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Abstract 

 

Network security is increasingly challenged by sophisticated cyber threats, necessitating advanced 

methods for anomaly detection. In this project, we developed an anomaly detection application 

specifically designed for cybersecurity datasets.  

Our contribution includes a Python-based application that integrates both supervised and 

unsupervised anomaly detection techniques, leveraging statistical, clustering, and machine 

learning approaches. The application is capable of analyzing both pre-existing and synthetic 

datasets, providing comprehensive anomaly detection and actionable insights for enhancing cyber 

defenses.  

We evaluated the application through a detailed case study in network security, applying it to real-

world scenarios. The results demonstrate the effectiveness of our application in identifying 

anomalies and potential threats within network traffic. The flexibility in selecting various anomaly 

detection methods ensures adaptability to diverse cybersecurity datasets, underscoring the practical 

relevance and robustness of our approach. 

Keywords: anomaly detection, network security, cybersecurity, supervised learning, unsupervised 

learning, machine learning, statistical methods, clustering, Python, synthetic datasets, cyber 

threats, data analysis. 
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Résumé 
 

La sécurité des réseaux est de plus en plus confrontée à des menaces cybernétiques sophistiquées, 

nécessitant des méthodes avancées de détection d'anomalies. Dans ce projet, nous avons développé 

une application de détection d'anomalies spécifiquement conçue pour les ensembles de données 

de cybersécurité. 

Notre contribution comprend une application basée sur Python qui intègre à la fois des techniques 

de détection d'anomalies supervisées et non supervisées, en utilisant des approches statistiques, de 

clustering et d'apprentissage automatique. L'application est capable d'analyser à la fois des 

ensembles de données existants et synthétiques, fournissant une détection complète des anomalies 

et des informations exploitables pour renforcer les défenses cybernétiques. 

Nous avons évalué l'application à travers une étude de cas détaillée en sécurité réseau, en 

l'appliquant à des scénarios réels. Les résultats démontrent l'efficacité de notre application pour 

identifier les anomalies et les menaces potentielles dans le trafic réseau. La flexibilité dans le choix 

des différentes méthodes de détection d'anomalies garantit une adaptabilité aux divers ensembles 

de données de cybersécurité, soulignant la pertinence pratique et la robustesse de notre approche. 

Mots-clés: détection d'anomalies, sécurité réseau, cybersécurité, apprentissage supervisé, 

apprentissage non supervisé, apprentissage automatique, méthodes statistiques, clustering, Python, 

ensembles de données synthétiques, menaces cybernétiques, analyse de données.  
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 ملخص 

 

 لاكتشاف متقدمة أساليب وجود يستدعي مما المعقدة، السيبرانية التهديدات من لتحديات متزايد بشكل الشبكات أمن  يتعرض

 .المعلومات بأمن الخاصة البيانات لمجموعات خصيصًا مصمم الشوائب لكشف تطبيق بتطوير قمنا المشروع، هذا في .الشوائب

 الموجهة، وغير توجيهها تم التي الشوائب عن الكشف تقنيات من كل يدمج بايثون البرمجة لغة على مبنيًا تطبيقًا مساهمتنا تشمل

 والمزيفة، الحالية البيانات مجموعات من كل تحليل التطبيق يستطيع .الآلة وتعلم التجميع وتقنيات الإحصائية الأساليب باستخدام

 .السيبرانية الدفاعات لتعزيز للتنفيذ قابلة ورؤى للشوائب شاملًً كشفًا يوفر مما

 النتائج تظهر .واقعية سيناريوهات على تطبيقه تم حيث الشبكات، أمنً في مفصلة حالة دراسة خلل من التطبيق بتقييم قمنا

 أساليب مختلف اختيار مرونة يضمن .الشبكة على المرور حركة داخل المحتملة والتهديدات الشوائبً تحديد في تطبيقناً فعالية

 .لنهجنا التحليلية والقوة العملية الأهمية على يؤكد مما المتنوعة، السيبرانية البيانات مجموعات مع التكيف قابلية الشوائب كشف

ال  الآلي، التعلم الإشرافي، غير التعلم الإشرافي، التعلم السيبراني، الأمن الشبكات، أمن الشوائب، كشف :مفتاحيةالكلمات 

 .البيانات تحليل السيبرانية، التهديدات مزيفة، بيانات مجموعات بايثون، التجميع، الإحصائية، الأساليب
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General Introduction 

In today's digital age, network security is a critical concern for organizations worldwide. As 

cyber threats become more sophisticated and pervasive, traditional security measures are often 

insufficient to detect and mitigate these evolving threats. Anomaly detection has emerged as a vital 

technique in the realm of cybersecurity, capable of identifying unusual patterns or behaviors that 

may indicate malicious activities. This thesis focuses on the development and application of an 

anomaly detection system tailored specifically for network security. 

1. Context of the Study 

The rapid expansion of the internet and the increasing complexity of network infrastructures 

have made them prime targets for cyber-attacks. Organizations are constantly at risk of data 

breaches, malware infections, and other forms of cyber threats that can compromise sensitive 

information and disrupt operations. Traditional security systems, which rely on predefined rules 

and signatures, struggle to keep up with the dynamic nature of modern cyber threats. Anomaly 

detection offers a promising solution by identifying deviations from normal behavior, potentially 

uncovering previously unknown threats. 

2. Problem Statement 

Despite the advancements in anomaly detection techniques, there remains a significant 

challenge in effectively applying these methods to network security. Existing solutions often lack 

the flexibility to adapt to the diverse and dynamic nature of network traffic. Additionally, the 

integration of supervised and unsupervised learning methods within a single framework is rarely 

achieved, limiting the robustness and effectiveness of current systems. This thesis addresses these 

gaps by developing a comprehensive anomaly detection application that leverages a wide range of 

techniques and is specifically designed for cybersecurity datasets. 
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3. Objective of the Study 

The primary objective of this project is to create an anomaly detection application that 

combines both supervised and unsupervised techniques, drawing from statistical, clustering, and 

machine learning approaches. Our application aims to analyze both pre-existing and synthetic 

cybersecurity datasets, providing a robust and flexible tool for identifying anomalies and potential 

threats within network traffic. By offering comprehensive anomaly detection and actionable 

insights, the application aims to enhance cyber defenses and facilitate proactive measures against 

cyber threats. 

4. Methodology 

The development of our anomaly detection application follows a systematic approach that 

incorporates loading and preparing data tasks for both historical and synthetic datasets, integrating 

supervised and unsupervised anomaly detection methods, including statistical analysis, clustering 

algorithms, and machine learning models, into a unified application, implementing and testing, 

and finally conducting a detailed case study in network security to demonstrate the practical 

application of the system.  

5. Organization of the Thesis 

The remainder of this thesis is organized into four chapters: 

⚫ Chapter 1 provides an overview of the fundamental concepts in anomaly detection. 

⚫ Chapter 2 focus on applications of anomaly detection techniques in network security.  

⚫ Chapter 3 details the design and architecture of our anomaly detection application.  

⚫ Chapter 4 presents the implementation details of our application, including the user interface 

and functionality. We also focus on the case study conducted to evaluate our application then 

provide a comprehensive analysis of the results, compare the performance of different 

anomaly detection methods, and discuss the practical implications of our findings.  



   

 

3 

 

Chapter 01: Anomaly Detection 

1.1. Introduction  

Anomaly detection is an essential task for identifying atypical behaviors in data. This chapter 

provides an overview of the fundamental concepts in anomaly detection. It covers the definitions, 

types, and importance of anomaly detection in various domains. The aim is to gain an 

understanding of the basic process of identifying deviations from normal behavior, laying the 

groundwork for more advanced discussions. 

