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Introduction

Within the realm of piecewise differential systems, the family of piecewise linear differ-
ential systems plays an important role in modeling many real processes, see for instance
[14, 52, 60]. The study of these systems in the plane separated by a straight line goes
back to Andronov, Vitt and Khaikin [1] in 1920 and until now such systems have de-

served the attention of many researchers.

In the qualitative theory of planar differential systems a limit cycle is an isolated peri-
odic orbit in the set of all periodic orbits of such system, this concept was defined at the
end of the 19th century by Poincaré which also introduced other fundamental concepts,
such as the phase portrait, which is a compilation of minimal information enabling to
determine the topological structure of the orbits of a differential system, and the notion
of a return map, commonly recognized as the Poincaré map, see [48, 55]. Limit cycles
have played and still playing an important role for explaining many phenomena of the
real world, as for instance, the one of the Belousov Zhabotinsky model [8] or the motion
of the galaxies [22] and the periodicity of oscillations in RLC circuits and the existence

of isolated periodic orbits [62].

In general to find an upper bound for the maximum number of limit cycles that a
given class of piecewise differential systems can exhibit has remained an open problem
until now; this problem is known as the extended 16th Hilbert problem, which states
to find an upper bound for the maximum number of limit cycles that the class of poly-
nomial differential systems of a given degree can have, see [35, 36, 38]. The dynamics
along the discontinuity curves are defined according to Filippov’s conventions [27]. We
can exhibit two kinds of limit cycles, the crossing and the sliding ones, in our work we
deal with the crossing limit cycle which only contain isolated points on the line of the

discontinuity curve.



Several authors have tried to determine the upper bound of limit cycles for the dis-
continuous piecewise differential systems separated by a straight line. In 2001 Gian-
nakopoulos and Pliete [31] proved the existence of two limit cycles for the discontinu-
ous piecewise linear differential systems with a line of discontinuity. In 2010 Han and
Zhang [34] conjectured that discontinuous piecewise linear differential systems in IR?
separated by a straight line have at most two crossing limit cycles, but in 2012 Llibre
and Ponce [46] provided a negative answer to this conjecture by presenting an example
illustrate three limit cycles. Braga and Mello [18], Buzzi et al. [19], Liping Li [39], Freire
et al. [30], and Llibre et al. [45] obtained also three crossing limit cycles for discontinu-
ous piecewise linear differential systems separated by a straight line. But until now it is

unknown whether three is the maximum number of limit cycles in this family.

An additional issue that will be examined is a localized version of the Hilbert problem
which requires determining the maximum number of limit cycles of small amplitude
that bifurcate from an equilibrium point in the planar polynomial vector field of degree
n. This problem is also known as the cyclicity problem, and its solution is essential for
understanding the behavior of such vector fields. There are various methods to study
the number of limit cycles that can bifurcate from the period orbit. The most important
and widely used ones are the Poincaré return map, Melnikov function and the averaging
method which are essentially equivalent in the plane. The averaging method has a long
history, dating back to the classical works of Lagrange and Laplace, who intuitively jus-
tified the process. In 1928, Fatou [26] formalized this theory. Significant practical and
theoretical contributions to the averaging method were made in 1930’s by Bogoliubov-
Krylov [16] and in 1945 by Bogoliubov. This technique, originally created for smooth
systems, has recently been applied to research on limit cycle of discontinuous piecewise
smooth systems, see [42, 63]. The authors of the articles [33, 44] developed the averaging
method for discontinuous piecewise differential systems and showed a relationship be-
tween the number of limit cycles of the corresponding differential system and the zeros

of the averaged functions of periodic differential equations, see for instance [32, 41].

For the the global dynamics of piecewise differential systems there are some works
present the global phase portraits of piecewise linear differential systems. In 2019 Li
and Llibre [40] classified the global phase portraits of continuous piecewise linear dif-
ferential systems separated by a straight line in 2020 Chen et al. [21], provided the
global phase portraits of a non-symmetric piecewise linear differential system with three

zones. Recently, [58, 59, 66] studied the global phase portraits of planar refracting piece-
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wise linear differential systems with FS (The system with two regions has a focus and
a saddle), and the more interesting case of planar discontinuous piecewise linear dif-
ferential systems of the focus-center type [65]. However, there are few works that have
completely classified the global phase portraits of planar piecewise smooth nonlinear
differential systems, and even for smooth differential systems, only a few families have

been completely studied see for instant [56].

Regarding piecewise quadratic differential systems, the situation is more unsatisfactory.
As indicated in [3] the number of parameters of a quadratic system is essentially five,
but when considering piecewise quadratic such a number, roughly speaking, is multi-
plied by two. Thus, to afford a complete analysis, any contribution in this area needs to
consider specific families with a lower number of parameters, see [3, 64] and references
therein. In fact obtaining normal forms which simplify the expression of the vector field
for discontinuous piecewise differential systems is an intricate issue, due to the pres-
ence of different vector fields separated by a common boundary. The iterative changes
of variables must be selected based on the region where the vector fields are defined.
Additionally, the points of the discontinuity line must be invariant under the different
changes of variables to ensure topological equivalence between the initial and reduced
vector fields. Therefore, the standard theory of normal forms cannot be applied to study
the dynamical behavior of discontinuous piecewise smooth vector fields in the neigh-
borhood of a pseudo-equilibrium point. However, some papers have proposed normal
forms and limit cycle bifurcation from piecewise smooth vector fields, including those

with a pseudo-focus, see for example [24].

Summarizing, this work consists five chapters. The first Chapter we present some

preliminaries, terminology to clarify this work.

In the second chapter, we solve the second part of 16th Hilbert problem for a planar
discontinuous piecewise differential systems formed by a linear center and a class of
Hamiltonian isochronous global center separated by straight line.

In Chapter three we study the existence and the upper bound of limit cycles for dis-
continuous planar piecewise differential systems formed by linear and three families of
isochronous cubic centers separated by irregular line. We provide the maximum num-
ber of limit cycles that these classes of discontinuous piecewise differential systems can

exhibit.

In the fourth chapter and by using the averaging method up to third order, we are

11



interested in determining an upper bound for the maximum number of limit cycles
bifurcating from the periodic orbits for the discontinuous piecewise differential systems
formed by a linear focus or center and a cubic weak focus or center separated by one
straight line. More specifically, at each order of the averaging theory from order one
to order three we give the maximum number of limit cycles for a given discontinuous

piecewise differential systems.

And finally, in the fifth chapter we are interesting in providing the global phase
portraits and the bifurcation sets for some specific families of discontinuous piecewise
quadratic differential systems, characterized by having a singular point at the origin,
which belongs to the discontinuity manifold. More precisely, the origin is assumed to
be a special pseudo-focus, with a double invisible tangency surrounded by crossing pe-

riodic orbits forming a periodic annulus. In short, the origin is a pseudo-center.

12



Chapter 1

Basic Concepts and Preliminaries

In this chapter we introduce some fundamental concepts and results for the devel-
opment of the study of discontinuous vector fields defined in two or more zones. We
discuss some definitions related with our work such as: discontinuous piecewise differ-

ential system, singular points, phase portraits, limit cycles, ..., etc.

We also define the averaging method, which involves of finding the number of limit

cycles that appear after the pertarbation of a differential system.

Discontinuous vector fields

DeriNITION 1.1 (Piecewise smooth vector field) A discontinuous piecewise differen-
tial system on R? is a pair of C differential systems with k > 1, separated by a smooth
curve ¥. The discontinuity manifold ¥ is obtained by considering ¥ = f~1(0), where
f :IR?> = R is a smooth function having 0 as a regular value. Usually, a piecewise smooth

vector field is written as

X(xp), if f(xp)=0,
N(x) = (1.1)

Y(x,y), if f(xy)<0.

For more details see [17].

For any point (x,y) € ¥, that is, fulfilling f(x,y) = 0, these transversal components
are easily computed by considering the orbital derivatives of the function f, namely

Xf(xg) = (Vf(x,9),X(x,v)). We can divide the discontinuity line into two important

13



subsets:
(a) Crossing set X ={xg e X : Xf(xq)- Y f(xg) > 0},
(b) Sliding set ¥° ={xg e X : Xf(xq)- Y f(xq) < 0}.
Furthermore, within the sliding set, it is usual to consider its attractive part
Y ={xgeX: Xf(xg) <0 and Y f(xq) >0},
and it’s repulsive part
Y ={xgeX: Xf(xg) >0 and Yf(xy) <0},

sometimes referred as the escaping set.

(a) (b) (c)

Figure 1.1: (a) Escaping, (b) sliding and (c) crossing regions.

If xo e ¥ and Xf(xg) = 0 or (Y f(xg) = 0) we say that x; is a tangency point of X or (Y).
Furthermore, we say that the point x is a visible (invisible) tangency point if the local
flow of X(x() remains in the region f(x,y) > 0 (f(x,y) <0). We can argue in an analogous

way for tangency points regarding Y.

For points g € X% U X", the so-called sliding vector field is given by

_Yf(q)X(q)-Xf(q)Y(q)
8= "N Xf)

(1.2)

Any point p € X° satisfying g(p) = 0 acts in some sense as an equilibrium point of our

system and it will be called pseudo-equilibrium point. See [17]

A pseudo-focus or fused focus is a double invisible tangency point with close orbits
spiraling around it. When a pseudo-focus is surrounded by crossing periodic orbits

filling in a certain neighborhood of the point, it is called a pseudo-center.
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A stable pseudo-node is formed when a pseudo-equilibrium is present in the attractive
part of the sliding set with g’(q) < 0. While a pseudo-saddle is formed if g'(q) > 0.
Similarly, a unstable pseudo-node is formed when a pseudo-equilibrium is present in
the repulsive part with g’(g) > 0, while a pseudo-saddle is formed if g’(q) < 0.

For more details see [47].

Singular points

Consider the autonomous equation
x = F(x), (1.3)

with F : D — IR” be a continuous function in an open set D C R".

The set D is called the phase space of the differential equation (1.3).

DEeriNITION 1.2 (Singular points)
A point xy € R" satisfying F(xq) = 0 is called an equilibrium point (or a singular point)
of (1.3). If there are no equilibrium point in the neighbourhood of the equilibrium point

other than x, then x, is called an isolated singularity. See [54].

DeriNITION 1.3 (Singular points of piecewise vector field)

A point xy € R*\X. is called real (virtual) singularity or equilibrium of X if X(xg) = 0
and f(xg) > 0 (f(xg) < 0). Similarly, a point xy is called real (virtual) singularity or
equilibrium of Y if Y(xg) = 0 and f(xg) <0 (f(xg) > 0). For more details see [39].

1.2.1 Types of singular points

DEeriNiTION 1.4 The local behavior of the flow near a singular point xq of a planar C*
vector field X = (P, Q) is intricate, as evidenced by the diverse classes of behavior exhibited

by linear systems, even for local topological equivalence.
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The linear part of the vector field X at xy written as

DX (xo) =

The equilibrium points of a differential system in R? are classified into hyperbolic,

semi-hyperbolic, nilpotent and linearly zero.

The hyperbolic ones are the equilibrium points with all eigenvalues have nonzero real
part. The semi-hyperbolic points are the ones having a unique eigenvalue equal to zero.
The nilpotent singular points have a linear part is not identically zero with both zero
eigenvalues. Finally when the linear component is identically zero we talking about
linearly zero singular points which studies their local phase portraits by using the so-

called Blow-ups, see for instance chapter 2 and 3 of [23].

m First integrals

For a given polynomial differential systems of the form

dx_

d
=Py, £ =Qxy), (1.4)

dt

where the degree of the systems is defined as m = max{degP,degQ} with a vector field
X = (P,Q). System (1.4) is integrable on an open subset U of R” if there exists a non
constant analytic function H : U — R called a first integral of the system on U, with

H(x(t),y(t)) = constant. See [51].

m The Poincaré map

The Poincaré map is a one of the best important tools for studying the behavior of
dynamical systems in the neighborhood of periodic orbits. Let F be a locally Lipschitz
vector field F : U — R" with U is an open set of R"” and let ¢(t,x) be the flow defined
of the differential equation (1.3). Take a point p € L N U with L is a hypersurface in R"
if F(p) is not contained in the tangent space to L at the point p we say that the flow ¢ is
transverse to L at point p, and p is called a contact point of the flow with L if F(p) € T, L.

The flow ¢ is transverse to L at V if it is transverse to L at every point in the open subset

16



V.

Consider now two points p; € Ly NU and p, € L, N U with L;,L, are two open hyper-
surfaces such that p, = ¢(py,s1). There exist a function 7 : V| — R satisfying 7(p;) = 51
and ¢(q,7(q)) € V, for every q € V;, with V; is a neighborhood of p; in L; N U and V,
is a neighborhood of p, in L, N U. We define the Poincaré map in this case as the map
n:Vyp — V, given by n(q) = ¢(g,t(q)), for every g € V;.

When the vector field is globally Lipschitz, C" with r > 1 or analytic, the Poincaré map
7t is also continuous, C" with r > 1 or analytic, we conclude that the Poincaré map is
invertible by reversing the sense of the flow and its inverse map 7! is continuous, C”
with r > 1 or analytic, respectively. In the case that L; = L, the Poincaré map m will be

called a return map. For more details see [50].

ReMArk 1 When we consider the piecewise differential systems the Poincaré map consists
of two half return maps that are defined by using orbits in either side of the switching

manifold.

Figure 1.2: Poincaré map of a piecewise differential systems.

m Phase portrait of a vector fields

It is very difficult to determine explicitly the solutions of a differential system, but it

is important to get information about these solutions this can be done by describing the

phase portrait of the differential equation.
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DEerINITION 1.5 A phase portraits or the phase plane of the vector field given by (1.3) is
the set of all trajectories of the system. See for instance [61].

DerINITION 1.6 (Periodic solutions) Let ¢(t,x) be a solution of (1.3). If there exists a
finite time T > 0 such that p(t+T,x) = @(t, x) for t € R, then @(t, x) is a periodic solution
of (1.3) of period T. See for instance [61].

DeriniTION 1.7 (Limit cycle) A limit cycle is an isolated periodic trajectory of a differ-
ential system. In other word, for small arbitrarily neighborhood of the periodic trajectory

there are no other periodic trajectory. See for instance [61 ].

Poincaré compactification

In this section we give some basic results for studying the behavior of the trajectories

of a polynomial differential systems in IR? near infinity.

Consider a planar vector field

J 0
X:P(xl’xZ)a_xl+Q(xl’x2)8_x2' (1.5)

where P(xq,x;), Q(x1,x,) are polynomials of degree n in the variables x; and x,. We
consider the phase plane R? as the plane in IR® defined by (v1,v5,93) = (X1, X3, 1), so that

it becomes tangent to the Poincaré sphere

$?={y=(y1,9293) ER*: p} +95 +35 = 1).

Using central projection, we can induce a vector field on $? getting two copies of the
flow on IR?, one for each hemisphere. We denote by p(X) the Poincaré compactification
of X on $2, being

S' = {(y1,v2,v3) € R : 97 +93 +95 = 1,93 = 0)

the equator of $2, which captures all the points at infinity. As usual, we can consider
the six local charts U; = {y € $%: y; > 0} and V; = {y € $% : y; < 0} for the calculation of

the expression of p(X), with i = 1,2,3. We use the same notation (u,v) for variables in

18



every local chart, even if its meaning depends on the specific chart under consideration.
For instance, in U; and V; we have (u,v) = (x,/x;,1/x;), while in U, and V, we have
(u,v) = (x1/x2, 1/x).

As shown in [23], the expression for the extension of p(X') in the local chart U;, which

allows the analysis of the singularities at the equator, is given by

u= v”[—up(%,%)'FQ(%;%)]; (1 6)
V= v”“P(%,%),
while when considering the local chart U,, we get
i= '[P 5 -uQ( 5] (17)
v= —v"Q(L, L)

Note that the expression for the corresponding differential system in the local chart V;

is the same than in the chart U; multiplied by (=1)""!, for j =1, 2. See Chapter 5 in [23].

TreoreM 1.1 Two phase portraits of the two polynomial differential systems p(X') and

p(Y) are topologically equivalent if there exists a homeomorphism that sends orbits of

p(X) to orbits of p()) either preserving or reversing the orientation of all orbits. See [12].

The averaging theory up to third order

The averaging theory is a powerful tool for studying the number of limit cycles of
differential systems. This method has been used to study limit cycle and determine the
the upper bound of limit cycles that can be bifurcated from the periodic orbits of a given

system.

By introducing the main result, we aim to apply this theory to effectively study and

understand the behavior of such systems.

We consider the following discontinuous differential system

. _{ F*(0,r,¢), 1
7(0) = 0eS’, (1.8)
F=(0,r,¢).
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where F*(0,r,¢) = Y7, e'F£(0,1) + €*R*(0,1,¢), 6 € S! and r € D where D is an open

interval of R™.

A fundamental inquiry in the investigation of discontinuous differential system (1.8)
revolves around comprehending which periodic orbits of the unperturbed system #(6) =
F*(6, ) persists for |¢| sufficiently small. To address this, we introduce a set of functions
fi:D > R, fori =1,2,...,k, called averaged functions, such that their simple zeros

provide the existence of isolated periodic solutions of the differential system (1.8). In
vi(2m,7)

[43] it was proved that these averaged functions are given by f; = i

where y; :

R x D — R, are defined by the following integrals

vi(s,r)= [ Fi(tr)dt,
vi(s,r)= ) (2F5(t, 1)+ 20Ff (¢, r)yi(t,r))dt,

v3(s,r) = fos(6Fi(t,

$(t,r)+ 60F5 (1, 1)y (t, 2) + 30> FE(t, r)yi(t,7)* + 30Ff (L, 1)
V3(t,r))dt.

Also, we have the functions

t,r)dt + OFE(t,r)yi(t r))dt,
i

t,r)dt+ oF; (¢, r)y7(t, 1)+ %azFli(t, it )%+ %BPf(t,r)

For more details see [37].

The function fi(r) = f7(r) + f,"(r) called the averaged function of order k. The simple
positive real roots of the functions f;,1(r) which satisfy f,(r) = 0 for every I € {1, 2} but

fi+1(r) = 0, provide limit cycles of the piecewise differential system (1.8).

In order to know the number of zeros of a real polynomial, we are going to use the

following Lemma.

LEMMA 1.1 Consider p + 1 linearly independent functions f;: U CIR—>R,i=0,1,...,p

(i) Given p arbitrary values x; € U, i = 1,...,p there exist p + 1 constants C;, i =

20
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Chapter 2

On the Limit Cycles of the Piecewise

Differential systems Formed by a Linear

and Hamiltonian Isochronous Center

This chapter is devoted to study the extended 16th Hilbert problem of two families
of planar differential systems, the first one is a linear center and the second one is a
family of Hamiltonian isochronous global center. By using the first integrals, we prove a
sharp upper bound for the maximum number of crossing limit cycles that these classes

of discontinuous piecewise differential systems can exhibit.

The following lemma provides a normal form for a linear differential center.

LEMMA 2.1 Through a linear change of variables and a rescaling of the independent vari-

able every linear differential center in R? can be written as

a’+w

e o)
V=c+dx+ay, with >0 and d >0,

its first integral is
Hy(x,9) = 0’y? + (ay +dx)? - 2d(by - cx). (2.2)

For a proof of Lemma 2.1 see [49].

22



We consider the class of Hamiltonian isochronous global center of the form
% = —(onxy" !+ 8%2ny?"~ +p), P =06y" +x, (2.3)
with n € N and 6 # 0. The first integral of system (2.3) is given by
Hxy) = 5((59" + 0 +37)

For more details on the Hamiltonian system (2.3) see Theorem B of [53] and Theorem

2.3 of [57].

The Hamiltonian isochronous global center (2.3) after an affine change of variables
We present the expression of the class of Hamiltonian isochronous global center (2.3)

and its first integral after a general affine change of variables (x,y) — (a1 x+ by +cy, a1 x+

B1y +¥1), with byay —a; By = 0.

