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Introduction

It is frequently stated that mathematics is the language of science and nature. Ever

since mankind became aware of the world around it, there has been a pressing need

to comprehend the laws that govern natural phenomena, and no body can ignore the

central role played by mathematics in this game. They enable us to use a strict, global

language to explain what we see and predict what’s going to happen. More particularly,

differential equations have shown to be among the most effective methods to model the

relationships between events and things from our everyday reality. not just for charac-

terizing the natural laws but also, for explaining the behavioral characteristics of certain

social processes for example.

In the 17th century, I. Newton (1642-1727) and G. W. Leibniz (1646-1716) built

the theory of ordinary differential equations [52], which laid the foundations for the

next 350 years. After that in 18th century, the French mathematicians J. L. Lagrange

(1736–1813) and P. S. Laplace (1749–1827) introduced the concept of partial differential

equations, see [52].

Solving a nonlinear differential system directly (explicitly) is generally difficult, if

not impossible. Despite the importance of numerical methods, they only allow us to

calculate an approximate solution over a finite time interval, corresponding to given

initial conditions, by discretizing the interval.

Due to these difficulties, Henri Poincaré (1854-1912) proposed a new approach to

the study of ordinary differential equations at the end of the 19th century, establish-

ing what is known as the qualitative theory of differential equations [51]. In his series

of publications Mémoire sur les courbes définies par une équation différentielle, pub-

lished between 1881 and 1886 [46]. Where the qualitative study of differential systems

and consists of examining the properties and characteristics, and provides information
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on the behavior of the solutions of a differential system without the need for explicit

solution.

One of the most important and remarkable solutions of differential equations is the

limit cycle, which was first defined by Pioncaré at the end of the 19th century. In the

qualitative theory of differential systems in the plane, we recall that any periodic solu-

tions which is isolated in the set of all periodic solution of the system is called a limit

cycle. The significance of these isolated solutions lies in their key role in understanding

the dynamics of a certain differential system.

Despite the fact that the study of the existence and maximum number of isolated

periodic solutions of differential systems is one of the most challenging problems in the

qualitative theory of such systems, it is of great interest due to its numerous applications

in social science or in natural phenomena where we can observe periodic behaviour.

Well-known classical examples include the periodicity of heartbeats, bridge vibrations

or airplane wings, oscillations in RLC circuits, Van der Pol oscillations [49, 50] or the

Belousov Zhavotinskii model [3]. Furthermore, several research projects have focused

on modeling limit cycles in physics and, more recently in biology, economics and engi-

neering, see for example [14, 19, 37, 44].

In 1900, D. Hilbert introduced a series of problems which were to have a significant

impact on mathematics throughout the twentieth century. Ten of these problems were

exhibited at the Paris International Congress of Mathematicians. One of them is known

as Hilbert’s sixteenth problem which consists in studying the existence and determina-

tion of the upper bound on the maximum number, noted by H(n) of limit cycles of the

planar polynomial differential systems ẋ = Pn(x,y), ẏ = Qn(x,y), where Pn and Qn are

polynomial functions of degree n.

It has been proved by Ilyashenko and Yakovenko in 1991 [29] and by Ecalle in 1992

[22] that H(n) < ∞ for any given planar polynomial nonlinear differential system. It

is still unknown if there is a finite uniform upper bound H(n) on the number of limit

cycles of planar polynomial differential system of degree n. Many papers were published

for the quadratic systems, and in what follows it was obtained that H(2) ≥ 4 [18, 48].

Recently this result was also proved for near-integrable quadratic systems [9]. For cubic

polynomial systems, many results was obtained that H(3) ≥ 13 [35, 36]. See [33, 28] for

more on the research of the 16th Hilbert problem.

Since the 1930s, the study of limit cycles has also gained significance in piecewise dif-
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ferential systems (PWDS) separated by a straight line. Due to their widely applications

in various scientific domains of studies such as electronics, mechanics, engineering, and

physics, see for instance [1, 14, 24, 32, 43].

The simplest kind of discontinuous piecewise differential systems are formed by

linear ones, in which a straight line serves as the separation curve.

The planar piecewise differential systems, which are composed by two pieces and

possessing in each piece a linear differential system, in which a straight line serves as

the separation curve, are the most simple kind of piecewise differential systems. Since

these systems can create a significant number of crossing limit cycles, several researchers

have attempted to identify them to solve the extension of sixteenth Hilbert problem.

In 2001 Giannakopoulos and Pliete [25] established the existence of discontinuous

piecewise linear differential systems having two crossing limit cycles. Later in 2010

Han and Zhang [27] discovered other discontinuous piecewise linear differential sys-

tems with two crossing limit cycles, and they hypothesized that the maximum number

of crossing limit cycles for discontinuous piecewise linear differential systems with two

pieces separated by a straight line is two. However, in 2012 Huan and Yang [26] pre-

sented numerical proof for the existence of three crossing limit cycles in this type of

discontinuous systems. In the same year, Llibre and Ponce [39], motivated by Huan and

Yang’s numerical example, showed for the first time that discontinuous piecewise linear

differential systems with two zones separated by a straight line can exhibit three cross-

ing limit cycles. Later on, numerous studies have answered the second part of sixteenth

Hilbert problem for particular classes of linear discontinuous piecewise differential sys-

tems separated by a straight line, see for example [2, 16, 34, 38], or classes separated

by cubic or conic curves, see [4, 8, 10, 11, 12, 30, 31]. We can therefore observe that

the majority of publications focus on piecewise linear differential systems separated by

a straight line, while nonlinear systems are rarely treated. For example, in [13, 23],

the authors have solved the extension of Hilbert’s 16th problem for certain nonlinear

discontinuous differential systems of degree two or three.

A great deal of research has attempted to provide an upper bound for the maximum

number of limit cycles for a given piecewise differential system in the plane, but in gen-

eral this study is a very challenging problem. Various tools are used by mathematicians

to compute analytically the limit cycles of piecewise differential systems, such as av-

eraging theory, Melnikov functions and the Poincaré map. The main objective of this

12



thesis is to provide the maximum number of limit cycles of such non linear piecewise

differential systems separated by a straight line, based on the first integral.

Now we present the structure of our thesis, which is divided into four chapters. In

the first one, we introduce the background findings required for performing our study.

Next, in the second chapter, we use a new method to study the maximum number

of limit cycle of new class of discontinuous piecewise differential systems having the

straight line x = 0 as a separation curve, and formed by an arbitrary linear center and an

arbitrary quadratic center.

The third chapter devoted to solve the second part of sixteenth Hilbert problem

for two famlies of discontinuous piecewise differentail systems with cubic center and

separated by a straight line x = 0, where the first is created by a linear center and one of

three classes of isochronous cubic center having a rational first integral. And the second

family is formed by two isochronous cubic centers with a rational first integral in each

half-plane.

Finally, we solve the previous chapter’s problem for discontinuous piecewise dif-

ferential system with nilpotent Hamiltonian saddles of linear and cubic homogeneous

polynomials and separated by the straight line x = 0. More precisely, we proved that

the discontinuous piecewise differential systems created by a linear differential center

in one half-plane, and by one of the six classes of the Hamiltonian nilpotent saddles

can have at most one limit cycle. In the other hand we show that four is the maximum

number of limit cycles of the discontinuous piecewise differential systems formed by

two Hamiltonian nilpotent saddles in each half-plane.
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Chapter 1
Some Preliminary Concepts on

Discontinuous Piecewise Differential

Systems

This chapter gives some of the fundamental concepts and findings from the quali-

tative theory of ordinary differential equations, which provide the basis for the devel-

opment of this thesis. First, we go over the basic concepts of a discontinuous piecewise

differential system. then, we end the chapter with a technique that describes how to use

the first integral to construct the limit cycle of a piecewise differential system.

Section 1.1 Planar differential systems

Definition 1.1

Let consider the following differential system

ẋ = P (x,y), ẏ = Q(x,y), (1.1)

where P and Q are the relatively prime functions in the dependent variables x and y,

and the time t is the real independent variable. Recall that the derivative with respect

to t is denoted by the dot " ˙ ". System (1.1) is called a polynomial differential system if

P and Q are polynomials with real coefficients in the variables x and y over R
n, where

m = max{degP ;degQ} is the degree of the polynomial differential system, [21].
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Section 1.2 Vector fields

Definition 1.2 ( Vector fields)

Let D ⊂ R
n is an open subset. A vector field of class Cr on D, with 0 ≤ r ≤ +∞ is defined

as a map X : D −→ R
n, of class Cr . Where the free part of a vector associated at the point

x ∈ D is denoted by X(x). See [21].

Drawing carefully selected vectors (x,X(x)) as shown in Figure 1.1 is how a vector field

is graphically represented on a plane.

X(t) X(t)=f(x(t)

I
X

Figure 1.1: Vector field.

Remark 1 When we integrate a vector field, we search for curves x(t), where t belongs to

I ⊂R, that satisfy the differential equation

ẋ = X(x). (1.2)

Such that ẋ = dx/dt with x ∈ D is the dependent variable and t is independent variable of

the equation (1.2).

Section 1.3 Filippov systems

Definition 1.3 (Discontinuous piecewise differential systems (PWS).)

Let (X(x,y),Y (x,y)) be a pair of Cr differential systems on R
2, with r ≥ 1. And let Σ be a

smooth codimension one manifold (switching manifold) which separate the plane in two

regions .
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Any planar differential system of the form

Z(x,y) =

 X(x,y) if h(x,y) ≥ 0,

Y (x,y) if h(x,y) ≤ 0,
(1.3)

is called a discontinuous piecewise planar differential system, which has Σ = h−1(0) as a

separation curve, where h : R2 −→R is a differentiable function has the regular value 0.

It is important to note that the separation curve Σ separate the plane in two regions Σ− =

{(x,y) : h(x,y) ≤ 0}, and Σ+ = {(x,y) : h(x,y) ≥ 0}.

As usual, system (1.3) is defined by Z = (X,Y ,Σ) or just by Z = (X,Y ), in cases when the

separation line Σ is well known, [15].

Our area of interest is the study of limit cycles of polynomial differential systems.

Section 1.4 Limit cycles

Definition 1.4 ( Solution) A differentiable map X(t) = (x(t), y(t)) for t ∈ I ⊂ R which

satisfies Ẋ(t) =
dX(t)
dt

= F(x,y) is called a solution of system (1.1), [21].

Definition 1.5 (Periodic solutions) Let X(t) be a solution of system (1.1). If there is a

minimal finite time T > 0 such that X(t + T ) = X(t) for all t ∈ R then the solution X(t) is

periodic of period T , [21].

Definition 1.6 (Limit cycles) An isolated periodic trajectory of a planar vector field

given by (1.2) is called a limit cycle. In another way, if a vector field’s periodic trajectory

has an annular neighborhood that is free of other periodic trajectories, then it is a limit

cycle, [21].

We refer to the limit cycles as LC and to the discontinuous piecewise differential

system as PWS.

the derivative of h in the direction of the vector field X characterizes the contact

between the curve of discontinuity Σ and the vector field X (or Y ).i.e

Xh(p) =< ∇h(p),X(p) >,
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where we denote by < ., . > the usual inner product in R
2. The discontinuity curve

(switching manifold) Σ can be classified into the following sets, see Figure 1.2.

(I) Crossing set:

Σc = {p ∈ Σ : Xh(x).Y h(x) > 0}.

(II) Sliding set:

Σs = {p ∈ Σ : Xh(x) < 0 and Yh(x) > 0}.

(III) Escaping set:

Σe = {p ∈ Σ : Xh(x) > 0 and Yh(x) < 0}.

If vector fields X(x) and Y (x) point in the same direction respect to Σ where

x ∈ Σ, the point x is called a crossing point. And if the vector fields X(x) and

Y (x) points inward, (resp outward) Σ we said that the point x is of sliding, (resp

escaping) type. We assume that the trajectories of X and Y are transverse to Σ in

each situation. [41].

Figure 1.2: (a)Crossing, (b) sliding and (c) escaping sets.

Section 1.5 First integrals

Definition 1.7 Let X be the vector field associated to the differential system (1.1) which

is defined by

X = P
∂
∂x

+Q
∂
∂y

.

Let U be an open subset of Rn, we recall that the polynomial differential system (1.1) is

integrable on U if a non-constant analytic function H : U → R exists, and it is constant

17



on all solution curves (x(t), y(t)) of system (1.1) that are contained on U , i.e

dH
dt

= HxP +HyQ = XH = 0 on U.

Then H is called a first integral of system (1.1) on U . See [42]

Section 1.6 Linear centers

We recall that a singular point p of planar differential system, with a neighborhood

U such that U/{p} is filled with periodic orbits is called a center.

Now we will define the following lemma that provides a normal form for an arbitrary

linear differential center.

lemma 1.1 After doing a linear change of variables and a rescaling of the independent

variable every linear center can be written as

ẋ = −βx −

(
4β2 +ω2

)
4α

y + σ1, ẏ = αx+ βy + δ1, with ω > 0, α > 0, (1.4)

and its first integral is

H(x,y) = 8α(δ1x − σ1y) + 4(αx+ βy)2 + y2ω2. (1.5)

For a proof of Lemma 1.1 see [40].

By doing the following change {β,α,ω,δ1,σ1} → {A,1,2ω,B,C} the linear center (1.4)

becomes

ẋ = −Ax −
(
A2 +ω2

)
y +B, ẏ = Ay +C + x, (1.6)

this system has the first integral

H(x,y) = (Ay + x)2 + 2(Cx −By) +ω2y2. (1.7)

Since our research focuses on the number of common zeros of a system of polynomial

equations, we sometimes have to use Bézout’s theorem, which is a statement in alge-

braic geometry concerning how many common zeros n polynomials have in n indeter-
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minates.

Theorem 1.1 ( Bézout Theorem) Consider two algebraic curves F and G of degree p, q

respectively. Assume that is no common component between the curves. Then there are a

maximum of pq intersections points of F and G, [47].

Section 1.7 The study of limit cycle by using the first integral

We will now provide an example that shows how we use the first integral tool to study

the limit cycles of a discontinuous piecewise differential system having the straight line

x = 0 as a switching curve.

In the following, we consider the discontinuous piecewise differential system com-

posed of a linear system and a quadratic differential system.

In the half-plane x > 0, we consider the following linear differential system

ẋ ≃ −1 + 1.5x+ 0.615065y, ẏ ≃ 1− 4.06461x − 1.5y, (1.8)

with the first integral H1(x,y) ≃ 4(−4.06461x − 1.5y)2 + y2 − 32.5169(x+ y).

In the half-plane x < 0 we consider the quadratic polynomial differential system

ẋ ≃ −6.0926 + 5.0438x2 + 15.7359x − 13.1746xy − 8.43438y + 6.59599y2,

ẏ ≃ 12.8296 + 4.7784x2 + 8.44355x − 10.0876xy − 15.7359y + 6.5873y2,
(1.9)

its first integral is

H2(x,y) ≃ 84.5119− 8.50555x3 − 32.5346y − 22.5198y2 + 11.7409y3 − 22.5443x2

+26.934x2y − 68.5098x+ 84.0298xy − 35.1762xy2.

So the piecewise differential system separated by the straight line x = 0 and formed by

systems (1.8) and (1.9) has a limit cycle which crosses the line x = 0 in exactly two points

(0,0.587624) and (0,2.66407). This limit cycle is shown in Figure 1.3.
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Figure 1.3: The unique crossing limit cycle of the discontinuous piecewise differential
system (1.8)− (1.9).
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Chapter 2
LC of the PWS Separated by a Straight

Line and Formed by a Linear Center and

Quadratic One

In this century, the study of the extinction Hilbert’s sixteenth problem for planar dis-

continuous piecewise differential systems (or simply PWS) has developed strongly, due

to its wide range of uses in modeling various natural phenomena. The literature has

published numerous papers on the maximum number of limit cycles of piecewise linear

differential systems in the plane separated by a straight line, and few papers on the exis-

tence or non-existence of isolated periodic solutions for piecewise nonlinear differential

systems.

This chapter is devoted to solve the second part of Hilbert’s 16th problem for a new

class of PWS separated by the straight line Σ = {(x,y) : x = 0} and created by an arbitrary

linear center in one half-plane and a quadratic center in the other half-plane, i.e we

provide the upper bound of the maximum number of isolated periodic solutions of this

classe.

Using a new method that focuses on the intersections points between the graphics of

various functions, and by basing on the first integrals of quadratic and linear centers,

we provide the maximum number of limit cycles of this class of PWS.
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Section 2.1 Quadratic differential centers

In this section we define the quadratic centers in the classification of Kapteyn Bautin,

and we give their expressions after a general affine change of variables.

The following theorem defines a normal form of the quadratic centers.

Theorem 2.1 (Kapteyn-Bautin Theorem) Any quadratic system candidate to have a

center can be written after an affine transformation and a rescaling of the independent

variable in the form

ẋ = −y − bx2 −Cxy − dy2, ẏ = x+ ax2 +Axy − ay2. (2.1)

This system has a center at the origin if and only if one of the following conditions holds

(i) C = a = 0,

(ii) b+ d = 0,

(iii) C + 2a = A− 2b = 0,

(iv) C + 2a = A+ 3b+ 5d = a2 + bd + 2d2 = 0.

For more details see for instance Theorem 8.15 of [21].

Quadratic centers after an affine change of variables

Now we give the expression of an arbitrary quadratic differential center with its

corresponding first integral obtained after the general affine change of variables {x →
α1x+γ1y + δ1, y→ α2x+γ2y + δ2} with α1γ2 −α2γ1 , 0.

Thus system (2.1) becomes

ẋ =
1

α2γ1 −α1γ2

(
x2

(
aγ1(α1 −α2)(α1 +α2) +Aα1α2γ1 +γ2

(
α2

1b+α1α2C +α2
2d

))
+y2(aγ3

1 +γ2
1γ2(A+ b)γ1γ

2
2 (C − a) +γ3

2d) + δ1(aγ1δ1 + bγ2δ1 +γ1) + δ2(Aγ1δ1

+γ1) + δ2(Aγ1δ1 +γ2 +γ2Cδ1) + δ2
2(γ2d − aγ1)y(γ1γ2(−2aδ2 +Aδ1 + 2bδ1 +C

δ2) +γ2
1 (2aδ1 +Aδ2 + 1) +γ2

2 (Cδ1 + 2dδ2 + 1)) + x(α1(2aγ2
1y +γ1 + 2aγ1δ1

+A+ 2b) +γ1γ2y + 2bγ2δ1 +Aγ1δ2 +γ2C(δ2 +γ2y)) +α2(Aγ1(δ1γ1y) +γ2
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−2aγ1(δ2 +γ2y) +γ2 +C(δ1 +γ1y) + 2γ2d(δ2 +γ2y)))
)
,

ẏ =
1

α1γ2 −α2γ1

(
x2

(
aα3

1 +α1α
2
2(C − a) +α2

1α2(A+ b) +α3
2d

)
+ y2(aα1(γ1 −γ2)

(γ1 +γ2) +γ2(Aα1γ1 +α2γ1C +α2γ2d) +α2bγ
2
1 ) + δ1(aα1δ1 +α1 +α2bδ1)

+δ2
2(α2d − aα1) + δ2(Aα1δ1 +α2 +α2Cδ1) + y(α1(2aγ1δ1 − 2aγ2δ2 +Aγ1δ2

+Aγ2δ1 +γ1) +α2(2bγ1δ1 +γ2 +γ1Cδ2 +γ2Cδ1 + 2γ2dδ2)) + x(α1α2(−(2a

−C)(δ2 +γ2y) +A(δ1 +γ1y) + 2b(δ1 +γ1y)) +α2
1(2a(δ1 +γ1y) +A(δ2 +γ2y)

+1) +α2
2(C(δ1 +γ1y) + 2d(δ2 +γ2y) + 1))

)
.

(2.2)

For its corresponding first integral we distinguish the following cases.

I. The quadratic system (2.2) satisfying condition (i) of Theorem 2.1. In this case the

corresponding first integral of the differential system (2.2) for A = −b , 0 becomes

H
(1)
1 (x,y) = (A(δ2 +α2x+γ2y) + 1)2deZ1(x,y), (2.3)

where

Z1(x,y) =
1

(A(δ2 +α2x+γ2y) + 1)2

(
A
(
A2(δ1 +α1x+γ1y)2 − 2A(δ2 +α2x+γ2y)

+4d(δ2 +α2x+γ2y)− 1
)

+ 3d
)
.

If A = 0 , b it is given by

H
(1)
2 (x,y) = e2b(δ2+α2x+γ2y)

(
2b3(δ1 +α1x+γ1y)2 + 2b2d(δ2 +α2x+γ2y)2

+2b(b − d)(δ2 +α2x+γ2y)− b+ d
)
.

(2.4)

If b = 0 , A it becomes

H
(1)
3 (x,y) = eA(A2(δ1+α1x+γ1y)2+Ad(δ2+α2x+γ2y)2+2(A−d)(δ2+α2x+γ2y))(A(δ2 +α2x

+γ2y) + 1)2d−2A.
(2.5)

If A = b = 0 the corresponding first integral is

H
(1)
4 (x,y) = 2d(δ2 +α2x+γ2y)3 + 3

(
(δ1 +α1x+γ1y)2 + (δ2 +α2x+γ2y)2

)
. (2.6)

II. The quadratic system (2.2) satisfying condition (ii) of Theorem 2.1. The first inte-
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gral of the differential system (2.2) if A = −b , 0 and a = 0 , C becomes

H
(2)
1 (x,y) = eZ(x,y)(1− b(δ2 +α2x+γ2y))−b

2−C2
(−b(δ2 +α2x+γ2y) +C(δ1

+α1x+γ1y) + 1)b
2
,

(2.7)

where

Z(x,y) =
bC

b(δ2 +α2x+γ2y)− 1

(
b(δ1 +α1x+γ1y) +C(δ2 +α2x+γ2y)

)
.

If AbC(A+ b)∆ , 0 and a = 0 with ∆ = 4b(A+ b) +C2 < 0 and L =
√
−∆ it is given by

H
(2)
2 (x,y) =

−
(
C2 +L2

)
(δ2 +α2x+γ2y)

4b
− b(δ2 +α2x+γ2y) + 1


− 8b

4b2+C2+L2

e
−2CM
bL , (2.8)

where M = arctan
(

2b(δ2 +α2x+γ2y)−C(δ1 +α1x+γ1y)− 2
L(δ1 +α1x+γ1y)

)
.

If AbC(A+ b)∆ , 0 and a = 0 with ∆ = 4b(A+ b) +C2 > 0 and r =
√
∆ it becomes

H
(2)
3 (x,y) = (A(δ2 +α2x+γ2y) + 1)1/A

(1
2

(C − r) (δ1 +α1x+γ1y)− b(δ2 +α2x

+γ2y) + 1
) r−C

2rb
(1
2

(C + r) (δ1 +α1x+γ1y)− b(δ2 +α2x+γ2y) + 1
) r+C

2rb
.

(2.9)

If b = C = 0 the corresponding first integral is

H
(2)
4 (x,y) = eZ(x,y)(a(δ1 +α1x+γ1y) + 1)−2

√
4a2+A2

( 1
(a(δ1 +α1x+γ1y) + 1)2

((δ2 +α2x+γ2y)
(
a2(−(δ2 +α2x+γ2y)) + aA(δ1 +α1x+γ1y) +A

)
+
(
a(δ1 +α1x+γ1y) + 1)2

))−√4a2+A2

,

(2.10)

where

Z(x,y) = 2a
√

4a2 +A2(δ1 +α1x+γ1y)− 2A tanh−1
(
−2a2(δ2+α2x+γ2y)+aA(δ1+α1x+γ1y)+A√

4a2+A2(a(δ1+α1x+γ1y)+1)

)
.

If A = a = 0, C , 0 and b , 0 it is given as follows

H
(2)
5 (x,y) = eδ2+α2x+γ2y

(1
2

(C − r) (δ1 +α1x+γ1y)− b(δ2 +α2x+γ2y) + 1
) r+C

2rb

(
(
1
2

)(C + r)(δ1 +α1x+γ1y)− b(δ2 +α2x+γ2y) + 1
) r−C

2rb
,

(2.11)

where r =
√

4b2 +C2.
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If b = a = 0, C , 0 and A , 0 the corresponding first integral is

H
(2)
6 (x,y) = e−2AC(A(δ1+α1x+γ1y)+C(δ2+α2x+γ2y))(C(δ1 +α1x+γ1y) + 1)2A2

(A(δ2

+α2x+γ2y) + 1)2C2
.

(2.12)

If ∆ = 4b(A+ b) +C2 = 0 and a = 0 , C it is

H
(2)
7 (x,y) =

1
2

eZ(x,y)+1
(
−
C2(δ2 +α2x+γ2y)

4b
− b(δ2 +α2x+γ2y) + 1

)− 4b2

4b2+C2

(−2b(δ2 +α2x+γ2y) +C(δ1 +α1x+γ1y) + 2),

(2.13)

where Z(x,y) = C(δ1 +α1x+γ1y)/(2b(δ2 +α2x+γ2y)−C(δ1 +α1x+γ1y)− 2).

If A = b = 0 and a = 0 , C it becomes

H
(2)
8 (x,y) = (C(δ1 +α1x+γ1y) + 1)2e−C(C(δ2+α2x+γ2y)2+2(δ1+α1x+γ1y)). (2.14)

III. The quadratic system (2.2) satisfying condition (iii) of Theorem 2.1. Has the first

integral

H
(3)
1 (x,y) =

1
6

(2a(δ1 +α1x+γ1y)3 + 6b(δ1 +α1x+γ1y)2(δ2 +α2x+γ2y) + 3(δ1

+α1x+γ1y)2 − 6a(δ1 +α1x+γ1y)(δ2 +α2x+γ2y)2 + 2d(δ2 +α2x

+γ2y)3 + 3(δ2 +α2x+γ2y)2).

(2.15)

IV. The quadratic system (2.2) satisfying condition (iv) of Theorem 2.1. Has the first

integral

H
(4)
1 (x,y) =

(
(a2 + d2)(d(δ2 +α2x+γ2y)− a(δ1 +α1x+γ1y))3 − 3ad(a2 + d2)

(δ1 +α1x+γ1y)(δ2 +α2x+γ2y) + 3d2(a2 + d2)(δ2 +α2x+γ2y)2

+3d(a2 + d2)(δ2 +α2x+γ2y) + d2
)2
/
(
(a2 + d2)(a(δ1 +α1x+γ1y)

−d(δ2 +α2x+γ2y))2 + 2d(a2 + d2)(δ2 +α2x+γ2y) + d2
)3
.

(2.16)

Section 2.2 LC of PWS formed by a linear center and quadratic one

This section devoted to provide the maximum number of limit cycles of PWS sepa-

rated by the straight line x = 0, and formed by an arbitrary linear center and an arbitrary

quadratic center.
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2.2.1 The main results

The following theorem defines our main results.

Note that the results stated in the following theorem do not depend on which half-plane

Σ+ = {(x,y) : x ≥ 0} or Σ− = {(x,y) : x ≤ 0} are located the linear and the quadratic centers.

Theorem 2.2 The maximum number of limit cycles of the discontinuous piecewise dif-

ferential systems separated by the straight line Σ and formed by an arbitrary linear center

and an arbitrary quadratic center satisfying the condition of Kapteyn-Bautin Theorem of

(I) type C = a = 0 is three if A = −b , 0, and one if eiher A = 0 , b, or b = 0 , A, or

A = b = 0. There are discontinuous piecewise differential systems of these types with

three limit cycles see Figure 2.1(a) and with one limit cycle see Figure 2.1(b).

(II) type b+d = 0 is three if either A+b = 0 and b , 0, or AbC(A+b)(4b(A+b)+C2) , 0,

or b = C = 0, or A = 0 and b , 0, or b = 0 and A , 0; two if (4b(A+b)+C2) = 0; and

one if A = b = 0. There are discontinuous piecewise differential systems of this type

with three limit cycles see Figure 2.2(a) and with one limit cycle see Figure 2.2(b).

(III) type C + 2a = A − 2b = 0 is one. There are discontinuous piecewise differential

systems of this type with one limit cycle, see Figure 2.3(a).

(IV) type C + 2a = A + 3b + 5d = a2 + bd + 2d2 = 0 is four. There are discontinuous

piecewise differential systems of this type with four limit cycles, see Figure 2.3(b).
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Figure 2.1: (a) The three limit cycles of the discontinuous piecewise differential system
(2.18)–(2.19), and (b) the unique limit cycle of the discontinuous piecewise differential
system (2.20)–(2.21).
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Figure 2.2: (a) The three limit cycles of the discontinuous piecewise differential system
(2.22)–(2.23), and (b) the unique limit cycle of the discontinuous piecewise differential
system (2.24)–(2.25).
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Figure 2.3: (a) The unique limit cycle of the discontinuous piecewise differential
system (2.26)–(2.27), and (b) the four limit cycles of the discontinuous piecewise
differential system (2.28)–(2.29).

2.2.2 Proof of Theorem 2.2

Now we should give the proof of Theorem 2.2, where we provide the maximum num-

ber of limit cycles of the discontinuous piecewise differential system separated by the

straight line Σ, and formed by an arbitrary linear center and an arbitrary quadratic cen-

ter.

Proof.

In one half-plane we consider the linear differential center (1.4) with its first integral

H(x,y) given in (1.5). In the other half-plane we consider system (2.2) satisfying one of the

four condition of Theorem 2.1, with its corresponding first integral H (j)
k (x,y) with k = 1, ...,8

and j = 1, ...,4.

In order that the discontinuous piecewise differential system (1.4)–(2.2) has a limit cycle

that intersects the straight line Σ at the points (0, y1) and (0, y2) with y1 < y2, these points
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must satisfy the following system

e1 = H(0, y1)−H(0, y2) = (y1 − y2)
((

4β2 +ω2
)
(y1 + y2)− 8ασ1)

)
= 0,

e2 = H
(j)
k (0, y1)−H (j)

k (0, y2) = h
(j)
k (y1, y2) = 0.

(2.17)

From e1 = 0, we obtain y1 =
8ασ1

4β2 +ω2 − y2 and by substituting it in e2 = 0 we obtain the

equation F(y2) = 0 in the variable y2, which differs according with the first integrals of system

(2.2).