1.2. Definition of Anomaly  

An anomaly, in the context of data analysis and machine learning, refers to a data point or a 

subset of data points that significantly deviates from the expected pattern or behavior of the 

majority of the data [1]. Anomalies are often indicative of rare or unusual events, and they can 

signal important insights such as system malfunctions, fraud, or changes in underlying patterns. 

1.3. Anomaly Detection 

Anomaly detection, also known as outlier detection, is a technique used in data analysis and 

machine learning to identify data points or patterns that deviate significantly from the norm or 

expected behavior [2]. These deviations are often referred to as anomalies or outliers and could 

indicate unusual events, errors, or potential fraud in the data.  

Anomaly detection has applications across various industries, including finance (for fraud 

detection), manufacturing (to identify defects or equipment malfunctions), cybersecurity (to detect 

unusual network activity), and healthcare (to identify abnormal patient conditions). It plays a 

crucial role in improving data quality, enhancing decision-making, and optimizing machine 

learning performance. 
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1.4. Key Characteristics of Anomalies 

⚫ Deviation: Anomalies deviate from the normal behavior or distribution of the data. 

⚫ Rarity: They occur infrequently within the dataset. 

⚫ Unexpectedness: Anomalies are not anticipated based on the existing data trends. 

 

1.5. Importance of Anomaly Detection Task 

Anomaly detection plays a crucial role in data analysis and machine learning for several 

reasons: 

⚫ Detecting anomalies helps identify unusual patterns, outliers, or unexpected events within a 

dataset.  

⚫ Detecting anomalies helps improve data quality by addressing errors, noise, or inconsistencies 

in the data.  

⚫ Anomalies can impact decision-making processes. By identifying them, organizations can 

make informed decisions.  

⚫ Anomaly detection is vital for identifying suspicious or malicious behavior. It helps detect 

network intrusions, unauthorized access, or unusual system activity. Cybersecurity systems 

rely on anomaly detection to protect against threats. 

⚫ Anomalies in financial data can signal potential risks. Detecting them helps manage risk 

exposure, whether in stock market trading, credit scoring, or insurance underwriting. 

⚫ In Natural Language Processing (NLP), detecting unusual language patterns can help identify 

spam emails, fake reviews, or abnormal chatbot interactions. 
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1.6. Aspects of the Anomaly Detection Problem 

In this section, we will explore various aspects of the anomaly detection problem. Each aspect 

plays a crucial role in designing and implementing effective anomaly detection systems. 

1.6.1. Nature of the Data 

The nature of the data is a crucial aspect in anomaly detection. Data can be structured, semi-

structured, or unstructured, and their quality and quantity can influence the accuracy of anomaly 

detection models. Data characteristics such as dimensionality and distribution also play an 

important role [4]. 

1.6.2. Types of Anomalies 

There are several types of anomalies: point anomalies, contextual anomalies, and collective 

anomalies. Each of these anomalies requires specific detection techniques tailored to their unique 

characteristics [2].    

❖ Point Anomalies 

Point anomalies, refer to individual data points that deviate significantly from the majority of 

data points in a dataset. These anomalies are isolated and can be identified by their deviation in 

value from the expected range or pattern of the data [2].  

For example, consider a dataset that records the daily temperature of a city over a year. The 

temperature usually ranges between -10°C to 35°C. If one day the recorded temperature is 100°C, 

this data point would be considered a point anomaly because it significantly deviates from the 

typical temperature range. 

❖ Contextual Anomalies 

Contextual anomalies, also known as conditional anomalies, are data points that significantly 

deviate from expected behavior only within a specific context or condition. Unlike point 
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anomalies, contextual anomalies may appear normal in a general context but become abnormal 

when examined in relation to additional contextual attributes such as time or location [2]. 

For example, a temperature of 30°C might be normal in the summer but abnormal in the winter.  

Detecting contextual anomalies is particularly useful in fields such as environmental 

monitoring, fraud detection, and network management, where data behavior can vary depending 

on the context [2]. 

❖ Collective Anomalies 

Collective anomalies occur when a set of data points, considered together, significantly 

deviates from the expected behavior, even if the individual data points might appear normal on 

their own. These anomalies are identified by analyzing groups of data rather than isolated points, 

allowing for the detection of abnormal behaviors at the dataset level. 

For example, a series of small financial transactions made within a short period may seem 

normal individually, but when taken together, they could indicate fraudulent behavior. Detecting 

collective anomalies is particularly important in fields such as cybersecurity, fraud detection, and 

industrial system monitoring, where abnormal patterns may only emerge when a group of data is 

considered as a whole [2]. 

1.6.4. Output of Anomaly Detection Techniques 

In anomaly detection, the manner in which anomalies are represented in the output is crucial. 

Typically, anomalies are represented in one of two ways [8]: 

❖ Scoring method : Scoring-based anomaly detection techniques allocate an anomaly score to 

each data point. These scores are then ordered, enabling an analyst to identify anomalies either 

by direct selection or by setting a threshold.  

❖ Binary Classification: Binary classification techniques output results in a simple binary 

format: either normal or anomalous.  
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1.6.5. Anomaly Detection Process 

 

Figure 1 Anomaly detection process 

1. Data Input: The raw data collected from various sources (e.g., sensor data, transaction logs, 

user activity). 

2. Preprocessing: The raw data is cleaned and transformed to remove noise and handle missing 

values, making it suitable for analysis. 

3. Feature Extraction: Relevant features are selected or extracted from the preprocessed data 

to help the anomaly detection algorithms. 

4. Anomaly Detection: Algorithms are applied to detect anomalies. This step can involve 

scoring each data point or classifying them as normal or anomalous. 

5. Output: The results of the anomaly detection are represented as either anomaly scores or 

binary labels (normal or anomalous). 

 

1.7. Challenges of Anomaly Detection 

Anomaly detection encounters several challenges that can impede its effectiveness across 

various applications. These challenges have been extensively discussed in academic literature and 

include: 
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⚫ Scalability: Anomaly detection algorithms must be capable of handling large-scale 

datasets efficiently to meet the demands of modern data-driven applications [9]. 

⚫ Imbalanced Data: Anomalies are often rare events compared to normal instances, 

leading to imbalanced datasets. Dealing with imbalanced data requires specialized 

techniques to prevent biased models and ensure accurate anomaly detection [10]. 

⚫ Complexity of Anomalies: Anomalies can exhibit intricate patterns and behaviors, 

making them challenging to detect using conventional methods. Advanced anomaly 

detection techniques capable of capturing complex anomalies have been proposed by 

researchers such as Pang et al. (2016) in their work on detecting complex anomalies 

in sensor data [11]. 

⚫ Interpretability: Understanding and interpreting detected anomalies are crucial for 

taking appropriate actions. However, some anomaly detection algorithms may produce 

complex or opaque results, making it challenging for users to interpret and trust the 

outcomes [12]. 

1.9. Conclusion  

By delving into fundamental anomaly detection principles, we've established a solid 

foundation for understanding its applications across various domains. These concepts lay the 

groundwork for more specialized discussions, preparing us to explore anomaly detection's role in 

network security. 
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Chapter 02: Anomaly Detection and Network Security  

2.1. Introduction 

Focusing on the specific application of anomaly detection within network security, this chapter 

explores the unique challenges and requirements of detecting anomalies in network traffic. It 

discusses common threats, key detection techniques, and the significance of anomaly detection 

methods in safeguarding network integrity and preventing cyber attacks. 

