = β = 0, M = 8 and 20 simulations

compared with the MHF technique in [119], the FOM technique in [83] and the Bernstein technique

in [12].

Table 3.5: The maximum error and CPU time for Bernstein technique, the MHF technique,

new proposed technique and EP technique for Example 3.2.

The used techniques CPU time Maximum error

New proposed technique 169.8 0.06805

MHF technique in [119] 803.8 0.1342

Bernstein technique in [12] 1492.4 0.1366

EP technique in [83] 899.4 0.1363

From Tables 3.3, 3.4 and 3.5 and Figures 3.4 and 3.5, we conclude that:

• The new method gives us solutions that are very similar to the exact ones for any values of t,

Lagrange function, α, and β. This means that the approximate solution behaves just like the

exact solution in equation (3.20) and can be considered as an accurate representative solution

of the nonlinear stochastic Itô–Volterra integral equation in (3.19).

• The approximate solutions based on the new proposed technique are better than the approximate

solutions based on the EP technique in [86], the MHF technique in [119] and the FOM method

in [83] for any t, Lagrange function L1(t) for α = β = −0.75 where

ξnew(t) < ξEP(t), ξnew(t) < ξMHF(t), ξnew(t) < ξFOM(t), for any t.

To be more specific, for 0 ≤ t ≤ 0.9 we have

0.0369 ≤ ξFOM ≤ 0.135.

0.0981 ≤ ξMHF ≤ 0.102.

0.0487 ≤ ξEP ≤ 0.105.

0.000840 ≤ ξnew ≤ 0.0174.

(3.21)

• The required time (denoted as Γ) of the new proposed technique is much less than the required

time of the MHF technique in [119], Bernstein technique in [12] and FOM technique in [83].

In some circumstances, the existing techniques take more than 8 times as long as the new

proposed technique, where

Γnew = 169.8 < ΓMHF = 803.8 < ΓPE = 899.4 < ΓBernstein = 1492.4.
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Moreover,

max(ξnew) < max(ξMHF) < max(ξPE) < max(ξBernstein).

Example 3.3 Consider the following nonlinear Itô–Volterra SIE in [60]

X(t) =
1

12
+

∫ t

0

cos(s)X(s)ds+

∫ t

0

sin(s)X(s)dB(s), 0 ≤ t ≤ 0.5, (3.22)

with the exact solution

XExact(t) =
1

12
exp

(
− t

4
sin(t) +

sin(2t)

8
+

∫ t

0

sin(s)dB(s)
)
. (3.23)

Table 3.6 illustrates the analytical solutions via (3.23) and the approximate solutions obtained by the

proposed technique using various Lagrange functions L1(t) = 1 − 2e−t, L2(t) = −1 + 2 tanh(t)

and L3(t) = 2t2 − 1 and different values of α and β (α = −0.75, β = −0.5), (α = β = −0.5),

(α = β = 0) and (α = −β = 0.5) for 0 ≤ t ≤ 0.5, M = 5 and 102 sample path. The mean

absolute error ξ(t) = mean|XExact(t)−XApproximate(t)|, are given in Figure 3.6 using the generalized

Lagrange function L3(t) for 102 trajectories, α = β = 0 and M = 5. Table 3.7 gives a comparison

study between the generalized Lagrange technique and the SJOM technique in [110]. For more

understanding, Figure 3.7 shows a comparison study between the exact solutions, the approximate

solutions using the SJOM technique in [110] and the approximate solutions using the new proposed

technique via the Lagrange function L2(t) for α = −0.75, β = −0.5 and M = 5.

From Tables 3.6 and 3.7 and Figures 3.6 and 3.7, we conclude that:

• The new method gives us solutions that are very similar to the exact ones for any values of t,

Lagrange function, α, and β. This means that the approximate solution can be considered as

an accurate representative solution of the nonlinear stochastic Itô–Volterra integral equation in

(3.22).

• The approximate solutions based on the new proposed technique are more better than the ap-

proximate solutions based on the SJOM technique in [110] for any t, Lagrange function L2(t)

and α = −0.75, β = −0.5 where

ξnew(t) < ξSJOM(t), for any t.

To be more specific, for 0 ≤ t ≤ 0.9 we have 0.00134 ≤ ξSJOM ≤ 0.06007.