Proof of statement (I) of Theorem 2.2. Now we prove the statement (I) for the dis-

continuous piecewise differential system formed by the linear differential center (1.4) and the

quadratic differential center (2.2) of type C = a = 0, and we distinguish the following cases:

Case 1. If A = −b , 0 then k = 1 and j = 1 in system (2.17), the first integral of (2.2) is

H
(1)
1 (x,y) given in (2.3), so the solutions of F(y2) = 0 are equivalent to the solutions of the

non-algebraic equation f1(y2) = g1(y2) where

f1(y2) =
(
L1 +L2 y2

L3 −L2 y2

)r
, g1(y2) = e

k0 + k1 y2 + k2 y2
2 + k3 y3

2

(L1 +L2 y2)2(L3 −L2 y2)2
,

and

k0 =
1

(4β2 +ω2)2 16Aσ1α(A3(β2(8γ1δ1δ2 − 4γ2δ
2
1 + 4γ2δ

2
2) +ω2(2γ1δ1δ2 −γ2δ

2
1 +γ2δ

2
2)

+8ασ1δ2(γ2
1 +γ2

2 ))−γ2d(4β2 +ω2)− 3Aγ2d
(
δ2

(
4β2 +ω2

)
+ 4αγ2σ1

)
−A4(γ2δ1

−γ1δ2)
(
δ1δ2

(
4β2 +ω2

)
+ 4ασ1(γ1δ2 +γ2δ1)

)
+A2

((
4β2 +ω2

)
(γ1δ1 +γ2δ2(1

−2dδ2)) + 4ασ1

(
γ2

1 +γ2
2 − 4γ2

2dδ2

))
,

k1 = 4A
(
(Aδ2 + 1)(d(2Aγ2δ2 +γ2)−A2(δ2(Aγ1δ1 +γ2) + δ1(γ1 −Aγ2δ1))) + 32α2A2γ2σ

2
1

(4β2 +ω2)−2(A2γ1(γ1δ2 −γ2δ1) +A(γ2
1 +γ2

2 )− 2γ2
2d)− 4αAσ1/(4β2 +ω2)(A3(γ2

1δ
2
2

−γ2
2δ

2
1) + 2A2δ2(γ2

1 +γ2
2 ) +A(γ2

1 +γ2
2 (1− 4dδ2))− 3dγ2

2 )
)
,

k2 = −
48αA3γ2σ1

4β2 +ω2

(
A2γ1(γ1δ2 −γ2δ1) +A

(
γ2

1 +γ2
2

)
− 2γ2

2d
)
,

k3 = 4A3γ2

(
A2γ1(γ1δ2 −γ2δ1) +A

(
γ2

1 +γ2
2

)
− 2γ2

2d
)
, r = 2d,L1 = Aδ2 + 1, L2 = Aγ2,

L3 =
8αAγ2σ1

4β2 +ω2 +Aδ2 + 1.

We note that
(
f1

)′
(y2) and

(
g1

)′
(y2) are the derivatives of the functions f1(y2) and g1(y2),
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respectively. Where (
f1

)′
(y2) =

η(L1 +L2 y2)r−1

(L3 −L2 y2)r+1 ,

and (
g1

)′
(y2) = e

k0 + k1 y2 + k2 y2
2 + k3 y3

2

(L1 +L2 y2)2(L3 −L2 y2)2 P (y2)
(L1 +L2 y2)3(L1 −L2 y2)3 ,

with η = rL2(L3 +L1), and

P (y2) = k3L
2
2 y4

2 +L2

(
2k2L2 + k3(L3 −L1)

)
y3

2 + 3
(
k1L

2
2 + k3L1L3

)
y2

2 +
(
4k0L

2
2 + k1L2(L1

−L3) + 2k2L1L3

)
y2 + 2k0L1L2 − 2k0L2L3 + k1L1L3.

We denoted by (Cf1
) and (Cg1

) the graphics of the functions f1(y2) and g1(y2), respectively.

According with the sign of
(
f1

)′
(y2) which depends on r and with the sign of the parameter

η ∈R, we obtain that all the possible graphics (Cf1
) of the function f1(y2) are as follows.

If r is an even integer or the rational r = p/(2q + 1) with p is an even integer and q is an

arbitrary integer, then the sign of
(
f1

)′
(y2) depends on the sign of η (L1 + L2 y2) (L3 − L2 y2).

Therefore the graphic (Cf1
) is given in Figure 2.14(a) if η > 0, or 2.14(b) if η < 0.

If r is an odd integer or the rational r = p/(2q+1) with p is an odd integer and q is an arbitrary

integer, then the sign of
(
f1

)′
(y2) depends only on the sign of η. Therefore the graphic (Cf1

) is

given in Figure 2.14(c) if η < 0, or Figure 2.14(d) if η > 0.

If r is irrational or the rational r = p/(2q) where p is an odd integer and q is an arbitrary

integer, then the sign of
(
f1

)′
(y2) depends on the sign of η. Consequently the graphics (Cf1

)

are the same than in the case that r is an odd integer but in the domain of definition of f1(y2).

According with the sign of
(
g1

)′
(y2) and with the different kind of the roots ri with i ∈

{1, . . . ,4} of the polynomial P (y2), and by considering the case when L3 , −L1, we shall obtain

the different possible topologically distinct graphics (Cg1
).

If P (y2) has four simple real roots, then the positions of these roots with respect to the two

vertical asymptotes straight lines y21 = −L1

L2
and y22 = −L3

L2
play a main role in the variation

of the graphics (Cg1
). So all the possible topologically distinct graphics (Cg1

) are given in

Figure 2.16(a) if y21 < r1 < y22 < r2 < r3 < r4, or Figure 2.16(b) if r1 < r2 < r3 < y21 < r4 < y22,

or Figure 2.16(c) if r1 < y21 < r2 < y22 < r3 < r4, or Figure 2.16(d) if r1 < r2 < y21 < r3 <

y22 < r4, or Figure 2.16(e) if y21 < r1 < r2 < y22 < r3 < r4, or Figure 2.16(f ) if r1 < r2 <

y21 < r3 < r4 < y22, or Figure 2.16(g) if r1 < y21 < r2 < r3 < y22 < r4, or Figure 2.16(h) if

r1 < y21 < r2 < r3 < r4 < y22, or Figure 2.16(i) if y21 < r1 < r2 < r3 < y22 < r4.
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If P (y2) has one triple and one simple real root, or two complex and two simple real roots,

the graphics (Cg1
) are given in Figure 2.16(j) if y21 < r1 < r2 < y22, or Figure 2.16(k) if

r1 < y21 < r2 < y22, or Figure 2.16(l) if y21 < r1 < y22 < r2.

If P (y2) = 0 has one double real and two complex roots, the graphics (Cg1
) are given in Figure

2.17(a).

If P (y2) = 0 has two double real roots, the graphics (Cg1
) are given in Figure 2.17(b) if r1 <

y21 < r2 < y22, or Figure 2.17(c) if y21 < r1 < y22 < r2.

If P (y2) = 0 has four complex roots, see Figure 2.17(d).

If P (y2) = 0 has one double real r0 and two simple real roots r1 and r2, then if r0 < r1 <

y21 < r2 < y22 see Figure 2.17(e), or if y21 < r1 < y22 < r0 < r2 see Figure 2.17(f ), or if

r1 < y21 < r0 < r2 < y22 see Figure 2.17(g), or if y21 < r1 < r0 < y22 < r2 see Figure 2.17(h), or

if r1 < y21 < r0 < y22 < r2 see Figure 2.17(i), or if y21 < r1 < r2 < y22 < r0 see Figure 2.17(j), or

if r0 < y21 < r1 < r2 < y22 see Figure 2.17(k), or if y21 < r0 < y22 < r1 < r2 see Figure 2.17(l), or

if r1 < r2 < y21 < r0 < y22 see Figure 2.18(a), or if r0 < y21 < r1 < y22 < r2 see Figure 2.18(b).

If P (y2) = 0 has one real root of order four this root must equal one of the two asymtotes y21

or y22, then the graphics (Cg1
) are given in Figure 2.18(c), or Figure 2.18(d).

Now if L3 = −L1 we obtain that P (y2) = 0 is a cubic equation, therefore the graphics (Cg1
) are

as follows.

If P (y2) = 0 has one triple real root or one simple and two complex roots, the graphics (Cg1
)

are given in Figure 2.18(c) or 2.18(d).

If P (y2) = 0 has one double real and one simple real root, the graphics (Cg1
) are given in Figure

2.18(e) or 2.18(f ) if r1 = r2 < y21 < r3, or r1 < y21 < r2 = r3, respectively.

If P (y2) = 0 has three real roots, the graphics (Cg1
) are given in Figure 2.18(g) if y21 < r1 <

r2 < r3, or Figure 2.18(h) if r1 < r2 < y21 < r3, or Figure 2.18(i) if r1 < y21 < r2 < r3, or Figure

2.18(j) if r1 < r2 < r3 < y21.

We will only give the graphics (Cg1
) when the derivative

(
g1

)′
(y2) starts with a negative

sign because when the derivative start with a positive sign their graphics are topologically

equivalent to the previous ones.

For the function f1(y2) we remark that the sign of the derivative changes at most three times

when r an even integer or r = p/(2q + 1) with p an even integer and q is an arbitrary integer

which guarantees that (Cf1
) can have at most one local extrem in (a) or (b) of Figure 2.14, and

on the other hand it is obvious that the graphics (Cg1
) can have at most four local extremes in

(a), or (b), or (c), or (d), or (e), or (f ), or (g), or (h), or (i) or (j) of Figure 2.16, and since the
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function g1(y2) is positive and it has the horizontal asymptote straight line g1(y2) = 1, then

we guarantee that the maximum number of intersection points between the graphics (Cf1
) and

(Cg1
) can be precisely between (a) or (b) of Figure 2.14 and (a), or (b), or (c), or (d), or (e),

or (f ), or (g), or (h), or (i) or (j) of Figure 2.16. It is clear that the graphics (Cf1
) and (Cg1

)

intersect at most in seven points, see for example Figure 2.4. Hence, F(y2) = 0 has at most

seven real solutions. We can show easily that if (y1, y2) is a solution of (2.17), then (y2, y1)

is also a solution of this system. Consequently, the maximum number of limit cycles of the

discontinuous piecewise differential system (1.4)–(2.2) in this case is at most three.

In what follows we construct an example with exactly seven intersection points between the

graphics (Cf1
) and (Cg1

) by considering {L1,L2,L3, k0, k1, k2, k3, r} → {−2,1,−3.5,2,2.5,−1,−6.9

,2}, these points are shown in Figure 2.4.
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Figure 2.4: The seven intersection poitns between the two functions f1(y2) drawn in
continuous line and g1(y2) drawn in dashed line.

To complete the proof of this case we provide an example with three limit cycles.

Three limit cycles for a discontinuous piecewise differential system (1.4)–(2.2) of

type C = a = 0 with A = −b , 0.

In the half-plane Σ− we consider the quadratic center

ẋ ≃ −0.41137x2 + x(−4.7083y − 0.8342) + y(−12.0159y − 0.866409)

+1.05188,

ẏ ≃ 0.053171x2 + x(0.67274y + 0.0188591) + y(1.9488y + 0.11029)

−0.720841,

(2.18)

its corresponding first integral is

H
(1)
2 (x,y) ≃ −0.001233(−x − 10.5578y + 9.06)2

(
x2 + (9.8313y + 6.51292)x

+(21.4047y + 14.3032)y + 2.38945
)
.
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In the half-plane Σ+ we consider the linear differential center

ẋ =
1
5
x − 229

300
y +

1
5
, ẏ = 3x − 1

5
y − 3

10
, (2.19)

with the first integral H(x,y) = 4
(
3x − 2

10
y
)2

+ 24
(
− 3

10
x − 2

10
y
)

+ 9y2.

In this case system (2.17) has the three solutions (y1, y2) ≃ {(0.0217348,0.502283),

(0.0725424,0.451475), (0.143419,0.380598)} which provide the three limit cycles for the

discontinuous piecewise differential system (2.18)–(2.19) shown in Figure 2.1(a).

Case 2. If A = 0 , b then k = 2 and j = 1 in system (2.17), then the first integral of

system (2.2) is H (1)
2 (x,y) given in (2.4), and the solutions y2 of F(y2) = 0 are the ones of the

non-algebraic equation f2(y2) = g2(y2), where

f2(y2) = e(l0+l1y2) and g2(y2) =
k0 + k1 y2 + k2 y2

2

z0 + z1 y2 + k2 y2
2

,

with

l0 = −16αbγ2σ1/(4β2 +ω2), l1 = 4bγ2, k0 = b
(
2b2δ2

1 + 2bδ2(dδ2 + 1)− 2dδ2 − 1
)

+ d,

k1 = 2b
(
2b2γ1δ1 + b(γ2 + 2γ2dδ2)−γ2d

)
, k2 = 2b2

(
bγ2

1 +γ2
2d

)
,

z0 = 2b(8ασ1

(
2b2γ1δ1 + b(γ2 + 2γ2dδ2)−γ2d

)
/(4β2 +ω2) + b2δ2

1 + 64α2bσ2
1

(
bγ2

1 +γ2
2d

)
(4β2 +ω2)−2 + bdδ2

2 + bδ2 − dδ2)− b+ d,

z1 = 2b
(
− 2b2γ1δ1 − bγ2 − 2bγ2dδ2 − 16αbσ1/(4β2 +ω2)

(
bγ2

1 +γ2
2d

)
+γ2d

)
.

We denoted by (Cf2
) and (Cg2

) the graphics of f2(y2) and g2(y2), respectively.

The possible graphics of f2(y2) are shown either in Figure 2.15(a) if l1 > 0, or in Figure

2.15(b) if l1 < 0.

For the function g2(y2) its derivative is
(
g2

)′
(y2) = P1(y2)

(
P2(y2)

)−2
, with

P1(y2) = (k2z1 − k1k2)y2
2 + (2k2z0 − 2k0k2)y2 − k0z1 + k1z0 and P2(y2) = k2y

2
2 + z1y2 + z0.

We see that the discriminant of the numerator of g2(y2) = 0 is equal to the discriminant

of P2(y2) = 0 which is ∆0 = k2
1 − 4k0k2 = z2

1 − 4z0k2, and ∆ = (2k2z0 − 2k0k2)2 − 4(k2z1 −
k1k2)(−k0z1 + k1z0) is the discriminant of P1(y2) = 0, then according to the sign of the de-

terminants ∆0 and ∆ the graphics of g1(y2) are given in Figure 2.19(a) or Figure 2.19(b) if

∆0 > 0 and ∆ < 0, Figure 2.19(c) or Figure 2.19(d) if ∆0 > 0 and ∆ > 0, Figure 2.19(e) or

Figure 2.19(f ) if ∆0 > 0 and ∆ = 0 or ∆0 = 0 and ∆ > 0, and Figure 2.19(g) or Figure 2.19(h)
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if ∆0 < 0 and ∆ < 0.

It is clear that the graphics (Cg2
) can have the maximum number of local extremes in (c), or

(d), or (g) or (h) of Figure 2.19, then we know that the maximum number of intersection points

between the graphics (Cf2
) and (Cg2

) can be precisely between (a) or (b) of Figure 2.15 and (c),

or (d), or (g) or (h) of Figure 2.19. It is obvious that the graphics (Cf2
) and (Cg2

) intersect

at most in three points see for example Figure 2.5. Due to the symmetry of the solutions of

system (2.17) we know that the maximum number of limit cycles in this case is at most one.

In the following we build an example with exactly three intersection points between the

graphics (Cf2
) and (Cg2

) by taking {l0, l1, k0, k1, k2, z0, z1} → {0.35,0.2,3.9,−2,−1,4,−2}, these

points are shown in Figure 2.5.
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Figure 2.5: The three intersection poitns between the two functions f2(y2) drawn in
continous line and g2(y2) drawn in dashed line.

Case 3. If b = 0 , A then k = 3 and j = 1 in system (2.17), the first integral of system

(2.2) is H (1)
3 (x,y) given in (2.5), and the solutions of F(y2) = 0 are equivalent to the ones of

the equation f3(y2) = g3(y2).

We have f3(y2) = f1(y2), with r = 2d − 2A, therefore the graphics of f3(y2) are given in Figure

2.14.

We have also g3(y2) = f2(y2), then we know that the graphics of g3(y2) are given in Figure

2.15. The parameters of the function g3(y2) are:

l0 =
1

(4β2 +ω2)2

(
16αAσ1(A2γ1(δ1(4β2 +ω2) + 4αγ1σ1) +Aγ2(4β2(dδ2 + 1) + 4αγ2σ1d

+dδ2ω
2 +ω2)−γ2d(4β2 +ω2))

)
,

l1 = − 1
4β2 +ω2

(
4A(A2γ1(δ1(4β2 +ω2) + 4αγ1σ1) +Aγ2(4β2(dδ2 + 1) + 4αγ2σ1d + dδ2ω

2

+ω2)−γ2d(4β2 +ω2))
)
.

Due to the fact that f3(y2) = f1(y2) there is at most one local extrem at zero in (a) or (b) of

Figure 2.14. We know also that g3(y2) = f2(y2), then it is clear that the maximum number of
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intersections points between the graphics (Cg3
) and (Cf3

) can be precisely between (a) or (b)

of Figure 2.14 and Figure 2.15. Consequently the graphics of the functions f3(y2) and g3(y2)

intersect at most in three points see for example Figure 2.6. Due to the symmetry of the solu-

tions of system (2.17) we know that the maximum number of limit cycles of the discontinuous

piecewise differential system (1.4)–(2.2) is at most one.

By considering {l0, l1,L1,L2,L3, r} → {−0.2,1.75,4,−7,−0.4,−2} we constuct an example

with exactly three intersection points between the graphics of the two functions f3(y2) and

g3(y2), these points are illustrated in Figure 2.6.
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Figure 2.6: The three intersection poitns between the two functions f3(y2) drawn in
continuous line and g3(y2) drawn in dashed line.

Case 4. If A = b = 0 then k = 4 and j = 1 in system (2.17), the first integral in this case is

H
(1)
4 (x,y) given in (2.6), and

F(y2) = 2d
( 8αγ2σ1

4β2 +ω2 + δ2 −γ2y2

)3
− 2d(δ2 +γ2y2)3 + 3

(( 8αγ1σ1

4β2 +ω2 + δ1 −γ1y2

)2

+
( 8αγ2σ1

4β2 +ω2 + δ2 −γ2y2

)2)
− 3

(
(δ1 +γ1y2)2 + (δ2 +γ2y2)2

)
.

Since F(y2) = 0 is a cubic equation in the variable y2 the maximum number of real solu-

tions of system (2.17) is at most three. Eventually, the upper bound of the maximum number

of limit cycles for this case is at most one.

To complete the proof of this case we build an example with one limit cycle of the discon-

tinuous piecewise differential system (1.4)–(2.2) of type C = a = 0 with A = b = 0.

One limit cycle of the discontinuous piecewise differential system (1.4)–(2.2) of type

C = a = 0 with A = b = 0.

We consider the quadratic center

ẋ ≃ −1.06383
(
x
(11

5
− 1

10

(
1− 4

(
− 0.2y − 0.5

)))
+

1
10

x2 +
8

500
y2 +

28
25

y − 43
10

)
, (2.20)
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ẏ ≃ 1.06383
(
−1

4
x2 + x

(1
4

(
1− 4

(
− 1

5
y − 1

2

))
+

121
25

)
− 1

25
y2 +

19
10

y − 52
5

)
,

in the half-plane Σ−, with its first integral

H
(1)
2 (x,y) = 3

((1
2
x − 1

5
y − 1

2

)2
+
(
− 11

5
x − y +

9
2

)2
)
− 4

(1
2
x − 1

5
y − 1

2

)3
.

In the half-plane Σ+ we consider the linear differential center

ẋ ≃ 1
10

x − 0.27632y + 1, ẏ = x − 1
10

y − 1
2
, (2.21)

with the first integral H(x,y) ≃ 4
(
x − 1

10
y
)2

+ 8
(
− 1

2
x − y

)
+ 1.06528y2.

In this case system (2.17) has the unique solution (y1, y2) ≃ (0.978592,6.25938) which

provides the unique limit cycle for the discontinuous piecewise differential system (2.20)–

(2.21), see Figure 2.1(b). This example completes the proof of statement (I).

Proof of statement (II) of Theorem 2.2. Now we must prove the statement for the

discontinuous piecewise differential system formed by the linear center (1.4) and the quadratic

center (2.2) of type b+ d = 0, and we distinguish the following cases:

Case 1. If A+ b = 0 and a = 0 , C, then k = 1 and j = 2 in system (2.17), the first integral

of the quadratic center is H (2)
1 (x,y) given in (2.7), the solutions of F(y2) = 0 are the same as

the solutions of the equation f̃1(y2) = g̃1(y2) where

f̃1(y2) =
(
m1 +m2 y2

m3 −m2 y2

)r1 (n1 +n2 y2

n3 −n2 y2

)r2
and g̃1(y2) = e

k0 + k1 y2

(m1 +m2 y2)(m3 −m2 y2) ,

with

m1 = −
8αbγ2σ1

4β2 +ω2 − bδ2 + 1, m2 = bγ2, m3 = 1− bδ2, r1 = b2 +C2, r2 = b2,

n1 = −bδ2 +Cδ1 + 1, n2 = γ1C − bγ2, n3 =
8ασ1

4β2 +ω2 (γ1C − bγ2)− bδ2 +Cδ1 + 1,

k0 = − 8αbCσ1

4β2 +ω2 (b(−bγ1δ2 + bγ2δ1 +γ1) +γ2C), k1 = 2bC(b(−bγ1δ2 + bγ2δ1 +γ1) +γ2C).

The derivative of the function f̃1(y2) and g̃1(y2) are

(
f̃1

)′
(y2) =

(
M0 +M1 y2 +M2 y2

2

) (m1 +m2 y2)r1−1(n1 +n2 y2)r2−1

(m3 −m2 y2)r1+1(n3 −n2 y2)r1+1 ,
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and (
g̃1

)′
(y2) =

(
N0 +N1y2 +N2y

2
2

)
(m1 +m2y2)2(m3 −m2y2)2 e

k0 + k1 y2

(m1 +m2 y2)(m3 −m2 y2) .

with
M0 = m2n1n3r1(m1 +m3) +m1m3n2r2(n1 +n3),

M1 = m2n2(r1(m1 +m3)(n3 −n1)− r2(m1 −m3)(n1 +n3)),

M2 = −m2n2(n2r1(m1 +m3) +m2r2(n1 +n3)),

N0 = −m3m2k0 +m1m2k0 +m1m3k1, N1 = 2k0m
2
2, N2 = k1m

2
2.

According to the number of the vertical asymptotes of the function f̃1(y2) we can divide the

study of this function into two parts.

If m1 = n1, m2 = n2, m3 = n3, or r1 = 0 and r2 , 0, or r1 , 0 and r2 = 0, then the function

f̃1(y2) has one vertical asymptote and the graphics (Cf̃1
) of the function f̃1(y2) are the same as

the ones of the function f1(y2) shown in Figure 2.14.

If m1 , n1, or m2 , n2, or m3 = n3, or r1 , 0 and r2 , 0, then the function f̃1(y2) has two

vertical asymptotes. Therefore according with the derivative
(
f̃1

)′
(y2) which depends on the

parameters r1, r2 and with the sign of the discriminant ∆1 = M2
1 − 4M0M2 also according

with the positions of the roots of the numerator of
(
f̃1

)′
(y2) with respect to the two vertical

asymptotes, we know that all the possible topologically distinct graphics (Cf̃1
) of the function

f̃1(y2) are given as follows.

If r1 and r2 are even integers, or r1 is an even integer and r2 is rational such that r2 = 2p/(2q+

1) with p,q ∈Z, all the graphics (Cf̃1
) are given in Figure 2.20 if ∆1 > 0. If ∆1 = 0 the graphics

(Cf̃1
) are given in (a), or (b), or (c), or (d), or (e) of Figure 2.21. If ∆1 < 0 the graphics (Cf̃1

)

are given in (f ), or (g) of Figure 2.21.

If r1 and r2 are odd integers, or r1 is an odd integer and r2 is rational such that r2 = (2p +

1)/(2q + 1) with p,q ∈N, therefore if ∆1 > 0 the graphics (Cf̃1
) are given in (h), or (i), or (j),

or (k), or (l) of Figure 2.21 and in (a), or (b), or (c), or (d), or (e), or (f ), or (g) of Figure 2.22.

If ∆1 = 0 the graphics (Cf̃1
) are given in (h), or (i), or (j), or (k), or (l) of Figure 2.22. If ∆1 < 0

the graphics (Cf̃1
) are given in (a), or (b) of Figure 2.23.

If r1 is an odd integer and r2 is an even integer, or r2 is an even integer and r1 = (2p+1)/(2q+1)

with p,q ∈ Z, or r1 is an odd integer and r2 = (2p)/(2q + 1) with p,q ∈ Z, then the sign of

the derivative
(
f̃1

)′
(y2) depends on the sign of

(
M0 +M1 y2 +M2 y2

2

)
(n1 + n2 y2)(n3 − n2 y2),

therefore if ∆1 > 0 the graphics (Cf̃1
) are given in (c), or (d), or (e), or (f ), or (g), or (h), or
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(i), or (j), or (k), or (l) of Figure 2.23 and in (a), or (b) of Figure 2.24. If ∆1 = 0 the graphics

(Cf̃1
) are given in (c), or (d), or (e), or (f ), or (g) of Figure 2.24. If ∆1 < 0 the graphics (Cf̃1

)

are given in (h), or (i) of Figure 2.24.

If r1 is an odd integer and r2 is irrational or r2 = p/2q with p,q ∈ Z, then the sign of the

derivative
(
f̃1

)′
(y2) depends on the sign of the quadratic polynomial

(
M0 +M1 y2 +M2 y2

2

)
,

therefore the graphics (Cf̃1
) are the same as the case in which r1 and r2 are odd integers but in

their domain of definition.

If r2 is an even integer and r1 is irrational or r1 = p/2q with p,q ∈ Z, then the sign of the

derivative
(
f̃1

)′
(y2) depends on the sign of the products

(
M0 +M1 y2 +M2 y2

2

)
(n1+n2 y2)(n3−

n2 y2), therefore the graphics (Cf̃1
) are the same as in the case that r1 is an odd integer and r2

is an even integer but in their domain of definition.

If r1 is irrational or r1 = p0/2q0 and r2 is irrational or rational with r2 = p/2q and p0, p

are odd integers, then the sign of the derivative
(
f̃1

)′
(y2) depends on the sign of the quadratic

polynomial
(
M0 +M1 y2 +M2 y2

2

)
, therefore the graphics of f̃1(y2) are the same as in the case

where r1 and r2 are odd integers, but in their domain of definition.

If both r1, r2 are rational with r1 = (2p0)/(2q0 +1) and r2 = (2p)/(2q+1) such that p,q,p0,q0 ∈
Z, then the sign of the derivative

(
f̃1

)′
(y2) depends on the sign of

(
M0 +M1 y2 +M2 y2

2

)
(m1 +

m2 y2)(m3 −m2 y2)(n1 +n2 y2)(n3 −n2 y2), therefore the graphics of f̃1(y2) are the same as in

the case that r1 and r2 are even integers.

If both r1, r2 are rational with r1 = (2p0 + 1)/(2q0 + 1) and r2 = (2p + 1)/(2q + 1) such that

p,q,p0,q0 ∈ Z, then the sign of the derivative
(
f̃1

)′
(y2) depends on the sign of

(
M0 +M1 y2 +

M2 y2
2

)
, therefore the graphics of f̃1(y2) are the same as in the case where r1 and r2 are odd

integers.

If both r1, r2 are rational with r1 = (2p0 + 1)/(2q0 + 1) and r2 = (2p)/(2q + 1) such that

p,q,p0,q0 ∈ Z, then the sign of the derivative
(
f̃1

)′
(y2) depends on the sign of

(
M0 +M1 y2 +

M2y
2
2

)
, therefore the graphics of f̃1(y2) are the same as in the case of r1 is an odd integer and

r2 is an even integer.

If r1 is irrational or rational and r2 rational with r1 irrational or r1 = p0/(2q0) and r2 =

(2p)/(2q + 1) and p0 is an odd integer and q0, p and q are integers, therefore the graphics of

f̃1(y2) are the same in the case that r1 is an odd integer and r2 is an even integer but in their

domain of definition.

If r1 is irrational or rational and r2 rational with r1 irrational or r1 = p0/(2q0) and r2 =

(2p + 1)/(2q + 1) and p0 is an odd integer and q0, p and q are integers, therefore the graphics
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of f̃1(y2) are the same in the case where r1 and r2 are odd integers but in their domain of

definition.

According to the sign of the derivative of the function g̃1(y2) which depends on the sign of

the quadratic polynomial P (y2) = N0 +N1y2 +N2y
2
2 , then the topologically distinct graphics

of g̃1(y2) are shown in (a) and (b) of Figure 2.25 if m3 , −m1 and P (y2) has two distinct real

roots, or (c) of Figure 2.25 if m3 , −m1 and P (y2) has two complex roots, or (d) of Figure 2.25

if m3 , −m1 and P (y2) has one double real root, or (e) and (f ) of Figure 2.25(e) if m3 = −m1.

The possible graphics of f̃1(y2) are given in Figures 2.14, 2.20, 2.21, 2.22, 2.23 and 2.24, and

the graphics of g̃1(y2) are given in Figure 2.25.

Since the graphics of f̃1(y2) can have the maximum number of local extremes in (a)–(l) of

Figure 2.20 and due to the fact that the function g̃1(y2) is positive and its graphics can have

at most two extremes in (a) or (b) of Figure 2.25. We know that the maximum number of

intersection points between the graphics of f̃1(y2) and g̃1(y2) can be precisely between (a)–(l)

of Figure 2.20 and (a) or (b) of Figure 2.25. In this case the two functions f̃1(y2) and g̃1(y2)

have f̃1(y2) = g̃1(y2) = 1 as an horizontal asymptote which ensures that at infinity there are no

intersection points between their graphics. Therefore the graphics (Cf̃1
) and (Cg̃1

) of the two

functions f̃1(y2) and g̃1(y2) intersect at most in six points see for example Figure 2.7. Then

the upper bound of the maximum number of limit cycles in this case is at most three.

By taking {k0, k1,m1,m2,m3, r1, r2,n1,n2,n3} → {−0.21,−1.7,−1.7,−5.8,−2.5,4,2,−1.28,

2.75,−3.9}, we build an example with exaclty six intersection poitns between graphics of the

functions f̃1(y2) and g̃1(y2). These points are shown in Figure 2.7.
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Figure 2.7: The six intersection poitns between the two functions f̃1(y2) drawn in
continuous line and g̃1(y2) drawn in dashed line.

