
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Mohamed El Bachir El Ibrahimi University of Bordj Bou Arréridj
Faculty of Mathematics and Computer Science

Department of Computer Science

THESIS
In order to obtain the Doctorate degree in LMD (3rd cycle)

Branch : Computer science
Option : Decision Support Systems Engineering

Privacy preserving pattern mining from uncertain databases

By: Mira Lefkir

Publicly defended on: dd/mm/yyyy

In front of the jury composed of:

Pr. Abderraouf Bouziane University of B.B.A President
Pr. Farid Nouioua University of B.B.A Supervisor
Pr. Philippe Fournier-Viger Shenzhen University (China) Co-Supervisor
Pr. Mustapha Bourahla University of M’Sila Examiner
Dr. Chafia Kara Mohamed University of Setif 1 Examiner
Dr. Abdelouahab Attia University of B.B.A Examiner

2024/2025

Dedication

I dedicate my dissertation work to my family my brother and my mother. A special feeling of

gratitude to my father’s soul, I also dedicate this dissertation to my husband who have

supported me throughout the process. I will always appreciate all they have done,

I dedicate this work and give special thanks to my wonderful son Abderrahmane and Haithem

for being there for me throughout the entire doctorate program. Both of you have been my

best cheerleaders.

ii

Acknowledgment

First and foremost, I am extremely grateful to my supervisors, Prof. Farid Nouioua and

co-supervisor Prof. Phillipe Fournier-Viger for their invaluable advices, continuous support,

and patience during my PhD studies. Their extensive knowledge and plentiful experience have

encouraged me in my academic research and daily life. I would like to thank all the teachers

from the faculty of computer sciences for their support, and also i would like to thank jury

member for accepting to juge my works.

Abstract

With advancements in data analysis and processing techniques, the release of micro-data for

research purposes, such as disease outbreak studies or economic pattern analysis, has become

prevalent. However, these datasets, while valuable for researchers, often contain sensitive in-

formation that poses privacy risks to individuals. Privacy-preserving data mining (PPDM) has

emerged as a critical field to address these concerns by concealing sensitive information while

still enabling the extraction of useful insights. This task is NP-hard and involves the challenge

of balancing the concealment of sensitive itemsets with the preservation of non-sensitive ones

during data extraction. Numerous algorithms have been developed for deterministic databases,

where information is binary (present or absent). This thesis explores a novel PPDM approach

in the context of uncertain databases, where information is represented by probabilistic values.

The sanitization process, aimed at hiding sensitive information, introduces side effects such as

hiding failure, missing cost, artificial cost, and dissimilarity. These side effects are considered

as objective functions to be minimized. To achieve the goal of PPDM, a Multi-Objective Opti-

mization problem is formulated, and metaheuristic algorithms are employed. Specifically, the

NSGA-II algorithm is applied, leading to the development of the NSGAII4ID algorithm for

deterministic databases. This algorithm hides sensitive frequent itemsets by removing selected

items from chosen transactions, representing a pioneering effort in privacy-preserving data min-

ing. Furthermore, for uncertain databases, a novel algorithm named U-NSGAII4ID is proposed,

addressing the multi-objective optimization problem by encoding a set of items to remove

from selected transactions. Additionally, three heuristic approaches for PPDM in uncertain

databases are introduced: the aggregate approach, which removes transactions; the disaggre-

gate approach, which removes selected items from each transaction; and the hybrid approach,

combining the two former approaches. Experimental evaluations compare these approaches,

demonstrating their effectiveness in preserving sensitive itemsets in uncertain databases. *

iv

Résumé

Les avancées en analyse de données ont conduit à une augmentation fréquente de la publi-

cation de micro-données à des fins de recherche, notamment dans les domaines tels que l’étude

des épidémies et l’analyse des modèles économiques. Cependant, ces ensembles de données,

bien utiles pour les chercheurs, présentent souvent des informations sensibles pouvant compro-

mettre la vie privée individuelle. La préservation de la vie privée dans l’extraction de données

(PPDM) est devenue cruciale pour résoudre ces préoccupations tout en permettant l’extraction

d’informations utiles. Cette tâche complexe, NP-difficile, implique l’équilibre délicat entre

la dissimulation des éléments sensibles et la préservation de ceux qui ne le sont pas lors de

l’extraction de données. Dans le contexte des bases de données incertaines, où l’information est

représentée par des valeurs probabilistes, cette thèse explore une nouvelle approche de PPDM.

Le processus de désinfection, visant à masquer des informations sensibles, introduit des effets

secondaires tels que l’échec de dissimulation, le coût manquant, le coût artificiel et la dis-

similitude, considérés comme des fonctions objectives à minimiser. Pour atteindre l’objectif

du PPDM, des algorithmes métaheuristiques sont utilisés, notamment l’algorithme NSGA-II.

Cela a conduit au développement de l’algorithme NSGAII4ID pour masquer des ensembles

d’éléments fréquents sensibles dans les bases de données déterministes. Dans le contexte des

bases de données incertaines, un nouvel algorithme, U-NSGAII4ID, est proposé pour résoudre

le problème d’optimisation multi-objectifs en encodant un ensemble d’éléments à supprimer de

transactions sélectionnées. Trois approches heuristiques pour le PPDM dans les bases de don-

nées incertaines sont également introduites : l’approche agrégée, qui supprime des transactions

; l’approche désagrégée, qui supprime des éléments sélectionnés de chaque transaction ; et

l’approche hybride, combinant les deux premières approches. Des études expérimentales com-

parent ces approches, démontrant leur efficacité dans la préservation des ensembles d’éléments

sensibles dans les bases de données incertaines.

P�l�

��b�� |�r�± Ty¶z��� �A�Ayb�� C�d}� �b}� ,�A�Ayb�� �yl�� �Aynq� CwW� ��¤

Tmy� ��C¤ .T§ AOt�¯� ªAm�±� �yl�� ¤� |�r�±� ¨Kf� �AF�C ¨� ��� ,¾�CAKt�� r���

Ty}wO��� dh� TFAs� �A�wl`� Yl� ©wt�� A¾Ab�A� Ah�� ¯� ,�y��Abl� �A�wm�m�� £@¡

Ty}wO��� ^f�) Ty}wO��� Yl� ^�A�� ¨t�� �A�Ayb�� ��r�tF� �Er� .T§ rf��

�Ams�� �� TFAs��� �A�wl`m�� ºAf��� �¤A�m�� £@¡ T��A`m� ©wy� �A�m� (�A�Aybl�

¨� ©d�t�� �� Tb`O� �nO� ¨t��¤ Tb`O�� Tmhm�� £@¡ �d�� .dyfm�� �®yl�t�A�

�®� TFAs��� ry� �l� Yl� _Af���¤ TFAs��� r}An`�� ºAf�� �y� E�w� �yq��

�y� Tymt��� �A�Ayb�� d��wq� �Ay�EC�w��� �� d§d`�� r§wW� �� .�A�Ayb�� ��r�tF�

�y� ,d�¥m�� ry� �A�Ayb�� d��w� �AyF ¨� .(Tb¶A� ¤� w�w�) Ty¶An� �A�wl`m�� wk�

^f�) þ� A¾d§d� A¾A�h� T�¤rV±� £@¡ �Kkts� ,Ty�Amt�� �yq� �A�wl`m�� �y�m� �t§

,TFAs��� �A�wl`m�� ºAf�� Y�� �dh� ¨t�� �yq`t�� Tylm� �dq� .(�A�Aybl� Ty}wO���

£@¡ rbta`u�¤ ,�®t�¯�¤ Ty�AnW}¯� Tflkt��¤ dqf�� Tflk�¤ �Kf�� ºAf�� ��� Tyb�A� A¾CA��

 d`t� �ys�t�� TlkK� ��d�tF� �t§ .Ahlylq� �y`t§ Ty�wRw� �¶AZ¤ Tyb�A��� CA�µ�

�myhm�� ry� �ynOt�� Ty�EC�w�) Ty�EC�w� A¾d§d��¤ ,T§wlt�� �Ay�EC�w���¤ ��d¡±�

.Tymt��� �A�Ayb�� d��wq� Ty�EC�w� r§wW� Y�� « � Am� ,(¨�A��� �wn�� ¨��Cw�� CwWtl�

r}An`�� T��E� �§rV �� TFAs��� Crktm�� r}An`�� �A�wm�� Ty�EC�w��� £@¡ ¨f��

Yl� _Af�l� �A�Ayb�� ��r�tF� ¨� d¶�C dh� w¡¤ ,CAt�m�� �®�A`m�� �� d�m��

Ty�EC�w� ��rt�� �� ,d�¥m�� ry� �A�Ayb�� d��wq� ,��Ð Y�� T�AR³A� .Ty}wO���

r}An`�� �� T�wm�� ryfK� �®� �� ��d¡±� d`t� �ys�t�� TlkK� ��� d§d�

¨� T§ AJC� 	y�AF� T�®� �§dq� �� ,��Ð Yl� ¤®� . d�m�� �®�A`m�� �� �@�l�

©@�� ¨lyOft�� �hn��¤ ,�®�A`m�� �§z§ ©@�� ¨lk�� �hn�� :d�¥m�� ry� �A�Ayb�� d��w�

�y�hn�� �y� �m�§ ©@�� Xlt�m�� �hn��¤ ,Tl�A`� �� �� CAt�m�� r}An`�� �§z§

Yl� _Af��� ¨� Ahty�A`� rh\§ Am� ,	y�AF±� £@¡ Tyb§r�t�� �AF�Cd�� CAq� .�yq�As��

.d�¥m�� ry� �A�Ayb�� d��w� ¨� TFAs��� r}An`�� �A�wm��

vi

Table of contents

List of Figures x

List of Tables xii

1 General Introduction 1

1.1 Context . 1

1.2 Objectives . 3

1.3 Methodology and results . 4

1.4 Thesis outline . 6

2 Pattern Mining 7

2.1 Introduction . 7

2.2 Data mining . 8

2.3 Data mining techniques . 12

2.3.1 Supervised data mining techniques . 12

2.3.2 Unsupervised data mining techniques 13

2.4 Pattern mining . 14

2.4.1 Frequent itemset mining . 15

2.4.2 Sequence mining . 20

2.4.3 Episode mining . 23

2.4.4 Mining frequent itemsets over uncertain transaction databases 24

2.5 Conclusion . 28

3 Privacy Preserving Data Mining 29

3.1 Introduction . 29

vii

3.2 Privacy preserving data mining . 30

3.3 Review of privacy preserving data mining algorithms 32

3.4 Meta-heuristic algorithms for PPDM . 33

3.4.1 Single-objective metaheuristic algorithms for PPDM 34

3.4.2 Multi-objective metaheuristic algorithms for PPDM 35

3.5 Conclusion . 36

4 Hiding Sensitive Frequent Itemset via Items Removal 38

4.1 Introduction . 38

4.2 Preliminaries . 40

4.2.1 Basic definitions . 40

4.2.2 Set Cover Problem . 43

4.3 PPDM as a multi-objective optimization problem 44

4.4 Description of NSGAII4ID algorithm . 48

4.4.1 Computational complexity . 56

4.5 Illustrative example . 57

4.6 Experiment Results . 61

4.6.1 Runtime . 63

4.6.2 Memory Cost . 65

4.6.3 Side effects . 67

4.7 Conclusion . 72

5 Hiding sensitive expected frequent itemsets in the context of uncertain databases 73

5.1 Introduction . 73

5.2 Basic definitions for mining frequent itemsets from uncertain databases 76

5.3 The Proposed U-NSGAII4ID algorithm . 78

5.3.1 Algorithm description . 79

5.3.2 An illustrative example . 85

5.4 Experimental results . 88

5.4.1 Runtime . 89

5.4.2 Memory Cost . 90

5.4.3 Side effects . 91

5.5 Conclusion . 94

viii

6 Heuristic approaches for hiding sensitive frequent itemsets in uncertain databases 96

6.1 Introduction . 96

6.2 Heuristic approaches for PPDM . 97

6.3 Description of U-heuristic algorithms . 97

6.3.1 U-Aggregate approach . 98

6.3.2 U-Disaggregate approach . 100

6.3.3 U-Hybrid approach . 101

6.4 Experimental results . 102

6.4.1 Run Time and Memory Cost . 102

6.4.2 Side effects . 103

6.5 Conclusion . 104

7 General Conclusion 106

7.1 Summary of contributions . 106

7.2 Future work and perspectives . 107

References 108

ix

List of Figures

2.1 Data Information Knowledge pyramid . 9

2.2 KDD process . 10

2.3 Mining frequent itemset . 16

2.4 Classification of Frequent Pattern Mining algorithms 17

2.5 Generation of candidate itemsets and frequent itemsets 19

2.6 A time-series (left) and a sequence (right) . 21

2.7 The running example of event sequence . 23

3.1 A brief overview of PPDM techniques . 31

4.1 Relationships between the three side effects of data sanitization in PPDM . . . 42

4.2 An example of SCP with 12 elements and a collection of 6 subsets, by [1] . . . 44

4.3 New Relationships between the side effects of data sanitization in PPDM. . . . 47

4.4 Flowchart of the proposed algorithm . 50

4.5 Runtime of five algorithms for four databases 64

4.6 Memory Cost of five algorithms for the four databases 66

4.7 Internal behavior of NSGAII4ID algorithm for four databases 67

4.8 Hiding failure of three algorithms for four databases 69

4.9 Missing cost of three algorithms for four databases 70

4.10 Dissimilarity of three algorithms for four databases 71

5.1 Runtime of U-NSGAII4ID for the seven uncertain databases 89

5.2 Memory Cost of U-NSGAII4ID for the seven uncertain databases 91

5.3 Side effects of U-NSGAII4ID w.r.t. different sensitive itemsets percentage for

seven uncertain databases . 92

x

5.4 Side effects of U-NSGAII4ID w.r.t. uncertainty degree for seven uncertain

databases . 93

6.1 Run time and memory cost of three heuristics for three uncertain databases . . 103

6.2 Missing Cost and dissimilarity of three heuristics for three uncertain databases . 104

xi

List of Tables

2.1 A traditional database . 18

2.2 A transaction database . 21

2.3 A Sequence database . 21

4.1 The original database D . 57

4.2 The projected database D∗ . 58

4.3 Frequent itemsets in D and their supports . 58

4.4 Transactions represented in the solutions . 59

4.5 The modified database D′ . 60

4.6 Non-sensitive itemsets that are frequent in D but not in D′ 60

4.7 Features of used databases . 63

4.8 The parameters of the three multi-objective algorithms used in the experiments 63

4.9 Parameter of PSO2DT and sGA2DT . 63

5.1 An Example of an Uncertain database (D) . 85

5.2 The Expected frequent itemsets found in Table 5.1 for minesup = 0.2 86

5.3 Projected uncertain database D∗ . 86

5.4 Uncertain transactions in the solutions . 87

5.5 Modified uncertain database D’ . 87

5.6 Features of each uncertain dataset . 88

6.1 Example of uncertain database (D) . 98

6.2 Features of the datasets . 102

xii

Chapter 1: General Introduction

1.1 Context

Data mining and knowledge discovery in databases represent emerging research fields that

focus on the automated extraction of previously undiscovered patterns from vast datasets. With

the recent progress in data collection, dissemination, and associated technologies, a new re-

search era has dawned, prompting a reevaluation of existing data mining algorithms from the

perspective of privacy preservation. This paradigm shift recognizes the importance of safe-

guarding individual privacy in the era of expanding data availability and utilization.

In recent times, progress in hardware technology has resulted in a notable expansion of

storage and recording capabilities for personal data related to consumers and individuals. This

proliferation of data storage potential has generated apprehensions regarding the potential for

personal data to be misused for various purposes. To address these concerns, a range of tech-

niques has emerged, aiming to conduct data mining tasks while safeguarding privacy. These

privacy-preserving data mining methods draw from a diverse range of fields, encompassing

subjects like data mining, cryptography, and information concealment [2].

The issue of privacy-preserving data mining [3] has garnered substantial attention in recent

years, driven by mounting concerns about the privacy of underlying data. This surge in interest

has resulted in a proliferation of research papers in the field of privacy-preserving data mining,

with topics explored by various communities and approached with different styles. Conse-

quently, there is a growing need to organize these topics in a manner that acknowledges the

relative importance of different research areas. Moreover, the domain of privacy-preserving

data mining has been independently explored by distinct communities, including cryptography,

databases, and statistical disclosure control. While there are instances where the lines of work

1

within these communities are quite similar, there exists a notable lack of integration, hinder-

ing the provision of a broader perspective. Despite data mining’s successful advancements in

fields such as machine learning, statistics, and artificial intelligence, it is often associated with

extracting information that could compromise confidentiality. This aspect has fueled growing

ethical concerns regarding the sharing of personal information for data mining activities [4].

Furthermore, it’s important to emphasize that Privacy-Preserving Data Mining (PPDM)

isn’t solely concerned with protecting privacy during the mining phase. It extends its scope to

encompass privacy considerations in various stages of the knowledge discovery process, includ-

ing data pre-processing and post-processing [5]. This comprehensive approach addresses the

challenges faced by organizations or individuals when sensitive information is at risk of being

lost. [6] introduced a method to enhance privacy while preserving the statistical characteris-

tics of data. Besides, [7] proposed a novel multiparty collaborative privacy-preserving mining

technique. This approach securely combines various geometric perturbations, each preferred

by different parties, utilizing the concept of keys. Other related research explores techniques

like top-down specialization for privacy preservation [8] and workload-aware methods for data

anonymization [9]. Furthermore, there is an ongoing discussion regarding privacy-preserving

data mining in scenarios involving vertically or horizontally partitioned data [10].

In recent years, the prevalence of uncertain data has surged, primarily driven by advances in

data collection technologies that produce measurements with inherent imprecision. This surge

in uncertainty is observable across a wide array of real-life applications, including location-

based services, sensor monitoring systems, medical analyses, and face recognition systems.

Given that frequent itemset mining is a foundational concept in the field of data mining, the

exploration of mining frequent itemsets over uncertain databases has garnered substantial at-

tention [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. For instance, the proliferation of wireless

sensor networks has led to the accumulation of vast amounts of data. Consequently, the defini-

tion of frequent itemsets over uncertain databases becomes a pivotal concern.

In the realm of deterministic data, frequency evaluation is straightforward: an itemset is

deemed frequent if and only if the support (frequency) of this itemset is not less than a spec-

ified minimum support threshold, often denoted as "min_sup" [22, 23, 17, 24]. However, in

contrast to deterministic data, defining a frequent itemset over uncertain data presents two dis-

tinct semantic interpretations: the expected support-based frequent itemset [11, 16] and the

2

probabilistic frequent itemset [12]. Both of these interpretations treat the support of an itemset

as a discrete random variable.

1.2 Objectives

A substantial portion of application data contains personal and sensitive information, in-

cluding details about an individual’s financial status, political affiliations, and medical history.

The exposure of such personal data can significantly jeopardize individuals’ privacy. In re-

cent years, Privacy Preserving Data Mining (PPDM) has emerged as a crucial subfield of data

mining and a prominent topic in the context of safeguarding privacy.

The primary objective of PPDM is to shield personal and sensitive information from being

divulged to the public during the data mining process. This protection is achieved by employ-

ing a sanitization method, which is a process enabling the modification of the database. This

modification can involve the removal or addition of items, or even the elimination of entire

transactions, all aimed at concealing sensitive information effectively.

Privacy-preserving data mining primarily aims to devise techniques that protect specific

sensitive information from being disclosed to unauthorized parties or intruders. In simpler

terms, the core concern with privacy threats is the potential revelation of an individual’s sen-

sitive identity and personal information. Various types of privacy threats have the potential to

unveil an individual’s sensitive information:

• Identity disclosure [25]: In identity disclosure threat, intruder can get the individual iden-

tity from published data. This threat is affined to direct identifier attribute.

• Attribute disclosure [26]: In attribute disclosure threat, intruder can reveal individual’s

sensitive information. This threat is affined to sensitive attribute.

• Membership disclosure [27]: Any information concerning individual is disclosed from

data set, known as membership disclosure. This may happen when data is not protected

from identity disclosure.

The overarching aim of this study is to explore the realm of Privacy-Preserving Data Mining

in the context of frequent itemset mining from both traditional and uncertain databases. The

specific objectives of this research are as follows:

3

1. To formulate algorithms that can manipulate the original data in a manner that preserves

the privacy of sensitive information, particularly sensitive frequent itemsets, even after

the data mining process has occurred.

2. To achieve a balance where Privacy-Preserving Data Mining methods can modify the

original data effectively, preserving the privacy of user data, while also allowing the

mining models to be reconstructed from the modified data with a reasonable degree of

accuracy.

In summary, Privacy-Preserving Data Mining methods aim to alter the original data in such

a way that user data privacy is upheld, and simultaneously, the mining models can be recon-

structed from the modified data with an acceptable level of accuracy. These methods are diverse

and can be tailored to the specific data collection model and user privacy requirements, as re-

flected in the existing literature.

1.3 Methodology and results

To accomplish the primary objective of this thesis, the research adopts a multi-objective

optimization approach. Within the framework of this thesis, we have structured our work into

three distinct contributions:

This thesis makes a significant contribution by introducing an innovative Privacy-Preserving

Data Mining (PPDM) algorithm named NSGAII4ID. Unlike conventional methods that elim-

inate entire transactions, this novel algorithm selectively removes specific items from transac-

tions to conceal sensitive frequent itemsets. To our knowledge, this approach is unprecedented.

The sanitization process is formulated as a multi-objective optimization problem, aiming to

address four main side effects: hiding failure, missing cost, artificial cost, and database dis-

similarity. Notably, the artificial cost equals always zero in our specific context. NSGAII4ID

stands out for its dual-level approach to database sanitization. At the transaction level, a multi-

objective optimization algorithm identifies a subset of candidate transactions for modification.

Then, at the item level, NSGAII4ID determines an optimal subset of items to be removed from

each candidate transaction. It is noteworthy that this problem aligns closely with the Set Cover

Problem (SCP), which we tackle using a rapid and efficient greedy polynomial algorithm.

4

The second significant contribution of this research introduces a novel methodology known

as U-NSGAII4ID, designed for the purpose of concealing sensitive expected frequent itemsets

by selectively removing specific items from transactions within an uncertain database. This

method, an extension of our previously proposed NSGAII4ID for traditional databases, lever-

ages the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Notably, three side effects,

specifically hiding failure, missing cost, and database dissimilarity, have been incorporated as

distinct objective functions to be minimized.

Similar to NSGAII4ID, U-NSGAII4ID takes on the challenge of database sanitization

through a two-tiered optimization process. Initially, at the transaction level, it utilizes a multi-

objective optimization algorithm to identify a subset of candidate transactions requiring mod-

ification. Subsequently, at the item level, U-NSGAII4ID aims to identify an optimal subset of

items to be removed from each candidate transaction. Notably, this problem aligns precisely

with the Weighted Set Cover Problem (WSCP), dictating the selection of optimal items for

elimination from chosen transactions. This innovative method marks a significant advance-

ment in privacy-preserving data mining, particularly for uncertain databases.

The third pivotal contribution of this thesis involves the presentation of three heuristic

methodologies tailored for Privacy-Preserving Data Mining in the context of uncertain databases.

These heuristic techniques have been crafted to effectively safeguard sensitive expected fre-

quent itemsets while simultaneously mitigating undesirable side effects during the data mining

process. The first heuristic, termed the aggregate approach, entails the selective removal of

certain transactions from the uncertain database as a means of preserving privacy. The sec-

ond, known as the disaggregate approach, focuses on the strategic elimination of specific items

from individual transactions. The third, referred to as the hybrid approach, represents a ver-

satile amalgamation of the two prior strategies, involving the removal of particular items from

selected transactions. Together, these heuristics seek to strike a delicate balance between main-

taining the confidentiality of sensitive information and reducing adverse consequences in the

course of data mining over uncertain databases.

5

1.4 Thesis outline

This thesis consists of five chapters, in addition to this introductory chapter and a last con-

clusive chapter. The remaining chapters are organized as follows:

1. Chapter 2: Pattern Mining - This chapter provides a foundational understanding of

data mining concepts and offers an overview of various methods for pattern extraction

from databases.

2. Chapter 3: Privacy Preserving Data Mining - In this chapter, a comprehensive sur-

vey of the state-of-the-art in the domain of privacy-preserving data mining (PPDM) is

presented. Additionally, it introduces the application of metaheuristic algorithms in this

domain to safeguard sensitive itemsets from disclosure within certain databases.

3. Chapter 4: Hiding Sensitive Frequent Itemsets via Items Removal - This chapter

presents a new method that we propose for preserving the privacy of sensitive itemsets in

transaction databases. This method employs a two-level multi-objective optimization ap-

proach to solve the problem. Namely, we use NSGA-II (Non-dominated Sorting Genetic

Algorithm II) at the transaction level and the set covering problem (SCP) at the items

level. The effectiveness of this method is demonstrated through extensive experiments

conducted on various large transaction databases.

4. Chapter 5: Privacy Preserving Sensitive Expected Frequent Itemsets in Uncertain

Databases - In this chapter, an extended version of the NSGAII4ID algorithm, specifi-

cally designed for uncertain databases, is introduced to safeguard the privacy of sensitive

expected frequent itemsets.

5. Chapter 6: Heuristic Approaches for Concealing Sensitive Frequent Itemsets in

Uncertain Databases - This chapter outlines three heuristic approaches tailored for

PPDM in uncertain databases, namely: U-Aggregate, U-Disaggregate, and U-Hybrid

approaches. The results of these methods, obtained through several experiments, are also

presented.

6. Chapter 7: Conclusion - The final chapter offers a global summary of the primary

contributions made in this thesis and explores potential avenues for future research.

6

Chapter 2: Pattern Mining

2.1 Introduction

The exponential growth in the volume of data generated and stored across various domains

necessitates the analysis and extraction of valuable insights from this data. Raw data, in its

unprocessed form, often lacks immediate significance, and a thorough analysis is required to

unearth the concealed knowledge it holds. This need has given rise to the field of knowledge

discovery in databases (KDD) [24]. KDD is primarily concerned with developing methods

and techniques for comprehending data and identifying patterns, which play a crucial role

in this context. Patterns can encompass sub-sequences, substructures, or itemsets that reflect

various forms of regularity and homogeneity within the data [28]. Consequently, patterns reveal

intrinsic and significant properties of databases.

Put differently, data mining and knowledge discovery in databases are two burgeoning re-

search fields focused on the automated revelation of previously undiscovered patterns from ex-

tensive datasets. Data mining focuses on extracting non-trivial, novel, and potentially valuable

knowledge from extensive databases. Sequential data mining techniques have found successful

applications in various domains, including customer relationship management, web mining,

science, engineering, and medicine. However, the need for distributed and parallel data mining

techniques has become evident in recent years.

Research in data mining is concerned with extracting potentially valuable information from

large datasets with diverse applications, such as customer relationship management, market

basket analysis, and bio-informatics. This information can take the form of patterns, clusters,

or classification models. For instance, association rules in a supermarket can reveal the relation-

ships between items frequently purchased together. Customers can be grouped into segments

7

to improve customer relationship management, and classification models can be constructed

based on customer profiles and shopping behavior to facilitate targeted marketing.

In this chapter, we will recall the basics of data mining in Section 2.2. Subsequently, in

Section 2.3, we will delve into various techniques of pattern mining. In section 2.4, we focus on

pattern mining methods including frequent itemset mining, sequence mining, episode mining.

In section 2.4.4, we introduce the concept of mining frequent itemsets in uncertain databases

and we briefly describe three main approaches to dealing with uncertainty in this context. We

conclude the chapter in Section 2.5

2.2 Data mining

Data mining, which is part of the process of knowledge discovery in databases (KDD), aims

at revealing new correlations, patterns, and trends through the analysis of extensive data sets.

This is accomplished by employing pattern recognition technologies, alongside other statistical

and mathematical techniques.

• Data mining involves the examination of extensive observational datasets to discover new

relationships among them. The goal is to reformulate these relationships to enhance their

usability for the data owners [29].

• Data Mining is an interdisciplinary field that uses both techniques for automatic learning,

pattern recognition, statistics, databases and visualization to determine the ways Extrac-

tion of information from very large databases [30].