0.000965 ≤ ξnew ≤ 0.02008.
(3.24)
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Table 3.6: Numerical results of the exact solution and approximate solutions for Example

3.3.

t Exact solution New approximate solutions via different parameters

L1(t) = 1− 2e−t L2(t) = −1 + 2 tanh(t) L3(t) = 2t2 − 1

α = −0.75, β = −0.5 α = −0.75, β = −0.5 α = β = −0.5 α = β = 0 α = −β = 0.5

0 0.0833333 0.080346 0.0838326 0.0860746 0.0849288 0.0840893

0.05 0.0875073 0.0906386 0.0870375 0.0847848 0.0866409 0.0863398

0.1 0.0922140 0.0928989 0.0919553 0.0922183 0.0911313 0.0918855

0.15 0.0965564 0.0945836 0.0976023 0.1005236 0.0968281 0.0979178

0.2 0.1015327 0.0990577 0.1034996 0.1057918 0.1021902 0.1021081

0.25 0.1067153 0.1069682 0.1096368 0.1077977 0.1068317 0.1049321

0.3 0.1123379 0.1172533 0.1163963 0.1094383 0.1121089 0.1105140

0.35 0.1226227 0.1278727 0.1244509 0.1159563 0.1201832 0.1235821

0.4 0.1268072 0.1363243 0.1346472 0.1340524 0.1302893 0.1394374

0.45 0.1313347 0.1400012 0.1478892 0.1709888 0.1306597 0.1231503

0.5 0.1351400 0.1364274 0.1650334 0.2337728 0.0842698 -0.02649076

Table 3.7: Absolute errors comparaison for Example 3.3.

t SJOM technique in [110] Approximate solution

L1(t) = 1− 2et L2(t) = −1 + 2 tanh(t) L3(t) = 2t2 − 1

α = −0.75, β = −0.5 α = −0.75, β = −0.5 α = β = −0.5 α = β = 0 α = −β = 0.5

0 1.39e−8 2.98× 10−3 4.99× 10−4 2.74× 10−3 1.59× 10−3 2.80× 10−4

0.05 1.34× 10−3 3.07× 10−3 6.57× 10−4 2.71× 10−3 8.38× 10−4 2.80× 10−3

0.1 5.95× 10−3 8.56× 10−4 3.87× 10−4 6.27× 10−4 1.05× 10−3 2.80× 10−4

0.15 4.01× 10−3 2.80× 10−3 2.70× 10−4 3.72× 10−3 3.89× 10−4 2.80× 10−4

0.2 3.34× 10−3 3.62× 10−3 1.63× 10−4 3.82× 10−3 5.77× 10−4 2.80× 10−4

0.25 1.30× 10−2 2.36× 10−3 9.65× 10−4 7.16× 10−4 2.39× 10−3 2.80× 10−3

0.3 7.24× 10−3 1.006× 10−4 7.18× 10−4 4.17× 10−3 2.90× 10−3 2.80× 10−3

0.35 2.19× 10−2 4.96× 10−3 2.21× 10−3 2.62× 10−3 4.09× 10−4 2.80× 10−3

0.4 1.87× 10−2 1.32× 10−3 4.92× 10−3 5.58× 10−3 3.85× 10−3 2.80× 10−2

0.45 5.08× 10−2 3.45× 10−3 1.16× 10−2 3.72× 10−2 3.88× 10−3 2.80× 10−2

0.5 6.007× 10−2 1.46× 10−2 2.008× 10−2 9.46× 10−2 6.30× 10−2 2.80× 10−1
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Figure 3.6: Numerical results obtained by the proposed technique for Example 3.3.

Figure 3.7: Comparaison of the results of the generalized Lagrange solution and the SJOM

technique with the exact solution for Example 3.3.
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Example 3.4 Let the following nonlinear Itô–Volterra SIE in [66]

X(t) =
1

20
+

1

400

∫ t

0

cos(X(s)) sin3(X(s))ds+ a

∫ t

0

sin2(X(s))dB(s), 0 ≤ t ≤ 1, (3.25)

with the exact solution

XExact(t) = arccot

(
1

20
B(t) + cot

(
1

20

))
. (3.26)

Table 3.8 shows the analytical solutions via (3.26) and the approximate solutions obtained by the

proposed technique using various Lagrange functions L1(t) = 1 − 2e−
t

100 and L2(t) = t−1
t+1

and

different values of α and β (α = β = −0.5), (α = β = −0.75) and (α = β = 0) for 0 ≤ t ≤ 0.9,

M = 6 and 102 sample paths.