Case 2. If AbC∆ , 0 and a = 0 with ∆ = 4b(A + b) + C2 < 0, then k = 2 and j = 2 in

system (2.17), the first integral of (2.2) is H (2)
2 (x,y) given in (2.8). The equation F(y2) = 0 is
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equivalent to the equation f̃2(y2) = g̃2(y2) where

f̃2(y2) = e
m1

arctan

s3y2 + s4

s1y2 + s2

+arctan

s3y2 + s6

s5 − s1y2


, and g̃2(y2) =

(
t1y2 + t2
t3 − t1y2

)r2 (K1y
2
2 +K2y2 +K3

K1y
2
2 +K4y2 +K5

)r1
,

with

m1 =
2C
bL

, s1 = γ1L, s2 = δ1, s3 = γ1C − 2bγ2, s4 = −2bδ2 +Cδ1 + 2, s5 =
8αγ1σ1L

4β2 +ω2 + δ1L,

s6 =
16αbγ2σ1

4β2 +ω2 + 2bδ2 −
8αγ1Cσ1

4β2 +ω2 −Cδ1 − 2, K1 =
1
4

(
4b2γ2

2 − 4bγ1γ2C +γ2
1C

2 +γ2
1L

2
)
,

K2 = − 1
2(4β2 +ω2)

(
8ασ1

(
4b2γ2

2 +γ2
1L

2
)

+
(
4β2 +ω2

)(
4b2γ2δ2 − 4bγ2 +γ1δ1L

2
)
− 2C

(4αbγ1γ2σ1 + (4β2 +ω2)(bγ1δ2 + bγ2δ1 −γ1)) +γ1C
2(8αγ1σ1 + δ1(4β2 +ω2))

)
,

K3 =
1

4(4β2 +ω2)2

(
− 4C

(
δ1

(
4β2 +ω2

)
+ 8αγ1σ1

)
(4β2(bδ2 − 1) + 8αbγ2σ1 + bδ2ω

2

−ω2) + 4
(
4β2(bδ2 − 1) + 8αbγ2σ1 + bδ2ω

2 −ω2
)2

+C2
(
δ1

(
4β2 +ω2

)
+ 8αγ1σ1

)2

+L2
(
δ1(4β2 +ω2) + 8αγ1σ1

)2
)
,

K4 =
1
2

(
4b2γ2δ2 − 4bγ2 − 2C(γ1(bδ2 − 1) + bγ2δ1) +γ1C

2δ1 +γ1δ1L
2
)
,

K5 =
1
4

(
−4Cδ1(bδ2 − 1) + 4(bδ2 − 1)2 +C2δ2

1 + δ2
1L

2
)
, r1 =

1
b
, r2 = − 8b

4b2 +C2 +L2 ,

t1 =
γ2

(
4b2 +C2 +L2

)
4b

, t2 = − 1
4b

(8αγ2σ1

(
4b2 +C2 +L2

)
4β2 +ω2 + 4b2δ2 − 4b+C2δ2 + δ2L

2
)
,

t3 = −C
2δ2

4b
− bδ2 −

δ2L
2

4b
+ 1.

We note that
(
f̃2

)′
(y2) and

(
g̃2

)′
(y2) are the derivatives of the functions f̃2(y2) and g̃2(y2),

respectively, where

(
f̃2

)′
(y2) = m1f̃2(y2)

P1(y2)
((s1y2 + s2)2 + (s3y2 + s4)2) ((s5 − s1y2)2 + (s3y2 + s6)2)

,

and

(
g̃2

)′
(y2) = −

P2(y2)

(t1y2 + t2)(−t1y2 + t3)
(
K1y

2
2 +K2y2 +K3

)(
K1y

2
2 +K4y2 +K5

) ( t1y2 + t2
−t1y2 + t3

)r2
(
K1y

2
2 +K2y2 +K3

K1y
2
2 +K4y2 +K5

)r1
,
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with

P1(y1) = y2
2

(
s2

1 + s2
3

)
(s1(s4 − s6)− s2s3 − s3s5)− 2y2

(
s2

1 + s2
3

)
(s2s6 + s4s5)− s1s

2
2s6 − s1s

2
4s6 + s1

s4s
2
5 + s1s4s

2
6 − s

2
2s3s5 − s2s3s

2
5 − s2s3s

2
6 − s3s

2
4s5,

P2(y2) = y4
2

(
K2

1 r2t1t2 +K2
1 r2t1t3 +K1K2r1t

2
1 −K1K4r1t

2
1

)
+ y3

2

(
K1K2r1t1t2 −K1K2r1t1t3 +K1

K2r2t1t2 +K1K2r2t1t3 + 2K1K3r1t
2
1 −K1K4r1t1t2 +K1K4r1t1t3 +K1K4r2t1t2 +K1K4

r2t1t3 − 2K1K5r1t
2
1

)
+ y2

2

(
−K1K2r1t2t3 + 2K1K3r1t1t2 − 2K1K3r1t1t3 +K1K3r2t1t2

+K1K3r2t1t3 +K1K4r1t2t3 − 2K1K5r1t1t2 + 2K1K5r1t1t3 +K1K5r2t1t2 +K1K5r2t1t3

+K2K4r2t1t2 +K2K4r2t1t3 −K2K5r1t
2
1 +K3K4r1t

2
1

)
+ y2(−2K1K3r1t2t3 + 2K1K5r1t2

−K2K5r1t1t2 +K2K5r1t1t3 +K2K5r2t1t2 +K2K5r2t1t3 +K3K4r1t1t2 −K3K4r1t1t3

+K3K4r2t1t2 +K3K4r2t1t3) +K2K5r1t2t3 −K3K4r1t2t3 +K3K5r2t1t2 +K3K5r2t1t3.

We denote by (Cf̃2
) and (Cg̃2

) the graphics of f̃2 and g̃2, respectively.

According with the sign of
(
f̃2

)′
(y2) which depends on m1 and with the sign of δ1 = (s1s4 −

s2s3)(s1s6 + s3s5), we obtain that all the possible topologically distinct graphics (Cf̃2
) of the

function f̃2(y2) are given in what follows.

For s5 , −s2 the function f̃2(y2) can have two vertical asymptotes and all the distinct topo-

logically equivalent graphics of the function f̃2(y2) are given in Figure 2.26 as follows.

If δ1 > 0 the graphics (Cf̃2
) are given in (a), or (b), or (c), or (d), or (e), or (f ) of Figure 2.26.

If δ1 < 0 the function f̃2(y2) has one graphic shown in Figure 2.26(g).

If δ1 = 0 the function f̃2(y2) has one graphic shown in Figure 2.26(h).

For s5 = −s2 the graphic (Cf̃2
) has only one vertical asymptote, then the graphics (Cf̃2

) vary

according to the sign of δ1.

If δ1 ≤ 0, the function f̃2(y2) has one graphic given in Figure 2.26(h).

If δ1 > 0, the graphics are given in (i), or(j), or(k) of Figure 2.26.

According with the derivative
(
g̃2

)′
(y2) and the parameters r1, r2, and due to the fact that

the sign of the discriminants ∆1 and ∆2 of the equations K1y
2
2 + K2y2 + K3 = 0, and K1y

2
2 +

K4y2 + K5 = 0, respectively, are negative, where ∆1 = ∆2 = −L2(bγ1δ2 − bγ2δ1 − γ1)2, and

knowing the different kind of the roots xi with i ∈ {1, . . . ,4} of the polynomial P2(y2), we get

all the possible topologically distinct graphics (Cg̃2
) of the function g̃2(y2) which are given

in Figures 2.14, 2.20, 2.21, 2.22, 2.23 and 2.24 if ∆1 = 0 as we proved in the first case of
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statements (I) and (II). For ∆1 < 0 the topologically distinct possible graphics of g̃2(y2) are

given in what follows.

If either r2 is an even integer or r2 = (2p)/(2q + 1) with p,q ∈ Z, and P2(y2) has four simple

real roots, then the graphics of g̃2(y2) are given in (a), or (b), or (c), or (d), or (e), or (f ) of

Figure 2.27.

If P2(y2) has two complex and two simple real roots, then the graphics of g̃2(y2) are given in

(g), or (h), or (i), or (j) of Figure 2.27.

If P2(y2) has four complex roots, then the graphics of g̃2(y2) are shown in (k), or (l) of Figure

2.27.

If P2(y2) has one double and two complex roots, then the graphics of g̃2(y2) are given in (a), or

(b), or (c) of Figure 2.28.

If P2(y2) has two double real roots, then the graphics of g̃2(y2) are shown in (d), or (e), or (f ),

or (g) of Figure 2.28.

If P2(y2) has one triple and one simple real root, or one double and two simple real roots, then

the graphic of g̃2(y2) is given in (h) of Figure 2.28.

If r2 is an odd integer or r2 = (2p + 1)/(2q + 1) with p,q ∈ Z we have the same graphics as

the case when r2 is an even integer where x0 = −(t2/t1) represents an inflexion point of the

function g̃2(y2).

if r2 is irrational or r2 = p/(2q) with p,q ∈Z the sign of the derivative
(
g̃2

)′
(y2) depends only

on the sign of P2(y2), then the possible graphics of the function g̃2(y2) are the same as the ones

of the case where r2 is an odd integer on its definition domain.

For r2 < 0 and by a similar way we find the same graphics as in the case r2 > 0.

The graphics of f̃2(y2) are given in Figure 2.15 and the graphics of g̃2(y2) are given in Figures

2.14, 2.20, 2.21, 2.22, 2.23, 2.24, 2.27 or 2.28.

For the function g̃2(y2) we remark that its graphics can have at most five local extremes in

(a), or (b), or (c), or (d), or (e) or (f ) of Figure 2.27, we know also that the function f̃2(y2)

is positive and its graphics can have at most two extremes in (a), or (b), or (c), or (d), or

(f ), or (i), or (j) or (k) of Figure 2.15. Therefore we guarantee that the maximum number

of intersection points between the graphics of f̃2(y2) and g̃2(y2) can be precisely between (a),

or (b), or (c), or (d), or (e) or (f ) of Figure 2.27 and (a), or (b), or (c), or (d), or (f ), or (i),

or (j) or (k) of Figure 2.15. Due to the fact that there are no intersection points at infinity

because of the common horizontal asymptote f̃2(y2) = g̃2(y2) = 1. Then the maximum number

of solutions of system (2.17) is at most seven see for example Figure 2.8, this provides at most
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three limit cycles of the discontinuous piecewise differential system (1.4)–(2.2).

Now we construct an example with exactly seven intersections points between the two func-

tions f̃2(y2) and g̃2(y2) by taking {K1,K2,K3,K4,K5, t1, t2, t3, r1, r2, s1, s2, s3, s4, s5, s6,m1} →
{0.576282,−3.2,4.1,0.1,0.02,−5,5.4,93,1,2,1.2,4,1,100,5,2,−3.8.}, see Figure 2.8.
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Figure 2.8: The seven intersection poitns between the functions f̃2(y2) drawn in
continuous line and g̃2(y2) drawn in dashed line.

Case 3. If AbC∆ , 0 and a = 0 with ∆ = 4b(A + b) + C2 > 0, then k = 3 and j = 2 in

system (2.17), the first integral of the quadratic center (2.2) is H (2)
3 (x,y) given in (2.9). Then

the solutions y2 satisfying F(y2) = 0 are equivalent to the ones of the equation f̃3(y2) = g̃3(y2)

with f̃3(y2) = f1(y2) and g̃3(y2) = f̃1(y2), where

m1 =
1
2
δ1

(
C +

√
4b(A+ b) +C2

)
− bδ2 + 1, m2 = bγ2 −

1
2
γ1

(
C +

√
4b(A+ b) +C2

)
,

m3 =
1
2

(
C +

√
4b(A+ b) +C2

)( 8αγ1σ1

4β2 +ω2 + δ1

)
−

8αbγ2σ1

4β2 +ω2 − bδ2 + 1,

n1 =
1
2
δ1

(
C −

√
4b(A+ b) +C2

)
− bδ2 + 1, n2 = bγ2 −

1
2
γ1

(
C −

√
4b(A+ b) +C2

)
,

n3 =
1
2

(
C −

√
4b(A+ b) +C2

)( 8αγ1σ1

4β2 +ω2 + δ1

)
−

8αbγ2σ1

4β2 +ω2 − bδ2 + 1,

r1 =
1

2b

(
1 +

C√
4b(A+ b) +C2

)
, r2 =

1
2b

(
1− C√

4b(A+ b) +C2

)
,

L1 = A

(
8αγ2σ1

4β2 +ω2 + δ2

)
+ 1, L2 = Aγ2, L3 = Aδ2 + 1, r =

1
A
.
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The graphics of the function g̃3(y2) are shown in Figures 2.14, 2.20, 2.21, 2.22, 2.23 or

2.24. For the function f̃3(y2) all its graphics are given in Figure 2.14.

It is obvious that the graphics of f̃3(y2) can have at most four local extrem in Figure 2.20

and due to the fact that the function g̃3(y2) is positive and its graphics can have at most one

extremes in (a) or (b) of Figure 2.14, we guarantee that the maximum number of intersection

points between the graphics of f̃3(y2) and g̃3(y2) take place between Figure 2.20 and (a) or

(b) of Figure 2.14. In this case we know that the two functions have the common horizontal

asymptote f̃3(y2) = g̃3(y2) = 1. Hence the maximum number of intersection points between

these two functions is at most seven see for example Figure 2.9. Due to the symmetry of

solutions of system (2.17) we conclude that the maximum number of limit cycles is at most

three.

In Figure 2.9 we build an example that shows exactly seven points of intersection between

the two functions f̃3(y2) and g̃3(y2) by choosing {m1,m2,m3, r1, r2,n1,n2,n3,L1,L2,L3, r} →
{7,−1,2,2,6,−0.53,−0.17,−1.71,4,−3.25,−0.15,2}.
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Figure 2.9: The seven intersection poitns between the functions f̃3(y2) drawn in
continuous line and g̃3(y2) drawn in dashed line.

Case 4. If b = C = 0 then k = 4 and j = 2 in system (2.17), where (2.10) is the first integral

of the quadratic center (2.2). Then the solutions of F(y2) = 0 are the solutions of the equation

f̃4(y2) = g̃4(y2), where

f̃4(y2) =
(
m0 y2

2 +m1 y2 +m2

m0 y2
2 +n1 y2 +n2

)r
and g̃4(y2) = e

k1+k2y2+2A
(
tanh−1

(
S1y2+S2
S1y2+S4

)
−tanh−1

( S5−S1y2
S6−S1y2

))
. Where

m0 = a2γ2
1 − a2γ2

2 + aAγ1γ2, m1 = 2a2γ1δ1 − 2a2γ2δ2 + aAγ1δ2 + aAγ2δ1 + 2aγ1 +Aγ2,

m2 = a2δ2
1 − a2δ2

2 + aAδ1δ2 + 2aδ1 +Aδ2 + 1,

n1 = −a(γ1(2aδ1 +Aδ2 + 2) +γ2(Aδ1 − 2aδ2))−
16aασ1(a(γ2

1 −γ
2
2 ) +Aγ1γ2)

4β2 +ω2 −Aγ2,
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n2 = a2δ2
1 − a2δ2

2 +
1

(4β2 +ω2)2 (64aα2σ2
1 (a(γ1 −γ2)(γ1 +γ2) +Aγ1γ2)) +

1
4β2 +ω2 (8α

σ1((aδ1 + 1)(2aγ1 +Aγ2) + aδ2(Aγ1 − 2aγ2))) + aAδ1δ2 + 2aδ1 +Aδ2 + 1,

r = −
√

4a2 +A2, k1 =
(16aβ2γ1 + 4aγ1ω

2)
√

4a2 +A2

4β2 +ω2 , k2 = −
16aαγ1σ1

√
4a2 +A2

4β2 +ω2 ,

S1 = aAγ1 − 2a2γ2, S2 = −2a2δ2 + aAδ1 +A, S3 = aγ1

√
4a2 +A2,

S4 = aδ1

√
4a2 +A2 +

√
4a2 +A2, S5 = −

16αa2γ2σ1

4β2 +ω2 − 2a2δ2 +
8αaAγ1σ1

4β2 +ω2 + aAδ1 +A,

S6 =
8aαγ1

√
4a2 +A2

4β2 +ω2 + aδ1

√
4a2 +A2 +

√
4a2 +A2.

We see that the discriminants of the numerator and the denominator of f̃4(y2) are equal, and

equal to ∆ =
(
4a2 +A2

)
(aγ1δ2 − aγ2δ2 − γ2)2. Since ∆ ≥ 0 we obtain that all the possible

topologically different graphics (Cf̃4
) of the function f̃4(y2) are given in Figures 2.14, 2.20,

2.21, 2.22, 2.23 or 2.24 as we proved in the first cases of statements (I) and (II).

Now we study the function g̃4(y2) where its derivative is
(
g̃4

)′
(y2) = g̃4(y2)

P1(y2)
P2(y2)

, with

P1(y2) = −2AS3
1S4y

2
2 − 2AS3

1S6y
2
2 + 2AS2

1S2S3y
2
2 − 4AS2

1S2S6y2 + 2AS2
1S3S5y

2
2 + 4AS2

1S4

S5y2 − 2AS1S
2
2S6 + 2AS1S

2
3S4y

2
2 + 2AS1S

2
3S6y

2
2 + 2AS1S

2
4S6 − 2AS1S4S

2
5 + 2AS1

S4S
2
6 + 2AS2

2S3S5 − 2AS2S
3
3y

2
2AS2S

2
3S6y2 + 2AS2S3S

2
5 − 2AS2S3S

2
6 − 2AS3

3S5y
2
2

−2AS3S
2
4S5 + k2S

4
1y

4
2 + 2k2S

3
1S2y

3
2 − 2k2S

3
1S5y

3
2 + k2S

2
1S

2
2y

2
2 − 4k2S

2
1S2S5y

2
2 − 2

k2S
2
1S

2
3y

4
2 − 2k2S

2
1S3S4y

3
2 + 2k2S

2
1S3S6y

3
2 − k2S

2
1S

2
4y

2
2 + k2S

2
1S

2
5y

2
2 − 2k2S1S2S

2
3y

3
2

−k2S
2
1S

2
6y

2
2 − 2k2S1S

2
2S5y2 + 4k2S1S2S3S6y

2
2 + 2k2S1S2S

2
5y2 − 2k2S1S2S

2
6y2 + 2

k2S1S
2
3S5y

3
2 + 4k2S1S3S4S5y

2
2 + 2k2S1S

2
4S5y2 − k2S

2
2S

2
3y

2
2 + 2k2S

2
2S3S6y2 + k2S

2
2

−k2S
2
2S

2
6 + k2S

4
3y

4
2 + 2k2S

3
3S4y

3
2 − 2k2S

3
3S6y

3
2 + k2S

2
3S

2
4y

2
2 − 4k2S

2
3S4S6y

2
2 − k2S

2
3y

2
2

+k2S
2
3S

2
6y

2
2 + k2S

2
4S

2
6 − 2k2S3S

2
4S6y2 − 2k2S3S4S

2
5y2 + 2k2S3S4S

2
6y2 − 4AS2

3S4S5y2

−k2S
2
4S

2
5 ,

P2(y2) = (y2(S1 − S3) + S2 − S4)(y2(S1 + S3) + S2 + S4)(y2(S3 − S1) + S5 − S6)(−y2(S1 + S3)

+S5 + S6).

According with the sign of
(
g̃4

)′
(y2) and the kind of roots of the quartic polynomial P1(y2)

and with their position with respect to the two vertical asymptotes y21 =
S5 + S6

S1 + S3
and y22 =
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S4 − S2

S1 − S3
, we give all the possible topologically different graphics of the function g̃4(y2) in what

follows.

If P1(y2) has four simple real roots the graphics of g̃4(y2) are given in (a), or (b), or (c), or (d),

or (e), or (f ), or (g), or (h), or (i) of Figure 2.30.

If P1(y2) has two simple real roots and two complex roots the graphics of g̃4(y2) are given in

(j), or (k), or (l) of Figure 2.30, or in (a) of Figure 2.29.

If P1(y2) has four complex roots the unique graphic of g̃4(y2) is shown in (b) of Figure 2.29.

If P1(y2) has one triple and one simple real root the unique graphic of g̃4(y2) is shown in (c) of

Figure 2.29.

If P1(y2) has one double real root and two complex roots the unique graphic of g̃4(y2) is shown

in (d) of Figure 2.29.

If P1(y2) has one double and two simple real roots the graphics of g̃4(y2) are shown in (e), or

(f ), or (g) of Figure 2.29.

If P1(y2) has one real root of order four or two double real roots the unique graphic of g̃4(y2) is

shown in (h) of Figure 2.29.

Since the graphics of f̃4(y2) can have at most four local extremes in Figure 2.20 and by

knowing that the function g̃4(y2) is positive and its graphics can have at most four local ex-

tremes in (a), or (b), or (c), or (d), or (e), or (f ), or (g), or (h) of Figure 2.30. Therefore we

conclude that the maximum number of intersection points between the graphics of f̃4(y2) and

g̃4(y2) can be precisely between Figure 2.20 and (a), or (b), or (c), or (d), or (e), or (f ), or

(g), or (h) of Figure 2.30. It results that the maximum number of intersection points between

the functions f̃4(y2) and g̃4(y2) is at most seven see for example Figure 2.10. Due to symme-

try of solutions (y1, y2) of (2.17), we know that the maximum number of limit cycles of the

discontinous piecewise differential system (1.4)–(2.2) is at most three.

In figure 2.10 we build an example that shows exactly seven intersection points between the

functions f̃4(y2) and g̃4(y2) by considering {m0,m1,m2,n1,n2, r,k1, k2,A,S1,S2,S3,S4,S5,S6} →
{1,−1.23283,0.265293,−1.65,6.63,4,5,−4.5,4,4,−0.5,0.5,1,0.5,9.4}.

Case 5. If A = a = 0, C , 0 and b , 0, then k = 5 and j = 2 in system (2.17), where (2.2) has

the first integral H (2)
5 (x,y) given in (2.11). Studying the solutions of F(y2) = 0 is equivalent to

study the solutions of the equation f̃5(y2) = g̃5(y2) where f̃5(y2) = f2(y2) and g̃5(y2) = f̃1(y2),
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Figure 2.10: The seven intersection poitns between the functions f̃4(y2) drawn in
continuous line and g̃4(y2) drawn in dashed line.

with

m1 =
1
2
δ1

(
C +
√

4b2 +C2
)
− bδ2 + 1, m2 =

1
2
γ1

(
C +
√

4b2 +C2
)
− bγ2,

m3 =
4αγ1σ1

4β2 +ω2

(
C +
√

4b2 +C2
)

+
1
2
δ1

(
C +
√

4b2 +C2
)
−

8αbγ2σ1

4β2 +ω2 − bδ2 + 1,

n1 =
1
2
δ1

(
C −
√

4b2 +C2
)
− bδ2 + 1, n2 =

1
2
γ1

(
C −
√

4b2 +C2
)
− bγ2,

n3 =
4αγ1σ1

4β2 +ω2

(
C −
√

4b2 +C2
)

+
1
2
δ1

(
C −
√

4b2 +C2
)
−

8αbγ2σ1

4β2 +ω2 − bδ2 + 1,

r1 =
1

2b

(
1 +

C
√

4b2 +C2

)
, r2 =

1
2b

(
1− C
√

4b2 +C2

)
, l0 = −2γ2, l1 =

8αγ2σ1

4β2 +ω2 .

We know that the graphics of f̃5(y2) are shown in Figure 2.15, and the graphics of g̃5(y2)

are shown in Figures 2.14, 2.20, 2.21, 2.22, 2.23 and 2.24.

As in the previous case we ensure that the graphics (Cg̃5
) shown in Figure 2.20 are the

ones that guarentee the maximum number of intersection points between the graphics of the

functions g5(y2) and f5(y2) which has the horizontal asymptote f̃5(y2) = 0. Then we guarantee

that the maximum number of intersection points between the graphics (Cf5
) and (Cg5

) takes

place between Figure 2.15 and Figure 2.20. Thus the maximum number of the intersection

points of these graphics is at most seven, which provides at most three limit cycles of the

discontinuous piecewise differential system (1.4)–(2.2).
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In what follows we build an example provides the seven intersection points between the tow

functions f̃5(y2) and g̃5(y2) when we consider {m1,m2,m3,n1,n2,n3, r1, r2, l0, l1} → {5,−1.3,3,

− 0.5,−0.1703,−1.1,−2,−4,2.19,−0.18}, these points are shown in Figure 2.11.
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Figure 2.11: The seven intersection poitns between graphics of the functions f̃5(y2)
drawn in continuous line and g̃5(y2) drawn in dashed line.

Case 6. If b = a = 0, C , 0 and A , 0, then k = 6 and j = 2 in system (2.17), the first

integral of (2.2) is H
(2)
6 (x,y) given in (2.12). The equation F(y2) = 0 is equivalent to the

equation f̃6(y2) = g̃6(y2) where f̃6(y2) = f2(y2), g̃6(y2) = f̃1(y2),

and

l0 = −16αACσ1

4β2 +ω2 (Aγ1 +γ2C), l1 = 4AC(Aγ1 +γ2C), r1 = 2C2, r2 = 2A2, m1 = Aδ2 + 1,

m2 = Aγ2, m3 =
8αAγ2σ1

4β2 +ω2 +Aδ2 + 1, n1 = Cδ1 + 1, n2 = γ1C, n3 =
8αγ1Cσ1

4β2 +ω2 +Cδ1 + 1.

The graphics of f̃6(y2) are given in Figure 2.15 and the graphics of g̃6(y2) are given in

Figures 2.14, 2.20, 2.21, 2.22, 2.23 or 2.24. Then the maximum number of solutions of

system (2.17) is at most seven which provides at most three limit cycles of the discontinuous

piecewise differential system (1.4)–(2.2).

Since the maximum number of limit cycles of all these six cases is at most three, we will

build only one example with three limit cycles of the discontinuous piecewise differential sys-

tem (1.4)–(2.2) of type b+ d = 0 with A = a = 0, C , 0 and b , 0.

Three limit cycles of the discontinuous piecewise differential system (1.4)–(2.2) of

type b+ d = 0 with A = a = 0, C , 0 and b , 0.

In the half-plane Σ+ we consider the quadratic center

ẋ ≃ −0.0273949x2 + 3.3482 + x(0.0133241y + 3.85736) + (−0.001506y

−0.845815)y,
(2.22)
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ẏ ≃ −0.273949x2 + x(0.133241y + 18.5736) + (−0.0150606y − 3.7726)y

+25.7332,

with its corresponding first integral

H
(2)
6 (x,y) ≃ −0.0000384239e

1
200 (y−10x)(x − 0.30772y − 34.9503)(x − 0.17866y + 27.1508)2.

In the half-plane Σ− we consider the linear differential center

ẋ =
1
5
x − 29

120
y +

19
20

, ẏ =
6
5
x − 1

5
y +

11
5
, (2.23)

with the first integral H(x,y) = 4
(6
5
x − 1

5
y
)2

+
48
5

(11
5
x − 19

20
y
)

+ y2.

In this case system (2.17) has the three solutions (y1, y2) ≃ {(0.592968,7.2691), (1.31716,

6.54491), (2.34295,5.51911)}which provide the three limit cycles for the discontinuous piece-

wise differential system (2.22)–(2.23), see Figure 2.2(b).

Case 7. If a = 0 , C and ∆ = 4b(A + b) + C2 = 0, then k = 7 and j = 2 in system (2.17),

where (2.13) is the first integral of the quadratic center (2.2). Then the solutions of F(y2) = 0

are the ones of the equation f̃7(y2) = g̃7(y2) where f̃7(y2) = f̃1(y2), g̃7(y2) = g̃1(y2), and

m1 =
8ασ1

4β2 +ω2 (γ1C − 2bγ2)− 2bδ2 +Cδ2 + 2, m2 = 2bγ2 −γ1C, m3 = −2bδ2 +Cδ2 + 2,

r1 = 1, r2 = − 4b2

4b2 +C2 , n1 = 1−

(
4b2 +C2

)
4b (4β2 +ω2)

(
δ2

(
4β2 +ω2

)
+ 8αγ2σ1

)
,

n2 =
γ2

4b

(
4b2 +C2

)
, n3 = 1− δ2

4b

(
4b2 +C2

)
,

k0 = − 16αCσ1

4β2 +ω2 (bγ1δ2 − bγ2δ2 −γ1), k1 = 4C(bγ1δ2 − bγ2δ2 −γ1).

Since r1 = 1, the graphics of the function f̃7(y2) are given in (h), (i), (j), (k) or (l) of Figure

2.21 and in Figures 2.14, 2.22, 2.23 or 2.24. All the graphics of the function g̃7(y2) are shown

in Figure 2.25.

Therefore the graphics of the two functions f̃7(y2) and g̃7(y2) intersect at most in five points

see for example Figure 2.12. Consequently, the maximum number of limit cycles of the dis-

continuous piecewise differential system (1.4)–(2.2) is at most two.

Now we construct an example with exactly five intersection points between f̃7(y2) and

g̃7(y2) by taking {m1,m2,m3, r1, r2,n1,n2,n3, k0, k1} → {−0.5,7.2,−2,1,−2,0.12,−9.5,−0.3,1.2

,0}. These points are shown in Figure 2.12.
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Figure 2.12: The five intersection poitns between the functions f̃7(y2) drawn in
continuous line and g̃7(y2) drawn in dashed line.

Case 8. If A = b = 0 and a = 0 , C, then k = 8 and j = 2 in system (2.17), the first

integral of (2.2) is H
(2)
8 (x,y) given in (2.14), and the solutions of F(y2) = 0 are the same as

the solutions of the equation f̃8(y2) = g̃8(y2) where

f̃8(y2) = M2f2(y2), g̃8(y2) = f1(y2), with M =
1

4β2 +ω2 ,

and

l0 = −M2(16αCσ1)
((

4β2 +ω2
)
(γ1 +γ2Cδ2) + 4αγ2

2Cσ1

)
, L3 = C

(
8αγ1σ1

4β2 +ω2 + δ1

)
+ 1,

l1 = M(4C
((

4β2 +ω2
)
(γ1 +γ2Cδ2) + 4αγ2

2Cσ1

)
), L1 = Cδ1 + 1, L2 = γ1C, r = 2.

The graphics of f̃8(y2) are given in Figure 2.15. Since g̃8(y2) is a sub-case of f1(y2) with

the particular parameters given previously, then its graphics are shown in Figures 2.14(a)

and 2.14(b). Clearly that the maximum number of intersection points of their corresponding

graphics is at most three see for example Figure 2.13. Then the upper bound of the number of

limit cycles in this case is at most one.

In what follows we consider {l0, l1,L1,L2,L3, r,M} → {−0.2,−1.75,1,−5.6,−0.4,2,1.53} for

building an example with exactly three intersection points between the two functions f̃8(y2)

and g̃8(y2), see Figure 2.13. Now we will prove that the result of case 8 is reached by giving

an example of system (1.4)–(2.2) of type b+ d = 0 with A = b = 0 and a = 0 , C, with exactly

one limit cycle.

One limit cycle of the PWS (1.4)–(2.2) of type b+ d = 0 with A = b = 0 and a = 0 , C.
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Figure 2.13: The three intersection poitns between the functions f̃8(y2) drawn in
continuous line and g̃8(y2) drawn in dashed line.

In the half-plane Σ+ we consider the quadratic center

ẋ =
1

770

(
−24x2 + x(1537− 2490y)− 20(5y(90y − 151) + 241)

)
,

ẏ =
3320
3850

(
xy + x(32x − 1921) + 12000y2 − 7300y + 10

)
,

(2.24)

this system has the first integral H
(2)
8 (x,y) = e−(1/100)(8x+30y+1)2+((1/5)x+20y−10(x+ 100y − 60)2.