2.2. Cybersecurity Fundamentals 

2.2.1. Definition of Cybersecurity 

Cybersecurity refers to any technology, measure, or practice aimed at preventing 

cyberattacks or mitigating their impact. Its primary goal is to protect individuals’ and 

organizations’ systems, applications, computing devices, sensitive data, and financial assets 

against various threats [13].  

Cybersecurity in the context of network security refers to the practice of protecting the 

integrity, confidentiality, and availability of information as it is transmitted, processed, and stored 

within and across computer networks. This involves implementing a range of technologies, 

processes, and policies designed to defend against unauthorized access, misuse, disruption, 

modification, or destruction of network resources, data, and services. 

2.2.2. Cybersecurity Goals 

⚫ Confidentiality: Confidentiality ensures that sensitive information is accessible only 

to authorized individuals. 

⚫ Integrity: Ensuring data integrity means that information remains accurate, unaltered, 

and trustworthy unless modified by authorized individuals. 
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⚫ Availability: Cybersecurity aims to ensure that systems and services are available 

when needed.  

⚫ Traceability: Traceability involves tracking and auditing system activities to identify 

any unauthorized or suspicious behavior. It helps in investigating incidents and 

maintaining accountability. 

2.2.3. Cyberattack  

A cyberattack is a deliberate attempt by individuals or organizations to breach the information 

system of another individual or organization. These attacks aim to steal, alter, or destroy data, 

disrupt operations, or gain unauthorized access to computer systems and networks. Cyberattacks 

can target a wide range of entities, including individuals, companies, governments, and critical 

infrastructure. 

2.2.4. Network Attacks 

Network attacks are unauthorized actions on the digital assets within an organizational 

network. Malicious parties execute these attacks to alter, destroy, or steal private data. 

2.2.5. Types of Network Attacks 

There are two main types of network attacks: 

❖ Passive Network Attacks 

In passive attacks, malicious actors gain unauthorized access to networks, monitor traffic, and 

steal private data without altering it. Essentially, they eavesdrop on sensitive information. 

Examples include eavesdropping on network communications or stealing data without leaving any 

noticeable trace. 

❖ Active Network Attacks 

Active attacks involve modifying, encrypting, or damaging data within the network. Common 

examples of active network attacks include: 
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⚫ DoS (Denial-of-Service) and DDoS (Distributed Denial-of-Service) Attacks: 

Overwhelm system resources to the point where it cannot respond to legitimate service 

requests. 

⚫ Man-in-the-Middle (MITM) Attacks: Intercept data transmitted between two 

parties, compromising privacy and integrity. 

⚫ SQL Injection Attacks: Exploit unmoderated user data inputs to manipulate 

databases. 

⚫ Phishing Attacks: Deceptive emails or websites trick users into revealing sensitive 

information. 

⚫ Malware Attacks: Introduce malicious software (e.g., Trojan horses) into the 

network. 

⚫ URL Spoofing Attacks: Manipulate URLs to deceive users. 

⚫ Web Application Vulnerability Attacks: Exploit weaknesses in web applications. 

⚫ Drive-by Attacks: Automatically infect devices when users visit compromised 

websites. 

⚫ Eavesdropping Attacks: Intercept and monitor network traffic. 

 

2.3. Role of Anomaly Detection in Network Security 

Anomaly detection is a crucial component in network security for identifying unusual patterns or 

behaviors that may indicate the presence of malicious activities, potential threats, or network 

intrusions.  Key roles include: 
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❖ Early Threat Detection 

⚫ Proactive Defense: Anomaly detection systems can identify abnormal behaviors in 

real-time, allowing for early detection of potential threats before they cause significant 

damage. 

⚫ Zero-Day Attack Mitigation: By detecting deviations from normal patterns, anomaly 

detection can help identify zero-day attacks that exploit unknown vulnerabilities. 

❖ Complementing Signature-Based Detection 

⚫ Enhanced Security: While signature-based detection systems rely on known patterns 

of malware or attack signatures, anomaly detection can identify novel or unknown 

threats. 

⚫ Comprehensive Coverage: Combining both anomaly and signature-based detection 

provides a more robust security posture. 

❖ Behavioral Analysis 

⚫ User and Entity Behavior Analytics (UEBA): Anomaly detection systems can monitor 

user behavior, identifying activities that deviate from established norms, such as 

unusual login times or accessing atypical resources. 

⚫ Network Traffic Analysis: Continuous monitoring of network traffic to identify 

unusual patterns that may indicate data exfiltration, lateral movement, or 

communication with malicious servers. 

❖ Incident Response and Forensics 

⚫ Rapid Response: Quick identification of anomalies enables faster incident response, 

containment, and remediation of threats. 

⚫ Investigative Insights: Anomaly detection provides valuable insights for forensic 

analysis, helping to understand the nature and extent of an attack. 
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❖ Reducing False Positives 

⚫ Adaptive Learning: Modern anomaly detection systems use machine learning 

algorithms that adapt to evolving network conditions and user behaviors, reducing the 

number of false positives and improving detection accuracy. 

❖ Compliance and Auditing 

⚫ Regulatory Requirements: Many regulations and standards (e.g., GDPR, HIPAA) 

require continuous monitoring and anomaly detection to ensure the security and 

privacy of sensitive data. 

⚫ Audit Trails: Anomaly detection systems maintain logs of detected anomalies, which 

are useful for compliance audits and reporting. 

2.4. Types of Network Anomalies 

⚫ Network Traffic Anomalies: Detect unusual spikes, drops, or patterns in network 

traffic volume, protocols, or ports. 

⚫ User Behavior Anomalies: Identify abnormal login times, access requests, or data 

transfers. 

⚫ System Resource Anomalies: Monitor CPU, memory, and disk usage for unexpected 

spikes. 

⚫ Application-Level Anomalies: Detect irregularities in application logs or 

transactions. 

⚫ Protocol Violations: Identify non-compliant or suspicious network protocol behavior. 

2.5. Anomaly Detection for Network Security: Use Cases 

⚫ Intrusion Detection: Anomaly detection helps identify unauthorized access attempts, 

port scans, or brute-force attacks. 

⚫ Insider Threat Detection: Detects abnormal behavior by employees or contractors. 
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⚫ Malware Detection: Identifies unusual patterns associated with malware activity. 

⚫ Fraud Detection: In financial systems, it detects fraudulent transactions. 

⚫ Industrial Control Systems (ICS) Security: Monitors deviations in critical 

infrastructure networks. 

2.6. Approaches of Anomaly Detection 

Anomaly detection in network security employs a variety of techniques to identify unusual 

patterns or behaviors that may indicate security threats. These techniques can be broadly 

categorized into statistical methods, machine learning approaches, rule-based systems, and hybrid 

models. 

2.6.1. Statistical Approaches 

Statistical techniques look for anomalies by applying the concepts of probability and statistical 

reasoning (i.e. comparing data points to the overall distribution). They offer measurable metrics of 

normalcy and deviation and are particularly effective at objectively identifying outliers in a variety 

of data sets. Some of the key statistical techniques used are [8]:  

⚫ Descriptive Statistics: In descriptive statistics, normal behavior is defined and outliers 

are identified by using summary statistics such as mean, median, standard deviation, 

and interquartile range. 

⚫ Hypothesis Testing: Creating and evaluating hypotheses in order to ascertain whether 

an observed data point substantially deviates from the expected distribution is known 

as hypothesis testing. Methods include the Grubbs test and Z-scores. 