Table 3.8: The approximate and exact solutions for Example 3.4.

t Exact solution Approximate solutions

L1(t) = 1− 2e−
t

100 L2(t) =
t−1
t+1

α = β = −0.5 α = β = −0.75 α = β = 0 α = β = −0.75

0 0.05 0.05000131 0.04999960 0.05002543 0.04999657

0.1 0.04999959 0.04999114 0.04999397 0.04999338 0.04999919

0.2 0.04999799 0.04998969 0.04999620 0.05000307 0.04998586

0.3 0.04999651 0.04999059 0.04999871 0.05000515 0.04998351

0.4 0.04999736 0.04999067 0.04999907 0.05000313 0.04998663

0.5 0.04999649 0.04998908 0.04999812 0.05000327 0.04998932

0.6 0.05000140 0.04998649 0.04999810 0.05000711 0.04998960

0.7 0.05000353 0.04998424 0.05000091 0.05001280 0.04998823

0.8 0.05000189 0.04998356 0.05000623 0.05001708 0.04998713

0.9 0.05000315 0.04998475 0.05000983 0.05001662 0.04998843

1 0.05000519 0.04998640 0.05000183 0.05000862 0.04999397

Mean of absolute error ξ(t) = mean|XExact(t) − XApproximate(t)|, is given in Figure 3.8 using

generalized Lagrange function L1(t) for 10 trajectories, α = −0.75, β = −0.5 and M = 6.

Table 3.9 represents the absolute errors of the proposed technique using L1(t) and L2(t) forM = 6.

From Tables 3.8 and 3.9 and Figure 3.8 we conclude that:

• The new method gives us solutions that are very similar to the exact ones for any values of

t, the adopted Lagrange function L2(t), α = −0.75, β = −0.75. This indicates that the
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Table 3.9: The absolute errors of the generalized Lagrange technique for Example 3.4.

t Error via the new proposed technique

L1(t) = 1− 2e−
t

100 L2(t) =
t−1
t+1

α = β = −0.5 α = β = −0.75 α = β = 0 α = β = −0.75

0 1.31× 10−6 3.97× 10−7 2.54× 10−5 3.24× 10−6

0.1 8.44× 10−6 4.68× 10−6 3.41× 10−6 1.57× 10−6

0.2 8.29× 10−6 1.03× 10−5 4.23× 10−6 1.15× 10−5

0.3 5.91× 10−6 4.25× 10−6 3.98× 10−6 1.35× 10−5

0.4 6.68× 10−6 3.02× 10−6 4.24× 10−6 1.34× 10−5

0.5 7.41× 10−6 1.20× 10−5 3.41× 10−6 5.69× 10−6

0.6 1.49× 10−5 1.32× 10−5 2.19× 10−6 1.24× 10−5

0.7 1.92× 10−5 1.99× 10−5 5.96× 10−6 8.66× 10−6

0.8 1.83× 10−5 1.81× 10−5 6.50× 10−6 9.84× 10−6

0.9 1.84× 10−5 1.92× 10−5 8.01× 10−7 7.37× 10−9

approximate solution behaves just like the exact solution in equation (3.26) and can be seen as

an accurate representative solution of the nonlinear stochastic Itô–Volterra integral equation in

(3.25), where

7.37× 10−9 ≤ ξnew ≤ 1.35× 10−5, for 0 ≤ t ≤ 0.9.

Figure 3.8: Numerical results obtained by the generalized Lagrange technique for Example

3.4.
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Remark 3.1 Now comes to mind the following logical question: What are the effects of the se-

lected Lagrange functions and the values of α and β on the accuracy of the new proposed

technique? To answer this significant question, Figures 3.9-3.12 give the approximate solutions via

the new proposed technique of the above-mentioned nonlinear equations in Examples 1-5, respectively

using different Lagrange functions L(s) and different values of α and β. From Figures 3.9-3.12, we

can conclude that:

• In Figure 3.9, α = β = 1/2 (Chebyshev interpolation points) and different generalized func-

tions are taken to get approximate solutions. The results show that, all the choices gives accept-

able results. In the case L(s) = s, the approximate solution is in a good agreement with exact

solution of Example 1. Secondly, for L(s) = 1 − 2e
−s
100 , the best choice to approximate exact

solution for all mentioned α and β is α = β = 0.5.

