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Introduction
The quantum mechanics represents an important part of studying and describing the fun-

damental phenomena of physical systems at the atomic and subatomic scale. The microscopic

behavior of atomic objects, which make up matter, gives predictions in which these objects

behave and led to the formulation of quantum theory by Schrödinger, Heisenberg, and Dirac.

Quantum Mechanics is based on a set of axioms [1, 2] among them we mention: i) the inner

products of state vectors have a positive norm, ii) evolution is unitary, iii) the Hamiltonian

(h = h+) of a system must be Hermitian operator.

The hermiticity of a Hamiltonian is a su¢ cient condition for the reality of the energy

spectrum and needed for the unitarity of evolution. In 1998 Bender and Boettcher worked

on the non-Hermitian Hamiltonians (H 6= H+) and interpreted the reality of the spectrum as

being due to its PT -symmetry which comes from the invariance of PT-symmetric Hamiltonians

under both parity and time reversal transformation HPT = PTH. The more general than the

PT concept, is pseudo-Hermiticity for a time-independent Hamiltonian (H = H0) which has

been introduced by Mostafazadeh in 2002 [24].

For the time dependent non-Hermitian systems, described by non-Hermitian Hamiltonians

(H(t) 6= H+(t)) adapting the invariant operator approach to this setting. Our key assumption

is that the stationary theory sumarized in pseudo-Hermiticity concept remains valid for the

time-dependent systems in which invariant operator I(t) generalized into the pseudo-Hermitian

invariant IPH(t). However for time dependent non-Hermitian Hamiltonians it has been found a

problem for the conservation of the propability of presence (h (t) j (t)i = f(t)), and the mean

values of observables. To solve this problem, it was necessary to introduce the renormalization

of the probability by introducing the metric operator so called �.

We start the �rst chapter by introducing the notions of PT-symmetry, and pseudo-Hermiticity,

which are the basic and the fundamental concepts in the non-Hermitian theory. In the seconde

chapter, we provide the method of pseudo-Hermitian invariants to deduce the solution of time-

dependent non-Hermitian systems, and then we suggest non-Hermitian perturbation method as

preliminary approach in time dependent non-Hermitian quantum systems. The third chapter

is devoted to study a spin interacting with a complex external magnetic �eld, applying the

pseudo Hermitian invariant method, and non hermitian perturbation approach.
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Chapter 1

Non Hermitian Hamiltonians

In 1959 the concept of a non-Hermitian Hamiltonians was one of the most important events

in the literature, where Wu Tai Tsun published an article [4] aimed to calculate the ground-

state energy of "Bose spheres". According to the paper, a serious problem in this type of

calculation was that the ground-state energy "diverges". In ordre to solve this problem, it has

been used a non-Hermitian and non-diagonalizable Hamiltonian. What�s impressive is that this

Hamiltonian has real eigenvalues, although the research didn�t explain this representation.

In 1967, Jack Wong published a paper on non-Hermitian Hamiltonians [5], and showed that

closed-system are described by Hermitian Hamiltonians, but when the external interaction is

considered, the Hamiltonian loses its Hermiticity. These Hamiltonians may have part of the

discrete spectrum. Furthermore, complex eigenvalues seem acceptable but there is not an

explanation for their being physically reasonable. Until 1998, Bender and Boettcher have

introduced the PT-symetry theory as �rst step in non Hermitian Quantum Systems, and in

2002, Ali Mostafazadeh has well formulated the theory of non Hermitian Hamiltonians. And

in the recent decades the theory of non-Hermitian Hamiltonians has been expanded to describe

various physically observable phenomena in optical [6], photonic [7], and condensed matter

systems [8, 9, 10, 11].

2



1.1 PT- symmetry theory 3

1.1 PT- symmetry theory

The PT-symmetry theory, which is an alternative formulation of conventional quantum the-

ory, has been principally developed by Bender and his Collaborators. Where explicitly stud-

ied a class of non-Hermitian Hamiltonians, and demonstrated that the one-dimensional non-

Hermitian Hamiltonian spectrum is real, positive, and discrete. It is also invariant under the

PT -symmetry transformation. the PT -symmetric quantum mechanics has allowed physicists

to study several phenomena in di¤erent areas of physics.

The notion of PT -symmetry was �rst introduced in 1998 by Bender et al [12], When they

studied a class of Hamiltonians in quantum mechanics:

H = p2 + x2 � (ix)� (1.1)

and demonstrated that for � � 0; the non-Hermitian Hamiltonian (1:1) has a real and

positive spectrum. For negative values of �; the spectrum is complex. Thus the PT -symmetry

is the key reason for the reality of the spectrum.

A non-Hermitian Hamiltonian H is said to be PT -symmetric, if it is invariant by the PT

transformation, i.e;

H = HPT = (PT )H (PT ) (1.2)

without violating any of the physical axioms of quantum mechanics. If a Hamiltonian H

is PT -symmetric, then it commutes with the PT operator.

[H;PT ] = 0; (1.3)

where P and T are respectively the parity and time reversal operators. These operators

are de�ned by their e¤ect on the position x and the momentum p operators , as follows

PxP = �x (1.4)

and

PpP = �p (1.5)
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We note that the e¤ect of the linear operator P is to change the signs of the operators x

and p.

TxT = x (1.6)

and

TpT = �p (1.7)

TiT = �i (1.8)

While the antilinear operator T only e¤ects the sign of the operator p by changing the sign

of the pure imaginary complex number i. Where x and p operators verify the commutation

relation;

[x; p] = i~

Furthermore, since P and T are re�ection operators, their squares equal the unity operator

P 2 = T 2 = 1 (1.9)

but are not equal (P 6= T ). Besides, P and T commute:

[P; T ] = 0 (1.10)

1.1.1 Eigenvalues of PT-symmetric Hamiltonians

In fact, to construct a quantum theory of PT -symmetric Hamiltonians, we require that the

symmetry be unbroken. With this condition, we can demonstrate the reality of the eigenvalues

of PT -symmetric Hamiltonians.