⚫ Box Plots: A box plot (see Figure 1), sometimes called a box-and-whisker plot, is a 

visual depiction of a dataset's distribution. Essential summary statistics including the 

median, quartiles, and outliers are shown. The interquartile range (IQR) of the data is 

represented by a box in the plot, and the median is shown by a line inside the box. The 
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range of the data outside the IQR is represented by whiskers that extend from the box; 

optional points or dots are used to indicate outliers [18]. 

⚫ HBOS : HBOS (Histogram-based Outlier Score) is an anomaly detection method used 

to find outliers in a dataset. Every feature in the dataset is given a histogram, and the 

probability density of the data inside these histograms is used to determine the outlier 

scores. When compared to normal data points, HBOS assumes that outliers have lower 

probability densities [19]. 

⚫ Principal Component Analysis (PCA):  By highlighting anomalies and identifying 

important patterns based on departures from the principal components, PCA reduces 

dimensionality to identify key patterns and highlight anomalies based on deviations 

from the principal components. 

⚫ Density Estimation: Determines areas of low probability, which point to anomalies, 

by estimating the probability density function of the data. Among the methods is kernel 

density estimation. 

⚫ Time Series Analysis: Time series analysis examines patterns in temporal data and 

looks for anomalies when these patterns deviate. approach variations from the 

anticipated time-series behavior, such as the ARIMA model. 

 

Figure 2: Box plot 
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2.6.2. Clustering Approaches 

A clustering-based anomaly detection method makes use of the idea of assembling related data 

points into clusters. Anomalies are found by comparing the data points to the normal patterns found 

within their clusters after they have been grouped.  

Clustering approach for anomaly detection encompasses several models. The most frequently 

employed methods are: 

⚫ K-Means: K-Means is a clustering algorithm used to partition a dataset into K clusters. 

The algorithm iteratively assigns each data point to the nearest cluster centroid and 

then recalculates the centroid of each cluster based on the data points assigned to it. 

This process continues until the centroids no longer change significantly or until a 

maximum number of iterations is reached. K-Means aims to minimize the sum of 

squared distances between data points and their respective cluster centroids. Points far 

from their assigned cluster centroid are considered anomalies. 

⚫ DBSCAN: DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

identifies clusters based on dense regions of data points and labels points in sparse 

regions as noise (outliers). Outliers are explicitly identified as points not belonging to 

any dense cluster. 

⚫ Local Outlier Factor (LOF): LOF measures the local deviation of a data point’s 

density compared to its neighbors. It compares the Local Reachability Density (LRD) 

of a point to that of its neighbors. A LOF score close to 1 indicates that the LRD around 

the point is similar to its neighbors, suggesting it’s not an outlier. 

2.6.3 Rule-Based Systems 

Rule-based approaches for anomaly detection rely on predefined rules or heuristics derived 

from expert knowledge or historical data to identify unusual or suspicious behavior. These systems 

rely on Boolean logic, thresholds, and pattern matching to detect anomalies based on specified 

criteria.  
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Examples 

✓ Alert if more than five failed login attempts occur within 10 minutes. (Predefined 

Rules) 

✓ If a user accesses the system from multiple geographically distant locations within a 

short period, mark it as suspicious. (Heuristics) 

✓ Alert if an IP address attempts to access more than three distinct servers AND the 

access occurs outside business hours. (Boolean Logic) 

✓ Raise an alert if CPU usage exceeds 90% for more than 10 minutes. (Threshold) 

✓ Identify traffic patterns resembling known DDoS attack signatures. (Pattern 

Matching) 

 While rule-based systems are simple, transparent, and computationally efficient, they require 

regular updates to handle evolving threats and can suffer from high false positive and negative 

rates. Despite these challenges, rule-based methods remain a fundamental tool in the anomaly 

detection toolkit. 

2.6.4. Other Techniques 

Additional famous methods for detecting anomalies include Isolation Forests, Neural 

Networks, Support Vector Machines (SVM). 

❖ Isolation Forests 

Isolation Forests, or IForests, utilize a group of binary trees known as isolation trees (iTrees) 

to isolate instances within a dataset. This method recursively partitions the data through random 

feature selection and random split values. IForests are particularly efficient because they focus on 

isolating data points rather than relying on similarity or distance measures. The underlying 

principle is that anomalies are few and different, making them easier to isolate. This method 

encodes variable-length sequences into a single, fixed-size vector, facilitating anomaly detection 

[21]. 
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❖ Support Vector Machines (SVM) 

Support Vector Machines (SVM) are a set of supervised learning methods used for 

classification, regression, and outlier detection. For anomaly detection, SVM is typically used in 

its one-class form, known as One-Class SVM (OCSVM) [25].  

One-Class Support Vector Machine (One-Class SVM) operates by learning a decision 

boundary that encapsulates the normal data points within a high-dimensional feature space. During 

training, the One-Class SVM aims to separate the normal data from the origin with maximum 

margin, assuming that the majority of the training data represents normal behavior. Points that lie 

outside this learned boundary during inference are considered anomalies. This method is effective 

for identifying outliers in scenarios where the training data primarily consists of normal instances. 

❖ Autoencoders 

Autoencoders are neural networks used for anomaly detection, consisting of an encoder and a 

decoder. The encoder compresses input data into a lower-dimensional latent space, while the 

decoder reconstructs the original data from this representation. During training, the autoencoder 

learns to minimize the reconstruction error using normal data. The key assumption is that the model 

will effectively reconstruct normal data but struggle with anomalies, resulting in higher 

reconstruction errors. Anomalies are identified based on these elevated reconstruction errors, 

distinguishing them from normal data points. 

2.3. Conclusion 

Through an exploration of network security challenges and anomaly detection techniques, 

we've underscored the critical importance of robust detection methods in safeguarding networks. 

This understanding sets the stage for further examination of practical implementations in our 

developed system.s based on different approaches 
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Chapter 03: Methodology and System Design 

3.1. Introduction 

This chapter introduces our methodology for developing an anomaly detection application for 

network security. It details the system's functionalities, including data manipulation, visualization, 

and the integration of various detection techniques. Additionally, it outlines the performance 

evaluation metrics implemented to assess the effectiveness of the system in identifying network 

anomalies. 

3.2. Project Description 

In our project, we’ve developed an innovative anomaly detection application tailored 

specifically for cybersecurity datasets. Our Python-based application incorporates both supervised 

and unsupervised anomaly detection techniques, drawing from statistical, clustering, and machine 

learning approaches. It is designed to analyze pre-existing security datasets as well as generate 

synthetic datasets for experimentation and evaluation purposes. 

The primary objectives of our application are as follows: 

✓ Comprehensive Anomaly Detection: Our application thoroughly analyzes 

cybersecurity datasets to identify deviations from normal patterns, regardless of 

whether the data is historical or synthetic, employing a spectrum of anomaly 

detection methods. 

✓ Insightful Analysis for Proactive Defense: Providing security analysts with 

actionable insights derived from anomaly detection algorithms, our application 

facilitates proactive measures to strengthen cyberdefenses and mitigate potential 

threats. 

The core components of our system, encapsulated in Figure 3, outline the systematic approach 

we employ to achieve these objectives. Notably, our application offers flexibility in selecting from 
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a diverse array of anomaly detection methods, ensuring adaptability to the nuances of 

cybersecurity datasets, particularly those pertaining to network security. 

 

Figure 3: Architecture of our anomaly detection application 
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3.4. System Components and Functionality 

Our application is equipped with a range of features designed to enhance network security 

through various anomaly detection techniques. This section outlines the key components and 

functionalities that enable effective analysis, dataset generation, and anomaly detection within the 

network security domain. 