The Hamiltonian isochronous global center (2.3) is given as

-1 1
X= —(-bi(a1x+bv+c, + +xaq + n5) —
(b1a1—a1/31)( 1(a1x+b1y+e+(n 1+9p1)"0) 1+ xa; +951)
(B1((xay + 9By +y1)* +n(ayx + b1y +c)(y1 +xay +yp1)"6 + n(xay +ypy

2n52 ,
1)) 1 o4

— (ai(ayx+byp+cq + (xaq + + 1)) +
(b16¥1—ﬂ151)( 1(@1x+ b1y +cp + (xay + By +y1)"0) 1 +xa; +951)

(a1((+y1 +xay +yP1)? + n(ayx + byy +c1)(y1xaq +9B1)"0 + n(yr +xay +y

B1)*"8%)),

y’:

with its first integral

1
Hy(x,y) = 5((36&1 + Y1+ 1)+ (@ x+ b1y +op + (9B +y1 +xaq)"0)?).

m Statement of the main result

Our objective is to provide the maximum number of limit cycles with two points on
the line of discontinuity x = 0 for a class of discontinuous planar differential system
formed by a linear center and a class of Hamiltonian isochronous global center. First,

we solved the problem for n =1 to n = 6, and then we tried to solve it for an arbitrary n.

Our main result is the following.

23



THeEOREM 2.1 The maximum number of limit cycles of discontinuous piecewise differ-

ential system (2.1)-(2.3) after an arbitrary affine change of variables separated by the
straight line x = 0 is

(a) zero for n=1;

(b) at most one for n = 2, and this maximum is reached, see Figure 2.1(b);
(c) at most two for n = 3, and this maximum is reached, see Figure 2.1(c);
(d) at most three for n = 4, and this maximum is reached, see Figure 2.1(d);
(e) at most four for n =5, and this maximum is reached, see Figure 2.2(a);

(f) at most five for n > 6, and this maximum is reached, see Figure 2.2(b).

Y Q)

(a) (b) (c)

Figure 2.1: (a) The unique limit cycle, (b) the two limit cycles and (c) the three limit
cycles for the class of discontinuous piecewise differential system (2.1)-(2.4).

D

(a) (b)

Figure 2.2: (a) The four limit cycles and (b) the five limit cycles for the class of
discontinuous piecewise differential system (2.1)-(2.4).
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2.1.1 Proof of Theorem 2.1

We shall prove that the maximum number of crossing limit cycles in the family of system
formed by a linear center and a class of Hamiltonian isochronous global center is at most

five.

Proof.

The statement (a) of Theorem 2.1 has already been proved in Theorem 4 of [49] and in Theo-
rem 3 of [45].

In one region, we consider the linear differential center (2.1) with its first integral Hy(x,v).
In the other region, we consider the Hamiltonian isochronous global center (2.4) with its first
integral Hy(x,p).

Our objective is to prove that the discontinuous piecewise differential system formed by
system (2.1)-(2.4) have limit cycles intersecting the line of discontinuity x = 0 in two points
(0,y) and (0,Y), with y = Y. We know that these two points must satisfy the system of

equations

er =H(0,9)~Hi(0,Y)= —(y-Y)(~(a®+w?)(y+Y)+2bd) =0,

1 (2.5)
e; = Hy(0,9) - Hy(0,Y) = E(}’ -Y)Qi(y,Y)=0,

2bd
a2+w2_y:f(y)-

Substituting the expression of Y in Q;(y,Y) = 0, we obtain an equation G;(y) = 0 in the

withi€{1,2,3,4,5}. Sincey = Y, then by solving e; = 0 we know that Y =

variable y.

Proof of statement (b) of Theorem 2.1. For n = 2, the solutions of system (2.5) are equiva-
lently the solutions of the quadratic equation G1(y) = 0, where

1
(a? +w?)3

+4b2/512d2) +bycy(a®+w?)?) + ﬁlyl(aZ +w?)+ b/a’ld)(262(—2bﬁ1d(a2 + wz)(ﬁly

Gi(y) = (2((a® +w?)(b18(=2bp1d(a® +w?)(r1y = 291) + (a® +w?)*y] + BT y?)
-Y1)+ (a® + wz)Z)/l2 + /3123.)2) + 2b2ﬁ12d2) +2¢16(a® +w?)? + (a® + w?)?) + bb%d(a2
+w?)?)).

This equation has at most two real solutions y; and y,. Consequently, system (2.5) has at

most two real solutions namely (y1, f (v1)) and (o, f (v2)). The two solutions are symmetric in

the sense that (y1, f (v1)) = (f (v2),v2). Then both solutions provide the same limit cycle for the
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discontinuous piecewise differential system (2.1)-(2.4).

Now we provide an example of a discontinuous piecewise differential system (2.1)-(2.4)

with one limit cycle. Then, in the half plane Ry = {(x,v) : x > 0} and by taking (a, b,c, d,w) ~

(— 1,4, 2,7.91671,4), we obtain a linear differential center in the form (2.1) with its first
integral Hy(x,v). In the half plane R, = {(x,v) : x < 0} we choose the following parameters
(al,ﬁl,yl,al,bl,cl,é) ~ (3, 5’_7’5’_9'_6’ 1), then we obtain a Hamiltonian isochronous
global center in the form (2.4) with its first integral Hy(x,y). Thus, the unique real solution
of system (2.5) is (y,Y) ~ (1.65085,2.07466). So, the discontinuous piecewise differential

system (2.1)-(2.4) has one limit cycle shown in Figure 2.1(a).

Proof of statement (c) of Theorem 2.1. For n = 3, the solutions of system (2.5) are equiva-

lently the ones of the quartic equation G,(y) = 0, where

Ga(y) = mﬁﬁl(clé(&lz +w?))*(=2bB1d(a® + w?))B1y — 3y1) + (@ + w?))*(3y3

+B7v?)) +4b%1d%)) + 6 (y1(a® + w?)) + b1 d))(-2bp1d(a* + w?))(3p1y — y1) + (a°
+w?))?(pf +3B79?)) +4b%pLd?))(=2bp1d(a® + w?))Bry = 3y1) + (a® + w?))*(3yf
+B1y%) + 4b2B7d%)) + (a® + w?)(y1(a® + w?)) + bB1d)))) + (a® + w?))? (by 6(—4b°
(a® +w?)B7d?)(2B1y = 3y1) + 2bBrd(a® +w?))*(3y] + 2B7y* = 3B1)19)) + y1(a’
+w?)(yf +3B7y?)) +8b°B7d%)) + by (a® + w?))?)) + bbida® + w?))*)).

The equation G,(y) = 0 has at most four real solutions, symmetric in the sense stated in
the proof of statement (b). Therefore system (2.5) has at most two real solutions. Hence the

discontinuous piecewise differential system (2.1)-(2.4) has at most two limit cycles.

To complete the proof of statement (c) we build an example with exactly two limit cycles.
Then in the half plane Ry and by considering (al,ﬁl, Y1,41,b1,¢1, 6) ~ (%,—0.232929,
1.68341,4,-2, 2,—1), we obtain a Hamiltonian isochronous global center in the form (2.4),
with its first integral Hy(x,y). Now by considering (a,b,c,d,w) ~ (1,2,-1,4,6) we obtain
in the half plane R, a linear differential center in the form (2.1) and its corresponding first
integral Hy(x,p).

The discontinuous piecewise differential system (2.1)-(2.4) has at most two limit cycles shown

in Figure 2.1(b), because the system of equations (2.5) has the two real solutions (y,Y) =~

b 2 16
(374~ 3V10), g(‘i_ 3V10)).(0, ﬁ)}’

Proof of statement (d) of Theorem 2.1. For n = 4, the solutions of system (2.5) are equiva-
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lently the solutions of the sextic equation G3(y) = 0, where

1
(a% +w?)?

(371 +2B1y* = 4B1y1y) — 4bprd(a® + w?)> (=297 + Biy> — 4T y1v° + 3B1yiy) + (a2

W)yt + Bryt + 687 y1y?) + 16b*1d%) + bycy (a® + w?)*) + 1 (y1(a® + w?) + by
d)(4c10(a® +w?)H(=2bB1d(a® + w?)(Bry — 1) + (a® + w?)2(y7 + B{y?) + 2b7B7d?)
+40%(—2bprd(a® +w?)(B1y — y1) + (a® + w?)? (y + By?) + 2b2 B1d?)(~16b° 7 d°
(a® +w?)(Bry — 1) + 1202 B7d? (a® + w?)2 (1 — B1v)? — 4bB1d(a® + w?)3(Bry — 11)°
+(a? +w?) oy + Biyt + 687 yTy?) + 8b4BTAY) + (a% +w?)° + bbida® + w?)%)).

G3(y): (2((a2+w2)3(b16(—8b3/513d3(a2+w2)(3,81y—47/1)+8b2ﬁ12d2(a2+w2)2

This equation has at most six real solutions, which provide after the symmetry only three real
solutions of system (2.5). Therefore the discontinuous piecewise differential system (2.1)-(2.4)

has at most three limit cycles.

To reach the result of this statement we give an example of a discontinuous piecewise dif-
ferential system (2.1)-(2.4) with exactly three limit cycles. In the half plane Ry, we consider
the Hamiltonian isochronous global center (2.4) and its corresponding first integral H,(x,p),
with (ﬂl,é,cl,yl,bl,al,al) ( 4.72646,-0.00991602,-1.3326,-1, ; ; 4).

In the half plane R,, we consider the linear differential center (2.1) and its first integral

Hi(x,y), with (a,b,c,d,w) ~ (3,-2,-1,5,6). Then for these system the three real solutions

of system (2.5) are (y, Y (% 10—\/1045), -10-v1045) ) ( -5- 4\/_
4@)), (4—5 (-10- \/235), 15 -10+ V235 ) Thus the three crossing limit cycles of the dis-

continuous piecewise diﬁ‘erentzal system (2.1)-(2.4) are shown in Figure 2.1(c).

Proof of statement (¢) of Theorem 2.1. For n =5, the solutions of system (2.5) are the ones
of the polynomial equation of degree eight G4(y) = 0. Due to the big expression of Gy(y) we
will not provide it, and we conclude immediately that the maximum number of crossing limit

cycles of the discontinuous piecewise differential system (2.1)-(2.4) is at most four.

To prove that this upper bound is attached, we provide an example with exactly four limit
cycles. In the half plane Ry and by considering (a,b,c,d,w) ~(-2,3,1,3,5) we obtain a linear
differential center in the form (2.1) and its corresponding first integral Hy(x,y). Now by
taking (a1,71,b1,8, P1.,c1,a1) = (%,—1,—1.03433,—0.977806, 0,-0.656806, 3 ), we obtain in
the half plane R, a Hamiltonian isochronous global center in the form (2.4) with its first
integral Hy(x,y). It results that the discontinuous piecewise differential system (2.1)-(2.4)
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has exactlyfour crossing limit cycles intersecting the straight line x =0 at the points (v, Y) =~

( (9-v/313), 9+\/31 )( (9-v226), 9+\/22 )( (9-v134), 9+«/13 1))
and( (9- 2\/_ 9+2\/_) Theselimztcyclesareshown inFigureZ.Z(a).

We need to use thefollowing technical Proposition and lemma 1.1 in chapter 1 to prove the

statement (f) of Theorem 2.1.

ProrosITION 2.1 Let f,..., f, be analytic functions defined on an open interval I C R. If
fos .- [ are linearly independent, then there exists sy,...,s, € I and Ag,..., A, € R such

that for every j € {1,...,n} we have Y i_ A;fi(s;) = 0

For a proof of this result see for instance Proposition 1 of the Appendix of [48].

Proof of statement (f) of Theorem 2.1. For n = 6 solving system (2.5) is equal to solving
the algebraic equation Gg(y) = 0 of degree 10, where

Ge() = Ag+A1y+A0> +Asy° + Ayt + Asy® + Agy® + A7y” + Agy® + Agy® + Apop!°

and the A;’s for i = 0,...,10, are given in the appendix.

Since the rank of the Jacobian matrix of the function A = (Ay,..., A1) with respect to
its twelve parameters: a,b,c,d,aq,B1,Y1,¢1,a1,b1,0, w, is six of the functions A;, with i =
0,...,10, this means that they are linearly independent. So according to Lemma 1.1, it follows
that the equation Gg(y) = 0 has at most ten real solutions. Thus the system of equations (2.5)
has at most five real solutions, which provide at most five limit cycles of the discontinuous

piecewise differential system (2.1)-(2.4).

We complete the proof of this statement by providing an example with exactly five limit
cycles of the discontinuous piecewise differential system (2.1)-(2.4). So in the half plane R, we
consider (a,b,c,d, w) = (1,-1,-2,4,4), and we obtain a linear differential center in the form
(2.1) with its first integral Hy(x,v). Now in the half plane Ry, we consider the Hamiltonian
isochronous global center (2.4) with (oq, Y1, P1,¢1,b1,0, al) ~ (51—0, 0.379849,1.61436,
—-0.399469,0,0.494401, 4), with its first integral Hy(x,y). Hence the discontinuous piecewise
differential system (2.1)-(2.4) has exactly five crossing limit cycles intersecting the straight

linex:Oatthepoints(y, Y)=~{ (i —4—@ 1 4+\/F)( —4- \/F
VIB6)), (5 (~4-3V15), 4+3v—)( v— zw—)( v—

(+V33 ) These limit cycles are shown in Figure 2.2(b). This completes the proofofstatement
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(f) of Theorem 2.1 for n = 6.

In the general case for n > 6, we consider the linear differential center (2.1) with its first
integral Hy(x,v) in the half-plane R,, and the Hamiltonian isochronous global center (2.4)
with its first integral Hy(x, ), in the half-plane Ry. If a limit cycle exists for the discontinuous
s piecewise differential system (2.1)-(2.4) it must intersect the discontinuity line x = 0 in two

points (0,y) and (0,Y), with y # Y. These two points must satisfy the system

Hi(0,)-H;(0,Y)= (y-Y)P(p,Y)=0,
Hy(0,9)-Hy(0,Y)= (y-Y)Qu(»,Y)=0,

(2.6)

where Q,(v,Y) is a polynomial of degree less than or equal 2n —1. From Py(y,Y) = 0 we get
2bd

Ca? +w?

a polynomial D(y) of degree at most 2n — 1 in the variable y. Assume that the degree of

-y = f(y). By replacing y = f(Y) in equation Q,(y,Y) = 0, we obtain again

D(Y) is 2n —1, if the degree is smaller we can use the same arguments for proving that the

discontinuous piecewise differential system has at most five limit cycles. So we write

D(y) = Co+Cyp+ Cop? +---+ Copq 2.

Let M(yn)x12 be the Jacobian matrix of the function C = (Cy,...,Cy,_1) with respect to its

twelve parameters

9C  9G  IG

da db dw

Mux12 = da db dw
dCpy1 9Cyyq dCyyq

da db dw

We know that the rank of this matrix for n > 6 is at most 12. In view of lemma 1.1 we conclude
that the maximum number of real solutions of the equation D(y) = 0 is at most eleven, and it
results immediately that the maximum number of real solutions of system (2.6) is at most 5.
Then the maximum number of crossing limit cycles of the discontinuous piecewise differential

system (2.1)-(2.4) for n > 6 is at most 5. [
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Appendix of Chapter 2

Here we provide the expressions A;, with i = 0,...,10, that appear in the proof of Theo-

rem 2.1.

AOZ

1
m(blcl 6122 + ﬁ1y1022 + 11b1C1 0)26120 + bdﬁlzazo + bb%dﬂzo + 110)2‘81020
a w

+55bciwtal® + 10bb3dw?a'® + 10bdw?fal® + 55w By y1a'® + 165b ¢ wbal® + (a?
+@?)>(320°d%(2bb,d + ¢y (a® + w?))BS + 45bb2d w*al® + 165w° By y1a' 2 + w2 By,
+462b1c;0'%a'? +330b c; wBal* + 120bb?dw®a'* + 120bdw® Bia'* + 462008, 7,
+330w8 By y1att + 210bb2dwda'? + 210bdwd Eal? + 462b ¢y w'?a'? + 55b c; w8t
+bb2dw?® + 462w By a0 + 252bb7d w'%a' + 330, c; w'*a® + 210bb7dw!2adc,
+210bdw'?B2a® + 330w 4B, y1a8 + 165b ¢y 0%a® + 252bd w0 B2a'0 + 45bd w0 2
+3072610d109(a2 + w?)y B1° + 55w B y1a* + 11b1c; 0?0a® + 10bbid w'8a® + 6(a®
+w?)?(2bbyd + ¢ (a® + a)2))7/f’/51 +by(a®+ a)2)6)/16)6 + bdwzoﬁlz +11w?°8,y1a%bp;
+10bdw'® p7a? + 8448b°d° (a + w?)?yi ] + 14080688 (a® + w?)3y; B3 + 30bd(a?
+w?)(2bbyd + ¢ (a® + w?)) Y ?) + 1584007 d7 (a% + w?) y Bl + 12672b°d0c) wi?(a?
+@?)3 P BY +73920%d° (% + )0y P B + 3168b*d*(a® + w?)y] Bt + 990b3 ¢, p7d3(a?
+a)2)87/18[313 +220b%d?%(a® + a)2)97/19 12 +33bd(a® + a)z)m;/lloﬁl +3(a’+ a)z)“yl“)é
+96b*d*(a® + w?)(2bb1d + ¢ (a* + w?))y B + 120b3d3(a? + w?)?(2bb1d + ¢, by} (a?
+w?))y2pL +80b2d%(a® + w?)3(2bb1d + c1 (a® + w?))yi B3),

1

—————=(2bd5(5Y; (22B16y) + 3byy1 + 41 f1)at® + 5yL(9p1(22B16yF + 3D,
(a2 + w?)10

+4c Br)w? +2bd By (998108 +8byy1 + 6¢1B1))atl + 4y (45Y2(228,6Y° + 3by v cqa?
+4c1 Br)w? +20bd B y1(99B15y; + 81y + 6¢1 fr)w? + 9b2d? BE(5b1 1 + 21 (665y¢
+c1)))att + 4(105y7 (228108 + 3b1 1 + 4y B1)w® +70bd By (99816 L + 8Dy +2
(6602 +c1))w? + 8b3d3 BT (462,68 + 6b1yy +c1 B1))al? + 6¢1 f1)w* + 63b%d* iy,

(5byy1 +2(315Y; (2281072 +3byyy + 4c1 fr)w® +280bd By w®(99B1 68 + 8b, 7,
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+6¢1 1) +378b2d? By (5byy1 + 2B1(660Y¢ + ¢1))w* + 96w b3d3B7 (462,675 + 6
byy1) +40b*d* (396,67 +b1))al® + 70byEd By (9916 + 8byyy + 6¢1 1) wd
+10(63; (22816Y2 +3byyy +4cy fr) w0 +126b%d% By, (5by vy + 281 (665 +¢1))
w8 +48b3d3 B3 (462,678 + 6b1y1 +c1 fr)w + 200 2(2197(2216)8 + 3byyy +4c,
B1) +40b*d4BE(396,6y7 + by )w? + 4752b65d° B0y t8)ad + 28bd By (99616 P + 8b;
y1+6¢1B1)w'0 +63b%2d2 B2y (5by vy +281(666y° +c1))wd +3203d3(4626,0y8 + ¢
B+ 6b1y1)w® +40b*d*B1(396810y7 + by )w* + 9504b°d° By tow? + 2464b°d° BT P
8)a’ + 4(45y7 (22B16y¢ + 3byy1 + 41 fr)w'd + 70bd By yL (99155 + 8byyy + 6¢1B1)
w2 +189b2d2 B2y, (5byyy +2B1(668Y8 +¢1))w!® + 12063d3 B (462B,0yP + 6b1
Sc]w? + ¢ B1)wd +200b4d4 (396,077 + by )w® +71280b°d° By tdw? + 369600°4°
By +5w'8(228,678 +3byyy +4ci By) + 8448b7d7 By L S)at (457 + (228,0y¢ + 3y
y1+4ci Br)w'® +80bd By (99B16yL + 8byyy + 601 f1)w +252b2d? By, (5byy + 2
B1(665yL +c1))w!? +192b3d3 3 (4628,578 + 6byy + 1 f1)w!® +400b*d* B1(396,
8+ b1)wd +190080b5d5 + BSy ow® + 147840b%d° BT v dw* + 6758467 d7 By dw?a?
+2560b° + 1382463887y, 6)(d° 106 + 4752065d° wBBSyH5) + 492806°d°wO BT 76
+33792b7d7 w*8y25 + (396,57 + b1)13824b8d8w? B] Y16 + 80b*d*w 'O Bt + (8D,
+99B1 6y} +6¢181)10bdw' By yf +320°d> w2 BT + 6by 1 +¢1p1)(5b1y1 + 281 (6657
+¢1))(4621 )7 +36b*d* @' pip),

m(ﬁ%éwﬁ(zzﬁlé?f +3byy1 +4c1B1)a'® + 597 (9y103 (228167 +3bypy
+4c1 )+ 2bd 1 (99B16Y +8byy1 +6¢1 Br))a® + 4y (457 w* (2281 5y7 + 3b1

+4c B1) +20bd By y1(99B15yL + 8b 1y + 601 B1)w? + 12b2d2 B (5by ) + 281 (6652
+c1)))att +28(15y2 (228108 + 3b1 1 + 41 f1)w® + 10w*bd By (996,08 + 8b1
+6¢1 1)+ 120%d% B2y (5byyy + 21(665YP +¢1))w? + 2b3d3 B3 (462, 6y + 6,7,
+c1p1))at? +2(315y7 (228108 + 3byy1 + 4ci f1)wd + 280bd By (9981078 + 8b1y1)
+6¢1 B +504b2d2 B2y (5byyy + 2B1(666Y8 +¢1))w* + 168b3d3 7 (462,67 5¢, B
+6b1y1)w? + 88b*d*B1(3961 57 +b1))al? + 10(63y3 (228,6yL + 3byyy +4c B1)w!?