To demonstrate this, one �rst needs to de�ne the eigenfunctions of the Hamiltonian, so we

can write:

H j ni = En j ni (1.11)

and the eigenvalue equation of the PT operator

PT j ni = �n j ni (1.12)
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where En and �n are the eigenvalues corresponding to H and PT , respectively. Then,

(PT )2 j ni = j�nj
2 j ni (1.13)

using

(PT )2 = 1 (1.14)

leads to

j�nj2 = 1 (1.15)

Since H and PT commute, we can write

PTH = HPT (1.16)

By multiplying both sides of the right hand side of this equation by PT , and for (PT )2 = 1

we obtain:

PTHPT = H (1.17)

The relation (1:2), allows to write

H j ni = PTHPT j ni = PTH�n j ni = PTEn�n j ni (1.18)

Using the property TEn�n = E�n�
�
nT , with the equations; (1:12) and (1:15), to �nd

H j ni = E�n j ni (1.19)

From equations (1:11) and (1:19) we obtain:

En j ni = E�n j ni (1.20)

Indeed, this gives us a con�rmation that the eigenvalues En of the PT -symmetric Hamilto-

nian H are real.
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1.1.2 PT-inner product

The question that arises now is whether the eigenvector norms of the Hermitian Hamiltonian

in Hilbert space are positive. Furthermore, it is also necessary to conserve the inner product of

any two eigenvectors in Hilbert space, which is an essential property for quantum theory to be

valid. Indeed, both these two requirements are satis�ed in the conventional Quantum theory

with Hermitian Hamiltonians. The �rst allows us to interpret the state norm as a probability

that must be positive and de�nite. However, in non-Hermitian quantum theory, to validate

the orthogonality of the eigenvectors of a PT -symmetric Hamiltonian, Carl Bender [13] �rst

introduced an inner product called the "PT -inner product" associated with the PT -symmetric

Hamiltonian, de�ned by two arbitrary functions f(x); g(x)

(f; g)PT =

Z
dx [PTf(x)] g(x) (1.21)

where

PTf(x) = f �(�x) (1.22)

The inner product has the advantage that the PT norm is the quantity that is conserved.

However, this approach assumes negative norms for some eigenstates of PT -symmetric Hamilto-

nians.

If  m and  n represents the eigenfunctions of H and is orthogonal to n 6= m, the PT -inner

product becomes

h m;  niPT =
Z
dx[PT m(x)] n(x) =

Z
dx �m(�x) n(x) = (�1)n�mn (1.23)

If m = n, the PT -norms of these eigenfunctions are not always positive [37]:

h n;  niPT =
Z
dx �n(�x) n(x) = (�1)n (1.24)

The negative norm (�1)n means; the relation (1:21) de�ning the inner product is insu¢ cient

to formulate a valid quantum theory, this negates the Hermitian Quantum Mechanics axiom.

So, it is necessary to construct a new inner product where the norm is positive, this led

Bender to construct a new inner product with a positive norm; the "CPT-inner product".
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1.1.3 C operator and CPT-inner product

To solve the problem of the negative norm, Bender [13] introduced another symmetry gener-

ated by a new linear operator noted C. The properties of this operator are almost identical

(mathematically similar) to those of the charge conjugation operator in quantum �eld theory.

The linear operator C is represented in the coordinate-space by the sum of the Hamiltonian�s

eigenfunctions

C(x; y) =
X
n

 n(x) n(y) (1.25)

We can verify that the square of C is equal to unity [13]

Z
dzC(x; y)C(y; z) = �(x� y) (1.26)

The operator C veri�es the following commutation relations

[C;H] = [C;PT ] = 0 (1.27)

but not either P or T separately

[C; T ] 6= 0 (1.28)

[C;P ] 6= 0 (1.29)

consequently

C2 = 1 (1.30)

One observes that the eigenvalues of the operator C are �1, the act of C on the eigenfunc-

tions  n of H is given by

C n(x) =

Z
dyC(x; y) n(y) (1.31)

=
X
m

 m(x)

Z
dy m(y) n(y) = (�1)n n(x)
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In coordinate space, The linear operator P is de�ned in terms of the eigenfunctions  n(x)

of H by [13]

P (x; y) =
X
n

(�1)n n(x) n(�y) = �(x+ y) (1.32)

As the square of the two operators P and C is equal to unity

P 2 = C2 = 1 (1.33)

but P and T are not identical

P 6= C (1.34)

Indeed the operator P is real, while C is complex. Speci�cally, in the position representation;

(CP )(x; y) =
X
n

 n(x) n(�y) (1.35)

(PC)(x; y) =
X
n

 n(�x) n(y) (1.36)

therefore it�s clear that

(CP ) = (PC)� (1.37)

After introduced the properties of the operator C, we can then de�ne a new inner product

called "CPT-inner product" [14, 15]: by

h m;  niCPT =
Z
dx [CPT m(x)] n(x) (1.38)

where

CPT m(x) =

Z
dyCPT (x; y) �m(�y) (1.39)

This CPT -inner product is positive de�ned, and the eigenfunctions of H are orthonormal.

h m;  niCPT =
Z
dx [CPT m(x)] n(x) = �mn (1.40)
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So this CPT -inner product satis�es all the conditions for the quantum theory de�ned by

H to be unitary. In this case, the fermeture relation, is given by

X
n

 n(x) [CPT n(y)] = �(x� y) (1.41)

1.1.4 Application: Harmonic oscillator interacts with complex elec-

trical Field

A harmonic oscillator; p
2

2m
+ 1
2
m!2x2; placed in complex uniform electrical �eld, can be described

by the following hamiltonian;

H =
p2

2m
+
1

2
m!2x2 + iFx; (1.42)

where m is the masse, ! is the frequancy, and F = qE is the electrical force. We note that H

is non Hermitian, but PT symetric, i.e.

HPT = (PT )H (PT ) = (PT )
�
p2

2m
+
1

2
m!2x2 + iFx

�
(PT ) = H: (1.43)

The eigenvalue equation associated with H is written

H j ni = En j ni ; (1.44)

We perform the transformation D

D = exp

�
F

m!2
p

�
; (1.45)

The equation (1.44) becomes

DHD�1 j'ni = En j'ni with j'ni = D j ni ;

Where

DHD�1 =
p2

2m
+
1

2
m!2x2 +

1

2

F 2

m!2
: (1.46)

The transformed hamiltonian is hermitian, than its eigenvalues are real and given by

En = !

�
n+

1

2

�
+
1

2

F 2

m!2
(1.47)
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and the corresponding eigenfunctions are

'n(x) =
1p
2nn!

�m!
�

� 1
4
exp

�
�m!

2

2
x2
�
Hn
�p

m!x
�
; (1.48)

Where Hn are Hermite�s polynomials , then the eigenfunctions j ni have the form

 n(x) =
1p
2nn!

�m!
�

� 1
4
exp

�
� F

m!2
p

�
exp

�
�m!

2

2
x2
�
Hn
�p

m!x
�
; (1.49)

And are orthonormal in sens of CPT scalar product

h n(x)j  m(x)iCPT =

Z
dx [CPT  n(x)] m(x)

=

Z
dx m(x) exp

�
2F

m!2
p

�
 �n(x) = �mn; (1.50)

Where CP =exp
�
2F
m!2

p
�
:

1.2 Pseudo-Hermiticity

The concept of pseudo-Hermiticity was introduced in the 40s by Dirac and Pauli [17, 18, 19, 20],

and later discussed by Lee and Sudarshan [21, 22], who were trying to solve various problems

in several domains of physics that arise in quantization in electrodynamics and many quantum

�eld theories, where the negative-norm states appear as a consequence of renormalization.

In 1992, Scholtz [23] discussed another notion related to pseudo-Hermiticity is quasi-

Hermiticity. Who showed how to construct a similar transformation from Hermitian operators

to the corresponding quasi-Hermitian operators.