• The choices L(s) = −1+2tan(s) and L(s) = s for α = β = 0 are good choices to approximate

exact solution for Example 2. For L(s) = −1 + 2tan(s) and t ∈ [0, 0.9], all choices of α and β

can be used to estimate the analytical solution. For t ∈ [0.9, 1], among all the values of α and β,

the best options to estimate the exact solution are (α = −0.75, β = −0.5), (α = 3, β = −0.25)

and α = −5/7, β = 0.

• In Figure 3.11, all the numerical experiments for the Lagrange function L(s) = −1 + 2tan(s)

for the most different values of α, β and t ∈ [0, 0.5] shows the good agreement between exact

and approximate solutions for Example 3, and for t ∈ [0.5, 1] the best choices are (α = β = 0),

(α = β = 0.5) and α = 0, β = 1/3. For a fixed α = β = 0.5, the approximate solutions

obtained by all Lagrange functions agree well with the exact solution except the case L(s) =

2s2 − 1.

• For all Lagrange functions or for all values of α and β, the approximate solutions are in a good

agreement with the exact solution of Example 4.
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Figure 3.9: The exact solution and approximate solutions using different values of α and β

and a different Lagrange functions L(s) for Example 3.1.
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Figure 3.10: The exact solution and approximate solutions using different values of α and β

and a different Lagrange functions L(s) for Example 3.2.
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Figure 3.11: The exact solution and approximate solutions using different values of α and β

and a different Lagrange functions L(s) for Example 3.3.
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Figure 3.12: The exact solution and approximate solutions using different values of α and β

and a different Lagrange functions L(s) for Example 3.4.

3.5 Analysis of the proposed technique

The proposed technique leverages the generalized Lagrange interpolated polynomial with

a new way, showcasing advantages over existing methods such as the Fibonacci method in

[83], Euler polynomials in [86], hat functions in [119], and Jacobi polynomials in [110]. The

approximate solutions obtained through the new proposed technique demonstrate excellent

agreement with exact solutions across various choices of generalized Lagrange functions.

Some advantages of the proposed technique include:

• Applicability to Smooth Solutions: The method performs well when a smooth solu-

tion is anticipated, utilizing low-degree polynomials through a spectral approach.

• Adaptability to Problem Characteristics: The flexibility to select basis functions tai-

lored to specific problem characteristics enhances the method’s versatility.

• Stability and Efficiency: The proposed spectral method proves to be more stable, suit-

able, and less time-consuming than certain existing numerical methods.

• Efficiency Across Various Solutions: The algorithm exhibits efficiency across diverse

exact solutions employed as test functions.

The novelty lies in the utilization of a new concept for approximating Itô stochastic integral

equations through integration by parts and Gauss quadrature for each trajectory of Brown-
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ian motion. Moreover, the accuracy of the technique can be explored for sufficiently large T ,

providing feasibility for numerical experiments in terms of speed and memory within the

developed framework.
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Conclusion and Perspectives

Stochastic differential equations (SDEs) governed by Brownian motion and by a jump dif-

fusion are important tools in a wide range of applications, including biology, chemistry,

mechanics, economics, and physics. They are becoming more and more attractive due to

their application for simulating stochastic phenomena in various fields.

These equations are explained and interpreted in the context of the Itô calculus. Unfortu-

nately, there is frequently no analytical solution to these equations, and we are obliged to use

numerical approximations. Broadly speaking, there are two basic ways to derive these ap-

proximations. When the sample trajectories of the solutions need to be approximated, mean

square convergence is employed, and the methods thus derived are called strong. When

we are interested only in the moments or other functionals of the solution, which involve a

much weaker form of convergence.

The purpose of this dissertation is to provide a brief overview of the different numeri-

cal methods for solving stochastic differential equations and to propose a new methodol-

ogy that improves some existing techniques. It can be seen that the discretization step size

plays an important role in the accuracy for each method through the simulation of Itô-Taylor

schemes and in particular by the examination of the effectiveness of some schemes for the

approximation of the solutions of SDE. When the step size is kept very small, good results

can be attained. Conversely, the computational complexity is very high when we increase

the order of the schemes.