• Data Mining is an inductive, iterative and interactive process whose objective is to dis-

covery of valid, new, useful and understandable data models in Large Databases [31]

Therefore, Data mining involves a series of methods used for data analysis to extract valu-

able information and reveal underlying patterns within extensive datasets. This field has expe-

rienced rapid growth and emergence in recent years, offering substantial benefits to numerous

services and organizations. For example, in the telecommunications industry, data mining tools

assist operators in analyzing consumer behaviors to better cater to customer interests and de-

velop new service packages. Similarly, commercial banks leverage data mining to identify

investment and deposit patterns, enabling them to make adjustments to their interest rates. In

8

Figure 2.1, we illustrate the Data-Information-Knowledge-Wisdom (DIKW) framework, where

data serves as the fundamental element that can contain valuable information through the data

mining process.,

Figure 2.1: Data Information Knowledge pyramid

Furthermore, data mining plays a pivotal role in deciphering complex data, extracting ex-

plicit information, and facilitating informed decision-making. Beyond its contributions to busi-

ness development, data mining finds applications in everyday scenarios. For instance, systems

or websites leverage data mining tools to recommend applications and content to users based

on their Internet data access and sharing behaviors.

In the realm of the Internet of Things (IoT), data mining is instrumental in offering intel-

ligent services across a wide range of fields, including healthcare, anomaly detection, security

and safety assurance, surveillance, and more. This technology enables pervasive and intelligent

solutions that enhance various aspects of daily life.

Knowledge Discovery in Databases (KDD) is the comprehensive process of uncovering

valuable insights within data, with a strong emphasis on the practical application of specific

data mining methods. KDD is a multidisciplinary field that holds relevance for researchers in

machine learning, pattern recognition, databases, statistics, artificial intelligence, knowledge

acquisition for expert systems, and data visualization.

9

The overarching goal of the KDD process is to extract knowledge from data within the

context of large databases. This is achieved through the utilization of data mining methods,

including algorithms, to identify what qualifies as knowledge based on predefined measures and

thresholds. The process involves working with a database, which may require pre-processing,

sub-sampling, and various transformations. In Figure 2.2, we illustrate the KDD process, where

the database undergoes several stages to extract knowledge, with data mining as the central step

for evaluating and uncovering patterns. The KDD process involves the following tasks:

Figure 2.2: KDD process

• Developing an Understanding: Application Domain, relevant prior knowledge, goals of

the End-User.

• Creating a target dataset: Selecting a data set or focusing on a subset of variables or data

samples for discovery.

• Data cleaning and pre-processing: Removal of noise or outliers, collecting necessary

information to model or account for noise, strategies for handling missing data.

• Data reduction and projection: Finding useful features to represent the data based on the

task’s goal, using dimensionality reduction or transformation methods to reduce variables

or find invariant representations.

10

• Choosing the data mining task: Deciding whether the goal of the KDD process is classi-

fication, regression, clustering, etc.

• Choosing data mining algorithm(s): Selecting method(s) for searching patterns in data,

deciding on models and parameters, matching a specific data mining method with the

overall criteria of the KDD process.

• Data Mining: Searching for patterns of interest in a representational form (e.g., classifi-

cation rules, trees, regression, clustering).

• Interpreting mined patterns.

• Consolidating discovered knowledge.

Since the mid-1980s, the field of database technology has undergone remarkable advance-

ments, primarily fueled by the widespread adoption of relational technology and extensive

research and development endeavors to create robust database systems. These developments

have paved the way for sophisticated data models, including the extended relational model,

object-oriented, object-relational, and deductive database systems. Furthermore, there has been

a growing emphasis on distribution, diversification, and data sharing within the field.

The emergence of heterogeneous database systems and internet-based information systems,

such as the World Wide Web (WWW), has played a pivotal role in the dissemination and

management of information. These innovations have collectively transformed the landscape of

database technology and data management.

Furthermore, data mining can be viewed as a natural progression in information technology.

Starting from the 1960s, information and fundamental technology data systems have undergone

systematic evolution, transitioning from basic file management to more robust and sophisticated

databases. Ongoing research and development in the field of database systems since the 1970s

has yielded significant advances, including the development of relational database systems,

modeling tools, and techniques for efficient data indexing and organization.

11

2.3 Data mining techniques

Data mining techniques can be broadly categorized into two main forms: supervised (also

referred to as predictive or directed) and unsupervised (also known as descriptive or undi-

rected). Both of these categories encompass functions capable of uncovering various hidden

patterns within large datasets.

While data analytics tools are increasingly emphasizing self-service capabilities, it remains

valuable to understand which data mining approach suits your specific needs before embarking

on a data mining operation.

2.3.1 Supervised data mining techniques

In supervised learning, the objective is to predict a specific target value related to data.

These targets can encompass two or more possible outcomes, or even represent a continuous

numeric value. To utilize these methods, it’s ideal to possess a subset of data points for which

the target value is already known. This data is used to construct a model that characterizes a

typical data point in the context of its various target values. Subsequently, this model is applied

to data where the target value is currently unknown. The algorithm’s task is to identify the

’new’ data points that best match the model of each target value.

2.3.1.1 Classification

Classification is one of the most commonly applied data mining techniques. It involves

using a set of pre-classified examples to build a model capable of classifying a larger pop-

ulation of records. This technique is particularly well-suited for applications such as fraud

detection and credit risk analysis. In practice, classification often relies on decision tree or

neural network-based algorithms.

The data classification process consists of two key phases: learning and classification. Dur-

ing the learning phase, the classification algorithm analyzes the training data. In the classifica-

tion phase, test data are used to assess the accuracy of the classification rules. If the accuracy

meets acceptable standards, these rules can then be applied to new data tuples.

For instance, in a fraud detection application, this process would involve evaluating com-

12

plete records of both fraudulent and valid activities on a record-by-record basis. The classifier-

training algorithm uses these pre-classified examples to determine the necessary parameters for

accurate discrimination. Subsequently, these parameters are encoded into a model referred to

as a classifier. Among the main classification methods, we can cite: Classification by decision

trees, Bayesian classification, Neural Networks, Support Vector Machines (SVM), Classifica-

tion Based on Associations, etc.

2.3.1.2 Prediction

Regression techniques are versatile tools that can be adapted for prediction in data min-

ing. Regression analysis allows us to model the relationship between one or more independent

variables and dependent variables. In the context of data mining, the independent variables

represent attributes that are already known, while the response variables are what we aim to

predict. In practice, many real-world problems involve more than simple prediction. Sales

volumes, stock prices, and product failure rates, for example, can be challenging to predict

due to complex interactions among multiple predictor variables. Therefore, the forecasting of

future values may require more intricate techniques, such as logistic regression, decision trees,

or neural networks.

Notably, some model types can serve both regression and classification purposes. For in-

stance, the CART (Classification and Regression Trees) algorithm can be employed to create

both classification trees (for categorical response variables) and regression trees (for continuous

response variables). Similarly, neural networks can be used to build models for both classifica-

tion and regression tasks. These are some regression methods: Linear regression, multivariate

linear regression, nonlinear regression and multivariate nonlinear regression.

2.3.2 Unsupervised data mining techniques

Does not focus on predetermined attributes, nor does it predict a target value. Rather,

unsupervised data mining finds hidden structure and relation among data.

2.3.2.1 Clustering

Clustering can be described as the process of identifying similar classes of objects. Through

clustering techniques, we can discern dense and sparse regions within the object space, un-

13

cover overall distribution patterns, and explore correlations among data attributes. While the

classification approach is also effective in distinguishing groups or classes of objects, it can

be computationally expensive. In such cases, clustering can serve as a valuable pre-processing

step for attribute subset selection and subsequent classification.

For instance, clustering can be employed to group customers based on their purchasing

patterns, or to categorize genes with similar functionality. It provides a fundamental step in

the analysis and organization of data, facilitating the exploration of underlying patterns and

structures. Several clustering methods have been proposed, including: Partitioning Methods,

hierarchical agglomerative (divisive) methods, density-based methods, grid-based methods and

model-based methods.

2.3.2.2 Association rule mining

Association and correlation techniques are typically employed to discover frequent item sets

within extensive datasets. These findings play a crucial role in assisting businesses with various

decisions, including catalogue design, cross-marketing strategies, and the analysis of customer

shopping behaviors. Association rule algorithms aim to generate rules with confidence values

less than one. However, it is important to note that the number of possible association rules for

a given dataset is often extremely large, and a significant proportion of these rules may have

limited, if any, practical value. Different variants of association rules have been studied like:

Multi-level, multi-dimensional and quantitative association rules.

2.4 Pattern mining

Pattern mining involves the discovery of interesting, valuable, and unexpected patterns

within databases. This field of research gained prominence, as evidenced by [32], with the

seminal paper by [33]. Pattern mining techniques hold significant appeal due to their capacity

to unveil concealed patterns in extensive databases, which are not only interpretable by humans

but also instrumental for understanding data and making informed decisions. For instance, a

pattern like milk; chocolate cookies can provide insights into customer behavior and inform

strategic decisions such as product co-promotions and discount offerings to boost sales.

While pattern mining has gained widespread popularity due to its applications across nu-

14

merous domains, it’s important to note that many of these techniques, such as those for frequent

itemset mining [33, 34, 35, 36, 37], and association rule mining [23], are primarily focused on

analyzing data where the sequential ordering of events is not considered.

Since its inception [22], the task of pattern mining has generated considerable interest

across various application fields, as evident in studies like [38], [39]. This growing interest

has led to the definition of new types of patterns to meet the specific analysis needs of experts

in different application domains.

2.4.1 Frequent itemset mining

One of the most popular tasks in knowledge discovery and data mining is mining frequent

itemsets, which involves identifying frequently occurring combinations of items as well as

the stong associations between frequent itemsets (association rules) from traditional databases

where the transaction content, or items, is known with certainty. The extensive research dedi-

cated to these tasks has resulted in the development of several advanced and efficient algorithms

for discovering frequent itemsets. Some of the most well-known methods include Apriori,

Eclat, and FP-Growth (Frequent Pattern Growth).

Frequent itemset mining (FIM) is a data analysis method originally designed for market

basket analysis. It seeks to uncover purchasing patterns in the behavior of supermarket, mail-

order company, and online shop customers. Specifically, it aims to identify sets of products

that are frequently bought together. However, finding such patterns is not straightforward due

to the exponential increase in computational complexity with the number of items in the data,

as well as the substantial memory consumption required in the mining process. Therefore, the

development of highly efficient solutions becomes essential. Figure 2.3 illustrates the various

steps involved in frequent itemset mining from transactional databases.

The FIM (Frequent Itemset Mining) problem is considered the foundation of the pattern

mining field [40], encompassing multiple tasks aimed at extracting itemsets in various forms

and for different purposes [28]. A straightforward variation of FIM involves extracting itemsets

that infrequently appear in data or were discarded due to the antimonotone property of support

in FIM. This led to the definition of pattern mining as the task of mining sets of items that

frequently or infrequently appear in data [41, 42, 43].

15

Figure 2.3: Mining frequent itemset

The significant interest in frequent itemset mining algorithms is primarily due to the compu-

tational challenges involved in the task. Even for moderately sized databases, the search space

of FIM grows exponentially with the length of transactions, creating challenges for itemset

generation when support levels are low. In practical scenarios, support levels for mining corre-

sponding itemsets are often constrained by memory and computational limitations. Therefore,

efficient space- and time-effective analysis is crucial. In the early years of research in this area,

the primary focus was on developing FIM algorithms with improved computational efficiency.

Frequent Itemset Mining (FIM) finds applications in various domains, including spatio tem-

poral data analysis, biological data analysis, and software bug detection [28]. It serves as a

fundamental step in uncovering recurring patterns within a database, facilitating the generation

of association rules for data analysis.

Frequent itemsets play a pivotal role in many data mining tasks, such as discovering asso-

ciation rules, correlations, sequences, classifiers, clusters, and more. Among these, the mining

of association rules stands out as one of the most popular problems. The original motivation

for searching association rules arose from the need to analyze supermarket transaction data,

delving into customer behavior regarding purchased products. Association rules reveal how

often items are bought together. For example, an association rule like "juice, chips (80%)"

indicates that four out of five customers who purchased juice also bought chips. These rules

find practical use in decisions regarding product pricing, promotions, store layout, and various

other aspects.

16

Furthermore, FIM is a broad area of research, encompassing a wide range of topics, espe-

cially from an application-specific perspective. It has led to the development of numerous vari-

ations in frequent itemset mining tailored for advanced data types. These variations have been

employed in a diverse set of tasks. Moreover, various data domains, such as graph data, tree-

structured data, and streaming data, often demand specialized algorithms for frequent itemset

mining. The issue of the interestingness of itemsets is also relevant in this context.

In general, algorithms for Frequent Itemset Mining (FIM) can be categorized into three

main groups [28]: Join-Based, Tree-Based, and Pattern Growth, as depicted in Fig. 2.4. Join-

Based algorithms employ a bottom-up approach to identify frequent itemsets in a database and

expand them into larger itemsets as long as they meet a minimum threshold set by the user.

Tree-Based algorithms utilize set-enumeration concepts to generate frequent itemsets. They

construct a lexicographic tree that facilitates various mining methods, such as breadth-first or

depth-first exploration. Pattern Growth algorithms implement a divide-and-conquer approach.

They partition and project databases based on presently identified frequent patterns and expand

them into longer patterns within the projected databases.

Figure 2.4: Classification of Frequent Pattern Mining algorithms

The Apriori algorithm is one of the first algorithms developed for frequent itemset mining.

It was introduced in the early 1990s [22] and later refined in [23] and came to be known simply

as Apriori. The Apriori algorithm follows a sequence of steps to identify the most frequent

itemset within a given database. This data mining technique iteratively follows the ’join’ and

17

Table 2.1: A traditional database

TID List of item_IDs
T1 I1, I2, I5
T2 I2, I4
T3 I2, I3
T4 I1, I2, I4
T5 I1, I5
T6 I2, I3
T7 I1, I3
T8 I1, I2, I3, I5
T9 I1, I2, I3

’prune’ steps until the most frequent itemset is discovered. The problem typically involves

a minimum support threshold defined by the user or given as input. In the ’join’ step, the

algorithm generates (K+1)-itemsets from K-itemsets by pairing each item with itself. The

’prune’ step involves scanning the count of each item in the database. Any candidate item that

does not meet the minimum support is considered infrequent and is removed. This pruning step

helps reduce the size of candidate itemsets.

A sample of transactional data, comprising product items purchased in different transac-

tions, is illustrated in Table 2.1. In the first step of the Apriori algorithm, the database is

scanned to identify all the frequent 1-itemsets by counting each of them and capturing those

that meet the minimum support threshold. This process involves scanning the entire database

to identify each frequent itemset. The minimum support threshold used, as shown in Fig. 2.5,

is set at 2. Consequently, only the records with a minimum support count of 2 or more will

proceed to the next cycle of algorithm processing.

Apriori algorithm offers significant performance improvements by effectively reducing the

size of candidate itemsets in many cases. However, it still faces two critical limitations [44].

First, when the total count of a frequent k-itemsets increases, a substantial number of candidate

itemsets may still need to be generated. Second, the algorithm requires repeated scanning of

the entire database and verification of a large set of candidate items using the pattern matching

technique.

Subsequent algorithms, like FP-Growth [24] and Eclat [45], took a different approach. FP-

Growth uses a depth-first search procedure based on a prefix-tree-based main memory com-

pressed representation of the input dataset. Eclat, on the other hand, employs a vertical trans-

18

Figure 2.5: Generation of candidate itemsets and frequent itemsets

position of the dataset to work with transaction identifiers [40]. Considerable attention has

been dedicated to assessing the performance of these novel algorithms in the field [46], [47].

In recent years, extremely large databases can be analyzed within seconds, thanks not only to

advancements in hardware and architectures but also to the proposed algorithmic solutions.

Efficient algorithms can now be found in the literature, addressing various issues related to

frequent itemset mining, including memory requirements, exponential time complexity, data

dimensionality, and search space pruning [28]. In many situations, such algorithms are suffi-

ciently capable of tackling these problems.

A significant challenge in frequent itemset mining is that the rules discovered may not al-

ways be very interesting when using quantification metrics such as support and confidence.

This is because such quantification does not normalize for the original frequency of the under-

lying items. For instance, an item that rarely appears in the underlying database is also likely

to appear in itemsets with lower frequency. Therefore, the absolute frequency often provides

19

limited insight into the likelihood of items co-occurring due to biases associated with individual

item frequencies.

2.4.2 Sequence mining

Sequential pattern analysis is a data mining technique that focuses on discovering similar

itemsets or patterns within transactional data over a defined business period. These patterns are

subsequently leveraged for further business analysis to uncover relationships within the data.

Sequential itemset mining, a key component of sequential pattern analysis, entails identify-

ing sub-sequences that appear in a sequence database with a frequency equal to or exceeding

a user-specified threshold. A sequence database comprises a collection of records, each repre-

senting an ordered sequence of events, with or without explicit timestamps. These sequences

can range from retail customer transactions to DNA sequences and web log data. For example,

if a sub-sequence, such as a customer purchasing a PC, followed by a digital camera and then a

memory card, occurs frequently in a customer transaction database, it is considered a (frequent)

sequential pattern.

Sequential itemset mining has gained prominence as a distinct theme in data mining re-

search. In recent years, several surveys on sequential itemset mining have been published,

providing valuable resources [48, 49, 50, 51, 52].

Two common types of sequential data used in data mining are time-series and sequences

[53]. Time-series represent ordered lists of numerical values, such as stock prices, temperature

readings, and electricity consumption, as shown in Fig. 2.6 (left). On the other hand, sequences

represent ordered lists of nominal values or symbols, as depicted in Fig. 2.6 (right). These

sequences find applications in various domains, such as representing sentences in texts, items

purchased by customers in retail stores, and web pages visited by users.

Sequential itemset mining aims to reveal relationships between sequential events by iden-

tifying specific orderings of occurrences. It involves the discovery of frequently occurring

sequences, which can be used to describe the data, predict future data, or uncover periodic

patterns. A sequential pattern is defined as a sequence of itemsets that frequently occur in a

specific order, with all items within the same itemsets having the same transaction-time value

or falling within a specified time gap [54].

20

Figure 2.6: A time-series (left) and a sequence (right)

Table 2.2: A transaction database

TID transactions

10 a,b,d

20 a,c,d

30 a,d,e

40 b,e, f

Table 2.2 shows an example of a transaction database, when each transaction has a subset

of items, dislike, in table 2.3, a sequence database consists of order of elements or events.

In table 2.3, A database of sequences, where each sequence consists of a list of transactions

ordered by transaction time and each transaction is a set of items, sequential pattern mining is

to discover all sequential patterns with a user-specified minimum support, where the support of

a pattern is the number of data sequences that contain the pattern.

Table 2.3: A Sequence database

SID sequences

10 ⟨a (a b c) (a c) d (c f)⟩

20 ⟨(a d) c (b c)(a e)⟩

30 ⟨(e f) (a b) (d f) c b⟩

40 ⟨a (a b c) (a c) d (c f)⟩

21

Given a set of sequences and support threshold, find the complete set of frequent sub se-

quences A sequence ⟨(e f) (a b) (d f) c b⟩. An element may contain a set of items. Items within

an element are unordered and we list them alphabetically. ⟨a (b c) d c⟩ is a sub-sequence of

⟨a (a b c) (a c) d (c f)⟩. Given support threshold minsup = 2, ⟨(a b) c⟩ is a sequential pattern.

Sequential itemset mining is a subfield of data mining that focuses on extracting frequent

and meaningful patterns from sequential data. These patterns can provide valuable insights

into the temporal relationships and dependencies present in the data. Here are some additional

details about sequential itemset mining:

1. Types of Sequential Patterns: Sequential itemset mining can identify different types of

patterns, including sequential patterns, episode patterns, periodic patterns, and closed

sequential patterns. Each type represents different characteristics and temporal depen-

dencies within the data.

2. Algorithms: Various algorithms have been developed for sequential itemset mining, such

as Apriori-based algorithms, GSP (Generalized Sequential Pattern) algorithm, PrefixS-

pan, SPADE (Sequential Pattern Discovery using Equivalence classes), and many more.

These algorithms employ different strategies to efficiently discover frequent patterns in

large sequence databases[55].

3. Support Measure: The support measure is used to determine the frequency of a pattern

in the dataset. It represents the proportion of sequences in the database that contain the

given pattern. A user-defined minimum support threshold is typically set to filter out

infrequent patterns and focus on more meaningful and significant patterns[24].

4. Applications: Sequential itemset mining has numerous applications in various domains.

It can be applied to analyze customer purchasing behavior, website browsing patterns,

DNA sequencing, process mining, analyzing sensor data in Internet of Things (IoT) ap-

plications, and many more. By discovering frequent patterns, it enables businesses to

make data-driven decisions, optimize processes, improve recommendations, and under-

stand temporal dynamics in different contexts [56],[24].

5. Challenges: Sequential itemset mining poses several challenges, including scalability,

handling large and high-dimensional datasets, dealing with noise and variations in se-

22

quences, managing variable sequence lengths, and incorporating constraints on patterns

such as time gaps, item constraints, and length constraints.

Overall, sequential itemset mining plays a vital role in extracting meaningful patterns from

sequential data, enabling valuable insights and decision-making in various domains.

2.4.3 Episode mining

An episode comprises a collection of events or states that co-occur within a designated

time window. Frequent episode mining is focused on identifying these repeated episodes that

surpass a predetermined threshold of occurrence frequency.

The mining process of historical data can be time-intensive, lasting for hours or even days.

Most existing Frequent Episode Mining (FEM) solutions face two key characteristics that con-

tribute to this time consumption:

1. The anti-monotonicity property, crucial for episode frequency, may not hold true [57].

This means that the frequency of a sub-episode might be lower than that of the super-

episode, particularly if a minimal occurrence is used to determine episode frequency.

2. Testing whether an episode occurs in a sequence poses an NP-complete problem [58].

This complexity contributes to the time-consuming nature of the mining process.

Episode mining is focused on uncovering noteworthy patterns within lengthy sequences of

symbols or events. Sequence data, prevalent across various domains, encapsulates information

such as a series of alarms generated by a computer system, a sequence of words within a text,

or even a sequence of purchases made by a customer. Through episode mining, patterns within

these sequences can be unveiled, aiding in the comprehension of data and offering support for

decision-making processes. A visual representation of this sequence is shown in figure 2.7 the

running example of event sequence :

Figure 2.7: The running example of event sequence

23

Therefore, Frequent episode mining serves as a widely adopted framework for unveiling

sequential patterns from sequence data. Typically, prior studies in this domain handle data

offline in a batch mode. However, in scenarios with rapidly evolving sequence data, previously

discovered episodes might become outdated as new, valuable episodes continually emerge. The

goal of episode mining is to find frequent episodes. An episode E is a sequence of event sets

of the form E = ⟨X1,X2, . . . ,Xp⟩. This notation indicates that a set of events X1 occurred, was

followed by another set of events X2, and so on, and finally followed by a set of events Xp.

Figure 2.7 shows an event sequence:

S⃗ = ⟨({D},1),({A,B},2),({C},3),({D},4),({A},5),({A,B},6),({B},7),({B},8)⟩.

An episode (also known as a serial episode) α is defined as a non-empty totally ordered set

of events of the form e1→ . . .e j→ . . .ek where ei ∈ E for all i ∈ [1,k] and the event ei occurs

before the event e j for all 1 ≤ i ≤ j ≤ k. The length of an episode is defined as the number

of events in the episode. An episode α of length k is called a k− episode. For example,

α = D→ A→C is a 3− episode. An event A can also be viewed as a 1− episode.

Frequent Episode Mining (FEM) techniques are widely applied in various domains such as

telecommunication [59, 60], manufacturing [61, 62], finance [63, 64], biology [65, 66], system

log analysis [67, 64], and news analysis [68].

In this context, an episode, also known as a serial episode, is typically defined as a com-

pletely ordered set of events. The frequency of an episode serves as a metric that measures

how frequently it occurs within a sequence. FEM is geared towards identifying all the frequent

episodes whose frequencies exceed a user-defined threshold.

The original definition of mining frequent episodes was set within a context of "a sequence

of events," sampled regularly, as proposed by [61]. In a broader sense, an episode is an assem-

bly of events that occur together, typically in a partially ordered manner [69].

2.4.4 Mining frequent itemsets over uncertain transaction databases

The identification of frequent itemsets within traditional transactional databases, where

transaction content is completely known and certain, stands as a significant task in knowl-

edge discovery and data mining. However, the landscape has evolved in recent years, with

24

the prevalence of uncertain data due to inherent imprecision in modern data collection tech-

nologies. Frequent pattern mining holds a pivotal role in various real-world applications,

spanning banking, bio-informatics, environmental modeling, epidemiology, finance, market-

ing, medical diagnosis, and meteorological data analysis [11]. Many of these applications

grapple with uncertainty rooted in diverse factors: limitations in human perception or under-

standing, constraints in observation tools, and restricted resources for data collection, storage,

transformation, or analysis. Additionally, inherent biases contribute to uncertainty in the data.

Sensors used in environmental surveillance, security, and manufacturing systems, encompass-

ing acoustic, chemical, electromagnetic, mechanical, optical radiation, and thermal sensors,

can introduce noise and uncertainty [11]. Notably, techniques for mining frequent itemsets in

uncertain databases significantly diverge from traditional methods applied in certain transac-

tion databases. Researchers have adapted conventional techniques like Apriori and tree mining

to suit the requirements of uncertain transaction databases [11].

Data uncertainty is notably prevalent in various contexts, notably exemplified within the

medical domain. In medical datasets, tuples encapsulate diverse symptoms or illness indicators

observed in individual patients. However, these values may not be entirely certain; instead,

they are often associated with a confidence degree, typically represented by a probability value.

Additionally, satellite imagery analysis offers another example. Image processing techniques

are employed to extract features indicating the presence or absence of specific target objects,

such as identifying bunkers, yet with a certain level of uncertainty inherent in the analysis.

The uncertainty inherent in spatial data, arising from noise and limited resolution, is fre-

quently quantified and expressed through probability measures [70, 11]. This has notably

spurred active research in the field of data mining involving uncertain data. For instance, [71]

introduced efficient clustering algorithms specifically crafted for uncertain objects. Moreover,

research such as that by [72, 73] has explored naive Bayes and decision tree classifiers tailored

explicitly for uncertain data. For a comprehensive overview of techniques in mining uncertain

data, [74] provides an extensive resource.

Mining frequent itemsets within uncertain databases presents the challenge of evaluating

the confidence in the resulting mining outcomes. These uncertain database models commonly

categorize into two types: attribute uncertainty, where each item in a transaction is associated

with an existential probability, and tuple uncertainty, where each tuple is linked to a probabil-

25

ity signifying its existence. While the research in this field has been somewhat limited, certain

strategies for pruning have been suggested to expedite algorithms, particularly in uncertain sce-

narios. Yet, an unexplored area in this domain involves dealing with data uncertainty within

privacy-preserving pattern mining. This necessitates hiding sensitive data while extracting fre-

quent patterns from uncertain databases.

The representation of uncertain data relies significantly on the model employed to encap-

sulate its complexity. Possible worlds, as proposed by [48], serves as a comprehensive model

for uncertain data, striving to encompass all conceivable database states in line with a specified

schema. Handling uncertain data is notably more intricate compared to traditional databases,

demanding a representation of uncertainty that is easily processed and queried. Information

with lower uncertainty generally holds greater importance than information with higher uncer-

tainty. However, calculating the complexity of these algorithms frequently involves a compu-

tation cost of at least O (N log N) for each itemset.

The investigation of mining frequent itemsets within uncertain databases has become a

central focus within data mining communities, signifying a fundamental challenge in the field.

Numerous researchers have dedicated their efforts to identify the most effective strategies for

mining frequent itemsets within uncertain databases.

The algorithms for mining frequent itemsets are commonly classified into three primary

groups: Expected support-based frequent itemsets, Exact probabilistic frequent algorithms,

and Approximate probabilistic frequent algorithms [19].

2.4.4.1 Expected support-based frequent itemset mining algorithms

Given an uncertain database D with N transactions and a minimum expected support ratio

minesup, an itemset X is an expected support-based frequent itemset if and only if ExpSup(X)/|D| ≥

minesup where ExpSup(X) is the expected support of X given by the following formula:

ExpSup(X) = ∑
t∈T

Pr(X ⊆ t)/|D|= ∑
t∈T

(∏
x∈X

Pr(x ∈ t))/|D| (2.1)

The complexity of computing the expected support-based frequent itemset is O(N). Among

the main expected support-based frequent itemsets algorithms proposed in the literature, we

26

can cite : U-Apriori[16], UFP-Growth[17] and UH-Mine algorithm [11] that extend the well-

known APriori, FP-Growth and H-Mine algorithms respectively to the case of probabilistic

transactional databases.

2.4.4.2 Exact Probabilistic Frequent itemsets algorithms

The representation of uncertain data relies on the model used for capturing the nature of

complexity. The possible worlds [75] is the general model for uncertain data, which tries to

capture all the possible states of a database which are consistent with a given schema. Further-

more, the process of managing uncertain data is much more complicated than that for traditional

databases, that is why the uncertainty information needs to be represented in a form which is

easy to process and query. The complexity computation of these algorithms requires spending

at least O(N log2 N) computation cost for each itemset.