+70bd By (99P16yL + 8byy1 + 6¢1 f1)w® +168b2d? BTy (5b1y1 +2P1(665YF +c1))
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@® +84b3d33(462B,5y8 + 6b1y; + ¢ f1)w* + 88b*d* (3968157 + by) + d2 poyY)
+12672b%a% + 20(217; (228,078 + 3byyy + 4c1 fr)w'? + 28bd 1y (99616 + 8y,
+6¢1 B1) w0+ 84b2d% B2y (5byyy + 281 (665YL + ¢1))wd + 56b°d3 B (462,65 + 6b,
+c1B1)w® + 88b*d*B1(396 8,0y + by )w* + 25344b°d° By tow? + 7744b%d° B2 5)
a® + 4(45y2 (228,08 + 3b1y; + 4ci f1)w' + 70bd By (9981078 +8byy1 + 6¢1B1)
w2 +252b2d2 2y, (5byy1 +2B1(668Y° +¢1))w!' + 21063d3 B3 (4626,0y8 + 6b,
+c1 B1)w® +440b*d* 1396157 + by )w® +190080b°d° B8y tsw? + 116160b°d° 7
+yP0w? +30624b7d7 B3y 8)at + (45)7(22816Y° + 3by vy +4cy fr)w® + 80bd By yiw®
(99B10Y? +8byy1 +6¢1B1) +336b%d% B2y, (5b1 vy + 2B1(665YP +¢1))w!? + 336b3d3
(462B15y +6byy; +c1p1)w' + 880b4d* (39681077 + by )w® + 50688065455 yo
+464640b°d°B] Y2 Sw* + 24499207 d7 By 2o w? + 56832684867y, 8)a® + 11776b°d°
+12672065d5wB B8y + 154880b°d°wO BT 76 + 1224967 d7 w Y76 + 568326848
+B7 10+ 176b*d4w O BF(396B16y7 + by) + 5!y (2281677 + 3byyy +4e1 f1)(99B,
+8by + Y1 +6¢1 1)+ 10bd w0 B y20yS +56b3d3 w2 B3 (4628, 0y, + 1 p1) + 48b%d% w?

+6b1(5b17/1 + 2/31(6657/16 + Cl))),

—ﬁ(élbﬁfdé(wa“blyf +6a'4Bicyy1 +36a2bb, By d + 6a'2bpicid + 105
a w

(a'2byyiw? +42a' 2B c1 v w?) +26a'062b, f7d? + 216a'0bb, By, w? + 364 bBic d
+315a%w?b Y w* + 126408, c; y1w* + 130a8b2b, fEd% w? + 540a8bb, f1 v dw? + 90
a®bpicidw* +525a8b, v w® +210a8B ¢y, b + 260a%b%b, fEd* w* + 525a%D, v
+w87203%bb, By dw® +120a%bBEc;dw® +210a° By c1 yy B + 260ab? b fd> w®
+540a*bb, f1y1dwd +90a*bpicidwd + 315a%b, y2w!'? + 126a* ey 00 + 46,0
(43b° + Sy d%(a® + w?) + 130a%b%b, f2d%wd + y2d*(a® + w?)38184b° B3y 2d°b*(a?
+w?)?88008¢ + 594003 B3y td3 (a® + w?)* + 2574b% B2y d*(a* + w?)° + 693b B, yPd(a?
+@?)® + 99y (a% + w?)7 + 2574+ 1024b7 B7d7) + 216a°bb, f1y1dw'°bpicidw' + 36
a% +105a%b,y? + 424 Brc1y w2 + 26b%b, f7d? w0 + 36bb, f1y1dw!? + 15b, 7 + 6b

ﬁ%C]da)lz + 6ﬁ1C1 7/16()14)),
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A4:

1
—m(ﬂfé(lf)ﬂlllbl')/lz + 66114/31C1 V1 + 36611217171/)71 Vld + 6ﬂ12b/))12C1d + 6/31C1 ')/1)

biyiw? +42a'2B c;y 102 +36a'%0%b, f2d? + 216a'0bb, By dw? + 36a'0bpic; dw?
315a1%, y2w* +126a'°B,c) v 0* +180a8b%b, 7d*w? + 540a8bb, B1y1dw*b® By, d°
+(@® + w?) + 22704653y 2d> (a® + w?)? + 20240b* By d*(a? + w?)3 + 1089063 B2y
(a% + w?)* +3564b% By d%(a® + w?)3 + 693bB yed(a* + w?)® + 99y] (a* + w?)’
+3824b7 + B7d7) + 42a*Bic1y 1 w'? + 90a8bBicidwt + 525a8b, Y w® + 4B, 0b% + 360
a®b?by frd>w*(14208 + 216a%bb, f1y1dw!® + 36a2bpic dw!® + 10542,y w'? + 36b2
by fEd?w!® +36bb, By 1dw!? + 6bBicidw!? + 15by yiw'* + 720a%bb, By dw® + 120
abpicidw® +525a%h, yiwd +210a°B ¢, vy B + 360a*b%b, f7d*w® + 90a*bp? + 540
a*bby pry1dwd + cidw® +315a%b, y w0+ 1264 B c; v, 010 + 180a%b%b, d% w?),

1

—m(zb/ﬁfdé(—(az +@?)((a® + w?) (448, (34062 By d*(a® + w?) + 27y}
a w

(a% + w?)® +135bB, yid(a® + w?)? + 480637 d3) + 3b; (a® + w?)3) — 5024b°45d56)
+15936b*B7y1d49)),

NPEYEIE (12480b%B7y1d*6 + 473615 2d°S + Oo((a? + w?)((a® + w?)(44B1 {6

(160b2B2y1d%(a® + w? + 45b B yid(a® + w?)* + 9y (a® + w?)® + 300637 d3) + by (a?
+w?))),

—ﬁ(—80bﬁ19d62(42b2ﬁ127/1d2(a2 +@?)+33bpyid(a’ + w?)? + 11y; (a?
a w

+w?)® +20b367d%)),
m(10/31962(601;2/3127/1612(512 +w?) +33bpyyid(a® + w?)? + 1195 (a® + w?)?

+38b3p3d3)),
1
_(az + w2)2 (60bﬁ111d52(')/1(12 + w27’1) + b/-;ld);

(681162(ayy + w?yy) + bBd).

a? + w?
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Chapter 3

Limit Cycles of Discontinuous Picewise

Differential Systems Formed by Linear

and Cubic Isochronous Centers

Here we deals with the piecewise differential system defined by

F-(x) = (F(x,9), F;(x,p))  (xy)€X7,
F(x) = (3.1)

Fr(x) = (F{(x,y),F;(xp)) (xy)eX’,

where ¥ =T; UT, such that I} = {(x,y) € R? : x =0 and y >0}, [, = {(x,y) e R? : x >
0 and y = 0}, where the separation curve X* = {(x,y) € R> : x > 0,y > 0} and ¥~ =
{(x,9) eR?: x>0,y <0} U{(x,9) e R? : x < 0}.

In the literature we find many papers interesting in solving the second part of the six-
teenth Hilbert problem for linear discontinuous piecewise differential systems, but few

papers devoted to solve this problem for the nonlinear ones.

In 2020 Benterki and Llibre [10], studied the sixteenth Hilbert problem for discontinu-
ous piecewise differential systems separated by a straight line, when these differential
system are linear centers or three families of cubic isochronous centers, and they proved
that the maximum number of limit cycles varies from 0, 1 and 2 depending on the cho-

sen class.

In our work we study the maximum number of limit cycles for discontinuous planar
piecewise differential systems formed by linear centers and three classes of isochronous

cubic centers separated by irregular line. We provide a sharp upper bound for the max-
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imum number of crossing limit cycles that these classes of discontinuous piecewise dif-

ferential systems can exhibit.

We consider the following four classes of isochronous linear and cubic centers.

LEMMA 3.1 After applying a linear change of variables and rescaling the independent

variable every linear center in R* can be written as
% =-Ax-y(A® + w?) +B, p=x+Ayp+C, (3.2)

with w > 0,A,B,C e Rand A = 0.
The first integral of this system is

H(x,y) = (x+Ap)? + 2(Cx - By) + w?y>. (3.3)
Or we can define the linear differential center as follows
X =-Ax— (A% + w?)y, v =x+Ay, (3.4)
with w >0, A € R—{0}, and its corresponding first integral is
Hi(x,9) = (Ap +x)* + p*w?, (3.5)

For a proof of Lemma 3.1 see [49].

Now we give the three classes of isochronous cubic differential centers.

I) The first class is given by
% = y(2K x + 2K,x% — 1), v =K (v? —x%) + 2Koxp? + x,

. o x? +y?
which has the first integral Hy(x,y) = 1= 22K, 1K)
- 1t K2

(IT) The second class is

and its first integral is H3(x,y) = (3x — 4y2)? + 9y2.
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(III) The last class is

x=-p(1-x)(1-2x), y':2x3—2x2+x+y2,

(x—1)*(x? +p?)
(2x—1)2

and its corresponding first integral is Hy(x,v) =
For a proof, see [20].
Cubic isochronous centers after an affine change of variables

We present the expression of the three families of the cubic isochronous centers (I), (II)
and (III) after doing the general affine change of variables of the form (x,y) — (ax+ by +

c,ax+ py+y), with ba —ap = 0. Thus, system (I) become

%= — 1 7 (b(—a’Kx* + d(—2aK x + 2K, + 2K, (Byy + ax)(-By + ¥ + ax)) + ax
(2K, (By +y + ax)(—pyy + ax)) + ax —d?K; + (K1 y + Kjax + K; By)(y + ax
—BY)) + b>y(-2aK x — 2dK; + 2K, (y + ax)(y + ax + py) + 2K, — f(2ax + 2d)
(Kaax +d) + Ki) = By + ax-+ By) - K1 2), 56
p= — 1 5 (a3K x% —a?x(-2bK,y — 2dK; + 2K, (y + By)(y + ax + py) + 1) +a
(b?K1y? +d(=2(Ka(y + py)? = bK1p) + 2a’Kyx® — 1) = 26K,p(y — ax + By)
(y +ax+ By)—by +d?K; + Ky (—y + ax — By)(y + ax + y)) + a(2(by + d)
(Kz(by +d) + K1) = 1)(y + ax + By)),
with its first integral
N (ax+by+d)*>+(y +ax+ py)?
= . 3.7
oY) = T ax by + d) (Ko lax + by + ) T Ky (3.7)
The system (II) written as
o 1
= Sane 5ap (3b(3ax+3d —4(y + ax+ By)(y + ax+3py)) + f(y + ax+ By)
(—24ax —24d +32(y + ax+ fy)> +9) + 9b?y), (3.8)
- 1 2 B '
V= gapa 5ap (9a°x+3a(3by +3d —4(ax+ By +y)(y +3ax+ By)) + a(y + ax
+BY)(—24by —24d + 32(ax + Py +¥)* +9)),
where its first integral is
Hi(x,v) = (3(ax+ by +d) — 4(y + ax + y)?)* + 9(y + ax + py)>. (3.9)
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System (III) is given by

1
ab—-af
(2a3x> + d(6a%x? — dax + 4By(y + ax + By) + 1) — 2a®x? + d?(6ax — 2) + ax

(b?y(6a®x? +4d(3ax— 1) —4ax + 64>+ 2y(y + ax+ py)+ 1)+ b

(4By(y +ax+ By) + 1) +2d% + (y + ax + By)(y + ax - 2By)) + 2b3y?(3ax
+3d — 1)+ plax+d —1)(2ax+2d — 1)(y + ax + fy) + 2b*p3),

_ (3.10)
(2a*x3 + 2a°x*(3by + 3d — 1) + a®x(6b%y? + 4d(3by — 1) — 4by + 6d?

y= ab-ap
+2ax(y +ax+ py)+ 1) +a(2b3y3 + d(6b%y? — 4by + dax(y + ax+ fy) + 1)
—2l12y2 + d2(6b3} -2)+by(4ax(y +ax+py)+1)+ 2d3 - (=y +2ax—-py)
(y+ax+py)+alby+d—-1)(2by+2d-1)(y + ax+ py)),

and its corresponding first integral is

(ax+by+d —1)*((ax+ by +d)> + (y + ax+ y)?)
(2(ax+by+d)—1)?

In this chapter we study the existence and the upper bound of limit cycles that intersect

Hy(x,p) = : (3.11)

the irregular separation line ¥ in two points, where we will find two possible configura-
tions of limit cycles. The first configuration denoted by conf 1 is when the limit cycles
have two intersection points with I or I,. But to study the limit cycles which intersect
I or I} in two point is equivalent to study the piecewise differential systems separated
by one straight line. It was proved by Benterki and Llibre in Theorem 1 of [10] that the

maximum number of limit cycles of this configuration varies from 0, 1 and 2.

The second configuration denoted by conf 2, is when the limit cycles have two intersec-
tion points with the irregular line ¥, such that one point is situated in I} and the second
point is located in I3, i.e., the first point of intersection is (xq, 0) € [ and the second point
is (0,v,) € I,. We notice that when we combine the two configurations conf 1 and conf 2
we obtain another configuration that have a combination between the two kinds of limit
cycles and we will denoted it by conf 3.

We restrict our analysis to study the maximum number of limit cycles of conf 2 and conf
3.

The first main result of the present chapter is the following.
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TreOREM 3.1 The maximum number of limit cycles of discontinuous piecewise differen-
tial system separated by the irregular line ¥ and formed by linear differential center (3.4)
in the regions ¥~ and an arbitrary cubic isochronous center in the regions ¥* after an

affine change of variables is:

(i) at most two for system of type (1)-(3.4), and there are example with exactly two limit
cycles, see Fig 3.1(a);

(i1) at most two for system of type (I1)-(3.4), and there are example with exactly two
limit cycles, see Fig 3.1(b);

(iii) at most three for system of type (I11)-(3.4), and there are example with exactly three
limit cycles, see Fig 3.1(c).

0 1S

(a) (b) ()

Figure 3.1: The two limit cycles of the discontinuous piecewise differential system, (a)
for (3.13)-(3.14), (b) for (3.15)-(3.16) and (c) three limit cycles of the discontinuous
piecewise differential system (3.17)-(3.18) with conf 2.

Proof of Theorem

In the region X~ we consider the linear differential center (3.4) with its first integral
Hi(x,v) given by (3.5). In the region ¥ we consider one of the three families of cubic
isochronous systems with its corresponding first integral H;(x,y) with i = 2,3,4. If the
discontinuous piecewise differential system (3.4)-(2m), with m € {3, 4, 5} has a limit cycle,
which intersects the separation line ¥ in two distinct points (0,y;) € I} and (xy,0) € I5.

These two points must satisfy the system of equations
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e; = Hy(x1,0) = H;(0,v1) = Pi(x1,71) =

_ o (3.12)
e, = H;(x1,0) - (O v1) = Pi(x1,91) =0, withi=2,3,4.

By solving P (x1,1) = 0, we get x; = g(v;) = Dy;, with D=VA? + w?, and by substituting
x1 in Pi(xq,y1) = 0 we obtain an equation in the variable y;, and we distinguish three

cases according to the expression of the first integral H;(x, ).

Proof.

Proof of statement (i) of Theorem 3.1. For i = 2, the corresponding isochronous cubic

system is (3.6) with its first integral Hy(x,y) given in (3.7), the solutions of the equation

Py(g(v1),v1) = 0 are equivalent to the solutions of the quartic equation Fy(y;) = 0 such that

Fi(y1)= p1(2b(Ky(D?y{(a® +a?) +y?) - d*Ky +d(2K,(p? + a>D?y{) + 1)) - a? D%y, (-2d K,

+2K,(y + py1)? + 1) + b2y (-2aDK vy, — 2dK; + 2K, (y + aDy;)? + 1) + 2aD(d2K1
—d(2Ky(p? + B%yf) + 1) = K (y? + B2?)) + (2d(dK, + Ky ) = 1)(aD - B)(2y + aDy;
+By1)) + 4yDyi(2dK, + Ky )(ab - ap).

This equation has at most four real solutions. Therefore system (3.12) has at most four real

solutions, which can easily be proved that they are symmetric. These tow solutions provide at

most two limit cycles for the discontinuous piecewise differential system (3.4)-(3.6).

Now we prove that the result of statement (i) is reached by giving an example of discontinuous

piecewise differential system (3.4)-(3.6) with exactly two limit cycles.

In the region ¥ we consider the cubic isochronous differential center

%=~ x2(0.29088 —0.234119y) + x((0.389428y — 0.21098472) + 0.673442)
+0.2x3 + (~0.594058y — 1.39526)y + 0.0801447,

(3.13)
P~ x(0.69824y —0.234119y2) +0.788391x + 0.2yx% — 0.152264x* +
((—0.210984y — 0.191014)y — 0.289442) + 0.251744,
with the first integral
() ~ (x+0.596858y + 0.4)% + (x — 1.76745y + 0.2)?
2 Y T T 2(0.1(x~ 1.76745p + 0.2) + 0.2)(0.2 + x — 1.76745y)

In the region ¥~ we consider the linear differential center
1 37 1

= —| — —_— ) e 3.14

(5% * 108> V=17t (3.19)
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1
which has the first integral Hy(x,v) = %yz +(x+ Ey)z.
The real solutions of system (3.12) are (x1,y7) ~ {(1.09545,1.8009),(0.632456,1.03975)}.

Then the two crossing limit cycles of system (3.13)-(3.14) corresponding to these solutions are

shown in Figure 3.1(a).

Proof of statement (ii) of Theorem 3.1. For i = 3, the isochronous cubic system is (3.8),

where its first integral is H3(x,y) given in (3.9). To obtain the number of real solutions of

system (3.12), we have to solve the equation P3(g(y),v1) = 0 which has the same solutions as

the quartic equation F,(y;) = 0, such that

Fy(y1) = 3yi(-3a’D?+16aayD? +3b*> - 168by — (3 +32y? - 8d)(-f + aD)(aD + f))

—291(3aD(~4y? + 3d) + 12y?b - 9db — y(24d - 32y? - 9)(aD - B)) + 8y; (3aa’?
D3 -3bp% +8(yp3 - ya®D3) + 16yt (p* - a*D?).

Its clear that this equation has at most four real solutions, and due to the fact that these

solutions are symmetric, we know that system (3.12) has at most two distinct real solutions.

Consequently, the discontinuous piecewise differential system (3.4)-(3.8) has at most two limit

cycles.

To reach our result we shall give an example of discontinuous piecewise differential system

(3.4)-(3.8) with exactly two limit cycles.