In the half-plane Σ− we consider the linear differential center

ẋ ≃ (1/2)x − 1.57968y + 2, ẏ = 2x − (1/2)y + 1/2, (2.25)

with the first integral H(x,y) = x((1/2) − (1/2)y) + x2 + (0.789842y − 2)y.

In this case system (2.17) has the unique solution (y1, y2) ≃ (0.894524,1.63763) which pro-

vides the unique limit cycle for the discontinuous piecewise differential system (2.24)–(2.25),

see Figure 2.2(b). This example completes the proof of statement (II).

Proof of statement (III) of Theorem 2.2. In this statement F(y2) = 0 is a cubic equation

in the variable y2, where

F(y2) =
1

(4β2 +ω2)3

(
2
(
y2

(
4β2 +ω2

)
− 4ασ1

)(
64α2σ2

1

(
a
(
γ3

1 − 3γ1γ
2
2

)
+ 3bγ2

1γ2 +γ3
2d

)
−4ασ1

(
4β2 +ω2

)(
γ2

1 (−6aσ1 − 6bδ2 + 6bγ2y2 − 3)− 6γ1γ2(−2aδ2 + aγ2y2 + 2bδ1)

+γ2
2 (6aδ1 − 6dδ2 + 2γ2dy2 − 3) + 2aγ3

1y2

)
+
(
4β2 +ω2

)2
(
a(3γ1(δ1 − δ2)(δ1 + δ2)

−6γ2δ1δ2 + y2
2

(
γ3

1 − 3γ1γ
2
2 )

)
+ 3b(δ1(2γ1δ2 +γ2δ1) +γ2

1γ2y
2
2 ) + 3γ1δ1 + 3γ2δ2

+3γ2dδ
2
2 +γ3

2dy
2
2

)))
.
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Therefore this equation has at most three real solutions. Eventually the planar discontinu-

ous piecewise differential system (1.4)–(2.2) has at most one limit cycle.

To confirm that, we present in what follows a discontinuous piecewise differential systems

with exactly one limit cycle.

One limit cycle of PWS (1.4)–(2.2) of type C + 2a = A− 2b = 0.

In the half-plane Σ− we consider the quadratic center

ẋ =
1

3400

(
− 262(174x+ 19)y + 20(x(841x+ 1963)− 3198) + 24185y2

)
,

ẏ =
1

1700

(
6500x2 + 20x(665− 841y) + y(11397y − 19630) + 9000

)
,

(2.26)

its first integral is

H
(3)
1 (x,y) = −393(174x+ 19)y2 + 60(x(841x+ 1963)− 3198)y + (x(x(130x+ 399) + 540)

−2869) + 24185y3.

In the half-plane Σ+ we consider the linear differential center

ẋ ≃ x+ 0.618871y − 1, ẏ ≃ −2.01981x − y + 1.3, (2.27)

with the first integral H(x,y) ≃ 16.3185x2 + x(16.1584y − 21.006) + 5(y − 3.23169)y.

In this case system (2.17) has the unique solution (y1, y2) ≃ (0.567633,2.66406) which

provides the unique limit cycle for the discontinuous piecewise differential system (2.26)–

(2.27), see Figure 2.3(a). This example completes the proof of statement (III).

Proof of statement (IV ) of Theorem 2.2. In this statement the solutions of F(y2) = 0 are

equivalent to the solutions of an equation of degree nine and due to the big expression of this

equation we omit it. This equation has at most nine real solutions which provide at most four

limit cycles for the discontinuous piecewise differential system (1.4)–(2.2).

In what follows we give a discontinuous piecewise differential system of the class (1.4)–(2.2)

of type (IV ) with four limit cycles.

Four limit cycles of PWS (1.4)–(2.2) of type (IV )

In the half-plane Σ+ we consider the linear differential center

ẋ = −8x − (25601/40)y + 50, ẏ = (1/10)x+ 8y + 20, (2.28)
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with the first integral H(x,y) = 4(x+ 80y)2 + 800(2x − 5y) + y2.

In the half-plane Σ− we consider the quadratic center

ẋ ≃ x(525.153 − 2.477y)− 0.0005176x2 + y(5365y − 850504) + 66467,

ẏ ≃ x(0.0686512 − 0.0004798y) + y(104.576 − 0.024y)− 1.924 ∗ 10−8x2,
(2.29)

with its first integral

H
(4)
1 (x,y) ≃ (0.990099(x3 + x2(3.62455 ∗ 106 − 33461.5y) + x(y(3.73225 ∗ 108y − 1010

∗8.09237) + 4.38777 ∗ 1012) + y((4.51686 ∗ 1014 − 1.38763 ∗ 1012y)y − 1016

∗4.90232) + 1.77406 ∗ 1018)2)/((x2 + x(2.41637 ∗ 106 − 22307.7y) + y(108

∗1.24408y − 2.69973 ∗ 1010) + 1.46548 ∗ 1012)3).

In this case system (2.17) has the four solutions (y1, y2) ≃ {(0.00817805,0.148066),

(0.0177713,0.138473), (0.0292114,0.127033), (0.0443241,0.11192)}which provide the four

limit cycles for the discontinuous piecewise differential system (2.28)–(2.29), see Figure 2.3(b).

This example completes the proof of statement (IV ).
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Figure 2.14: The graphics of the function f1(y2). The dashed straight line is the vertical
asymptote straight line.
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Figure 2.15: The graphic of the function f2(y2).
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Figure 2.16: The graphics of the function g1(y2).
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Figure 2.17: The graphics of the function g1(y2).
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Figure 2.18: The graphics of the function g1(y2).
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Figure 2.19: The graphics of the function g2(y2).
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Figure 2.20: The graphics of the function f̃1(y2).

56



y2

f (y )1 2

(a)

y2

~
f (y )1 2

(b)

y2

~
f (y )1 2

(c)

y2

~
f (y )1 2

(d)

y2

~
f (y )1 2

(e)

y2

~
f (y )1 2

(f)

y2

~
f (y )1 2

(g)

f (y )1 2

~

y2

(h)

f (y )1 2

~

y2

(i)

f (y )1 2

~

y2

(j)

f (y )1 2

~

y2

(k)

f (y )1 2

~

y2

(l)

Figure 2.21: The graphics of the function f̃1(y2).
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Figure 2.22: The graphics of the function f̃1(y2).
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Figure 2.23: The graphics of the function f̃1(y2).
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Figure 2.24: The graphics of the function f̃1(y2).
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Figure 2.25: The graphics of the function g̃1(y2).
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Figure 2.26: The graphics of the function f̃2(y2).
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Figure 2.27: The graphics of the function g̃2(y2).

62



y2

g (y )2 2

(a)

y2

g (y )2 2

(b)

y2

g (y )2 2

(c)

y2

g (y )2 2

(d)

y2

g (y )2 2

(e)

y2y2

g (y )2 2

(f)

y2

g (y )2 2

y2

(g)

y2

g (y )2 2

(h)

Figure 2.28: The graphics of the function g̃2(y2).
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Figure 2.29: The graphics of the function g̃4(y2).
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Figure 2.30: The graphics of the function g̃4(y2).
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Chapter 3
LC of PWS Separated by a Straight Line

and Formed by Cubic Reversible

Isochronous Centers

The obdjectif of this chapter is to solve the extension of the second part of the six-

teenth Hilbert problem for all classes of discontinuous piecewise differential systems

with cubic reversible isochronous centers having rational first integrals, where the sep-

aration curve is the straight line Σ = {(x,y) : x = 0}.

Firstly, we found the maximum number of limit cycles that the three classes of dis-

continuous piecewise differential systems formed by an arbitrary linear center and one

of the three cubic reversible isochronous centers can exhibit.

Secondly, we provided the upper bound for the maximum number of limit cycles of

discontinuous piecewise differential systems formed by two cubic reversible isochronous

centers.

Section 3.1 The cubic reversible isochronous centers

The normal forms of the three cubic reversible isochronous centers with a rational

first integral are given in the following theorem.

Theorem 3.1 After an affine change of variables and a rescaling of the independent vari-

able the three cubic reversible isochronous centers with rational first integrals can be ex-
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pressed as one of the following three differential systems.

(C1) ẋ = y(−1 + 2ax+ 2bx2), ẏ = x+ a(y2 − x2) + 2bxy2,

(C2) ẋ = −y(1− x)(1− 2x), ẏ = x − 2x2 + y2 + 2x3,

(C3) ẋ = y
(
− 1 +

8
3
x − 32

9
y2

)
, ẏ = x − 4

3
y2.

For a proof of Theorem 3.1 see [17].

Cubic reversible isochronuous centers after an affine change of variables

Let (C̃i) with i = 1,2,3, be the three cubic reversible isochronous centers having a ra-

tional first integral after a general affine change of variables {x → a1x + b1y + c1, y →
α1x + β1y + γ1}, with a1β1 − α1b1 , 0. In what follows the expressions of the cubic re-

versible isochronous centers (C̃1), (C̃2) and (C̃3) as well as of their first integrals are given

in this section.

The isochronous center (C̃1) is

ẋ =
−1

α1b1 − a1β1
(β1(γ1 +α1x+ β1y)(2(a1x+ b1y + c1)(a+ b(a1x+ b1y + c1))− 1)− b1(a(

(γ1 +α1x+ β1y)2 − (a1x+ b1y + c1)2
)

+ 2b(a1x+ b1y + c1)(γ1 +α1x+ β1y)2 + a1x

+b1y + c1)),

ẏ =
−1

α1b1 − a1β1
(a1

(
a
(
(γ1 +α1x+ β1y)2 − (a1x+ b1y + c1)2

)
+ 2b(a1x+ b1y + c1)(α1x

+β1y +γ1)2 + a1x+ b1y + c1

)
−α1(γ1 +α1x+ β1y)(2(a1x+ b1y + c1)(a+ b(a1x+ b1y

+c1))− 1)),

with the first integral

H̃1(x,y) =
1− 2(a1x+ b1y + c1)

(
a+ b(a1x+ b1y + c1)

)
(a1x+ b1y + c1)2 + (γ1 +α1x+ β1y)2 . (3.1)

The isochronous center (C̃2) is written as

ẋ =
−1

α1b1 − a1β1

(
β1(−(a1x+ b1y + c1 − 1))(2a1x+ 2b1y + 2c1 − 1)(α1x+ β1y +γ1)− b1

(
2

(a1x+ b1y + c1)3 − 2(a1x+ b1y + c1)2 + a1x+ b1y + c1 + (γ1 +α1x+ β1y)2
))
,

ẏ =
−1

α1b1 − a1β1

(
α1(a1x+ b1y + c1 − 1)(2a1x+ 2b1y + 2c1 − 1)(γ1 +α1x+ β1y) + a1

(
2(a1x

+b1y + c1)3 − 2(a1x+ b1y + c1)2 + a1x+ b1y + c1 + (γ1 +α1x+ β1y)2
))
,
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with the first integral

H̃2(x,y) =
1

(2(a1x+ b1y + c1)− 1)2 (a1x+ b1y + c1 − 1)2
(
(a1x+ b1y + c1)2 + (α1x

+β1y +γ1)2
)
.

(3.2)

The isochronous center (C̃3) is

ẋ =
−1

α1b1 − a1β1

(
β1(γ1 +α1x+ β1y)

(8
3

(a1x+ b1y + c1)− 32
9

(γ1 +α1x+ β1y)2 − 1
)
− b1(

a1x+ b1y + c1 −
4
3

+ (γ1 +α1x+ β1y)2
))
,

ẏ =
−1

α1b1 − a1β1

(
a1

(
a1x+ b1y + c1 −

4
3

(γ1 +α1x+ β1y)2
)
−α1(γ1 +α1x+ β1y)

(8
3

(a1x

+b1y + c1)− 32
9

(γ1 +α1x+ β1y)2 − 1
))
,

with the first integral

H̃3(x,y) =
(
3(a1x+ b1y + c1)− 4(γ1 +α1x+ β1y)2

)2
+ 9(γ1 +α1x+ β1y)2. (3.3)

Section 3.2 LC of PWS with cubic reversible isochronous centers

The purpose of this subsection is to provide the upper bounds of the maximum num-

ber of crossing limit cycles of the three classes of discontinuous piecewise differential

systems, are formed by an arbitrary linear center and one of the three cubic reversible

isochronous center having rational first integral, and separated by the straight line Σ.

3.2.1 Statement of the first main result

We study the crossing limit cycles of the discontinuous piecewise differential formed

by one of the three cubic reversible isochronous centers with rational first integrals and

a linear differential center, separated by the straight line Σ.

Our first result is the following.

Theorem 3.2 The maximum number of crossing limit cycles of the class of planar dis-

continuous piecewise differential systems separated by the straight line Σ and formed by

the linear center (1.6) and
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(I) the cubic reversible isochronous center (C̃1) is one, there are systems with exactly

one limit cycle, see Figure 3.1(a);

(II) the cubic reversible isochronous center (C̃2) is two, there are systems with exactly

two limit cycles, see Figure 3.1(c);

(III) the cubic reversible isochronous center (C̃3) is one, there are systems with exactly

one limit cycle, see Figure 3.1(b).

3.2.2 Proof of theorem 3.2

Now we will prove Theorem 3.2 for the class of planar discontinuous piecewise dif-

ferential systems separated by the straight line Σ and formed by a linear center and one

of the three cubic reversible isochronous centers (C̃i) with i = 1,2,3.

Proof.

In the first half-plane Σ+ = {(x,y) : x ≥ 0} we consider the cubic reversible isochronous

center (C̃i) with its first integral H̃i(x,y) given in either (3.1), or (3.2), or (3.3), and in the

second half-plane Σ− = {(x,y) : x ≤ 0} we consider the planar linear differential center (1.6)

with its first integral H(x,y) given in (1.7).

To prove that the discontinuous piecewise differential systems (1.6)–(C̃i) has at most one

crossing limit cycle that crosses the line of discontinuity Σ at two different points (0, y) and

(0,Y ), with y , Y . These two points must satisfy the following system of equations

e1 = H(0, y)−H(0,Y ) = (y −Y ) (2B−M(y +Y )) = 0,

e2 = H̃i(0, y)− H̃i(0,Y ) = (y −Y )Fi(y,Y ) = 0.
(3.4)

Where M = A2 +ω2.

From e1 = 0 we obtain Y = −y +
2B
M

= f (y) for i = 1,2,3. Substituting the expression of

Y in Fi(y,Y ) = 0, we get an equation Ki(y) = Fi(y,f (y)) = 0 in the variable y, which varies

according to the expressions of the first integrals H̃i(x,y).

Proof of statement (I) of Theorem 3.2. For i = 1 we consider the class of discontinu-

ous piecewise differential systems formed by the linear differential center (1.6) with the first

integral H(x,y) and the cubic reversible isochronous center (C̃1) with its corresponding first

integral H̃1(x,y). We find that K1(y) = 0 is the quadratic equation in the variable y, where
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K1(y) = b2
1

(
M(2ac1 − 2bγ1(γ1 + 2β1y)− 1) + 4bβ1γ1y

2
)

+ 2b1

(
ac2

1 + a
(
β2

1My −γ2
1 − β

2
1y

2
)

+c1

(
2b(−γ2

1 + β2
1My − β2

1y
2)− 1

))
+ β1

(
2ac1 + 2bc2

1 − 1
)
(2γ1 + β1M) + 2ab3

1y(M

−y).

This equation can have at most two real solutions y1 and y2 for the variable y. Thus

system (3.4) has at most two real solutions. Since (y1, f (y1)) = (f (y2), y2), then the class of the

discontinuous piecewise differential systems (1.6)–(C̃1) has at most one limit cycle.

In order to complete the proof of this statement we give an example with exactly one limit

cycle. In the half-plane Σ− we consider the linear center

ẋ = −1− 5
2
x − 41

4
y, ẏ =

1
2

+ x+
5
2
y, (3.5)

with the first integral H(x,y) =
(
x+

5
2
y
)2

+ 2
(1
2
x+ y

)
+ 4y2.

In the other half-plane Σ+ we consider the cubic reversible isochronous center

ẋ ≃ − 21
500

x3 + x2(0.632258y + 1.02182) + x(−2.05837y2 − 4.49659y − 2.69497)

−8.34146y2 − 15.1823y − 2.29501,

ẏ ≃ x2(− 21
500

y − 0.066818) + x(0.632258y2 + 2.31636 + 1.93406)− 2.05837y3

−10.8976y2 − 3461
200

y − 8.48195,

(3.6)

with the first integral H̃1(x,y) ≃
1− 2(0.21x − y − 1)(−0.21x+ y + 1.5)

(0.21x − y − 1)2 + (0.1x − 1.02919y − 2)2 .

Eventually, system (3.4) for i = 1 has the unique real solution (y,Y ) ≃ (−0.4248,0.22967)

which provides the unique limit cycle of the discontinuous piecewise differential system (3.5)–

(3.6) shown in Figure 3.1(a). Thus statement (I) of Theorem 3.2 is proved.

Proof of statement (II) of Theorem 3.2. For i = 2 we consider the class of discontinuous

piecewise differential system formed by the linear differential center (1.6) with its first integral

(1.7) and the cubic reversible isochronous center (C̃2) with its first integral H̃2(x,y). We obtain

that K2(y) = 0 is the quartic equation in the variable y, where

K2(y) = 4b6
1My2(M − y)2 + 4b5

1(2c1 − 1)y
(
M3 − 2My2 + y3

)
+ b4

1

(
(1− 2c1)2M(M2 + 6My

−6y2) + 4β2
1My2(−y +M)2 + 8β1γ1y

2(M − y)2
)

+ 2b3
1

(
M2(2c1(4c2

1 − 6c1 − 2β2
1y

2

+3) + 4β1(2c1 − 1)γ1y − 1) +My
(
2
(
γ2

1 + c1

(
4c2

1 − 6c1 + 3
)
− 4β1c1γ1y

)
+ 4β1y(γ1

+β1y)− 1
)
− y2

(
2γ2

1 + 2c1

(
4c2

1 − 6c1 + 3
)

+ 2β2
1y

2 − 1
)

+ 2β2
1(2c1 − 1)M3y

)
+ b2

1

(
M
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(
20c4

1 − 40c3
1 + 30c2

1 + β2
1(2c1 − 1)((2c1 − 1)M2 + 2(2c1 − 3)My + 2(3− 2c1)y2) + 1

−10c1

)
+ 2β1γ1((1− 2c1)2M2 + (4c1(2c1 − 3) + 3)My + (4(3− 2c1)c1 − 3)y2) + (4c1

−3)γ2
1M

)
+ 2b1(c1 − 1)(2c1 − 1)

(
2c3

1 − 2c2
1 +γ2

1 + c1(2β1M(2γ1 + β1M) + 1)− β2
1

(M2 +My − y2)− 2β1γ1M
)

+ β1(2c2
1 − 3c1 + 1)2(2γ1 + β1M).

The equation K2(y) = 0 can have at most four real solutions, and due to the symmetry stated

in the proof of statement (I) we know that system (3.4) has at most two different real solutions.

As a result the class of discontinuous piecewise differential systems (1.6)–(C̃2) has at most two

limit cycles.

Now we prove that this result is reached by giving an example with exactly two limit cycles.

So in Σ− we consider the linear center

ẋ = − 1
10
− 5

2
x − 29

4
y, ẏ = − 1

10
+ x+

5
2
y, (3.7)

its first integral is H(x,y) =
(
x+

5
2
y
)2

+ 2
( 1
10

y − 1
10

x
)

+ y2.

In Σ+ we consider the cubic reversible isochronous center

ẋ ≃ 0.2x3 + x2(−16y − 1.65628) + x(114.847y + 4.14776)− 205.093y − 2.82886,

ẏ ≃ 0.2525x3 + x2(−0.2y − 2.39869) + x(1.23559y + 7.63844)− 2.34297y + 8y2

−8.12409,

(3.8)

which has the first integral

H̃2(x,y) ≃ (x − 3.83898)2

(2(x − 2.83898)− 1)2

((
− 1

10
x+ 8y + 0.110345

)2
+ (x − 2.83898)2

)
.

The discontinuous piecewise differential system (3.7)–(3.8) has two limit cycles because

system (3.4) when i = 2 has the two real solutions (y,Y ) ≃ {(−0.27676,0.24918), (−0.38544,

0.357854)}, these two limit cycles are drawn in Figure 3.1(c). Hence this statement is proven.

Proof of statement (III) of Theorem 3.2. For i = 3 we consider the class of discontinuous

piecewise differential systems composed by the linear differential center (1.6) with the first

integral H(x,y) and the cubic reversible isochronous center (C̃3) with its first integral H̃3(x,y).

We realize that K3(y) = 0 is the quadratic equation in the variable y, where

K3(y) = 9b2
1M + 6b1

(
−4γ2

1 + 3c1 − 4β2
1

(
M2 −My + y2

)
− 8β1γ1M

)
+ β1(2γ1 + β1M)(

− 24c1 + 16(2γ2
1 + β2

1

(
M2 − 2My + 2y2

)
+ 2β1γ1M) + 9

)
.
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Therefore system (3.4) has at most one distinct real solution. Consequently the discontinu-

ous piecewise differential systems (1.6)–(C̃3) has at most one limit cycle.

Now we will build an example with exactly one limit cycle to prove that this maximum is

reached.

In Σ− we consider the linear center

ẋ = −1− 5
2
x − 11

4
y, ẏ = 1 + x+

5
2
y, (3.9)

which has the first integral H(x,y) =
(
x+

5
2
y
)2

+ 2(x+ y) + 4y2.

In Σ+ we consider the cubic reversible isochronous center

ẋ ≃ x2(0.0257383− 0.00119261y)− 0.00002265x3 + x(−0.0209315y2 − 0.7837

+0.43544y)− 0.122457y3 − 0.28597y2 − 20.1494y − 1.9583,

ẏ ≃ 1.290533111466 ∗ 10−6x3 + x2(0.00006795y − 0.0022262) + x(0.918295

+0.00119261y2 − 0.0514766y) + 0.00697717y3 − 0.21772y2 − 35.9736

+0.783717y,

(3.10)

with the first integral

H̃3(x,y) ≃
(
3
( 1
10

x − y − 1
)
− 4

( 1
100

x+ 0.175511y − 2
)2

)2

+ 9
( 1
100

x+ 0.175511y − 2
)2
.

The pair (y,Y ) ≃ (−0.339012,0.14389) is the unique real solution of system (3.4) for i = 3,

therefore the discontinuous piecewise differential system (3.9)–(3.10) has the unique limit

cycle shown in Figure 3.1(b). With this example we complete the proof of Theorem 3.2.
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Figure 3.1: The unique limit cycle of the discontinuous piecewise differential system,
(a) for (3.5)–(3.6), (b) for (3.9)–(3.10), and (c) the two limit cycles of the discontinuous
piecewise differential system (3.7)–(3.8).
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Section 3.3 LC of PWS formed by two cubic centers

In this section we are interesting in studying the crossing LC of the piecewise differ-

ential systems separated by Σ and formed by (C̃i) in each region.

3.3.1 The maximum number of LC of PWS formed by two cubic centers

Our second result is as follows.

Theorem 3.3 The maximum number of crossing limit cycles of the class of planar dis-

continuous piecewise cubic reversible isochronous centers separated by the straight line Σ

and formed by

(I) the cubic reversible isochronous center (C̃1) in each half plane is at most two, this

maximum is reached, see Figure 3.2(a);

(II) the cubic reversible isochronous centers (C̃1) and (C̃2) is at most three, this maximum

is reached, see Figure 3.2(b);

(III) the cubic reversible isochronous centers (C̃1) and (C̃3) is at most three, this maximum

is reached, see Figure 3.2(c);

(IV ) the cubic reversible isochronous center (C̃2) in each half plane is at most eight, this

maximum is reached, see Figure 3.3(a);

(V ) the cubic reversible isochronous centers (C̃2) and (C̃3) is at most seven, this maxi-

mum is reached, see Figure 3.3(b);

(V I) the cubic reversible isochronous center (C̃3) in each half plane is at most three, this

maximum is reached, see Figure 3.4(a).

3.3.2 Proof of theorem 3.3

This subsection is devoted to give the proof of Theorem 3.3.

Proof.

For the proof of this theorem we start with the class of discontinuous piecewise differential
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Figure 3.2: (a) The two limit cycles of the discontinuous piecewise differential system
(3.13)–(3.14), the three limit cycles of the discontinuous piecewise differential system
(b) for (3.15)–(3.16), and (c) for (3.17)–(3.18).
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Figure 3.3: (a) The eight limit cycles of the discontinuous piecewise differential system
(3.19)–(3.20), and (b) the seven limit cycles of the discontinuous piecewise differential
system (3.21)–(3.22).

-4 -3 -2 -1 0 1

-1.0

-0.5

0.0

0.5

1.0

(a)

Figure 3.4: (a) The three limit cycles of the discontinuous piecewise differential system
(3.23)–(3.24).

system created by systems (C̃i)– ( ˜̃Ci) with i = 1,2,3. In Σ+ we consider the cubic reversible

isochronous center (C̃i) with its corresponding first integral H̃i(x,y) given either in (3.1), or

(3.2), or (3.3), and in Σ− we consider the second differential cubic reversible isochronous center

( ˜̃Ci) with its first integral ˜̃Hi(x,y) but with changing the parameters (a,b,a1,b1, c1,α1,β1,γ1)

by (α,β,a2,b2, c2,α2,β2,γ2). The following system of equations must be satisfied at the points
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(0, y) and (0,Y ) with y < Y , to prove that the discontinuous piecewise differential system

created by the systems (C̃i)– ( ˜̃Ci) for i = 1,2,3 has a limit cycle intersecting the line of discon-

tinuity Σ in these two different points

e1 = H̃i(0, y)− H̃i(0,Y ) = 0, e2 = ˜̃Hi(0, y)− ˜̃Hi(0,Y ) = 0. (3.11)

Later on we shall give the proof of Theorem 3.3 for the class of the discontinuous piece-

wise differential system formed by systems (C̃i)– (C̃j), for i , j and i, j = 1,2,3. In the

first half-plane we consider the cubic reversible isochronous center (C̃i) with its correspond-

ing first integral H̃i(x,y). In the second one we consider the differential cubic reversible

isochronous center (C̃j) with its corresponding first integral H̃j(x,y), but with the parame-

ters (α,β,a2,b2, c2,α2,β2,γ2) instead of the parameters (a,b,a1,b1, c1,α1,β1,γ1). Thus if we

assume the existence of a limit cycle of the discontinuous piecewise differential system (C̃i)–
(C̃j), it must intersects the discontinuity line Σ in the two points (0, y) and (0,Y ) with y , Y ,

then these points are the solutions of the following system of equations

e1 = H̃i(0, y)− H̃i(0,Y ) = 0, e2 = H̃j(0, y)− H̃j(0,Y ) = 0. (3.12)

Proof of statement (I) of Theorem 3.3. We consider the discontinuous piecewise differ-

ential system (C̃1)– ( ˜̃C1), we know that system (3.11) for i = 1 is equivalent to

e1 = 2ab3
1yY + 2ab2

1c1y + 2ab2
1c1Y + 2ab1c

2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1Y

−β2
1Y − 2bb2

1γ
2
1y − 4bβ1b

2
1γ1yY − 2bb2

1γ
2
1Y − 4bb1c1γ

2
1 + 4bβ2

1b1c1yY + 4bβ1c
2
1γ

+2bβ2
1c

2
1y + 2bβ2

1c
2
1Y − b

2
1y − b

2
1Y − 2b1c1 − 2β1γ1 − β2

1y + 2aβ2
1c1y = 0,

e2 = 2αb3
2yY + 2αb2

2c2y + 2αb2
2c2Y − 2βb2

2γ
2
2y − 4ββ2b

2
2γ2yY − 2βb2

2γ
2
2Y − b

2
2Y − 2αb2γ

2
2

−b2
2y + 2αb2c

2
2 − 4βb2c2γ

2
2 + 4ββ2

2b2c2yY − 2b2c2 − 2β2γ2 + 2αβ2
2b2yY + 4ββ2c

2
2γ2

+2ββ2
2c

2
2y + 2ββ2

2c
2
2Y + 4αβ2c2γ2 + 2αβ2

2c2y + 2αβ2
2c2Y − β2

2y − β
2
2Y = 0.

Now by doing the change of variable yY → z in e1 and e2, and solving e1 = 0 with respect

to the variable z and by substituting the value of z in e2 = 0 we get an equation P (y,Y ) = 0 in

the variables y and Y . Due to the big expression of P (y,Y ) we omit it.

From P (y,Y ) = 0 we obtain Y = h(y), and by substituting it in e1 = 0 we get the quadratic

equation E(y) = 0 in the variable y, where

E(y) =
1
M

(2b1y
2(a(b2

1 + β2
1) + 2bβ1(c1β1 − b1γ1))(((2bαγ2

1 +α)b3
2 − 2(ββ2γ2 + bγ1(2ββ2γ1

+β1(2c2α − 2βγ2
2 − 1)))b2

2 + (α + 2c2β)β2
2(2bγ2

1 + 1)b2 − 2b((2βc2
2 + 2αc2 − 1)β1β

2
2)

74



b2
1 + 2bc1β

2
1((−2βγ2

2 + 2c2α − 1)b2
2 + ((2βc2

2 + 2αc2 − 1)β2
2)b1 − b2c(2bc

2
1 − 1)β2

1(αb2
2

−2ββ2γ2b2 + (α + 2c2β)β2
2) + a(b2

1 + β2
1)(b1((−2βγ2

2 + 2c2α − 1)b2
2 + (2βc2

2 + 2αc2

−1)β2
2)− 2b2c1(αb2

2 − 2ββ2γ2b2 + (α + 2c2β)β2
2)))y2 + 4b1(a(b2

1 + β2
1) + 2bβ1(c1β1

−b1γ1))(2bβ1γ1((1− 2βc2
2 − 2αc2)β2γ2 + b2(−αc2

2 + 2βγ2
2c2 + c2 +αγ2

2 ))b2
1 + c1((α

+2bαγ2
1 )b3

2 − 2ββ2(2bγ2
1 + 1)γ2b

2
2 + ((α + 2c2β)β2

2 + 2b(−αγ2
2β

2
1 − 2c2βγ

2
2β

2
1 − c2β

2
1

+c2
2αβ

2
1 +αβ2

2γ
2
1 + 2c2ββ

2
2γ

2
1 ))b2 + 2b(2βc2

2 + 2αc2 − 1)β2
1β2γ2)b1 − b2(2bc2

1 − 1)β1

γ1(αb2
2 − 2ββ2γ2b2 + (α + 2c2β)β2

2) + a(((2βc2
2 + 2αc2 − 1)β2γ2 + b2(αc2

2 − 2βγ2
2c2

−c2 −αγ2
2 )b3

1 − (α(c2
1 −γ

2
1 )b3

2 + 2ββ2(γ2
1 − c

2
1)γ2b

2
2 + (−c2

2αβ
2
1 +α(c2

1β
2
2 −γ

2
1β

2
2 + β2

1

γ2
2 ) + c2((2βγ2

2 + 1)β2
1 + 2ββ2

2(c2
1 −γ

2
1 )))b2 + ((−2βc2

2 − 2αc2 + 1)β2
1β2γ2)b1 − 2b2c1

β1γ1((αb2
2 − 2ββ2γ2b2 + (α + 2c2β)β2

2)))y + 2b1((a((b2
1 + β2

1) + 2bβ1(c1β1 − b1γ1))

((−2bγ2
1 + 2ac1 − 1)((2βc2

2 + 2αc2 − 1)β2γ2 + b2(αc2
2 − ((2βγ2

2 + 1)c2 −αγ2
2 ))b2

1 + (1

−2bc2
1 − 2ac1)β1((γ1(−2βγ2

2 + 2c2α − 1)b2
2 + β1(−αc2

2 + 2βγ2
2c2 + c2 +αγ2

2 )b2 + (2β

c2
2 + 2αc2 − 1)β2(β2γ1 − β1γ2))− b1((ac2

1 − ((2bγ2
1 + 1)c1 − aγ2

1 t)((2c2α − 2βγ2
2 − 1)

b2
2 + (2βc2

2 + 2αc2 − 1)β2
2))),

with

M = a(b2
1 + β2

1)(b1(b2
2(−2βγ2

2 + 2αc2 − 1) + β2
2(2c2(α + βc2)− 1))− 2b2c1(αb2

2 − 2ββ2b2γ2

+β2
2(α + 2βc2))) + b2

1(b3
2(α + 2αbγ2

1 )− 2b2
2(ββ2γ2 + bγ1(2ββ2γ1γ2 + β1(−2βγ2

2 − 1

+2αc2))) + β2
2b2(2bγ2

1 + 1)(α + 2βc2)− 2bβ1β
2
2γ1(2c2(α + βc2)− 1)) + 2bβ2

1b1c1(b2
2

(−2βγ2
2 + 2αc2 − 1) + β2

2(2c2(α + βc2)− 1))− β2
1b2(2bc2

1 − 1)(αb2
2 − 2ββ2b2γ2 + β2

2

(α + 2βc2)).