In the exact probabilistic frequent itemset mining algorithm, an itemset X is frequent if and

only if the probability that the support of X is more than or equal minsup is greater or equal to

a probability threshold minprob.

An algorithm based on dynamic programming is proposed in [15] to calculate exact proba-

bilistic frequent itemsets. Another exact algorithm based on the divide and conquer (DC) prin-

ciple is proposed in [18]. Its main idea is to divide uncertain database into two sub-databases:

UDB1 and UDB2. After that, DC algorithm calls itself recursively to divide the database until

only one transaction remains. Finally, the complete probability distribution of itemset support

is obtained when the algorithm finishes.

2.4.4.3 Approximate approach for mining probabilistic frequent itemsets

The support of an itemset is considered as a random variable following Poisson-Binomial

distribution. Thus, the random variable or the support of an itemset can be approximated by

the Poisson or Normal distribution effectively when uncertain databases are large enough. The

computation cost is O(N), and return the complete probability information when uncertain

database is huge. Three approximate algorithms was designed for mining frequent probabilis-

tic itemsets over uncertain database: The Poisson distribution based U-Apriori called PDU-

Apriori algorithm proposed in [16]. Besides, according to the Lyapunov Central Limit Theory

(see e.g. [76]), Poisson-Binomial distribution converges to the Normal distribution with high

27

probability [77]. Hence, based on this theorem, the Normal Distribution-based U-Apriori called

NDU-Apriori algorithm is proposed in [13]. Likewise, the Normal distribution-based UH-Mine

algorithm is proposed in [78]. The UH-Mine algorithm is in these steps:

1. Scan the uncertain database and discover all expected support-based frequent itemsets.

2. Build a head table that contains all expected support-based frequent itemsets.

3. Insert all transactions in to the data structure, UH-Struct.

4. Use the depth-first strategy to build the head table.

5. The algorithm recursively builds the head tables where different itemsets are prefix.

2.5 Conclusion

The field of data mining is a powerful methodology and technology that plays a crucial

role in generating information essential for decision-making. As future developments unfold,

data mining is expected to become even more powerful and useful. However, with this ad-

vancement comes growing concern over individual privacy and the protection of sensitive data.

The increasing volume of personal data raises alarms about potential misuse without proper

consent.

While data mining effectively extracts valuable insights, it also risks intruding on individ-

ual privacy by revealing implicit private details that individuals may not willingly disclose.

Addressing these concerns is critical, making the integration of privacy-preserving features

into the data mining process essential. The next chapter will explore the domain of privacy-

preserving data mining, discussing its core concepts that not only address these issues but also

engage researchers in the field.

28

Chapter 3: Privacy Preserving Data Min-

ing

3.1 Introduction

Government agencies, businesses, and non-profit organizations actively seek ways to col-

lect, analyze, and utilize data related to individuals, households, or enterprises. This effort

enhances their capabilities for immediate and long-term planning. The increased capacity for

data storage and improved data accessibility has led to the widespread adoption of data mining

methods. These techniques serve as a means to extract valuable insights across various sectors

such as marketing, medical diagnosis, weather forecasting, and national security. However, ex-

ploring knowledge from specific data types may pose challenges that demand careful attention

to safeguard the privacy rights of data owners. Data mining results take various forms, from

patterns and clusters to classification models. For instance, in a retail context, association rules

can reveal relationships between concurrently purchased items.

In recent years, data mining has evolved into an essential technology, primarily due to its

capability to uncover concealed insights, identify patterns, and detect trends within vast data

repositories. This versatile technique offers numerous advantages and finds applications across

diverse domains, including businesses, marketing, healthcare, manufacturing, sales, scientific

research, and technology innovation. However, despite its merits, data mining introduces a sig-

nificant concern: the potential jeopardy it poses to data privacy. Through data mining methods,

sensitive information, including personal details and patterns, can be deduced from seemingly

non-sensitive or unclassified data, potentially encroaching upon individual privacy. Safeguard-

ing such information is crucial, and all data mining activities should prioritize secure execu-

29

tion. This scenario has prompted an urgent need for the development of appropriate privacy-

preserving data mining (PPDM) techniques.

The widespread practice of sharing and publishing data presents numerous opportunities.

However, the processes involved in data collection and dissemination can inadvertently lead

to information disclosure, posing a significant threat to privacy. The powerful capabilities of

data mining tools to extract hidden insights from extensive data collections have encouraged

increased data gathering efforts by both companies and government agencies, thereby raising

concerns about privacy. In response to these concerns, data mining researchers have developed

specialized techniques focused on safeguarding privacy, forming the field of privacy-preserving

data mining (PPDM). Many organizations gather data about individuals for specific purposes

but must ensure the preservation of individual privacy and the confidentiality of sensitive data.

Hence, a diverse array of PPDM techniques becomes indispensable.

The reminder of the chapter is structured into three sections. Section 3.2 furnishes a defi-

nition of privacy-preserving data mining. Section 3.3 presents a review of privacy-preserving

algorithms while Section 3.4 focuses on metaheuristic-based algorithms for PPDM. Finally, the

conclusions are summarized in Section 3.5.

3.2 Privacy preserving data mining

Privacy Preserving Data Mining (PPDM) has been a significant area of research since 1991,

finding applications in both public and private sectors. It encompasses data mining techniques

specifically designed to protect sensitive information from unauthorized disclosure. The pri-

mary aim is to extract valuable knowledge from extensive databases while upholding privacy

principles. Many privacy computation methods rely on data transformation. However, these

techniques often result in a reduction in representation granularity, striking a delicate balance

between information preservation and privacy. This reduction in granularity may potentially

compromise the effectiveness of data management and mining algorithms.

In recent years, PPDM has gained significant importance [79, 80, 81, 82, 83, 84] in hiding

sensitive information while enabling the extraction of useful knowledge. PPDM techniques

find application in modern fields such as cloud computing [85, 86], Internet of Things [87],

blockchain technology [88], and deep learning [86, 84]. This article provides a concise review

30

of recent work in three main domains: classification, data exchange within heterogeneous and

interconnected sources, and mining interesting patterns in databases. For a more comprehen-

sive classification and evaluation of PPDM methods, see, for example, [89].

The primary goal of privacy-preserving data mining is to develop algorithms that modify

the original data in a manner that ensures the protection of private data and knowledge even

after the mining process. Various approaches have been proposed in the literature, differing

in their assumptions about data collection models and user privacy requirements. The aim of

PPDM is to sanitize a database by concealing and securing personal, confidential, or sensitive

information of participants while still allowing for data analysis.

Figure 3.1: A brief overview of PPDM techniques

PPDM techniques are divided into several categories that are based on different assumptions

or domain knowledge which are categorized in [90], and shown in Figure 3.1.

Another approach within Privacy-Preserving Data Mining (PPDM) involves the use of cryp-

tographic tools to construct data-mining models. This approach treats PPDM as a specialized

form of secure multi-party computation (SMC), focusing not only on safeguarding individual

privacy but also on preventing any information leakage aside from the final outcome. How-

ever, this approach comes with the drawback of significant increases in communication and

computation costs as the number of involved parties grows.

Rule hiding represents a technique that transforms a database, disguising only sensitive

31

rules while still allowing other valuable information to be revealed.

Furthermore, PPDM represents a distinct set of data mining activities comprising tech-

niques developed to safeguard data privacy, enabling the knowledge discovery process to pro-

ceed unimpeded. The primary objective of PPDM is to extract pertinent knowledge from ex-

tensive databases, delivering accurate data mining outcomes while preventing the disclosure or

inference of sensitive information. In PPDM, novel techniques are devised to ensure privacy

for the knowledge extracted during data mining, all while ensuring that privacy concerns do not

impede the knowledge discovery process.

Dealing with the excess of personal data poses a significant challenge in privacy-preserving

data mining. While various technologies support appropriate data handling, there is still consid-

erable work to be done, and several obstacles must be addressed for their effective deployment.

3.3 Review of privacy preserving data mining algorithms

Numerous studies have delved into privacy-preserving data mining (PPDM) across vari-

ous contexts. For instance, [91] explored the performance of classification algorithms—such

as C4.5, Naïve-Bayes, and Random Tree—in a privacy-preserving classification scenario. To

safeguard data privacy, they employed input perturbation using differential privacy, analyz-

ing the relationship between the ’e’ parameter and the classifiers’ accuracy. Another study

by [92]introduced a rule-based classifier utilizing the ant bee colony optimization algorithm

and differential privacy’s input perturbation for privacy-preserving classification. Additionally,

[93] addressed the classification problem in a distributed environment, proposing the Privacy-

Preserving Distributed ERT approach, adapting the Extremely Randomized Trees algorithm for

settings where structured data is distributed across multiple sources.

In a quest to eliminate sensitive information through decomposition and dimensionality

reduction, [94] devised a methodology leveraging the singular value decomposition (SVD) ma-

chine learning algorithm and 3D rotation data perturbation (RDP) for data privacy preservation.

For data exchange among varied sources, [95] introduced a novel technique called Re-

modeling. This technique, in tandem with the k-anonymity and k-means algorithm, aims to

minimize data loss, enhance privacy preservation, and maintain data diversity. Another inno-

32

vation in privacy-preserving data mining architecture, proposed by [96], is a distributed model

based on Multi-Party Computation (MPC) designed to manage vast and multi-source data, con-

sidering potential data inaccessibility during aggregation due to sporadic network connectivity

or abrupt user departures. In healthcare, [97] scrutinized PPDM, analyzing data privacy and

utility requirements for healthcare process data, assessing the suitability of privacy-preserving

data transformation methods to anonymize healthcare data. Finally, [98] introduced a multi-

objective sanitization model to secure 6G Internet of Things (IoT) networks.

Recent research has explored diverse aspects of privacy-preserving data mining (PPDM)

in varied contexts. For instance, [99] employed an ant colony optimization (ACO) approach

with multiple objectives and a transaction deletion mechanism to safeguard confidential infor-

mation. In the IoT domain, [99] proposed a machine learning model for data sanitization based

on data privacy. Additionally, [100] applied PPDM to open government data from heteroge-

neous sources, suggesting a method that permits users to adjust the privacy threshold level for

balancing privacy risk with data utility, even in the absence of identifiers.

To conceal sensitive itemsets, [101] introduced a greedy approach involving the insertion

of new transactions to reduce the support of sensitive itemsets. They used a statistical method

to determine the items for insertion. Meanwhile, [102] devised a greedy algorithm named

SIFIDF, which deletes transactions from a database rather than adding synthetic data, utilizing

the TF-IDF measure (term frequency-inverse document frequency) to select transactions to be

eliminated, reducing side effects.

Moreover, [103] presents an evolutionary computation-based model for PPDM under a

multi-threshold constraint. In another study, [104] addressed the critical issue of setting mini-

mum support thresholds, proposing a modified minimal support concept to establish a stricter

threshold for objects containing multiple items according to a given threshold function.

3.4 Meta-heuristic algorithms for PPDM

Meta-heuristic algorithms play a significant role in privacy-preserving data mining (PPDM)

by addressing optimization challenges effectively. These algorithms offer near-optimal solu-

tions within reasonable timeframes, particularly beneficial when handling extensive datasets.

33

Belonging to a class of general algorithmic methods, meta-heuristics are designed to tackle

intricate optimization problems. Evolutionary computation (EC) is a notable meta-heuristic

approach, inspired by natural evolution processes and first emerging in the late 1960s. EC

algorithms are proficient at resolving complex search and optimization challenges, expanding

the horizons of optimization to unattainable areas previously. Computer scientists have de-

veloped numerous algorithms mimicking natural evolution, especially to solve NP-hard prob-

lems. Moreover, many of these evolutionary algorithms have been extended to address multi-

objective optimization problems, giving rise to a substantial body of work in this field (e.g.,

[105, 106, 86, 107, 108, 109]).

In the domain of PPDM, particularly for concealing sensitive itemsets, single-objective

evolutionary computation algorithms optimize a single objective function, usually a weighted

sum of various side effects. On the contrary, multi-objective evolutionary computation algo-

rithms aim to concurrently optimize multiple conflicting objectives without merging them into

a single function. The solutions derived from multi-objective approaches are non-dominated,

indicating that no other solution in the search space is superior in all objectives simultaneously.

By presenting a set of non-dominated solutions, multi-objective methods offer decision-makers

greater flexibility in choosing the most appropriate solution according to their preferences.

3.4.1 Single-objective metaheuristic algorithms for PPDM

Several significant studies have been conducted in using single-objective optimization evo-

lutionary algorithms for PPDM.

[110] introduces the EHS algorithm, employing an evolutionary algorithm driven by a

single-objective optimization method to eliminate sensitive itemsets from transaction databases.

It involves two techniques: one for adjusting itemset support and the other for modifying trans-

action structures to obscure sensitive itemsets.

[111] proposes the EPIS algorithm for privacy-preserving frequent itemset mining, employ-

ing single-objective optimization to minimize information loss while concealing sensitive data.

The approach involves modifying the database by adding transactions that either support or do

not support sensitive itemsets.

34

[112] introduces the GHI genetic algorithm aimed at concealing sensitive itemsets in trans-

actional databases. Using a single-objective optimization function based on a fitness assessment

considering the number of sensitive itemsets and the database’s size after modification.

[113] presents a differential evolution algorithm that utilizes single-objective optimization

to perform privacy-preserving frequent itemset mining. The algorithm focuses on reducing the

support of sensitive itemsets by introducing new transactions into the database.

Furthermore, studies by [114, 115] introduce the sGA2DT, pGA2DT, and cpGA2DT algo-

rithms, aiming to conceal sensitive itemsets within large databases. These algorithms select an

appropriate set of transactions to delete, considering each chromosome as a potential solution

for transaction deletion. A fitness function incorporates three side effects, each weighted dif-

ferently as per user-defined values. These algorithms offer variations in approach to optimize

transaction deletion for hiding sensitive itemsets, considering population size and database scan

cost reduction.

Additionally, [116] introduced the PSO2DT algorithm, leveraging a discrete PSO-based

approach to identify transactions to remove while hiding sensitive itemsets and minimizing

side effects via a single objective function.

Finally, [117] proposed the ACS2DT algorithm based on Ant Colony System to delete

transactions. This bio-inspired algorithm aims to hide sensitive itemsets while minimizing

three side effects through a fitness function that calculates a weighted sum of these effects to

evaluate solutions.

3.4.2 Multi-objective metaheuristic algorithms for PPDM

Multi-objective optimization has been significantly applied in privacy-preserving data min-

ing to address the task of hiding sensitive itemsets. Several notable studies illustrate the utiliza-

tion of multi-objective optimization for this purpose:

[118] introduces a multi-objective genetic algorithm (MOGA) to conceal sensitive itemsets

within transaction databases. It aims to minimize the number of deleted transactions, the count

of modified transactions, and the maximum number of sensitive itemsets in each modified

transaction.

35

[119] presents an algorithm based on NSGA-II (Non-dominated Sorting Genetic Algorithm

II) focusing on three objectives: the count of deleted and modified transactions and the utility

loss due to modifications to conceal sensitive itemsets.

[120] develops a multi-objective algorithm utilizing the bat algorithm to hide sensitive item-

sets while minimizing the number of deleted and modified transactions and the loss of utility.

[121] proposes a multi-objective genetic algorithm for privacy-preserving frequent itemset

mining. It aims to minimize the number of deleted and modified transactions and the utility

loss caused by modifications.

Moreover, [122] designs the NSGA2DT algorithm, derived from the NSGA-II algorithm,

to identify optimal transactions for deletion to conceal sensitive itemsets. This algorithm incor-

porates database dissimilarity as a fourth factor, striving for a better balance between multiple

side effects.

In another approach, [123] presents the GMPSO algorithm, a multi-objective PSO-based

technique using a grid-based method. GMPSO targets Pareto optimal solutions for data saniti-

zation, utilizing strategies for global and local solutions and adapting the Pre-large concept to

expedite the evolutionary process, reducing the frequency of multiple database scans.

These studies collectively demonstrate the efficacy of multi-objective optimization in privacy-

preserving data mining, offering valuable insights for future research in this domain.

3.5 Conclusion

In summary, privacy-preserving data mining represents a vital research domain aimed at

safeguarding sensitive data while extracting valuable patterns. The methodologies and strate-

gies employed in PPDM strive to find a delicate equilibrium between data privacy and data

utility by employing techniques like data perturbation, anonymization, and encryption. This

area finds particular significance in domains where privacy-sensitive data is central, such as

healthcare, finance, and e-commerce. Yet, while PPDM techniques offer protection for sensi-

tive data, it’s imperative to evaluate their efficacy to ensure they don’t compromise individuals’

privacy. Hence, continuous research and advancements in PPDM are necessary to address

emerging privacy concerns.

36

Moreover, ethical and legal considerations play a pivotal role when deploying PPDM tech-

niques, given their substantial impact on individuals and society. Implementing privacy-preserving

measures should involve the consent and awareness of data owners and users while aligning

with pertinent laws and regulations. With evolving data privacy concerns owing to technolog-

ical advancements, PPDM researchers and practitioners must stay abreast of the latest trends

and consistently enhance their techniques to mitigate emergent privacy risks. Overall, PPDM

serves a crucial function by safeguarding the privacy of individuals and organizations, enabling

them to glean insights from their data.

In this thesis, we focus on the development of new methods in privacy preserving frequent

itemset mining. For that purposes, the proposed methods bring new contributions to this field in

two perspectives: First, contrary to most of the existing approaches which sanitize databases by

deleting complete transactions, our proposed methods operate at the finer level of items which

leads to less update in the original database. Moreover, we address in this thesis the PPDM

problem in the context of uncertain databases. To the best of our knowledge, this issue has not

been tackled previously.

37

Chapter 4: Hiding Sensitive Frequent Item-

set via Items Removal

4.1 Introduction

The identification of relevant patterns and association rules is a fundamental task in data

mining, employing a variety of techniques and methods [47]. Among these methods, Apri-

ori, introduced by [23], stands out as the first and most widely used algorithm for discovering

association rules in transactional databases. Another prominent algorithm in this domain is

FP-Growth, proposed by [124]. While these techniques are effective in extracting implicit in-

formation from large databases, a major concern arises regarding their potential misuse, leading

to the exposure of private and sensitive data such as credit card numbers, personal identification

numbers, and telephone numbers. This concern is exemplified in a scenario presented in [125],

where banks sharing their databases could result in a compromise of sensitive information.

To address this issue, it is crucial to incorporate privacy-preserving techniques, including data

perturbation and encryption, to mitigate risks and ensure the confidentiality of sensitive data.

The depicted scenario underscores a significant privacy concern, as databases often encom-

pass sensitive details about customers, their accounts, and their families. While sharing certain

data can be mutually advantageous, banks need to safeguard their strategic information and

customer trends. Consequently, it becomes crucial to transform the data intended for sharing,

concealing sensitive patterns to prevent their exposure through data mining algorithms. To

achieve this, the adoption of appropriate privacy-preserving techniques is imperative. Algo-

rithms like Apriori and FP-Growth, while effective in extracting implicit knowledge from large

databases, also pose the risk of malicious use to unveil private and confidential information,

38

such as credit card numbers and personal identification numbers. Thus, the implementation

of robust privacy measures becomes essential to shield individuals and organizations from the

potential misuse of data mining techniques.

PPDM techniques are tailored to hide sensitive frequent itemsets, which represent sets of

values frequently found in transactions. Database sanitization is a common method for secur-

ing sensitive itemsets; however, this process can lead to undesired side effects such as hiding

failure, missing cost, and artificial cost. Selecting optimal data modifications to minimize these

side effects becomes a challenging NP-hard optimization problem. Thus, designing PPDM

algorithms that strike a balance between preventing sensitive information disclosure and pre-

serving non-sensitive yet important information is a key challenge. While existing PPDM tech-

niques typically delete entire transactions to hide sensitive itemsets, this approach may result

in significant loss of non-sensitive information. To address this concern, this chapter intro-

duces a novel algorithm called Non-dominated Sorting Genetic Algorithm II for Item Deletion

(NSGAII4ID). NSGAII4ID treats the task of hiding sensitive itemsets as a multi-objective op-

timization problem, achieving concealment by deleting individual items in transactions rather

than entire transactions. This approach minimizes the overall impact on the database.This is

done by performing optimizations at two levels with the aim of minimizing side-effects:

1. At the external level (transactions), NSGAII4ID adapts the NSGA-II algorithm [126] for

multi-objective optimization to use three objective functions representing the side-effects.

Optimization is done at the transaction level to find a set of candidate transactions from

which some items will then be selected and removed to minimize the objective functions.

2. Then, at the evaluation level (items), for a given combination of candidate transactions,

the problem of determining the items that should be removed from each transaction is

shown to be nothing but a Set cover Problem (SCP) which is a well-known NP-Hard

combinatorial optimization problem. To solve the SCP, a fast greedy algorithm is applied

which provides a good approximate solution in polynomial time. The resulting optimal

subset of removed items determines the values returned by the objective functions, i.e.,

the quality of a selected subset of candidate transactions. To our best knowledge, this

chapter is the first to explore this two level optimization approach for PPDM, which

remove items rather than whole transactions to reduce the amount of change. We call

this novel approach two-level multi-objective optimization for PPDM.

39

The key differences between NSGAII4ID and previous approaches are:

• Unlike many PPDM algorithms, NSGAII4ID applies a multi-objective approach to take

into account the multiple side-effects in the process of finding a solution.

• Instead of removing entire transactions, as most algorithms for hiding sensitive itemsets

do, NSGAII4ID acts at a lower granularity level and removes subsets of items from

transactions. This leads to a more refined change operator and is more in line with the

minimality principle, which suggests that changes made to a database to hide sensitive

information should be as limited as possible.

• NSGAII4ID integrates the dissimilarity criterion as an objective to be minimized in addi-

tion to other side effects. Therefore, the goal is to search for solutions that also minimize

the amount of change made to the original database during sanitization.

This chapter is organized as follows. Preliminary definitions are presented in Section 4.2.

Then, Section 4.3 presents some formal results that simplify the computation of side effects,

and then formally defines the task of hiding sensitive itemsets as a multi-objective optimiza-

tion problem. Section 4.4 is devoted to the presentation and explanation of the proposed NS-

GAII4ID sanitization algorithm. In section 4.5, we give a detailled example illustrating our

proposed method. Thereafter, experimental results are reported and discussed in Section 4.6.

Finally, Section 4.7 Concludes the chapter.

4.2 Preliminaries

In this section, we present preliminaries and some basic notions about the problem of hiding

sensitive frequent itemsets with minimal side effects. We also present the Set Cover Problem

(SCP) which is a well-known combinatorial optimization problem that will be used later in our

method to detect an optimal subset of items from every victim transaction.

4.2.1 Basic definitions

Let I = {i1, i2, . . . , im} be a finite set of items. D= {T1,T2, . . . ,Tn} is a transactional database

which contains a set of transactions, where each transaction Tq ∈ D is a subset of I and has a

unique identifier q called TID. MST denotes a minimum support threshold given by the user.

40

An itemset X is a subset of items (X ⊆ I). Its support in the database D denoted SupportD(X)

is the number of transactions in D that include X . An itemset X is frequent (in D) if and only if

SupportD′(X) is greater or equal to the threshold MST . The set of frequent itemsets is denoted

by L = {l1, l2, . . .}.

Definition 4.2.1 (Sensitive itemsets) . We denote by SI ⊆ L the set of sensitive frequent item-

sets. We notice that the set of sensitive frequent itemsets is specified by the user or an expert.

The set of sensitive frequent itemsets is given by SI = {s1,s2, . . .}.

The main goal of PPDM is to hide sensitive information from original database so that

this kind of information cannot be disclosed by applying data mining techniques. For hiding

sensitive itemsets, some candidate sensitive transactions that contain sensitive itemsets have

to be modified by deleting some victim sensitive items from each candidate transaction. The

challenge is to look for the set of candidate transactions and the way to choose victim items

that minimize the possible undesired side effects. Actually, there are three major side effects to

be taken into account, namely the ”hiding failure”, the ‘missing cost’ and the ”artificial cost”.

We denote by D′ the database which results from the original database D after the saniti-

zation process and by L′ the set of frequent itemsets in D′. The three side effects mentioned

above are formally defined as follows:

Definition 4.2.2 (Hiding failure) . The “hiding failure” (S_F_H) is the number of sensitive

itemsets that the sanitization process fails to hide. It is is given by: S_F_H = |SI∩L′|. In other

words, S_F_H is the number of sensitive items of SI that are frequent in L′ : S_F_H = |{X ∈

SI|SupportD′(X)≥MST}|.

Definition 4.2.3 (Missing cost) . The “missing cost” (N_S_L) is the number of non-sensitive

frequent itemsets that are hidden (become infrequent) after the sanitization process. This

number is given by: N_S_L = |NS− L′| = |(L− SI)− L′|. In other words, N_S_L is the

number of frequent non sensitive itemsets in D that are infrequent in D′ : N_S_L = |{X ∈

NS|SupportD′(X)< MST}|.

Definition 4.2.4 (Artificial cost) . The ”artificial cost” (S_F_G) is the number of non-frequent

itemsets that become frequent after the sanitization process. This number is given by S_F_G =

|L′−L|.

41

The relationship between these three side effects is depicted in Fig 1.4.1

Figure 4.1: Relationships between the three side effects of data sanitization in PPDM

In addition to minimizing the previously mentioned factors for an effective sanitization

process, another important criterion to minimize is the dissimilarity between the original and

resulting databases. A desirable solution should aim to minimize the alterations made to the

original database during the sanitization process. A straightforward method to quantify this

dissimilarity is by counting the total number of victim items removed from the original database

to derive the sanitized one.

Definition 4.2.5 (Dissimilarity measure) . The dissimilarity measure (Dis) between the orig-

inal database D and the modified database D′ obtained by sanitization is the number of victim

items removed from D to obtain D′. It is calculated as follows: Dis = ∥D∥−∥D′∥, where ∥D∥

is the total number of items present in all the transactions of ∥D∥, i.e. ∥D∥= ∑T∈D |T |.

Definition 4.2.6 (Sensitive transaction) . A sensitive transaction is a transaction that con-

tains at least one sensitive itemset.

Definition 4.2.7 (Projected database) . Let D be a transactional database and SI be the set

of sensitive itemsets. We define the projected database D∗ containing the sensitive transactions

of D as follows : D∗ = {t|t ∈ D,∃s ∈ SI such that s⊆ t}.

42

4.2.2 Set Cover Problem

The Set Cover problem (SCP) is a well-known NP-hard combinatorial optimization prob-

lem, with its associated decision problem being NP-Complete (refer, for instance, to [127]).

It has demonstrated successful applications in modeling various industrial problems, including

scheduling, manufacturing, service planning, and location problems.

It is noteworthy that the Set Cover Problem (SCP) can be approximated in polynomial time

using a greedy algorithm. In our approach, we integrate SCP at the evaluation level for items.

Specifically, given a set of transactions encoded in a solution (a chromosome of our genetic

algorithm), SCP is employed to formulate the problem of identifying the minimal subset of

items to be removed from a transaction to conceal all its sensitive itemsets. The resulting

solution is then evaluated based on our defined objectives.

The formal definition of the SCP is as follows:

Let U = {e1,e2, . . . ,em} be a universe of elements and F = {F1,F2, . . . ,Fn} be a collection

of subsets such that Fj ⊆U for each j ∈ {1, . . . ,n} and
⋃

j∈{1,...,n}Fj = U . Each set Fj covers

at least one element of U . The goal of SCP is to find a minimum sub-collection of sets X ⊆ F

that covers all elements in U , i.e. a sub-collection X ⊆ F that satisfies :

•
⋃

s∈X s =U (Covering all elements of U).

• For all Y ⊆ F such that |Y |< |X |,
⋃

s∈Y s ̸=U (Minimality), where |X | (resp. |Y |) denotes

the cardinal number of X (resp. Y).

A straightforward greedy approximate algorithm for the Set Cover Problem (SCP) con-

structs the solution in multiple steps, making a locally optimal decision at each step. The

approach involves selecting, at each step, a set from the collection F that has the maximum

intersection with the elements of the universe U not yet covered.

Consider the example illustrated in Figure 4.2, adapted from [1]. We have a set of 12

elements (the universe U) and a collection F = F1,F2,F3,F4,F5,F6 consisting of six subsets

whose union forms the universe. According to the greedy algorithm, the first chosen set is F1

since it has the largest intersection with the set of elements not yet covered (here, U itself, as all

elements are initially uncovered). The greedy logic is based on the principle that the larger the

43

set, the more uncovered elements it covers. The algorithm continues with F4, covering three

more elements, and then F5, covering two elements. Towards the end, the choice is between F6

or F3, as both cover the same number of uncovered elements (one element in this case). With

this approximate approach, the cardinality of the cover set is 4. It is important to note that for

this example, the optimal solution has only three elements: F3, F4, and F5.