We have proposed two numerical approaches that can be used for finding approximate

solutions of stochastic integral equations. Interpolation by Lagrange polynomials and zeros

of Jacobi polynomials are used to reduce the considered problem of stochastic Volterra inte-

gral equations to an algebraic system of equations. Approximate solutions of the stochastic
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Volterra integral equations are then obtained. A theoretical investigation is also carried out

to confirm the error and convergence analysis of these methods. The spectral convergence

rate for the developed method is established. In order to prove the suitability and accuracy

of our methods several related numerical examples with different simulations of Brownian

motion are included. The numerical results of the presented methods are also compared

with the results of other numerical techniques.

The second new technique is based on combining Jacobi-Gauss collocation points and

generalized Lagrange functions. The accuracy and consistency of the new technique are

evaluated and compared with some techniques. In addition, sufficient conditions are given

to ensure that the estimation error tends to zero. The new technique shows surprising effi-

ciency over the existing techniques in terms of needed time, computational, and approxima-

tion performance. The accuracy of the solution derived by the new technique is significantly

higher than that of the existing methods.

We are optimistic that it will be possible to generalize the proposed method to a broader

class of problems while maintaining the efficiency and accuracy of the method. Extending

our work represents an interesting topic for future work, which we can identify as follows

• The ability to extend the approximation to higher dimensions.

• Our results leave the door open for future developments, including the extension of

the current research to stochastic differential equations driven by other stochastic pro-

cesses.

• According to the approach presented in this dissertation, in a future research, one can

think about the application of the proposed technique to stochastic integro-differential

or partial equations.

120



Bibliography

[1] Abdulle, Assyr, Grigorios A. Pavliotis, and Urbain Vaes. ”Spectral methods for multi-

scale stochastic differential equations.” SIAM/ASA Journal on Uncertainty Quantifica-

tion 5, no. 1 (2017): 720-761.

[2] Abdulle, Assyr, and Adrian Blumenthal. ”Stabilized multilevel Monte Carlo method for

stiff stochastic differential equations.” Journal of Computational Physics 251 (2013): 445-

460.

[3] Abdelkawy, M. A., António M. Lopes, and Mohammed M. Babatin. ”Shifted fractional

Jacobi collocation method for solving fractional functional differential equations of vari-

able order.” Chaos, Solitons & Fractals 134 (2020): 109721.

[4] Abu Arqub, Omar, and Hasan Rashaideh. ”The RKHS method for numerical treatment

for integrodifferential algebraic systems of temporal two-point BVPs.” Neural Comput-

ing and Applications 30 (2018): 2595-2606.

[5] Ahmad, Sk Safique, Nigam Chandra Parida, and Soumyendu Raha. ”The fully implicit

stochastic-αmethod for stiff stochastic differential equations.” Journal of Computational

Physics 228, no. 22 (2009): 8263-8282.

[6] Alcock, Jamie, and Kevin Burrage. ”A note on the balanced method.” BIT Numerical

Mathematics 46 (2006): 689-710.

[7] Alcock, Jamie, and Kevin Burrage. ”Stable strong order 1.0 schemes for solving stochas-

tic ordinary differential equations.” BIT Numerical Mathematics 52 (2012): 539-557.

121



Chapter 3 A novel method to solve nonlinear SIVIE

[8] Ali, Khalid K., Mohamed A. Abd El salam, and Emad MH Mohamed. ”A numerical

technique for a general form of nonlinear fractional-order differential equations with the

linear functional argument.” International Journal of Nonlinear Sciences and Numerical

Simulation 22, no. 1 (2021): 83-91.

[9] Ali, Khalid K., Mohamed A. Abd El Salam, Emad MH Mohamed, Bessem Samet, Sunil

Kumar, and M. S. Osman. ”Numerical solution for generalized nonlinear fractional

integro-differential equations with linear functional arguments using Chebyshev series.”

Advances in Difference Equations 2020, no. 1 (2020): 1-23.

[10] Arnold, L. ”Stochastic differential equations: Theory and applications(Book).” New

York, Wiley-Interscience, 1974. 243 p (1974).

[11] Ascher, Uri M., and Chen Greif, eds. A first course on numerical methods. Society for

Industrial and Applied Mathematics, 2011.

[12] Asgari, Mahnaz, Elham Hashemizadeh, Morteza Khodabin, and Khosrow Maleknejad.

”Numerical solution of nonlinear stochastic integral equation by stochastic operational

matrix based on Bernstein polynomials.” Bulletin mathématique de la Société des Sci-
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