Recently, in 2002, Mostafazadeh published three articles [24, 25, 26], where presented

an alternative to conventional quantum mechanics for non-Hermitian Hamiltonians with real

spectraum. This theory is called �pseudo-Hermiticity�. Mostafazadeh has also demonstrated

the existence of PT -symmetric Hamiltonians whose spectrum is not real. In the other hand

the PT -symmetry is not su¢ cient or necessary to guarantee the reality of the spectrum.

1.2.1 Pseudo-Hermitian Hamiltonians

As mentioned in [24], an operator H that acts in the Hilbert space, is said to be pseudo-

Hermitian, if there exists a linear, Hermitian and invertible operator � such that
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H+ = �H��1 (1.51)

where � called �metric operator� and H+ is the adjoint operator of H.

If we make a particular choice of �, we say that H is �-pseudo-Hermitian. The condition

(1:51) can be expressed in the form:

H# = H (1.52)

where

H# = ��1H+� (1.53)

is the pseudo adjoint of H [24]:

Note that the choice of � = 1 reduces equation (1:51) to ordinary Hermeticity, so pseudo-

Hermeticity is a generalization of Hermeticity. This condition (1:51) reduces to PT -symmetry

when � = P .

Pseudo-Hermitian conjugation (#) has the same properties as Hermitian conjugation (+),

we mention a certain number of them;

1# = 1 (1.54)

�
A#
�#
= A (1.55)

(AB)# = B#A# (1.56)

(�A+ �B)# = ��A# + ��B# (1.57)

where A and B are linear operators, 1 is the identity operator, �� and �� 2 C, �� and ��

are the complex conjugates of � and � respectively.

In general, the pseudo-Hermitian conjugate of any expression is obtained by:

1.Reversing the order of terms.
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2.Transforming: operators into their pseudo-adjoints, kets into bras and in-

versely, and numbers into their complex conjugates.

The Pseudo-hermiticity allows us to pass from a Hermitian Hamiltonian to an equivalent

pseudo-Hermitian Hamiltonian. In other words, every pseudo-Hermitian Hamiltonian H has

an equivalent Hermitian Hamiltonian h, and they are linked by the relation

h = �H��1 (1.58)

Since h is Hermitian, that is to say

h+ = (�H��1)+ (1.59)

with � : a linear bounded and invertible operator. Also, it is easy to verify that;

� = �+� (1.60)

��1 = ��1(�+)�1 (1.61)

The equations (1:58),(1:59), show that the Hamiltonian h is Hermitian, so its eigenvalues

En are real and consequently the eigenvalues of H are also real.

The corresponding eigenvalue equations are then

H j ni = En j ni (1.62)

and

h j�ni = En j�ni (1.63)

It is important to note that the transformation � allows to pass from the eigenvectors of h

to the eigenvectors of H

j�ni = � j ni (1.64)

The eigenvectors j�ni form an orthonormal basis, i.e. The Hermitian Hamiltonian h pre-

serves the ordinary inner-product. So we can write
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h�m j�ni = �mn (1.65)

Since the pseudo-Hermitian Hamiltonian H does not preserve the standard inner product,

Mustafazadah introduced the pseudo-inner product de�ned by [24, 25, 26]:

h m j ni� = h mj � j ni (1.66)

Using the transformation (1:64) in (1:65), we obtain

h�m j�ni = h mj �+� j ni = h mj � j ni = h m j ni� = �mn (1.67)

The last relation de�nes the �-inner product, also called the pseudo-inner product.

1.2.2 Application

Let Consider the previous Hamiltonian (1:42);

H =
p2

2m
+
1

2
m!2x2 + iFx: (1.68)

In order to determine the eigenvalues and the eigenstates (1.62) of H using the notion of

pseudo-hermiticity, we introduce the metric operator � in the form

� = exp

�
2F

m!2
p

�
; (1.69)

it is easy to verify that � connects the hamiltonian H (1.68) to its adjoint H+ by the pseudo-

hermiticity relation (1.51) and that � = �1=2 = exp
�

F
m!2

p
�
gives Hermitian equivalent (1.58)

h = exp

�
F

m!2
p

�
H exp

�
� F

m!2
p

�
=

p2

2m
+
1

2
m!2x2 +

1

2

F 2

m!2
; (1.70)

whose eigenvalues are

En = !

�
n+

1

2

�
+
1

2

F 2

m!2
(1.71)

and the corresponding eigenfunctions are

�n(x) =
1p
2nn!

�m!
�

� 1
4
exp

�
�m!

2

2
x2
�
Hn
�p

m!x
�
: (1.72)



1.2 Pseudo-Hermiticity 14

we obtain the eigenfunctions associated with H (1.68) by the inverse tranformation  n(x) =

��1'n(x)

 n(x) =
1p
2nn!

�m!
�

� 1
4
exp

�
� F

m!2
p

�
exp

�
�m!

2

2
x2
�
Hn
�p

m!x
�
; (1.73)

Now, let calculate the pseudo-inner product

h mj � j ni =
Z
dx �m(x)� n(x); (1.74)

By changing the variable x = 1p
m!
y; we �nd that the eigenfunctions  n are ��orthonormal

h mj � j ni = �mn: (1.75)



Chapter 2

Time dependant non-Hermitian

Quantum Systems

In quantum mechanics, the dynamics of closed systems governed by Schrodinger�s equation

[27]:

H(t) j	(t)i = i~
@

@t
j	(t)i (2.1)

where H(t) is the Hamiltonian describes the system, and j	(t)i, represents the wave func-

tion. The resolution of this equation gives the state of the system j	(t)i ;which represents the

time dependent state of evolution.

j	(t)i = U(t) j	(0)i (2.2)

with U(t) represents the evolution operator and j	(0)i is the initial state of the system.

In general, it is di¢ cult to �nd the analytic solution of time dependent Schrodinger�s

equation, especially when it involves with explicitly time-dependent Hamiltonians. So only a

few exact solutions of Schrodinger�s equation have been found so far. In certain cases, to �nd

the j	(t)i state one seek to approximate approaches, which are more used in �elds of applied

physics, such as solid-state physics, plasma physics, and classical electromagnetic �elds. The

choice of a particular method generally depends on the shape of the potential and the shape

of the wave function required. Some of these methods include; perturbation theory, sudden

15
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approximation and adiabatic approximation. In certain cases we can use the exact method of

the invariant approach to estimate the quantum state of the system. Due to their importance,

we will examine them in more detail in this chapter.

2.1 pseudo Hermitian invariants Method

To study time dependent Quantum systems described by Hermitian Hamiltonians, Lewis and

Riesenfeld (1969) proposed one of the most e¤ective methods that gives an exact solutions of

the Schrodinger equation, is the invariants theory [28]. The basic idea of this theory consists to

derive a simple relation between the eigenvalues of the Hermitian invariant and the solution of

the Schrodinger equation. This method was �rst applied for a harmonic oscillator with time-

dependent frequency, and a charged particle in electromagnetic �eld. This theory has been

widely used to treat many theoretical problems.