Figure 4.2: An example of SCP with 12 elements and a collection of 6 subsets, by [1]

Now, once the main concepts are defined, the subsequent section show how the PPDM

problem is formally modelled as a multi-objective optimisation problem.

4.3 PPDM as a multi-objective optimization problem

Before presenting a formal definition of Privacy-Preserving Data Mining (PPDM) as a

multi-objective optimization problem, let us revisit the three side effects that require mini-

mization. In particular, we aim to devise an efficient method for computing hiding failure and

missing cost in the sanitized database without the need for an additional scan. Additionally,

we’ll illustrate that the artificial cost side effect is not relevant in our specific context.

The determination of S_F_H and N_S_L, corresponding to hiding failure and missing cost,

respectively, inherently involves the calculation of support in the adapted database D′ for each

frequent itemset X (denoted as SupportD(X)). Concurrently, the computation of S_F_G for

artificial cost needs the calculation of the set L′ containing frequent itemsets in D′.

44

Given that these three values are calculated for each evaluation of a given chromosome,

conducting this computation by scanning the entire database D′ for S_F_H and N_S_L, and

then explicitly identifying the set L′ of frequent itemsets in D′ for S_F_G, would result in

significant computational costs. Fortunately, we demonstrate, under a reasonable hypothesis,

that it is feasible to compute the values for hiding failure and missing cost without the need

to scan the entire database D′. Furthermore, we establish that the third value for artificial cost

consistently remains zero, making it irrelevant for the optimization task.

Hypothesis 1 We assume that no transaction in the original database exclusively consists of

items belonging all to sensitive itemsets.

This assumption posits that every transaction in the input database must include at least

one item not belonging to any sensitive itemset. This assumption is generally valid in practical

scenarios, as evidenced by all benchmark databases utilized in the experimental study detailed

in Section 6. Typically, the proportion of items associated with sensitive itemsets is limited

compared to the entire set of items. Consequently, encountering transactions exclusively com-

posed of items from sensitive itemsets is highly improbable. An immediate implication of this

assumption is that the number of transactions remains unchanged before and after the sanitiza-

tion process, i.e., |D|= |D′|. As a result, the following outcomes are derived:

proposition 1 . Consider two transactional databases, D and D′, where D′ is obtained from

D through a sanitization process. Let D1 represent the subset of transactions in D that has

undergone modifications to yield the set of modified transactions D′1 in D′. Each t ′ ∈ D′1 is

obtained by removing from a corresponding transaction t ∈ D1 the set of items t− t ′. Let X be

an itemset. Under Hypothesis 1, the support of X in D′ is related to its support in D as follows:

Support ′D(X) = SupportD(X)− |{t ∈ D1|(t− t ′)∩X ̸=∅}|
|D|

(4.1)

proof 1 First, notice that the sets D′−D′1 and D−D1 are identical and both of them contains

the transactions that have not been modified. It follows that:

|{t ′ ∈ D′−D′1|X ⊆ t ′}|= |{t ∈ D−D1|X ⊆ t}|| (4.2)

Let t ′ be a transaction from D′1, and let t be the corresponding transaction in D1 (where t ′ is

45

obtained by removing (t− t ′) from t). Then, X ⊆ t ′ if and only if X ⊆ t and (t− t ′)∩X = /0. This

condition implies that t ′ still contains X after removing (t− t ′) from t if and only if t already

contains X, and the removed set (t− t ′) does not include any item from X. It follows that:

|{t ′ ∈ D′1|X ⊆ t ′}|= |{t ∈ D1|X ⊆ t}−{t ∈ D1|(t− t ′)∩X ̸= /0}| (4.3)

Now, by the definition of support, we have:

SupportD′(X) = |{t ′∈D′|X⊆t ′}|
|D′| =

|{t ′∈D′−D′1|X⊆t ′}|
|D′| +

|{t ′∈D′1|X⊆t ′}|
|D′|

From Equations 4.2 and 4.3 and since |D|= |D′|, we have:

SupportD′(X) =
(
|{t∈D−D1|X⊆t}|

|D| + |{t∈D1|X⊆t}|
|D|

)
− |{t∈D1|(t−t ′)∩X ̸= /0}|

|D|

Then, we obtain:

SupportD′(X) = SupportD(X)− |{t ∈ D1|(t− t ′)∩X ̸= /0}|
|D|

■

Proposition 1 allows one to iteratively compute SupportD′(X), starting with SupportD(X) as

initial value. For each transaction t in D1 such that the corresponding t ′ in D′1 is generated by

removing at least one element of X , SupportD′(X) is decremented by 1/|D| (see Algorithm 2).

This is pivotal as it offers an efficient method to calculate the updated support of an itemset

in the sanitized database D′, and consequently, evaluate the side effects of hiding failure and

missing cost without the necessity for an additional scan of D′.

proposition 2 . Consider transactional databases D and D′, where D′ is obtained from D

through sanitization. Let D1 represent the subset of transactions in D that has been modified

to yield the set of modified transactions D′1 in D′, where each t ′ ∈ D′1 is obtained by removing

from a corresponding transaction t ∈ D1 the set of items t − t ′. Let X be an itemset. Under

Hypothesis 1, it is always true that S_F_G = 0.

proof 2 . From Definition 4.2.4, we can express S_F_G as |L′−L|. By employing Equation 4.1

and considering that |t∈D1|(t−t ′)∩X ̸= /0|
|D| ≥ 0 for each itemset X, we conclude that SupportD′(X)≤

SupportD(X). Consequently, if SupportD′(X)≥MST (i.e., X is frequent in D′), then it follows

46

that SupportD(X)≥MST (i.e., X is frequent in D). This implies L′ ⊆ L, meaning that L′−L =

/0, and thus |L′−L|= 0. ■

Proposition 2 affirms that the artificial cost side effect is always equal to zero in our case.

This observation is crucial as it streamlines the problem, allowing us to concentrate on the

minimization of only three objective functions instead of four. Figure 4.3 illustrates the adjusted

relationships between side effects, incorporating the insights from Proposition 2.

Figure 4.3: New Relationships between the side effects of data sanitization in PPDM.

Given a transaction database D, the Privacy-Preserving Data Mining (PPDM) problem with

item deletion aims to identify an optimal set of sensitive transactions from D. For each of

these transactions, the objective is to determine an optimal set of sensitive items for deletion.

An optimal solution should yield a sanitized database D′ where the side effects S_F_H and

N_S_L, along with the dissimilarity measure Dis, are simultaneously minimized.

Now, let us give a formal definition of our optimization problem. Recall first some nota-

tions: I = i1, i2, . . . , im denotes the set of items, and D = T1,T2, . . . ,Tn is a transactional database

with n transactions. Additionally, SI (resp. NS) represents the set of sensitive (resp. non-

sensitive) frequent itemsets. The objective is to hide the itemsets of SI and not those of NS.

Consider n binary decision variables x1, . . . ,xn, and define the vector x⃗ = (x1,x2, . . . ,xn),

where each xi is associated with the transaction Ti. Specifically, xi = 1 if Ti is a candidate

transaction (from which some items should be removed), and xi = 0 otherwise. Thus, a vector

x⃗ encodes a potential solution or a chromosome, i.e., a subset of candidate transactions to be

modified to obtain a sanitized database D′ from the original database D. The SCP is solved to

determine the optimal subset of items to remove from each candidate transaction Ti with xi = 1.

47

Let scp be the function that takes a vector x⃗ and returns the sanitized database D′ obtained

from D by considering the transactions in x⃗ as candidate transactions to be updated. Therefore,

for a given x⃗, we have: scp(⃗x) = D′.

Based on Definitions 4.2.2, 4.2.3, and 4.2.5, the three side effects can be defined as functions

of the decision variable vector x⃗ using the following equations:

• Hiding failure is given by the function :

s f h(⃗x) = |{X ∈ SI|Supportscp(⃗x)(X)≥MST}| (4.4)

• Missing cost is given by the function :

nsl(⃗x) = |{X ∈ NS|Supportscp(⃗x)(X)< MST}| (4.5)

• Dissimilarity is given by the function :

dis(⃗x) = ∥D∥−∥scp(⃗x)∥= ∑
T∈D
|T |− ∑

T∈scp(⃗x)
|T | (4.6)

We have no particular constraints except the fact that each variables xi (i= 1..n) takes binary

values. Now, the PPDM problem is formally defined in equation 4.7 as follows:

Minimise : {s f h(⃗x),nsl(⃗x),dis(⃗x)}

Sub ject to : xi ∈ {0,1} f or i = 1..n
(4.7)

4.4 Description of NSGAII4ID algorithm

A new sanitization algorithm is proposed, named NSGAII4ID (Non-dominated sorted ge-

netic algorithm II for item deletion). The NSGAII4ID algorithm is designed as a two-level opti-

mization algorithm. In the first level, we use an adapted version of the NSGA-II multi-objective

genetic algorithm introduced in [126]. The primary objective at this level is to identify an op-

timal combination of candidate transactions. These transactions are potential candidates for

modification. This modification of some selected transaction constitute the second optimiza-

48

tion level where the goal is to select an optimal subset of victim items in each transaction for

removal. Thus, the task of determining the items to be removed from each candidate transaction

is treated at a separate optimization level and modeled by the Set Cover Problem (SCP).

The rationale behind the choice of victim items lies in the observation that removing at

least one item from a sensitive itemset X in a sensitive transaction t results in X no longer

being included in t, leading to a decrease in the support of X . The primary objective is to

attain, for each sensitive itemset, a support value below the minimum threshold set by the user.

Consequently, only sensitive transactions that contain at least one sensitive itemset (elements

of D∗) are considered as possible candidate transactions for modification.

The algorithm oversees a population of N chromosomes, generated randomly during the

initialization step. The user defines the population size N as a parameter of the algorithm. Each

chromosome serves as a potential solution to the problem and has a fixed length determined by

the user. The chromosome comprises a sequence of positive integer values, with each integer

representing the TID of a candidate transaction if it is non-zero. A value of 0 signifies the

absence of a specified transaction in the respective gene. This chromosome structure, incorpo-

rating zero values, provides flexibility, enabling the encoded candidate transactions’ count to

vary across different chromosomes. To illustrate, consider this example of chromosome:

10 0 452 5 0 100 6

This chromosome encodes the subset of candidate transactions whose TIDs are : 10, 452, 5,

100 and 6. Based on the previous definitions, a flowchart of the proposed algorithm is depicted

in Figure 4.4. Algorithm 1 presents the pseudo-code for the NSGAII4ID algorithm, which

incorporates the resolution of the Set Cover Problem (SCP) within the chromosome evaluation,

adapting the general procedure of the NSGA-II algorithm.

NSGAII4ID takes several elements as input: The original database D, the set of frequent

itemsets L obtained in D with a user-defined minimum support threshold MST , a set SI com-

prising sensitive itemsets, a population size N, chromosome size nVar, and a maximum number

of iterations. The algorithm produces a set of optimal solutions. The frequent itemsets can be

identified using any frequent itemset mining algorithm. In our implementation, the Apriori

algorithm is used, considering an itemset frequent if its support is equal to or exceeds MST .

49

Figure 4.4: Flowchart of the proposed algorithm

The algorithm begins by projecting the database D and collecting the set D∗ of sensitive

transactions (lines 2-8). A sensitive transaction is one from the original database D that contains

50

at least one sensitive itemset.

Following this, a population of N chromosomes, representing potential solutions, is ini-

tialized (lines 9-12). Each chromosome is a set of genes, with each gene representing the

Transaction ID (TID) of a sensitive transaction from the projected database D∗. The initializa-

tion employs random selection, using the Roulette wheel technique to increase the likelihood

of choosing transactions with multiple sensitive itemsets. The chromosome size nVar is a user-

specified algorithm parameter.

Next, multi-objective optimization functions are evaluated for each potential solution (lines

13-15), with three fitness values associated with each chromosome representing the three ob-

jective functions. Further details about the evaluation function are provided in Algorithm 2.

Fast Non-Dominated Sorting and Crowding distance mechanisms, introduced by ([126]),

are applied to organize solutions into fronts within the population, with the best solutions re-

siding in the first front. The initial front is preserved in an additional population referred to as

the archive, which has an unlimited size (line 19).

Crossover and mutation operations are then applied to generate an offspring population

(lines 20-21). The crossover operation involves randomly selecting a gene from each chromo-

some and exchanging them. If redundancy arises in the new chromosome, the redundant gene is

replaced with a new value drawn randomly from D∗. The mutation operation randomly selects

a gene from a chromosome (a potential solution obtained after applying a crossover operation)

and replaces it with another random solution from D∗ not already present in the chromosome.

Subsequently, each chromosome in the offspring population is evaluated (lines 22-24).

The evolution process iterates, with the current population and the offspring population

merged in each iteration, resulting in twice the number of potential solutions (2×N). Fast

Non-Dominated Sorting and Crowding distance strategies are applied to sort solutions into

fronts (lines 30-31), and the best solutions are stored in the archive (lines 32-33). This archival

process ensures that solutions included in the archive are regularly updated throughout iter-

ations. Following this, the new population is formed by selecting the first N best potential

solutions from the merged population (line 34). Subsequently, crossover and mutation opera-

tions are applied (lines 35-36) to generate a new offspring population. Each chromosome in the

offspring population is evaluated according to the three objective functions (lines 37-39). The

51

actions conducted between lines 29 and 40 are repeated until a specified condition is met.

In the process of evaluating each chromosome, we introduce an assessment mechanism

that identifies an optimal set of items to be removed from each transaction encoded in the

chromosome. Subsequently, it computes three objective functions based on this optimal item

removal. The pseudo-code for this evaluation function is outlined in Algorithm 2.

Initiating the algorithm (line 1), Algorithm 2 begins by isolating the set of sensitive trans-

actions encoded in the chromosome c for evaluation. For each transaction t in this set, the

algorithm constructs the necessary components to formulate the problem of determining the

optimal set of items to remove from t, treating it as a Set Cover Problem (SCP). Specifically,

the universe U is defined as the set of all sensitive itemsets included in transaction t (line 5),

while Sitems encompasses all items associated with the sensitive itemsets of U (line 6).

Subsequently, the algorithm employs the function set_cover_problem (line 7), detailed in

Algorithm 3, to obtain the set of items, denoted as Victitemst , that should be removed from

transaction t. Once Victitemst is determined, the algorithm proceeds to update:

1. D′ is obtained by eliminating the items in Victitemst from transaction t (as indicated in

line 8);

2. The support in D′ of each itemset, initially frequent in D and present in transaction t

before removing the items of Victitemst , is computed (lines 9-13).

3. The dissimilarity between D and D′ is calculated by incorporating the number of items

present in Victitemst (as indicated in line 14).

Upon completing the processing for all transactions, we obtain the updated support values

in the modified database D′ for all itemsets that were frequent in the original database D. Ad-

ditionally, we calculate the final dissimilarity value between D and D′, representing the third

objective function. Subsequently, the value of the first objective function S_F_H (hiding fail-

ure) is determined by counting the number of sensitive itemsets that were frequent in D and

remain frequent, in D′ (lines 19-21). Similarly, the second objective function N_S_L (missing

cost) is computed by counting the instances of non-sensitive itemsets that were frequent in D

but become non-frequent in D′ (lines 22-24).

52

Algorithm 1 NSGAII4ID pseudo-algorithm
Require: D: Original Database; L: Set of frequent itemsets; MST : Minimum support threshold; SI: Set

of sensitive itemsets; N: Population size; nVar: Chromosome size; Max_iter: Maximum number of
iterations.

Ensure: Set of optimal solutions to be modified (Archive).
{Construction of the projected database containing transactions including at least one sensitive item-
set}

1: D∗← /0;
2: for (each transaction Tq in D) do
3: for (each sensitive itemset s in SI) do
4: if (s⊆ Tq) then
5: D∗← D∗∪{Tq};
6: end if
7: end for
8: end for

{Initialization of the population}
9: for (each i = 1 : N) do

10: Vector← Roulette_Wheel(D∗);
11: Pop0[i]← rand(Vector,N,nVar,null);
12: end for

{Evaluation of each chromosome : S_F_H,N_S_L,Dis, are calculated within the evaluation func-
tion and each of them has a discrete value}

13: for (each chromosome chrom of Pop0) do
14: Evaluate(chrom,D∗,SI,D,NS);
15: end for
16: [Pop0,F]← Fast_Non−Dominated_Sort(Pop0);
17: Pop0←Crowding_distance(Pop0,F);
18: Pop0← Sort_Population(Pop0);
19: Archive← Pop0(F [1]); {the first Front is saved in an extra population : Archive}
20: Q0← crosso p(Pop0);
21: Q0← mutateo p(Q0,Vector); {Evaluate each chromosome}
22: for (each chromosome of Q0) do
23: Evaluate(chrom,D∗,SI,D,NS);
24: end for
25: Iter← 1;
26: Popt ← Pop0;
27: Qt ← Q0;
28: while (Iter ≤Max_iter) do
29: Rt ← Popt ∪Qt ; {Merge the current and offspring populations}
30: [Popt,F]← Fast_Non−Dominated_Sort(Popt);
31: Popt ←Crowding_distance(Popt ,F);
32: Popt ← Sort_Population(Popt);
33: Archive← Popt(F [1]); {Update the archive with the new first front obtained.}
34: Popt ← select(Rt ,N); {Select N first solutions from Rt}
35: Qt ← cross_op(Popt);
36: Qt ← mutate_op(Qt ,Vector);
37: for (each chromosome of Qt) do
38: Evaluate(chrom,D∗,SI,D,NS);
39: end for
40: Iter← Iter+1;
41: end while

53

Algorithm 2 Evaluation function
Require: c: chromosome; SI: sensitive itemsets; D∗: projected database; D: original database;

NS set of non-sensitive frequent itemsets.
Ensure: S_F_H, N_S_L, Dis.

1: Transc←{Tid ∈ D∗|Id is an identifier of a transaction coded in c};
2: D′← D;
3: Dis← 0;
4: for (each transaction t in Transc) do
5: U ←{s|s⊆ t and s ∈ SI};
6: Sitems←

⋃
s∈U s;

{Determine the set of items to be removed from the transaction by applying the SCP
function}

7: Victitemst ← set_cover_problem(U,Sitems);
{modify the database D′ by removing the items of the set victitemst from transaction t.}

8: D′←Modi f _database(Victitemst ,D′);
{Update the support value in D′ of each frequent itemset}

9: for (each X in L) do
10: if ((X ⊆ t) and (X ∩ victitemst ̸= /0)) then
11: SupportX ← SupportX −

(
1
|D|

)
;

12: end if
13: end for

{Update the value of the dissimilarity between D and D′}
14: Dis← Dis+ |Victitemst |;
15: end for
16: S_F_H← 0;
17: N_S_L← 0;
18: for (each X in L) do
19: if (X ∈ Si and SupportX ≥MST) then
20: S_F_H ← S_F_H + 1; {One more sensitive frequent itemset in D which remains

frequent in D′}
21: end if
22: if (X /∈ Si and SupportX < MST) then
23: N_S_L← N_S_L+1; {One more non-sensitive frequent itemset in D which becomes

non-frequent in D′}
24: end if
25: end for
26: Return S_F_H, N_S_L, Dis;

54

Algorithm 3 Greedy Set Cover Algorithm
Require: U : a finite set of sensitive itemsets; Sitems: the set of items appearing in U .
Ensure: Victimitems : the set of victim items to be removed.

1: for (each item i in Sitems) do
2: Fi←{s ∈U |i ∈ s};
3: end for
4: Victimitems← /0;
5: W ←U ;
6: while (W is not empty) do
7: Select item i from Sitems which maximizes |Fi∩W |;
8: Victimitems←Victimitems∪{i};
9: Sitems← Sitems−{i};

10: W ←W −Fi;
11: end while
12: Return Victimitems;

Now, let’s explore the task of identifying the smallest subset of items, referred to as victim

items, to eliminate from a specified sensitive transaction. The objective is to ensure that at

least one item is removed from every sensitive itemset within this transaction. Essentially,

after the removal of the victim items, the transaction should no longer contain any sensitive

itemset. Remarkably, this problem perfectly aligns with the Set Cover Problem (SCP), a well-

known NP-hard combinatorial challenge. Fortunately, a polynomial-time greedy algorithm,

denoted as GSCA (Greedy Set S-cover Algorithm), proves to be effective in providing good

approximate solutions for the SCP.

Our instance of the Set Cover Problem (SCP) involves a universe of objects denoted as

U , which corresponds to the set of all sensitive itemsets included in transaction t. The set of

collections, denoted as F , encompasses a collection Fi for each item i that is present in at least

one sensitive itemset included in t. The elements of Fi consist of the sensitive itemsets included

in t and containing the item i. The pseudo code for the Greedy Set S-cover Algorithm (GSCA)

is presented in Algorithm 3.

In Algorithm 3, the procedure begins by establishing an association for each item i in Sitems

with a collection Fi, which contains the sensitive itemsets of U that include i (lines 1-3). In our

context, the entire set of collections Fi for all values of i in Sitems forms the set F of collections,

as discussed in Section 4.2.2 regarding the general definition of the Set Cover Problem (SCP).

In our case, the collections of F are indexed by items in Sitems, indicating that the presence of

a collection Fi in the SCP solution implies that i is one of the victim items to be removed.

55

The set Victimitems, initially set to an empty set (line 4), is designed to hold the solution.

In other words, the minimal set of items to be removed, represented by the indexes of the

collections in F that constitute the solution to the SCP. The set W is initialized with the set

U , encompassing all the sensitive itemsets to be covered (line 5). Subsequently, while there

are still sensitive itemsets in W that have not been covered yet (line 6), the GSCA algorithm

iteratively performs the following steps:

1. Select an item i from Sitems in a way that the corresponding collection Fi covers the

maximum number of elements in W that have not been covered yet (ine 7).

2. Include i in the set Victimitems (line 8) and eliminate i from Sitems; additionally, remove

Fi from W (lines 9-10).

Once all elements of U are covered (resulting in an empty W), the algorithm returns the set of

acquired victim items (as indicated in line 12).

4.4.1 Computational complexity

The proposed NSGAII4ID algorithm follows the same general process as NSGAII [126]

but integrates a greedy algorithm to address the SCP at the evaluation level. Let’s denote the

population size by N, the number of objectives by M, the size of a chromosome by C, the

number of distinct items by T , and the number of sensitive itemsets by S.

During each iteration of the NSGAII4ID algorithm, the main operations involve the three

primary operations considered in NSGAII. However, there is also a fourth operation that entails

evaluating the N chromosomes of population Qt (lines 37-39 in Algorithm 1). As demonstrated

by [126], the worst-case complexity of the first three operations is:

• Fast_Non-dominated_Sort (line 30 of Algorithm 1) : O(M×N2)

• Crowding_distance (line 31 of Algorithm 1) : O(M×N× log(N))

• Sort_Population (line 32 of Algorithm 1) : O(N× log(N))

The fourth operation evaluates N chromosomes, with each chromosome encoding at most C

transactions subjected to the greedy SCP algorithm. It has been established (refer to [1]) that

for a universe U and a collection F of subsets, the complexity of the greedy SCP algorithm is

56

O(|U | × |F | ×min(|U |, |F |)). In our context, the universe comprises sensitive itemsets, with

its size capped at S, and each subset of the collection F is indexed by an item. Consequently,

in the worst case, the size of the collection F is T . Thus, the complexity of one application of

the greedy SCP algorithm on one transaction is O(S×T ×min(S,T)), and the complexity of

evaluating the entire population is then O(N×C×S×T ×min(S,T)).

Therefore, the overall complexity is O(M×N2 +N×C× S× T ×min(S,T)). If we as-

sume that S < T (the number of sensitive itemsets is less than the total number of items), the

complexity can be expressed as O(M×N2 +N×C×T × S2), signifying that the complexity

of NSGAII4ID is:

• Quadratic with respect to the population size N and the number of sensitive itemsets S;

• Linear with respect to the number of objective functions M, the size of a chromosome C,

and the number of items T .

4.5 Illustrative example

To better explain how the evaluation algorithm is applied, this Section presents a detailed

example.

Table 4.1: The original database D

TID Items

1 {i1, i3, i4}

2 {i2, i3, i5}

3 {i1, i3, i5}

4 {i2, i5}

5 {i1, i2, i3, i5}

Table 4.1 shows a database D containing five transactions. Suppose that the set of sensitive

frequent itemsets is SI = {s1,s2} where s1 = {i1, i3} and s2 = {i2, i3}. Table 4.2 shows the

projected database D∗ which contains all transactions of D that include at least one sensitive

itemset from SI. Assume that the user sets the minimum support threshold MST to 20%. Table

4.3 then shows the set L of frequent itemsets extracted from the original database D.

The Evaluation algorithm is applied on each chromosome (potential solution) of the popu-

57

Table 4.2: The projected database D∗

TID Items

1 {i1, i3, i4}

2 {i2, i3, i5}

3 {i1, i3, i5}

5 {i1, i2, i3, i5}

Table 4.3: Frequent itemsets in D and their supports

1-Itemsets Supp 2-Itemsets Supp 3-Itemsets Supp 4-Itemsets Supp

{i1} 60% {i1, i2} 20% {i1, i2, i3} 20% {i1, i2, i3, i5} 20%

{i2} 60% {i1, i3} 60% {i1, i2, i5} 20%

{i3} 80% {i1, i4} 20% {i1, i3, i4} 20%

{i4} 20% {i1, i5} 60% {i1, i3, i5} 40%

{i5} 80% {i2, i3} 40% {i2, i3, i5} 40%

{i2, i5} 60%

{i3, i4} 20%

{i3, i5} 60%

lation generated randomly from D∗, where each gene of a chromosome represents a transaction

from D∗. Here is an example of a potential solution of the population.

Chromosome : 5 0 0 2 0 1

We see that there are three candidate transactions 5, 2 and 1 encoded in this chromosome.

From each of these three transactions, we have to find a minimal set of victim items to be

removed. Then, the three objective functions can be calculated based on the removed items.

Let us consider the evaluation process step by step:

Step 1. For each TID in the chromosome, we identify the corresponding transaction from

D∗. Then we determine the set U of its sensitive itemsets. As shown in Table 4.4, transaction

5 contains the two sensitive itemsets while transaction 2 and transaction 1 each contain one

sensitive itemset.

58

Table 4.4: Transactions represented in the solutions

TID Transaction Sensitive itemsets Victim items

5 i1, i2, i3, i5 {i1, i3}, {i2, i3} {i3}

2 i2, i3, i5 {i2, i3} {i2}

1 i1, i3, i4 {i1, i3} {i1}

Step 2. For each transaction t of the chromosome, the designed algorithm performs the fol-

lowing actions:

1. Apply the greedy SCP algorithm to find the set of victim items to be removed. Let us

take for instance the transaction having TID = 5:

• The universe is U = {s1,s2} where s1 = {i1, i3} and s2 = {i2, i3}.

• Sitems = {i1, i2, i3} is the union of items included in the subsets of U .

• U and Sitems are given as input to the greedy SCP function (Algorithm 3). We can

verify that the returned set of victim items is {i3}.

Table 4.4 shows the sets of victim items for each transaction of the chromosome 1.

2. Update the modified database D′ by removing the found victim items from the current

transaction t, update the supports in D′ of itemsets that are frequent in D and update the

dissimilarity Dis between D and D′ by adding the number of victim items of the current

transaction t.

At the end of this step, the modified database D′ is obtained (see Table 4.5) by removing

from D, the set of victim items {i1} (resp. {i2}, {i3}) from the transaction having TID 1 (resp.

2, 5).

The final value for the dissimilarity measure is obtained by adding the values of the car-

dinals of the victim items sets obtained for the three transactions having the TIDs 1, 2 and 5.

Thus, we find that Dis = 3.
1For transactions having TID = 2 and TID = 5, the GSCA could have returned another minimal set of victim

items which is {i3}.

59

Table 4.5: The modified database D′

TID Items

1 {i3, i4}

2 {i3, i5}

3 {i1, i3, i5}

4 {i2, i5}

5 {i1, i2, i5}

Step 3. Next, the algorithm calculates the values of the two other objective functions (S_F_H

and N_S_L) :

1. S_F_H is the number of sensitive frequent itemsets (in D) that remain frequent in D′. We

have:

SupportD′({i1, i3}) = 20% and SupportD′({i2, i3}) = 0%

We see that only {i1, i3} remains frequent in D′ and hence, S_F_H = 1.

2. N_S_L is the number of non-sensitive frequent itemsets (in D) that become non frequent

in D′. We can check that there are 6 such itemsets (see Table 4.6) and hence N_S_L = 6.