Using Descartes’s Theorem, we know that E(y) = 0 can have at most two positive real

solutions y1 and y2. Therefore system (3.11) when i = 1 has at most two distinct real solutions

(y1,Y1) and (y2,Y2). Consequently the discontinuous piecewise differential system (C̃1)– ( ˜̃C1)

can have at most two limit cycles.

In order to complete the proof of this statement we build an example with exactly two limit

cycles. In the half-plane Σ− we consider the cubic reversible isochronous differential center

(C̃1)

ẋ ≃ (0.0967917− 0.292708y)x2 + 0.0390278x3 + (−0.975694y2 − 0.644167y

+0.955083)x − 1.29306y2 +
779
200

y + 0.222722,

ẏ ≃ (0.0390278y + 0.0161167)x2 + (−0.292708y2 + 0.236694y − 0.406908)x

−0.975694y3 + 0.122083y2 − 0.718972y − 0.233283,

(3.13)
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which has the first integral

H̃1(x,y) ≃ −
0.750534

(
x2 + 5xy + 1.51246x+ 6.25y2 + 3.78114y − 4.61833

)
x2 + 4.03846xy + 1.11538x+ 9.85577y2 + 0.865385y + 0.394231

.

In the half-plane Σ+ we consider the cubic reversible isochronous center ( ˜̃C1)

ẋ =
1

100
x3 +

(
− 3

40
y − 31

1000

)
x2 + x

(
−1

4
y2 − 22

25
y +

433
500

)
− 49

40
y2 +

369
100

y

+
211

1000
,

ẏ ≃
( 1
100

y +
101

2500

)
x2 +

(
− 3

40
y2 +

121
500

y − 1887
5000

)
x − 1

4
y3 +

1
25

y2 − 0.666y

−0.2264,

(3.14)

its first integral is ˜̃H1(x,y) = −
5
(
4x2 + 20xy + 20x+ 25y2 + 50y − 71

)
104x2 + 420xy + 116x+ 1025y2 + 90y + 41

.

For i = 1 the two real solutions (0.2,−0.3625) and (0.395217,−0.690869) of system

(3.11) provide the two limit cycles of discontinuous piecewise differential system (3.13)–(3.14)

shown in Figure 3.2(a). This example completes the proof of statement (I).

Proof of statement (II) of Theorem 3.3. Now we consider the class of discontinuous

piecewise differential system created by the cubic reversible isochronous center (C̃1) with the

first integral H̃1(x,y) and the cubic reversible isochronous differential center (C̃2) with its first

integral H̃2(x,y). Then system (3.12) when i = 1 and j = 2 is given by

e1 = 2ab3
1yY + 2ab2

1c1y + 2ab2
1c1Y + 2ab1c

2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1y

+2aβ2
1c1Y − 2bb2

1γ
2
1y − 4bβ1b

2
1γ1yY − 2bb2

1γ
2
1Y − 4bb1c1γ

2
1 + 4bβ2

1b1c1yY − β2
1Y

+2bβ2
1c

2
1y + 2bβ2

1c
2
1Y − b

2
1y − b

2
1Y − 2b1c1 − 2β1γ1 − β2

1y + 4bβ1c
2
1γ1 = 0,

e2 = 4b6
2y

2Y 2(y +Y ) + 4b5
2(−1 + 2c2)yY

(
y2 + 3yY +Y 2

)
+ b4

2

(
(y +Y )

(
(1− 2c2)2(y2 + 8yY

+Y 2) + 4β2
2y

2Y 2
)

+ 8β2γ2y
2Y 2

)
+ 2b3

2

(
y2

(
8c3

2 − 12c2
2 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2

(2γ2 + 3β2Y )Y − 1
)

+ 2β2
2(2c2 − 1)y3Y + yY (2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(2c2 − 1)Y

+3(−1 + 2c2)3) + (−1 + 2c2)3Y 2
)

+ b2
2

(
(y +Y )

(
20c4

2 − 40c3
2 + 30c2

2 + β2
2(2c2 − 1)(y2(2c2

−1) + 8(−1 + c2)yY + (2c2 − 1)Y 2)− 10c2 + 1
)

+ 2β2γ2((1− 2c2)2y2 + yY (4c2(4c2 − 5)

+5) + (1− 2c2)2Y 2) + (4c2 − 3)γ2
2 (y +Y )

)
+ 2b2(c2 − 1)(2c2 − 1)

(
2c3

2 − 2c2
2 +γ2

2 + c2(β2

(2y + 2Y )(2γ2 + β2(y +Y )) + 1)− β2
2

(
y2 + 3yY +Y 2

)
(−2β2γ2 + y +Y )

)
+ β2(−3c2 + 1

+2c2)2
(
2γ2 + β2(y +Y )

)
= 0.
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From e1 = 0 we obtain Y = f (y), substituting it in e2 = 0 we find an equation of the variable

y of degree six. Therefore system (3.12) when i = 1 and j = 2 has at most six real solutions

namely (yi ,Yi) with i ∈ {1, . . . ,6}. Since (yi ,Yi) = (yj ,Yj) with i ∈ {1,3,5} and j ∈ {2,4,6}, then

these solutions provide at most three limit cycles for the discontinuous piecewise differential

system (C̃1)– (C̃2).

Now we prove that this result is reached by giving an example with exactly three limit cycles.

In Σ− we consider the cubic reversible isochronous center of type (C̃2)

ẋ ≃ −0.514085x3 + (3.75423y + 2.2093)x2 + x(−0.735423y2 − 25.5419y

+3.44704) + 0.0365141y3 + 2.17709y2 + 43.1293y − 16.5836,

ẏ ≃ −0.140845x3 + (0.542254y + 0.792958)x2 + x(−0.104225y2 − 1.42958

−2.65859y) + 0.00514085y3 − 3.29207y2 + 8.88296y − 1.43575,

(3.15)

with the first integral

H̃2(x,y) = 1
14400(5x−8)2 (15x − 14)2

(
12325x2 − 12100xy + 5580x+ 3025y2 − 3300y + 2056

)
.

In Σ+ we consider the cubic reversible isochronous center of type (C̃1)

ẋ ≃ −0.00141019x2 + (0.000171292y − 0.217157)x+ 0.0496747y2 + 6.04893y

−2.29839,

ẏ ≃ −2.42082291791.10−6x2 + x(−0.00280815y − 0.170976) + 0.00362918y2

+0.214343y − 0.0817112,

(3.16)

its corresponding first integral is

H̃1(x,y) ≃ 1
(−10x+ 13.2y − 5)2 + (0.1x+ 58y + 7084.68)2

(
1− 0.000281426

( 1
10

x+ 58y

+
177117

25

))
.

For the discontinuous piecewise differential system (3.15)–(3.16), system (3.12) when i = 1

and j = 2 has the three real solutions (y,Y ),≃ {(−0.598492,1.36883), (−0.682118,1.45531),

(−0.759451,1.53549)}. These solutions provide the three limit cycles of system (3.15)–(3.16)

drawn in Figure 3.2(b). Then this statement holds.

Proof of statement (III) of Theorem 3.3. We consider the class of discontinuous piece-
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wise differential system composed by the cubic reversible isochronous center (C̃1) with the

first integral H̃1(x,y) and the cubic reversible isochronous differential center (C̃3) with its first

integral H̃3(x,y), so system (3.12) when i = 1 and j = 3 is equivalent to

e1 = 2ab3
1yY + 2ab2

1c1y + 2ab2
1c1Y + 2ab1c

2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1y

+2aβ2
1c1Y − 2bb2

1γ
2
1y − 4bβ1b

2
1γ1yY − 2bb2

1γ
2
1Y − 4bb1c1γ

2
1 − b

2
1y − 2b1c1 − 2β1γ1

−b12Y + 4bβ2
1b1c1yY + 4bβ1c

2
1γ1 + 2bβ2

1c
2
1y + 2bβ2

1c
2
1Y − β

2
1y − β

2
1Y = 0,

e2 = 9b2
2(y +Y ) + 6b2(3c2 − 4(β2

2y
2 + β2y(2γ2 + β2Y ) + (γ2 + β2Y )2)) + β2(2γ2 + β2(y +Y ))(

− 24c2 + 16
(
2γ2

2 + β2
2

(
y2 +Y 2

)
+ 2β2γ2(y +Y )

)
+ 9

)
= 0.

From e1 = 0 we obtain Y = f (y), substituting it in e2 = 0 we find an equation of the variable

y of degree six. Thus system (3.12) when i = 1 and j = 3 has at most six real solutions, due

to the symmetry of the solutions of this system, we conclude that the discontinuous piecewise

differential system (C̃1)– (C̃3) has at most three limit cycles.

In what follows we give a class of discontinuous piecewise differential system whith three

limit cycles. So in Σ− we consider the cubic reversible isochronous center

ẋ ≃ −0.013446x3 + x2(0.305282y + 0.45729) + x(−2.31041y2 − 4.90347y

−2.46581) + 5.82847y3 + 10.9181y2 + 9.12441y − 0.481199,

ẏ ≃ −0.0017767x3 + x2(0.04034y + 0.078041) + x(−0.305282y2 − 0.84173

−0.914579y) + 0.770136y3 + 2.45173y2 + 2.46581y + 0.233753,

(3.17)

with the first integral

H̃3(x,y) ≃
(
3
(1
2
x − 1.7828y

)
− 4

( 1
10

x − 0.75681y + 0.410816
)2

)2

+ 9
( 1
10

x − 0.75681

y + 0.410816
)2
.

In Σ+ we consider the cubic reversible isochronous center

ẋ ≃
( 7
200
− 9

40
y
)
x2 +

1
100

x3 +
(
−5

8
y2 − 27

20
y + 0.405909

)
x − 15

8
y2 + 5.07727

y − 0.247727,

ẏ ≃
( 1
100

y +
9

500

)
x2 + x

(
− 9

40
y2 +

3
20

y − 0.173364
)
− 5

8
y3 − 17

40
y2 − 0.10591

y − 0.113909,

(3.18)
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its corresponding first integral is H̃1(x,y) = −
5
(
4x2 + 20xy + 20x+ 25y2 + 50y − 71

)
104x2 + 300xy + 124x+ 3125y2 − 350y + 61

.

The pairs (y,Y ) ≃ {(0.316546,−0.28577), (0.183095,−0.0988845), (0.12139,−0.026152)}
are the distinct three real solution of system (3.12) when i = 1 and j = 3. Then the discontin-

uous piecewise differential system (3.17)–(3.18) has three limit cycles shown in Figure 3.2(c).

This example completes the proof of statement (III) of Theorem 3.3.

Proof of statement (IV ) of Theorem 3.3. We consider the discontinuous piecewise dif-

ferential system (C̃2)– ( ˜̃C2). Then system (3.11) when i = 2 is written as

e1 = (y −Y )EY = 0, e2 = (y −Y )Ey = 0.

We denote by Ey and EY the polynomials of variables y and Y where

EY =
(
4b6

1y
2Y 2(y +Y ) + 4b5

1(2c1 − 1)yY
(
y2 + 3yY +Y 2

)
+ b4

1

(
(y +Y )

(
(1− 2c1)2(y2 + 8yY

+Y 2) + 4β2
1y

2Y 2
)

+ 8β1γ1y
2Y 2

)
+ 2b3

1

(
y2

(
8c3

1 − 12c2
1 + c1(8β1Y (γ1 + β1Y ) + 6)− 1

−2β1Y (2γ1 + 3β1Y )
)

+ 2β2
1(2c1 − 1)y3Y + yY (2γ2

1 + 2β2
1(2c1 − 1)Y 2 + 4β1γ1Y (2c1

−1) + 3(2c1 − 1)3) + (2c1 − 1)3Y 2
)

+ b2
1

(
(y +Y )

(
20c4

1 − 40c3
1 + 30c2

1 + β2
1(2c1 − 1)

(
(2c1

−1)y2 + 8(c1 − 1)yY + (2c1 − 1)Y 2
)
− 10c1 + 1

)
+ 2β1γ1((1− 2c1)2y2 + (4c1(4c1 − 5)

+5)yY + (1− 2c1)2Y 2) + (4c1 − 3)γ2
1 (y +Y )

)
+ 2b1(c1 − 1)(2c1 − 1)

(
2c3

1 − 2c2
1 +γ2

1 + c1

(2β1(y +Y )(2γ1 + β1(y +Y )) + 1)− β2
1(y2 + 3yY +Y 2)− 2β1γ1(y +Y )

)
+ β1(2c2

1 − 3c1

+1)2(2γ1 + β1(y +Y ))
)
,

Ey =
(
4b6

2y
2Y 2(y +Y ) + 4b5

2(2c2 − 1)yY
(
y2 + 3yY +Y 2

)
+ b4

2

(
(y +Y )

(
(1− 2c2)2(y2 + 8yY

+Y 2) + 4β2
2y

2Y 2
)

+ 8β2γ2y
2Y 2

)
+ 2b3

2

(
y2

(
8c3

2 − 12c2
2 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2

(2γ2 + 3β2Y )Y − 1
)

+ 2β2
2(2c2 − 1)y3Y + yY (2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(2c2 − 1)Y

+3(2c2 − 1)3) + (2c2 − 1)3Y 2
)

+ b2
2

(
(y +Y )

(
20c4

2 − 40c3
2 + 30c2

2 + β2
2(2c2 − 1)((2c2 − 1)y2

+8(c2 − 1)yY + (2c2 − 1)Y 2)− 10c2 + 1
)

+ 2β2γ2((1− 2c2)2y2 + (4c2(4c2 − 5) + 5)yY+

(1− 2c2)2Y 2) + (4c2 − 3)γ2
2 (y +Y )

)
+ 2b2(c2 − 1)(2c2 − 1)

(
2c3

2 − 2c2
2 +γ2

2 + c2(2β2(y

+Y )(2γ2 + β2(y +Y )) + 1)− β2
2

(
y2 + 3yY +Y 2

)
(y − 2β2γ2 +Y )

)
+ β2(2c2

2 − 3c2 + 1)2(
2γ2 + β2(y +Y )

))
.
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The number of the common zeros (y, Y) of Ey and EY show the existence and the number of

limit cycles of the discontinuous piecewise differential system (C̃2)– ( ˜̃C2). To find this number,

we calculate the two Resultants. Ry = [Ey ,EY , y] and RY = [Ey ,EY ,Y ] of Ey and EY with

respect to y and Y , respectively. Knowing that Ey and EY are symmetry with respect to y

and Y , it results that the resultant Ry and RY have the same expression. So we only need

to calculate one of them, and in this case we consider Ry which is a polynomial of degree

sixteen in the variable Y , and because of the big expression of Ry we omit it. Consequently

the maximum number of solutions of system (3.11) when i = 2 is at most sixteen. Due to

the symmetry of these solutions it results that the discontinuous piecewise differential system

(C̃2)– ( ˜̃C2) can have at most eight limit cycles.

In what follows we construct a class of discontinuous piecewise differential system which

has exactly eight limit cycles.

In the first half-plane Σ− we consider the cubic reversible isochronous center (C̃2)

ẋ ≃ −1.33333
(3
4
x − 7

10

)(24
10
− 1

2
x
)(11

2
x − 11

4
y +

3
2

)
,

ẏ ≃ 0.484848
(11

2

(24
10
− 3

2
x
)( 7

10
− 3

4
x
)(11

2
x − 11

4
y +

3
2

)
− 3

4

(
2
(17
10
− 3

4
x
)3

−2
(17
10
− 3

4
x
)2

+
(11

2
x − 11

4
y +

3
2

)2
− 3

4
x+

17
10

))
,

(3.19)

with the first integral

H̃2(x,y) =
1

14400(5x − 8)2 (15x − 14)2(12325x2 − 12100xy + 5580x+ 3025y2 − 3300y

+2056).

In Σ+ we consider the cubic reversible isochronous center ( ˜̃C2)

ẋ ≃ x2(4.19651− 0.367605y) +
9

10
x3 + x((−1.08819 ∗ 10−15y − 1.63216)y

+5.10083) + y((−8.05325 ∗ 10−31y − 1.87169 ∗ 10−15)y − 1.7198)

+0.938074,

ẏ ≃ x2
(
10.8999− 9

10
y
)

+ 2.88353x3 + x((−2.66421 ∗ 10−15y − 2.196)y

+15.8829) + y((−1.97166 ∗ 10−30y − 0.367605)y − 3.8095) + 4.1256,

(3.20)
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its corresponding first integral is

˜̃H2(x,y) ≃ 1
(2(−0.5x − 7.40057 ∗ 10−16y − 0.36)− 1)2

(((
− 1

2
x − 7.40057 ∗ 10−16y

− 36
100

)2
+ (

9
10

x − 0.367605y + 0.200512)2
)(
− 1

2
x − 7.40057 ∗ 10−16y

− 36
100

)2)
.

The eight pairs (y,Y ) ≃ {(0.162904,0.928005), (0.162904,0.928005), (−0.36574,1.45665),

(−0.537248,1.62816), (−0.685078,1.77599), (−0.816962,1.90787), (−0.93716,2.02807),

(−1.04832,2.13923)} are solutions of system (3.11) when i = 2. Consequently the discontinu-

ous piecewise differential system (3.19)–(3.20) has eight limit cycles, see Figure 3.3(a). Thus,

the proof of statement (IV ) holds.

Proof of statement (V ) of Theorem 3.3. We consider the two classes of discontinuous

piecewise differential system formed by the cubic reversible isochronous center (C̃2) and (C̃3),

with the first integral H̃2(x,y) and H̃3(x,y), respectively, so system (3.12) for i = 2 and j = 3

becomes

e1 = 4b6
2y

2Y 2(y +Y ) + 4b5
2(2c2 − 1)yY

(
y2 + 3yY +Y 2

)
+ b4

2

(
(y +Y )

(
(−2c2 + 1)2(y2 + 8yY

+Y 2) + 4β2
2y

2Y 2
)

+ 8β2γ2y
2Y 2

)
+ 2b3

2

(
y2

(
8c3

2 − 12c2
2 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2Y

(2γ2 + 3β2Y )− 1
)

+ 2β2
2(2c2 − 1)y3Y + yY (2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(−1 + 2c2)Y

+3(2c2 − 1)3) + (2c2 − 1)3Y 2
)

+ b2
2

(
(y +Y )

(
20c4

2 − 40c3
2 + 30c2

2 + β2
2(2c2 − 1)((2c2 − 1)y2

+8(−1 + c2)yY + (−1 + 2c2)Y 2)− 10c2 + 1
)

+ 2β2γ2((1− 2c2)2y2 + (4c2(4c2 − 5) + 5)yY

+(1− 2c2)2Y 2) + (4c2 − 3)γ2
2 (y +Y )

)
+ 2b2(c2 − 1)(2c2 − 1)

(
2c3

2 − 2c2
2 +γ2

2 + c2(2β2(y

+Y )(2γ2 + β2(y +Y )) + 1)− β2
2(y2 + 3yY +Y 2)(y − 2β2γ2 +Y )

)
+ β2

(
−3c2 + 2c2

2 + 1
)2(

2γ2 + β2(y +Y )
)

= 0,

e2 = 9b2
1(y +Y ) + 6b1

(
3c1 − 4

(
β2

1y
2 + β1y(2γ1 + β1Y ) + (γ1 + β1Y )2

))
+ (32γ2

1 + 16β2
1y

2

−24c1 + 32β1γ1y + 16β2
1Y

2 + 32β1γ1Y + 9)(2γ1β1 + β2
1y + β2

1Y ) = 0.

Using Bézout Theorem 1.1 we know that the maximum number of solutions of system

(3.12) when i = 2 and j = 3 is at most fifteen. As the solutions of this system are symmetric,

therefore we conclude that the maximum number of solutions of system (3.12) is at most seven.

Hence the maximum number of limit cycles of the discontinuous piecewise differential system

(C̃2)– (C̃3) is at most seven.

Now we give a class of discontinuous piecewise differential system that has exactly seven
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limit cycles.

In Σ+ we consider the cubic reversible isochronous center

ẋ ≃ 0.0000870489x3 + x2(−0.00792718y − 0.079887) + x(0.235678y2+

5.98489y − 39.2858)− 2.29883y3 − 103.885y2 + 862.313y + 1319.27,

ẏ ≃ 2.963419321 ∗ 10−6x3 + x2(−0.000241147y − 0.00641714)− 2352.32

−2352.32 + x(0.00652981y2 + 0.351331y + 4.42621)− 0.0588451y3

−4.88435y2 − 100.652y,

(3.21)

its first integral is

H̃2(x,y) ≃ 1
(26y − x+ 831.968)2 (6.5 ∗ 10−6x4 + x3(−0.000719868y − 0.0160353) + x2

((0.0317101y + 0.864893)y + 44.7714) + x(y((−0.646011y − 15.2721)

y − 1692.73)− 49965) + y(y(y(5.04228y + 94.2432) + 14776.6) + 1.05795

∗106) + 1.7008 ∗ 107).

In Σ− we consider the cubic reversible isochronous center

ẋ =
1

9590625
(531250x3 + 1875x2(578y − 1535) + 75x(9826y2 − 110160y

−65075) + 167042y3 − 4287315y2 + 21974850y + 37022000),

ẏ =
1

383625
(−31250x3 − 3750x2(17y + 5)− 75x(578y2 − 3070y − 2825)−

9826y3 + 165240y2 + 195225y − 41500),

(3.22)

which has the first integral

H̃3(x,y) = 9
(1
4
x+

17
100

y +
1
5

)2
+
(
3
( 1
10

x+
3
4
y + 1

)
− 4

(1
4
x+

17
100

y +
1
5

)2)2
.

System (3.12) when i = 2 and j = 3 has the seven solutions (y,Y ) ≃ {(−1.89267,−0.723701),

(−1.9409,−0.669484), (−1.83955,−0.78291), (−1.77978,−0.84871), (−1.71019,−0.92431),

(−1.62382,−1.0167), (−1.49637,−1.15015)}. Therefore the discontinuous piecewise differen-

tial system (3.21)–(3.22) has seven limit cycles shown in Figure 3.3(b). Thus, the proof of this

statement holds.

Proof of statement (V I) of Theorem 3.3 For the discontinuous piecewise differential
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system (C̃3)– ( ˜̃C3) we obtain that the system (3.11) when i = 3 is given by

e1 = (y −Y )EY = 0, e2 = (y −Y )Ey = 0.

Where

EY = 9b2
1(y +Y ) + 6b1

(
3c1 − 4

(
β2

1y
2 + β1y(2γ1 + β1Y ) + (γ1 + β1Y )2

))
+ β1(2γ1 + β1y

+β1Y )(32γ2
1 − 24c1 + 16β2

1y
2 + 32β1γ1y + 16β2

1Y
2 + 32β1γ1Y + 9),

Ey = 9b2
2(y +Y ) + 6b2

(
3c2 − 4

(
β2

2y
2 + β2y(2γ2 + β2Y ) + (γ2 + β2Y )2

))
+ β2(2γ2 + β2y

+β2Y )(32γ2
2 − 24c2 + 16β2

2y
2 + 32β2γ2y + 16β2

2Y
2 + 32β2γ2Y + 9).

As in statement (IV ) and by computing the resultants, Resultant Ry = [Ey ,EY , y] and

RY [Ey ,EY ,Y ]. Due to their symmetry, we obtain that the resultant Ry is a polynomial of

degree six. Consequently the maximum number of solutions of system (3.11) is at most six.

Since their solutions are symmetric we know that the discontinuous piecewise differential

system (C̃3)– ( ˜̃C3) has at most three limit cycles.

To prove that our result is reached we give an example of discontinuous piecewise differen-

tial system with exactly three limit cycles.

In the first half-plane Σ− we consider the cubic reversible isochronous center

ẋ ≃ −0.00343827x3 + x2(0.0908048y − 0.258721) + x(−0.799387y2 + 2.20767

y + 0.10374) + 2.34576y3 + 0.615762y2 + 0.895054y − 0.0485279,

ẏ ≃ −0.00039056x3 + x2(0.010315y − 0.044535)− 0.10374y + x(−0.090805y2

+0.517442y − 1.13956) + 0.266462y3 − 1.10383y2 − 0.00943529,

(3.23)

with the first integral

H̃3(x,y) ≃
(
3(−x − 0.300305y)− 4

(
0.880335y − 0.0508927− 1

10
x
)2)2

+ 9
(
− 1

10
x

+0.880335y − 0.0508927
)2
.

In Σ+ we consider the cubic reversible isochronous center ( ˜̃C3)

ẋ ≃ −0.01185x3 + 4.5222y + x2(0.35556y − 0.23556) + x(−3.5556y2 + 2.0444y

−0.218889) + 11.8519y3 + 3.11111y2 − 0.245185,
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ẏ ≃ −0.0011852x3 + x2(0.035556y − 0.0368889)− 0.137852 + x(−0.355556y2

+0.471111y − 0.298556) + 1.18519y3 − 1.02222y2 + 0.218889y,
(3.24)

its corresponding first integral is

˜̃H3(x,y) = 9
(
− 1

10
x+ y − 1

10

)2
+
(
3
(
− 1

4
x − 1

2
y − 1

10

)
− 4

(
− 1

10
x+ y − 1

10

)2)2
.

The discontinuous piecewise differential system (3.23)–(3.24) has three limit cycles be-

cause system (3.11) when i = 3 has the three real solutions (y,Y ) ≃ {(−0.420112,0.436464),

(−0.20979,0.278363), (−0.33396,0.37219)(−0.33396,0.37219)}. Figure 3.4(a) shows these

three limit cycles. Thus, the proof of Theorem 3.3 is done.
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Chapter 4
Four LC of PWS with Nilpotent Saddles

Separated by a Straight Line

One of the most difficult tasks in the qualitative theory of planar differential systems

is determining the maximum number of limit cycles that a class of planar differential

systems can have. Therefore, tis chapter is devoted to solve the extinction of Hilbert

problem for all classes of discontinuous piecewise differential systems with Hamiltonian

nilpotent saddles, separated by the straight line Σ = {(x,y) : x = 0}.

Section 4.1 The cubic Hamiltonian nilpotent saddles

Montserrat Corbera and Claudia Valls characterized the global phase portraits in the

Poincaré disk for all planar Hamiltonian vector fields with linear plus cubic homoge-

neous terms having nilpotent saddles at the origin, they proved that there are six classes

of system Hamiltonian nilpotent saddles, which are presented in the following theo-

rem.

Theorem 4.1 A Hamiltonian planar polynomial vector field with linear plus cubic ho-

mogeneous terms has a nilpotent saddle at the origin if and only if, after a linear change

of variables and a rescaling of its independent variable it can be written as one of the

following six classes:

(C1) ẋ = ax+ by, ẏ = −a
2

b
x − ay + x3, with b > 0.
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(C2) ẋ = ax+ by − x3, ẏ = −a
2

b
x − ay + 3x2y, with a < 0.

(C3) ẋ = ax + by − 3x2y + y3, ẏ =
(
c − a2

b+ c

)
x − ay + 3xy2, with either a = b = 0 and

c > 0, or c = 0 ab , 0 and a2/b − 6b < 0.

(C4) ẋ = ax + by − 3x2y − y3, ẏ =
(
c − a2

b+ c

)
x − ay + 3xy2, with either a = b = 0 and

c < 0, or c = 0 ab , 0 and b > 0.

(C5) ẋ = ax+ by −3µx2y + y3, ẏ =
(
c− a2

b+ c

)
x− ay + x3 + 3µxy2, with either a = b = 0

and c > 0, or c = 0 b , 0 and (a4 − b4 − 6a2b2µ)/b < 0.

(C6) ẋ = ax+ by −3µx2y − y3, ẏ =
(
c− a2

b+ c

)
x− ay + x3 + 3µxy2, with either a = b = 0

and c < 0, or c = 0 b , 0, and (a4 − b4 − 6a2b2µ)/b > 0, where a, b, c, µ ∈R.

Now we give the new expressions of the six classes of the Hamiltonian nilpotent sad-

dles (Ci), with i = {1, . . . ,6} after doing a general affine change of variables.

lemma 4.1 By doing a linear change of variable {x→ δ1+α1X+γ1Y ,y→ δ2+α2X+γ2Y },
with α2γ1 −α1γ2 , 0, we obtain the new expressions (C̃1), (C̃2), (C̃3), (C̃4), (C̃5) and (C̃6)

of the Hamiltonian nilpotent saddles mentioned in Theorem 4.1.

Thus, the differential system (C̃1) is

Ẋ =
1

b(α2γ1 −α1γ2)

(
− a2γ1(δ1 +α1X +γ1Y ) + ab(−γ1δ2 −γ2δ1 −α1γ2X

−α2γ1X − 2γ1γ2Y ) + b
(
− bγ2δ2 +X

(
3α1γ1(δ1 +γ1Y )2 −α2bγ2

)
− bγ2

2Y

+γ1δ
3
1 +α3

1γ1X
3 + 3α2

1γ1X
2(δ1 +γ1Y ) +γ4

1Y
3 + 3γ3

1δ1Y
2 + 3γ2

1δ
2
1Y

))
,

Ẏ =
1

b(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + ab(α1δ2 + 2α1α2X +α1γ2Y

+α2δ1 +α2γ1Y ) + b
(
α2bδ2 +X

(
α2

2b − 3α2
1(δ1 +γ1Y )2

)
+α2bγ2Y −α4

1X
3

−α1δ
3
1 − 3α3

1X
2(δ1 +γ1Y )−α1γ

3
1Y

3 − 3α1γ
2
1δ1Y

2 − 3α1γ1δ
2
1Y

))
,

(4.1)

with the first integral

H1(x,y) =
1
4

(2a2

b
(δ1 +α1x+γ1y)2 + 4a(δ1 +α1x+γ1y)(δ2 +α2x+γ2y) + 2b

(δ2 +α2x+γ2y)2 − (δ1 +α1x+γ1y)4
)
.