For the non-Hermitian senario we call pseudo-invariant theory [29, 30, 31]. It is generally

applied to obtaine the solution of the Schrodinger equation as the function of the pseudo

Hermitian invariant eigenstates multiplied by the phase. Thus, the problem is reduced to

�nding the explicit form of the pseudo Hermitian invariant operator and the phases associated

with the evolution.

To explain this method in a simple form, we consider a system whose Hamiltonian H(t),

where the wave function describing the time evolution of this system obeys the Schrodinger

equation;

H(t) j (t)i = i~
@

@t
j (t)i (2.3)

where H(t) is time-dependent non-hermetian Hamiltonian.

2.1.1 Pseudo Hermitian Invariant Operator

Given a non-Hermitian time-dependent Hamiltonian operator H(t), it is possible to build an-

other auxiliry time-dependent operator IPH(t), called a pseudo-invariant operator, which sat-

is�es the invariance condition;
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dIPH(t)

dt
=
@IPH(t)

@t
� i

~
�
IPH(t); H(t)

�
= 0 (2.4)

By applying (2:4) on the state vector j (t)i solution of the Schrodinger equation (2:3), we

obtain :

@IPH(t)

@t
j (t)i � i

~
�
IPH(t); H(t)

�
j (t)i = 0 (2.5)

Where

i~
@IPH(t)

@t
j (t)i+ IPH(t)(H(t) j (t)i)�H(t)(IPH(t) j (t)i) = 0 (2.6)

According to (2:3)

i~
@IPH(t)

@t
j (t)i+ IPH(t)i~

@

@t
j (t)i �H(t)IPH(t) j (t)i = 0 (2.7)

Finally we get

i~
@

@t
(IPH j (t)i) = H(t)(IPH j (t)i) (2.8)

This means that the action of the pseudo-invariant operator on the Schrodinger state vector,

produces another solution of the Schrodinger equation. This result is valid for any invariant.

Now let�s present the spectral properties of the pseudo-Hermitian invariant operator IPH(t).

The beginning of this section brie�y describes the pseudo Invariant operator technique [30, 31].

In complete analogy to the time-independent scenario; (Chap.1. Sec.2), the Hermitian invariant

operator Ih(t) and the pseudo hermitian operator IPH(t) are related to each other by means of

the similarity transformation �(t), and can also be linked to its Hermitian conjugate IPH+(t)

as

�(t)IPH(t)��1 () IPH+(t) = �(t)IPH(t)��1(t) (2.9)

Now suppose that this pseudo-Hermitian operator, explicitly time-dependent IPH(t), obeys

the eigenvalue equation

IPH(t) j�n(t)i = �n j�n(t)i (2.10)

where �n represents time-independent eigenvalues, and j�n(t)i represent the eigenstates of

the pseudo Hermitian invariant operator.
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The pseudo-hermiticity condition for IPH(t) is expressed as :

IPH+(t) = �(t)IPH(t)��1(t) (2.11)

Using the time-dependent metric �(t), the inner product (1:67) of the eigenstates j�n(t)i

is written in the form

h�m(t)j �(t) j�n(t)i = �mn (2.12)

so, the eigenstate of IPH(t) and IPH+(t) verify the bi-orthogonality relation (1:67);D
�I

PH+

m (t)
����IPHn (t)

E
= �mn (2.13)

The eigenvalues �n of the operator IPH(t) are time-independent, and can be deduced by

di¤erentiating equation (2:10) as follows

@

@t
(IPH(t)

����IPHn (t)
E
) =

@

@t
(�n

����IPHn (t)
E
) (2.14)

@IPH

@t

����IPHn (t)
E
+ IPH

@
����IPHn (t)

E
@t

=
@�n
@t

����IPHn (t)
E
+ �n

@
����IPHn (t)

E
@t

(2.15)

When multiplying the equation (2:15) by
D
�I

PH

n (t)
��� �(t), and using equation (2:4), we �nd

@�n
@t

=
D
�I

PH

n (t)
��� �(t)@IPH

@t

����IPHn (t)
E
= 0 (2.16)

which explicitly shown that the �n eigenvalues are constant.

The reality of the eigenvalues �n is guaranteed, since the two invariants Ih(t) and IPH(t),

which are Hermitian and non-Hermitian respectively, are related by a similarity transformation

(2:9).

2.1.2 Solution of Schrodinger�s equation

In order to �nd the connection between eigenstates of IPH(t) and the solutions of Schrodinger�s

equation (2:3), we �rst start by projecting equation (2:15) into
D
�I

PH

m (t)
��� �(t); and using equa-

tion (2:16), it follows that
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i~
D
�I

PH

m (t)
��� �(t) @

@t

����IPHn (t)
E
=
D
�I

PH

m (t)
��� �(t)H(t) ����IPHn (t)

E
(2.17)

with m 6= n:

If the equation (2:17) is valid for m = n, then we deduce that
����IPHn (t)

E
represents a

particular solution of Schrodinger�s equation. We can multiply
����IPHn (t)

E
by a time-dependent

phase factor, the new eigenstates
����IPHn (t)

E
of IPH(t) become

j n(t)i = ei�n(t)
����IPHn (t)

E
(2.18)

The state j n(t)i obeys the Schrodinger equation (2:17), which is a particular solution to

the Schrodinger equation.

This requirement allows us to �nd the �rst-order di¤erential equation satis�ed by the phase

�n(t)

d�n(t)

dt
=
D
�I

PH

n (t)
��� �(t) �i~ @

@t
�H(t)

� ����IPHn (t)
E

(2.19)

In equation (2:19), the �rst term on the right-hand side describes the geometric phase,

while the second term represents the dynamic phase.

The general solution of Schrodinger�s equation for time-dependent non-Hermitian Hamilto-

nian H(t) is given by

j (t)i =
X
n

Cne
i�n(t)

����IPHn (t)
E

(2.20)

where Cn =
D
�I

PH

n (0)
��� �(0) j (0)i are time-independent coe¢ cients.

In order to preserve the quantum postulat; (conservation of probability of presence) of the

state j (t)i ; once use the notion of pseudo inner product mentioned in the equation (1:67); i.e.D
�I

PH

m (t)
��� �(t) ����IPHn (t)

E
= �mn: And the phase �n(t) (2:19) is ensured that be real.