In the region ¥ we consider the cubic isochronous differential center

%~ (y(0.195657 —0.011447y) - 0.071458) + 0.011447x3 + x>(—-0.0343434y
~0.071009) + xy(0.034343y — 0.124647) — 6.3691 — 1.44776x,

v~ 1((0.0623236—0.011447y) + 1.44776) + 0.011447x3 + x*>(-0.034343y
~0.204343) + xy(0.034343y + 0.14202)y + 5.20374 + 0.138904x,

(3.15)

with the first integral

Hi(x,v)~ (3(0.210589 +0.1xp + 1.22182) + 4(—0.1y + 0.1x — 0.22)?)? = 9(-0.22 + 0.1x
-0.1y)2.

In region ¥~ we consider the linear differential center

7 149 7
(= —(—x+— )= — 3.16
A TS TT A A T A (3.16)
. . 7 2
which has the first integral Hy(x,y) = (x + Ey) +9°.

The discontinuous piecewise differential system (3.15)-(3.16) has exactly two crossing limit
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cycles, because system (3.12) has the two solutions (x1,y1) ~ {(1.04881,0.859218),(0.447214,
0.366372)}. These limit cycles are shown in Figure 3.1(b).

Proof of statement (iii) of Theorem 3.1. For i = 4, the first integral for the cubic isochronous

system (3.10) is Hy(x,y) given in (3.11). We are interesting in finding the solutions y; of

the equation Py(g(v1),v1)) = 0 which has the same solutions as the equation of degree six

F3(y1) = 0 such that

F3(y1) = v#(a’D?*(3y*-2d(2y? +5d((2d — 4)d + 15d — 5) + 2d + 4ay(2d — 1)D(a(2d

~1)(1-d)D -2p(d — 1))+ b*(=3p? +2d(2y* + 5d(2d(d — 2) + 3) — 25d + 1) + 4b
y(2d -1)(1 =d)(—2pd +2a(d —1)D) + (d - 1)*((-1 + 2d)?)(aD - B)(B + aD))
+4a?b’>D?y8(-D%(a® + a?) + b2 + B2) - 293 (b(2a>D*(y? + (2d - 1)%) - 8ay(-2d
+1)(=1+d)D(aD - )+ (d —1)(2d - 1)(B*(1 - 2d) + 2a*(d — 1)D?)) + aD(a*(2d
~1)3D? +ayD(a(1 -2d)>D - 4p(d —1)?) + (d — 1)(2d - 1)(a?(2d —1)D?> - 282(1
~d)))~b2(2aD(y? +(2d ~ 1) + y (B~ 4(1 ~d)(Bd + D(a — ad)))) - b*(2d ~ 1)%)
~4abDy; (b(2a%(2d — 1)D? + 2ayD(aD - B) + p(1 - 2d) - 2a*(—-d + 1)D?) + D?
(a® + a?)a(2d — 1)+ 2ab%(1 - 2d)D — 2ap*(d — 1)D + b3(1 - 2d)) + y;(8abD(ay D
(2B(d-1)+ D(a —2ad))—(2d - 1)(a*(2d - 1)D? + (d - 1)(aD - B)(B + aD))) + a*
D?(4p%(1-d)? - (1 -2d)?’D?(a® + a?)) + 8ab3(1 - 2d)*>D — b*(B - 2pd + 2a(d
~1)D)(8ayD + f(2d — 1) + 2a(d —1)D) + b*(1 — 2d)?) + 2(d — 1)(2d — 1)dy, (2d
(1-d)+dy,(b—aD)+y*(b—aD)+(-2dy +y)(1 -d)(aD - p)).

The equation F3(y,) = 0 has at most six real solutions. Therefore, system (3.12) has at most

three real non-symmetric solutions, which provide at most three limit cycles for the discontin-

uous piecewise differential system (3.4)-(3.10).

To complete the proof of this statement we shall provide an example of discontinuous piecewise
differential system formed by an arbitrary linear center and a cubic isochronous center of type

(3.10) with exactly three limit cycles.

In the region X%, we consider the cubic isochronous differential center

%~ —0.0333565x% +0.0251109x%y + 325.854x% — x((~0.220905y> + 1633.64y)
~1.31696 x 10%) - y((2564.66 — 0.171752y)y — 1.1617 x 107) — 1.43102,
x1010

p= x%(1293.86-0.139931yp) + x(y(1299.6 — 0.0250305y) — 7.36102 x 10°)
~0.0689903x3 + 1((0.0526109y — 409.335)y — 1.31566 x 10°) + 1.13904

%1010,

(3.17)
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which has the first integral

- 1
Hy(x,y) ~
4(0y) ((0.4x +0.0502352y — 324.994) — 1)
+0.2x +0.2511769)%(-0.2x + 1624.97 — 0.251176y)?).

5((0.3x - 0.376965y + 0.2)* - (~1625.97

In X7, we consider the linear differential center

3 1973 3
(3 _ 3 3.18
X (10“12503’)' T LA (3.18)

and its corresponding first integral is

3721 ,

3 2
Hl(x,y) = (1—0}}+X) + m}) .

The three solutions of system (3.12) for these systems are (x1,y) ~ {(1.48324,1.1806), (1.18322,
0.941793),(0.774597,0.616548)}. Then the three crossing limit cycles for the discontinuous
piecewise differential system (3.17)-(3.18) are shown in Figure 3.1(c).

THEOREM 3.2 The maximum number of limit of discontinuous piecewise differential sys-
tem separated by the irregular line ¥ and formed by an arbitrary linear differential center
(3.2) in the regions ¥~ and an arbitrary cubic isochronous center in the regions X* after

an affine change of variables with conf 1 and conf 2 is

(i) at most three for system of type (I)-(3.2), and there are example with exactly three
limit cycles, see Figure 3.2(a);

(i1) at most three for system of type (I11)-(3.2), and there are example with exactly three
limit cycles, see Figure 3.2(b);

(iii) at most five for system of type (II11)-(3.2), and there are example with exactly five
limit cycles, see Figure 3.2(c).

Proof of Theorem

In order to have limit cycles of conf 1 and conf 2 simultaneously, the limit cycles of conf

1 which intersect the separation line I in two points must satisfy the equations
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(a) (b) (c)

Figure 3.2: Three limit cycles of the piecewise differential system, (a) for (3.20)-(3.21),
(b) for (3.22)-(3.23) and (c) five limit cycles of the discontinuous piecewise differential
system (3.24)-(3.25) with conf 3.

E; =H(0,11)—H(0,92) =  (v1—22)(=2B+ (v1 + 12)(A* + @?)) = 0,
E, =H;(0,91)—H;(0,92) = Pi(v1,%2) =0,

where H;(x,v) for i = 2,3, 4, are the first integrals given by (3.7),(3.9),(5.39). On the other

(3.19)

hand the two intersection points of limit cycles of conf 2 with the irregular separation

line ¥ must satisfy system (3.12). Then we have the following results.

Proof.

Proof of statement (i) of Theorem 3.2.

In what follows we give an example of discontinuous piecewise differential system formed by
an arbitrary linear center (3.2) and the cubic isochronous center (3.6), which has one limit
cycle of conf 1 and two limit cycles of conf 2, i.e, has three limit cycles of conf 3.

In the region ¥ we consider the cubic isochronous center

%~ x%(0.103711 - 0.006568y) — 0.00592118x> + x((0.0124892p + 0.189279)y
~0.755639) — (0.118324y + 1.2791)y + 2.88432,

p~ x(0.112022y —0.006568y2) + 0.445381x + x2(—0.00592118y — 0.0323263)
—9(0.143181 + (—0.0124892y — 0.0949698)y) — 0.122119,

(3.20)

with the first integral

fy(x) (=0.1x - 0.210924y + 0.4)? + (=0.1x + 0.1y — 0.2)?
X,0) =~ .
2y 1+2(-0.296059(~0.1x + 0.1y — 0.2) — 0.680186)(0.2 + 0.1x — 0.1v)
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In the region ¥~ we consider the linear differential center

1 3.1
10 107 (3.21)

which has the first integral

_ LoV oo 2
H(x,y)_(x+ﬁy) +(x—4y)+y~.

For the discontinuous piecewise differential system (3.20)—(3.21), system (3.19) has the unique
solution (y1,v,) =~ (1.00506,2.95533), which provide one limit cycle intersecting I3 in the two
points (0,y;) and (0,v;), and system (3.12) has the two solutions (x3,y3) ~ (1.56155,4.78761)
and (x4,v4) = (2.8541,5.82887), which provide the four intersecting points (x;,0),(0,y;) with
i = 3,4 of the two limit cycles with the separation irregular line ¥. Then the discontinuous

piecewise differential system (3.20)—(3.21) has exactly three limit cycles, see Figure 3.2(a).

Proof of statement (ii) of Theorem 3.2. In what follows we give an example of discontin-
uous piecewise differential system formed by an arbitrary linear center (3.2) and the cubic
isochronous center (3.8), which has one limit cycle of conf 1 and two limit cycles of conf 2,

i.e, has three limit cycles of conf 3.

In the region ¥ we consider the cubic isochronous center

%~ 0.169221x%-0.246893yx? + x(1.03113y — 0.292023y2) — 0.914334x
+7((0.982871 —0.115134y)y — 3.20465) — 0.0695791x> + 3.31428,

p~ 0.0588262x> +x2(0.208737y + 0.082386) + x((0.246893y — 0.338442)y
+0.983531) - 0.716136 +9(0.097340y — 0.515564)y + 0.914334y,

(3.22)

and its first integral is

Hi(x,v)~ (0.16x>+(0.378493y + 0.149387)x + 0.469133 + (0.223839y — 1.27391)y
+1.48034)? - 9(0.236558y + 0.2x)>.

In the region ¥~ we consider the linear differential center

}}:1+x+1ym, (3.23)

x__(14401 _3+i)
~ 100007 100/

which has the first integral
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B 1 2 36 ,
H(x,y)_(x+100y) +2(x 3y)+25y.

For the discontinuous piecewise differential system (3.22)—(3.23), system (3.19) has the unique
solution (y1,v,) ~ (0.833353,3.33302). which provide one limit cycle intersecting Iy in the
two points (0,y1) and (0,v,), and system (3.12) has the two solutions (x3,y3) ~ (1.23607,
4.75101) and (x4,v4) =~ (2.60555,5.64302), which provide the four intersecting points (x;,0),
(0,v;) with i = 3,4 of the two limit cycles with the separation irregular line ¥. Then the
discontinuous piecewise differential system (3.22)—(3.23) has exactly three limit cycles, see
Figure 3.2(b).

Proof of statement (iii) of Theorem 3.2. In what follows we give an example of discon-
tinuous piecewise differential system formed by an arbitrary linear center (3.2) and the cubic
isochronous center (3.10), which has two limit cycles of conf 1 and three limit cycles of conf
2, i.e, has five limit cycles of conf 3.

In the region ¥ we consider the cubic isochronous center

%~ —0.048133x>+-0.121939x2y — 0.426587x> + x((—0.095040y — 0.972986)
v +0.995223) + p((~0.023526y — 0.581449)y + 1.46708) + 1.15725,

v~ 0.0367839x3 +0.093016x%y + 0.59027x% + x((0.072423y + 1.42865)
v +0.128844) + 0.794241 + y((0.017915y + 0.892226)y — 0.037402),

(3.24)

with the first integral

. 1
Hai(x,v) ~

4(xy) (2(0.037796x + 0.023059y + 0.77109) — 1)2

+0.77109)? +(0.339871x + 0.447685y + 0.5)2)(0.037797x + 0.023051y

~0.23891)2.

((0.037796x +0.023059y

In X~ we consider the linear differential center

2 26 5 2
(2 .26 .02 3.25
X (10“253’)’ Y=X* 10" 107 (3.25)

and its first integral is
2 \2
— 32 _
H(x,y)=v +(x+ 103)) +(x—69).

For the discontinuous piecewics differential system (3.24)—(3.25), system (3.19) has the two
solution (y1,,) = (2.09171,3.67752) and (y3,y4) ~ (0.553009,5.21622), which provide the
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two limit cycles intersecting I in the four points (0,y;) with i = 1,2,3,4, and system (3.12)
has the three solutions (xs5,y5) =~ (1,6.08525), (x¢,vs) = (2.19258,6.76428) and (x7,vy7) =
(3,7.34101), which provide the six intersecting points (x;,0),(0,y;) with i = 5,6,7 of the three
limit cycles with the separation line X. Then the discontinuous piecewise differential system

(3.24)—(3.25) has exactly five limit cycles of conf 3 shown in Figure 3.2(c). [
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Chapter I

Limit Cycles Bifurcating From Planar

Piecewise Differential Systems Formed by

Linear and Cubic Centers

The objective of this chapter is to study the limit cycles that can bifurcate from the
discontinuous piecewise differential systems separated by the straight line y = 0 and

formed by a linear differential system having a center or focus of the form
X=y+ax+py, v=0-Bx+ay. (4.1)

defined in the half-plane y > 0, where «a, 8, ¥, and 6 € R, and by an arbitrary cubic weak

focus or center located at the origin given by

X= —cxy—y—ax?—zy?—kx® - mx*y — pxy? - hy3,

V= x+by?+dxy+gx® +1y> +nxy? + gx’y + wx’.

defined in the half-plane y < 0, where all the parameters of the system are real.

Statement of the main result

The main goal of our chapter focuses on studying the simple zeros of the averaged

functions. Here we shall use the averaging theory up to the third order for studying the
number of limit cycles that can bifurcate from the discontinuous piecewise differential

systems formed by (4.1) for y > 0, when we perturb it inside the class of all polynomial
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differential systems of degree 1 as follows

£'Qui(x), (4.3)

e

3
xX= Zflpli(x:}’);}} =

i=1 i=1

and by the differential system (4.2) for y < 0 when we perturb it inside the class of all

polynomial differential systems of degree 3 as follows

3

e'Pyi(xy) 9= ) €' Qsilxp). (4.4)

l:l 1:1

Mw

Here € > 0 is a small parameter, i = 1,...,3, P;; and Qy;, are real polynomials of degree 1
in the variables x and y, and P3;, Q3; are real polynomials of degree 3 in the variables x
and y.

We need to use the following Descartes Theorem and Lemma 1.1 in chapter 1 in order

to demonstrate our results regarding the number of zeros in a real polynomial.

TueoreM 4.1 (Descartes Theorem) Consider the real polynomial r(x) = ailxil +ai2xi2+
oot airxif with 0 = i; <ip, <...< i, and aj, # 0 real constants for j € {1,...,r}. When
aj.a;, , <0, we say that a;, have a variation of the sign. If the number of variations of
signs is m, then r(x) has at most m positive real roots. Moreover, it is always possible to

choose the coefficients of r(x) in such a way that r(x) has exactly r — 1 positive real roots.

For more details see [15].

Our main result is the following.

TueorREM 4.2 For |e| = 0 sufficiently small and by using the averaging theory up to third
order the maximum number of limit cycles of the discontinuous piecewise differential
systems formed by linear differential focus or center (4.1) and the cubic weak focus or
center (4.2) is at most seven. There are examples with exactly seven limit cycles bifurcating

from the periodic orbits of these system.
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m Proof of Theorem

In order to apply the averaging method for studying the limit cycles for ¢ sufficiently
small, we need to write the tow systems in the standard form. So we have developed
the parameters of the differential systems until the third order in ¢. To ensure that the
origin of system (4.1) is a center, we must add —1 with regard to the growth of . Then

in y > 0 we have the following system

X=-yp+ax+py+y, v=x-px+ay+o,

with

_ 2 3 _ 2 3
a=aie+are’+ aze’, p=-1+p1e+ pre”+ P37,
Y =16+ 262 + p363, 8 =016+ 0,62 + 563,

Then the perturbed system of system (4.1) is given by

X= elax+pry+y1)+eX(ax+ Py +y2) + € (azx + Py + v3) — 2,

(4.5)
V= 2x+e(=fix+a1y+01)+ e(=Pax +ary +0y) + €3 (—P3x + azy + 83).

According to system (4.3) we know that

Pii(x,9) =y1 +a1x+ By, Pia(x,y) =y +arx+ 2y, Pi3(x,v) = ys+azx+ B3y,

Qu(xy) = =prx+ a1y +01, Qua(x,p) = —fox+ a2y + 05, Qu3(x,9) = —Psx +azy + 3.
In y < 0 we have the differential system

x= —cxy—y—ax?—zy?—kx® - mx*y — pxy? - hy3,

v= by?+dxy+gx?+1y3+nxy?+gx’y + wxd + x.
Where
a=aye+aye’ +azed, C=cre+cpe? +c383, D =pié+pre? +psed,
Z2=216+2,6% + 2565, k =kie+kye? +kse3, m=mye+mye? + msye’,
h=hye+hye? +hyed, g=gie+ 9>+ g363, d=de+dye? +dse3,
b=be+Dbye? +bsed, W=wE+wye? +wsied, q=q16+qr6% +q3¢,
n=1y€+nye>+n3e, I =le+1le%+ 153
Then the perturbed system of system (4.2) is given by

x= —y+e(-aix?—cxy—z19? -k x> —myx*y — prxy? — 1 p3) + £2(—a x>

2

—CaXY — 223/2 - k2x3 - mzle’ - szl’z - h2?3) + 53(—a3x —C3XY — 233’2
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—k3x® — m3x?y — psxp? — h3y?),
v= x+eby?+dixy+gx?+ L3 +nxp?+ q1x%y + w1 x3) + €2(bry? + dyxy (4.6)
+25x% + 12 + 1692 + g2x%Y + wyx3) + 3(b3y? + d3xy + g3x% + 39 + nzxy? '

+q3x2y + w3x3).

According to system (4.4) we know that

P31 (x,9) = —a1x% — c1xy — 219> — k1 x> — my x%y — prxy? — hyy°,
P3y(x,9) = —apx® = 0xy — 259 —kox® = mpx?y — poxy?® — hyp°,
P33(x,9) = —a3x® — c3x9 — 239% — k3x® — m3x’y — p3xy® — h3p°,

Q31(x,9) = b1y? +dyxy + g1 x% + 119> + nyxp? + q X%y + w x°,

Q32(x,v) = bzyz +dyxy + gzx2 + l2y3 + nzxy2 + qzxzy + w2x3,
Q33(x,9) = b3y? + dsxy + g3x% + 139> + n3x9° + q3x%y + wax’.

We compute the averaged functions f;(r), for i = 1 we get
1 5 22
fl(f’) = gT(T’ (—3k1 + 311 —p1+ 6]1) - 37’ (Zbl - +g1) + o r + 261

By using Descartes Theorem we know that the polynomial f;(r) can have at most three
positive real roots, which provide three limit cycles for the discontinuous piecewise dif-

ferential system (4.1)—(4.2).

In order to apply the averaging theory of the second order, we need that f;(r) = 0.
So we must take ¢; = 2by + gy, p1 = —3k; + 311 + g1, 01 = 0 and a; = 0. Computing the

function f,(r) we get

1
falr) = Eﬂrs(hl(fh =3ky)+ki(=my +ny +3wy) + 2lymy = 2ling +myq —niq; — g wy)
+%1’ (a1(3k1 4[1 - 3q1) - 4b1m1 + 4:b1Tl1 - 3d1k1 + 2d1 ll + 2d1q1 +g1(—2h1 - 3m1

1
+27ll + 371/1) + 6k121 - 2q121) + §T(7’3(2a1b1 + 3a1g1 - bldl - dlgl +8121 — 3k2 + 312

—pr+4q3)— §r2(2b2 —Cy+ Qo)+ Tasr + 20,.
This polynomial can have at most five positive real roots, which provide at most five
limit cycles for the discontinuous piecewise differential system (4.1)—(4.2).
In order to apply the averaging theory of third order we need to have f,(r) = 0, for that

we must take
1

a3k —q1)
—3g1my +2g1ny + 6k zy —2q,21) + 281 (my —ny)(ky — 21 —q1)),

wy = ((3ky —q1)(ay(3ky — 41y —3qy) —4bymy +4byny +dy (2(1; +q1) — 3k;)
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c2= 2by+go,pr=a1(2b; +3g1)—dy (b1 +81) + 8121 —3ky + 3, + 93,0, = 0,

1
—m(fll(3kl - 6]1)(3k1 —411 - 3q1) — 12b1k1m1 + 12b1k1n1 +4b1m1q1

—4bynygy —dy(3ky —q1)(3ky = 2(11 + q1)) — 6g1kymy +3g1kyny —6g11ymy + 681111
+811141 + 221 (91 — 3k1)?), 6, = 0.
For wy and h; we considered four cases g(3k; —¢q;) # 0, or (g = 0,(3k; —¢q,) #0), or

(g1 #0,3k1 —g1 =0)or (g1 =0, 3k; — g1 = 0). We start with the first case g;(3k; —g1) = 0.