Table 4.6: Non-sensitive itemsets that are frequent in D but not in D′

‘

Itemset Support in D′

{i1, i4} 0%

{i2, i3} 0%

{i1, i2, i3} 0%

{i1, i3, i4} 0%

{i2, i3, i5} 0%

{i1, i2, i3, i5} 0%

In summary, the values of the three objective functions for the chromosome are: S_F_H =

1, N_S_L = 6 and Dis = 3.

60

4.6 Experiment Results

To evaluate the effectiveness and solution quality of the proposed Non-dominating Sorting

Genetic Algorithm II for item deletion (NSGAII4ID), we conducted experiments comparing its

performance with four algorithms known for delivering superior results in concealing sensitive

itemsets in previous studies.

Among these algorithms, NSGA2DT and GMPSO stand out as prominent evolutionary

multi-objective optimization techniques utilized for hiding sensitive itemsets. Both algorithms

accomplish their objective by removing entire transactions from the dataset.

• The NSGA2DT algorithm, introduced by [122], is based on the multi-objective NSGA-II

algorithm. However, in contrast to our proposed algorithm, NSGA2DT conceals sensitive

itemsets by eliminating entire transactions.

• The GMPSO algorithm, presented by [123], utilizes the grid multi-objective Particle

Swarm Optimization (PSO) technique to minimize four side effects. Similar to NSGA2DT,

GMPSO conceals sensitive itemsets by removing entire transactions from the database.

It is crucial to subject the proposed NSGAII4ID algorithm to a comprehensive evaluation, par-

ticularly in comparison with other cutting-edge algorithms that share a similar multi-objective

approach. By analyzing runtime, memory costs, and various side effects—such as hiding

failure, missing cost, and dissimilarity—you can holistically assess the performance of NS-

GAII4ID across different dimensions. This thorough evaluation serves to uncover the strengths

and weaknesses of each algorithm, offering valuable insights into their applicability and effi-

ciency in diverse scenarios.

In this experimental study, NSGAII4ID was compared with two other algorithms, namely

PSO2DT [116] and sGA2DT [115]. Distinguished by a single-objective optimization approach,

both PSO2DT and sGA2DT integrate three objectives into a fitness function, aggregated using

three parameters (α , β , and γ). These algorithms frame the problem as a single-objective opti-

mization task and employ evolutionary algorithms to search for a solution, with PSO2DT uti-

lizing a PSO algorithm and sGA2DT employing a genetic algorithm [116, 115]. This compar-

ison facilitates a comprehensive investigation into the performance disparities between multi-

objective and single-objective optimization strategies, offering valuable insights into their re-

61

spective efficiencies and effectiveness in the realm of privacy-preserving data mining.

We conducted a comprehensive comparative analysis, evaluating the runtime, memory con-

sumption, and the dissimilarity side effect—quantified by the number of removed items—across

our proposed algorithm, NSGAII4ID, and two single-objective algorithms, PSO2DT [116]

and sGA2DT [115]. While it is commonly anticipated that single-objective algorithms gen-

erally demonstrate lower time and memory costs than multi-objective ones, our evaluation

extended beyond these metrics. Significantly, we found it imperative to assess NSGAII4ID

against single-objective algorithms concerning the degree of modifications made to the original

database during the sanitization process. This emphasis aligns with the fundamental objective

of our contribution, which revolves around minimizing changes to the original database. Impor-

tantly, comparing the original and sanitized databases after the execution of the single-objective

algorithms provides a direct assessment of the dissimilarity side effect.

The NSGAII4ID algorithm has been implemented in Matlab R2017a, and the source code is

available on GitHub at the following address: https://github.com/mira34/NSGAII4ID-algorithm.

The experiments were conducted on a PC equipped with an Intel Core i3-4005U processor and

4 GB of RAM, running under the 64-bit Microsoft Windows 10 operating system.

For our experiments, we utilized four databases, three of which are real-world databases

obtained from the SPMF library [128]: Mushroom, Chess, and Foodmart. It is noteworthy

that the Foodmart dataset contains information not only about items in transactions but also

about their purchase quantities. However, for the purposes of our experiments, quantities were

disregarded as they are not necessary for the algorithms. Additionally, we employed a synthetic

dataset called T10I4D100K, generated using the IBM database generator2. These databases

were selected due to their popularity, with most recent studies on PPDM utilizing them for

validation purposes. Table 4.7 presents the features of each dataset, where #|D| denotes the

number of transactions, #|I| is the number of distinct items, AvgLen is the average transaction

length, MaxLen is the maximal transaction length and Type is the type of dataset (dense or

sparse).

Table 4.8 (resp. Table 4.9) gives the parameters of NSGAII4ID, NSGA2DT and GMPSO

(resp. PSO2DT and sGA2DT) that have been used in the experiments.

2The generator may be downloaded at: https://sourceforge.net/projects/ibmquestdatagen/

62

Table 4.7: Features of used databases

Dataset #|D| #|I| AvgLen MaxLen Type

chess 3196 74 37 37 Dense

mushroom 8124 119 23 23 Dense

foodmart 21556 1559 4 11 Sparse

T10I4D100K 100000 870 10.1 29 Sparse

Table 4.8: The parameters of the three multi-objective algorithms used in the experiments

Algorithms

Parameter NSGAII4ID NSGA2DT GMPSO

Max Iteration 10 10 10

Population size 10 10 10

Dimension of chromosome defined by user (1000) calculated by m calculated by m

Run 10 10 10

Crossover probability 0.95 0.95 -

Mutation probability 0.05 0.05 -

nGrid - - 4

Table 4.9: Parameter of PSO2DT and sGA2DT

Algorithms

Parameter PSO2DT sGA2DT

Max Iteration 10 10

Population size 10 10

Run 10 10

Crossover probability - 0.95

Mutation probability - 0.05

4.6.1 Runtime

In this experiment, we conducted a comparative analysis of the execution time of the pro-

posed NSGAII4ID algorithm against two multi-objective algorithms, NSGA2DT and GMPSO,

as well as two single-objective algorithms, PSO2DT and sGA2DT. The comparison was per-

formed for each of the four databases, and the results are presented in Figure 4.5.

63

0

5000

10000

15000

20000

25000

30000

0,02 0,03 0,04 0,05 0,06 0,07

R
u

n
 t

im
e

(s
)

Sensitive Itemset percentage(%)

(a) muchroom (Avg)

0

5000

10000

15000

20000

25000

30000

0,04 0,05 0,06 0,07 0,08 0,09 0,1

R
u

n
 t

im
e

(s
)

Sensitive Itemset percentage(%)

(b) chess (Avg)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0,02 0,03 0,04 0,05 0,06

R
u

n
 t

im
e

(s
)

Sensitive Itemset percentage(%)

(c) T10I4D100K(Avg)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0,06 0,08 0,1 0,12 0,14

R
u

n
 t

im
e

(s
)

Sensitive Itemset percentge(%)

(d) foodmart (Avg)

Figure 4.5: Runtime of five algorithms for four databases

Figure 4.5(a) illustrates the average runtime for two executions with different minimum sup-

port (MSP) thresholds (40% and 55%) on the Mushroom database. Five algorithms, namely

NSGAII4ID, NSGA2DT, GMPSO, PSO2DT, and sGA2DT, were employed for the compar-

ison. As anticipated, the single-objective algorithms, PSO2DT and sGA2DT, exhibit faster

runtimes than the multi-objective algorithms. Notably, NSGAII4ID outperforms NSGA2DT

and GMPSO in terms of runtime, with execution times consistently below 5000 seconds. In

contrast, GMPSO records the highest execution time, peaking at 27000 seconds for a sensitive

itemset percentage of 7%. NSGA2DT falls in between the other algorithms, with a maximum

execution time of 15000 seconds.

Figure 4.5(b) presents the average runtime for the Chess database, considering two MSP

threshold values (90% and 95%). Once again, NSGAII4ID consistently outperforms the other

multi-objective algorithms, maintaining an execution time around 2000 seconds for various

sensitive itemset percentages. However, the single-objective algorithms achieve the best run-

times. In the case of multi-objective algorithms, a similar pattern emerges as in the Mushroom

database experiment: GMPSO exhibits the highest execution time (ranging between 10000

64

and 26000 seconds), with NSGA2DT situated in the middle, showing execution times between

4000 and 16000 seconds.

Figure 4.5(c) and 4.5(d) display the average runtime for two sparse databases, T100I4D100K

(with two MSP threshold values: 2.40% and 2.50%) and Foodmart (with two MSP threshold

values: 0.30% and 0.32%), respectively. Notably, for these databases as well, NSGAII4ID con-

sistently outperforms the other multi-objective algorithms and demonstrates competitiveness

even compared to single-objective algorithms. This suggests that our algorithm is particularly

efficient for sparse databases.

In summary, the results depicted in Figure 4.5 demonstrate that, in terms of runtime, the

proposed NSGAII4ID algorithm clearly outperforms the other compared multi-objective algo-

rithms, NSGA2DT and GMPSO. Moreover, it is competitive with the single-objective algo-

rithms, PSO2DT and sGA2DT, especially for sparse databases. This result is very interesting

and encouraging. Indeed, since NSGAII4ID operates at the item level, which is finer than

the transaction level, one might expect that this could require more runtime than the other

multi-objective algorithms operating at the transaction level. The fact that NSGAII4ID is faster

indicates the efficiency of using SCP to carefully choose the items to delete, accelerating the

convergence towards the solution.

4.6.2 Memory Cost

Figure 4.6 depicts the average memory costs of three multi-objective algorithms (NS-

GAII4ID, NSGA2DT, and GMPSO) and two single-objective algorithms (PSO2DT and sGA2DT)

across four different databases.

Initially, it’s apparent that the two single-objective algorithms exhibit significantly lower

memory consumption compared to the three multi-objective algorithms. This observation

aligns with expectations, given that multi-objective algorithms typically employ more sophisti-

cated techniques and complex data structures. Although the memory costs for NSGAII4ID and

the other multi-objective algorithms remain reasonable, the key advantage of NSGAII4ID lies

in its capacity to deliver effective solutions with minimal alterations to the original dataset.

Further examination of the multi-objective algorithms’ behavior regarding memory costs

follows.

65

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6

M
em

o
ry

 C
o

st
 (

M
B

)

Sensitive Itemset percentage(%)

(a) mushroom (Avg)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

M
em

o
ry

 C
o

st
 (

M
B

)

Sensitive Itemset percentage(%)

(b) chess (Avg)

0

500

1000

1500

2000

1 2 3 4 5

M
em

o
ry

 C
o

st

Sensitive Itemset percentage

(c) T10I4D100K (Avg)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5
M

em
o

ry
 C

o
st

 (
M

B
)

Sensitive Itemset percentage

(d) foodmart(Avg)

Figure 4.6: Memory Cost of five algorithms for the four databases

In Figure 4.6(a), the average memory costs in megabytes for the Mushroom database are

displayed. Notably, the memory costs of NSGAII4ID remain relatively stable across different

sensitive itemset percentages (between 1340 and 1400 MB). It is lower than the memory costs

of the two other algorithms for sensitive itemset percentages between 2% and 4.5%, and higher

for the remaining interval between 4.5% and 7%. Overall, the three algorithms demonstrate

competitiveness in terms of memory usage for the Mushroom database.

Figure 4.6(b) illustrates the average memory costs for the Chess database, where the three

algorithms (NSGAII4ID, NSGA2DT, and GMPSO) exhibit closely comparable memory costs,

ranging between 1200 MB and 1400 MB. Thus, for the Chess database, the three algorithms

demonstrate competitive performance in terms of memory usage.

Finally, Figures 4.6(c) and 4.6(d) depict the results for the T10I4D100K and Foodmart

databases, respectively. In these cases, the average memory cost of NSGAII4ID is slightly

higher than that of NSGA2DT and GMPSO. Overall, for dense databases, the three algorithms

demonstrate competitive memory costs. However, for sparse datasets, NSGAII4ID tends to

use slightly more memory than the other two algorithms. This is compensated by the superior

runtime efficiency of NSGAII4ID for sparse databases, as demonstrated in the previous section.

66

4.6.3 Side effects

In this section, our focus centers on the comprehensive examination of three critical side

effects: hiding failure, missing cost, and dissimilarity. We initiate the exploration with an

experimental investigation into the internal behavior of these side effects concerning their vari-

ations in the proposed NSGAII4ID algorithm, detailed in Section 4.6.3.1. Subsequently, we

delve into a meticulous comparative analysis between NSGAII4ID and other state-of-the-art

algorithms, dissecting each side effect individually in the subsequent sections.

4.6.3.1 Internal behavior

0
200
400
600
800

1000
1200
1400
1600
1800

2% 3% 4% 5% 6% 7%

si
d

e
ef

fe
ct

s

Sensitive Itemset percentage(%)

(a) mushroom (Avg)

0

200

400

600

800

1000

1200

2% 3% 5% 6%

si
d

e
ef

fe
ct

s

Sensitive Itemset percentage(%)

(c) T10I4D100K (Avg)

0

5

10

15

20

25

30

35

6% 8% 10% 12% 14%

si
d

e
ef

fe
ct

s

Sensitive Itemset percentage(%)

(d) foodmart(Avg)

0

500

1000

1500

2000

2500

3000

2% 4% 6% 8% 10%

si
d

e
ef

fe
ct

s

Sensitive Itemset percentage(%)

(b) chess (Avg)

Figure 4.7: Internal behavior of NSGAII4ID algorithm for four databases

In this experiment, we evaluate the three side effects employed in the NSGAII4ID algorithm

across four diverse databases. For each database, we aggregate average results for the side

effects, namely hiding failure (F_T _H), missing cost (N_S_L), and dissimilarity (Dis), derived

from two executions with varying minimum support thresholds (MST). The MST values used

are 40% and 45% for the mushroom database, 90% and 95% for the chess database, 2.4% and

2.5% for the T10I4D100K database, and 0.30% and 0.32% for the foodmart database.

67

Given that multi-objective algorithms generate multiple Pareto optimal solutions, we metic-

ulously assess each solution, extract values for the aforementioned side effects, and identify the

best solution containing the minimal value for a particular side effect. The outcomes are de-

picted in Figure 4.7.

In the mushroom database (Figure 4.7(a)), notably low values for hiding failure are ob-

served, indicating the algorithm’s efficacy in concealing nearly all sensitive itemsets. Con-

versely, values for missing cost (reflecting the number of non-sensitive frequent itemsets hid-

den by the sanitization process) and dissimilarity (representing the total number of items re-

moved from the original database during sanitization) exhibit similar variations and are more

pronounced than hiding failure. A comparable trend is evident in Figure 4.7(b) for the chess

database. This similarity in behavior can be attributed to the dense nature of both the mushroom

and chess databases.

For T10I4D100K and foodmart (Figures 4.7(c) and 4.7(d), respectively), very low values

for hiding failure are once again apparent, particularly for the T10I4D100K database. However,

the dissimilarity values are larger in these two databases. Additionally, it is noteworthy that the

missing cost is substantially lower in T10I4D100K compared to foodmart.

Overall, NSGAII4ID consistently attains outstanding results in hiding sensitive itemsets

across all cases, surpassing the two other side effects (missing cost and dissimilarity). This

success is attributed to the algorithm’s emphasis on minimizing sensitive itemsets during the

sanitization process by strategically selecting victim items to hide all sensitive itemsets from a

given candidate transaction. Subsequent experiments aim to compare the behavior of each side

effect between NSGAII4ID and other existing algorithms.

4.6.3.2 Comparison with respect to hiding failure(S_F_H)

Figure 4.8 presents a comparison of the average value of the hiding failure objective func-

tion (S_F_H) found by the three algorithms NSGAII4ID, NSGA2DT, GMPSO on the four

databases (mushroom, chess, T10I4D100K and foodmart) for various sensitive itemset per-

centages. Recall that S_F_H denotes the count of sensitive itemsets in the original database

that the algorithm fails to conceal in the sanitized database.

It is obvious across all considered databases that the proposed NSGAII4ID algorithm con-

68

0

1

2

3

4

5

6

7

8

0,03 0,04 0,05 0,06 0,07

h
id

in
g

fa
ilu

re
 (

S_
F_

H
)

Sensitive itemset percentage(%)

(a) mushroom (Avg)

0

1

2

3

4

5

6

7

8

0,02 0,04 0,06 0,08 0,1

h
id

in
g

fa
ilu

re
 (

S_
F_

H
)

Sensitive Itemset percentage(%)

(b) chess (Avg)

0

1

2

3

4

5

6

7

8

0,02 0,03 0,04 0,05 0,06

h
id

in
g

fa
ilu

re
 (

S_
F_

H
)

Sensitive Itemset percentage(%)

(c) T10I4D100K (Avg)

0

2

4

6

8

10

12

14

16

0,06 0,08 0,1 0,12 0,14
h

id
in

g
fa

ilu
re

 (
S_

F_
H

)

Sensitive Itemset percentage(%)

(d) foodmart (Avg)

Figure 4.8: Hiding failure of three algorithms for four databases

sistently outperforms NSGA2DT and GMPSO, indicating a superior ability to hide more sensi-

tive itemsets than the other compared algorithms. Notably, the exception is the chess database,

where all algorithms exhibit similar performance. This observation underscores the effective-

ness of the Set Cover Problem (SCP) in facilitating precise change operations that successfully

conceal a maximum number of sensitive frequent itemsets.

Furthermore, it is noteworthy that the margin between NSGAII4ID and the other two al-

gorithms becomes more pronounced for sparse databases, as illustrated in Figures 4.8(c) and

4.8(d). This emphasizes the algorithm’s heightened efficacy in scenarios characterized by a

lower density of transactions and underscores its adaptability across different database types.

4.6.3.3 Comparison with respect to missing cost(N_S_L)

Figure 4.9 provides a comparative analysis of the average values of the missing cost objec-

tive function (N_S_L) across four databases (mushroom, chess, T10I4D100K, and foodmart)

for the three algorithms—NSGAII4ID, NSGA2DT, and GMPSO. The analysis considers vari-

ous sensitive itemset percentages for each database. Recall that N_S_L is the number of non-

sensitive itemsets in the original database that the algorithm conceals in the sanitized database.

69

0

200

400

600

800

1000

1200

0,03 0,04 0,05 0,06 0,07

m
is

si
n

g
co

st
 (

N
_S

_L
)

Sensitive Itemset percentage(%)

(a) mushroom (Avg)

0

500

1000

1500

2000

2500

3000

0,02 0,04 0,06 0,08 0,1

m
is

si
n

g
co

st
 (

N
_S

_L
)

Sensitive Itemset percentage(%)

(b) chess (Avg)

0

5

10

15

20

25

30

35

0,02 0,03 0,04 0,05 0,06

m
is

si
n

g
co

st
 (

N
_S

_L
)

Sensitive Itemset percentage(%)

(c) T10I4D100K (Avg)

0

5

10

15

20

25

30

35

0,06 0,08 0,1 0,12 0,14

m
is

si
n

g
co

st
 (

N
_S

_L
)

Sensitive Itemset percentage(%)

(d) foodmart (Avg)

Figure 4.9: Missing cost of three algorithms for four databases

Figure 4.9 reveals that the designed algorithm does not outperform NSGA2DT and GMPSO

in minimizing the missing cost. This trade-off arises from the algorithm’s emphasis on con-

cealing more sensitive frequent itemsets compared to the other algorithms. However, from a

Privacy-Preserving Data Mining (PPDM) perspective, it is preferable to sacrifice some useful

but non-sensitive information to avoid disclosing sensitive information, rather than the reverse

scenario (retaining more useful and non-sensitive information but failing to conceal a maximum

of sensitive information).

4.6.3.4 Comparison with respect to the number of removed items

In this experiment, we aim to evaluate the performance of the NSGAII4ID algorithm con-

cerning the dissimilarity side effect, which focuses on minimizing alterations made to the

original database during the sanitization process. The algorithm is compared against two

single-objective algorithms, PSO2DT and sGA2DT, as well as two multi-objective algorithms,

NSGA2DT and GMPSO.

70

0

20000

40000

60000

80000

100000

120000

3% 4% 5% 6% 7%

re

m
o

ve
d

 it
em

s

Sensitive Itemset percentage(%)

(a) mushroom (Avg)

0

50000

100000

150000

200000

250000

300000

2% 4% 6% 8% 10%

re

m
o

ve
d

 it
em

s

Sensitive Itemset percentage(%)

(b) chess (Avg)

0

20000

40000

60000

80000

100000

120000

2% 3% 4% 5% 6%

re

m
o

ve
d

 it
em

s

Sensitive Itemset percentage(%)

(c) T10I4D100K (Avg)

0

50

100

150

200

6% 8% 10% 12% 14%

re

m
o

ve
d

 it
em

s

Sensitive Itemset percentage(%)

(d) foodmart (Avg)

Figure 4.10: Dissimilarity of three algorithms for four databases

All four compared algorithms (NSGA2DT, GMPSO, PSO2DT, and sGA2DT) employ trans-

action deletion for database sanitization. The recorded value of the dissimilarity side effect for

these algorithms corresponds to the total number of items contained in all removed transactions.

Figure 4.10 illustrates the average number of removed items after sanitization for the four

databases and the five compared algorithms (NSGAII4ID, NSGA2DT, GMPSO, PSO2DT, and

sGA2DT) across different percentages of sensitive itemsets.

The results consistently reveal that, in all cases, the NSGAII4ID algorithm removes sig-

nificantly fewer items than the four other algorithms. This is attributed to the proposed al-

gorithm selectively deleting specific items from chosen transactions, in contrast to removing

entire transactions.

In summary, the overall performance of NSGAII4ID is highly satisfactory. The obtained

results for runtime and memory cost are promising, showcasing accelerated convergence com-

pared to other multi-objective algorithms at the transaction level. NSGAII4ID’s runtime is

closer to that of single-objective algorithms than the other multi-objective algorithms. Addi-

71

tionally, memory consumption for NSGAII4ID and the other multi-objective algorithms re-

mains competitive, with expected higher values compared to single-objective algorithms but

without constituting a significant limitation.

Regarding side effects, the experiments clearly demonstrate NSGAII4ID’s superiority over

all compared algorithms in hiding sensitive itemsets and minimizing changes to databases. Al-

though NSGAII4ID does not outperform other multi-objective algorithms in terms of missing

cost, future work can focus on minimizing this aspect further. Overall, the use of SCP at the

item level in NSGAII4ID proves to be a strategic choice for achieving robust performance

across multiple dimensions in privacy-preserving data mining.

4.7 Conclusion

In this chapter, a novel approach to privacy-preserving data mining (PPDM) was introduced,

formulating the PPDM problem as a multi-objective optimization task with three objectives to

be minimized. These objectives include the hiding of sensitive frequent itemsets, the preserva-

tion of non-sensitive frequent itemsets, and the minimization of dissimilarity between the orig-

inal and modified databases. The NSGAII4ID algorithm, proposed in this context, addresses

the challenge of hiding sensitive itemsets through a two-level optimization strategy. At the first

level, a multi-objective genetic algorithm identifies optimal subsets of candidate transactions

for modification. At the second level, a subset of items is selected from each transaction for

deletion, involving the Set Cover Problem (SCP) as an optimization task. The optimization at

the second level contributes to the evaluation of chromosomes at the first level.

The experimental study, conducted on four databases (two sparse and two dense), demon-

strated that NSGAII4ID performs effectively in terms of execution time and minimizes the

overall changes made to the original database during modification. The algorithm also achieved

satisfactory results in minimizing hiding failure and missing cost side effects, with excellent re-

sults for hiding failure on all databases.

72

Chapter 5: Hiding sensitive expected fre-

quent itemsets in the context

of uncertain databases

5.1 Introduction

To protect sensitive itemsets, a widely adopted strategy involves altering a database to

thwart their discovery through data mining. This procedure, referred to as database sanitiza-

tion, commonly entails the removal or modification of sensitive transactions or records. How-

ever, such modifications may lead to unintended "side effects." With the escalating volume of

data and the increasing prevalence of data mining techniques, Privacy-Preserving Data Min-

ing (PPDM) has become a focal point of attention in recent decades. The central objective of

PPDM is to find a delicate equilibrium between preserving data privacy and facilitating efficient

data mining processes.

Moreover, uncertainty is pervasive in data originating from numerous real-life applications.

Uncertainty in data can stem from various origins, encompassing our limited perception or

comprehension of reality, constraints in observation equipment, and restrictions in available re-

sources for data collection, storage, transformation, and analysis. Additionally, inherent char-

acteristics of the considered data can contribute to uncertainty. For instance, data collected

through sensors—whether chemical, electromagnetic, mechanical, optical, or thermal sensors

in applications such as environmental surveillance, security, and manufacturing systems—may

inherently contain noise [129]. Dynamic errors, including measurement inaccuracies, varia-

tions in sampling frequency, deviations caused by rapid changes in measured properties over

73

time (e.g., drift or noise), wireless transmission errors. In recent years, numerous models and

algorithms have been developed to address various uncertain data mining tasks, including clus-

tering, classification, and outlier detection in uncertain data.

The mining of frequent itemsets in uncertain databases has emerged as a significant topic

in the data mining community, drawing the attention of numerous researchers seeking optimal

strategies for this task. In this domain, the majority of existing work adopts a probabilistic

framework to model data uncertainty.

In probabilistic databases, the identification of frequent itemsets relies on two primary se-

mantic approaches [78]: Expected support-based frequent itemsets [11, 17] and probabilistic

frequent itemsets [12]. Both definitions consider the support of an itemset as a discrete random

variable. In the first definition [11, 15, 16, 17], the frequency of an itemset is assessed by its

expected support, considering the itemset frequent if its expected support equals or exceeds a

minimum expected support threshold denoted as minesup. The second definition [12, 18, 20]

involves the computation or estimation of the "real" value of the "frequent probability" of an

itemset, representing the probability that its support is not less than the minsup threshold. For-

mally, an itemset is considered frequent if its frequent probability is greater than or equal to

a given probabilistic threshold, referred to as minprob. The expectation measure extends the

definition of frequent itemsets in traditional databases, while the definition of probabilistic fre-

quent itemsets encompasses the complete probability distribution of the support of an itemset.

Despite these distinctions, both definitions share a close connection. Specifically, the support of

an itemset is modeled as a random variable following the Poisson Binomial distribution, where

the expected support of an itemset corresponds to the expectation of this random variable.

Consequently, computing the frequent probability of an itemset is equivalent to determining

the cumulative distribution function of this random variable.

There are two expected-support-based approaches for mining frequent itemsets in uncer-

tain databases. The first approach, known as U-Apriori [16], extends the Apriori algorithm

to the probabilistic setting. It extracts expected support-based frequent itemsets, significantly

reducing the size of the candidate set. However, its performance is affected as it scans the un-

certain database multiple times. The second approach builds upon tree-based algorithms, such

as FP-Growth, and introduces UFP-Growth [17], which generalizes FP-Growth to the case of

probabilistic databases. UFP-Growth scans the database twice and uses UFP-trees with mega-

74

nodes, where a mega-node includes nodes for items with similar existential probability. Despite

its benefits, it contains a distinct tree path for each distinct item-existential probability pair.

In terms of PPDM, the increasing use of data mining techniques has raised concerns about

privacy and information security. PPDM aims to protect sensitive information from unautho-

rized disclosure by developing algorithms that modify the original database to keep private,

confidential, or sensitive data and knowledge secure. Various approaches in the existing litera-

ture differ in their assumptions about the data collection model and user privacy requirements.

However, modifications made during the sanitization process can lead to undesirable side

effects, such as "Hiding failure," which represents the number of sensitive frequent itemsets

that remain uncovered even after sanitization. "Missing cost" is the number of non-sensitive

frequent itemsets lost after the modification of the database, and "dissimilarity" is the number of

items/transactions removed from the database. Solving this problem is challenging because it

is an NP-hard optimization problem to simultaneously minimize these side effects while hiding

sensitive frequent itemsets.

In addition to exact methods, researchers have explored heuristic and metaheuristic ap-

proaches to address this challenge. Notably, all existing approaches for PPDM assume certain

data. In this chapter, we focus on preserving sensitive frequent itemsets in uncertain databases,

proposing a novel algorithm named U-NSGAII4ID (Uncertain-Non-dominated Sorting Genetic

Algorithm for Item Deletion). This algorithm hides sensitive expected frequent itemsets by

solving a multi-objective optimization problem, where the solution encodes a set of items to re-

move from a selected set of transactions. The main contributions of the proposal U-NSGAII4ID

algorithm are the following:

1. The chapter presents an innovative approach to address the challenge of Privacy-Preserving

Data Mining (PPDM) in uncertain transactional databases. The frequency of itemsets is

determined by the concept of expected-support, where itemsets with an expected-support

equal to or exceeding a specified threshold are identified as frequent. The proposed solu-

tion employs U-Apriori, an extended version of the Apriori algorithm tailored for prob-

abilistic databases, utilizing the expected support measure. This adaptation allows for

effective handling of uncertainty in transactional databases during the privacy-preserving

data mining process.