We have

:

�
�
n(t) = �i~

�
@

@t
�I

PH

n (t)

���� �(t) ����IPHn (t)
E
�
D
�I

PH

n (t)
���H+(t)�(t)

����IPHn (t)
E

(2.21)

On the other hand; the derivative over time of inner product (2:12) allows us to write
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�
@

@t
�I

PH

n (t)

���� �(t) ����IPHn (t)
E
+
D
�I

PH

n (t)
��� :�(t) ����IPHn (t)

E
+
D
�I

PH

n (t)
��� �(t) ���� @@t�IPHn (t)

�
= 0 (2.22)

then we write

�
@

@t
�I

PH

n (t)

���� �(t) ����IPHn (t)
E
= �

D
�I

PH

n (t)
��� �(t)��1(t) :�(t) ����IPHn (t)

E
�
D
�I

PH

n (t)
��� �(t) ���� @@t�IPHn (t)

�
(2.23)

by replacing
D
@
@t
�I

PH

n (t)
��� �(t) ����IPHn (t)

E
in (2:21), we get

:

�
�
n(t) =

�
i~
D
�I

PH

n (t)
��� �(t)��1(t) :�(t) ����IPHn (t)

E
+ i~

D
�I

PH

n (t)
��� �(t) ���� @@t�IPHn (t)

�
�
D
�I

PH

n (t)
��� �(t)��1(t)H+(t)�(t)

����IPHn (t)
Eo

(2.24)

And using the relation [30, 31]:

H+(t) = �(t)H(t)��1(t) + i~ :�(t)��1(t) (2.25)

we deduce

:

�n
�
(t) =

:

�n(t) (2.26)

which guarantees the conservation of the probability of the presence; combining the equa-

tions: (2:12), (2:20), and (2:26), gives:

h (t)j �(t) j (t)i =
X
n

jCnj2 = Conste (2.27)

2.2 Non Hermitian perturbation approach

When a quantum system is subjected to time-dependent perturbation [3], it means that there

are external in�uences acting on the system, such as quantum scattering, quantum control,

quantum engineering, laser-driven atomic [46, 47], molecular physics. When the Hamiltonian

is Hermitian, there are well-developed mathematical tools to approximate the solution of time-

dependent Schrodinger�s equation [3].
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In many physical problems, one often deals with systems described by a non-Hermitian

Hamiltonian [32, 33]: which is an extension of the standard perturbation theory used in

quantum mechanics, under the in�uence of time-dependent non-Hermitian perturbation. The

increasing interest in non-Hermitian dynamics has motivated a new set of mathematical tools,

to explore and understand these complex systems.

We proceed to investigate in detail the main idea of the method to de�ne the principal

e¤ects that generally describes the behavior of the system, and then to detail certain quantities

that included, such as the state of evolution; j (t)i, and transition probability; Pn�!m(t).

2.2.1 State of evolution j (t)i

The state of evolution j (t)i can be calculated approximately from the stationary states of the

system, and the various physical quantities are obtained by calculating the mean values of the

corresponding operators.

Let us consider a stationary system, known by a time-independent Hamiltonian H0, whose

eigenvalues and eigenstates;

H0 jni = En jni n = 0; 1; 2:::: (2.28)

The perturbation denoted as W (t) will be time dependent non-Hermitian (W (t) 6= W (t)+).

Thus, time-dependent non-Hermitian Hamiltonian is given by;

H(t) = H0 +W (t) (2.29)

Where W (t) is small compared to H0; W (t)n H0:

If the perturbation acts at t = t0, the initial state is given by

j (t0)i = U(t0)
X
n

Cn(0) jni (2.30)

where

U(t0) = e�
iH0
~ t (2.31)
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The solutions j (t)i of the Schrodinger equation for the Hamiltonian H(t) veri�es;

H(t) j (t)i = (H0 +W (t)) j (t)i = i~
@

@t
j (t)i (2.32)

we de�ne the auxiliary ket
���� (t)E related with j (t)i as:

j (t)i = e�
iH0t
~

���� (t)E (2.33)

Taking the derivative of (2:33) and using (2:32), thus we �nd The Schrodinger equation for���� (t)E;
~W (t)

���~ (t)E = i~
@

@t

���~ (t)E (2.34)

where

~W (t) = e
iH0t
~ W (t)e�

iH0t
~ (2.35)

In the perturbation theory [3], the state of evolution
���~ (t)E can be written as a linear

combination of the eigenstates jni of the Hamiltonian H0 as;

���� (t)E =X
n

Cn(t) jni (2.36)

If the perturbation is su¢ ciently low, we can express
���� (t)E as:

���~ (t)E = ���~ (0)(t)E+ ���~ (1)(t)E+ ���~ (2)(t)E+ :::::: (2.37)

Now we apply
���~ (t)E to both sides of the Schrodinger equation (2:34), and using @t for the

time derivative, we �nd

i~@t
���~ (0)(t)E+ i~@t ���~ (1)(t)E+ i~@t ���~ (2)(t)E = ~W (t)

���~ (0)(t)E+ ~W (t)
���~ (1)(t)E+ ~W (t)

���~ (2)(t)E
(2.38)

The coe¢ cient of each term of perturbation order must vanish, giving us

i~@t
���~ (0)(t)E = 0 (2.39)
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i~@t
���~ (1)(t)E = ~W (t)

���~ (0)(t)E (2.40)

i~@t
���~ (2)(t)E = ~W (t)

���~ (1)(t)E (2.41)

by regression relation we �nd

i~@t
���~ (n+1)(t)E = ~W (t)

���~ (n)(t)E (2.42)

The �rst equation (2:39) is completely solved:

���� (0)E = j (0)i =X
n

Cn(0) jni (2.43)

The expansion (2:37) evaluated at t = 0 implies that:

���� (0)E = j n(0)i = ����� (0)(0)�+ ����� (1)(0)�+ ����� (2)(0)�+ :::::: (2.44)

Using the zeroth order result, the �rst order equation (2:40) is:

i~@t
����� (1)(t)� = �

W

����� (0)(0)� = �
W (t) j (0)i (2.45)

The solution can be written as an integral equation:

����� (1)(t)� = Z t

0

�
W (t0)

i~
j (0)i dt0 (2.46)

The next equation, of second order (2:41) gives:

i~@t
����� (2)(t)� = �

W

����� (1)(t)� (2.47)

By integration we deduce

����� (2)(t)� = Z t

0

�
W (t0)

i~

����� (1)(t0)� dt0 (2.48)

Using the previous result (2:46), then

����� (2)(t)� becomes as follows;
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����� (2)(t)� = Z t

0

�
W (t0)

i~
dt0
Z t0

0

�
W (t00)

i~
j (0)i dt00 (2.49)

Finaly, the solution j (t)i can be determined using (2:33) and (2:37);

j (t)i = e�
iH(0)t
~

�
j (0)i+

����� (1)(t)�+ ����� (2)(t)�+ :::::

�
(2.50)

2.2.2 Transition Probability Pn�!m(t)

In various Quantum systems, the transition probability plays an important role to describe the

ability of the system to gain or loss the quantum of the energy, by the in�uence of the time

dependent perturbation W (t): If the system is located in the state jni, what is the probability

that it will be found in state jmi at time t ? We procced to calculate the probability of transition

for the system from state jni at t = 0 to state jmi at t, with m 6= n.