Case 1. g1(3k; —¢q1) # 0. Computing the function f;3(r) we obtain

2
f3(r) = A1r7 +A2r6 +A3r5 +A4r4 +A5r3 -3 (2b3 —c3 +g3)r2 + Ttasr + 203.

1
64, (3k; —q1)

+4b1n1 + dl(—3k1 + 211 + 2q1) + 6k121 - 2q121) + gl(k1(6l1q1 + 127’1’11111 - 6m% - 61’1%

(1e(ky = 51 = 2q1)((3ky — g1 )(my —ny)(ay (3ky — 411 — 391) — 4bymy

+%) = 3k3(31, +2q1) + 9Kk3 — Iy (=8myny + 4m? + 4n? + q3)))),

1
10581 (91 — 3ky)?

+23q% + 64m1n1)kf - 6(24q1112 + 2(4m% —8nymy + 4n% + 13q%)ll + ql(—Smf - Snf

(2((297k} = 36(91; +7q)k3 +3(7212 + 132q, 1, — 32m? — 3212

+16nym; + q%))kl + 411(611(2mf —4nymy + Zn% + q%) + q1(12mf —24nymy + 12n%
+5q1)))gi + 4(my —ny)(3ky — q1)(dy (—15k3 + 3311k + 24q,ky — 697 — 101, q1) +a; (12
ki —3(131; +8q1)ky +q1 (1111 +641)) + 2(3ky —q1)(3ky — 411 —3q1)21)g1 — 48b7 (m,
—n1)(q1 — 3ky)” + 2(q1 — 3k1)*(2(3] + q1)(3ky — 41y — 3y )af + ((3ky — g1)(3k; + 81,
+q1)21 — dy (9ky — 81y = 741)(31y +q1))ay + 2(q1 — 3k1)?2} +df (31 +q1)(3ky — 2()4
+q1)) - dy1 (3ky +411)(3ky — q1)21) + 2b1(q1 — 3k)*(81(27kF = 3(1214 + 51 )k +2(~12
m? + 24nymy — 1203 + 6111 +q3)) + 2(my —ny)(=9d kg + 12z, k; + 12d,1; + 8d, q,

+ay(9k; — 241, —13q,) - 44q,21)))),
1
164 (3k; —q1)

—nl)(3k1 — ‘h)b% + (4(21(611 — 3k1)2 +g1(—20k1m1 - 2111’1’11 + 6q1m1 + 17k17’11 + 2111’11

(10(2(3ky — q1)(by (3ky — 41y —3q1) + g1(8k; — 111} — 84gy))at + (—8(m;

—5n191)) —dy(9ky — 81y —7q1)(3k1 — q1))b1 + g1(—d1(3ky — q1)(21k; = 1711 —=15q1) + &1
(—37k1m1 — 16111’711 + 7q1m1 + 19k1n1 + 16[1”1 — nlql) + 6!1(3](1 - Q1)(39k1 — 1011111

~17q1)z1)) + b3 (3k; — q1)(3g1ky + 4dymy —4dyny — g191) + g1((3ky —1)(5k; = 3(l1.g1
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+q1))d7 + (g1(611 (my —ny) + kg (9my —3ny) = (my +ny)gy) — (18ky — 51 —84;)g1 (3ky
—q1)z1)d1 — 9h2kf - hzqf - mzq% + nzq% + 45k122f + Sq%zf - 30k1q12% —6kylymy + kyzg
+6kilymy — 3kimy + 6kylymy + 6kylyny — 6k Iyny + 3king — 6ki1yny — 2g2 (ky + 1) (3K
—q1) + 6hyk1qy — 2kymyqy — 2l,myqq + 4kymyqy — 21lymyqq + 2kong gy + 21n,q1 + q%wz
—4kynyqy + 21y nyqy + 2kymyqa + 21ymyqy — 2k nyqy — 211115 + 9kiw, — 6k qiws + g
(=101 (my = ny) +ky(7ny = 13my) + (my +n1)41)21) + by ((3ky — 1) (3ky d + (g1(25k

my +4lymy —2(1; +q1)) — 7qymy — 19kyny —4lyny +5n,q1) — 2(q; — 3ky)?z1)d; + g1 (3

ki —q1)(81(3ky =51 —2q1) + 10(n; —my)z1)))),
1
15¢,

(2(ay(4b1d1 g1 + 6d1g12 +3g1ky — 3ok —4g11, + 4911 —3919, + 32291 — 6g1221)

+b1(4(—g1my + gamy + g1y — gony + §7) — 2d7g1) + 3arg1ky —4arg1 1y — 3a28191
—3a3 g7 — 4bygimy +4byginy +4b7 gl — 3dagiky —3d181ky + 3dy g2k + 2drg114
+2dy g1y —2d, 9ol +2dag1qy +2d, 8195 — 241891 + 2d1 g7 2y — 2d7 gl — 2gThy + 6g1k,

+6g1k12, —69k121 — 3g12m2 + 2g12n2 - 2919221 — 2819122 + 2829121 + 3g12w2)),

7
As = g(zazbl +2a1by+3ay8) +3a18, —bydy —bydy —dygy —d1 8 + 8221 + 8122 — 3k3

+3l3 - p3 +43).

Since the rank of the Jacobian matrix of the function A = (A;4,...As, —%(Zbg -c3+g3)
, a3, 203) with respect to its parameters which appear in their expressions is maximal,
i.e. it is 8. In view of Lemma 1.1, we conclude that the maximum number of real
solutions of the equation f3(r) = 0 is at most seven. Now by using Descartes Theorem we
conclude that the function f3(r) = 0 can have at most seven positive solutions. Therefore
the averaging theory up to third order can provide at most seven limit cycles for the

discontinuous piecewise differential system (4.1)—(4.2).

Now we consider the second case.

Case 2. gy = 0 and ¢q; # 3k;. Computing the function f,(r) we obtain

1
falr) = E”rs(hl(ql = 3ky) + ki (=my +ny +3wy) + 2lymy = 2lyny +myqy —nyq — quwy)
2
+ﬁ7’4(€ll(3kl - 4:[1 - 3q1) - 4b1m1 + 4b1n1 + dl(—3k1 + 211 + qu) + 6k121 - quzl)

1 2
+§7U’3 (al(:1 - bldl - 3k2 + 312 —p2+ qz) - §T2(2b2 —C)+ gz) + Tt + 262
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So the polynomial f,(r) can have at most five positive real roots which produce at most
five limit cycles for the discontinuous piecewise differential system (4.1)—(4.2) when ¢ is
sufficiently small. In order to apply the averaging theory of third order we put f,(r) = 0.
So we need to consider

= 2by+g,pr=aycy—bydy =3k, +3l,+q5,a,=0,0, =0,

1
—————((ky =21} — g1 )(a1(3ky — 41} —3q1) + d1(2(I; + q1) — 3ky) + 6ky21 — 2912
4b1(3k1—q1)(( 1 1~ q1)(a1(3k; 1= 3q1) +d1(2(l + q1) 1) 121 — 24121)

+4b,hy(3k; —q1)),

1
my = 4—b1(01(3k1 — 4l —3q,) +4byny +dy (2(1; + 1) — 3k) + 6k 21 — 291 27).

From the expression of f,(r) we distinguish immediately two subcases b; = 0 or b; = 0.

wy =

Subcase 2.1. b; = 0. Computing f3(r) we get

2 i}
f3(1’) = B17’7 + B27’6 + B31’5 + B47’4 + B57’3 - g (2b3 —C3 +g3)7’2 + TTasr + 263

TC
512b% (3k; — q1)

(3ky = 2(Iy +q1)t) + 221 (q1 — 3ky))) + agly (=3ky + 41y +3qy)? + 8b7(ky — 1) (g1 — 3k;)?

(ki =511 —2q1)(=2a,(3ky — 4l = 3q1)(b1(hy —n1)(3ky —q1) + I1(dy

+cihy —ny)(3ky —q1)d1(3ky — 21 +q1)) + 22191 — 3ky)) + 11(d1(2(L +q1) — 3ky)

+6k1z1 —2q121)%),
1
1050 (3k; —q1)

(15111 + 517 +3q%) +q1(291191 + 2512 + 6q3)) + 21 (3k; — q1)(=33k [} — 9k g1 + 3k?

(—2a1(b1(h1 - 7’11)(—24](1(]1 + 27k12 + SQ%) + d1(3k12(811 + 5[1) - 3k1

+291,q; + 1612 +69%)) + a2 (k3 (7511 + 36q;) — 3k (501,91 + 2817 + 1597) — 9k3 + 9, (75
Lqy + 6817 +184q7)) +4b7 (q1 — 3k1)*(9k1 = 2(61y +q1)) + 1 (hy = m1)(3ky — q1)(dy (9
~4q;) +8z1(q) — 3ky)) +90d, k11, q, 21 + 6d7ki11qy — 54d, k31 2, +48d ki 17z — 15d?
K21y +6d7k 13 +42d,k?q 2y — 12d,k, g3z, — 24d?k?q, +12d7%k q? — 18d,k}z; + 947
k13 - 24d1l1qul - 16d1112q121 + Sdflqu + 8d12112q1 - 96k1l1qlzf + 144k12112f + 16lqu),

B, -7
7 64b,(3k, —q1)

+2211q1 + 16[12 + 9q%)) + Sb%(l’ll + Tll)(3k1 — ql) - 2(3k1 - 411 - 341)(—k2(311 + ‘h)

(a1 (b (221 (3ky —q1)(5ky — 41y —5q1) — dy (—26k; Iy — 22k, qq + 9k}

+3k1 lz + kl q> — lqu + l] qz)) + 461%171(-5](1(11 + ‘h) + 3k12 + 511% + 4112 + 2q%) + bl
(2d121(3k1 - ql)(Zkl + 211 + ql) + d12(—8k1 ll — 3k1q1 - 3k12 + 6116]1 + 4[12 + 26]%) + 4(3k1
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—q1)(3hyky —hyqy + kymy —kyny = 3kyw, — 2lymy + 211 ny —mapqy + nyqy + qywy))

—4b3dy (hy +n1)(3ky — q1) — 4b3 (g1 — 3k1)? + 2(ka (3L + 91) — k1 (BLy + 42) + Lag1 — 192)

(d1(2(1; + g1) = 3ky) + 6k1 21 — 291 21)),

1
15b,(3k; — ql)(al(Sb%dl(?’kl _ch) +(3ky — 4l - 35]1)(_b2(6k1 - 26]1) - 3g2(k1 +1p))

+c1(3ky —q1)(3ky — 415 = 3q3)) + c1(3ky — q1)(a2(3ky — 41y — 3q1) — 3d1 ko + 2d1 1

B4:

+2d1q, — 3dyky + 2dy1y + 2dyq1 + gohy —nq) + 6k 25 + 6kazy — 29125 — 29521) + (b (6ky
~241) +3g(ky +1)(d1 (3ky = 2(11 + 1)) + 22, (q1 — 3k1)) = 4b7(3ky — 1)(d] +2m,
—2m,)),

Bs = g(zale +3a18y + 301 —bydy —bydy —di & + 8221 — 3k3 + 313 — p3 + q3).

In a similar way as in the proof of Case 1 and according to Descartes Theorem, we know

that the function f;3(r) can have at most seven positive real roots, which provide at most

seven limit cycles.

Subcase 2.2: If b; = 0 the polynomial function f,(r) becomes

1
folr) = B“TS(}H(% =3ky) + ki (=my +ny +3wy)+ 2lymy = 2lyny +myqy —ny1q, — qrwy)
+%7’4(ﬂ1(3k1 — 4[1 — 3q1) + dl(—3k1 + 211 + qu) + 6k121 — 2q121) + %7’(7’3(—3](2

2
+3l = py+q,) - §r2(2b2 —Cy+ @)+ T+ 20,.

This function can have at most five positive real roots. We should have f,(r) = 0 to apply

the averaging theory of the third order. So we need to take
= M3k 4l +3q,) +dy 3k — 2(h +91))
: 6k1 —2q;

X% :0,52 :0,

2(ky +1y)(my —ny)
g1 — 3k

Cy = 2b2+g2,p2:—3k2+312+q2,w1:h1+ +my—ny.

Computing f5(r) we get

2
f5(r) = Cyr7 + Cor® + C31° + Cyrt + C51° - 3 (2b3 —c3 + g3) 1> + a3T + 205,

Where
1
Cl = m(ﬂ(kl - 511 — qu)(kl(—3h1m1 + 3]’11711 + 611‘]1 + 3m1n1 — 31/1% + 6]%) +q1
(l’ll - nl)(ml - nl) - 3k12(3ll + 2q1) + 9k? + ll(—4m1n1 + 27?’1% + 27[% - q%))),
1
C (2(ay(hy(3ky —q1)(3ky — 161y —=7qy) + 6k (3lymy + 5l ny + 3myq;

" 105(3k; - 41)
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+7’llq1) - 3k12(2m1 + i’ll) - 1011 miq; + 3211277’11 - 6lln1q1 - 321121/11 - 12m1q%5n1q%)

+d1(—h1(3k1 - Q1)(3k1 - 4(211 + ‘h)) + 3k1(1011m1 - 1811”1 + 4m1q1 - 97116]1) + k12

(15my —6my) —4(21; + q1)(2lymy = 2lyny —n1qy)))),

1
—m(ﬁ(—2a1d1(3k111 +q1(31 +291)) + a3 (ky — q1)(3ky = 121y = 7q1) + d Ky

(—3ky + 611 +4qy) — 4(hy(qy — 3ky)? + 2ko (311 + q1)(my —ny) — 6ky lymy — 6k 1y m,

Cs;=

+6k1 Zan + 6k1 ll ny — 4k1 nmodqq — 2k1m1q2 + 3k12m2 + 4k1 naqq + 2k1ﬂ1Q2 — 3k12712

+6k1q1wy — 9kTw, + 21ymy gy + 21ymaqy — 21ymy gy — 2lny qy — 211 nyq; + 211 g,
+Maqt — 1247 — giws))),
1

C4 = —M(Z(—az(?)kl — 5]1)(3](1 — 411 — 36]1) + 12(11](1[2 - 12d1k2l1 + 601k1Q2

—6a1k2q1 - 4611 qul + 4“11192 + 12b2k1m1 - 12b2k11’l] - 4b2m1q1 + 4b2n1q1 - 6d2k1 ll
—6d1 kl lz + 6d1 kZZl — 9d2k1ql - 3d1k1 qr + 3d1k2ql + 9d2k12 + 2d2115h + Zdl 126[1
—2d11yq, + 2dyq7 + §o(hy (g, — 3ky) + 6kymy — 3kyny + 61ymy — 6lyny —nyqy)

+12k1q122 - 18k1222 - 26]%22)),
1

(48ky —164;)

—3d1 g2k —2d, g1y + 18ky I3 — 6k p3 + 6k1q3 + 6k3q; — 18ksky — 61391 + 2p3q,

(1e(a1(12byky —4byqy + 1582k + 4821y —38291) + 2byd (g1 — 3kp)

—24145)).
The polynomial f3(r) can have at most seven positive real roots, and generate when ¢

is sufficiently small at most seven limit cycles for the discontinuous piecewise differen-

tial system (4.1)—(4.2).
Case 3. g; # 0 and q; = 3k;. The polynomial f,(r) is written as

1
fz(r) = gT(TS(kl + l])(ml - i’ll) - %7’4(6011](1 + 4&1[1 + 4b1m1 - 4b17’11 - 3d1k1 - 2d1 ll

1
+g1(2h1 + 31711 - 21’11 - 3’(1/1)) + §n1’3(2a1b1 + 3(11g1 - bldl - dlgl +g121 — 3k2

2
+3l —pa+q2) - 572(2172 —Cy+ Q)+ TayT + 20,.

This polynomial can have at most five positive real roots. In order to apply the averaging
theory of third order we must have f,(r) = 0 and in order to eliminate the coefficient of

5

r> we need to have m; = n; or k; = —I;. Here also we have two subcases

Subcase 3.1. We consider
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Z1 =

wy =

—ay (2b; +3g1) +dy (by +g1)+ 3k, =3l +pr—q»

¢ , 0y = 0, 52 = 0,

1

(2ay —dy)(3ky +211) + g1 (2hy +ny)
3%

1kl :t—ll,ml =Ny, = 2b2+g2.

Computing f3(r) we get

Dy =

2
f3(7’) = D] 7’6 + D2T5 + D3r4 + D41"3 - g (2b3 —C3 +g3) 7’2 + TTaszr + 253

1
S5, (20281 (21 = d) i —m)(15K; + 811) = 101y (dy = 2a1)*(2h +q1) + g
(—8hymy + 4h? + 72k 1y + 45k} + 7213 + 4m3))),
1
T48g, (re(ay(6by (2dy 1y + g (my —hy)) +d1 g1 (21 = 15ky) = 77 (hy —my) + 2(9k, 14

~9ki 1 + 511py = 31145 = 15L11 + paqy)) + 245 (—6by Iy + 1581ky +2g111) = 3by(d1 &y
(my —hqt)+ d%ll —glz(Sll +q1))+ Zdlglzhl - Zdlzgl Iy =9d1kyly +9d1 k1, = 3d1 k1 ps
=5dy11py +15d1 1115 + dyp1qy + 18g1hikay + 581 h1py — 6817192 — 681kymy + 681k 1y
+687ky —3g11omy — 681 1ymy + 681111y + 6871y + g mypy — 151yl — 2d, g7 my)),

1
15g1

(2(ay(—2by(3d1 81 + 6ky —2q5) — 6d1 87 — 3381 ky + 62k; + 14811, — 681 pa

+99192) + 3a7 g1 (4by +5g1) — 6a,g1 k1 — 4arg 1y + by (6d1ky — 2d1 g, — 4gymy + 4gi 1,
+4g7) +4bi gt — 3d, goky +9d1 g1k + 2dy g1 1y — 2d, g1y — 4dy g1 + 2d g1pr — 2d1 8192
+d2g1q1 — 2g12h2 - 3g12m2 + 2g12n2 + 3g12w2 — 18k2l2 + 6k2p2 — 12k2Q2 + 18k§ + 612(]2

—2paqs + 245 +4g11)),
1

S—gl(ﬂ(zalbzgl +a,81(2by +381) —2a1b1 gy — bydy g1 —bydygy +byd1gr — dagi —381k3

+3g2ks + 39113 - 392l — g1p3 + §2P2 + £193 — £292 + §122))-

This polynomial can have at most six positive real roots, which produce at most six limit

cycles.

Now we analyze the second subcase.

Subcase 3.2. We consider the following values of the parameters of the function

f3(r)

21 =

wp =

—a; (2by +3g1)+dy (b1 +91)+ 3k =3+ pr—q» ki =—11,¢r = 2by + g

81
—261111 - 21/11 (Zbl +g1) + 4b1m1 + dlll + 2g1h1 + 3g1m1
381

,a2:0,62:0,m1 *ny.
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f5(r) becomes

2
f5(r) = Fyr7 + Fyr® + F3r® + Fyr* + F5r® - 3 (2b3—c3 +g3) 12 + asr + 20;.