(4.2)
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The differential system (C̃2) is written as

Ẋ =
1

b(α2γ1 −α1γ2)

(
− a2γ1(δ1 +α1X +γ1Y )− ab(γ1δ2 +γ2δ1 +α1γ2X

+α2γ1X + 2γ1γ2Y ) + b
(
X
(
3δ1(2α1γ1δ2 +α1γ2δ1 +α2γ1δ1)−α2bγ2

+3γ2
1Y

2(3α1 γ2 +α2γ1) + 6γ1Y (α1γ1δ2 + 2α1γ2δ1 +α2γ1δ1)
)

+γ2(
− bγ2Y + δ3

1 + 4γ3
1Y

3 + 9γ2
1δ1Y

2 + 6γ1δ
2
1Y

)
+ δ2

(
3γ1(δ1 +γ1Y )2

−bγ2

)
+α2

1X
3(α1γ2 + 3α2γ1) + 3α1X

2(α1γ1δ2 +α1γ2δ1 + 2α2γ1δ1

+2γ1Y (α1γ2 +α2γ1))
)
,

Ẏ =
1

b(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + ab(α1δ2 + 2α1α2X +α1γ2Y

+α2δ1 +α2γ1Y ) + b
(
α2bδ2 − 3α1δ

2
1δ2 −α2δ

3
1 +X

(
α2

2b − 6α1(δ1 +γ1Y )

(α1δ2 +α2δ1 +α1γ2Y +α2γ1Y )
)

+Y (α2bγ2 − 3δ1(2α1γ1δ2 +α1γ2δ1

+α2γ1δ1))− 4α3
1α2X

3 − 3α2
1X

2(α1δ2 + 3α2δ1 +α1γ2Y + 3α2γ1Y )−γ2
1

(3α1γ2 +α2γ1)Y 3 − 3γ1Y
2(α1γ1δ2 + 2α1γ2δ1 +α2γ1δ1)

))
,

(4.3)

its corresponding first integral is

H2(x,y) =
1
2

(a2

b
(δ1 +α1x+γ1y)2 + 2a(δ1 +α1x+γ1y)(δ2 +α2x+γ2y) + b

(δ2 +α2x+γ2y)2 − 2(δ1 +α1x+γ1y)3(δ2 +α2x+γ2y)
)
.

(4.4)

The differential system (C̃3) is given by

Ẋ = − 1
(b+ c)(α2γ1 −α1γ2)

(
a2γ1(δ1 +α1X +γ1Y ) + a(b+ c)(γ2δ1 +α1γ2X

+γ1δ2 +α2γ1X + 2γ1γ2Y ) + (b+ c)
(
(δ2 +α2X +γ2Y )

(
γ2(b − 3δ2

1 +Y 2

(γ2
2 − 6γ2

1 )− 9γ1δ1Y ) +γ2δ
2
2 +X2(−3α2

1γ2 − 3α1α2γ1 +α2
2γ2)−X

(
Y

(9α1γ1γ2 + 3α2γ
2
1 − 2α2γ

2
2 ) + 3α1γ1δ2 + 6α1γ2δ1 + 3α2γ1δ1 − 2α2γ2δ2

)
+δ2(−3γ1δ1 − 3γ2

1Y + 2γ2
2Y )

)
− cγ1(δ1 +α1X +γ1Y )

))
,

Ẏ =
1

(b+ c)(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + a(b+ c)(α2δ1 + 2α1

α2X +α1γ2Y +α1δ2 +α2γ1Y ) + (b+ c)
(
(δ2 +α2X +γ2Y )

(
− 3α1δ1δ2
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−3α2δ
2
1 +α2δ

2
2 +α2b+X2(α3

2 − 6α2
1α2)−X(3α2

1δ2 + 9α1α2δ1 − 2α2
2δ2

+3α2
1γ2Y + 9α1α2γ1Y − 2α2

2γ2Y )− 3α1γ1γ2Y
2 − 3α2γ

2
1Y

2 +α2γ
2
2Y

2

−3α1γ1δ2Y − 3α1γ2δ1Y − 6α2γ1δ1Y + 2α2γ2δ2Y
)
−α1c(δ1 +α1X

+γ1Y )
))
,

(4.5)

which has the first integral

H3(x,y) =
1
4

(
− 2(c − a2

b+ c
)(δ1 +α1x+γ1y)2 + 4a(δ1 +α1x+γ1y)(δ2 +α2x

+γ2y) + 2b(δ2 +α2x+γ2y)2 − 6(δ1 +α1x+γ1y)2(δ2 +α2x+γ2y)2

+(δ2 +α2x+γ2y)4
)
.

(4.6)

The differential system (C̃4) is

Ẋ = − 1
(b+ c)(α2γ1 −α1γ2)

(
a2γ1(δ1 +α1X +γ1Y ) + a(b+ c)(γ1δ2 +γ2δ1

+α1γ2X +α2γ1X + 2γ1γ2Y ) + (b+ c)
(
− (δ2 +α2X +γ2Y )

(
3γ1δ1δ2 − bγ2

+3γ2δ
2
1 +γ2δ

2
2 +X2(3α2

1γ2 + 3α1α2γ1 +α2
2γ2) +X

(
3α1γ1δ2 + 6α1γ2δ1

+3α2γ1δ1 + 2α2γ2δ2 +Y (9α1γ1γ2 + 3α2γ
2
1 + 2α2γ

2
2 )

)
+Y 2(6γ2

1γ2 +γ3
2 )

+Y (3γ2
1δ2 + 9γ1γ2δ1 + 2γ2

2δ2)
)
− cγ1(δ1 +α1X +γ1Y )

))
,

Ẏ =
1

(b+ c)(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + a(b+ c)(α2δ1 + 2α1α2X

+α1δ2 +α1γ2Y +α2γ1Y ) + (b+ c)
(
α1(−c)(δ1 +α1X +γ1Y )− (δ2 +α2X

+γ2Y )
(
3α1δ1δ2 + 3α2δ

2
1 +α2δ

2
2 −α2b+X2(6α2

1α2 +α3
2) +X(9α1α2γ1Y

+3α2
1δ2 + 9α1α2δ1 + 2α2

2δ2 + 3α2
1γ2Y + 2α2

2γ2Y ) + 3α2γ
2
1Y

2 +α2γ
2
2Y

2

+3α1γ1δ2Y + 3α1γ2δ1Y + 6α2γ1δ1Y + 2α2γ2δ2Y + 3α1γ1γ2Y
2
)))

,

(4.7)

with the first integral

H4(x,y) =
1
4

(
− 2

(
c − a2

b+ c

)
(δ1 +α1x+γ1y)2 + 4a(δ1 +α1x+γ1y)(δ2 +α2x

+γ2y) + 2b(δ2 +α2x+γ2y)2 − 6(δ1 +α1x+γ1y)2(δ2 +α2x+γ2y)2

−(δ2 +α2x+γ2y)4
)
.

(4.8)
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The differential system (C̃5) is given by

Ẋ = − 1
(b+ c)(α2γ1 −α1γ2)

(
a2γ1(δ1 +α1X +γ1Y ) + a(b+ c)(γ1δ2 +γ2δ1 +α1

γ2X +α2γ1X + 2γ1γ2Y ) + (b+ c)
(
bγ2δ2 +α2bγ2X + bγ2

2Y − cγ1(δ1 +α1

X +γ1Y )−γ1δ
3
1 +γ2δ

3
2 −α

3
1γ1X

3 +α3
2γ2X

3 − 3α2
1γ1δ1X

2 + 3α2
2γ2δ2X

2

−3α2
1γ

2
1X

2Y + 3α2
2γ

2
2X

2Y − 3α1γ1δ
2
1X + 3α2γ2δ

2
2X − 3α1γ

3
1XY 2 + 3α2

γ3
2XY 2 − 3µ(δ1 +α1X +γ1Y )(δ2 +α2X +γ2Y )(γ2δ1 + 2γ1γ2Y +α1γ2X

+α2γ1X +γ1δ2)− 6α1γ
2
1δ1XY + 6α2γ

2
2δ2XY +γ4

2Y
3 − 3γ3

1δ1Y
2 −γ4

1Y
3

+3γ3
2δ2Y

2 − 3γ2
1δ

2
1Y + 3γ2

2δ
2
2Y

))
,

Ẏ =
1

(b+ c)(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + a(b+ c)(α1δ2 +α2δ1 + 2α1

α2X +α1γ2Y +α2γ1Y ) + (b+ c)
(
−α1δ

3
1 +α2δ

3
2 +α2bδ2 +α2

2bX +α2bγ2

Y −α1c(δ1 +α1X +γ1Y )−α4
1X

3 +α4
2X

3 − 3α3
1δ1X

2 + 3α3
2δ2X

2 − 3α3
1γ1

X2Y + 3α3
2γ2X

2Y − 3α2
1δ

2
1X + 3α2

2δ
2
2X − 3α2

1γ
2
1XY 2 + 3α2

2γ
2
2XY 2 − 6α2

1

γ1δ1XY − 3µ(δ1 +α1X +γ1Y )(δ2 +α2X +γ2Y )(2α1α2X +α1γ2Y +α2

γ1Y +α2δ1 +α1δ2) + 6α2
2γ2δ2XY −α1γ

3
1Y

3 − 3α1γ
2
1δ1Y

2 + 3α2γ
2
2δ2Y

2

−3α1γ1δ
2
1Y +α2γ

3
2Y

3 + 3α2γ2δ
2
2Y

))
,

(4.9)

which has the first integral

H5(x,y) =
1
4

((
− 2c+

2a2

b+ c

)
(δ1 +α1x+γ1y)2 + 4a(δ1 +α1x+γ1y)(δ2 +α2x

+γ2y) + 2b(δ2 +α2x+γ2y)2 + 6µ(−δ1 −α1x −γ1y)2(α2x+γ2y

+δ2)2 − (δ1 +α1x+γ1y)4 + (δ2 +α2x+γ2y)4
)
.

(4.10)

The differential system (C̃6) is

Ẋ = − 1
(b+ c)(α2γ1 −α1γ2)

(
a2γ1(δ1 +α1X +γ1Y ) + a(b+ c)(γ1δ2 +γ2δ1

+α1γ2X +α2γ1X + 2γ1γ2Y ) + (b+ c)
(
bγ2δ2 +α2bγ2X + bγ2

2Y − cγ1

(δ1 +α1X +γ1Y )−γ1δ
3
1 −γ2δ

3
2 −α

3
1γ1X

3 −α3
2γ2X

3 − 3α2
1γ1δ1X

2

−3α2
2γ2δ2X

2 − 3α2
1γ

2
1X

2Y − 3α2
2γ

2
2X

2Y − 3α1γ1δ
2
1X − 3α2γ2δ

2
2X

−3α1γ
3
1XY 2 − 3α2γ

3
2XY 2 − 3µ(δ1 +α1X +γ1Y )(δ2 +α2X +γ2Y )(γ1

(4.11)
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δ2 +γ2δ1 +α1γ2X +α2γ1X + 2γ1γ2Y )− 6α1γ
2
1δ1XY − 6α2γ

2
2δ2XY

−γ4
1Y

3 −γ4
2Y

3 − 3γ3
1δ1Y

2 − 3γ3
2δ2Y

2 − 3γ2
1δ

2
1Y − 3γ2

2δ
2
2Y

))
,

Ẏ =
1

(b+ c)(α2γ1 −α1γ2)

(
a2α1(δ1 +α1X +γ1Y ) + a(b+ c)(2α1α2X +α2δ1

+α1δ2 +α1γ2Y +α2γ1Y ) + (b+ c)
(
−α1δ

3
1 +α2bγ2α

2
2bX +α2bδ2Y

−α2δ
3
2 −α1c(δ1 +α1X +γ1Y )−α4

1X
3 −α4

2X
3 − 3α3

1δ1X
2 − 3α3

2δ2X
2

−3α3
1γ1X

2Y − 3α3
2γ2X

2Y − 3α2
1δ

2
1X − 3α2

2δ
2
2X − 3α2

1γ
2
1XY 2 − 3α2

2γ
2
2

−6α2
1γ1δ1XY − 3µ(δ1 +α1X +γ1Y )(δ2 +α2X +γ2Y )(α1δ2 +α2δ1

+2α1α2X +α1γ2Y +α2γ1Y )− 6α2
2γ2δ2XY −α1γ

3
1Y

3 − 3α1γ
2
1δ1Y

2

−α2γ
3
2Y

3 − 3α2γ
2
2δ2Y

2 − 3α1γ1δ
2
1Y − 3α2γ2δ

2
2Y

))
,

its first integral is

H6(x,y) =
1
4

(
− 2

(
c − a2

b+ c

)
(δ1 +α1x+γ1y)2 + 4a(δ1 +α1x+γ1y)(δ2 +α2x

+γ2y) + 2b(δ2 +α2x+γ2y)2 + 6µ(−δ1 −α1x −γ1y)2(α2x+γ2y

+δ2)2 − (δ1 +α1x+γ1y)4 − (δ2 +α2x+γ2y)4
)
.

(4.12)

Section 4.2 LC of PWS with cubic Hamiltonian saddles

Our first goal in this chapter is to provide the maximum number of limit cycles

for each of the six classes of discontinuous piecewise differential systems created by

linear center and a cubic Hamiltonian nilpotent saddles having the straight line Σ as a

switching curve.

4.2.1 Statement of the first main result

Our first main result is presented in the following theorem.

Theorem 4.2 The maximum number of crossing limit cycles of the discontinuous piece-

wise differential systems separated by the straight line Σ, and formed by a linear differ-

ential center (1.6) in one half-plane, and by one of the six classes of the Hamiltonian

nilpotent saddles (C̃k) for k ∈ {1,2,3,4,5,6} is at most one. There are examples with ex-
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actly one limit cycle for all these discontinuous piecewise systems, see Figures 4.1 and

4.2.
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Figure 4.1: The unique limit cycle of the discontinuous piecewise differential system,
(a) for (4.14)–(4.15), (b) for (4.16)–(4.17), and (c) for (4.18)–(4.19).
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Figure 4.2: The unique limit cycle of the discontinuous piecewise differential system,
(a) for (4.20)–(4.21), (b) for (4.22)–(4.23), and (c) for (4.24)–(4.25).

4.2.2 Proof of theorem 4.2

Now we are going to give the proof of theorem 4.2 for the class of discontinuous

piecewise differential systems separated by the straight line Σ, and formed by the linear

center and one of the six classes of the Hamiltonian nilpotent saddles.

Proof.

In the first half-plane Σ+ = {(x,y) : x ≥ 0} we consider the Hamiltonian nilpotent saddle (C̃k)

for k ∈ {1,2,3,4,5,6} with its first integral Hk(x,y), and in the second half-plane Σ− = {(x,y) :

x ≤ 0} we consider the planar linear differential center (1.6) with its first integral H(x,y)

given by (1.7).

To show that the discontinuous piecewise differential system (1.6)–(C̃k) for k ∈ {1,2,3,4,5,6}
has at most a crossing limit cycle intersecting the line of discontinuity x = 0 in two different
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points (0, y1) and (0, y2), with y1 , y2. We can immediately realize that these two points must

satisfy the system of equations

e1 = H(0, y1)−H(0, y2) = (y1 − y2)
(
(A2 +ω2)(y1 + y2)− 2B

)
= 0,

e2 = Hk(0, y1)−Hk(0, y2) = (y1 − y2)hk(y1, y2) = 0.
(4.13)

From e1 = 0 we get y1 = f (y2) for k ∈ {1,2,3,4,5,6}, and by substituting the expression of

y1 in hk(y1, y2) = 0, we obtain a quadratic equation pk(y2) = 0 in the variable y2 for k ∈
{1,2,3,4,5,6}. In particular for k = 1,

p1(y2) =
1

b (A2 +ω2)3

(
a2γ1

(
A2 +ω2

)2 (
δ1

(
A2 +ω2

)
+Bγ1

)
+ ab

(
A2 +ω2

)2
((
A2 +ω2

)
(γ1δ2 +γ2δ1) + 2Bγ1γ2

)
+ b

(
−B

(
A2 +ω2

)2 (
−bγ2

2 + 3γ2
1δ

2
1 +γ4

1y
2
2 − 2γ3

1δ1y2

)
−
(
A2 +ω2

)3
(γ1δ

3
1 − bγ2δ2 +γ3

1δ1y
2
2 ) + 2B2γ3

1

(
A2 +ω2

)
(γ1y2 − 2δ1)− 2B3γ4

1

))
.

This equation has at most two real solutions for the variable y2. Therefore, system (4.13)

has at most two real solutions. We can easily prove that these solutions verify the relation

(y1, f (y1)) = (f (y2), y2), which means that both solutions are symmetric and provide one limit

cycle for the discontinuous piecewise differential system (1.6)–(C̃1).

By a similar way we conclude that for k ∈ {2,3,4,5,6}, system (4.13) has at most two

real solutions, Consequently the discontinuous piecewise differential system (1.6)–(C̃k) for

k ∈ {2,3,4,5,6} has at most one limit cycle.

One limit cycle for the discontinuous piecewise differential system (1.6) –(C̃1).

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle

ẋ ≃ −0.519884
(1
2

(
− 0.934804x3 + 2.80441(0.934804y − 1)x2 + x(−2.80441

(0.9348y − 1)2 − 1.8875) + 0.763627y3 − 2.8223− 2.45066y2 + 1.48152y
)

−0.934804(−x − 1 + 0.934804y) +
1
2

(−0.827009x − 2.82311y − 0.827009)
)
,

ẏ ≃ −0.519884
(1
2

(
x(3.125− 3(0.934804y − 1)2)− x3 + 3(0.934804y − 1)x2

+0.816885y3 − 2.62157y2 + 4.69191y + 2.125
)
− 1

2
(5x+ 5− 0.82701y) + x

−0.934804y + 1
)
,

(4.14)

with the first integral
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H1(x,y) ≃ 1
4

(
− (−x+ 0.934804y − 1)4 + 4(−x+ 0.934804y − 1)2 − 4

(
− 5

2
x − 151

100
y − 5

2

)
(−x+ 0.934804y − 1) +

(
− 5

2
x − 151

100
y − 5

2

)2)
.

In the half-plane Σ− we consider the linear differential center

ẋ = 2 +
1
2
x − 1

2
y, ẏ = 2 + x − 1

2
y, (4.15)

its first integral is H(x,y) = 2(2x − 2y) +
(
x − 1

2
y
)2

+
1
4
y2.

The unique real solution of system (4.13), when k = 1 is (y1, y2) ≃ (2.58579,5.41421).

So, the discontinuous piecewise differential system (4.14)–(4.15) has one limit cycle shown in

Figure 4.1(a).

One limit cycle for the discontinuous piecewise differential system (1.6)–(C̃2).

In the half-plane Σ+ we consider the linear differential center

ẋ = − 1
10

x − 73
8
y − 7

2
, ẏ = x+

1
10

y − 7
10

, (4.16)

its corresponding first integral is given by H(x,y) =
(
x+

1
10

y
)2

+ 2
(7
2
y − 10

7
x
)

+
361
400

y2.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle

ẋ ≃ −1.1432
(1
2

(1.55789− 1.27055x − 0.28925y) + 0.09578(1− x − 0.09578y)

−1/2(−0.79166x3 + 1/2(−0.755 + 0.287336(1− 0.09578y)2)− 3x2(−1.079

+0.243384y) + x(−5.9865 + 1.62543y − 0.118079y2) +
151
100

(1 + 0.18033y

+0.082562y2 − 0.00351452y3))
)
,

ẏ ≃ −1.14322
(
− 1

2

(
− 10x3 − 3x2(−0.79166y − 7) + x(−3.125− 6(1.27055y + 2)

(1− 0.09578y)) + 0.039359y3 − 0.81271y2 + 5.9865y + 0.375
)
− 1

2
(5x − 2

−1.27055y) + x+ 0.0957787y − 1
)
,

(4.17)

with the first integral

H2(x,y) ≃ −5
2
x4 + (0.79166y + 7)x3 + (0.365076y2 − 3.23699y − 6.0625)x2 + (0.039359y3

−0.812713y2 + 4.52439y + 0.375)x+ 0.00132673y4 + 0.473279y − 0.041995y3

−0.276187y2 − 1.0625.

93



The discontinuous piecewise differential system (4.16)–(4.17) has one limit cycle, because

system (4.13) has the unique real solution (y1, y2) ≃ (−6.48905,−1.18218), when k = 2. We

illustrate this limit cycle in Figure 4.1(b).

One limit cycle for the discontinuous piecewise differential system (1.6)–(C̃3).

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle

ẋ ≃ 0.364018
((
− 5

2
x+

151
100

y − 1
2

)(
(16.2889y − 9.86591)x − 8.61886x2

−1.22439y2 − 4.8122y + 4.89477
)
− 0.247424(−x+ 1− 0.494848y)

)
,

ẏ ≃ −0.364018
((
− 5

2
x+

151
100

y − 1
2

)(
x(

109
4
− 25.4791y) +

5
8
x2 + 6.10535y2

−5.375− 1.62455y
)
− 1

2
(−x − 0.494848y + 1)

)
,

(4.18)

this system has the first integral

H3(x,y) ≃ 1
4

((5
2
x − 151

100
y +

1
2

)4
− 75

2

(
x − 0.604y +

1
5

)2
(x+ 0.494848y − 1)2 − (x − 1

+0.494848y)2
)
.

In the half-plane Σ− we consider the linear differential center

ẋ = − 1
10

x − 73
80

y − 7
2
, ẏ = x+

1
10

y − 7
10

, (4.19)

its corresponding first integral is H(x,y) =
(
x+

1
10

y
)2

+ 2
(7
2
y − 7

10
x
)

+
361
400

y2.

The unique real solution of system (4.13), for k = 3 is (y1, y2) ≃ (−6.48905,−1.18218),

which provides the unique limit cycle of the discontinuous piecewise differential system (4.18)–

(4.19), see Figure 4.1(c).

One limit cycle for the discontinuous piecewise differential system (1.6)–(C̃4).

In the half-plane Σ+ we consider the linear differential center

ẋ = 2 +
1
2
x − 1

2
y, ẏ = x − 0.5y + 2, (4.20)

with its first integral H(x,y) =
(
x − 1

2
y
)2

+ 2(2x − 2y) +
1
4
y2.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle

ẋ ≃ −0.914733
(1
2

(
− 3

2
x − 0.157142y +

1
2

)
(x(−11.4023 + 8.6346)− 3.86892x2
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−2.15367y2 + 5.5804y − 2.69714)− 1
4

(−2.34357x − 0.474567y + 0.91214)

−0.3775
(1
2
x+

151
100

y − 1
))
,

ẏ ≃ −0.914733
(
− 1

2
(−3

2
x − 0.157142y +

1
2

)
(
x(−11.0175y + 9.375)− 5.625x2

−4.875− 10.6534y2 + 15.1939y − 4.875
)

+
1
8

(1
2
x+

151
100

y − 1
)

+
1
4

(
− 3

2
x

−2.34357y +
7
4

))
,

(4.21)

which has the first integral

H4(x,y) ≃ (5.625− 5.80339y)x3 − 2.10938x4 + x2(−8.85571y2 + 14.8864y − 6.3125) + x

(−1.67409y3 + 7.7143y2 − 9.15731y + 3.0625)− 0.0846078y4 + 0.651249y3

−1.15563y2 + 1.04964y − 0.328125.)

The discontinuous piecewise differential system (4.20)–(4.21) has exactly one limit cycle

which is shown in Figure 4.2(a), because system (4.13), when k = 4 has the unique real

solution (y1, y2) ≃ (2.58579,5.41421).

One limit cycle for the discontinuous piecewise differential system (1.6)–(C̃5).

In the half-plane Σ+ we consider the linear differential center

ẋ = 2 +
1
2
x − 1

2
y, ẏ = x − 1

2
y + 2, (4.22)

with its first integral H(x,y) =
(
x − 1

2
y
)2

+ 2(2x − 2y) +
1
4
y2.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle

ẋ ≃ −0.99224
(
− 8.29721x3 − 40.9634x2y + 7.35346x2 − 66.3665xy2

+21.6087xy + 0.755
(1
2
x+

151
100

y − 1
)

+
3
2

(1
2
x+

151
100

y − 1
)(
− 3

2
x+ 0.5

−2.51436y
)
(−3.52218x − 7.59336y + 3.26936)− 0.563652x − 34.7688y3

+13.5148y2 + 2.0988y − 1.19571
)
,

ẏ ≃ 0.99224
(
− 5x3 − 24.8916x2y + 4.6875x2 − 40.9634xy2 + 14.7069

xy +
1
4

(1
2
x+

151
100

y − 1
)

+
3
2

(1
2
x+

151
100

y − 1
)(
− 3

2
x − 2.51436y +

1
2

)(
− 3

2
x

(4.23)

95



−3.52218y +
7
4

)
− 0.9375x − 22.1222y3 + 10.8043y2 − 0.563652y

−0.3125
)
,

this system has the first integral

H5(x,y) ≃ 1
4

(
−
(1
2
x+

151
100

y − 1
)4
− 3

(
− 151

100
x − 2.51436y +

1
2

)2
(
1
2
x+

151
100

y − 1)2 −
(1
2
x

+
151
100

y − 1
)2

+
(
− 3

2
x − 2.51436y +

1
2

)4)
.

The pair (y1, y2) ≃ (2.58579,5.41421) is the unique real solution of system (4.13), when k = 5.

So, the discontinuous piecewise differential system (4.22)–(4.23) has one limit cycle shown in

Figure 4.2(b).

One limit cycle for the discontinuous piecewise differential system (1.6)–(C̃6).

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle

ẋ ≃ 0.302806
(
− 6.81399x3 + 30.7698x2y + 5.87024x2 − 35.033xy2 − 26.212xy

−3
2

(1.22756x − 6.26615y + 1.31989)
(3
2
x − 2.07489y − 1

2

)(1
2
x+

151
100

y − 1
)

+
151
200

(1
2
x+

151
100

y − 1
)
− 0.069246x+ 23.7332y3 + 3.07019y2 + 10.0692y

−1.25064
)
,

ẏ ≃ −0.302806
(41

8
x3 − 20.442x2y − 5.4375x2 + 30.7698xy2 + 11.7405xy − 3

2(3
2
x − 2.07489y − 1

2

)(3
2
x+ 1.22756y − 1.75

)(1
2
x+

151
100

y − 1
)

+
1
4

(1
2
x − 1

+
151
100

y
)

+ 2.4375x − 11.6776y3 − 13.1067y2 − 0.0692464y − 0.6875
)
,

(4.24)

its first integral is

H6(x,y) =
1
4

(
−
(1
2
x+

151
100

y − 1
)4

+ 3
(3
2
x − 2.07489y − 1

2

)2(1
2
x+

151
100

y − 1
)2
−
(
− 1 +

1
2
x

+
151
100

y
)2(3

2
x − 2.07489y − 1

2

)4)
.

In the half-plane Σ− we consider the linear differential center

ẋ = 2 +
1
2
x − 1

2
y, ẏ = x − 1

2
y + 2, (4.25)

with the first integral H(x,y) =
(
x − 1

2
y
)2

+ 2(2x − 2y) +
1
4
y2.

The pair (y1, y2) ≃ (2.58579,5.41421) is the unique real solution of system (4.13), when

k = 6. This proves that the discontinuous piecewise differential system (4.24)–(4.25) has the
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unique limit cycle shown in Figure 4.2(c). These examples complete the proof of Theorem

4.2.

Section 4.3 LC of PWS formed by two cubic Hamiltonian saddles

This subsection aims to give the upper bound of the maximum number of cross-

ing limit cycles of piecewise differential Hamiltonian systems that are separated by the

straight line Σ and formed by two cubic Hamiltonian saddles.

4.3.1 Statement of the second main result

Our second result consists in solving the sixteenth extended Hilbert problem for dis-

continuous piecewise differential systems formed by nilpotent Hamiltonian saddles of

cubic linear homogeneous polynomials in each piece separated by the straight line Σ.

The results are presented in the following theorem.

Theorem 4.3 The maximum number of crossing limit cycles of the discontinuous piece-

wise differential systems separated by the straight line Σ, and formed by two Hamiltonian

nilpotent saddles (C̃i) and (C̃j) for i, j ∈ {1,2,3,4,5,6} is at most four. For all these classes,

there are systems exhibiting exactly four limit cycles, see Figures 4.3, 4.4, 4.5, 4.6, 4.7,

4.8, 4.9 and 4.10.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1

2

3

4

5

6

(a)
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)
-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(c)

Figure 4.3: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.28)–(4.29), (b) for (4.30)–(4.31), and (c) for (4.32)–(4.33).
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Figure 4.4: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.34)–(4.35), (b) for (4.36)–(4.37), and (c) for (4.38)–(4.39).
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Figure 4.5: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.40)–(4.41), and (b) for (4.42)–(4.43).
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Figure 4.6: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.44)–(4.45), and (b) for (4.46)–(4.47).

4.3.2 Proof of theorem 4.3

In this subsection we give the proof of theorem 4.3 for the discontinuous piece-

wise differential systems formed by either (C̃i)–( ˜̃Ci), or (C̃i)–(C̃j), with i , j and i, j ∈
{1,2,3,4,5,6}. The system ( ˜̃Ci) and its corresponding first integral H̃i(x,y), are obtained

by changing the parameters (a,b,c,µ,α1,δ1,γ1,α2,δ2,γ2) of system (C̃i) and of the inte-
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Figure 4.7: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.48)–(4.49), (b) for (4.50)–(4.51), and (c) for (4.52)–(4.53).
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Figure 4.8: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.54)–(4.55), (b) for (4.56)–(4.57), and (c) for (4.58)–(4.59).
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Figure 4.9: The four limit cycles of the discontinuous piecewise differential system, (a)
for (4.60)–(4.61), (b) for (4.62)–(4.63), and (c) for (4.64)–(4.65).

gral Hi(x,y) by the parameters (a1,b1, c1,µ1, α̃1, δ̃1, γ̃1, α̃2, δ̃2, γ̃2).

Proof.

Firstly, we prove the Theorem for the discontinuous piecewise differential system formed

by systems (C̃i)–( ˜̃Ci) with their corresponding first integrals Hi(x,y) and H̃i(x,y), respectively.