The transition probability Pn�!m(t) is de�ned as

Pn�!m(t) = jhm j (t)ij2 (2.51)

where jmi is the state corresponding to the energy level Em; and j (t)i is the state of

evolution given previously in (2:50).

Once the state j (t)i in (2:51) is replaced, one gets:

Pn�!m(t) =
���hmj e� iH0t

~

���� (t)E���2 = ���hm ���� (t)E���2 (2.52)

Now by applying the perturbation expression for
���� (t)E in (2:37), we have

Pn�!m(t) =

����hmj�j (0)i+ ����� (1)(t)�+ ����� (2)(t)�+ :::::

�����2 (2.53)

From j (0)i = jni and hm jni = 0, we �nd

Pn�!m(t) =

����hm ����� (1)(t)�+ hm ����� (2)(t)�+ :::::

����2 (2.54)

A simple expression for P (1)n�!m(t) can be found by �rst-order perturbation theory, by keep-

ing only the �rst term in the sum and using our result for

����� (1)(t)� shown in (2:46);
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P (1)n�!m(t) =

�����hmj
Z t

0

�
W (t0)

i~
jni dt0

�����
2

=

�����
Z t

0

hmj
�
W (t0) jni
i~

dt0

�����
2

(2.55)

Finally, the transition probability to �rst order can be written as

P (1)n�!m(t) =

����Z t

0

ei!mnt
0Wmn(t

0)

i~
dt0
����2 (2.56)

where

hmj
�
W (t0) jni = hmj e

iH0t
~ W (t)e�

iH0t
~ jni = ei!mnt

0
Wmn(t

0) (2.57)

The second order in perturbation, we keep the �rst and second term in the sum (2:54),

and using (2:46), and (2:49) we �nd

P (2)n�!m(t) =

����hm ����� (1)(t)�+ hm ����� (2)(t)�����2
=

�����hmj
Z t

0

�
W (t0)

i~
jni dt0 + hmj

Z t

0

Z t0

0

�
W (t0)

i~

�
W (t00)

i~
jni dt0dt00

�����
2

(2.58)

Thus

P (2)n�!m(t) =

�����
Z t

0

hmj
�
W (t0) jni
i~

dt0 +

Z t

0

Z t0

0

hmj
�
W (t0)

�
W (t00) jni

(i~)2
dt0dt00

�����
2

(2.59)

So, the probability to the second order in time-dependent perturbation is written as

P (2)n�!m�(t) =

�����
Z t

0

ei!mnt
0Wmn(t

0)

i~
dt0 +

Z t

0

Z t0

0

ei!mnt
0 hmjW (t0)W (t00) jni

(i~)2
ei!mnt

00
dt0dt00

�����
2

(2.60)



Chapter 3

Application: Non Hermitian Magnetic

E¤ect

The main of this chapter is to solve time-dependent Non-Hermetian Schrodinger equation for

Spin interacting with Complex external Magnetic Field, using the pseudo-Hermitian invariant

operator IPH(t) method mensioned in the second chapter (Sec.1) as well, where we seek to �nd

the phase of Lewis Riesenfeld, and then the state of evolution j (t)i : The same system, will be

studied using non-Hermitian perturbation (Chap2. Sec 2).

3.1 Spin interacting with Complex external Magnetic

Field: Pseudo Hermitian Invariant method

The interaction of spin with a complex external magnetic �eld is described by the Hamiltonian;

H(t) = ��!�s :
�!
B(t) =

e

m

�!
S :

�!
B(t) (3.1)

where
�!
�S is magnetic momentum,

�!
B(t) 2 C; is time dependent complex external magnetic

�eld and
�!
S is the spin operator;

�!
S = ~

2

�!
� : Once inserting the spin

�!
S into the hamiltonian

H(t) one gets:

H(t) = �B [�xBx(t) + �yBy(t) + �zBz(t)] (3.2)

26



3.1 Spin interacting with Complex external Magnetic Field: Pseudo Hermitian
Invariant method 27

where �B =
~e
2m
is bohr magneton, and �x; �y; �z are the standard Pauli matrices given by (2�2)

matrices as follows:

�x =

0@ 0 1

1 0

1A ; �y =

0@ 0 �i

i 0

1A ; �z =

0@ 1 0

0 �1

1A (3.3)

Pauli matrices obey the following commutation relation:

[�i; �j] = 2i�ijk�k (3.4)

where i is the imaginary unit of complex numbers, and �ijk is levi-civita symbol.

Once replacing �x; �y; �z in the equation (3:2) one obtains;

H(t) = �B

0@ Bz(t) B�(t)

B+(t) �Bz(t)

1A (3.5)

where

B�(t) = Bx(t)� iBy(t) (3.6)

Let us now use the pseudo-hermitian invariant method presented previously using the same

steps :

1. We choose the pseudo-Hermitian invariant operator IPH(t) in the form:

IPH(t) = �(t)�x + �(t)�y + 
(t)�z

=

0@ 
(t) �(t)� i�(t)

�(t) + i�(t) �
(t)

1A (3.7)

where 
(t) and �(t) are real time-dependent functions, while �(t) is complex time-dependent

function.

2. We impose the invariance condition (2:4) for IPH(t) to �nd;

i

~
�
IPH(t); H(t)

�
=

i

~
[(�x�(t) + �y�(t) + �z
(t)) ; �B (�xBx(t) + �yBy(t) + �zBz(t))]

= �2�B
~
f[�(t)Bz � 
(t)By(t)]�x + [
(t)Bx(t)� �(t)Bz(t)]�y

+ [�(t)By � �(t)Bx(t)]�zg (3.8)
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and

@I(t)

@t
=

:
�(t)�x +

:

�(t)�y +
:

(t)�z (3.9)

By inserting the two equations (3:8) and (3:9) into (2:4) we get;

:
�(t) = �2�B

~
(�(t)Bz(t)� 
(t)By(t)) (3.10)

:

�(t) = �2�B
~
(
(t)Bx(t)� �(t)Bz(t)) (3.11)

:

(t) = �2�B

~
(�(t)By(t)� �(t)Bx(t)) (3.12)

3. Let us search for the eigenstates;
����IPHn (t)

E
,
����IPH+n (t)

E
, of IPH(t), IPH+(t) respectively;

IPH(t)
����IPHn (t)

E
= �n

����IPHn (t)
E

(3.13)

the eigenvalues �n verify

det
��IPH(t)� �n1

�� = 0 (3.14)

������ 
(t)� � �(t)� i�(t)

�(t) + i�(t) �
(t)� �

������ = 0 (3.15)

which gives

�� = �
q
�2(t) + �2(t) + 
2(t) (3.16)

let�s consider
����IPH+ (t)

E
=

0@ A

B

1A and
����IPH� (t)

E
=

0@ A0

B0

1A are the eigenvectors of

IPH(t):Then, we substitute
����IPH+ (t)

E
and

����IPH� (t)
E
in equation (3:13) respectively to obtain
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IPH(t)
����IPH+ (t)