Where
Fl = 1;;; ((ml - nl)(5 (—2a1l1 +4b1m1 —4b17’l1 +d1 ll) +&1 (-5]’11 + 127’1/11 - 77”11))),
1
1
F2 = W(2(2g1(20111(7h1 — 45”’11 + 38711) — 81’)1(1’7’11 — i’ll)(2h1 + 3m1 — 57[1) + dl ll(—7h1
1

+24m1 — 17111)) + 2(—4a1l1(17b1(m1 — 7’11) + Sdl ll) + ZOa{'lf‘ + 34b1d1 ll(ml — Tll) -8
(m1 — 1’11)(517%(1’1’11 — Tll) — 9k211 + 311(3l2 ) + Q2)) + Sdlzllz) +gf’(—8h1(3m1 - 21’11)

+4I’l% + 4:5[12 + 4:7’11(6"11 - 51’11)))),

F3= fgl(n(czl(—Zbl(&illl +g1(=3hy +2my +ny)) + 12b%(my —ny) - 17d, g1 11 + g2(7hy
—12mq + 5nq) + 211 (=9, + 61, — 2p, + 39,)) + 2a%ll(6b1 +13g1)+by(d1g1(-3hy —4my
+7n1) + 3d1211 - 2(3g1211 + (my —ny)(9k, — 151, + 5p, — 393))) + 6bfd1(n1 —mq)15¢;
~2d,gthy +2di g1y +2d,giny +9d kaly +2d,1ypy —3d 1192 — 6dy 111, — 18 hyk,
+15g1h11y =581 h1py +681h192 — 3g1kamy + 381kany + 1581 1my —12g11ny -3
mypa +3g11m1qs + 2g1m1p2 — 3811142)),

Fy= %gl(z(—ﬂl(zh(wlgl +6ky — 2q;) + 6187 +33g1ky — 148115 + 28,1 + 681>
~9g1q,) +3a} g1 (4by +581) + 2a,g1 1y + by (6d1ky — 2dy gy — 4gymy + 4gymy +4g 1y
—4gyny +4g7) — 4bygymy + 4bygyny +4b3 g7 + 9d  g1ky —dogi 1y + di goly —4d1 811
+2d1g1pp —2d18192 — 2g12h2 - 3g12m2 + 2g12n2 + 3g12w2 — 18k, + 6kypy — 12kyq,
+18k3 + 61242 — 2p2q2 + 243),

Fs= 8%1(71(26115281 +a,81(2b1 +381) = 2a1b1 8, — byd1 gy — bydogy +b1d1 8o —dagf —3g1ks

+382ky + 38115 = 38202 — g1P3 + 82P2 + 8103 — 8292 + 81 22).
Then the polynomial f;(r) can have at most seven positive real roots.

Case 4. g; = 0 and ¢q; = 3k;. Computing the function f,(r) we obtain

fz(?’) = %T(TS(kl + ll)(ml - 1’11) - %r4(6a1k1 + 4&111 + 4b1m1 - 4b1n1 - 3d1k1 - 2d1 ll)

2
+§T(7’3({11C1 - hl dl - 3k2 + 312 —prt qz) - 51’2(2172 —Cy + g2) + Tanr + 262
This polynomial can have at most five positive real roots. Now we apply the averaging
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theory of third order by considering f,(r) = 0. We see that to remove the coefficient of r°

we need to take k; = —I; or m; = n;. Here we also have two subcases.

Subcase 4.1. We consider ky = -1}, c; = 2by, + &, q, = —2a1by + bydy + 3k, — 31, + po,

m = Iy (2a; —dy)
4b,

subcases b; = 0 or by = 0.

+ny, a; =0,09, =0, by #0, my #ny, and we distinguish another two

4.1.1: For by # 0. Computing f3(r) we get

2
f3(r) = Gir7 + Gor® + G3r® + Ggr* + G — 3 (2b3 —c3 + g3) 1> + Twa3T + 203,

Where
1
Gy = —mil? (2ay —dq)(1; (2a; — dy) + 20by (hy —wy))),
1 10241?%( 1( 1 1)( 1( 1 1) 1( 1 1)))
GQZ ﬁ(ll(Zal—dl)(ll(IOal—11d1+1621)+12b1 (4h1+n1—5w1))),
1
G3 = —ihn(2al(b1(6llzl — Sdlll) + 4b%(h1 + Tll) + ll(—2k2 + 12 —pz)) + SQ%blll + bl

(—6d 11z + dlzm +4(hy —w;)(3l, - p2)) - 4b%d1(h1 +ny)+di 1 (2ky =1, + p2))),
(—2a1(bf(6d1 - 821) + 11(4172 + 3g2) + C1(6k2 - 512 + 3p2)) - 4171(—2&211 - 3d1 k2

1
300,
+d2ll + 4:d1 lz - 2d1p2 + g2(2h1 +ny - 3w1) - 61221 + 2p221) + 240%[7% + dl ll (4b2 + 3g2)
—8b%(d121 + 2m2 - 2112)),

1
Gs= om(2a1by +3a18> + 201 —bady —bidy —di g5 + 8221 = 3k3 + 313~ p3 + 43)).
This polynomial can have at most seven positive real roots, consequently at most seven
limit cycles for the discontinuous piecewise differential system (4.1)—(4.2).
4.1.2. If by = 0 the polynomial f,(r) is written as

1 2 1
fo(r) = gTWS(kl + 1) (my —ny) - Er4(201 —dy)(3k; +21;) + §7U3(—3k2 +3L—pr+q2)

2 _
—57’2(2172 —Cy + gz) + Ta)r + 252

In this case the function f,(r) can have at most five positive real roots. We set f,(r) =0,
and to delete the coefficients of r* we need another two subcases 3k; +2I; = 0 or d; = 2a;.

We start with the first subcase 3k; +21; = 0.

4.1.2.1. Cy = sz t+92, P2 = —3k2 + 312 +q3, Oy = 0, 62 =0, l] =0, kl =0 and dl * 2&1.
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Computing the function f3(r) we obtain

1
f3(r) = EWS(}H((D = 3ky) + ky(—=my +ny +3wy) + 2lpmy = 2lny +myqy —nyqy — qowy)

2
+ET4(Q1(3I{2 - 412 - 3(]2) - 4:[7217’11 + 4[92”1 - 3d1 kz + 2d1 lz + Zdl q> +g2(—2h1 - 3m1
1
+2nq + 3w1) + 6k221 - 2q221) + gnr3(2a1b2 + 3ﬂ1g2 - b2d1 - d1g2 + 9221 — 3k3 + 3[3
2

4
—P3+43)— Vz(gbs — 303+ 583) +masr +20s.

Then the polynomial f;(r) can have at most five positive real roots.
Now we compute f3(r) for the second case d; = 2a;.

4.1.2.2. Cy = 2172 +9r, 0y = 0, Cy = 2b2 + 92, 52 =0, dl = 201, kl = _Zl and 3k1 + 211 = 0.

Computing the function f3(r) we obtain

1 8 1
f3(7’) = —aTle?j(ml — 1’11)(5h] +my—ny— 5w1) - Ell 1"6(3(11 - 421)(m1 - Tll) + ET(TS
2
(h1(q2 = 3ko) + kp(=my +ny + 3wy) + 2lymy = 2lyny +myqy —n1q; — qowy) — Er4

(3611](2 - 2&211 —ayqp + 4[7277’11 - 4:1727’11 + d2ll + g2(2h1 + 377’11 - 21’11 - 314/1) - 6k221

1 2
+2q221) + gnr3(a1g2 + 9221 — 3k3 + 313 —p3+ q3) - 57’2(2b3 —C3+ g3) + TTaszr + 263
This polynomial function can have at most seven positive real roots. Now taking the

second subcase m; = n;.

Subcase 4.2. my =ny, ¢, =2by+ g, pp = 2a1by —bydy -3k, +3l,+ g5, a2 =0,0, =0
21
and k; = —?1. Computing f3(r) we get

4 1
f3(r) = ﬁl1r6(2a1 —dy)(4hy +ny —5wy) - Enrs(alm(bl(”l +wy)+1zy)—3d 1)

+2a%ly - 3bydyny - 3bidywy —3dy 112y +dPly + hy(9k; — 3q,) — Ykwy — 21y m,
+2liny + 3q,wq) — %r4(a1(—4b1d1 — 3k, + 41, +3g,) + 2b1(d12 + 2m, — 215)
+3d1ky —2d11, - 2d, g, + 2851y + gony — 3wy — 6kyzy +2G52;) + l71r3(2a2bl
+2a1by +3a18 —bydy —bydy —d1 gy + 8221 — 3k3 + 33— p3 +43) — 572(253 —C3
+g3) + asr + 293.
This polynomial can have at most six positive real roots. In general, in all the cases
mentioned above, the polynomials f;(r), with i = 1,2,3 can have at most 3 or 5 or 6 or 7

real positive roots. Thus the maximum number of limit cycles that can be obtained via

the averaging theory up to third order is at most seven.
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Now we are going to reach our result by giving an example with exactly seven limit
cycles

Example with exactly seven limit cycles
In the half plane y > 0, we consider the linear differential system (4.5) with the values
{0(1, ﬁl, V1, 51, o, ﬁz, V2, 62, as, ﬁ:},, V3, 53} — {0, 1, 2, 0, O, 1, 1, 0, 13068/7'(, —1, —1, —2520}
Now in the half plane y < 0, we consider the cubic weak focus or center (4.6) with
{ay, by, dy,my, g1, ke, Ly, c1, iy, prgas b wh, 21, 80,5 12,03, 00, ko, do, 82,1, 1, wa, 11, P2, G0, 20,

64
as, b3, qs3,C3, d3,g3, k3, ms, 23,3, h3,p3, l3,ﬂ)3} — {O,Hl/Kl,Hl/Kl-l-].,O, 1,—2 25-9+ F, 2, O,

64
1,1, (=5m—/m(64 + 257))/(27), (71— T0(2570 + 64))/(270), =2 /25 + ?—9, 2,0,1,1,1,-1,-1,

1 1
-1302.26,0, E,—§,3907.78,—1,163.431,—1,1,—20, 0,-1,19738,-1,1,1,-1,-1,-54152/7,
Hy/Ky,—2,1}, with H; = —23/r(64 + 257) — 8807 — 128, K; = 8(57 + 4 + \/rc(64 + 257)),
Hy = 9(\/7t(64 + 2571) — 807) and K, = 8(+/7t(64 + 257) + 57t + 4).

An exhausting computation shows that f(r) = f,(r) = 0 and

f3(r)=(r=1)(r=2)(r = 3)(r = 4)(r = 5)(r - 6)(r = 7).

Then for these systems we have exactly seven limit cycles bifurcating from the periodic
orbits of the discontinuous piecewise differential system (4.1)-(4.2).
Moreover, in polar coordinates (r, 0) the periodic orbits that bifurcatearer=1,2,3,4,5,6,7.

This completes the proof of the Theorem 4.2.

60



Chapter 5

Global Phase Portraits of Piecewise

Quadratic Differential Systems with a

Pseudo-Focus

This chapter is devoted to investigates the global dynamics of planar piecewise
smooth differential systems consisting of two different vector fields separated by one
straight line passing through the origin. From a quasi-canonical family of piecewise
quadratic differential system with a pseudo-focus point at the origin, which has six pa-
rameters, we investigate the subfamilies where the origin is indeed a pseudo-center. For
such subfamilies, we classify their global phase portraits in the Poincaré disk and the

associated bifurcation sets.

We start by considering non-trivial piecewise quadratic system with a pseudo-focus

at the origin written in the quasi-canonical form. Following [24].

(= tx—y+06.y% = tx—y+0,97
* FTYTOY e<o, 1T YT s, (5.1)
}): —1+d_x, 3}: ]_+d+x,
System (5.1) can be abridged to the more compact expression
X= tx—-7p+ 6+y2,
N N for +x >0, (5.2)
v= +1+d.x,

and we remark that, for the ambiguities appearing when regarding orbits starting at or
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arriving at the discontinuity manifold

Y={(xy):x=0},

we should resort to the Filippov convention, see [27].

Note that this family has six parameters (., d., 0. ) but only one quadratic term in the

vector field, while the first component is already in the canonical normal form proposed

in [24], the second component has an extra term (d,x) with respect to such a normal

form.

The following lemma, whose proof is direct, will be useful to reduce the taxonomy of

different cases.

LEMMA 5.1 Regarding system (5.1), the following statements hold.

(a)

(b)

If we consider the change of variables and time (X,Y,0) = (x,—y,—7), then we get

the equivalent system

for £+ X >0, (5.3)

X= -t X-Y-6,Y?
Y: i1+diX,

that is, the behavior for the parameter set (t_,d_,o_,t,,d,,d,) is equivalent to the
exhibited by that with parameters (—t_,d_,—o_,—t,,d,,—0d,), since the only effect is
to get the symmetrical phase portrait with respect to the horizontal axis, keeping the

anti-clockwise sense of rotation for orbits around the origin.

If we consider the change of variables and time (X,Y,0) = (—x,y,—7), then we get

the equivalent system

X= —t:X-Y+6:Y?
for + X > 0, (5.4)

that is, the behavior for the parameter set (t_,d_,o_,t,,d,,d,) is equivalent to the
exhibited by that with parameters (—t,,d,,o,,—t_,d_,d_), since the only effect is
to get the symmetrical phase portrait with respect to the vertical axis, keeping the

anti-clockwise sense of rotation for orbits around the origin.
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(c) If we consider the change of variables (X,Y) = (—x,—v), then we get the equivalent

system

X= tzX-Y-06:Y?
{ i i for+ X >0, (5.5)

Y — i]. ar d;X,
that is, the behavior for the parameter set (t_,d_,o_,t,,d,,d,) is equivalent to the
exhibited by that with parameters (t,,d,,—0,,t_,d_,—05_), since the only effect is
to get the symmetrical phase portrait with respect to the origin, keeping the anti-

clockwise sense of rotation for orbits around the origin.

Subfamilies with a pseudo-center at the origin

Starting from system (5.1), and computing the half-return maps around the origin,
see [24], it is possible to determine the subfamilies for which the origin is indeed a
pseudo-center, that is, the origin is surrounded by a periodic annulus filled by periodic
orbits.

According to statement (b.ii) of Proposition 11 of Esteban et al. [24], a first specific
case for system (5.1) exhibiting a pseudo-center at the origin is the one-parameter family

of linear-quadratic system

i= Sx—y, b= —2Sx—y+ 592
TV x<o, 1Y XTYTOVY dtxso, (5.6)
y= 1, j= 1,

thatis, wehavet_. =06, =06,d_=d, =06_=0,and t, =26 in (5.1).

A second family from system (5.1) possessing a pseudo-center is given by the discon-

tinuous bi-parametric differential system

i S 2’ - Sx — )
POV <o, 17 TV x>0, (5.7)
p= —1+dx p= 1-26%,

so that we have t_ =06, =0,t, =0_=0,d_=d,and d, = —262. This is the dual case of
Proposition 11(b.i) in Esteban et al. [24].

As a third family of system (5.1) with a pseudo-center, taking ¢t =t, =0 and 6_ =
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0, =01in (5.1), we consider the piecewise quadratic Hamiltonian family of system

C_ 5 2, i 5 2,
PEOVTOVY dee<o, 1T VT e, (5.8)
y= —-1+dx v= 1+d,x,

with three parameters, namely d_, d,, and ¢.

As our last piecewise quadratic set of system with a pseudo-center, we consider the

Y-reversible quadratic family

(= +tx—v+ 0y,
{x X=yToy for + x>0, (5.9)

y= +1+dx,

which comes from (5.1) by putting t, = —t_=t,d, =d_=d, and 0, = 6_ = 6. These sys-
tem has a phase portrait which is symmetric with respect to the y-axis, as a consequence
of their invariance under the transformation (x,y,7) — (—x,y,—7). Furthermore, there
cannot appear any sliding set. Using the change in Lemma 5.1(a) if necessary, we can
assume 0 > 0, to make again the change of variables and time (X,Y,0) = (62x, 0y,0T), SO

that system (5.9) is transformed into

for+ X >0, (5.10)

X= +fX-Y+Y?
Y= +1+dX,

where = t/6 and d = d/5? are the only two parameters involved.

5.1.1 Finite and infinite singular points

To study the global phase portraits of the piecewise differential system with a pseudo-

centers previously mentioned, we have to compute the finite and infinite singular points.

Finite singular points. We identify the finite singular (or simply SP) points of
the piecewise differential system (5.6), (5.7), (5.8) and (5.10) in the following Propo-

sition.

ProrosiTION 5.1 The following statements hold.

(i) System (5.6) has no finite SP.
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(ii)

(iii)

Proof of statement (ii)

(357735) 1
(5.7) has two singularities, (E'

1
52’ Zé)foré:tO

and no real singularity for 6 = 0. The left subsystem of system (5.7) has two SP,

The right subsystem of system (5.7) has a real saddle (x,v) = (

(x,y) = (%,0) which is a real saddle for d < 0 and a virtual center for d > 0, the
second singularity at (x,p) = (d (15) which is a virtual saddle for d > 0 and a real

1
center for d < 0, and if 6 = 0 the system has (x,y) = (3,0) as a SP with the same

local behavior mentioned previously.

For system (5.8) we only studied the right subsystem because we have the same
results in the left one. The right subsystem of system (5.8) has two SP, (x,y) =
1
(— d—,O) which is a real saddle for d, < 0 and a virtual center for d, > 0, and
+
1
(x,y) = ( i’ 6) which is a virtual saddle for d, > 0 and a real center for d, <0,

and if o = 0 the unique SP is (x,y) = ( L 0).

d,’
A7
(iv) Because of the reversibility we studied only the right subsystem. If A = Et+l > 0and
1 1-VA
d < 0 the right subsystem of (5.10) has two real SP, p; = (X, Y;) = ( ~ 2\/_)
11 A
which is a real saddle, and the second singularity at py = (Xy, Yy) = (— 7 +2\/_)
which is a real node if 2 + 4dVA > 0 and a real focus if > + 4dVA < 0, where the
subscripts L and U stand for lower and upper, respectively. If A > 0 and d > 0
1 1-VA
the right subsystem of (5.10) has two virtual SP, p; = (X, Y;) = (— 7 2\/_)
which is a node if 2 — 4dVA > 0 and a focus if £ — 4dVA < 0, and a saddle at
1 1+\/_
pU:(XU;YU):( 7 )ft2+4d\/_>0
11
If A = 0 then the unique SP of the right subsystem is (x,y) = ( e E)' which is a
real (virtual) saddle-node for d <0 (d > 0).
If A <0 system (5.10) has no singularity.
Proof.
Proof of statement (i) of Proposition 5.1. It is clear that system (5.6) has no finite singu-
larity.

of Proposition 5.1. For x > 0 system (5.7) has one singularity at

with eigenvalues —6 and 26, then it’s is a real saddle if 6 # 0. For x < 0 system

0) which is a real saddle if d < 0 with eigenvalues +V—-d and
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11
a virtual centre with eigenvalues +iVd if d > 0, the second point is (E’ 5) which is a virtual
saddle with eigenvalues +N—d if d < 0 and a real centre with eigenvalues +iNd if d > 0.

Proof of statement (iii) of Proposition 5.1. For x > 0 system (5.8) has two singularities,
1
(— d—,O) which is a real saddle with eigenvalues +\/—d, if d, < 0 and a virtual centre with

+
11
i 5) which is a virtual saddle with
+
eigenvalues +\/—d, if d, < 0 and a real center with eigenvalues +i/d, if d, > 0.

eigenvalues +i\d,_ if d, > 0, the second singularity is (—

Proof of statement (iv) of Proposition 5.1. Since the Jacobian matrix of the right subsystem

is

we get

J(Xp, Yr) = [; _\/Z] and J(Xy,Yy)= [

QU R

VA
O J
and then we can easily conclude that if d < 0 the equilibrium pyp is always a real saddle

1/. = =
with eigenvalues E(ti £2 —4d\/Z) and if d > 0 py is a virtual node or focus. The second

singularity at py with eigenvalues %(fi 2+ 4d~\/Z) which is a real node if i + 4dVA > 0
and d < 0, a real focus if 2+ 4d VA < 0 and d < 0 and a virtual saddle if > + 4dVA > 0 and
d > 0. If A = 0 it has one singularity ( - %, %) with eigenvalues —% and 0. In order to obtain
the local phase portrait at this point we use Theorem 2.19 of [27], and we conclude that it’s a

saddle-node.