In one half-plane we consider the Hamiltonian nilpotent saddle (C̃i) with its corresponding

first integral Hi(x,y) given by (4.2), or (4.4), or (4.6), or (4.8), or (4.10) or (4.12), and in the
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Figure 4.10: The four limit cycle of the discontinuous piecewise differential system, (a)
for (4.66)–(4.67), and (b) for (4.68)–(4.69).

other half-plane we consider the second differential Hamiltonian nilpotent saddle ( ˜̃Ci) with its

first integral H̃i(x,y).

In order to prove that the discontinuous piecewise differential systems (C̃i)–( ˜̃Ci) for i ∈ {1,2,3,4,
5,6} have a limit cycle intersecting the line of discontinuity x = 0 in two different points (0, y1)

and (0, y2) with y1 < y2, these points should satisfy the system of equations

e1 = Hi(0, y1)−Hi(0, y2) = 0, e2 = H̃i(0, y1)− H̃i(0, y2) = 0, (4.26)

where e1 and e2 for i = 1 are cubic equations such that

e1 =
1

4b

(
4a2γ1δ1 + 2a2γ2

1y1 + 2a2γ2
1y2 + 4abγ1δ2 + 4abγ2δ1 + 4abγ1γ2y1 + 4abγ1γ2y2

+4b2γ2δ2 + 2b2γ2
2y1 + 2b2γ2

2y2 − 4bγ1δ
3
1 − bγ

4
1y

3
1 − 4bγ3

1δ1y
2
1 − bγ

4
1y

2
1y2 − bγ4

1y
3
2

−6bγ2
1δ

2
1y1 − bγ4

1y1y
2
2 − 4bγ3

1δ1y1y2 − 4bγ3
1δ1y

2
2 − 6bγ2

1δ
2
1y2

)
= 0,

e2 = − 1
4b1

(
− 4a2

1γ̃1δ̃1 − 2a2
1γ̃1

2y1 − 2a2
1γ̃1

2y2 − 4a1b1γ̃1δ̃2 − 4a1b1γ̃2δ̃1 − 4a1b1γ̃1γ̃2y1

−4a1b1γ̃1γ̃2y2 − 4b2
1γ̃2δ̃2 − 2b2

1γ̃2
2y1 − 2b2

1γ̃2
2y2 + 4b1γ̃1δ̃1

3 + 6b1γ̃1
2δ̃1

2
y2 + b1γ̃1

4y3
1

+4b1γ̃1
3δ̃1y

2
1 + b1γ̃1

4y2
1y2 + 6b1γ̃1

2δ̃1
2
y1 + b1γ̃1

4y1y
2
2 + 4b1γ̃1

3δ̃1y1y2 + 4b1γ̃1
3δ̃1y

2
2

+b1γ̃1
4y3

2

)
= 0.

Using Bézout’s Theorem 1.1, we obtain that the maximum number of solutions of system

(4.26) is at most nine. Since these solutions are symmetric, we know that the maximum

number of the solutions satisfying y1 < y2 is at most four. Consequently, the discontinuous

piecewise differential system (C̃1)–( ˜̃C1) can have at most four limit cycles.

For the remaining cases i ∈ {2,3,4,5,6}, we know that e1 and e2 are also cubic equations. So

by a similar way we prove that the discontinuous piecewise differential system (C̃i)–( ˜̃Ci) for
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i ∈ {2,3,4,5,6} can have at most four limit cycles.

Secondly, we prove the Theorems for the discontinuous piecewise differential system formed

by systems (C̃i)–(C̃j) with their corresponding first integrals Hi(x,y) and Hj(x,y), for i , j,

respectively.

In one half-plane we consider the differential Hamiltonian nilpotent saddle (C̃i) with its first

integral Hi(x,y). In the other half-plane we consider the differential Hamiltonian nilpotent

saddle (C̃j) with its corresponding first integral Hj(x,y), we recall that we performed a different

change of variables to obtain the systems (C̃i) and (C̃j) and their corresponding first integrals.

We suppose the existence of limit cycle of the discontinuous piecewise differential system (C̃i)–
(C̃j), which intersects the discontinuity line x = 0 in two distinct points (0, y1) and (0, y2) with

y1 , y2. Then these points satisfy the system of equations

e1 = Hi(0, y1)−Hi(0, y2) = 0, e2 = Hj(0, y1)−Hj(0, y2) = 0. (4.27)

For i = 1 and j = 2 we obtained that e1 and e2 are cubic equations, where

e1 = − 1
4b

(
bγ4

1y
3
2 − 2a2γ2

1y1 − 2a2γ2
1y2 − 4abγ1δ2 − 4abγ2δ1 − 4abγ1γ2y1 − 4abγ1γ2y2

−4b2γ2δ2 − 2b2γ2
2y1 − 2b2γ2

2y2 + 4bγ1δ
3
1 + bγ4

1y
3
1 + 4bγ3

1δ1y
2
1 + bγ4

1y
2
1y2 − 4a2γ1δ1

+6bγ2
1δ

2
1y1 + bγ4

1y1y
2
2 + 4bγ3

1δ1y1y2 + 4bγ3
1δ1y

2
2 + 6bγ2

1δ
2
1y2

)
= 0,

e2 = − 1
2b

(
− 2a2γ1δ1 − a2γ2

1y1 − a2γ2
1y2 − 2abγ1δ2 − 2abγ2δ1 − 2abγ1γ2y1 − 2abγ1γ2y2

+6bγ1γ2δ
2
1y2 − b2γ2

2y1 − b2γ2
2y2 + 6bγ1δ

2
1δ2 + 2bγ2δ

3
1 + 2bγ3

1γ2y
3
1 + 6bγ2

1γ2δ1y
2
1

+2bγ3
1δ2y

2
1 + 2bγ3

1γ2y
2
1y2 + 6bγ2

1δ1δ2y1 + 6bγ1γ2δ
2
1y1 + 2bγ3

1γ2y1y
2
2 + 2bγ3

1δ2y1y2

+6bγ2
1γ2δ1y1y2 + 2bγ3

1γ2y
3
2 + 2bγ3

1δ2y
2
2 + 6bγ2

1γ2δ1y
2
2 + 6bγ2

1δ1δ2y2 − 2b2γ2δ2

)
= 0.

Using again Bézout’s Theorem 1.1, and due to the symmetry of the solutions of system

(4.27), we know that the maximum number of limit cycles of the discontinuous piecewise

differential system (C̃1)–(C̃2) is at most four.

Likewise for i, j ∈ {1,2,3,4,5,6} and i , j, the discontinuous piecewise differential system

(C̃i)–(C̃j) has at most four limit cycles.

Now we have to complete the proof of Theorem 4.3 by building discontinuous piecewise

differential systems for all the classes (C̃i)–(C̃j), with i, j ∈ {1,2,3,4,5,6}, exhibiting exactly

four limit cycles.

Four limit cycles for the discontinuous piecewise differential system (C̃1)–( ˜̃C1) .
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In the half-plane Σ− we consider the Hamiltonian nilpotent saddle ( ˜̃C1)

ẋ =
1

75200

(
43740(x+ 1)y2 + (60961− 48600x(x+ 2))y + 50(x+ 1)(360x(x+ 2)

+691)− 13122y3
)
,

ẏ =
1

7520

(
4860(x+ 1)y2 − 5(1080x(x+ 2) + 1411)y + 250(x+ 1)(8x(x+ 2) + 7)

−1458y3
)
,

(4.28)

its corresponding first integral is

H1(x,y) =
1
4

(
−
(
− x+

9
10

y − 1
)4

+ 4
(
− x+

9
10

y − 1
)2
− 4

(
− 5

2
x − 151

100
y − 5

2

)(
− x

+
9

10
y − 1

)
+
(
− 5

2
x − 151

100
y − 5

2

)2)
.

In the half-plane Σ+ we consider the Hamiltonian differential nilpotent saddle (C̃1)

ẋ ≃ −0.020184
(
− 69

10

(
− 23

10
y + 2.5556

)
x2 + x

(69
10

(
2.5556− 23

10
y
)2
− 51.8443

)
+

23
10

x3 + 15.8951(54.1443x+ 238.484y − 220.608) + 581.102
(
− x − 23

10
y

+2.55556
)

+ 27.9841y3 − 93.2803y2 − 2584.19y + 1947.86
)
,

ẏ ≃ −0.020184
(
3x2(2.55556− 23

10
y) +

(
1− 3

(
2.55556− 23

10
y
)2)

x − x3 − 15.8951

(−40.8673 + 2x+ 54.1443y)− 252.653
(
− x − 23

10
y + 2.55556

)
− 12.167y3

+40.5567y2 + 6.78134y − 21.6217
)
,

(4.29)

which has the first integral

H̃1(x,y) ≃ 1
4

(
− 63.5803(−x − 51.8443y + 38.3117)

(
− x − 23

10
y + 2.55556

)
+ 2(−x

−51.8443y + 38.3117)2 −
(
− x − 23

10
y + 2.55556

)4
+ 505.306

(
− x − 23

10
y

+2.55556
)2)

.

The discontinuous piecewise differential system (4.28)–(4.29) has four limit cycles, because

system (4.26) in this case has exactly four real solutions (y1, y2) ≃ {(1.44782,6.06606), (2.2075,

5.87454), (2.837,5.63494), (3.48469,5.29375)}, see Figure 4.3(a).

Four limit cycles for the discontinuous piecewise differential system (C̃1)–(C̃2).
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In Σ− we consider the Hamiltonian nilpotent saddle which takes the form of system (C̃1)

ẋ ≃ −0.0101267
(
625x3 + 375x2

(
5y − 35

8

)
+
(
75

(
5y − 35

8

)2
+ 18.7499

)
x

−16.8134
(
5(x+ y)− 35

8

)
+ 625y3 + 1.83376(88.7493x+ 187.499y

−183.003..)− 1640.63..y2 + 1083.99y − 40.0591
)
,

ẏ ≃ −0.010126
(
− 625x3 − 375x2

(
5y − 35

8

)
+
(
1− 75

(
5y − 35

8

)2)
x+ 16.8134(

5x+ 5y − 35
8

)
− 1.83376(−10x+ 88.7493y − 96.597) + 1640.63y2 − 625y3

−14543
10

y + 438.896
)
,

(4.30)

with the first integral

H1(x,y) ≃ 1
4

(
−
(
5x+ 5y − 35

8

)4
+ 6.7253

(
5x+ 5y − 35

8

)2
− 7.33504(−x+ 18.7499y

−20.1944)
(
5x+ 5y − 35

8

)
+ 2(−x+ 18.7499y − 20.1944)2

)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ −0.0647249
(
− 3

2

(
6
(216

5
− 291

5
y
)
x2 − 182

5
x3 + x

(
− 8019

10
y2 + 1333.8y

−532.65
)
− 5(108y3 − 243y2 + 154.5y − 27) +

5
2

(
9(3y − 3)2 − 15

2

))
− 363

4

(2x+ 3y − 3)− 33
4

(
− 97

10
x − 30y + 22.5

))
,

ẏ ≃ −0.0647249
(
− 3

2
(−12x2

(41
10
− 91

10
y
)

+
(
− 12(3y − 3)

(47
10
− 97

10
y
)
− 3

200

)
x

−16
5
x3 +

2673
10

y3 − 6669
10

y2 +
10653

20
y − 132.675

)
+

33
4

(2
5
x − 97

10
y +

47
10

)
+

121
2

(2x+ 3y − 3)
)
,

(4.31)

which has the first integral

H2(x,y) ≃ 1
2

(
− 2

( 1
10

x − 5y +
5
2

)
(2x+ 3y − 3)3 − 20.1667(2x+ 3y − 3)2 − 11(

1
10

x − 5y

+
5
2

)(2x+ 3y − 3)− 3
2

(
0.1x − 5y +

5
2

)2)
.

The discontinuous piecewise differential system (4.30)–(4.31) has exactly four limit cycles

which are shown in Figure 4.3(b), because system (4.27) for i = 1 and j = 2 has the four solu-

tions (y1, y2) ≃ {(0.0795,1.03166), (0.11693,0.81620), (0.16528,0.66715), (0.24045,0.52019)}.
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Four limit cycles for the discontinuous piecewise differential system (C̃1)–(C̃3).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃1)

ẋ ≃ x(16.4752− 6(4.39497− 2y)2)− 0.0690837
(
− 6x2(4.39497− 2y)− 2x3

+258.974(x − 2y + 4.39497)− 11.3792(18.4752x+ 137.491− 65.9008y)

+16y3 − 105.479y2 − 39.6431y + 366.341
)
,

ẏ ≃ −0.069084
(
− 3x2(−2y + 4.3949) + x(1− 3(−2y + 4.39497)2)− x3 + 11.3792

(18.4752y − 2x − 36.9363) + 129.487(x − 2y + 4.39497) + 8y3 − 52.7396y2

+99.4193y − 52.3507
)
,

(4.32)

with the first integral

H1(x,y) ≃ 1
4

(
− (−2y + x+ 4.39497)4 + 258.974(−2y + x+ 4.39497)2 + 45.517(−x

+16.4752y − 32.5414)(x − 2y + 4.39497) + 2(16.4752y − x − 32.5414)2
)
.

In the half-plane Σ+ we consider the Hamiltonian differential nilpotent saddle (C̃3)

ẋ =
1

10996000

(
12(3810997x+ 20797042)y2 + (9x(810333x − 33733324)

−455004604)y − 37856096y3 − 250(x(x(6506x+ 48597)− 1943212)

−567980)
)
,

ẏ =
1

10996000

(
62500(x(x(23x − 372) + 223) + 7734) + 500(9759x2 + 48597x

−971606)y + 9(16866662− 810333x)y2 − 15243988y3
)
,

(4.33)

its first integral is

H3(x,y) =
1
4

(1
4
x+ y − 7

2

)4
− 3

2

(1
2
x − 749

1000
y +

5
4

)2(1
4
x+ y − 7

2

)2
− 1

2

(1
2
x − 749

1000
y +

5
4

)2
.

The solutions of system (4.27) for i = 1 and j = 3, are (y1, y2) ≃ {(−0.43595,2.00604),

(−0.34729,1.63833), (−0.24004,1.33811), (−0.09903,1.04468)}, and these four solutions pro-

vide the four limit cycles for the discontinuous piecewise system (4.32)–(4.33) shown in Figure

4.3(c).

Four limit cycles for the discontinuous piecewise differential system (C̃1)–(C̃4).
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In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃1)

ẋ ≃ 0.08643
(
x3 − 3x2(−y − 0.224122) + x

(
3(−y − 0.224122)2 − 27.1399

)
+95.9099(−x − y − 0.224122) + y3 − 9.79336(−15.57x − 27.1399y

−9.13537) + 0.672365y2 − 183.993y − 82.6848
)
,

ẏ ≃ 0.0864307
(
− x3 − y3 − 3x2(y + 0.224122) + x

(
4− 3(−y − 0.224122)2

)
−95.9099(−x − y − 0.224122) + 9.79336

(
− 4x − 1557

100
y − 6.54229

)
−0.672365y2 + 26.9892y + 12.1768

)
,

(4.34)

this system has the first integral

H1(x,y) ≃ 1
4

(
− (−x − y − 0.224122)4 +

9591
50

(−x − y − 0.224122)2 + 39.1734(2x+

13.57y + 6.09405)(−x − y − 0.224122) + 2
(
2x+

1357
100

y + 6.09405
)2)

.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃4)

ẋ ≃ 2.9301
(1
2

(2
5
x − 0.15714y +

1
2

)
(0.763x2 + x(1.6881y + 8.4428)− 2.15367y2

−8.3007y − 1.76381)− 1
4

(0.525429x − 0.474567y − 0.10928)− 0.3775
(1
2
x

+
151
100

y +
11
2

))
,

ẏ ≃ 2.9301
(
− 1

2

(2
5
x − 0.15714y +

1
2

)
(0.664x2 + x(2.54986y + 10.435) + 40.325

+2.3901y2 + 19.7052y) +
1
4

(2
5
x+

49
20

+ 0.525429y
)

+
1
8

(11
2

+
151
100

y +
1
2
x
))
,

(4.35)

with the first integral

H4(x,y) ≃ −1
4

(2
5
x − 0.157142y +

1
2

)4
− 3

2

(1
2
x+

151
100

y +
11
2

)2(2
5
x − 0.157142y +

1
2

)2

+
1
4

(2
5
x − 0.157142y +

1
2

)2
+

1
2

(1
2
x+

151
100

y +
11
2

)(2
5
x − 0.157142y +

1
2

)
+

1
4

(1
2
x+

151
100

y +
11
2

)2
.

The discontinuous piecewise system (4.34)–(4.35) has four limit cycles, because system

(4.27) for i = 1 and j = 4, has the four real solutions (y1, y2) ≃ {(0.79064,5.62516), (1.61348,

5.37496), (2.35323,5.04467), (3.24928,4.47718)}, see Figure 4.4(a).
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Four limit cycles for the discontinuous piecewise differential system (C̃1)–(C̃5).

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃1)

ẋ =
1

3200

(
11240x3 − 24x2(1541y − 4702) + 8x

(
4935y2 − 32772y + 45034

)
−13800y3 + 144960y2 − 462716y + 335197

)
,

ẏ =
1

16000

(
49032x3 − 72x3(7025y − 18468)(46230y2 − 282120y + 279031)

−65800y3 + 655440y2 − 1801360y + 373051
)
,

(4.36)

its corresponding first integral is given by

H1(x,y) =
1
4

(( 7
10

x − 1
2
y +

83
20

)4
+

3
10

(x − y + 4)2
( 7
10

x − 1
2
y +

83
20

)2
− (x − y + 4)4

−4(x − y + 4)2
)
.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ ≃ −5
(
− 0.8285x3 + 2.6325x2y − 8.94975x2 − 2.7375xy2 + 19.6425xy − 2(x

−y + 4)− 3
20

(x − y + 4)
( 7
10

x − 1
2
y +

83
20

)(
− 6

5
x+ y − 123

20

)
− 29.9164x

+0.9375y3 − 10.4438y2 + 35.0831y − 28.2633
)
,

ẏ ≃ 5
(
0.7599x3 − 2.4855x2y + 7.72965x2 + 2.6325xy2 − 17.8995xy − 3

20

(7
5
x

−6
5
y +

139
20

)
(x − y + 4)

( 7
10

x − 1
2
y +

83
20

)
+ 2(x − y + 4) + 13.9686 + 22.6829x

−0.9125y3 + 9.82125y2 − 29.9164y
)
,

(4.37)

which has the first integral

H5(x,y) =
1
4

(( 7
10

x − 1
2
y +

83
20

)4
+

3
10

(x − y + 4)2
( 7
10

x − 1
2
y +

83
20

)2
− (x − y + 4)4 − 4(x − y

+4)2
)
.

System (4.27) for i = 1 and j = 5, has the four real solutions (y1, y2) ≃ {(−0.39789,4.28545),

(−0.27168,3.52194), (−0.123785,2.94818), (0.0586396,2.44949), which provide the four limit

cycles for the discontinuous piecewise system (4.36)–(4.37) shown in Figure 4.4(b).

Four limit cycles for the discontinuous piecewise differential system (C̃1)–(C̃6).
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In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃1)

ẋ ≃ −0.519884
(1
2

(−0.934804x3 + 2.80441x2(0.934804y − 1) + x(−2.80441

(0.934804y − 1)2 − 1.8875) + 0.76363y3 − 2.8223− 2.4507y2 + 1.4815y)

−0.934804(−x+ 0.934804y − 1) +
1
2

(−0.827009x − 2.82311y − 0.827009)
)
,

ẏ ≃ −0.519884
(
1 +

1
2

(
x(3.125− 3(0.934804y − 1)2)− x3 + 3x2(−1 + 0.934804y)

+0.816885y3 − 2.62157y2 + 4.69191y +
17
18

)
− 1

2
(−0.827009y + 5x+ 5) + x

−0.934804y
)
,

(4.38)

its corresponding first integral is

H1(x,y) ≃ 1
4

(
− (−x+ 0.934804y − 1)4 + 4(−x+ 0.934804y − 1)2 − 4

(
− 5x

2
−

151y
100

−5
2

)
(−x+ 0.934804y − 1) +

(
− 5x

2
−

151y
100

− 5
2

)2)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ −0.2393
(
− 0.1789x3 + 26.2423x2y − 9.69614x2 − 7.03195xy2 + 42.2531xy

−17.7297(x+ 2y)− 0.934364(x+ 2y)(−x+ 2.17886y − 1.48337)(0.17886x

+8.71544y − 2.96673)− 14.3829x − 7.11171 + 38.5381y3 − 46.0317y2

+31.3384y
)
,

ẏ ≃ 0.2393
(
2x3 − 0.53658x2y + 4.4501x2 + 26.2423xy2 − 19.3923xy − 8.86486

(x+ 2y)− 0.93436(0.17886y − 2x − 1.48337)(x+ 2y)(2.1789y − x − 1.4834)

+6.6011x − 2.3439y3 + 21.1265y2 + 3.2639− 14.3829y
)
,

(4.39)

with its corresponding first integral

H6(x,y) ≃ 1
4

(
− (x+ 2y)4 + 1.86873(−x+ 2.17886y − 1.48337)2(x+ 2y)2 + 17.7297

(x+ 2y)2 − (−x+ 2.17886y − 1.48337)4
)
.

The discontinuous piecewise differential system (4.38)–(4.39) has four limit cycles, due

to the fact that system (4.27) when i = 1 and j = 6, has exactly the four real solutions

(y1, y2) ≃ {(1.41808,5.76618), (2.16491,5.57153), (2.79194,5.32269), (3.46607,4.94562)},
the limit cycles are shown in Figure 4.4(c).
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Four limit cycles for the discontinuous piecewise differential system (C̃2)–( ˜̃C2).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ −0.325492
(
− 3

2
x2(5.45467− 11.2704y) + 0.933642x3 − x

(
− 325

4
y2

+84.7104y − 20.8767
)
− 1.65574

(3
2
x+ 1.65574y − 1

)
+ 3.40342x

+6.47569(−1 + 18.1567y3 − 24.6733y2 + 3.45876y) + 21.4441y

−2.27774(4.96722(1.65574y − 1)2 − 6.47569)− 10.247
)
,

ẏ ≃ −0.325492
(3
4

(1.43887− 3.73457y)x2 +
(
3(1.65574y − 1)(1.23887

−3.40342y) +
1

100

)
x − 1

20
x3 +

1
2

(1
2
x+ 1.65574y − 1

)
− 1

10
x+ 4.52771

−27.0833y3 + 42.3552y2 − 24.2802y
)
,

(4.40)

its corresponding first integral is

H2(x,y) ≃ 1
2

(
− 2

(
− 1

10
x − 6.47569y + 2.27774

)(1
2
x+ 1.65574y − 1

)3
−
(
− 1 +

1
2
x+

1.65574y − 1)2 − 2
(
− 1

10
x − 6.47569y + 2.27774

)
(−1 +

1
2
x+ 1.65574y)

−(−0.1x − 6.47569y + 2.27774)2
)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle ( ˜̃C2)

ẋ ≃ −1.8018
(3
4

(
25.4464x3 +

24
5
x2(24.564y − 14.166) + x(181.235y2

−202.129y + 41.2235) +
19
10

(48.668y3 − 30.9465y2 + 4.4055y

−0.274625)− 5
2

(69
10

(23
10

y − 13
20

)2
− 1.425

))
− 2.16407

(
− 13

20
+

23
10

y

+
8
5
x
)

+ 0.7275
(267

50
x+

437
50

y − 6.985
))
,

ẏ ≃ −1.8018
(3
4

(
x
(3
4
− 48

5

(23
10

y − 13
20

)(267
50

y − 93
20

)
)
− 16.384x3 − 192

25
x2(497

50
y − 119

20

)
− 60.4118y3 + 101.064y2 − 41.2235y + 3.46963

)
+1.50544

(8
5
x+

23
10

y − 13
20

)
− 0.7275

(16
5
x+

267
50

y − 93
20

))
,

(4.41)

with its first integral

H̃2(x,y) ≃ 1
2

(
− 2

(
x+ 1.9y − 5

2

)(8
5
x+

23
10

y − 13
20

)3
+

9409
7500

(8
5
x+

23
10

y − 13
20

)2
− 97

50
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(
x+ 1.9y − 5

2

)(8
5
x+

23
10

y − 13
20

)
+

3
4

(
x+ 1.9y − 5

2

)2)
.

The solutions of system (4.26) for i = 2, are (y1, y2) ≃ {(0.4992,1.37208), (0.67124,1.33776),

(0.7963,1.29447), (0.92016,1.2316)}, which implies that the discontinuous piecewise differ-

ential system (4.40)–(4.41) has exactly four limit cycles shown in Figure 4.5(a).

Four limit cycles for the discontinuous piecewise differential system (C̃2)–(C̃3).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ −0.0005804
(
− 269.125

(
15.206x3 + 3(47.5593y − 113.808)x2 + x

(210.284y2 − 710.853y + 135.232)− 630.558y3 + 3769.11y2 − 6406.29y

+4.97794
(
16.206(5.40201y − 14.3511)2 − 269.125

)
+ 2955.68

)
− 5.40201

(x+ 5.40201y − 14.3511)− 269.125(4.40201x − 10.804y + 41.242)
)
,

ẏ ≃ −0.0005804
(
− 269.125

(
− 4x3 − 3x2(15.206y − 38.0754) + x(−6(4.40201y

−9.3732)(5.40201y − 14.3511)− 269.125)− 1459.7− 70.0946y3 − 135.232

y + 355.426y2
)

+ 269.125(2x+ 4.40201y − 9.3732) + 5.40201y − 14.3511

+x
)
,

(4.42)

with the first integral

H2(x,y) ≃ 1
2

(
− 2(−y + x+ 4.97794)(−14.3511 + x+ 5.40201y)3 − 0.00371574(x

+5.40201y − 14.3511)2 − 2(x − y + 4.97794)(x+ 5.40201y − 14.3511)

−269.125(x − y + 4.97794)2
)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃3)

ẋ = −10
7

((1
4
x+ y − 89

20

)(
− 97

400
x2 + x

(629
100
− 11

10
y
)

+ 23y2 − 121y +
7393

50

)
−2

(1
5
x − 2y +

17
4

))
,

ẏ =
10
7

(( 71
1600

x2 + x
(7739
4000

− 181
200

y
)

+
31
20

y2 − 527
200

y − 2201
800

)(1
4
x+ y − 89

20

)
+

1
5

(1
5
x − 2y +

17
4

))
,

(4.43)

which has the first integral

H3(x,y) =
1
4

(1
4
x+ y − 89

20

)4
− 3

2

(1
5
x − 2y +

17
4

)2(1
4
x+ y − 89

20

)2
− 1

2

(1
5
x − 2y +

17
4

)2
.
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Due to the fact that system (4.27) for i = 2 and j = 3, has the four real solutions (y1, y2) ≃
{(1.56431,2.46132), (1.6127,2.37006), (1.6728,2.27025), (1.75781,2.14818)}, we conclude

that the discontinuous piecewise differential system (4.42)–(4.43) has four limit cycles, see

Figure 4.5(b).

Four limit cycles for the discontinuous piecewise differential system (C̃2)–(C̃4).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ 6.5621 ∗ 106
(
0.00001458

(
− 0.000086547x3 − 0.3(−0.00008566y

−0.0000863273)x2 + x(−1.78261y2 ∗ 10−6 + 4.88504y ∗ 10−7 + 10−6

∗7.63022) +
1

10

(
3.60655y3 ∗ 10−7 − 1.80966y2 ∗ 10−6 − 10−6 + 10−6

∗1.23197y
)

+ 0.395527
(
0.0134524(0.00448412y − 0.01)2 − 10−6

∗1.4585
)))

,

ẏ ≃ 6.5621 ∗ 106
(
0.000014585(0.0000125427 + 0.0004x3 + x(1.4585 ∗ 10−7

+
3
5

(−0.0405527− 0.00955159y)(−0.01 + 0.00448412y))− x2
( 3
100

(−0.0425527− 0.00865476y)
)
− 7.63022 ∗ 10−6y − 2.44252 ∗ 10−7y2

+5.94204 ∗ 10−7y3)
)
,

(4.44)

which has the first integral

H2(x,y) ≃ 0.5
(
− 2(0.1x+ 0.1y + 0.395527)(−0.1x+ 0.00448412y − 0.01)3

+0.000014585(0.1x(0.1x+ 0.1y + 0.395527)2
)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃4)

ẋ =
1

185850000

(
10135503x3 + 189x2(375289y − 1802450)− 72

(
5103308y2

−17232425y − 19565375
)
x+ 16

(
19449472y3 − 39895800y2 − 78087500

−190896375y
))
,

ẏ =
1

991200000

(
− 11340189x3 − 5292x2(30644y − 113575)− 144x(2627023

y2 − 25234300y + 13326500) + 64(10206616y3 − 51697275y2 + 44331250

−117392250y)
)
,

(4.45)
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its corresponding first integral is

H4(x,y) = −1
4

(
− 3

200
x − 4

25
y +

1
2

)4
− 3

2

(3x
2
−

17y
10
− 3

)2(
− 3

200
x − 4

25
y +

1
2

)2
+

7
40(

− 3
200

x − 4
25

y +
1
2

)2
+

1
2

(3
2
x − 17

10
y − 3

)(
− 3

200
x − 4

25
y +

1
2

)
+

5
14

(
− 3

−17
10

y +
3
2
x
)2
.

System (4.27) for i = 2 and j = 4, has the four real solutions (y1, y2) ≃ {(0.9575,6.18244),

(1.89796,5.97084), (2.62004,5.70563), (3.3489,5.32627)}, which provide the four limit cy-

cles for the discontinuous piecewise system (4.44)–(4.45) shown in Figure 4.6(a).

Four limit cycles for the discontinuous piecewise differential system (C̃2)–(C̃5).

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ −0.204161
(1
2

(
9.79621x3 + 3x2(30.7882y + 3.41307) + x(−49.8671

+217.718y2 − 60.1842y)x+ 9.79621(−1 + 15.5221y3 + 4.53051y

−22.2247y2) + 8.40587(4.71431(−1 + 1.57144y)2
)
− 4.89811

+1.57144(x+ 1.57144y − 1) + 0.5(9.79621x+ 30.7882y + 3.41307)
)
,

ẏ ≃ −0.204161
(
x+

1
2

(
x(−6(1.57144y − 1)(9.79621y + 8.40587))− 3x2

(9.79621y + 8.40587)− 72.5726y3 + 30.0921y2 + 49.8671y − 25.2176
)

+1.57144y − 1
2

(9.79621y + 8.40587)− 1
)
,

(4.46)

its first integral is

H2(x,y) ≃ 1
2

(
− 2(9.79621y + 8.40587)(x+ 1.57144y − 1)3 + 2(−1 + x+ 1.57144y)2

−2(9.79621y + 8.40587)(x+ 1.57144y − 1) +
1
2

(9.79621y + 8.40587)2
)
.