E
= �+

����IPH+ (t)
E

(3.17)0@ 
(t) �(t)� i�(t)

�(t) + i�(t) �
(t)

1A0@ A

B

1A = �+

0@ A

B

1A
So that the eigenstates of IPH(t) are given by

����IPH+ (t)
E
=

0@ 1

�+�
(t)
�(t)�i�(t)

1A (3.18)

����IPH� (t)
E
=

0@ 1

���
(t)
�(t)�i�(t)

1A (3.19)

The eigenvalue equation for the adjoint IPH+(t) is

IPH+(t)
����IPH+n (t)

E
= �0n

����IPH+n (t)
E

(3.20)

where

IPH+(t) =
�
IPH(t)

�+
=

0@ 
�(t) (��(t)� i��(t))

(��(t) + i��(t)) �
�(t)

1A (3.21)

So, the eigenvalues of IPH+(t) are given by :

�0� = �
q
��2(t) + ��2(t) + 
�2(t) (3.22)

We consider
����IPH++ (t)

E
=

0@ a

b

1A and
����IPH+� (t)

E
=

0@ a0

b0

1A are the eigenvectors of

IPH+(t): after that, we substitute those vectors in equation (3:20) respectively to �nd

����IPH++ (t)
E
=

0@ 1

�0+�
(t)
��(t)�i�(t)

1A (3.23)
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����IPH+� (t)
E
=

0@ 1

�0��
(t)
��(t)�i�(t)

1A (3.24)

4. Determination of the solution of Schrodinger�s equation; H(t) j n(t)i = i~ @
@t
j n(t)i ;which

given in (2:18);

j n(t)i = ei�n(t)
����IPHn (t)

E
(3.25)

Where �n(t) is the phase function given as

:

�n(t) =
D
�I

PH+

n (t)
��� i @
@t
� 1

~
H(t)

����IPHn (t)
E

(3.26)

The �nal step consists in determining the Schrödinger solution (3:25), which is an eigen-

states of the pseudo-Hermitian invariant(3:7) multiplied by a time-dependent factor (3:26):

We need to calculate the diagonal matrix element of the operator i @
@t
� 1

~H(t);

First we have

D
�I

PH+

n (t)
��� i @
@t

����IPHn (t)
E
=
�
1 �n�
(t)

��(t)�i�(t)

�
i
@

@t

0@ 1

�n�
(t)
�(t)�i�(t)

1A (3.27)

which gives

i

�
�n � 
(t)

�(t)� i�(t)

�0@(� :

(t)) (�(t)� i�(t))�

�
:
�(t)� i

:

�(t)
�
(�n � 
(t))

(�(t)� i�(t))2

1A (3.28)

Second, the term ��B
~

D
�I

PH+

n (t)
���H(t) ����IPHn (t)

E
gives:

��B
~

�
1 �n�
(t)

�(t)�i�(t)

�0@ Bz(t) B�(t)

B+(t) �Bz(t)

1A0@ 1

�n�
(t)
�(t)�i�(t)

1A (3.29)

By simpli�cation we deduce

��B
~

�
�n+ � 
(t)

�(t)� i�(t)

�"
B�(t) +B+(t) + (Bz(t))

 
(�(t)� i�(t))2 � (�n+ � 
(t))2

(�n+ � 
(t)) (�(t)� i�(t))

!#
(3.30)
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Combining the equations: (3:28) and (3:30) gives

D
�I

PH+

n (t)
��� i @
@t
� 1

~
H(t)

����IPHn (t)
E

=

8<:i
�

�n � 
(t)

�(t)� i�(t)

�0@(� :

(t)) (�(t)� i�(t))�

�
:
�(t)� i

:

�(t)
�
(�n � 
(t))

(�(t)� i�(t))2

1A
��B
~

�
�n � 
(t)

�(t)� i�(t)

�"
B�(t) +B+(t) +Bz(t)

 
(�(t)� i�(t))2 � (�n � 
(t))2

(�n � 
(t)) (�(t)� i�(t))

!#)

:

�n(t) =
D
�I

PH+

n (t)
��� i @
@t
� 1

~
H(t)

����IPHn (t)
E

=

�
�n � 


�(t)� i�(t)

�
�B
~

24 Bz

h
(�(t)�i�(t))(�n�
(t))

(�(t)�i�(t))2 � (�(t)�i�(t))2�(�n�
(t))2
(�n�
(t))(�(t)�i�(t))

i
+B+

h
i
(t)(�n�
(t))
(�(t)�i�(t))2 � 1

i
�B� +

(�(t)By(t)��(t)Bx(t))
(�(t)�i�(t))

35(3.31)
Then, we obtain the exact phase which is given by

��(t) = �
�B
~

Z t

0

q
jBz(t)j2 cos2('Bz) + jB+(t)j jB�(t)j cos('+) cos('�)dt

0 = �� (3.32)

Finaly the solution of the Schrodinger equation for the evolved spin is given by

j (t)i =
X
n

Cne
i�n(t)

����IPHn (t)
E
= C+e

i�+(t)
����IPH+ (t)

E
+ C�e

i��(t)
����IPH� (t)

E
(3.33)

Using the equations (3:18), (3:19) gives;

j (t)i = C+

0@ ei�(t)

��
(t)
�(t)�i�(t)e

i�(t)

1A+ C�

0@ e�i�(t)

� �+
(t)
�(t)�i�(t)e

�i�(t)

1A (3.34)

and by chosing the constants C+ = C� =
1
2
; the general solution j (t)i can be written in

the following simpli�ed matricial form;

j (t)i =

0@ cos(�)

�i sin(�)�
(t) cos(�)
�(t)�i�(t)

1A (3.35)
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3.2 Non Hermitian Magnetic perturbation

Let us take the previous interaction (3:1), but instead of using pseudo invariant method, we ad-

apt Non Hermitian perturbation approach for a non Hermitian Magnetic perturbation described

by the following Hamiltonian:

H(t) = H0 +W (t) (3.36)

with H0 is time independant Hermitian;

H0 =
~e
2me

0@ B0 0

0 �B0

1A ; where; B0 2 R (3.37)

and the non hermitian Magnetic Perturbation potential W (t) is given by

W (t) =
~e
2me

0@ Bei!t Bei!t

Be�i!t �Bei!t

1A (3.38)

where: B
B0

� 1, and Bei!t is time dependent complexe external magnetic �eld. The

eigenvectors and eigenvalues of H0 can be obtained by the equation

det jH0 � E1j = 0 (3.39)

=) ~e
2me

������ B0 � E 0

0 �B0 � E

������ = 0 (3.40)

So the eigenvalues of H0 can be written in the form

E� = ��BB0 = �~!0 (3.41)

with

!0 =
eB0
2me

(3.42)

and for eigenvectors we take the eigenvalue equation
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H0 jE�i = E � jE�i (3.43)

we obtain

jE+i =

0@ 1p
2

0

1A (3.44)

jE�i =

0@ 0

1p
2

1A (3.45)