3.4.1. Data Loading 

Cybersecurity datasets encompasses diverse types of data crucial for detecting and mitigating 

security threats in digital environments. These datasets include network traffic data, system logs, 

user behavior records, security alerts, malware samples, web server logs, DNS activities, 

authentication details, and threat intelligence feeds [28]. 

Our application allows the use of existing datasets from network logs and also provides the 

functionality to generate custom datasets. These custom datasets can be specifically tailored to 

meet the needs of the network security domain. 

3.4.2. Data Cleaning and Preprocessing 

Data in databases can contain various types of errors such as typographical errors, missing 

information, noisy data, or inconsistent data. The erroneous part of the processed data can be 

replaced, modified, or deleted. The cleaning process identifies erroneous data and either 

automatically corrects them using a computer program or presents them to a human for manual 

modifications.  

 

Figure 4: Data Processing Workflow 
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3.4.3 Data Visualization and Exploration 

Data Visualization is defined as the visual and interactive exploration of data. For anomaly 

detection, visualizations help to quickly and easily detect outlier points that deviate from normal 

behavior even when dealing with large volumes of data. 

Our application allows users to manipulate data using traditional methods such as adding, 

deleting, updating, searching, and editing. Additionally, it provides charting capabilities to 

visualize data and detect anomalies. The following visualization charts are present in the 

application: 

❖ Box Plot 

A box plot (box and whiskers plot) is a simple chart composed of a rectangle with two lines 

extending from it to represent certain elements of the data [18]. 

• The central value of the chart is the median 

• The edges of the rectangle represent the quartiles 

• The ends of the "whiskers" are calculated using 1.5 times the interquartile range (the 

distance between the 1st and 3rd quartiles). 

Therefore, the inside of the box contains 50% of the observations. Values outside the whiskers 

are represented by points. If an observation is outside the whiskers, then it is considered an outlier 

(anomaly) [18]. 

 

Figure 2: Box Plot 
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❖ Histogram 

Histograms are a visual tool used to check for normality. They group data into bins and provide 

a count of the number of observations in each bin. By examining the shape of the bins, one can 

quickly determine if an attribute follows a Gaussian (normal), skewed, or even exponential 

distribution. This can also help in detecting possible outliers or extreme values [29]. 

 

Figure 3: Histogram 

❖ Density Plot 

Density plots are used to observe the distribution of a variable within a dataset. They plot the 

values of a selected column as evenly distributed distributions. Peaks in a density plot indicate 

where values are concentrated within the range [30]. 

 

Figure 4: Density plot 
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3.4.4 Anomaly Detection 

Our application offers a versatile platform for anomaly detection, accommodating both 

supervised and unsupervised approaches. Leveraging supervised methods, it harnesses labeled 

data to train models and detect anomalies with precision. Simultaneously, it empowers users with 

unsupervised techniques, allowing for anomaly detection in unlabeled datasets, offering flexibility 

and adaptability in cybersecurity analysis. 

3.4.4.1. Machine Learning Approach for Anomaly Detection 

❖ Supervised Approach 

Supervised learning uses labeled data to train a model to predict outcomes based on input 

features. The model learns patterns by minimizing the error between its predictions and the known 

target values during training. The steps of this approach for our study are illustrated in the 

following algorithm: 

 

Algorithm 1: Supervised Approach 

 Input: « Cybersecurity datasets » 

 Output: Detected anomalies 

 Begin 

1  Load cybersecurity dataset. 

2  Split the dataset onto training set 

and test set. 

3  Train the model on the training set. 

4  Test the model to the test data. 

5  Evaluate the model. 

 End  

 

❖ Unsupervised Approach 
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Unsupervised learning involves learning without a supervisor. It involves extracting classes or 

groups of individuals with common characteristics. The steps of this approach for our study are 

illustrated in the following algorithm: 

Algorithm 2: Unsupervised Approach 

 Input: Cybersecurity dataset 
 Output : Detected Anomalies 
 Begin 

1  Import the cybersecurity dataset. 

2  Apply an unsupervised anomaly detection model to 

the dataset. 

3  Evaluate the model. 

 End  

 

3.4.4.2. Integrated Anomaly Detection Techniques 

Our application incorporates a diverse array of advanced anomaly detection techniques from 

diverse anomaly detection approaches, offering users multiple options for analyzing cybersecurity 

data. The integrated methods include: 

✓ Histogram-based Outlier Score (HBOS) 

✓ K-Nearest Neighbors (KNN)  

✓ K-Means Clustering (Kmeans) 

✓ Local Outlier Factor (LOF) 

✓ Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

✓ One-Class Support Vector Machine (One Class SVM) 

✓ Isolation Forest (IForest) 

Each technique provides unique strengths and capabilities for identifying anomalies in 

complex datasets and can be implemented in a supervised or unsupervised setting. 
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The pseudocode for statistical method HBOS is illustrated in Algorithm 3 [31]. 

Algorithm 3: HBOS(data) 

    Input: data - dataset 
    Output: scores - anomaly scores for each data point 
 

    Initialize histograms for each feature 

    For each feature in data: 

        Create a histogram 

        Calculate the density for each bin 

 

    For each data point in data: 

        Initialize score = 1 

        For each feature value in the data point: 

            Find the corresponding bin in the histogram 

            Multiply score by the density of the bin 

 

    Return scores 

 

Pseudocodes for classification method KNN and clustering method KMeans are illustrated in 

Algorithm 4 and Algorithm 5 respectively: 

Algorithm 4: KNN(data, k) 

Input: data - dataset, k - number of 
neighbors 

Output: scores - anomaly scores for 

each data point 

 

Initialize distance matrix 

 

For each data point i in data: 

        For each data point j in data: 

Calculate distance between i and j 

         Store distance in distance matrix 

For each data point i in data: 

Sort distances to all other points 

Select k nearest distances 

Calculate score as the average 

distance to k nearest neighbors 

 

    Return scores 

Algorithm 5: KMeans(data, k) 

Input: data - dataset, k - number of 

clusters 

Output: scores - anomaly scores for each 
data point 

 

Initialize k centroids randomly 

Repeat until convergence: 

Assign each data point to the nearest 

centroid 

Update centroids as the mean of 

assigned points 

 

For each data point in data: 

Find the distance to the nearest 

centroid 

Set score as the distance 

 

Return scores 
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Pseudocodes for clustering methods LOF and DBSCAN are illustrated in Algorithm 6 and 

Algorithm 7 respectively: 

Algorithm 6: LOF(data, k) 

Input: data - dataset, k - number of 

neighbors 

Output: scores - anomaly scores for each 
data point 

 

Initialize distance matrix and 

reachability distances 

 

For each data point i in data: 

For each data point j in data: 

Calculate distance between i and j 

Store distance in distance matrix 

 

For each data point i in data: 

Sort distances to all other points 

Select k nearest distances 

Calculate reachability distance for k 

nearest neighbors 

 

For each data point i in data: 

Calculate local reachability density 

Calculate LOF score as the average 

ratio of local reachability densities 

 

Return scores 

Algorithm 7: DBSCAN(data, eps, minPts) 

Input: data - dataset, eps - radius for 
neighborhood, minPts - minimum number of 

points to form a cluster 

Output: labels - cluster labels for each 
data point 

 

Initialize cluster label = 0 

Initialize labels for each point as 

unvisited 

 

For each data point i in data: 

If i is not visited: 

Mark i as visited 

Retrieve neighbors within eps radius 

If neighbors < minPts: 

Label i as noise 

Else: 

Increment cluster label 

Expand cluster from i with 

neighbors 

 

Return labels 

 

 