75

2. We model the privacy peserving frequent itemset mining problem over uncetain transac-

tion databases as a multi-objective optimization problem and we adapt NSGA-II algo-

rithm [126] to solve it. The solution encodes the set of transactions from which some

items should be removed.

3. To evaluate each solution encoded in the genetic algorithm and representing a set of

transactions to update, a set of items to remove is determined from each selected transac-

tion. The problem of finding the set of optimal items to remove from a given transaction

is modeled as a Weighted SCP which is a well-known NP-Hard combinatorial problem.

An approximate polynomial-time greedy algorithm is used to solve this problem.

4. The dissimilarity measure is computed as the sum of probability values of removed items

after the sanitization process. this takes into account the probability information and

captures the idea that the higher is the probability value associated with an item, the

more expensive is its removing from the database.

The remaining of this chapter is organized as follow: Section 5.2 gives basic definitions

related to our problem in the particular context of uncertain databases. Section 5.3 is devoted to

the presentation of the proposed U-NSGAII4ID sanitization algorithm in uncertain databases.

In Section 5.4, we report and discuss experiment results. Finally, Section 5.5 concludes the

chapter.

5.2 Basic definitions for mining frequent itemsets from un-

certain databases

In this section, we provide some fundamental definitions related to the uncertain database

model and the problem of mining frequent itemsets over uncertain databases. The definitions

of some concepts are the same as those introduced in the previous chapter, but we prefer to

recall them here to make the chapter as self-contained as possible.

Let I = x1,x2, . . . ,xm be a set of m items. Any subset X of I is referred to as an itemset, and

it is considered to be an l-itemset if |X |= l. A certain transaction consists of a set of items, and

a certain transactional database is composed of N transactions.

76

In the uncertain model, each item in a transaction is associated with a non-zero probability

of its existence in the transaction.

Definition 5.2.1 (Uncertain Transaction) An uncertain transaction t contains a set of items

(an itemset) where each item x ∈ t is associated with its probability Pr(x ∈ t) to appear in this

transaction (0 < Pr(x ∈ t)≤ 1).

Notice that in the case where Pr(x ∈ t) = 1, this means that the item x is a certain item in

transaction t, i.e., it surely appears in t; and if Pr(x ∈ t) = 0 then surely x does not belong to t

and it is not explicitly represented in t.

Definition 5.2.2 (Uncertain Database) An uncertain transaction database (UDB) is a set D=

{t1, t2, . . . , tN} such that each ti is an uncertain transaction.

Definition 5.2.3 (Expected support-based frequent itemsets) . Let us consider an uncertain

database D with N transactions and let minsup be a minimum expected support threshold. An

itemset X is considered an expected support-based frequent itemset if and only if ExpSup(X)≥

minsup, where the expected support is determined by the following equation:

ExpSup(X) =
∑t∈D Pr(X ⊆ t)

|D|
=

∑t∈D(∏x∈X Pr(x ∈ t))
|D|

(5.1)

The set of expected support-based frequent itemsets is denoted by F.

It is worth noticing that the complexity of computing the expected support-based frequent

itemset is O(N).

Definition 5.2.4 (sensitive and non-sensitive expected frequent itemset) Sensitive expected

frequent itemsets are itemsets selected by the user and having an expected support which is

greater than or equal to the threshold minsup. They represent sensitive information to be hid-

den. This set is denoted by SI. The set of reminding expected frequent itemsets is called the set

of non-sensitive expected frequent itemsets and it corresponds to L\SI.

To hide sensible itemsets, the sanitization process consists in performing a minimum change

(here removing some transactions and/or items) on the database D. Let D′ denote the modified

database and L′ denote the new set of expected support-based frequent itemsets obtained from

D′. There are three side effects that have to be minimized:

77

Definition 5.2.5 (Side effects) .

• The “hiding failure” (S_F_H) is the number of sensitive itemsets that the sanitization

process fails to hide. It is given by: S_F_H = | SI∩L′|.

• The "missing cost" (N_S_L) is the number of non-sensitive frequent itemsets that are hid-

den (become infrequent) after the sanitization process. This number is given by: N_S_L

= |(L−SI)−L′|.

• The dissimilarity measure (Dis) between the original uncertain database D and the mod-

ified database D′ obtained by sanitization process. It can be defined by the total number

of either items or transactions removed from D to obtain D′.

5.3 The Proposed U-NSGAII4ID algorithm

This section introduces the proposed sanitization algorithm for uncertain databases, named

Uncertain Non-dominated Sorting Genetic Algorithm II for Item Deletion (U-NSGAII4ID).

Subsection 5.3.1 provides a description of the U-NSGAII4ID algorithm, followed by a detailed

illustrative example of its application in Section 5.3.2.

The U-NSGAII4ID algorithm, an extension of the NSGA-II algorithm [126], is a multi-

objective optimization approach tailored for privacy-preserving data mining and aiming at min-

imizing side effects (hiding failure, missing cost, and dissimilarity) in uncertain databases by

identifying an optimal set of probabilistic items to be removed from sensitive transactions.

In this algorithm, a potential solution encodes a set of victim transactions, indicating trans-

actions from which items should be removed in the context of multi-objective optimization. The

evaluation process for a solution entails determining the optimal subset of probabilistic items

to be removed from each transaction. This step is crucial for computing the objective function

value associated with the solution. Importantly, the task of identifying the optimal subset of

items to remove poses an inherent NP-Hard problem, specifically the well-known Weighted Set

Cover Problem (WSCP). To efficiently address this challenge during the evaluation of potential

solutions, a polynomial greedy algorithm is employed.

The detrmination of victim transactions is carried out iteratively, with each iteration in-

volving the evaluation of a population of potential solutions. Each individual solution of the

78

population is termed a chromosome. In the specific context of this study, a chromosome is

represented as a vector of transaction identifiers (TID) extracted from an uncertain database,

indicating the selected victim transactions. All potential solutions within the population share

a fixed dimension, denoted as nVar and determined by the user. Each position within a chro-

mosome is referred to as a gene. Here is an example of a chromosome:

152 20 325 0 15 0

This chromosomes has a length of six and encodes four transactions having the TIDs: 152,

20, 325 and 15. The 0 value indicates that no transaction is encoded in the corresponding gene.

5.3.1 Algorithm description

The pseudo-code for the U-NSGAII4ID algorithm is outlined in Algorithm 4. As previously

mentioned, U-NSGAII4ID adheres to the general framework of NSGA-II and incorporates a

step to address the Weighted Set Cover Problem (WSCP) during the chromosome evaluation.

5.3.1.1 The main algorithm.

U-NSGAII4ID takes several elements as input, including the original uncertain database

(D), the set of expected frequent itemsets (L) obtained using a suitable algorithm (here, U-

Apriori is utilized, but alternatives like UFP-Growth and UH-Mine can be considered), the user-

defined minimum support threshold (minesup), the set of sensitive expected frequent itemsets

(SI) which is a subset of L, the population size (N), the length of a potential solution (nVar),

and the maximum number of iterations (Maxiter). These values, namely N, nVar, and Maxiter,

are parameters specified by the user for the algorithm.

The algorithm starts by projecting all sensitive transactions into a separate database, de-

noted as D∗, extracted from the original database D (lines 2-8). Specifically, it identifies every

transaction in D that contains at least one sensitive itemset and includes it in the D∗ database.

The population consists of N chromosomes, each representing a potential solution. In this

context, a chromosome is a set of genes, where each gene corresponds to the Transaction ID

(TID) of a sensitive uncertain transaction from the projected database D∗. Chromosomes are

randomly initialized (lines 9-12) using the Roulette wheel selection technique.

79

Algorithm 4 Pseudo-code of U-NSGAII4ID algorithm
Require:

D: Original uncertain Database; L: Set of expected frequent itemsets; minesup: Minimum expected
support threshold; SI: Set of sensitive expected frequent itemsets; N: Population size; nVar: Chro-
mosome size; Max_iter: Maximum number of iterations;

Ensure:
Set of optimal solutions to be modified (Archive);
{Construction of the projected database containing uncertain transactions including at least one
sensitive expected frequent itemset}

1: D∗← /0;
2: for (Each transaction Tq in D) do
3: for (Each sensitive itemset s in SI) do
4: if (s⊆ Tq) then
5: D∗← D∗∪{Tq};
6: end if
7: end for
8: end for

{Initialization of the population}
9: for (Each solution i in population) do

10: Vector← Roulette_Wheel(D∗);
11: Pop0[i]← rand(Vector,N,nVar,null);
12: end for

{Evaluation of each chromosome : S_F_H,N_S_L,Dis are calculated within the evaluation function
and each of them receives a discrete value}

13: for (each chromosome chrom of Pop0) do
14: Prob_Evaluate(chrom,D∗,SI,D,NS);
15: end for
16: [Pop0,F]← Fast_Non−Dominated_Sort(Pop0);
17: Pop0←Crowding_distance(Pop0,F);
18: Pop0← Sort_Population(Pop0);
19: Archive← Pop0(F [1]); {the first Front is saved in an extra population : Archive}
20: Q0← cross_op(Pop0);
21: Q0← mutate_op(Q0,Vector);

{Evaluate each chromosome}
22: for (each chromosome of Q0) do
23: Prob_Evaluate(chrom,D∗,SI,D,NS);
24: end for
25: Iter← 1;
26: Popt ← Pop0;
27: Qt ← Q0;
28: while (Iter ≤Max_iter) do
29: Rt ← Popt ∪Qt ; {Merge the current and offspring populations}
30: [Popt,F]← Fast_Non−Dominated_Sort(Popt);
31: Popt ←Crowding_distance(Popt ,F);
32: Popt ← Sort_Population(Popt);
33: Archive← Popt(F [1]); {Update the archive with the new first front obtained}
34: Popt ← select(Rt ,N); {Select N first solutions from Rt}
35: Qt ← cross_op(Popt);
36: Qt ← mutate_op(Qt ,Vector);
37: for (Each chromosome of Qt) do
38: Prob_Evaluate(chrom,D∗,SI,D,NS);
39: end for
40: Iter← Iter+1;
41: end while 80

Objective functions (fitness values) are then evaluated for each solution (lines 13-15). Three

objective functions are assessed for each chromosome using the Prob_Evaluate function, de-

tailed in Algorithm 5. Subsequently, the fast non-dominated sorting and crowding distance

methods are applied to the population, ranking solutions from the best to the worst (lines 16-

18). An external population, referred to as the "archive" (line 19), is employed to store the first

rank obtained from previous steps.

The crossover operation is applied to two selected chromosomes by randomly choosing

a gene in each chromosome and exchanging them. If a gene becomes redundant in the new

chromosome, it is replaced with a new TID randomly selected from D∗.

Mutation involves randomly selecting a gene from a chromosome (a potential solution ob-

tained after the crossover operation) (lines 20-21) and replacing it with another random solution

from D∗ that is not already present in the chromosome. Each chromosome in the offspring pop-

ulation is then evaluated (lines 22-24).

The evolution process unfolds iteratively. In each iteration, the current population and the

offspring population are merged to form a pool of potential solutions with a size of 2N (line

29). Fast Non-Dominated Sorting and Crowding Distance strategies are applied to determine

Pareto fronts (lines 30-32). Solutions are sorted into fronts, and the set of best solutions is

saved in the archive (lines 33). This ensures that the archive is regularly updated with the best

solutions.

The new population is formed by selecting the first N best potential solutions from the

merged population (line 34). Crossover and mutation operations are applied (lines 35-36) to

generate a new offspring population, and each chromosome in the offspring population is eval-

uated according to the three objective functions (lines 37-39).

The actions between lines 24 and 34 are repeated until the termination criterion is satisfied

(line 28). The termination criterion can be a maximum number of iterations or a convergence

criterion based on the Pareto front’s convergence.

5.3.1.2 The evaluation function.

Prob_Evaluate is the proposed function used to evaluate each chromosome to determine

the set of optimal items to delete from each uncertain candidate transaction and accordingly

81

to compute the three fitness values corresponding to the three side effects: Hiding failure,

missing cost, and dissimilarity. The pseudo code of the Prob_Evaluate function is presented

in Algorithm 5.

The proposed Algorithm 5 starts by extracting the set of sensitive uncertain transactions

encoded in the chromosome c for evaluation (line 1). Then, for each extracted transaction t,

the algorithm determines an optimal set of items to be removed to eliminate all the sensitive

itemsets in this transaction. For the certain case, optimality consists in minimizing the number

of removed items. In the probabilistic case considered in this chapter, removing items with low

probability values is preferred. Hence, the optimal set of items to remove is the set covering

all sensitive itemsets and having a minimal value for the total weight of its elements, which

is the sum of probability values of all these elements. This is nothing but the Weighted Set

Cover Problem (WSCP) which is the weighted version of the set cover problem used in the

previous chapter. WSCP is also a well-known NP-Hard combinatorial optimization problem.

We discuss this problem, its use for modeling our task and an efficient approximate way of

solving it in the next section. In Algorithm 5, the function WSCP for solving the WSCP is

called at line 7. This function receives two parameters: The set U of all sensitive expected

frequent itemsets (line 5) and Sitems which contains all the items in U (line 6). The function

WSCP returns as a result Victimitemst which contains the optimal subset of probabilistic items

to remove from transaction t. Then, the modified database (after removing victim items) is

computed (line 8) and the expected supports of current frequent itemsets are updated (lines 9-

13). Finally the values of side effects are computed: The dissimilarity measure is computed by

adding the sum of probabilities of the new removed probabilistic items (lines 14-18), the values

of hiding failure (S_F_H) (resp. missing cost (N_S_L)) are computed by counting the number

of expected frequent sensitive itemsets that remain frequent (resp. the number of non-sensitive

expected frequent itemsets that become infrequent) after modifying the database (lines 21-28).

5.3.1.3 Weighted set cover problem.

The Weighted Set Cover problem (WSCP), as outlined by Yang [130], is a classic NP-Hard

combinatorial optimization problem. In this problem, a universe of elements U and a set F of

subsets of U are given, each associated with a weight. The goal of the WSCP is to identify

a minimum weight collection (subset) C of subsets from F in such a way that the union of

the elements in C covers all the elements in U . The decision version of the problem, which

82

Algorithm 5 Pseudo-code of Prob_Evaluate function
Require: c: chromosome; SI: sensitive expected frequent itemsets; D∗: projected uncertain

transactions; D: original uncertain database; NS: set of non-sensitive expected frequent
itemsets.

Ensure: S_F_H, N_S_L, Dis.
1: Transc←{Tid ∈ D∗|id is an identifier of a transaction coded in chromosome c};
2: D′← D;
3: Dis← 0;
4: for (Each transaction t in Transc) do
5: U ←{s|s⊆ t and s ∈ SI};
6: Sitems←

⋃
s∈U{(i, p) | (i, p) ∈ t and i ∈ s}; {Put in Sitems all probabilistic items ap-

pearing in sensitive itemsets present in transaction t}
7: Victitemst ←WSCP(U,Sitems); {Determine the set of items to be removed from the

uncertain transaction by applying the WSCP function}
8: D′←Modi f _Database(Victitemst ,D′); {modify the uncertain database D′ by removing

the probabilistic items of the set victitemst from transaction t.}
9: for (Each X in L) do

10: if ((X ⊆ t) and (X ∩Victitemst ̸= /0)) then
11: ExpSupportD′(X)← ExpSupportD′(X)− (∏x∈X Pr(x ∈ t)/|D|);
12: end if
13: end for{Update the expected support value in D′ of each expected frequent itemset}
14: Dis← 0;
15: for (Each probabilistic item (i, p) ∈Victitemst) do
16: Dis← Dis+ p;
17: end for{Update the value of the dissimilarity between D and D′}
18: end for
19: S_F_H← 0;
20: N_S_L← 0;
21: for (Each X in L) do
22: if (X ∈ SI and ExpSupportD′(X)≥ minesup) then
23: S_F_H ← S_F_H + 1; {One more sensitive expected frequent itemset in D which

remains frequent in D′}
24: end if
25: if (X /∈ SI and ExpSupportD′(X)< minesup) then
26: N_S_L← N_S_L+1; {One more non-sensitive expected frequent itemset in D which

becomes infrequent in D′}
27: end if
28: end for
29: Return S_F_H, N_S_L, Dis;

83

involves determining whether there exists a solution of weight at most a given threshold, is

NP-complete. This indicates that finding exact solutions for large instances is computation-

ally challenging. Fortunately, As for the simple version of SCP used in the previous chapter,

there exists a straightforward greedy approximate algorithm that can yield a good approximate

solution to the WSCP within polynomial time.

In the context of this chapter, given a transaction t containing some sensitive itemsets, we

aim to detect a subset of probabilistic items that (1) covers all sensitive itemsets present in t, i.e.,

each sensitive itemset should contain at least one probabilistic item from the detected subset,

and (2) has a minimum weight, where the weight here is the sum of the probability values of

the detected probabilistic items. This problem is formulated as a WSCP as follows:

• The universe U is the set of sensitive itemsets appearing in the transaction

• The set F of weighted collections of U is determined as follows: Let (i, p) be a prob-

abilistic item of t such that i appears in at least one sensitive itemset of U (this set of

probabilistic items is denoted by Sitems). We construct a subset Fi of F which contains

all sensitive itemsets of U containing i and we consider p, which is the probability that i

belongs to t, as the weight of Fi.

The pseudo-code of the greedy approximate algorithm to solve the WSCP adapted to our

case is presented in Algorithm 6. It receives the universe U (set of sensitive itemsets) as well as

the set Sitems of all items from elements of U and returns the set Victimitems which contains

the probabilistic items that are a discovered solution.

First, to construct the set F , the algorithm associates to each probabilistic item (i, p) in

Sitems a collection Fi as explained above (lines 1-3). Hence, each collection of F is indexed

by a probabilistic item of Sitems so that the presence of the collection Fi in the solution of the

WSCP means that i belongs to the set of victim items to remove. The set of victim items is

then calculated by applying the greedy principle by iteratively choosing the probabilistic item

having a probability value that is as low as possible and which corresponds to the collection

that tries to cover a maximum number of element of U not yet covered (lines 4-11). At the

end of each iteration, the selected probabilistic item is removed from Sitems (line 9) and the

elements of the corresponding collection Fi are considered as already covered (line 10).

84

Algorithm 6 Pseudo-code of the greedy algorithm for the WSCP
Require: U : a finite set of sensitive itemsets; Sitems: the set of probabilistic items appearing

in U .
Ensure: Victimitems : the set of victim probabilistic items to be removed.

1: for (Each probabilistic item (i, p) in Sitems) do
2: Fi←{s ∈U |i ∈ s};
3: end for
4: Victimitems← /0;
5: W ←U ; {copy universe U in W}
6: while (W is not empty) do
7: (i, p)← the probabilistic item from Sitems which minimizes p

|Fi∩W | ; {The probabilistic
item that maximizes the number of covered elements not yet covered in the remaining
universe is selected, with priority given to an item if it has a lower probability}

8: Victimitems←Victimitems∪{(i, p)};
9: Sitems← Sitems−{(i, p)}; {remove probabilistic item (i, p) from the set Sitems}

10: W ←W −Fi;
11: end while
12: Return Victimitems

5.3.2 An illustrative example

A detailed example is provided here to clarify the various steps involved in the proposed

algorithm. This example encompasses the procedure for assessing solutions and showcases the

operation of the Prob_Evaluate algorithm. Consider the uncertain database presented in Table

5.1, denoted as D, and the task of mining expected frequent itemsets in D with minesup = 0.2.

Table 5.2 shows the set of expected frequent itemsets with their expected support values.

Table 5.1: An Example of an Uncertain database (D)

TID Transactions

1 {a(0.4),b(0.6),d(0.9), f (0.1)}

2 {a(0.5),c(0.1),e(0.4), f (0.8)}

3 {b(0.2),c(0.3),d(0.6),e(0.1)}

4 {a(0.3),b(0.8),c(0.2),e(0.5), f (0.4)}

5 {a(0.1),b(0.5),d(0.5),e(0.3)}

Additionally, let us assume that the set of sensitive expected frequent itemsets is denoted

as SI = {{b},{b,d}} (highlighted in Table 5.2), with the remaining expected frequent itemsets

considered non-sensitive. The projected uncertain transactions D∗, which encompass at least

one of the sensitive expected frequent itemsets, can be observed in Table 5.3.

85

Table 5.2: The Expected frequent itemsets found in Table 5.1 for minesup = 0.2

Itemsets Expected support

{a} 0.26

{b} 0.42

{d} 0.4

{e} 0.26

{ f} 0.26

{b,d} 0.2

{e, f} 0.4

Table 5.3: Projected uncertain database D∗

TID Transactions

1 {a(0.4),b(0.6),d(0.9), f (0.1)}

3 {b(0.2),c(0.3),d(0.6),e(0.1)}

4 {a(0.3),b(0.8),c(0.2),e(0.5), f (0.4)}

5 {a(0.1),b(0.5),d(0.5),e(0.3)}

The Prob_Evaluate function is executed on each chromosome (potential solution) of the

population D∗ which is randomly generated and where each gene represents the identifier of a

transaction from D∗. An example of a chromosome from the population may be the following:

0 4 0 5 1

This chromosome encodes the uncertain transactions 4, 5, and 1. Hence, from each of those

transaction, the aim is to find the minimal set of probabilistic victim items to be deleted. After

that, the algorithm computes the three objective functions based on the removed victim items

with its probability value.

The Prob_Evaluate function is applied in two steps: The first step is to check each trans-

action t from D∗ that is encoded in the chromosome. For each such transaction t, the set U is

calculated of all items from sensitive itemsets that appear in t.

The second step for each uncertain transaction t identified in the first step is to apply the

weighted set cover problem (WSCP) to find the victim items to remove with their probabil-

86

Table 5.4: Uncertain transactions in the solutions

TID Transaction SI Exp. support Victim prob.

4 {a(0.3),b(0.8),c(0.2),e(0.5), f (0.4)} {b} 0.42 b 0.8

5 {a(0.1),b(0.5),d(0.5),e(0.3)} {{b},{d}} [0.420.2] b 0.5

1 {a(0.4),b(0.6),d(0.9), f (0.1)} {{b},{d}} [0.420.2] b 0.6

ities. Let take the example of the transaction with TID 5. The universe is U = {s1,s2}

where s1 = {b} and s2 = {b,d}. The union of the corresponding probabilistic items in U is

Sitem = {(b,0.5),(d,0.5)}, where each item is associated with its probability value taken from

the uncertain sensitive transaction 5. The returned set of victim items is {(b,0.5)} indicating

the probabilistic items to remove from transaction 5. Table 5.4 presents the set of victim items

with their corresponding probabilities for removal from each sensitive uncertain transaction.

The third step is to make an update of the modified uncertain database D′ (see Table 5.5) by

deleting items with their probability values from each sensitive uncertain transaction. This step

also updates the expected support of each itemset that is frequent in D and the dissimilarity,

which is computed as the sum of the probability value of each victim item deleted from the

uncertain database. In our example, the dissimilarity value is equal to (0.8 + 0.5 + 0.6) = 1.9.

Table 5.5: Modified uncertain database D’

TID Transactions

1 {a(0.4),d(0.9), f (0.1)}

2 {a(0.5),c(0.1),e(0.4), f (0.8)}

3 {b(0.2),c(0.3),d(0.6),e(0.1)}

4 {a(0.3),c(0.2),e(0.5), f (0.4)}

5 {a(0.1),d(0.5),e(0.3)}

Two additional objective function values need to be computed: (S_F_H) and (N_S_L).

S_F_H represents the count of sensitive expected frequent itemsets that can still be mined

from the sanitized database D′ even after the sanitization process has been applied. In the

example, we see that both sensitive expected sensitive frequent itemsets are hidden, hence,

S_F_H = 0.

87

N_S_L is the number of non-sensitive expected frequent itemsets that are lost after altering

the uncertain database. We can see that there are four non-sensitive expected frequent itemsets

that still appear in the modified database D’. N_S_L = 0. To sum up, the value of the three

objective functions are S_F_H = 0, N_S_L = 0, and Dissimilarity = 1.9.

5.4 Experimental results

The proposed U-NSGAII4ID algorithm was implemented using Matlab R2017a and eval-

uated on a PC workstation featuring an Intel Core i5-4005U processor, 48 GB of RAM, and

running the 64-bit Microsoft Windows 10 operating system.

In our experiments, we executed the U-NSGAII4ID algorithm for 10 generations, employ-

ing a population size of 10 with unlimited archive solutions. The crossover probability was

set to 0.95, and the mutation probability was set to 0.05 for the variation part of the algorithm.

Each experiment was run 10 times to ensure robust results.

For the experiments, we utilized seven uncertain databases sourced from SPMF [128],

namely: mushroom, chess, pumsb, connect, accident, foodmart, and T10IKD10OK (generated

using the IBM Quest database generator). These datasets were selected due to their popularity

and widespread use in recent studies on Privacy Preserving Data Mining (PPDM) for validation

purposes. The main features of the uncertain datasets used are summarized in Table 5.6

Table 5.6: Features of each uncertain dataset

Datasets #|D| #|I| AvgLen MaxLen Type

mushroom 8416 119 23 23 Dense

chess 3196 74 37 37 Dense

pumsb 49046 2113 74 74 Dense

connect 67557 129 43 43 Dense

accidents 340183 468 33.8 33.8 Sparse

foodmart 21556 1569 4 11 Sparse

T10I4D100K 100000 870 10.1 29 Sparse

88

5.4.1 Runtime

In this experiment, we measured the runtime of the proposed U-NSGAII4ID algorithm for

the seven uncertain datasets. Figure 5.1 illustrates the variation of runtime with respect to the

percentage of sensitive itemsets among expected frequent itemsets. The existential probabilities

of items in each transaction were randomly assigned.

0

200

400

600

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

 R
u

n
 t

im
e

(s
)

SFI percentages (%)

(a) mushroom (Avg)

0

200

400

600

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

 R
u

n
 t

im
e

(s
)

SFI percentages (%)

(b) chess (Avg)

0

500

1000

1500

2000

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

 R
u

n
 T

im
e

(s
)

SFI percentages (%)

(d) pumsb (Avg)

0

500

1000

1500

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

 R
u

n
 T

im
e

(s
)

SFI percetages (%)

(c) connect (Avg)

0

500

1000

0,03 0,04 0,05 0,06

R
u

n
 T

im
e

(s
)

SFI percentages (%)

(e) T10I4D100K (Avg)

0

2000

4000

6000

8000

0,02 0,03 0,04 0,05

R
u

n
 T

im
e

(s
)

SFI percentages (%)

(f) accidents (Avg)

0

500

1000

1500

0,03 0,04 0,06 0,08 0,1 0,12

R
u

n
 T

im
e

(s
)

SFI percentages (%)

(g) foodmart (Avg)

Figure 5.1: Runtime of U-NSGAII4ID for the seven uncertain databases

• Figure 5.1 (a) presents the average runtime for two minesup threshold values (0.1 and

0.2) for mushroom database. We can observe that the execution time of U-NSGAII4ID

doesn’t exceed 500 seconds as the percentage of sensitive expected frequent itemset is

varied (from 3% to 10%).

• Figure 5.1 (b) shows the average execution time for the chess database with the two

minesup threshold values (0.2 and 0.3). We notice that the average runtime is less than

400 s for different values of SI % (from 2% to 10%). The highest point is 400 s, when SI

(%) is equal to 4% and 10%.

89

• For the connect database in Figure 5.1 (c), the average execution time for minesup thresh-

old values (0.2 and0.3) is higher. It increases to 1400 s for SI equals to 3%, is stable until

SI is 6% and starts to decrease until 1100 s for SI equals to 10%.

• Figure 5.1 (d) depicts the average runtime for minesup threshold values (0.2 and 0.3) for

the pumsb database. The execution time reaches 1500s for SI =5% and then decreases

and stabilizes in 1300 s when SI is from 6% to 10%.

• The average of the execution time for minesup values (0.01 and 0.02) for T10I4D100K

(Figure 5.1 (e)) database increases until it reaches 800 s for 5% and decreases to 610 s

for SI equals to 6%.

• In Figure 5.1 (f), we show the average runtime for minesup values (0.5 and 0.3) for the

accidents database. We observe that the runtime increases from 4500 s to 6000 s for

SI(%) varied from 2% to 3% and then decreases to 5500 s for SI (%) variation from 4%

to 5%.

• Figure 5.1 (g) presents the average runtime for minesup values (0.002 and 0.0015) for

the foodmart database. We can see that the execution time of U- NSGAII4ID Algorithm

is stable in 800 s for SI (%) varying from 3% to 10 % and increases to 1000 s for SI%

equals to 10%.