The initial state of the system is given by

j (0)i = c+(0) jE+i+ c�(0) jE�i

=

0@ c+(0)p
2

c�(0)p
2

1A (3.46)

Once Taking the normalisation condition; h (0) j (0)i for initial state of evolution one

gets;

j (0)i =

0@ 1p
2

1p
2

1A (3.47)

As mensioned in the second chapter, in the equations: (2:46), (2:35), and (2:33), the state

of �rst order in perturbation is given by;

��� (1)(t)E =
e�

iH0t
~

i~

Z t

0

�
W (t0) j (0)i dt0

=
e�

iH0t
~

i~

Z t

0

e
iH0t

0
~ W (t0)e�

iH0t
0

~ j (0)i dt0

=
�Be

� iH0t
~

i~

Z t

0

e
iH0t

0
~

0@ Bei!t
0

Bei!t
0

Be�i!t
0 �Bei!t0

1A e�
iH0t

0
~

0@ 1p
2

1p
2

1A dt0

=
�BB

~ (! � 2!0)

0@ ei(
!
2
�2!0)t sin

�
!�2!0
2

�
t

e�i2!0ti(2!0 cos(!t)�i! sin(!t))
(!+2!0)

1A (3.48)
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Using the equation (2:49), as mensioned in the second chapter, the state of second order is

written as����� (2)(t)� =
�1
~2

Z t

0

�
W (t0)dt0

Z t0

0

�
W (t00) j (0)i dt00

=
�1
~2

Z t

0

�
W (t0)dt0

����� (1)(t0)�

=
�1p
2~2

�BB

~ (! � 2!0)

Z t

0

�B

0@ Bei!t
0

Bei!t
0

Be�i!t
0 �Bei!t0

1A0@ ei(
!
2
�2!0)t0 sin

�
!�2!0
2

�
t0

e�i2!0t
0
i(2!0 cos(!t0)�i! sin(!t0))

(!+2!0)

1A dt0

=
�2BB

2

2
p
2~2

0B@ [iei2!0t�i cos(!t)+2 sin(!0t)]
(!2�4!20)

[iei2!0t+i cos(!t)�2 sin(!0t)]
(!2�4!20)

1CA (3.49)

Now we determine the transition probability in �rst order, from the equation (2:55) and

(3:38), we get

P
(1)
E+ �E�(t) =

���� 1i~
Z t

0

hE+j
�
W (t0) jE�i dt0

����2

=

������ 1i~
Z t

0

ei2!0t
0
�

1p
2
0
�
�B

0@ Bei!t
0

Bei!t
0

Be�i!t
0 �Bei!t0

1A0@ 0

1p
2

1A dt0

������
2

=

�����BB2i~
Z t

0

ei2!0t
0
ei!t

0
dt0
����2

=

�
�BB

2~(! + 2!0)

�2
sin2

�
! + 2!0
2

t

�
(3.50)

and the probability of second ordre in perturbation is obtained from (2:46), and the equation

(3:38)
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P
(2)
E+ �E�(t) =

����� 1i~
Z t

0

hE+j
�
W (t0) jE�i dt0 +

1

(i~)2

Z t

0

Z t0

0

hE+j
�
W (t0)

�
W (t00) jE�i dt0dt00

�����
2

=

���������������

n
�BB
2i~

R t
0
ei(!+2!0)t

0
dt0

+
�2B
(i~)2

R t
0

�
1p
2
0
�0@ Bei!t

0
Bei!t

0

Be�i!t
0 �Bei!t0

1A ei2!0t
0
dt0

R t0
0

0@ Bei!t
00

Bei!t
00

Be�i!t
00
�Bei!t

00

1A ei2!0t
00

0@ 0

1p
2

1A dt00

9>>>>>>=>>>>>>;

���������������

2

=

���������

(
�BBe

i(!+2!02 )t sin(!+2!0
2

t)

2i~(!+2!0)

� (�BB)
2[iei2!0t�i cos(!t)+2 sin(!0t)]

~2(!2�4!20)

�
���������
2

(3.51)

In conclusion, non-Hermitian magnetic perturbation provides an important theoretical

framework for the study of quantum systems under the in�uence of complex perturbation

(3:38). This o¤er provides e¤ective prediction into a wide range of physical phenomena, such

as: complex Zeeman �eld drives quantum phase transitions in the Ising model [46, 47].



Conclusion
During this thesis :

� We have recalled in historical brief, how non-Hermitian Hamiltonians have been intro-

duced in the literature.

� It has been presented in detail the concepts of PT -symmetry, the pseudo-hermiticity, PT

and CPT inner-products.

� The pseudo-hermiticity has been generalized for time dependent Quantum systems to

develop the pseudo-invariant method.

� The pseudo-invariant method has been examinated to study non-Hermitian Quantum sys-

tems, and we have found that this method is e¤ective and preserves the postulates of Quantum

Mechanics.

�We have deduced with a concrete example the solution of the time-dependent Schrodinger

equation for a spin interacting with complex external magnetic �eld.

� We have discussed the non-Hermitian magnetic perturbation.
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Abstract: 

In this work, we recall the concepts of PT-symmetry, the pseudo-Hermiticity, PT and CPT 

inner products. We study the non-Hermitian quantum systems described by the non-Hermitian 

Hamiltonian with an examination of the pseudo-invariant theory. We use a pseudo Hermitian 

invariant operator to solve analytically time-dependent Schrodinger equation for a spin 

interacting with complex external magnetic field with unitary evolution. Finally, perturbation 

theory for the non-Hermitian case is discussed as well. 

 

Résume : 

Dans ce travail, nous rappelons les concepts de PT-symétrie, pseudo-Herméticité, et de produits 

scalaires PT et CPT. Nous étudions les systèmes quantiques non Hermétiques décrits par 

l'hamiltonien non Hermétique en examinant la méthode des invariants pseudo-Hermétique. 

Nous utilisons un opérateur invariant pseudo Hermétique pour résoudre analytiquement 

l'équation de Schrödinger dépendante du temps pour un spin en interaction avec un champ 

magnétique externe complexe avec une évolution unitaire. Enfin, la théorie des perturbations 

pour le cas non-Hermitien est également discutée.   

 

 :الملخص

 غير وميةنظمة الكمالأندرس . CPTو PT جداء السلمي، والةشبه هرميتيال، PTتناظر المفاهيم بذكر ن هذا العمل،في 

اللا  ستعمل. نالشبه هرميتي متغيرلا نظرية ال على مع التركيز هرميتيغير  هاملتون على وصفهاتعتمد في التي  ةتيالهرمي

مع  مركبمغناطيسي خضع لحقل ي في حالة سبين بالزمنة تعلقر المغمعادلة شرودنل تحليلي حللإيجاد المتغير الشبه هرميتي 

 .ةتيالهرمينظرية الاضطراب في الحالة غير  نناقش، في النهاية. زمني محفوظتطور 
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