Pseudocodes for One-Class SVM and IForests are illustrated in Algorithm 8 and Algorithm 9 

respectively: 
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Algorithm 8: OneClassSVM(data, nu) 

Input: data - dataset, nu - 

parameter for outlier fraction 

Output: labels - anomaly labels 

for each data point 

 

Train One-Class SVM model with 

data and nu 

For each data point in data: 

Predict label using the trained 

model 

 

Return labels 

 

Algorithm 9: IForest(data, nTrees, sampleSize) 

Input: data - dataset, nTrees - number of trees, 
sampleSize - subsample size for each tree 

Output: scores - anomaly scores for each data 
point 

 

Initialize forest of isolation trees 

For each tree in nTrees: 

Sample data points without replacement 

(sampleSize) 

Build isolation tree with sampled data 

 

For each data point in data: 

Calculate average path length from all trees 

Convert average path length to anomaly score 

 

Return scores 

3.4.5 Performance Evaluation 

Our application includes a comprehensive suite of performance evaluation metrics to assess 

the effectiveness of anomaly detection techniques. These metrics provide detailed insights into the 

accuracy and reliability of the models. The implemented metrics include the confusion matrix, 

accuracy, recall, precision, and F1 score, allowing for a thorough evaluation of anomaly detection 

performance. 

❖ Confusion matrix 

A confusion matrix is a specific table layout that allows visualization of the performance of an 

algorithm, typically a supervised learning algorithm. Each row of the matrix represents the 

instances in a predicted class, while each column represents the instances in an actual class (or 

vice versa) [34]. The confusion matrix is made of the following values: 

✓ TP (True Positive): The number of correctly predicted positive instances. These are 

the cases where the model correctly identifies an anomaly. 

✓ TN (True Negative): The number of correctly predicted negative instances. These are 

the cases where the model correctly identifies normal instances (non-anomalies). 
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✓ FP (False Positive): The number of incorrect positive predictions. These occur when 

the model incorrectly identifies a normal instance as an anomaly (also known as a Type 

I error). 

✓ FN (False Negative): The number of incorrect negative predictions. These occur when 

the model fails to identify an actual anomaly and incorrectly classifies it as normal 

(also known as a Type II error). 

 

Figure 5: Confusion matrix 

These values form the basis for calculating various performance metrics, such as accuracy, 

precision, recall, and F1 score. These metrics are defined as follows: 

❖ Precision 

Precision is defined as the ratio of true positive results to the total number of positive results 

predicted by the model. In other words, precision measures the accuracy of the positive predictions 

[35]. It is given by the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

High precision indicates that the model produces a large number of correct positive predictions 

compared to the number of incorrect positive predictions. 
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❖ Recall 

Recall is defined as the ratio of true positive results to the total number of actual positive 

instances. In other words, recall measures the ability of a model to identify all relevant instances 

within a dataset [35]. Mathematically, recall is given by the formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

High recall indicates that the model correctly identifies a large proportion of the actual positive 

cases. 

❖ F1 Score 

The F1 Score is the harmonic mean of precision and recall. It provides a single measure that 

balances both the precision and the recall of the model. The F1 score is particularly useful when 

the distribution of classes is imbalanced [35]. Mathematically, it is given by the formula: 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F1 score ranges from 0 to 1, with 1 indicating perfect precision and recall, and 0 indicating 

the worst performance. 

3.5. Conclusion 

The detailed exploration of our anomaly detection application reveals its potential to enhance 

network security through advanced detection techniques and performance evaluation metrics. This 

practical demonstration exemplifies the real-world application of anomaly detection 

methodologies, offering a valuable tool for cybersecurity professionals. 
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Chapter 04: Implementing and Testing 

4.1. Introduction 

In this chapter, we provide a detailed account of the implementation of our developed anomaly 

detection application for network security. We explore the programming environments utilized, 

showcase the user interfaces of the application, and provide a comprehensive demonstration of its 

functionalities. Additionally, we present a case study in network security, applying our developed 

application to real-world scenarios. Through this case study, we aim to evaluate and compare the 

performance of the anomaly detection techniques implemented in the application. 

4.2. Programming Environment and Tools 

4.2.1. Hardware 

The hardware environment in which our anomaly detection system was implemented is 

characterized by: 

Table 1: Hardware Specifications 

Workstation  Characteristics 

PC Laptop 

Operating System Windows 11 

RAM 8.00 GO 

Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz   2.50 GHz 

System type 64-bit operating system, x64 processor 

4.2.2. Programming Language 

For the implementation of the anomaly detection application for network security, we have 

chosen the Python language version 3.11.5. 



   

 

32 

 

Python is a general-purpose, high-level, interpreted programming language that is simple to 

learn. It is used for web development, artificial intelligence, machine learning, operating systems, 

mobile application development, video games, and much more. It has an ordered structure and 

straightforward grammar. Because of this, it's a great option for a variety of projects, from 

straightforward online apps to full operating systems [36]. 

4.2.3. Programming Environment 

The code editor Spyder (Scientific Python Development Environment) was used to create this 

project.  

Spyder is a cross-platform, open-source Python development environment that works with 

GNU/Linux, Mac OS, and Windows. It incorporates a number of libraries, including IPython, 

Matplotlib, and NumPy. Though Spyder is focused on scientific computing, it may be used as an 

environment for developing any kind of application [37]. 

4.2.4. Employed Python Packages 

⚫ Pandas: a Python data manipulation library. Another wordplay on the phrase "Python Data 

Analysis" appears in its name [38]. 

⚫ NumPy: A Python numerical computing toolkit that supports huge, multi-dimensional arrays 

and matrices and offers a number of mathematical operations that may be performed on them 

[39]. 

⚫ Matplotlib: a Python package for making animated, interactive, and static visualizations. It 

has an interface similar to MATLAB and is frequently used to create charts and plots [40]. 

⚫ Sklearn: A robust Python machine learning framework that offers easy-to-use capabilities for 

data mining and analysis. Numerous techniques for clustering, regression, classification, 

dimensionality reduction, and other tasks are included [42]. 
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⚫ PyOD: A comprehensive and scalable Python framework for identifying outliers in 

multivariate data is the Python Outlier Detection (PyOD) toolbox. It has around forty 

algorithms for detecting anomalies [44]. 

⚫ CustomTkinter: CustomTkinter is a personalized or enhanced version of the Tkinter library 

in Python, offering additional functionalities or optimizations tailored to specific requirements 

or preferences [45]. 

⚫ PandasTable: PandasTable is a Python library that offers a graphical interface for interacting 

with Pandas DataFrames, facilitating data exploration and manipulation tasks within a visual 

environment [46]. 

These packages together provide a robust foundation for implementing anomaly detection 

algorithms and analyzing data in Python. 

4.3. Anomaly Detection Application for Network Security 

Our application is designed to facilitate the detection of anomalies within network security 

datasets. It leverages advanced anomaly detection algorithms to identify irregular patterns that may 

indicate errors, fraud, or other significant events. The user-friendly interface ensures a smooth 

experience, allowing users to easily load data, configure settings, and visualize results. 

In the following, we will illustrate the application with figures and explain in detail each of its 

functionalities. 
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4.3.1. Home Window 

 

Figure 6: Home window 

The Home window defines a GUI using Tkinter for the anomaly detection application. It allows 

users to load existing databases, generate new ones, visualize loaded databases, and perform 

anomaly detection. Users can specify parameters for database generation and initiate actions like 

loading databases, generating databases, visualizing them, and detecting anomalies and about us 

button. 