An overall remark that we can draw from the previous results is that there is no clear behav-

ior in the variation of runtime with respect to the percentage of sensible itemsets. This means

that runtime is not very sensible to this percentage.

5.4.2 Memory Cost

Figure 5.2 presents the experimental results obtained in terms of memory cost on the seven

uncertain databases for the proposed U-NSGAII4ID algorithm.

Once again, we observe that there is no discernible pattern in the memory cost concerning

the percentage of sensitive itemsets across various datasets. In general, the memory consump-

tion remains within acceptable limits, with the chess dataset exhibiting the lowest consumption

ranging between 1000 and 1500 MB, and the accidents dataset displaying the highest consump-

tion between 2475 and 2532 MB.

90

1350

1400

1450

1500

1550

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(a) mushroom (Avg)

0

500

1000

1500

2000

0,02 0,04 0,06 0,08

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(b) chess (Avg)

1500

1600

1700

1800

0,02 0,04 0,06 0,08

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(d) pumsb (Avg)

0

500

1000

1500

2000

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(c) connect (Avg)

1500

1600

1700

1800

0,03 0,04 0,05 0,06

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(e) T10I4D100K
(Avg)

2400

2450

2500

2550

2600

0,02 0,03 0,04 0,05

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(f) accidents (Avg)

1300

1400

1500

1600

0
,0

3

0
,0

4

0
,0

6

0
,0

8

0
,1

0
,1

2

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentages (%)

(g) foodmart (Avg)

Figure 5.2: Memory Cost of U-NSGAII4ID for the seven uncertain databases

5.4.3 Side effects

Now let us evaluate in this subsection, the three side effects (objective functions) used in

the proposed U-NSGAII4ID algorithm for the seven considered datasets.

5.4.3.1 Variation of side effects with respect to sensitive itemsets percentage.

In this experiment, we record the average outcomes of each side effect for different databases

and various percentages of sensitive itemsets. The results are recorded based on two execu-

tions, each with distinct values of minesup. Specifically, we use 0.1 and 0.2 for the mush-

room database, 0.2 and 0.3 for the chess, connect, and pumsb databases, 0.01 and 0.02 for the

T10I4D100K database, and 0.002 and 0.0015 for the foodmart database.

Figure 5.3 presents the results obtained by the proposed U-NSGAII4ID algorithm in terms

of the three side effects, namely: Hiding failure (S_F_H), missing cost (N_S_L) and Dissimi-

91

0

20

40

60

80

100

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

si
d

e
ef

fe
ct

s

SFI percentages (%)

(a) mushroom (Avg)

0

20

40

60

80

100

120

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

si
d

e
ef

fe
ct

s

SFI percentages (%)

(b) chess (Avg)

-30

20

70

120

170

220

si
d

e
ef

fe
ct

s

SFI percentages (%)

(c) connect (Avg)

0

20

40

60

80

100

120

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,1

si
d

e
ef

fe
ct

s

SFI percentages (%)

(d) pumsb (Avg)

0

2

4

6

8

10

12

14

16

0,03 0,04 0,05 0,06

si
d

e
ef

fe
ct

s

SFI percentages (%)

(e) T10I4D100K (Avg)

0

2

4

6

8

10

12

14

0,03 0,04 0,05 0,06

si
d

e
ef

fe
ct

s

SFI percentages (%)

(f) accidents (Avg)

0

10

20

30

40

50

60

0,03 0,04 0,06 0,08 0,1 0,12

si
d

e
ef

fe
ct

s

SFI percentages (%)

(g) foodmart (Avg)

Figure 5.3: Side effects of U-NSGAII4ID w.r.t. different sensitive itemsets percentage for
seven uncertain databases

larity. The following main points can be noticed from Figure 5.3:

• In general, the algorithm demonstrates excellent performance in terms of hiding failure

(S_F_H) and dissimilarity. This indicates that the utilization of the Weighted Set Cover

Problem (WSCP) is highly effective in concealing sensitive itemsets while introducing

minimal modifications to the dataset. This outcome is highly promising and encouraging.

• Nevertheless, it is evident that the algorithm doesn’t achieve the same level of success

for the missing cost (N_S_L). This is due to the fact that the current evaluation function

primarily prioritizes the minimization of S_F_H in the selection of a minimal set of

victim items. There is a potential for enhancement by modifying the evaluation function

to consider the minimization of N_S_L when choosing a minimal set of victim items.

92

• It is also noteworthy that the trade-off between hiding failure and dissimilarity on one

hand, and missing cost on the other hand, is more pronounced in dense datasets compared

to sparse ones.

5.4.3.2 Variation of side effects with respect to uncertainty degree

0

50

100

150

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(a) mushroom (Avg)

0
1000
2000
3000
4000
5000
6000
7000

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(b) chess (Avg)

0

5

10

15

20

25

30

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(c) connect (Avg)

0

5

10

15

20

25

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(e) T10I4D100K
(Avg)

0

5

10

15

20

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(f) accidents (Avg)

0

10

20

30

40

50

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(d) foodmart (Avg)

0
2
4
6
8

10
12
14

si
d

e
ef

fe
ct

s

Uncertainty Degree (%)

(d) pumsb (Avg)

Figure 5.4: Side effects of U-NSGAII4ID w.r.t. uncertainty degree for seven uncertain
databases

In this experiment, we analyze the average results of each side effect for various percent-

ages of uncertainty degree in the dataset. The uncertainty degree represents the percentage of

uncertain items, i.e., items with existential probabilities strictly less than 1. The experiment is

93

conducted with two different values of the minimum expected support threshold (minesup) for

each database: 0.1 and 0.2 for the mushroom database, 0.2 and 0.3 for the chess, connect, and

pumsb databases, 0.01 and 0.02 for the T10I4D100K database, and 0.002 and 0.0015 for the

foodmart database.

Figure 5.4 presents the results obtained by the proposed U-NSGAII4ID algorithm in terms

of the three side effects, namely: Hiding failure (S_F_H), missing cost (N_S_L) and Dissimi-

larity. Figure 5.4 shows that by varying the uncertainty degree of the dataset, we notice almost

the same remarks as in the previous experiment, namely: very good results in terms of hiding

failure and dissimilarity that are better than those obtained for the missing cost.

5.5 Conclusion

Preserving sensitive information within expansive databases has emerged as a critical con-

cern, leading to the development of the Privacy Preserving Data Mining (PPDM) research

area. While existing methods focus on safeguarding sensitive itemsets in traditional, certain

databases, our work addresses the pervasive issue of uncertainty in real-world domains, such

as sensor monitoring systems and medical analyses. In this chapter, we propose an innovative

PPDM approach tailored for uncertain databases. Our method aims at hiding sets of sensitive

itemsets by strategically removing uncertain items from selected transactions.

Incorporating the expected support-based approach to handle probabilistic information, our

algorithm employs the U-Apriori algorithm, an extension of the Apriori algorithm designed

for mining expected support-based frequent itemsets in probabilistic transactional databases.

To our knowledge, this algorithm represents a pioneering effort in the realm of PPDM for

uncertain databases.

The proposed algorithm formulates the problem as a multi-objective optimization task with

the aim of minimizing three crucial side effects: Firstly, the hiding failure quantified as the num-

ber of sensitive expected frequent itemsets that persist after the sanitization process; secondly,

the missing cost, signifying the number of non-sensitive expected frequent itemsets lost during

database modification and finally, the third objective to minimize dissimilarity, computed as the

sum of probability values associated with removed probabilistic items during sanitization.

94

Innovatively, our U-NSGAII4ID algorithm incorporates two optimization levels. At the

primary optimization level, a multi-objective genetic algorithm inspired by NSGAII identifies

an optimal subset of candidate victim transactions for uncertain item removal. The secondary

optimization level addresses the NP-Hard weighted set cover problem, determining the optimal

subset of probabilistic items to remove from each transaction. We employ a polynomial-time

greedy approximation algorithm to efficiently solve this second-level optimization problem.

Experimentation across seven datasets demonstrates the algorithm’s efficiency in terms of

resource consumption (time and space). It notably excels in minimizing side effects during

database sanitization, particularly hiding failure and dissimilarity. While results related to miss-

ing cost show promise, further improvements are conceivable.

Future work could enhance missing cost considerations by modifying the second optimiza-

tion level based on the Weighted Set Cover Problem. Additionally, adapting the algorithm

to alternative approaches that consider the real value of frequency probability for itemsets is

an avenue for exploration. Finally, extending the approach to encompass various data types

and patterns, such as sequential patterns, episodes, high-utility patterns, or periodic patterns,

presents an exciting prospect for further research.

95

Chapter 6: Heuristic approaches for hid-

ing sensitive frequent itemsets

in uncertain databases

6.1 Introduction

As stated in the previous chapters, privacy-preserving data mining (PPDM) aims to protect

sensitive information, often presented as itemsets or association rules. Various strategies have

been developed to modify the original database, creating a sanitized version that conceals sen-

sitive information while minimizing several side effects. Three main approaches have emerged

for sanitizing a database, namely, exact, meta-heuristic, and heuristic approaches.

While the previous chapter proposes a new metaheuristic approach to solve PPDM problem,

the present chapter focuses on an heuristic approach. More specifically, we aim at generalizing

the work presented in Amiri’s study (2007)‘[131]. Indeed, [131] introduces three heuristic tech-

niques for sanitizing certain databases: the Aggregate, Disaggregate, and Hybrid approaches.

The aim of this chapter is to adapt these heuristics to the case of uncetain data.

The subsequent sections of this chapter are organized as follows. Section 6.2 is devoted

to roughly introducing heuristic approaches designed for PPDM. The focal point of our ex-

ploration is Section 6.3, where we provide detailed insights into the three heuristic approaches

proposed for solving PPDM problem in the case of uncertain databases. Section 6.4 presents

the outcomes of our experiments, featuring a thorough analysis and discussion of the results.

Section 6.5 summarizes the key findings of the chapter.

96

6.2 Heuristic approaches for PPDM

Heuristics are strategies developed to efficiently tackle problems that are either too com-

putationally demanding for traditional methods or lacking exact solutions. The primary goal

of heuristic-based approaches is to generate an approximate solution within a reasonable time

frame, considered satisfactory for the specific problem at hand. In the case of Privacy-Preserving

Data Mining (PPDM), [131] introduced three heuristic approaches to address the sanitization

problem, with a specific focus on modifying transactions containing sensitive itemsets.

The first approach, referred to as the Aggregate approach, revolves around the elimina-

tion of transactions containing at least one sensitive frequent itemset from the database. This

method ensures the hiding of all sensitive itemsets by reducing their support to levels below the

predefined minimum support (minsup) threshold. The second approach, termed the Disaggre-

gate approach, involves the modification of transactions by selectively removing some of their

items instead of entirely deleting transactions. In this approach, each transaction undergoes

individual modification, wherein specific items are chosen for deletion to lower the support

of sensitive frequent itemsets below the minsup threshold. The third approach, known as the

Hybrid approach, represents a fusion of the Aggregate and Disaggregate approaches, incorpo-

rating elements from both methodologies. In all cases, the choice of transactions or items to

remove are guided by simple and intuitive principles.

6.3 Description of U-heuristic algorithms

[131] presents three heuristic approaches for hiding sensitive frequent itemsets in traditional

(certain) databases. In the subsequent sections, we will adapt and customize these approaches

to align with uncertain databases. It is paramount to highlight that our primary objective is

to alter the input database in such a manner that maximizes the hiding of sensitive Expected

Frequent (E-F) itemsets while minimizing the loss of non-sensitive E-F itemsets.

We use in this chapter the same definitions of the main concepts (uncertain database, un-

certain item, expected support, sensitive itemsets as well as the three side effects) introduced in

the previous chapters. Let us start by giving an example of an uncertain database that will be

used as a running example throughout the chapter.

97

Example 1 . Table 6.1 gives an example of an uncertain database. We suppose that the cho-

sen value for minsup threshold is 0.2. Notice that the set of E-F itemsets extracted from this

database is : F = {{a},{b},{d},{e},{ f},{b,d},{e, f}}.

Table 6.1: Example of uncertain database (D)

TID Transaction

1 {a : 0.4,b : 0.6,d : 0.9, f : 0.1}

2 {a : 0.5,c : 0.1,e : 0.4, f : 0.8}

3 {b : 0.2,c : 0.3,d : 0.6,e : 0.1}

4 {a : 0.3,b : 0.8,c : 0.2,e : 0.5, f : 0.4}

5 {a : 0.1,b : 0.5,d : 0.5,e : 0.3}

6.3.1 U-Aggregate approach

In this adaptation, our objective is to identify a set of transactions within the uncertain

database for deletion. Each iteration involves selecting one transaction for removal, with the

process continuing until the expected support for all sensitive expected frequent itemsets falls

below the specified minsup threshold.

Our primary criterion for optimization is the number of sensitive itemsets supported by

the chosen transaction, denoted as bk. Additionally, we aim to minimize the concealment of

non-sensitive E-F itemsets throughout the sanitization process. Therefore, our preference is to

select transactions that support a minimal number of non-sensitive E-F itemsets, denoted as ak.

Moreover, adhering to the principle of minimal change, we prioritize the deletion of items

with low probabilities over those with high probabilities. Consequently, we calculate the cost

associated with deleting a transaction as the sum of the probabilities of all its items (∑x∈k p(x ∈

k)), with our objective being to minimize this cost. The steps of this approach are as follows:

Step1: Initialization

1. The sanitized database D1← the original database D.

2. D∗← Set of all transactions containing at least one sensitive itemset.

3. For every frequent (sensitive or not) itemset X ∈ S∪N, compute ExpSup(X), the ex-

98

pected support of X (initially: ExpSup(X)≥ minesup ∀X ∈ F).

4. S1← S, N1← N.

Step2: While (S1 ̸= /0) do

1. For (every transaction k of D∗)

• bk← the number of sensitive E-F itemsets (from S1) that belong to k.

• (ak)← the number of non-sensitive E-F itemsets (from N1) that belong to k.

• Compute fk as follows:

If (ak ̸= 0) Then fk← bk
ak×∑x∈k p(x∈k) Else fk← bk

∑x∈k p(x∈k)

2. Select the transaction k∗ from D∗ which verifies : fk∗ = max{ fk : k ∈ D∗}.

3. Reduce the expected support of every itemset X ∈ S1∪N1 as follows:

ExpSup(X)← |D1|
|D1|−1

×ExpSup(X)−∏x∈X p(x ∈ k∗)
|D1|−1

4. D∗← D∗ \{k∗} and D1← D1 \{k∗}.

5. For every itemset X ∈ S1 (resp. X ∈ N1), if ExpSup(X) < minesup then S1← S1 \ {X}

(resp. N1← N1 \{X}).

Example 1 (Cont). Let us show the application of the proposed U-Aggregate approach to the

uncertain database of Table 6.1. Recall that the set F of E-F frequent itemsets obtained from

this database is : F = {{a},{b},{d},{e},{ f},{b,d},{e, f}}.

Consider the sensitive E-F itemsets to be hidden: {b}, {e} and {b,d}. The transactions

1, 2, 3, 4, 5, which contain at least one sensitive E-F itemset, form the projected database D∗.

The application of the U-Aggregate approach removes transactions 4 and 5 from the uncertain

database. In the resulting modified database, all sensitive E-F itemsets ({b}, {e} and {b,d})

are effectively hidden, i.e., their expected support is now less than minesup. However, a draw-

back of this approach is the loss of non-sensitive E-F itemsets such as {d}, { f} and {e, f} ,

as they become non-frequent. Nevertheless, the remaining non-sensitive E-F itemsets in the

original database, namely ({a} and {d}) , remain as E-F itemsets in the modified database.

99

6.3.2 U-Disaggregate approach

Unlike the U-Aggregate approach, the U-Disaggregate approach modifies an uncertain

transactional database by selectively eliminating specific items from transactions to hide sen-

sitive E-F itemsets. For each transaction in the projected database D∗, we pinpoint the specific

item x∗ whose removal is determined by the following criteria: it maximizes the reduction

in the expected support of sensitive E-F frequent itemsets while minimizing the reduction in

the expected support of non-sensitive E-F frequent itemsets. Furthermore, we give priority

to removing items with low probabilities. Similar to the U-Aggregate approach, this iterative

process stops when the set S′ becomes empty, indicating no more sensitive E-F itemsets to hide.

Step1: Initialization

1. The sanitized database D1← the original database D.

2. D∗← Set of all transactions containing at least one sensitive itemset.

3. For every frequent (sensitive or not) itemset X ∈ S∪N, compute ExpSup(X), the ex-

pected support of X (initially: ExpSup(X)≥ minesup ∀X ∈ F).

4. S1← S, N1← N.

Step2: While (S1 ̸= /0) do

1. For (every transaction k of D∗)

• For (every item x of k)

– (bk,x)← Number of sensitive E-F itemsets in S1 that are included in k and

containing x.

– (ak,x)← Number of non-sensitive E-F itemsets in N1 that are included in k and

containing x.

– Compute fk,x as follows:

If (ak,x ̸= 0) Then fk,x←
bk,x

ak,x×p(x∈k) Else fk,x←
bk,x

p(x∈k)

2. Select from k∗, the item x∗ which verifies: fk∗,x∗ = max{ fk,x : k ∈ D∗,x ∈ k}.

100

3. For every itemset X ∈ S1∪N1 with X ⊆ K∗ and x∗ ∈ X , update its expected support:

ExpSup(X)← ExpSup(X)−∏x∈X p(x ∈ k∗)
|D1|

4. Remove x∗ from transaction k∗ (in D∗ and D1).

5. Remove from S1 (resp. N1) every sensitive itemset whose expected support becomes less

than minesup.

Example 1 (Cont). The application of the U-Disaggregate algorithm to the database D pre-

sented in Table 6.1 results in the removal of certain items from transactions that originally

contained at least one sensitive E-F itemset. Specifically, it eliminates item b from transaction

1, item e from transaction 2, items b and e from transaction 4, and item e from transaction

5. As a consequence of these modifications, U-Disaggregate effectively conceals all sensitive

E-F itemsets, while preserving the status of the remaining non-sensitive E-F itemsets as E-F

frequent in the modified database.

6.3.3 U-Hybrid approach

The U-Hybrid approach combines the strategies of both U-Aggregate and U-Disaggregate.

Initially, it identifies transactions in D∗ earmarked for deletion if the U-Aggregate approach

were to be exclusively implemented. However, instead of directly eliminating these transac-

tions, the U-Hybrid approach opts for the U-Disaggregate method: It selects a set of items

from the identified transactions to delete, aligning with the disaggregate principle. This princi-

ple is designed to curtail the expected support of sensitive itemsets, ensuring it falls below the

specified minesup threshold, while concurrently minimizing the extent to which non-sensitive

frequent itemsets transition to a non-frequent state.

Example 1 (Cont). The U-Hybrid algorithm operates on uncertain databases by identifying

transactions that contain at least one sensitive E-F itemset and selectively removing certain

items from these transactions. This iterative process continues until all sensitive E-F itemsets

are successfully concealed. For the uncertain database illustrated in Table 6.1, the algorithm’s

application results in the deletion of items b and e from transaction 5, items b and d from

transaction 1, and items b and e from transaction 4. Following these modifications, all sensitive

101

E-F itemsets are effectively hidden, while the non-sensitive E-F itemsets remain unaltered.

6.4 Experimental results

To evaluate the performance of the three proposed heuristic approaches in the context of

uncertain databases, we conducted extensive experiments. First, different values of the minesup

threshold are testes. After careful consideration, we selected the value 0.2 for all experiments,

ensuring a reasonable number of Expected Frequent (E-F) itemsets. Additionally, we varied

the percentage of sensitive E-F itemsets in the experiments.

The uncertain heuristic approaches have been implemented using Matlab R2017a, and the

experiments were executed on a PC equipped with an Intel Core i3-4005U processor, 4 GB of

RAM, and a 64-bit Microsoft Windows 10 operating system.

The efficiency of the three uncertain heuristic approaches is evaluated using three authentic

datasets sourced from the SPMF library [132]: Chess (created using the UCI chess dataset),

Pumsb Census Data (focused on population and housing statistics), and Connect (constructed

based on the UCI Connect-4 dataset). The main features of the used datasets are summarized

in Table 6.2. It is crucial to highlight that the probability values associated with items in each

uncertain database were randomly generated during the experiments.1

Table 6.2: Features of the datasets

Dataset #|D| #|I| AvgLen MaxLen

chess 3196 75 37 37

pumsb 49046 2113 74 74

connect 67557 129 43 43

6.4.1 Run Time and Memory Cost

In this experimental analysis, we conducted a comparative assessment of the execution

time and memory cost for our three heuristics across the three databases. Figure 6.1 presents

the results, detailing the run time (in seconds) and memory cost (in Mega Bytes).

1The uncertain databases that we use in the comparison of our three uncertain heuristic approaches are available
on Github at the address: https://github.com/minalef/uncertain-databases

102

In Figure 6.1-(A1-A3), it is apparent that the U-Aggregate approach consistently outper-

forms the U-Disaggregate approach, which, in turn, exhibits faster performance than the U-

Hybrid approach.

Turning our attention to memory consumption, as depicted in Figure 6.1-(B1), the U-

Hybrid approach demonstrates higher memory usage in the chess dataset compared to the other

two approaches, which show comparable memory costs. Figure 6.1-(B2) indicates that U-

Disaggregate and U-Hybrid have similar memory costs, both surpassing that of U-Aggregate.

Finally, in Figure 6.1-(B3), all three approaches showcase competitive memory consumption.

In summary, the overall results suggest that the U-Aggregate approach stands out as the

most efficient in terms of both run time and memory cost, followed by the U-Disaggregate

approach, and lastly, the U-Hybrid approach. This observation aligns with the expected order

of simplicity among the three considered approaches.

0

100000

200000

300000

2% 4% 6% 8% 10%

R
u

n
 T

im
e

(s
)

SFI percentage(%)

(A2) pumsb

0

100000

200000

300000

400000

2
%

4
%

6
%

8
%

1
0

%

R
u

n
 T

im
e

(s
)

SFI percentage (%)

(A3) connect

0

500

1000

1500

2% 4% 6% 8% 10%

R
u

n
 T

im
e

(s
)

SFI percentage(%)

(A1) chess

1200

1300

1400

1500

2% 4% 6% 8% 10%

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentage(%)

(B1) chess

0

1000

2000

3000

2% 4% 6% 8% 10%

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentage(%)

(B2) pumsb

0

1000

2000

3000

2% 4% 6% 8% 10%

M
em

o
ry

 C
o

st
 (

M
B

)

SFI percentage(%)

(B3) connect

Figure 6.1: Run time and memory cost of three heuristics for three uncertain databases

6.4.2 Side effects

Now, let’s explore the results concerning the two side effects: Missing cost and dissimilar-

ity. It’s crucial to emphasize that in all the proposed heuristics, the hiding failure side effect

is entirely mitigated, given that all heuristics conclude their execution when all sensitive (E-F)

103

itemsets are successfully hidden. Figure 6.2 showcases the results related to the two scrutinized

side effects for our three databases with a minsup threshold set at 0.2.

0

200

400

2% 4% 6% 8% 10%

M
is

si
n

g
C

o
st

 (
M

B
)

SFI percentage(%)

(A1) chess

0

500

1000

2% 4% 6% 8% 10%

M
is

si
n

g
C

o
st

 (
M

B
)

SFI percentage(%)

(A2) pumsb

0

200

400

600

2% 4% 6% 8% 10%

M
is

si
n

g
C

o
st

 (
M

B
)

SFI percentage(%)

(A3) connect

-30

20

70

120

2% 4% 6% 8% 10%

D
is

si
m

ila
ri

ty

SFI percentage(%)

(B1) chess

0

200

400

2% 4% 6% 8% 10%D
is

si
m

ila
ri

ty

SFI percentage(%)

(B2) pumsb

0
50

100
150
200
250
300

2% 4% 6% 8% 10%D
is

si
m

ila
ri

ty

SFI percentage(%)

(B3) connect

Figure 6.2: Missing Cost and dissimilarity of three heuristics for three uncertain databases

The analysis reveals that, in general, the H-Disaggregate approach outperforms the other

two heuristics in minimizing missing cost. Conversely, the H-Aggregate approach surpasses

the other heuristics concerning dissimilarity. This observation suggests that the hybridization

method, combining both U-Aggregate and U-Disaggregate approaches, does not yield superior

results in our specific case.

6.5 Conclusion

In this chapter, we present an adaptation of three heuristic algorithms for privacy-preserving

pattern mining in the context of probabilistic transactional databases. The proposed heuristics,

U-Aggregate, U-Disaggregate, and U-Hybrid, operate on the basis of the expected support-

based interpretation of probabilities. Their primary objectives involve the strategic selection

of transactions or items for deletion, aiming to achieve maximum hiding of sensitive expected

frequent itemsets (E-S itemsets) while minimizing the impact on non-sensitive itemsets. This

mirrors the objectives of the original heuristics designed for certain databases. Additionally, the

integration of probabilistic information into the sanitization process is realized by prioritizing

the deletion of items with low probabilities, consistent with the principle of minimal change.

104

Importantly, this work stands as a pioneering effort, as no prior research specifically addresses

the privacy-preserving pattern mining problem for uncertain databases. Consequently, it es-

tablishes a solid foundation for future research endeavors in this innovative and unexplored

research domain. Some of them are:

• In the process of choosing transactions or items for deletion, a more informed approach

entails considering the cumulative probabilities associated with each sensitive (or non-

sensitive) itemset’s membership in the transaction. This approach goes beyond merely

counting occurrences of sensitive or non-sensitive itemsets and incorporates information

about the probability of each itemset’s presence. By assessing the cumulative probabil-

ities, the approach factors in the likelihood of each itemset contributing to the overall

sensitivity or non-sensitivity of the transaction.

• Enhancing the evaluation of the dissimilarity measure could involve considering the ex-

istential probabilities of deleted items. In the current context, the assessment takes into

account the probabilities associated with deleted items. For instance, deleting two items,

a and b, with probabilities 0.1 and 0.2, respectively, is considered more costly than delet-

ing one item, c, with a probability of 0.9. This consideration provides a more accurate

reflection of the available probability values in the evaluation process.

• There is substantial work yet to be undertaken to extend other Privacy-Preserving Data

Mining (PPDM) approaches, including exact methods and metaheuristic methods, to ac-

commodate the uncertain data scenario.

105

Chapter 7: General Conclusion

7.1 Summary of contributions

Based on the extensive experiments conducted in Chapter 4 across four databases, encom-

passing both sparse and dense datasets, the NSGAII4ID algorithm demonstrated remarkable

performance. It excelled in terms of execution time and the minimization of total modifica-

tions required to transform the original database into its sanitized counterpart. Furthermore,

the results indicated that NSGAII4ID effectively mitigated the side effects of hiding failure

and missing cost, achieving outstanding outcomes, particularly in the context of hiding failure

across all databases.

Uncertain data, which are encountered in numerous real-world applications, result from

limitations in our ability to perceive or comprehend reality, restrictions in observation equip-

ment, or constraints in available resources for data collection, storage, transformation, or anal-

ysis.

In Chapter 5, we introduced a novel method known as U-NSGAII4ID, designed as an un-

certain counterpart to the NSGAII4ID algorithm. Its primary objective is to tackle the problem

of hiding sensitive expected frequent itemsets, transforming it into a multi-objective optimiza-

tion challenge. Specifically, the U-NSGAII4ID algorithm operates by selectively removing

items from designated transactions while simultaneously minimizing the aforementioned side

effects. Our experimental assessments were conducted across seven uncertain databases (mush-

room, chess, foodmart, T10I4D10IK, pumsb, connect, accident), and the results are presented

with respect to runtime, memory cost, and the evaluation of three side effects. It’s noteworthy

that, given the absence of prior work in the domain of Privacy Preserving Data Mining (PPDM)

addressing uncertainty, our project stands as a pioneering effort to confront this challenge.

106

Both NSGAII4ID and U-NSGAII4ID algorithm encompass two distinct optimization tasks

that function at different levels. In the first level, a multi-objective genetic algorithm is em-

ployed to identify optimal subsets of candidate (un)certain sensitive transactions eligible for

modification. The second level involves the selection of victim items within each (un)certain

sensitive transaction for removal. To determine the optimal items for removal from selected

transactions, we use the (Weighted) Set Cover Problem which is an NP-Hard problem. To

solve it, a polynomial-time greedy algorithm is used to provide approximate solutions.

As a last contribution, we have addressed in Chapter 6 the heuristic-based approaches for

solving the PPDM problem over uncertain data. For that purpose, we have adapted three heuris-

tics proposed for certain databases to the situation where data is uncertain.

7.2 Future work and perspectives

While the methods discussed in this thesis have demonstrated satisfactory results, there are

several intriguing and unresolved issues that warrant further investigation.