Infinite singular points. By using the preliminaries given in chapter 1 we study the
infinite singular points and their nature in the Poincaré disc. Note that in this work we
must take into account that the vector field (P, Q) has different expressions depending
on the sign of x;. In particular, when computing the flows in the charts U, and V,, we
must compute two different vector fields on each side of the straight line u = 0. Thus,
even when for these charts the origin is not a singular point for each subsystem, the
combined action of the two vector fields along the equator v = 0 can transform it in a
pseudo-equilibrium point; otherwise, we must speak of the origin as a crossing point.
We begin by analyzing the simpler cases when 6 = 0 in the different families under

study.
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ProrosITION 5.2 Under the hypothesis 6 = 0, the following statements hold for the rele-

vant local charts of the corresponding Poincaré compactification.

(i) In system (5.6), both for the chart Uy and the chart Vi, the only singular point is
the origin, which becomes a semi-hyperbolic point with one hyperbolic sector and

one elliptic sector. In the charts U, and V, the origin is a standard crossing point.

(i1) In system (5.7), for the chart Uy the only singular point is the origin, which becomes
a semi-hyperbolic saddle-node. Regarding the equator v = 0 of the chart V there
are no singular points for d > 0, one semi-hyperbolic saddle-node at the origin when
d =0, and for d = —x? < 0 there appear two hyperbolic singular points, namely a
stable node at (—x,0) and an unstable node at (x,0). In the charts U, and V, the

origin is a standard crossing point.

(iii) In system (5.8), the singular points with v = 0 for both charts Uy and V, behave
exactly as for Vi in statement (ii), by substituting d = d, or d = d_, respectively.

Again, in the charts U, and V, the origin is a standard crossing point.

(iv) Keeping 6 = 0, consider system (5.9) with the additional hypothesis t # 0. In the
equator v = 0 of the charts U; and V,, if t> — 4d > 0 then there are two singular
points, just one when t> — 4d = 0 and none when t> — 4d < 0. The origin of the

charts U, and V, is not a singularity.

Proof.

Proof of statement (i) of Proposition 5.2. According to (1.6) with n = 1, the flow in the
chart Uy is ruled by the differential equations

U=v+u? v =uv. (5.11)

Accordingly, the origin is a nilpotent singular point and we are in the situation of statement
(11i2) of Theorem 3.5 of [23], that is, the origin has one hyperbolic and one elliptic sector. Note
that for all v > 0 we have 11 > 0 so that the elliptic sector appears for v < 0 and it will not be
visible in the Poincaré disk. The same is true for V since then the only change in the equations

is that now 1 = —v + u?, so that the elliptic sector now appears for v < 0. From (1.7), the flow
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in the chart U, is given by the differential equations

u=-1+uv, v = Fv?, (5.12)

for +u > 0, and so the two flows concatenate in a natural way at the origin, which is not a

singular point. The same is true for the chart V,.

Proof of statement (ii) of Proposition 5.2. The flow in the chart Uy is exactly the same
than in statement (i). The flow in the chart Vi now depends on the value of d because it given

as

i=d-v+u? v =uv. (5.13)

Clearly, for d > 0 there are no singular points in the equator v = 0, we reproduce the situation
of statement (i) for d = 0, and for d = —x* < 0 we get, apart from the singular point (0,d) of
saddle type, the two singular points (+x,0). A simple analysis shows that (x,0) is an unstable

node and (—x,0) is a stable node.

Regarding the chart U,, we must combine the vector field given in (5.12) for u > 0 with the
given by

i =-1-du’+uv, v =-v(du-v), (5.14)

for u < 0. We see that at the origin 1 = —1 from both sides, it is a standard crossing point. The

same is true for V5.

Proof of statement (iii) of Proposition 5.2. Here, we obtain for U; the flow

n=d, +v+u? v =uv, (5.15)
and similarly, for Vi, we have

u=d_—v+u? v =uv, (5.16)

and the conclusions for these two charts follow by reasoning as in statement (ii) for the chart

V1. Regarding the chart U,, we must combine the two flows given by
=-1-d,u’*Fuv, v =-v(d.u+v), (5.17)

or +u > 0, where we see that the origin is not a singular point. Obviously, the same is true
g 8 p Y
for V,.
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Proof of statement (iv) of Proposition 5.2. we obtain for U, the flow

u=d—tu+v+u? v=v(u—t), (5.18)
and similarly, for Vi, we have

h=d+tu—v+u? v =v(u+t), (5.19)

and in both cases the number and topological type of possible equilibria at the equator v = 0
are associated with the real roots of the quadratic equation u® +tu+d = 0. Thus, if t>—4d > 0,
we are in saddle or node cases and two singular points appear. For t> —4d = 0 there appears

only one singular point (improper node case) and none in the focus case (t?2-4d <0).

Regarding the chart U,, we must combine the two flows
i=-1+tu—du?®Fuv, v=—v(du+v), (5.20)

and we see that the origin is not a singular point, becoming a crossing point. The same is true

for the chart V. [

Next, by using the same techniques, we consider the more involved cases with 6 > 0.

ProrosITION 5.3 Under the hypothesis 6 > 0, the following statements hold for the rele-

vant local charts of the corresponding Poincaré compactification.

(i) For system (5.6), its chart Uy has a degenerate SP at the origin with vanishing
linear part, where its local phase portrait consists of one hyperbolic, one elliptic and
two parabolic sectors. Regarding its chart V system (5.6) has two SP, the origin of
coordinates q; = (0,0), which is a hyperbolic stable improper node, and g, = (6,0),
which is a semi-hyperbolic saddle-node. On the other hand, the origin of the chart
U, is not a singularity for any vector field in the half-planes, but taking into account
the sliding vector field in ¥"°, and that the flows go in opposite directions at such a
point when v = 0, it behaves like an unstable pseudo-node. However, the origin of

the chart V, behaves like a regular point.

(ii) For system (5.7), in the chart Uy there are two SP with v = 0, namely the point
g3 = (=0, 0), which is an hyperbolic stable node and the point q, = (26,0), which is
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a hyperbolic unstable node. In the chart V1, there is one nilpotent node at the origin
of coordinates. The origin of the chart U, is now a stable pseudo-node while for the

chart V, the origin is not a singularity.

(iii) For system (5.8), in the chart U, there is one nilpotent node at the origin of coordi-
nates, as it also happens in chart Vy. The origin, both for the chart U, and V, is not

a singularity.

(iv) For system (5.10), in the charts Uy and Vy there is one nilpotent node at the origin

of coordinates, but such a point in the charts U, and V, is not a singularity.

Proof.

Proof of statement (i) of Proposition 5.3. According to (1.6) with n = 2, system (5.6) has
a Poincaré compactification whose local chart Uy becomes
U= —oud+u’v+20uv+v?
(5.21)
v= v(=0u’+uv+2v).
This system has a degenerate SP at the origin with a vanishing linear part. In order to know
the nature of this singularity, we do a blow-up of the form v = u?w to describe its local
phase portrait. After eliminating the common factor u? of 1i and w, via the rescaling of the

independent variable such that ds = u?dt, we obtain the system

= —ou+ulw+20uw + uw?,

— NS 5 (5.22)
w= =2uw’-uw*-20w"+ ow.

For u = 0 this system has two singularities, a hyperbolic saddle at the origin with eigenvalues
—o6 and 6 and a semi-hyperbolic saddle-node at (0,1/2). Going back through the changes of
variables and time, and by taking into account the direction of the flow of the system on the
axes of coordinates, we obtain that the local phase portrait at the origin of system (5.21) is

formed by one hyperbolic, one elliptic and two parabolic sectors.

In the chart Vy system (5.6) is given by
u=u’>-ou-v, v =v(u-9). (5.23)

This system has two SP, namely a hyperbolic stable node at q; = (0,0), with a double eigen-

values —o, and a semi-hyperbolic singularity q, = (6,0), with eigenvalues 6 and 0. By using
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Theorem 2.19 of [23], we know that q, is a saddle-node.

We study now the chart U,, and note that for that we must combine two vector fields, one for
each side of the line x = 0. Regarding (1.7) with n = 2, and using the definition for x > 0,

system (5.6) has a Poincaré compactification whose local chart U, becomes
H=06-v-20uv—uv?: v=-v3 (5.24)

so that 1i|,—q = 0 > 0. However, if we use instead the definition for x <0 and n =1, we get for

the local chart V, the system
u=0u-—1+uv, v =102, (5.25)

so that 1|,_y = ou — 1, which is negative for small u, getting so a pseudo-equilibrium point at
the origin in V. Its typification as an unstable pseudo-node comes from the study of directions

on v = 0 and by considering the sliding vector field on ¥'°.

Note that in the chart V, the two vector fields to be combined near the origin are the one
in (5.25), which requires n = 1, and the opposite to the given in (5.24) because here n = 2.
Therefore, now the directions of the flow along the equator v = 0 near the origin coincide, so

such a point becomes a standard crossing point.

Proof of statement (ii) of Proposition 5.3. System (5.7) in the chart U, becomes
1H=-282-d0u+v+u? v =v(u->9). (5.26)

This system has an hyperbolic stable node at q3 = (-9, 0) with eigenvalues —36 and —26 and
an hyperbolic unstable node at q4 = (26,0) with eigenvalues 6 and 36. For the chart V,, we
get

i =dv-v>+u’v-oud, v =uv(v—ud). (5.27)

The origin is the unique singularity of the differential system (5.27) when v = 0, and it has
a nilpotent linear part. By transforming this system into its normal form and by applying

Theorem 3.5 of [23], we know this singular point is a node.

Regarding the chart U, for system (5.7), we proceed as in the proof of statement (i) by com-
puting (1.7). For the definition when x > 0 with n =1, we get

i=-1+u(d-v)+26%u? v =—v(v-25%u), (5.28)
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to be considered for u > 0, while for x <0 with n = 2 we get
i =05-v(du?+1)+uv? v =v%(v—du), (5.29)

to be considered for u < 0. In a similar way to what happens for statement (i), we see that
the origin in the chart U, behaves like a pseudo-node. Effectively, even it is not a singular
point for any of the vector fields (5.28) and (5.29), we have that the flow on v = 0 satisfies
1 = 28%u® + du — 1, which is negative for small u > 0, while 1t = 6 > 0 for u < 0. Now, by
taking into account the sliding vector field given in (1.2), we conclude that the origin behaves
like a stable pseudo-node. Again, however, the origin in the chart V, is a standard crossing
point.

Proof of statement (iii) of Proposition 5.3. Here, we can take advantage of the study made
for statement (ii) regarding there the chart V1, just by making in (5.27) the substitution d = d,,

and changing one sign. Thus, the expression of system (5.8) in the chart Uy is

i=dov+v?+ulv-oud, v =uv(v-ou). (5.30)

Accordingly, the only singularity with v = 0 is the origin, which is a nilpotent node, after
applying Theorem 3.5 of [23]. The same is true for the chart Vi by making in (5.27) the

substitution d = d_.

To analyze the origin in the chart U,, we must combine the two vector fields
=05-v(du?+1)Fuv?, v =—v>(d,u+v), (5.31)

for +u > 0.1t is clear that the origin of the chart U, is not an equilibrium and that the two

flows concatenate in a natural way. The case of V, is similar.

Proof of statement (iv) of Proposition 5.3. In the chart U}, we have

2 3

w=dv+v?—fuv+uv—ud, v=—v(fv+u®-uv). (5.32)

while for the chart V| we obtain

2 3

i =dv—v?+fuv+uv—ud, v =—v(-fv+u®—uv). (5.33)

As in statement (iii), these system has in the equator v = 0 a unique SP, which is a nilpotent

node at the origin.
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In the local chart U,, we must combine the two flows
+1, v=-v3(du+v), (5.34)

for +u > 0. Clearly, the origin is not a SP and the two flows concatenate; therefore, it is a

crossing point. The same occurs in V. n

The objective of this chapter is to classify all the global phase portraits of the linear-
quadratic and quadratic-quadratic piecewise differential system with a pseudo-center

point at the origin.

5.2.1 Linear-quadratic differential system

We provide the global phase portraits in the Poincaré disc of the piecewise linear-quadratic
differential system (5.6). Here, the case o = 0 could be excluded from our discussion,
since then we should have the trivial piecewise linear case x = -y, v = £1 for +x > 0,
leading to a global pseudo-center, invariant under every transformation of Lemma 5.1,
see Figure 5.1(a). When 0 # 0, using Lemma 5.1(b), we can assume 6 > 0 without loss
of generality and discard the X-symmetric configuration. Furthermore, we can obtain a
canonical representant for all the system in the family with 6 > 0 by making the change
of variables and time (X, Y, 0) = (6%x, 6y, 57). Effectively, system (5.6) becomes

X= -2X-Y+Y?

ifX <0, { . ifX >0, (5.35)

Y= -1,

X= X-Y,
Y= 1,

where the dot now denotes derivatives with respect to the new time 6. The above system
is linear-quadratic and apart from the origin, it has another tangency point at (x,y) =
(0,1) for the right subsystem. Note that there are no real nor virtual equilibrium points,
but there appears a pseudo-saddle point at (x,y) = (0,2), see Figure 5.1(b). For this

simple case, we can state the following result.
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THEOREM 5.1 System (5.6) has, modulo the symmetries described in Lemma 5.1, only 2

topologically distinct global phase portraits, as depicted in Figure 5.1 for 6 > 0.

Thus, for 6 = 0 the full plane is filled by crossing periodic orbits, so that the origin becomes
a global pseudo-center, see the phase portrait of Figure 5.1(a). When 6 > 0 there appears

a pseudo-center whose periodic annulus is also unbounded, but confined into the region
{(x,9): 0y < 1+6%x,x <0} U{(x,p): 6y <1 —6V2x,x >0},

see Figure 5.1(b). In this last case, apart from a visible tangency point at (0,1/0) for
the right subsystem, we also have a pseudo-saddle point at (0,2/5), which belongs to the
repulsive sliding set ¥° = {(x,y) : x =0,y > 1/6}.

(a) (b)

Figure 5.1: The global phase portraits of system (5.6) when (a) 6 = 0 and (b) 6 > 0.

Proof.

Proof of Theorem 5.1. If 0 = 0 then system (5.6) becomes the trivial, piecewise Hamilto-
nian, and Y-reversible system X = —y, v = £1, for +x > 0. Excepting the origin, where we
have a double invisible tangency point, all the points in ¥ are crossing points. By integrating
the vector field, we see that the orbits in the half-plane x > 0 are the parabolas in the family

2x = k2

—v? for k¥ > 0, each one of them joining the points (0,—«) and (0,x) in ¥. These
parabolas, along with the corresponding parabolas 2x = y* — x? in the half-plane x < 0, deter-
mine the crossing periodic orbits that fill the whole plane. Taking into account statement (i)

of Propositions 5.1 and 5.2, we obtain the global phase portrait of Figure 5.1(a).

When 6 > 0, apart from the double invisible tangency point at the origin, system (5.6) has for

x > 0 a visible tangency at (0,1/6), which is the lower endpoint of an unbounded repulsive
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sliding set X7°. Thus, by using (1.2), for x = 0 and y > 1/6, the sliding vector field is

x= 0,
- 2y -6y? (5.36)
v= g = o7

Then (x,y) = (0,2/9) is a pseudo equilibrium for the sliding vector field with g’(2/9) < 0, that
is with stable dynamics in the sliding set, and since XI“(O, 2/0) =2 X{(0,2/0) =-2/6 <0, it
turns out to be a pseudo-saddle. Integrating the left vector field, we obtain that the orbits for
x < 0 satisfy the expression

x+xe™% —oy+1=0,

for some constant k. From the above orbits, there are two distinguished ones, namely the

invariant straight line 5*x — 6y + 1 = 0 arriving at (0,1/8) and the curve
5%x + 2% - op+1=0,

which arrives at the pseudo-saddle point (0,2/6) from the left and can be thought as a part
of its unstable manifold. If we integrate the vector field for x > 0, then we get that the orbits
satisfy the expression

26%x + K%Y — (6 —1)* =0,

for some constant x. Then the distinguished orbits are given by
26%x +e227%) _(5y-1)? =0,

which can be thought as another part of the unstable manifold of the pseudo-saddle (0,2/9),
and the one with x = 0, which is the parabola 2x = (y — 1/6)2, which is tangent to ¥ at the
point (0,1/8). The lower half of this parabola is given by 5y = 1 —6V2x for x > 0, and joining
it with the straight line 5y = 6°x + 1 for x < 0, we obtain the upper boundary of the periodic
annulus corresponding to the pseudo-center at the origin. By resorting now to statement (i)
of Propositions 5.1 and 5.3, the global phase portrait of system (5.6) for 6 > 0 is as drawn in
Figure 5.1(b). ]
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5.2.2 Bi-parametric differential system

We provide the global phase portraits in the Poincaré disc of the piecewise linear- quadratic

differential system (5.7). If 6 = 0, then we have the piecewise linear Hamiltonian system

] ) —1+dx, ifx<0,
X =-1, =
by 1 ifx>0,

so that for d = 0 we are again in the trivial case of Figure 5.1(a). When d = 0, we note that
while for d > 0 there appears a virtual center at (x,y) = (1/d, 0) that does not introduce
any qualitative change in the global phase portrait, for d < 0 such equilibrium becomes a
real saddle whose invariant manifolds bound the periodic annulus of the pseudo-center

at the origin, see Figures 5.2(a) and 5.2(b), respectively.

When 6 # 0 in system (5.7), the situation is much more involved, since there ap-
pears a visible tangency point for the left subsystem at (x,y) = (0,1/6) and a real sad-
dle for the right subsystem at (x,y) = (1/(26%),1/(25)). From Lemma 5.1, we can as-
sume without loss of generality that 6 > 0, and then the change of variables and time
(X,Y,0) = (6°x,y,07) provides us the one-parameter canonical representative family
X= X-Y,

ifX <0, { ifX >0, (5.37)

Y= 1-2X,

X= -Y+Y?
Y= -1+dX,

where 6%d = d, and the dot now denotes derivatives with respect to the new time 6. The

right subsystem has now the real saddle at (x,y) = (1/2,1/2), with eigenvalues —1 and 2.

For this more interesting case, we have the following result.

THEOREM 5.2 System (5.7) has, modulo the symmetries described in Lemma 5.1, the six
topologically distinct global phase portraits shown in Figure 5.2, according to the bifurca-

tion set of Figure 5.3. More precisely, we have the following cases for 6 > 0.

(i) If 6 = 0and d > 0 then the origin is a global pseudo-center with no more equilibrium

points. The system has the global phase portrait of Figure 5.2(a).

(i1) If 6 = 0 and d < O then there is a real saddle at (x,y) = (1/d,0) whose invariant man-

ifolds bound the periodic annulus associated with the pseudo-center at the origin,
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and the system has the global phase portrait of Figure 5.2(b).

(iii) If & > O then the right subsystem has a real saddle at (x,v) = (1/(26%),1/(26)). For
d < 0 the left subsystem has a real saddle at (x,y) = (1/d,0) and a real center at
(x,v) = (1/d,1/9) so that when —35% < d < 0 the periodic annulus of the pseudo-
center at the origin is bounded by the invariant manifolds of the right saddle, see
Figure 5.2(c), while when d < —36? < 0 the periodic annulus is bounded by the ones
of the left saddle, see Figures 5.2(d) and 5.2(e).

(iv) If 6 > 0 and d > O then the right saddle is the only real equilibrium point and the
global phase portrait of the system appears in Figure 5.2(f).

Whenever 6 > 0, the left subsystem has a visible tangency point at (x,y) = (0,1/6), and
there exists an attractive sliding set % = {(x, ) : x = 0,y > 1/0}, with a pseudo-saddle at
(x,9) = (0,2/0).

We organized the above cases for 6 > 0 in a bifurcation set in the plane (d, ) as shown in

Figure 5.3

Figure 5.2: The global phase portraits of system (5.7). The cases (a) and (b) correspond
with 6 = 0, while the remaining pictures are for 6 > 0.
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(d) (c) (f)

(b) (e) (a)

\ d

Figure 5.3: The bifurcation set in the plane (d, 0) for system (5.7) when 6 > 0. The
labels in lines or open regions indicate the different global phase portraits, according to
Figure 5.2. Note the bifurcation curve given by d = —352, whose points correspond to
the global phase portrait of Figure 5.2(d), separating the ones of Figures 5.2(c) and
5.2(e).

Proof.
Proof of Theorem 5.2.