4.3.2. Data Visualization Window 

 

Figure 7: Visualization window 

This window serves as a comprehensive tool for exploring datasets and visually identifying 

anomalies. It offers three main functionalities: 
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✓ DataFrame Display Button (Dispaly): This button allows users to view the dataset 

in a tabular format, providing a detailed look at the individual data points and their 

corresponding features. Users can scroll through the data to examine specific entries 

and gain insights into the dataset's structure. 

 

Figure 8: Dataset display window 

✓ Dataset Information Button (General Information): Clicking on this button 

provides users with general information about the dataset.  

 

Figure 9: General information window 

✓ Data Visualization Button (Visualization): This button opens up a suite of 

visualization tools for exploring the data graphically. Users can choose from various 

visualization types, including box plots, histograms, and density plots. Additionally, 
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they have the option to select a specific feature (column) from the dataset to 

visualize. This feature is particularly useful for identifying anomalies visually. 

Users can spot unusual patterns, outliers, or distributions that deviate from the norm, 

indicating potential anomalies within the dataset. 

 

Figure 10: Data Visualization plots window 

 

 
Figure 11: Box plot window 

 
Figure 12: Histogram window 

 

 
Figure 13: Density plot window 
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4.3.3. Anomaly Detection Window 

 

Figure 14: Anomaly detection window 

This window serves as a central hub for configuring the approach and method for anomaly 

detection. It comprises two selection groups along with a "Next" button for advancing to the 

parameter configuration window. Here's a breakdown of its components: 

✓ Approach Selection Group: This group allows users to choose the approach or 

methodology for anomaly detection (supervised or unsupervised). 

✓ Method Selection Group: Within the chosen approach, users can further refine their 

selection by specifying the method or algorithm to be used for anomaly detection.  

✓ Next Button: Clicking the "Next" button submits the selected approach and method 

configurations. It serves as a trigger to proceed to the next stage of the anomaly 

detection process, opening the parameter window (see Figure 18) specific to the 

chosen method. This window allows users to fine-tune the parameters associated with 

the selected algorithm, ensuring optimal performance for anomaly detection. 
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Figure 15: Settings window 

 

After selecting the approach and method, and configuring the parameters, users proceed to the 

results window (see Figure 19) upon clicking "Apply" This window provides a summary of the 

anomaly detection outcomes and options for detailed analysis. It includes: 

 

Figure 16: Results window 

 

✓ Number of Detected Anomalies: Displays the total count of identified anomalies. 

✓ Evaluation Report: Shows key metrics like F1 score and recall support for assessing 

method performance. 

 

The results window include also two other action buttons: 

✓ Show Anomalies (Show DataFrame in Pandas Table): Opens a window displaying 

the detected anomalies in a DataFrame format (see Figure 20). 

✓ Show Confusion Matrix (Show Confusion Matrix): Opens a window showing the 

confusion matrix for detailed performance analysis  (see Figure 21). 
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Figure 17: Detected anomalies window            Figure 18: Confusion matrix window 

4.3.4. «About Us» Window 

 

Figure 19: About Us window 

 

About Us page. Here, we introduce team members who have developed the application. 
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4.4. Case Study: Anomaly Detection for Network Security 

In this section, we present a case study using our anomaly detection application, focusing on 

identifying anomalies within the BETH network security dataset. This case study specifically 

targets malicious activities and potential threats within network traffic. This practical example 

demonstrates the effectiveness and relevance of our application in a real-world network security 

context. 

4.4.1. Dataset Description 

BETH is a public cybersecurity dataset for anomaly detection and out-of-distribution analysis. 

Featuring real "anomalies" collected using a novel tracking system, the dataset comprises over 

eight million data points tracking 23 hosts. Each host's activity includes benign behavior and, at 

most, a single attack, allowing for cleaner behavioral analysis. In addition to being one of the most 

modern and extensive cybersecurity datasets available, BETH facilitates the development of 

anomaly detection algorithms on heterogeneously structured real-world data, with clear 

downstream applications. This dataset contains several attributes [28] . 

✓ Timestamp: The specific date and time when the data point was recorded, indicating 

when the network activity occurred. 

✓ SourceIP: The IP address of the source host that initiated the network communication 

or DNS query. 

✓ DestinationIP: The IP address of the destination host or server that received the 

network communication or DNS query. 

✓ DnsQuery: The domain name or address that was queried in the DNS request. 

✓ DnsAnswer: The response provided by the DNS server to the query, which may 

include the IP address or other resource records. 

✓ DnsAnswerTTL: The Time-To-Live (TTL) value for the DNS answer, specifying 

how long the response should be cached before it expires. 
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✓ DnsQueryNames: A list of domain names involved in the DNS query, often including 

aliases or canonical names. 

✓ DnsQueryClass: The class of the DNS query, typically specifying the protocol family 

(e.g., IN for Internet). 

✓ DnsQueryType: The type of DNS query, indicating the type of resource record being 

requested (e.g., A for address, MX for mail exchange). 

✓ NumberOfAnswers: The number of answers returned in the DNS response, 

indicating how many resource records were included. 

✓ DnsResponseCode: The code returned by the DNS server indicating the result of the 

query (e.g., NOERROR for successful queries, NXDOMAIN for non-existent 

domains). 

✓ DnsOpCode: The operational code of the DNS query, indicating the type of query 

(e.g., QUERY for standard queries, UPDATE for updates to DNS records). 

✓ SensorId: An identifier for the sensor or device that collected the data point, useful 

for tracing the source of the data. 

✓ sus: A binary indicator of whether the data point is suspicious (1 for anomaly, 0 for 

normal), based on heuristic rules or initial analysis. 

✓ evil: A binary indicator of whether the data point is confirmed malicious (1 for 

anomaly, 0 for normal), based on more stringent validation or external threat 

intelligence. 

The other characteristics of the  dataset are presented in the table below : 

Table 2: The characteristics of BETH dataset 

Dataset BETH Cybersecurity Dataset 

Number of rows  8004918 
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Number of columns 15 

Type of data Float, int, String 

DataFrame size 81.1GB 

 

4.4.2. Data Visualization 

❖ Box Plot 

The box plot in our application serves to visually detect outliers. Data points outside the 

minimum and maximum values are considered anomalies. For instance, Figure 22 displays box 

plots for two of our dataset features: "SourceIP" and "DestinationIP". These plots clearly indicate 

the presence of anomalies in both columns. 

 

Figure 20: Box plot of SourceIP and DestinationIP 

 

❖ Histogram and density plot 

Histograms and density plots serve the same purpose. Figure 23 displays the histograms and 

density plots for the same two columns in our database: "SourceIP" and "DestinationIP". The 

abnormal data in these columns is highlighted by their separation from the normal data.  



   

 

43 

 

 

 

Figure 21: Histograms and density plots of SourceIP and DestinationIP 

 

4.4.3. Data Cleaning and Preprocessing 

For the anomaly detection task, the "BETH" database does not require many modifications. 

The two preprocessing steps we applied are replacing «Null» values with numerical values, which 

has no effect on anomaly detection, and converting non-numeric data into numeric data. 

4.4.4. Implementing Anomaly Detection Techniques 

The table below represents the parameters of the different methods we implemented for 

anomaly detection: 
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Table 3: The chosen parameters for anomal detection methods 

Algorithm Parameters Description Default Values 

IFOREST Contamination The proportion of outliers in the 

dataset. 