• We have noticed that both NSGAII4ID and U-NSGAII4ID obtain very good results on

minimizing hiding failure and dissimilarity side effects but the results for missing cost

are of the same quality. The reason behind this is that the selection method focuses more

on hiding sensitive frequent itemsets than on preserving non-sensitive frequent itemsets.

We plan to revisit the selection method to take into account the two aspects and hence

improve the results in terms of missing cost.

• in the context of uncertain databases, the proposed sanitization process deletes selected

probabilistic items to hide sensitive itemsets. We plan to consider finer operations which

consist to not necessarily delete probabilistic items but only decrease their probability

values. This allows one to further minimize the necessary update of the input database

during the sanitization process.

• We have considered in this thesis the PPDM problem for frequent itemsets. As a future

research, we would like to generalize our approaches to various other data and pattern

types that have been extensively studied in the literature. This includes the consideration

of other relevance criteria than frequency such as high utility or periodicity as well as

107

different kinds of data such as sequential databases, long sequences where the extracted

patterns are called episodes, graphs, etc.

• As for the heuristic approach, we would like to consider the (W)SCP as a basis of new

heuristics to solve the PPDM problem. We beleive that the resulting heuristics will per-

form meticulous selection of victim items.

108

References

[1] T. Cormen, C. Leisercon, R. Rivest, and C. Stein, “Introduction to algorithms, third 499

edition,” 2009.

[2] C. C. Aggarwal1 and S. Y. Philip, Privacy-preserving data mining: models and algo-

rithms. Springer Science & Business Media, 2008.

[3] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis,

“State-of-the-art in privacy preserving data mining,” ACM Sigmod Record, vol. 33, no. 1,

pp. 50–57, 2004.

[4] S. Upadhyay, C. Sharma, P. Sharma, P. Bharadwaj, and K. Seeja, “Privacy preserving

data mining with 3-d rotation transformation,” Journal of King Saud University - Com-

puter and Information Sciences, vol. 30, no. 4, pp. 524–530, 2018.

[5] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy

and data mining,” Ieee Access, vol. 2, pp. 1149–1176, 2014.

[6] K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative data pertur-

bation for privacy preserving distributed data mining,” IEEE Transactions on knowledge

and Data Engineering, vol. 18, no. 1, pp. 92–106, 2005.

[7] K. Chen1 and L. Liu, “Privacy-preserving multiparty collaborative mining with geomet-

ric data perturbation,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,

no. 12, pp. 1764–1776, 2009.

[8] J. Wang, Y. Luo, Y. Zhao, and J. Le, “A survey on privacy preserving data mining,” in

2009 First International Workshop on Database Technology and Applications. IEEE,

2009, pp. 111–114.

109

[9] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving multivariate statistical analysis:

Linear regression and classification,” in Proceedings of the 2004 SIAM international

conference on data mining. SIAM, 2004, pp. 222–233.

[10] K. Chen and L. Liu, “Privacy preserving data classification with rotation perturbation,”

in Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE, 2005, pp.

4–pp.

[11] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent pattern mining with uncertain

data,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2009, pp. 29–38.

[12] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle, “Probabilistic frequent

itemset mining in uncertain databases,” in Proceedings of the 15th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, 2009, pp. 119–128.

[13] T. Calders, C. Garboni, and B. Goethals, “Approximation of frequentness probability

of itemsets in uncertain data,” in 2010 IEEE International Conference on Data Mining.

IEEE, 2010, pp. 749–754.

[14] ——, “Efficient pattern mining of uncertain data with sampling,” in Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining. Springer, 2010, pp. 480–487.

[15] C.-K. Chui and B. Kao, “A decremental approach for mining frequent itemsets from

uncertain data,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 2008, pp. 64–75.

[16] C.-K. Chui, B. Kao, and E. Hung, “Mining frequent itemsets from uncertain data,” in

Pacific-Asia Conference on knowledge discovery and data mining. Springer, 2007, pp.

47–58.

[17] C. K.-S. Leung, M. A. F. Mateo, and D. A. Brajczuk, “A tree-based approach for fre-

quent pattern mining from uncertain data,” in Pacific-Asia Conference on Knowledge

Discovery and Data Mining. Springer, 2008, pp. 653–661.

[18] L. Sun, R. Cheng, D. W. Cheung, and J. Cheng, “Mining uncertain data with probabilis-

tic guarantees,” in Proceedings of the 16th ACM SIGKDD international conference on

110

Knowledge discovery and data mining, 2010, pp. 273–282.

[19] Y. Tong, L. Chen, and B. Ding, “Discovering threshold-based frequent closed itemsets

over probabilistic data,” in 2012 IEEE 28th International Conference on Data Engineer-

ing. IEEE, 2012, pp. 270–281.

[20] L. Wang, R. Cheng, S. D. Lee, and D. Cheung, “Accelerating probabilistic frequent

itemset mining: a model-based approach,” in Proceedings of the 19th ACM international

conference on Information and knowledge management, 2010, pp. 429–438.

[21] Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic data,” in Proceedings

of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp.

819–832.

[22] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of

items in large databases,” in Proceedings of the 1993 ACM SIGMOD international con-

ference on Management of data, 1993, pp. 207–216.

[23] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in Proc.

20th int. conf. very large data bases, VLDB, vol. 1215. Citeseer, 1994, pp. 487–499.

[24] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” ACM

sigmod record, vol. 29, no. 2, pp. 1–12, 2000.

[25] L. Sweeney, “k-anonymity: A model for protecting privacy,” International journal of

uncertainty, fuzziness and knowledge-based systems, vol. 10, no. 05, pp. 557–570, 2002.

[26] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity:

Privacy beyond k-anonymity,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[27] M. E. Nergiz, M. Atzori, and C. Clifton, “Hiding the presence of individuals from shared

databases,” in Proceedings of the 2007 ACM SIGMOD international conference on Man-

agement of data, 2007, pp. 665–676.

[28] C. C. Aggarwal, M. A. Bhuiyan, and M. A. Hasan, “Frequent pattern mining algorithms:

A survey,” in Frequent pattern mining. Springer, 2014, pp. 19–64.

111

[29] D. J. Hand, “Principles of data mining,” Drug safety, vol. 30, no. 7, pp. 621–622, 2007.

[30] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi, Discovering data mining:

from concept to implementation. Prentice-Hall, Inc., 1998.

[31] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A comparative study of decision

tree id3 and c4. 5,” International Journal of Advanced Computer Science and Applica-

tions, vol. 4, no. 2, pp. 13–19, 2014.

[32] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu, “A survey of paral-

lel sequential pattern mining,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 13, no. 3, pp. 1–34, 2019.

[33] M. Patil and T. Patil, “Apriori algorithm against fp growth algorithm: A comparative

study of data mining algorithms,” Available at SSRN 4113695, 2022.

[34] S. Gupta and L. Mohanty, “A comparative study of various apriori and fp-growth tree-

based incremental mining methods,” in Soft Computing for Problem Solving. Springer,

2021, pp. 115–125.

[35] W. Gan, L. Chen, S. Wan, J. Chen, and C.-M. Chen, “Anomaly rule detection in sequence

data,” IEEE Transactions on Knowledge and Data Engineering, 2021.

[36] D. Maylawati, “The concept of frequent itemset mining for text,” in IOP Conference

Series: Materials Science and Engineering, vol. 434, no. 1. IOP Publishing, 2018, p.

012043.

[37] T. Uno, M. Kiyomi, H. Arimura et al., “Lcm ver. 2: Efficient mining algorithms for

frequent/closed/maximal itemsets,” in Fimi, vol. 126, 2004.

[38] C. Romero and S. Ventura, “Educational data mining: a review of the state of the art,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-

views), vol. 40, no. 6, pp. 601–618, 2010.

[39] D. Sánchez, M. Vila, L. Cerda, and J.-M. Serrano, “Association rules applied to credit

card fraud detection,” Expert systems with applications, vol. 36, no. 2, pp. 3630–3640,

2009.

112

[40] J. M. Luna, P. Fournier-Viger, and S. Ventura, “Frequent itemset mining: A 25 years re-

view,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9,

no. 6, p. e1329, 2019.

[41] Y. S. Koh and S. D. Ravana, “Unsupervised rare pattern mining: a survey,” ACM Trans-

actions on Knowledge Discovery from Data (TKDD), vol. 10, no. 4, pp. 1–29, 2016.

[42] A. Savasere, E. Omiecinski, and S. Navathe, “Mining for strong negative associations in

a large database of customer transactions,” in Proceedings 14th International Conference

on Data Engineering. IEEE, 1998, pp. 494–502.

[43] H. Wang, X. Zhang, and G. Chen, “Mining a complete set of both positive and negative

association rules from large databases,” in Advances in Knowledge Discovery and Data

Mining: 12th Pacific-Asia Conference, PAKDD 2008 Osaka, Japan, May 20-23, 2008

Proceedings 12. Springer, 2008, pp. 777–784.

[44] J. Han, M. Kamber, and D. Mining, “Concepts and techniques,” Morgan Kaufmann, vol.

340, pp. 94 104–3205, 2006.

[45] M. J. Zaki, “Scalable algorithms for association mining,” IEEE transactions on knowl-

edge and data engineering, vol. 12, no. 3, pp. 372–390, 2000.

[46] C. Borgelt, “Frequent item set mining,” Wiley interdisciplinary reviews: data mining and

knowledge discovery, vol. 2, no. 6, pp. 437–456, 2012.

[47] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, “A survey of

sequential pattern mining,” Data Science and Pattern Recognition, vol. 1, no. 1, pp.

54–77, 2017.

[48] O. Abul, F. Bonchi, and F. Giannotti, “Hiding sequential and spatiotemporal patterns,”

IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 12, pp. 1709–1723,

2010.

[49] N. R. Adam and J. C. Worthmann, “Security-control methods for statistical databases:

a comparative study,” ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 515–556,

1989.

[50] D. Agrawal and C. C. Aggarwal, “On the design and quantification of privacy preserv-

113

ing data mining algorithms,” in Proceedings of the twentieth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, 2001, pp. 247–255.

[51] S. Agrawal and J. R. Haritsa, “A framework for high-accuracy privacy-preserving min-

ing,” in 21st International Conference on Data Engineering (ICDE’05). IEEE, 2005,

pp. 193–204.

[52] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proceedings of the 2000

ACM SIGMOD international conference on Management of data, 2000, pp. 439–450.

[53] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

[54] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern mining algo-

rithms,” ACM Computing Surveys (CSUR), vol. 43, no. 1, pp. 1–41, 2010.

[55] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the eleventh

international conference on data engineering. IEEE, 1995, pp. 3–14.

[56] M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data mining,

2003, pp. 326–335.

[57] A. Achar, S. Laxman, and P. Sastry, “A unified view of the apriori-based algorithms

for frequent episode discovery,” Knowledge and information systems, vol. 31, no. 2, pp.

223–250, 2012.

[58] N. Tatti and B. Cule, “Mining closed episodes with simultaneous events,” in Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discovery and data

mining, 2011, pp. 1172–1180.

[59] H. Mannila and H. Toivonen, “Discovering generalized episodes using minimal occur-

rences.” in KDD, vol. 96, 1996, pp. 146–151.

[60] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, “Discovery of frequent episodes in

event sequences,” Data mining and knowledge discovery, vol. 1, no. 3, pp. 259–289,

1997.

[61] S. Laxman, P. Sastry, and K. Unnikrishnan, “Discovering frequent episodes and learning

114

hidden markov models: A formal connection,” IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 11, pp. 1505–1517, 2005.

[62] ——, “Discovering frequent generalized episodes when events persist for different du-

rations,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 9, pp.

1188–1201, 2007.

[63] A. Ng and A. W.-c. Fu, “Mining frequent episodes for relating financial events and

stock trends,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 2003, pp. 27–39.

[64] K.-Y. Huang and C.-H. Chang, “Efficient mining of frequent episodes from complex

sequences,” Information Systems, vol. 33, no. 1, pp. 96–114, 2008.

[65] B. Bouqata, C. D. Carothers, B. K. Szymanski, and M. J. Zaki, “Vogue: a novel variable

order-gap state machine for modeling sequences,” in European Conference on Principles

of Data Mining and Knowledge Discovery. Springer, 2006, pp. 42–54.

[66] N. Meger, C. Leschi, N. Lucas, and C. Rigotti, “Mining episode rules in stulong dataset,”

in In Proc. of ECML/PKDD’04 Discovery Challenge-A Collaborative Effort in Knowl-

edge Discovery. Prague: Univ. of Economics. Citeseer, 2004.

[67] H. Zhu, P. Wang, X. He, Y. Li, W. Wang, and B. Shi, “Efficient episode mining with

minimal and non-overlapping occurrences,” in 2010 IEEE International Conference on

Data Mining. IEEE, 2010, pp. 1211–1216.

[68] X. Ao, P. Luo, C. Li, F. Zhuang, Q. He, and Z. Shi, “Discovering and learning sensational

episodes of news events,” in Proceedings of the 23rd International Conference on World

Wide Web, 2014, pp. 217–218.

[69] X. Ao, P. Luo, C. Li, F. Zhuang, and Q. He, “Online frequent episode mining,” in 2015

IEEE 31st International Conference on Data Engineering. IEEE, 2015, pp. 891–902.

[70] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis, “Probabilistic spatial queries

on existentially uncertain data,” in International Symposium on Spatial and Temporal

Databases. Springer, 2005, pp. 400–417.

[71] H.-P. Kriegel and M. Pfeifle, “Density-based clustering of uncertain data,” in Proceed-

115

ings of the eleventh ACM SIGKDD international conference on Knowledge discovery in

data mining, 2005, pp. 672–677.

[72] J. Ren, S. D. Lee, X. Chen, B. Kao, R. Cheng, and D. Cheung, “Naive bayes classifi-

cation of uncertain data,” in 2009 Ninth IEEE international conference on data mining.

IEEE, 2009, pp. 944–949.

[73] S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee, “Decision trees for uncertain

data,” IEEE transactions on knowledge and data engineering, vol. 23, no. 1, pp. 64–78,

2009.

[74] C. C. Aggarwal and S. Y. Philip, “A survey of uncertain data algorithms and appli-

cations,” IEEE Transactions on knowledge and data engineering, vol. 21, no. 5, pp.

609–623, 2008.

[75] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation and querying of sets

of possible worlds,” Theoretical computer science, vol. 78, no. 1, pp. 159–187, 1991.

[76] E. Upfal and M. Mitzenmacher, “Probability and computing,” 2005.

[77] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization and proba-

bilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

[78] Y. Tong, L. Chen, Y. Cheng, and P. S. Yu, “Mining frequent itemsets over uncertain

databases,” arXiv preprint arXiv:1208.0292, 2012.

[79] J. C.-W. Lin, J. M.-T. Wu, P. Fournier-Viger, Y. Djenouri, C.-H. Chen, and Y. Zhang, “A

sanitization approach to secure shared data in an iot environment,” IEEE Access, vol. 7,

pp. 25 359–25 368, 2019.

[80] J. M.-T. Wu, G. Srivastava, A. Jolfaei, P. Fournier-Viger, and J. C.-W. Lin, “Hiding

sensitive information in ehealth datasets,” Future Generation Computer Systems, vol.

117, pp. 169–180, 2021.

[81] J. C.-W. Lin, L. Yang, P. Fournier-Viger, J. M.-T. Wu, T.-P. Hong, L. S.-L. Wang, and

J. Zhan, “Mining high-utility itemsets based on particle swarm optimization,” Engineer-

ing Applications of Artificial Intelligence, vol. 55, pp. 320–330, 2016.

116

[82] J. M.-T. Wu, C. W. Lin, P. Fournier-Viger, Y. Djenouri, C.-H. Chen, and Z. Li, “The

density-based clustering method for privacy-preserving data mining,” American Insti-

tute, 2019.

[83] S. Virupaksha and V. Dondeti, “Anonymized noise addition in subspaces for privacy

preserved data mining in high dimensional continuous data,” Peer-to-Peer Networking

and Applications, vol. 14, no. 3, pp. 1608–1628, 2021.

[84] U. Ahmed, J. C.-W. Lin, G. Srivastava, and Y. Djenouri, “A deep q-learning sanitiza-

tion approach for privacy preserving data mining,” in Adjunct Proceedings of the 2021

International Conference on Distributed Computing and Networking, 2021, pp. 43–48.

[85] P. Kalia, D. Bansal, and S. Sofat, “A hybrid approach for preserving privacy for real

estate data,” International Journal of Information and Computer Security, vol. 15, no. 4,

pp. 400–410, 2021.

[86] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just privacy: Improving

performance of private deep learning in mobile cloud,” in Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery & data mining, 2018, pp.

2407–2416.

[87] J. Wang, L. Wu, S. Zeadally, M. K. Khan, and D. He, “Privacy-preserving data aggrega-

tion against malicious data mining attack for iot-enabled smart grid,” ACM Transactions

on Sensor Networks (TOSN), vol. 17, no. 3, pp. 1–25, 2021.

[88] X. Zhang, S. Jiang, Y. Liu, T. Jiang, and Y. Zhou, “Privacy-preserving scheme with

account-mapping and noise-adding for energy trading based on consortium blockchain,”

IEEE Transactions on Network and Service Management, 2021.

[89] N. Nasiri and M. Keyvanpour, “Classification and evaluation of privacy preserving data

mining methods,” in 2020 11th International Conference on Information and Knowledge

Technology (IKT). IEEE, 2020, pp. 17–22.

[90] K. Liu, C. Giannella, and H. Kargupta, “A survey of attack techniques on privacy-

preserving data perturbation methods,” in Privacy-Preserving Data Mining. Springer,

2008, pp. 359–381.

117

[91] E. Zorarpacı and S. A. Özel, “Privacy preserving classification over differentially private

data,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 11,

no. 3, p. e1399, 2021.

[92] E. Zorarpac1ı and S. A. Özel, “Privacy preserving rule-based classifier using modified

artificial bee colony algorithm,” Expert Systems with Applications, vol. 183, p. 115437,

2021.

[93] A. Aminifar, F. Rabbi, K. I. Pun, and Y. Lamo, “Privacy preserving distributed extremely

randomized trees,” in Proceedings of the 36th Annual ACM Symposium on Applied Com-

puting, 2021, pp. 1102–1105.

[94] N. Kousika and K. Premalatha, “An improved privacy-preserving data mining technique

using singular value decomposition with three-dimensional rotation data perturbation,”

The Journal of Supercomputing, vol. 77, no. 9, pp. 10 003–10 011, 2021.

[95] M. D. Shastri and A. A. Pandit, “Remodeling: improved privacy preserving data mining

(ppdm),” International Journal of Information Technology, vol. 13, no. 1, pp. 131–137,

2021.

[96] M. L. Merani, D. Croce, and I. Tinnirello, “Rings for privacy: an architecture for large

scale privacy-preserving data mining,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 6, pp. 1340–1352, 2021.

[97] A. Pika, M. T. Wynn, S. Budiono, A. H. Ter Hofstede, W. M. van der Aalst, and H. A.

Reijers, “Privacy-preserving process mining in healthcare,” International journal of en-

vironmental research and public health, vol. 17, no. 5, p. 1612, 2020.

[98] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and M. Aloqaily, “Privacy-preserving

multiobjective sanitization model in 6g iot environments,” IEEE Internet of Things Jour-

nal, vol. 8, no. 7, pp. 5340–5349, 2020.

[99] U. Ahmed, G. Srivastava, and J. C.-W. Lin, “A machine learning model for data saniti-

zation,” Computer Networks, vol. 189, p. 107914, 2021.

[100] J.-S. Lee and S.-P. Jun, “Privacy-preserving data mining for open government data from

heterogeneous sources,” Government Information Quarterly, vol. 38, no. 1, p. 101544,

118

2021.

[101] C.-W. Lin, T.-P. Hong, C.-C. Chang, and S.-L. Wang, “A greedy-based approach for

hiding sensitive itemsets by transaction insertion.” J. Inf. Hiding Multim. Signal Process.,

vol. 4, no. 4, pp. 201–214, 2013.

[102] T.-P. Hong, C.-W. Lin, K.-T. Yang, and S.-L. Wang, “Using tf-idf to hide sensitive item-

sets,” Applied Intelligence, vol. 38, no. 4, pp. 502–510, 2013.

[103] J. M.-T. Wu, G. Srivastava, U. Yun, S. Tayeb, and J. C.-W. Lin, “An evolutionary

computation-based privacy-preserving data mining model under a multithreshold con-

straint,” Transactions on Emerging Telecommunications Technologies, vol. 32, no. 3, p.

e4209, 2021.

[104] J. M.-T. Wu, G. Srivastava, S. Tayeb, and J. C.-W. Lin, “A pso-based sanitization pro-

cess with multi-thresholds model,” in International Conference on Pattern Recognition.

Springer, 2021, pp. 439–446.

[105] B. Abdollahzadeh and F. S. Gharehchopogh, “A multi-objective optimization algorithm

for feature selection problems,” Engineering with Computers, pp. 1–19, 2021.

[106] A. M. AbdelAziz, L. Alarabi, S. Basalamah, and A. Hendawi, “A multi-objective opti-

mization method for hospital admission problem—a case study on covid-19 patients,”

Algorithms, vol. 14, no. 2, p. 38, 2021.

[107] A. A. Ewees, M. Abd Elaziz, and D. Oliva, “A new multi-objective optimization algo-

rithm combined with opposition-based learning,” Expert Systems with Applications, vol.

165, p. 113844, 2021.

[108] V. Coleto-Alcudia and M. A. Vega-Rodríguez, “A multi-objective optimization approach

for the identification of cancer biomarkers from rna-seq data,” Expert Systems with Ap-

plications, p. 116480, 2022.

[109] S. Goyal, P. Bedi, A. S. Rajawat, R. N. Shaw, and A. Ghosh, “Multi-objective fuzzy-

swarm optimizer for data partitioning,” in Advanced Computing and Intelligent Tech-

nologies. Springer, 2022, pp. 307–318.

[110] D. Lee and J.-H. Lee, “Hiding sensitive itemsets in transaction datasets using an evolu-

119

tionary algorithm,” Expert Systems with Applications, vol. 39, no. 18, pp. 13 520–13 527,

2012.

[111] J. Li, H. Wang, J. Han, J. P. Zhang, and J. Lu, “Privacy preserving frequent itemset

mining via an evolutionary algorithm,” IEEE Transactions on Knowledge and Data En-

gineering, vol. 26, no. 4, pp. 886–899, 2014.

[112] R. Li, Q. Zou, Y.-P. P. Chen, and B. Yang, “A novel genetic algorithm for privacy-

preserving frequent itemset mining,” Journal of Ambient Intelligence and Humanized

Computing, vol. 6, no. 5, pp. 673–683, 2015.

[113] X. Lu, X. Jiang, and J. Shen, “Sensitive information hiding based on differential evo-

lution algorithm,” Journal of Ambient Intelligence and Humanized Computing, vol. 9,

no. 3, pp. 701–711, 2018.

[114] C.-W. Lin, B. Zhang, K.-T. Yang, and T.-P. Hong, “Efficiently hiding sensitive itemsets

with transaction deletion based on genetic algorithms,” The Scientific World Journal,

vol. 2014, 2014.

[115] C.-W. Lin, T.-P. Hong, K.-T. Yang, and S.-L. Wang, “The ga-based algorithms for op-

timizing hiding sensitive itemsets through transaction deletion,” Applied Intelligence,

vol. 42, no. 2, pp. 210–230, 2015.

[116] J. C.-W. Lin, Q. Liu, P. Fournier-Viger, T.-P. Hong, M. Voznak, and J. Zhan, “A san-

itization approach for hiding sensitive itemsets based on particle swarm optimization,”

Engineering Applications of Artificial Intelligence, vol. 53, pp. 1–18, 2016.

[117] J. M.-T. Wu, J. Zhan, and J. C.-W. Lin, “Ant colony system sanitization approach to

hiding sensitive itemsets,” IEEE Access, vol. 5, pp. 10 024–10 039, 2017.

[118] C. Liu, J. Zhang, and H. Xiong, “Multi-objective genetic algorithm for privacy preserv-

ing association rule mining,” Information Sciences, vol. 232, pp. 146–164, 2013.

[119] X. Jiang, K. Huang, Y. Peng, and J. Wang, “Multi-objective privacy-preserving frequent

itemset mining using non-dominated sorting genetic algorithm ii,” Applied Soft Comput-

ing, vol. 40, pp. 131–145, 2016.

[120] J. Zhang, X. Liu, and B. Huang, “Multi-objective bat algorithm for privacy-preserving

120

frequent itemset mining,” Engineering Applications of Artificial Intelligence, vol. 77, pp.

18–29, 2019.

[121] R. Wang, S. Zhang, and L. Cui, “Multi-objective genetic algorithm for privacy-

preserving frequent itemset mining,” Journal of Intelligent & Fuzzy Systems, vol. 36,

no. 4, pp. 3789–3802, 2019.

[122] J. C.-W. Lin, Y. Zhang, B. Zhang, P. Fournier-Viger, and Y. Djenouri, “Hiding sensi-

tive itemsets with multiple objective optimization,” Soft Computing, vol. 23, no. 23, pp.

12 779–12 797, 2019.

[123] T.-Y. Wu, J. C.-W. Lin, Y. Zhang, and C.-H. Chen, “A grid-based swarm intelligence

algorithm for privacy-preserving data mining,” Applied Sciences, vol. 9, no. 4, p. 774,

2019.

[124] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate gener-

ation: A frequent-pattern tree approach,” Data mining and knowledge discovery, vol. 8,

no. 1, pp. 53–87, 2004.

[125] S. R. Oliveira and O. R. Zaine, “Protecting sensitive knowledge by data sanitization,” in

Third IEEE International conference on data mining. IEEE, 2003, pp. 613–616.

[126] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,

no. 2, pp. 182–197, 2002.

[127] N. Bilal, P. Galinier, and F. Guibault, “A new formulation of the set covering problem

for metaheuristic approaches,” International Scholarly Research Notices, 2013.

[128] P. Fournier-Viger, J. Lin, A. Gomariz, T. Gueniche, A. Soltani, and Z. Deng, “The spmf

open-source data mining library version 2,” in Proc. Joint European conference on ma-

chine learning and knowledge discovery in databases, 2016, pp. 36–40.

[129] C. K.-S. Leung, “Uncertain frequent pattern mining,” in Frequent pattern mining.

Springer, 2014, pp. 339–367.

[130] J. Yang and J. Y.-T. Leung, “A generalization of the weighted set covering problem,”

Naval Research Logistics (NRL), vol. 52, no. 2, pp. 142–149, 2005.

121

[131] A. Amiri, “Dare to share: Protecting sensitive knowledge with data sanitization,” Deci-

sion Support Systems, vol. 43, no. 1, pp. 181–191, 2007.

[132] P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T.

Lam, “The spmf open-source data mining library version 2,” in Machine Learning and

Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva

del Garda, Italy, September 19-23, 2016, Proceedings, Part III 16. Springer, 2016, pp.

36–40.

122

	List of Figures
	List of Tables
	General Introduction
	Context
	Objectives
	Methodology and results
	Thesis outline

	Pattern Mining
	Introduction
	Data mining
	Data mining techniques
	Supervised data mining techniques
	Unsupervised data mining techniques

	Pattern mining
	Frequent itemset mining
	Sequence mining
	Episode mining
	Mining frequent itemsets over uncertain transaction databases

	Conclusion

	Privacy Preserving Data Mining
	Introduction
	Privacy preserving data mining
	Review of privacy preserving data mining algorithms
	Meta-heuristic algorithms for PPDM
	Single-objective metaheuristic algorithms for PPDM
	Multi-objective metaheuristic algorithms for PPDM

	Conclusion

	Hiding Sensitive Frequent Itemset via Items Removal
	Introduction
	Preliminaries
	Basic definitions
	Set Cover Problem

	PPDM as a multi-objective optimization problem
	Description of NSGAII4ID algorithm
	Computational complexity

	Illustrative example
	Experiment Results
	Runtime
	Memory Cost
	Side effects

	Conclusion

	Hiding sensitive expected frequent itemsets in the context of uncertain databases
	Introduction
	Basic definitions for mining frequent itemsets from uncertain databases
	The Proposed U-NSGAII4ID algorithm
	Algorithm description
	An illustrative example

	Experimental results
	Runtime
	Memory Cost
	Side effects

	Conclusion

	Heuristic approaches for hiding sensitive frequent itemsets in uncertain databases
	Introduction
	Heuristic approaches for PPDM
	Description of U-heuristic algorithms
	U-Aggregate approach
	U-Disaggregate approach
	U-Hybrid approach

	Experimental results
	Run Time and Memory Cost
	Side effects

	Conclusion

	General Conclusion
	Summary of contributions
	Future work and perspectives

	References