If 6 = 0 then system (5.7) equals to system (5.6) under the same hypothesis but with an extra
term dx in the second component of the left vector field. Thus, when d = 0 statement (i) is a
direct consequence of Theorem 5.1. If 6 = 0 and d > 0, then the left vector field has a virtual
center at (1/d,0) and each orbit in the half-plane x < 0 is an arc of the ellipse

dx? — 2x—|—y2 =2,
for some constant k > 0, joining the points (0,«) and (0,—«). The global phase portrait is
completely similar to the previous case, except that here the semi-hyperbolic point at the origin
in the chart V, does not appear, see statement (ii) of Propositions 5.1 and 5.2. If 6 = 0 and
d = —x? < 0, then the left vector field has a real saddle at (1/d,0) with eigenvalues +x, and
each orbit in the half-plane x < 0 is an arc of the hyperbola

yZ—K2x2—2x: C,

for some constant C; in the particular case C = 1/x* we get the two straight lines k>x+xy+1 =
0 that determine the invariant manifolds of the saddle, which intersect ¥ at two symmetric

points. The global phase portrait is as depicted in Figure 5.2(b) and statement (ii) is shown.

For 6 > 0 the analysis is more involved. Apart from the double invisible tangency point at the
origin, system (5.7) has for x < 0 a visible tangency at (0,1/0), which is the lower endpoint
of an unbounded attractive sliding set X*. Thus, by using (1.2), for x = 0 and y > 1/6, the
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sliding vector field is

- _0y? -2y (5.38)
v= g = o7

The point (x,y) = (0,2/0) is a pseudo equilibrium of g(y) with g’(2/9) > 0, that is with unsta-
ble dynamics in the sliding set, and since X{(0,2/6) = -2/6 <0 X7(0,2/6) = 2/6 > 0, it turns
out to be a pseudo-saddle.

Since & > 0, the right subsystem has a real saddle at (1/(26%),1/(25)). Their invariant mani-
folds are the two straight lines 5*x+6y—1 = 0 and 46°x—26y—1 = 0, which intersect ¥ at the
point (0,1/9) (the lower endpoint of the sliding set) and (0,—1/(20)), respectively. Regarding
the left subsystem, possible equilibria for d = 0 are (1/d,0) and (1/d,1/0), to be both real only
if d < 0; in such a case, the first one is a saddle, while the second is a center. In fact, we see

that a first integral for this subsystem is the function
H(x,y) = 6x — 3dx? — 3% + 26y°. (5.39)

The level curve of this function containing the saddle (x,y) = (1/d,0) is given by the condition
H(x,y) = 3/d. The above equality can be written in the form

3d(x - %)2 +(3-267)y2 =0,

which allows to justify the existence of a loop in such a level curve, symmetric with respect to
the vertical line x = 1/d, located in the band between the horizontal straight lines y = 0 and
y = 3/26. Always supposing o < 0, this loop can be entirely located in the half-plane x < 0
or, on the contrary, have two points in X. The intermediate situation between the above two
possibilities appears when the loop is tangent to X, necessarily at the visible tangency point
(0,1/8). Since H(0,1/8) = —1/52, the loop contained in H(x,y) = 3/d becomes tangent when
3/d = —1/82, that is, d = —=362%. Thus, we should consider three different cases for d < 0,
namely 36> <d < 0, d = —=362, and d < -3 < 0, see Figure 5.3. Note that the level curve
H(x,vy) = -1/ which becomes tangent to ¥ at (0,1/5) can be written as

66°x —36%dx* + (20y +1)(dy —1)* = 0,

and so this level curve also includes the point (0,—1/(29)), and that such a point and (0,1/0)

are precisely the intersection points with ¥ for the invariant manifolds of the right saddle.

79



Taking into account the above facts, and using statement (ii) of Proposition 5.3, we conclude
that for d < 0 the global phase portraits are topologically equivalent to the shown in Figure
5.2(c) when —36% < d < 0; to the one in Figure 5.2(d) when d = —36% and to the given in
Figure 5.2(e) when d < —362 < 0. Statement (1i1) follows.

For 6 > 0 and d > 0 the situation is much simpler, since the only real equilibrium point is
(1/26%,1/25). System (5.7) has three infinite SP, as described in statement (ii) of Proposition
5.3. Thus, the global phase portrait of the system is topologically equivalent to the one shown
in Figure 5.2 (f). Statement (iv) is shown and the proof is complete. n

5.2.3 Quadratic Hamiltonian differential system

We classify all the global phase portraits in the Poincaré disc of the piecewise quadratic-

quadratic differential system (5.8).

In the particular case 6 = 0, we get a piecewise linear dynamical system that can have,
depending on the sign of d_ and d_, two real saddles (one in each half-plane, see Figures

5.4(a) and 5.4(b)), only one (see Figure 5.4(c)), or none (as in Figure 5.2(a)).

For 6 # 0 in system (5.8), we can assume as before from Lemma 5.1 that 6 > 0, and
reduce the number of parameters by making the change of variables and time (X,Y,0) =
(6%x, 6y, 67). Effectively, we get

X= -Y+Y?

ifX <0, { ifX >0, (5.40)

X= -Y+Y?
Y= 1+d.X,

Y= -1+d_X,

where 6%d, = d, and the dot now denotes derivatives with respect to the new time 6.

We summarize the analysis of system (5.8) in the following result.

THEOREM 5.3 System (5.8) has, modulo the symmetries described in Lemma 5.1, sixteen
topologically distinct global phase portraits, namely the global pseudo-center of Figure
5.2(a) or one of the fifteen phase portraits shown in Figure 5.4. More precisely, we have
the following cases for 6 > 0.

(1) If 6 = 0 and d_,d, > 0 then we are in the trivial case of global pseudo-center of
Figure 5.2(a) without any other equilibria.
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(i) If 6 =0and d_,d, <0 then, apart from the pseudo-center at the origin, we have two
real saddles whose invariant manifolds bound the periodic annulus of the origin. For
the X-reversible case d_ = d, < 0 see Figure 5.4(a), and for instance when d, <d_ <
0 they are the invariant manifolds of the right subsystem who bound the periodic
annulus, see Figure 5.4(b). If 6 = 0 and for instance d_ < 0 but d, > 0 then we have

only one real saddle along with the bounded pseudo-center, see Figure 5.4(c).

(iii) If 6 > 0 and both d_,d, < 0 then, apart from the pseudo-center at the origin, we
have two real saddles and two real centers, which organize the phase portrait. For
instance, when —36% < d_ < 0 and —36% < d, < 0 we have the situation of Figure
5.4(d)ifd_=d,, and Figure 5.4(e) if d_ # d; when —35%* = d_ = d, < 0 we have the
Y-reversible situation shown in Figure 5.4(f); when d_ = -362 and -36% < d, <0,
see Figure 5.4(g); when d_ < —362 but d, = —3682, see Figure 5.4(h); when d_ <
~362 and d, < -3, see Figure 5.4(i) if d_ = d,, and Figure 5.4(j) if d_ = d.; when
d_<-36% but -36% < d, <0, see Figure 5.4(k).

(iv) If 6 > 0 but not both parameters d_,d, are strictly negative, new cases arise. For
instance, when d_ < —36% and d, >0, see Figure 5.4(1); when d_ =d, = 0, see
Figure 5.4(m); when -36%2<d_<0and d, >0, see Figure 5.4(n); and finally, when
d_=-36%and d, >0, see Figure 5.4(0).

Whenever 0 > 0, although there is no proper sliding set, there appears an isolated pseudo-
saddle at (x,y) = (0,1/0), which becomes a visible-visible double tangency point.

All the above cases for 0 > 0 can be organized in a bifurcation set, see Figure 5.5.

Proof.

Proof of Theorem 5.3. Here the study made for the left system in Theorem 5.2 is completely
valid just by substituting there d = d_. Furthermore, the right subsystem is in an analogous
situation now with d = d,, so that one can obtain all the orbits by such study just by using
the transformation (x,v,7) — (—x,v,—7), and making all the possible combinations playing
with the different qualitative ranges for d_ and d . Clearly, whenever d_ = d ., we will have a
Y-reversible global phase portrait. Since the visible tangency point (0,1/6) does not depend on
d., it becomes a double visible tangency point leading to a pseudo-saddle in all cases. Again,

there not appear any proper sliding set.

For 6 =0and d_,d, > 0 then system (5.8) becomes equal to system (5.7) with d = d_ in the

second component of the left vector filed and under the transformation (x,y,7) — (=X,y,-T)
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Figure 5.4: The different global phase portraits of system (5.8). The cases (a)-(c)
correspond with 6 = 0, while the remaining pictures are for 6 > 0 and correspond to the
different regions of Figure 5.5.
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Figure 5.5: Bifurcation set of system (5.8) for 6 > 0. Note that by using Lemma 5.1(b), it
is immediate to deduce the global phase portraits for the portion of the diagram which
is symmetric with respect to the dashed main diagonal.
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and d = d, in the right ones. Thus statement (i) is a direct consequence of statement (i) of
Theorem 5.2.

Ifo=0and d_=—«x?and d, = —v? with —v? < —x? < 0 then system (5.8) has two real
saddles at (1/d_,0) and (—1/d,,0) with eigenvalues tx and +v respectively. and each orbit in

the plane is an arc of the hyperbola

y2 —x?x?—2x = C,
for x <0, and the hyperbola

yz—v2x2+2x =K,

for x > 0. Using the same proof method of statement (ii) Theorem 5.2 then the global phase
portrait is as depicted in Figure 5.4(a) when d_ =d, <0; Figure 5.4(b) when d, <d_ <0 and
Figure 5.4(c) when d_ < 0 and d, > 0. So statement (ii) follows.

If 6 > 0 and both d_,d, < 0. for both regions we use the same technique used in the proof of

statement (iii) of Theorem 5.2. Hence statement (iii) holds.

For 6 >0, d_< 0 and d, > 0 the left subsystem of system (5.8) has two real equilibrium
(1/d_,0) and (1/d_,1/6) and the right one has only virtual equilibrium points when d, > 0.
By using statement (iii) of Proposition 5.3 and the proof of statement (iii) of Theorem 5.2
the global phase portraits of system (5.8) are topologically equivalent to Figure 5.4(1) when
d_<-36%and d, > 0; Figure 5.4(n) when -38%2<d_<0and d, > 0 and Figure 5.4(o) when
d_=-36%and d, > 0. If d_ = d, = 0 the situation is match simpler, since we have no real
equilibrium points, system (5.8) has two infinite SP, as described in statement (iii) Proposition
5.3. Thus the global phase portrait is equivalent to the one shown in Figure 5.4(m). Statement

(iv) follows and the proof is complete. n

5.2.4 Reversible quadratic differential system

As our last case we consider the more generic case (5.9). We note first that when t =0
system (5.9) becomes the Y-reversible case (d, = d_ = d) of the piecewise Hamiltonian
system (5.8). In such a degenerate situation, Theorem 5.3 applies, and we could repro-
duce for system (5.9) the global phase portraits of Figures 5.2(a), 5.4(a), and every case
corresponding to points at the main diagonal in the bifurcation set of Figure 5.5. In
short, the global phase portraits of Figures 5.2(a), 5.4(a), 5.4(d), 5.4(f), 5.4(i), and 5.4(m)

are also admissible for system (5.9).
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If t #0 and 6 = 0 then from Lemma 5.1(a) there is no loss of generality in assuming
t > 0. Thus, we get again a piecewise linear X-reversible family and several cases arise
depending on the value of d, see the bifurcation set of Figure 5.7. When d < 0 (the
saddle case S in Figure 5.7 we have again a phase portrait similar to the one of Figure
5.4(a), this time in a non-Hamiltonian situation. Other possible global phase portraits
for system t > 0 and 6 = 0 appear for the singular case d = 0, see Figure 5.6(a), for the
node case 0 < d < t2/4, see Figure 5.6(b), and for the improper node case 0 < d = t2/4,
see Figure 5.6(c), while for the focus case t?/4 < d we have a global non-conservative
pseudo-center, similar to the one of Figure 5.1(a). In the characterization of these phase

portraits, we have used statement (iv) of Proposition 5.2.

(a) (b) (c)

Figure 5.6: According to the bifurcation set of Figure 5.7, for 6 = 0 and d > 0 we have
an unbounded periodic annulus. If we except the focus case (not shown), then such
periodic annulus is limited from below because of the existence of invariant straight
lines. We represent in (a) the singular case d = 0, in (b) the node case 0 < d < t?/4, and
in (c) the improper node case 0 < d = t2/4.

(N)
©) (F)

d

Figure 5.7: Bifurcation set of system (5.9) for 0 = 0 in the half-plane (d,t) with t > 0. We
indicate the saddle region R, the node region N, the improper node curve IN and the
focus region F.

If both t # 0 and 6 # 0 then we have in general three parameters. We observe that for

system (5.10) there appears again the pseudo-saddle point at (X,Y) = (0,1), because it is
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a double visible tangency point.

Possible real equilibria for system (5.10) can be analyzed by considering just the right
subsystem because of the reversibility. We can conclude that when 6 > 0 and d > 0 in
system (5.9) then there are no real equilibria, and global phase portraits in these cases

are topologically equivalent to the one in Figure 5.4(m).

When in system (5.10) we have d < 0, the existence of equilibria for system (5.10), to be
located at the line X = —=1/d > 0, requires the existence of real roots for the quadratic
equation Y2-Y —f/d = 0, with discriminant

4f 46t

A:1+E:1+7. (541)

This discriminant changes its sign passing from negative to positive values in two dif-
ferent situations, both leading to saddle-node bifurcations of equilibria, where we pass
from no equilibria to two of them (a saddle and a node, which emerge from a non-
hyperbolic equilibrium point) or vice versa. Firstly, such saddle-node bifurcation ap-
pears for d = —4f under the assumption f > 0, where the non-hyperbolic equilibrium
point appears at (X,Y) = (-1/d,1/2). In the second place, when for f < 0 the value of
d goes from a small positive value to a negative value passing through zero; then the
saddle-node bifurcation comes from a singular point at infinity. When A > 0 the two

singular points are p; and py, being both in the same vertical line.

Unfortunately, apart from the local bifurcations depicted in Figure 5.9, for 6 > 0 and in
the presence of real equilibria there appear other bifurcation curves of global character
that are associated to the relative position of the invariant manifolds of the saddle with
respect to the orbits of the contact point (X,Y) = (0,1), where we have a double visible

tangency. In fact, for the parameter values (f,d) = (0,—3) we can take advantage of the

Hamiltonian character of the system to compute the invariant algebraic curve
6X +3dX*+3Y?-2Y’-1=0,

which contains a homoclinic orbit to the saddle at (X,Y) = (1/3,0) and becomes tangent
to the Y-axis precisely at the point (X, Y) = (0, 1), see Figure 5.4(f). It can be conjectured
that from the point (0,—3) indicated in the bifurcation set of Figure 5.9 there should
emerge some bifurcation curves for f > 0 and maybe some other for f < 0 where once

broken the homoclinic orbit for t # 0, the tangent orbit at (X,Y) = (0,1) coincides either
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with one stable invariant manifold or with one unstable manifold of the saddle.

Since for t # 0 we cannot have analytical expressions for solutions, the mentioned global
bifurcation curves should be obtained numerically, by continuation procedures. There-
fore, the complete bifurcation set organizing all the possible global phase portraits of
system (5.9) cannot be obtained by analytical methods and so it turns out to be be-
yond the scope of this paper. We will finish by showing some representative global
phase portraits we have already detected for system (5.9), under the assumptions 6 > 0,
0 < 46t < —d, see Figure 5.8, so that the discriminant A in (5.41) is non-negative and
we have real equilibria. For sake of convenience, we will refer to the equivalent system
(5.10) with normalized parameters f and d.

In Figure 5.8(a), we show a global phase portrait of our ¥-reversible family (5.10) for
0 < 4f = —d, so that A = 0 and we have a real non-hyperbolic saddle-node at (X,Y) =
(1/d,1/2). The pseudo-center at the origin is bounded by the orbits passing through
the contact point (X,Y) = (0,1). The drawn phase plane corresponds to the values
(f,d) = (values).

If 0 < 4 < —d, so that A > 0, and 2 + adVA > 0, then system (5.10) has a real saddle
at (X, Yy) and a real unstable node at (X, Yy). In this case, the system has the global
phase portraits of Figure 5.8(b), Figure 5.8(c) and Figure 5.8(d), where for drawing them
we have used some representative values for (£, cf). For instance, fixed the value f = 2 and
-8.12 < d < -8, we have the situation of Figure 5.8(b); if f = 2.4 and -9.81 < d<-9.77,
we have the situation of Figure 5.8(c); finally, when f = 2.46 and —10.06 < d < —10.05,

we have the situation of Figure 5.8(d).

If 0 < 47 < —d, so that A > 0, but 7 + 4dVA < 0, then the real equilibria at (Xy, Yy) is
an unstable focus, which organizes the phase portraits. For instance, keeping fixed the
value of f = 0.1, we note that when d = —2.5, we have the situation of Figure 5.8(e);
when d = —3.1 we have the situation of Figure 5.8(f); for d = —3.5 we have the phase
portrait Figure 5.8(g); the phase portrait of Figure 5.8(h) appears for d = —4.2; finally,
when d = —5 we have the situation of Figure 5.8(i). Note that in this last case, we detect a
second periodic annulus of crossing type that surrounds the two real foci, which makes
such configuration specially interesting. Clearly, even we have shown its main different
global phase portraits, system (5.10) deserves further research in order to complete its

bifurcation set, in the sense we have mentioned before.
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Figure 5.8: Some global phase portraits of system (5.10), where we assume t >0, d <0,
and 0 > 0. The case (a) corresponds to 0 >0, d < 0 and 46t +d = 0 (at the right
saddle-node bifurcation straight line of Figure 5.9).
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Figure 5.9: Partial bifurcation set of system (5.10) in the parameter plane

(£,d) = (t/6,d/5%) when 6 > 0. The two thick half-straight lines emanating from the
origin are saddle-node bifurcation curves, and we also show two nearby curves where
the node becomes a focus. At the vertical axis we have ¢ = 0, so that the system becomes
piecewise-Hamiltonian, leading to the particular case d, = d_ = d, which is within the
previous family (5.8).
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Conclusion

In this work, firstly, we have solved the extension of the second part of the 16th
Hilbert problem to some families of discontinuous piecewise differential systems. The
first one is formed by linear center and a class of Hamiltonian isochronous global center
of degree n separated by straight line. The second family is formed by linear and cubic

isochronous centers separated by irregular line.

Secondly, we applied the averaging theory up to third order to finding the upper
bound for the maximum number of limit cycles for the discontinuous piecewise dif-
ferential systems formed by a linear focus or center and a cubic weak focus or center

separated by the straight line y = 0.

Finally, we dealt with the global dynamics of planar piecewise quadratic differential
systems with a pseudo-center at the origin. We classified there global phase portraits

and there associated bifurcation sets.
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Abstract:

Our thesis is divided in three parts, the first part consists in solving the second part of the
extended 16th Hilbert problem for a class of discontinuous piecewise differential systems. The
second part focuses on finding the maximum number of limit cycles of small amplitude which is
called the cyclicty problem, and the third part we were able to find the global phase portraits and
the bifurcation sets for some specific families of discontinuous piecewise quadratic differential
systems, characterized by having a pseudo-centre at the origin.

Keywords:

Piecewise differential system, Linear center, Hamiltonian isochronous global center, Averaging
theory, Pseudo-center, Phase portrait.

Résumé:
Notre these est divisée en trois parties. La premiere partie consiste a résoudre la deuxieme
partie du seizieme probleme d’Hilbert pour une classe de systemes différentiels discontinus par
morceaux. La deuxieme partie se focalise sur la recherche du nombre maximal de cycles limites
de petite amplitude, appelé probleme de cyclicité. Enfin, dans la troisieme partie, nous avons
réussi a trouver les portraits de phase globaux et les ensembles de bifurcation pour certaines
familles de systemes différentiels quadratiques discontinus par morceaux, avec un pseudo-centre
a 'origine.

Mots clés:

Systemes différentiels par morceaux, centre linéaire, Centre global isochrone Hamiltonien,
Théorie de la moyenne, Pseudo-centre, Portrait de phase.
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