In our study, we have set 

the contamination to be 

0.078 

HBOS Random_state Used to set the seed value for 

the random number generator 

Random_state = ‘NONE’ 

DBSCAN Eps This parameter specifies the 

maximum distance between 

two samples for them to be 

considered as part of the same 

neighborhood 

Eps = 0.5 

min_samples This parameter determines the 

minimum number of samples 

required to form a dense region 

min_samples = 5 

K-MEANS n_clusters This parameter specifies the 

number of clusters to form 

n_clusters = 8 

KNN 

LOF 

SVM 

Contamination The proportion of outliers in the 

dataset. 

In our study, we have set 

the contamination to be 

0.078 

LOF  n_neighbors This parameter specifies the 

number of neighbors to 

consider for each sample when 

calculating its local density 

n_neighbors = 20 
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4.4.5. Results 

❖ Displaying performance using the application : Example of the confusion matrix 

of IFOREST model 

 

Figure 22 Confusion matrix for IFOREST following unsupervised approach 

 

Figure 23 Confusion matrix for IFOREST following supervised approach 

Taking the confusion matrix of the IFOREST model following unsupervised approach as an 

example. This metric clearly shows that: 

• Total records: 269 

• KNN model predictions: 

o Normal Class: 250 detected 

o Anomaly Class: 19 detected 
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• Correct predictions: 

o True Positives (Normal Class): 237 

o True Negatives (Anomaly Class): 8 

 

• Classification errors: 

o False Positives: 11 (Anomaly Class predicted as Normal Class) 

o False Negatives: 13 (Normal Class predicted as Anomaly Class) 

To further clarify, here are the terms used in the confusion matrix: 

o True Positives (TP): The model correctly predicted the positive class. 

o False Positives (FP): The model incorrectly predicted the positive class when it is 

actually a negative class. 

o True Negatives (TN): The model correctly predicted the negative class. 

o False Negatives (FN): The model incorrectly predicted the negative class when it 

is actually a positive class. 

Taking the confusion matrix of the IFOREST model following supervised approach as an 

example. This metric clearly shows that: 

• Total records: 206 

• KNN model predictions: 

o Normal Class: 201 detected 

o Anomaly Class: 15 detected 

• Correct predictions: 

o True Positives (Normal Class): 191 

o True Negatives (Anomaly Class): 6 

 

• Classification errors: 

o False Positives: 9 (Anomaly Class predicted as Normal Class) 

o False Negatives: 10 (Normal Class predicted as Anomaly Class) 
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❖ Summary of the results of all anomaly detection models 

To specify which algorithm is the most performant for outlier detection, we employed the 

following evaluation metrics: Precision, Recall, and F1 Score. 

The table below summarizes all the results obtained using both supervised and unsupervised 

learning approaches. 

Table 4: Performance of anomaly detection models 

Method 
Supervised Unsupervised 

Precision Recall F1-Score Precision Recall F1-Score 

IFOREST 0.95 0.95 0.95 0.95 0.96 0.95 

HBOS 0.10 0.38 0.16 0.95 0.96 0.95 

KNN 0.40 0.38 0.39 0.95 0.96 0.95 

K-MEANS 0.75 0.19 0.30 0.93 0.73 0.82 

LOF 0.95 0.95 0.95 0.95 0.96 0.95 

SVM 0.94 0.96 0.95 1.00 0.25 0.39 

DBSCAN 0.91 0.79 0.84 0.95 0.96 0.95 

 

4.4.6 Discussion 

Isolation Forest achieves high precision, recall, and F1-Score in both supervised and 

unsupervised settings, indicating its robustness and effectiveness in anomaly detection. It 

consistently outperforms other models across all metrics, making it a promising choice for 

anomaly detection tasks. This can be justified for several reasons. First, its intuitive concept 

leverages the idea that anomalies are “few and different” from normal data points, allowing it to 

isolate them quickly. Second, randomized partitioning of features and thresholds helps uncover 

diverse outliers. Third, IForest is scalable, handling large datasets efficiently. Fourth, its robustness 
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ensures good performance across various contexts. Finally, its simplicity contributes to its 

effectiveness, making it a reliable choice for anomaly detection tasks.  

HBOS performs poorly in supervised settings but shows competitive performance in 

unsupervised settings, particularly in terms of F1-Score. Its limited effectiveness in supervised 

mode may be due to its reliance on histogram-based modeling, which might not capture the 

complexities of labeled data well. 

KNN exhibits moderate performance in unsupervised settings and low performance in 

supervised settings, with precision, recall, and F1-Score values in the mid-range. It is notable for 

its simplicity and ease of implementation, but may not excel in scenarios with highly complex or 

non-linear data distributions. 

K-MEANS demonstrates relatively weaker performance compared to other models, 

particularly in terms of recall and F1-Score. As expected, K-MEANS, designed primarily for 

clustering, struggles with anomaly detection tasks where anomalies may not form distinct clusters. 

LOF shows consistently high performance across all metrics in both supervised and 

unsupervised settings, indicating its effectiveness in identifying anomalies. It utilizes the local 

density deviation of data points, making it robust and versatile for various datasets and anomaly 

types. 

SVM performs well in terms of precision, recall, and F1-Score in both settings, but exhibits a 

higher error rate compared to IForest and LOF. SVM's effectiveness may vary depending on the 

dataset and kernel selection, but it generally provides competitive performance for anomaly 

detection tasks. 

Lastly, DBSCAN achieves good performance in unsupervised settings but shows a slight 

decrease in supervised mode, particularly in precision and F1-Score. DBSCAN's ability to identify 

global outliers makes it effective, but its performance may vary depending on the dataset's 

characteristics. 

In general, Isolation Forest, Local Outlier Factor, and Support Vector Machine stand out as 

effective options for both supervised and unsupervised anomaly detection tasks. They demonstrate 



   

 

49 

 

strong performance in various scenarios. On the other hand, K-means and Histogram-based Outlier 

Score show relatively weaker performance in comparison. When selecting an algorithm, it’s 

crucial to take into account the specific attributes of the dataset and the desired balance between 

precision, recall, and computational efficiency. 

4.5 Conclusion 

In conclusion, the detailed implementation of our anomaly detection application highlights its 

effectiveness in addressing network security anomaly detection problem. Through the presented 

case study, we have demonstrated the application's capability to detect potential threats in real-

world scenarios. The comparison of performance metrics underscores the importance of selecting 

appropriate anomaly detection techniques tailored to specific network security needs. Overall, our 

application stands as a valuable tool for enhancing cybersecurity defenses and protecting against 

evolving threats. 
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General Conclusion 

In this thesis, we addressed the critical challenge of enhancing network security in the face of 

increasingly sophisticated cyber threats. Recognizing the limitations of traditional security 

measures, we focused on the development and application of an anomaly detection system tailored 

specifically for network security. 

The primary objective of our project was to develop a robust anomaly detection application 

that combines supervised and unsupervised techniques, drawing from statistical, clustering, and 

machine learning approaches. Through systematic methodology, we meticulously designed, 

implemented, and tested our application, ensuring its effectiveness and versatility in analyzing 

both historical and synthetic cybersecurity datasets. 

The case study conducted in network security served as a crucial validation of our application's 

capabilities. We demonstrated its effectiveness in identifying anomalies and potential threats 

within network traffic, highlighting its practical relevance and significance in real-world scenarios. 

Looking ahead, our findings underscore the importance of continued research and innovation 

in anomaly detection for network security. As cyber threats continue to evolve, it is imperative to 

develop adaptive and robust solutions that can effectively safeguard network infrastructures. 

In conclusion, this thesis makes a significant contribution to the field of cybersecurity by 

presenting a comprehensive anomaly detection system specifically tailored for network security. 

The application provides actionable insights and proactive defense mechanisms, aiming to 

strengthen cyber defenses and mitigate potential threats in an ever-changing digital landscape. 
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