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ =
1

296000

(
2512000x3 − 4800x2(3880y + 49) + 20(2065641y2 − 273084y

−112804)x − 24325359y3 + 19174620y2 + 8688868y + 765520
)
,

ẏ =
1

14800

(
48000x3 − 2400x2(157y + 8)− 688547 + 160x(5820y2 + 147y

−143)y3 + 136542y2 + 112804y + 13736
)
,

(4.47)
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with the first integral

H5(x,y) =
1
4

((
− x+

77
20

y + 1
)4
− 6

(
x − 2y +

3
10

)2(
− x+

77
20

y + 1
)2
−
(
x − 2y +

3
10

)4
− 2

5

(
x

−2y +
3

10

)2)
.

System (4.27) for i = 2 and j = 5, has the four real solutions (y1, y2) ≃ {(0.59048,1.46437),

(0.4015,1.5171), (0.75426,1.39625), (0.93725,1.28925)}, which provide the four limit cycles

for the discontinuous piecewise system (4.46)–(4.47) shown in Figure 4.6(b).

Four limit cycles for the discontinuous piecewise differential system (C̃2)–(C̃6).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃2)

ẋ ≃ −3.0441
( 3
20

(
33.8979x3 +

57
10

(579
25

y − 7977
500

)
x2 + x

(4131
25

y2 − 207.216y

+47.0097
)

+
21
10

(
32y3 − 108

5
y2 +

801
200

y − 27
125

)
− 3

(
6
(
2y − 3

5

)2
− 63

200

))
+

3
40

(579
100

x+
42y

5
− 363

50

)
+

1
2

(
− 19

10
x − 2y +

3
5

))
,

ẏ ≃ −3.0441
( 3
20

(
− 24.6924x3 − 1083

100
x2

(9.39
100

y − 183
25

)
+ x

( 243
2000

+
57
5

(
2y − 3

5

)
(579
100

y − 156
25

)
)
− 1377

25
y3 + 103.608y2 − 47.0097y + 5.9454

)
+

19
40

(19
10

x − 3
5

+2y
)
− 3

40

(171
50

x+
579
100

y − 156
25

)))
,

(4.48)

its corresponding first integral is given by

H2(x,y) =
1
2

(
− 2

( 9
10

x+
21
10

y − 3
)(

1.9x+ 2y − 3
5

)3
+

5
3

(
1.9x+ 2y − 3

5

)2
−
( 9
10

x+
21y
10
− 3

)
(
1.9x+ 2y − 3

5

)
+

3
20

( 9
10

x+
21y
10
− 3

)2)
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ −0.0817147
(
4.23771x3 + 251.579x2y − 74.5707x2 + 1485.03xy2

−1228.58xy − 1.3192(4.23771x − 65.9016y + 12.0698)(x − 4y)(8.23771y

+x − 3.01746) + 50.3792(−4y + x) + 225.014x+ 4860.95y3 − 5060.35y2

+1853.6y − 226.323
)
,

ẏ = 0.0817147
(
− 9.05237x2 + 12.7131x2y + 251.579xy2 − 149.141xy + 2x3

(4.49)
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−1.3192(−4y + x)(2x+ 4.23771y − 3.01746)(x+ 8.23771y − 3.01746)

−12.5948(−4y + x) + 27.3151x+ 495.009y3 − 614.292y2 + 225.014y

−27.474
)
,

its corresponding first integral is

H6(x,y) ≃ 1
4

(
− (x − 4y)4 + 2.6384(−x − 8.23771y + 3.01746)2(x − 4y)2 + 25.1896

(x − 4y)2 − (−x − 8.23771y + 3.01746)4
)
.

The discontinuous piecewise system (4.48)–(4.49) has four limit cycles, because system

(4.27) for i = 2 and j = 6, has the four real solutions (y1, y2) ≃ {(0.34545,1.56086), (0.61254,

1.53336), (0.74912,1.50166), (0.86017,1.46364)}, these limit cycles are shown in Figure 4.7(a).

Four limit cycles for the discontinuous piecewise differential system (C̃3)–( ˜̃C3).

In the half-plane Σ− we consider the Hamiltonian nilpotent saddle (C̃3)

ẋ =
1

5600

(
485x3 + 9x2(460y − 2357)− 4x(9300y2 − 38130y + 17149)− 8

(23000y3 − 223350y2 + 690310y − 666477)
)
,

ẏ =
1

112000

(
1775x3 + x2(45795− 29100y)− 8x(10350y2 − 106065y

+185149) + 10(24800y3 − 152520y2 + 137192y + 209489)
)
,

(4.50)

its first integral is

H3(x,y) =
1
4

(1
4
x+ y − 89

20

)4
− 3

2

(1
5
x − 2y +

17
4

)2(1
4
x+ y − 89

20
)2 − 1

2

(x
5
− 2y +

17
4

)2
.

In the half-plane Σ+ we consider the Hamiltonian nilpotent saddle ( ˜̃C3)

ẋ ≃ 2.87846
(
− 2

5

( 1
10

x+ 6y − 3.4929
)(

(18.0611− 19.537y)x+ 0.03944x2

+43.5706y2 − 397.744y + 322.273
)

+ 601.947
( 1
10

x − 2.6852y + 3.9564
)

+5.98895(0.33148x − 32.2224y + 33.1174)
)
,

ẏ ≃ 2.87846
(
− 2

5

( 1
10

x+ 6y − 3.4929
)(
− x(0.321145− 0.181668y)− 1

200
x2

+6.27027y2 − 7.7525y + 0.62992
)
− 5.98895

(
0.33148y +

1
50

x+ 0.04635)

+22.4172
( 1
10

x − 2.6852y + 3.95638
))
,

(4.51)

113



and its first integral is

∼
H3 (x,y) ≃ 1

4

(( 1
10

x+ 6y − 3.4929
)4
− 6

( 1
10

x − 2.6852y + 3.95638)2
( 1
10

x+ 6y −

3.4929
)2
− 4

5

( 1
10

x+ 6y − 3.4929
)2

+ 59.8895
( 1
10

x − 2.6852y + 3.9564
)

( 1
10

x+ 6y − 3.4929
)
− 1120.86

( 1
10

x − 2.6852y + 3.95638
)2)

.

For i = 3, system (4.26) has the four real solutions (y1, y2) ≃ {(1.56431,2.46132), (1.6127,

2.37006), (1.6728,2.27025), (1.75781,2.14818)}, which provide the four limit cycles for the

discontinuous piecewise system (4.50)–(4.51) shown in Figure 4.7(b).

Four limit cycles for the discontinuous piecewise differential system (C̃3)–(C̃4).

In Σ− we consider the Hamiltonian nilpotent saddle (C̃3)

ẋ =
16
7

((
− 1

4
x+

3
4
y − 7

2

)(
− 3

32
x2 + x

(39
32

y − 75
16

)
+

261y2

64
−

321y
16

+
333
16

)
+

1
2(1

4
x+ y − 2

))
,

ẏ =
−16

7

((
− 1

4
x+

3y
4
− 7

2

)(
− 5

64
x2 + x

(29
32
− 33

64
y
)
− 3

64
y2 − 33

16
y +

85
16

)
+

1
8

(1
4
x

+y − 2
))
,

(4.52)

which has the first integral

H3(x,y) =
1
4

(
−x

4
+

3y
4
− 7

2

)4
− 3

2

(
−x

4
− y + 2

)2 (
−x

4
+

3y
4
− 7

2

)2
− 1

4

(
−x

4
− y + 2

)2
.

In the half-planeΣ+ we consider the Hamiltonian nilpotent saddle (C̃4)

ẋ ≃ 0.005186
(
85.1089(−x − 4y + 14.1679)

(
x(300.205− 103.454y)− 21.2026x2

−136.18y2 + 823.105y − 928.242
))
,

ẏ ≃ 0.005186
(
− 85.1089(14.1679− x − 4y)

(
x(105.712− 35.6079y)− 45.833y2

−7x2 + 273.867y − 325.348
))
,

(4.53)

its corresponding first integral is

H4(x,y) ≃ −1
4

(−x − 4y + 14.1679)4 − 3
2

(x+ 1.73421y − 3.8747)2(−x − 4y

+14.1679)2 + 42.5544(−x − 4y + 14.1679)2.
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The four solutions of system (4.27) for i = 3 and j = 4, are (y1, y2) ≃ {(0.89241,2.45296),

(0.95203,2.30495), (1.02213,2.15712), (1.10946,2)}, these solutions provide the four limit

cycles for the discontinuous piecewise system (4.52)–(4.53) shown in Figure 4.7(c).

Four limit cycles for the discontinuous piecewise differential system (C̃3)–(C̃5).

In Σ+ we consider the Hamiltonian nilpotent saddle (C̃3)

ẋ =
−10

7

((1
4
x+ y − 89

20

)(
− 97

400
x2 + x

(629
100
− 11

10
y
)

+ 23y2 − 121y +
7393

50

)
−2

(1
5
x − 2y +

17
4

))
,

ẏ =
10
7

(( 71
1600

x2 + x
(7739
4000

− 181
200

y
)

+
31
20

y2 − 527
200

y − 2201
800

)(1
4
x+ y − 89

20

)
+

1
5

(1
5
x − 2y +

17
4

))
,

(4.54)

which has the first integral

H3(x,y) =
1
4

(x
4

+ y − 89
20

)4
− 3

2

(x
5
− 2y +

17
4

)2 (x
4

+ y − 89
20

)2
− 1

2

(x
5
− 2y +

17
4

)2
.

In Σ− we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ ≃ 20
(
− 0.189875x3 + 0.3375x2y − 1.58576x2 − 3

20
xy2 + 1.7895xy − 0.7576(23

20
x − y + 3.48716

)
− 0.290453

(11
10

x+ 3.37453− y
)(23

20
x − y + 3.48716)(

− 9
24

x+ 2y − 6.86169
)
− 4.3744x − 0.337891y2 + 2.3185y − 3.97757

)
,

ẏ ≃ −20
(
0.284906x3 − 0.569625x2y + 2.43611x2 + 0.3375xy2 − 3.17153xy

−0.29045
(253
100

x − 9
4
y + 7.71658

)(11
10

x+ 3.37453− y
)(23

20
x − y + 3.48716

)
+0.871283

(23
20

x − y + 3.48716
)

+ 6.90948x − 1
20

y3 + 0.89475y2 − 4.3744y

+6.49557
)

(4.55)

it has the first integral

H5(x,y) ≃ 1
4

((11
10

x − y + 3.3745
)4

+ 0.580905
(23
20

x − y + 3.48716
)2(
− y + 3.3745

+
11
10

x
)2
−
(23
20

x − y + 3.48716
)4
− 1.51527

(23
20

x − y + 3.48716
)2)

.

The discontinuous piecewise system (4.54)–(4.55) has four limit cycles shown in Figure
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4.8(a), because system (4.27) for i = 3 and j = 5, has the four real solutions (y1, y2) ≃
{(1.56431,2.46132), (1.6127,2.37006), (1.6728,2.27025), (1.75781,2.14818)}.

Four limit cycles for the discontinuous piecewise differential system (C̃3)–(C̃6).

In Σ− we consider the Hamiltonian nilpotent saddle (C̃3)

ẋ ≃ 2.28571
((
− 1

4
x+

3
4
y − 7

2

)(
− 0.09375x2 + x(1.21875y − 4.6875) + 20.8125

+4.07813y2 − 20.0625y
)
− 1

2

(
− 1

4
x − y + 2

))
,

ẏ ≃ −2.28571
((
− 1

4
x+

3
4
y − 7

2

)(
x(0.90625− 0.515625y) + 5.3125− 2.0625y

−0.078125x2 − 0.046875y2
)
− 1

8

(
− 1

4
x − y + 2

))
,

(4.56)

it has the first integral

H3(x,y) =
1
4

(
−x

4
+

3
4
y − 7

2

)4
− 3

2

(
−x

4
− y + 2

)2 (
−1

4
x+

3
4
y − 7

2

)2
− 1

4

(
−1

4
x − y + 2

)2
.

In Σ+ we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ 2132.8
(
10.0005x3 + 150.014x2y − 2.83183x2 + 750.106xy2 − 28.3209xy

−0.999999(−10.0005x − 50.0047y + 0.943854)(−x − 5.00047y + 0.188771)

(x+ 5y)− 0.34858(x+ 5y) + 1250.23y3 + 0.5346x − 70.8089y2 + 2.67308y

−0.0336368
)
,

ẏ ≃ −2132.8
(
2x3 + 30.0014x2y − 0.566312x2 + 150.014xy2 − 5.66365xy

−0.999999(−2x − 10.0005y + 0.188771)(−x − 5.00047y + 0.188771)(5y

x)− 0.0697159(x+ 5y) + 0.106903x+ 250.035y3 − 14.1605y2 + 0.534566y

−0.00672673
)
,

(4.57)

its corresponding first integral is

H6(x,y) ≃ 1
4

(
− (x+ 5y)4 + 2(−x − 5.00047y + 0.188771)2(x+ 5y)2 + 0.139432

(x+ 5y)2 − (−x − 5.00047y + 0.188771)4
)
.

The discontinuous piecewise differential system (4.56)–(4.57) has four limit cycles, due

to the fact that system (4.27) for i = 3 and j = 6, has the four real solutions (y1, y2) ≃
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{(0.89241,2.45296), (0.95203,2.30495), (1.02213,2.15712), (1.10946,2)}, see Figure 4.8(b).

Four limit cycles for the discontinuous piecewise differential system (C̃4)–( ˜̃C4).

In Σ− we consider the Hamiltonian nilpotent saddle of type (C̃4)

ẋ ≃ −0.001187
(
450.18

(
−
(
2x+

39
20

y − 1
4

)(
13.8833x2 + x(15.9014y + 135.352)

+7.43256y2 + 5.95029y − 103.297
)
− 3.8880548 ∗ 10−14(−x − 0.03888y

−11.5082)
)
− 4.41286(−x − 0.03888y − 11.5082)− 4796.01(−2.02776x

−0.151634y − 22.4313)
)
,

ẏ ≃ 0.001187
(
450.18

((1
4
− 2x − 39

20
y
)(

20x2 + x(22.1498y + 204.398)− 114.233

+7.84152y2 + 70.7132y − 114.233
)
− 10−12(−x − 0.0388805y − 11.5082)

)
−113.498(−x − 0.03888y − 11.5082) + 4796.01(4x+ 2.02776y + 22.7664)

)
,

(4.58)

its first integral is

H4(x,y) ≃ 1
4

(
−
(
2x+

39
20

y − 1
4

)4
− 6(−x − 0.0388805y − 11.5082)2

(
2x+

39
20

y − 0.25)2

+900.36
(
2x+

39
20

y − 1
4

)2
− 42.6141(−x − 0.0388805y − 11.5082)

(
2x

+
39
20

y − 1
4

)
+ 0.504233(−x − 0.0388805y − 11.5082)2

)
.

In Σ+ we consider the Hamiltonian nilpotent saddle of type ( ˜̃C4)

ẋ ≃ 2.9301
(1
2

(2
5
x − 0.157142y +

1
2

)(
0.763001x2 + x(1.6881y + 8.44281)

−2.15367y2 − 8.3007y − 1.76381
)
− 1

4
(0.525429x − 0.474567y − 0.109278)

−0.3775
(1
2
x+

151
100

y +
11
2

))
,

ẏ ≃ 2.9301
(
− 1

2

(2
5
x − 0.15714y +

1
2

)(
0.664x2 + x(2.54986y + 10.435) + 40.325

+2.39007y2 + 19.7052y + 40.325
)

+
1
4

(2
5
x+ 0.525429y +

49
20

)
+

1
8

(1
2
x+

11
2

+
151
100

y
))
,

(4.59)

which has the first integral

∼
H4 (x,y) ≃ −1

4

(2
5
x − 0.157142y +

1
2

)4
− 3

2

(1
2
x+

151
100

y +
11
2

)2(
0.4x − 0.157142y +

1
2

)2
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+
1
4

(2
5
x − 0.157142y +

1
2

)2
+

1
2

(1
2
x+

151
100

y +
11
2

)(2
5
x − 0.157142y +

1
2

)
+

1
4

(
1
2
x+

151
100

y +
11
2

)2
.

System (4.26) for i = 4, has the following four real solutions (y1, y2) ≃ {(0.79064,5.62516),

(1.61348,5.37496), (2.35323,5.04467), (3.24928,4.47718)}, which provide the four limit cy-

cles for the discontinuous piecewise system (4.58)–(4.59) shown in Figure 4.8(c).

Four limit cycles for the discontinuous piecewise differential system (C̃4)–(C̃5).

In Σ+ we consider the Hamiltonian nilpotent saddle (C̃4)

ẋ ≃ 0.017928
(
9.95432(−x − 4y − 0.00302329)

(
− 11.1894x2 + x(18.0134y

−45.3307)− 125.712y2 + 136.219y − 27.0844
))
,

ẏ ≃ 0.017928
(
− 9.95432(−x − 4y − 0.00302329)

(
− 7x2 + x(−21.2711

(4.60)

−5.56816y)− 4.47155y2 − 5.62777y − 6.80111
))
,

which has the first integral

H4(x,y) ≃ −1
4

(−x − 4y − 0.00302329)4 − 3
2

(x − 1.60354y + 2.36178)2(−x − 4y

−0.00302329)2 + 4.97716(−x − 4y − 0.00302329)2.

In Σ− we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ =
1

1958000

(
5063409x3 − 30x2(428262y − 552439)− 1500x(133164y2

−21372y − 8387) + 200
(
1479978y3 − 1602558y2 + 317646y + 241

))
,

ẏ =
1

293700000

(
− 528871721x3 − 150x2(15190227y + 8097032) + 1500x

(1284786y2 − 3314634y − 614891) + 25000(399492y3 − 96174y2

−75483y − 11584)
)
,

(4.61)

with its corresponding first integral

H5(x,y) =
1
4

(
−
( 81
100

x − 3
2
y + 1

)4
− 30

(
− 1

2
x − 27

10
y − 1

10

)2( 81
100

x − 3
2
y + 1

)2
− 3

( 81
100

x −

3y
2

+ 1
)2

+
(
− 1

2
x − 27

10
y − 1

10

)4)
.

The discontinuous piecewise system (4.60)–(4.61) has four limit cycles, due to the fact that
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system (4.27) when i = 4 and j = 5, has the four real solutions (y1, y2) ≃ {(0.70964,0.912115),

(0.65295,0.945775), (0.602076,0.970419), (0.551174,0.990484)}, see Figure 4.9(a).

Four limit cycles for the discontinuous piecewise differential system (C̃4)–(C̃6).

In Σ− we consider the Hamiltonian nilpotent saddle (C̃4)

ẋ =
1

38650000

(
− 840(116965x+ 298018)y2 + 100(3x(100927x+ 382900)

+142306)y + 125(x(x(120295x+ 1159926) + 3330420) + 2620392)

+42884408y3
)
,

ẏ =
1

3092000

(
− 24(100927x+ 191450)y2 − 30(x(120295x+ 773284)

+1110140)y − 25(x(5x(6005x+ 63546) + 1047948) + 1052440)

2620016y3
)
,

(4.62)

which has the first integral

H4(x,y) = −1
4

(x
4
−

7y
50

+
7

10

)4
− 3

2

(7x
10

+
27y
10

+ 3
)2 (x

4
−

7y
50

+
7

10

)2
+

1
2

(x
4
−

7y
50

+
7

10

)2

+
1
2

(7x
10

+
27y
10

+ 3
)(x

4
−

7y
50

+
7

10

)
+

1
8

(7x
10

+
27y
10

+ 3
)2
.

In Σ+ we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ 0.2033
(
1.08085x3 + 38.0494x2y + 27.0421x2 + 59.7945xy2 − 103.796xy

−1.03369(1.08085x − 11.5149y − 14.0907)(−1.91915y + x − 4.69689)(x

+3y)− 9.96074(x+ 3y)− 127.014x+ 94.5655y3 + 99.5997y2 + 243.758y

+198.856
)
,

ẏ ≃ −0.2033
(
− 14.0907x2 + 2x3 + 3.24255x2y + 38.0494xy2 + 54.0842xy

−1.03369(x − 1.91915y − 4.69689)(2x+ 1.08085y − 4.69689)(x+ 3y)

−3.32025(x+ 3y) + 66.1823x+ 19.9315y3 − 51.8978y2 − 127.014y

−103.617
)
,

(4.63)

its corresponding first integral is

H6(x,y) ≃ 1
4

(
− (x+ 3y)4 + 2.06739(x − 1.91915y − 4.69689)2(x+ 3y)2 + 6.64049

(x+ 3y)2 − (x − 1.91915y − 4.69689)4
)
.
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System (4.27) for i = 4 and j = 6, has the four real solutions (y1, y2) ≃ {(4.81888,6.12412),

(4.28035,6.45928), (3.81918,6.68363), (3.35366,6.86035)}, which provide the four limit cy-

cles for the discontinuous piecewise system (4.62)–(4.63) shown in Figure 4.9(b).

Four limit cycles for the discontinuous piecewise differential system (C̃5)–( ˜̃C5).

In Σ− we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ ≃ 63515.6
(
0.00331513

(
− 0.00628079x3 + 0.0327017x2y − 0.01361x2

−0.0425664xy2 + 0.0277152xy + 0.000683986x+ 0.0164168y3

−0.0138017y2 − 0.000330382y + 0.000281957
))
,

ẏ ≃ 63515.6
(
0.00331513

(
0.0188424x2y − 0.0129654x2 − 0.0327017xy2

+0.0272201xy + 0.00113769x+ 0.0141888y3 − 0.0138576y2

−0.000683986y + 0.000340256
))
,

(4.64)

its first integral is

H5(x,y) ≃ 1
4

((23
20

x − 0.99587y + 0.142561
)4

+ 0.00663026
(23
20

x − 0.99587y

+0.142561
)2
− (−23

20
x+ y − 0.145403

)4)
.

In Σ+ we consider the Hamiltonian nilpotent saddle ( ˜̃C5)

ẋ =
1

26500

(
15(1271x − 147257)y2 − 225(x(2405x+ 5584) + 235)y − 125(x(x

(367x+ 42)− 1254)− 361) + 2627384y3
)
,

ẏ =
1

5300

(
45(2405x+ 2792)y2 + 75(x(367x+ 28)− 418)y − 125(x(9x(9x+ 38)

+404) + 142)− 1271y3
)
,

(4.65)

which has the first integral

∼
H5 (x,y) =

1
4

(
−
(x
2
−

3y
2

+ 1
)4
− 24

(
− x −

23y
10
− 1

2

)2(x
2
−

3y
2

+ 1
)2
− 4

(x
2
−

3y
2

+ 1
)2

+
(
x+

23
10

y +
1
2

)4)
.

The discontinuous piecewise differential system (4.64)–(4.65) has four limit cycles, because

system (4.26) has the four real solutions for i = 5, given by (y1, y2) ≃ {(0.65276,0.98274),
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(0.60463,1.00802), (0.55822,1.02903), (0.51112,1.04723)}, which provide the four limit cy-

cles for the discontinuous piecewise system (4.64)–(4.65) shown in Figure 4.9(c).

Four limit cycles for the discontinuous piecewise differential system (C̃5)–(C̃6).

In Σ+ we consider the Hamiltonian nilpotent saddle (C̃5)

ẋ ≃ 7.13171
(
0.00023x3 + 0.0255614x2y + 0.00394378x2 + 0.405655xy2

−1.93117xy − 1.35472(−0.104619x − 8.71622y − 9.55726)
( 1
100

x

−2.44838y − 5.36925
)( 1

20
x+

89
50

y
)
− 375.296

( 1
20

x+
89
50

y
)
− 2.11751x

+45.9734y3 + 236.412y2 + 518.447y + 378.982
)
,

ẏ ≃ −7.13171
(
6.26 ∗ 10−6x3 + 0.00066015x2y − 0.0000162x2 + 0.02556xy2

+0.00788756xy − 1.35472
( 1
100

x − 2.44838y − 5.36925
)(
− 0.104619y

1
1000

x − 0.268462
)( 1

20
x+

89
50

y
)
− 10.542

( 1
20

x+
89
50

y
)

+ 0.00864864x

+0.13522y3 − 1.54789− 0.96559y2 − 2.11751y
)
,

(4.66)

with the first integral

H5(x,y) ≃ 1
4

(
−
( 1
20

x+
89
50

y)4 + 2.70944
( 1
100

x − 2.44838y − 5.36925
)2( 1

20
x

+
89
50

y
)2

+ 421.681(0.05x+ 1.78y)2 − (0.01x − 2.44838y − 5.36925)4
)
.

In Σ− we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ −5
3

(
− 81

80
x3 +

1197
400

x2y − 4863
400

x2 − 6003
2000

xy2 + 23.937xy − 2(x − y + 4)

− 3
10

(x − y + 4)
(
− 2

5
x − 1

5
y − 17

10

)(1
2
x+

1
10

y +
21
10

)
− 48.6615x

+0.9999y3 − 12.0063y2 + 47.8677y − 64.9261
)
,

ẏ ≃ 5
3

(15
16

x3 − 243
80

x2y +
897
80

x2 + 2.9925xy2 − 24.315xy + 2(x − y + 4)− 3
10

(x − y + 4)
(
x − 2

5
y +

41
10

)(1
2
x+

1
10

y +
21
10

)
+

17877
400

x − 2001
2000

y3 + 59.3695

+11.9685y2 − 48.6615y
)
,

(4.67)

and its first integral is

H6(x,y) ≃ 1
4

(3
5

(1
2
x+

1
10

y +
21
10

)2
(x−y + 4)2 − (x−y + 4)4 −4(x−y + 4)2 +

(1
2
x+

1
10

y +
21
10

)4)
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The discontinuous piecewise differential system (4.66)–(4.67) has exactly four limit cycles,

due to the fact that system (4.27) for i = 5 and j = 6, has the four real solutions (y1, y2) ≃
{(2.08477,6.67049), (2.33749,6.52949), (2.72322,6.35381), (3.51937,6.11069)}, see Figure

4.10(a).

Four limit cycles for the discontinuous piecewise differential system (C̃6)–( ˜̃C6).

In Σ− we consider the Hamiltonian nilpotent saddle (C̃6)

ẋ ≃ −430.527
(
− 1.43808x3 + 49.6338x2y − 2.2836x2 − 571.02xy2 + 52.5653

xy − 0.999968(5.75232x − 66.1784y + 3.04235)
(
− 23

4
y +

1
2
x
)
(5.75465y

−1
2
x − 0.529104) + 3.03025

(1
2
x − 23

4
y
)
− 2.41653x+ 2189.79y3 − 302.495

y2 + 27.8125y − 0.852396
)
,

ẏ ≃ 430.527
(
− 4.31424x2y + 0.198414x2 + 49.6338xy2 − 4.56721xy +

1
8
x3

−0.999968
(1
2
x − 23

4
y
)(
− 1

2
x+ 5.75232y − 0.264552

)(
− 1

2
x+ 5.75465y

−0.5291
)
− 0.2635

(1
2
x − 23

4
y
)

+ 0.20996x+ 0.07406− 190.34y3 + 26.2827

y2 − 2.41653y
)
,

(4.68)

its corresponding first integral is

H6(x,y) ≃ 1
4

(
−
(
− 1

2
x+ 5.75465y − 0.529104

)4
+ 1.99994

(1
2
x − 23

4
y
)2(
− 1

2
x

+5.75465y − 0.529104
)2
−
(1
2
x − 23

4
y
)4

+
527
500

(1
2
x − 23

4
y
)2)

.

In Σ+ we consider the Hamiltonian nilpotent saddle ( ˜̃C6)

ẋ = −2
3

(
− 1

2
x3 +

15
4
x2y − 9x2 − 21

8
xy2 +

27
2
xy − 1

2

(
− x+ y − 5

2

)
+ 9

(
− x − 1

2
y

+1
)(
− x+ y − 5

2

)(
− 1

2
x − y +

9
4

)
− 69

4
x+

17
16

y3 − 63
8
y2 +

39
2
y − 129

8

)
,

ẏ =
2
3

(
2x3 − 3

2
x2y +

9
2
x2 +

15
4
xy2 − 18xy + 9

(
− x − 1

2
y + 1

)
(2x − 1

2
y +

3
2

)(
− x

+y − 5
2

)
+

1
2

(
− x+ y − 5

2

)
+

87
4
x − 7

8
y3 +

27
4
y2 − 64

4
y +

117
8

)
,

(4.69)

which has the first integral
∼
H6 (x,y) =

1
4

(
−
(
1− x − 1

2
y
)4
− 18

(
y − x − 5

2

)2(
1− x − 1

2
y
)2
−
(
y − x − 5

2

)4
+
(
y − x − 5

2

)2)
.
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System (4.26) for i = 6, has the four real solutions (y1, y2) ≃ {(1.29085,3.25778), (1.13235,

3.42658), (1.02312,3.54042), (0.93752,3.62878)}, which provide the four limit cycles for the

discontinuous piecewise system (4.68)–(4.69) shown in Figure 4.10(b).

These examples complete the proof of Theorem 4.3.
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Conclusion

In this work, based on the first integral, we have solved the second part of the six-

teenth Hilbert problem for five families of discontinuous piecewise differential systems

having the straight line x = 0 as a switching curve. The first one is created by an arbi-

trary linear and quadratic center, and the second family is composed of a linear center

and cubic isochronous center having a rational first integral. The third family is formed

by two cubic isochronous centers having a rational first integral in each half-plane. We

also solved the extinction of the sixteenth Hilbert problem for the family of the discon-

tinuous piecewise differential system formed by a linear center and cubic Hamiltonian

nilpotent saddle. The last one that we gave its maximum number of limit cycles is the

one formed by two cubic Hamiltonian nilpotent saddles in each half-plane.

Even though we have solved the extinction of the sixteenth Hilbert problem for some

families of discontinuous piecewise differential systems separated by a straight line. It’s

still difficult to solve this problem for the nonlinear discontinuous piecewise differential

systems, especially if we consider a quadratic differential center in each half-plane.
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Abstract:

Our thesis is devoted to solving a significant and challenging issue in the qualitative theory
of differential systems called the sixteenth Hilbert problem. More precisely, we use the first
integrals to determine the maximum number of limit cycles of some families of discontinuous
piecewise nonlinear differential systems separated by a straight line.

Keywords:

Piecewise differential system, linear center, cubic reversible isochronous centers having rational
first integrals, Hamiltonian system with linear plus cubic homogeneous terms with a nilpotent
saddle, limit cycle.

Résumé:

Notre thèse porte sur la résolution d’un problème crucial et difficile dans la théorie qualitative
des systèmes différentiels, connu sous le nom de seizième problème de Hilbert.

En d’autres termes, nous utilisons les intégrales premières pour déterminer le nombre max-
imal de cycles limites de certaines familles de systèmes différentiels non linéaires par morceaux
séparés par une ligne droite.

Mots clés:

Systèmes différentiels par morceaux, centre linéaire, centre cubiques isochrone réversible admet
une intégrale première rationnelle, système Hamiltonien avec un terme linéaire plus des termes
cubiques homogènes admet un point d’equilibre de type selle nilpotent, cycle limite.
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