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Abstract In this doctoral thesis, we have developed a novel adaptive control ap-
proach based on higher-order sliding modes, coupled with the Particle Swarm Optimiza-
tion (PSO) algorithm. This approach is particularly well-suited for nonlinear systems, such
as exoskeletons, where operating conditions can vary significantly depending on the user
and the environment. The key innovation lies in the integration of the PSO algorithm for
real-time adaptation of controller parameters. The combination of higher-order sliding
modes with PSO offers a robust solution, ensuring optimal stability while adjusting to the
fluctuations and uncertainties inherent in the interaction between the robotic system and
the user. Special attention was given to demonstrating closed-loop control stability, in the
Lyapunov sense, which guarantees the system’s convergence to a stable behavior. To assess
the effectiveness of our approach, tests were conducted first in simulation and then exper-
imentally, involving two healthy subjects equipped with the ULEL exoskeleton available
at LISSI laboratory of the University Paris-Est Créteil. The results are highly promising,
highlighting a significant improvement in motion accuracy, adaptability to varying forces,
and user comfort.

Résumé Dans cette thèse de doctorat, nous avons développé une nouvelle ap-
proche de commande adaptative s’appuyant sur des modes glissants d’ordre supérieur,
couplée à l’algorithme d’optimisation PSO (Particle Swarm Optimization). Cette approche
est particulièrement bien adaptée aux systèmes non linéaires, tels que les exosquelettes, où
les conditions d’utilisation peuvent varier considérablement en fonction de l’utilisateur et
de l’environnement. L’innovation majeure réside dans l’intégration de l’algorithme PSO
pour une adaptation en temps réel des paramètres de commande. L’association des modes
glissants d’ordre supérieur avec le PSO offre une solution robuste, garantissant une stabilité
optimale tout en s’ajustant aux fluctuations et incertitudes inhérentes à l’interaction entre
le système robotique et l’utilisateur. Nous avons accordé une attention particulière à la
démonstration de la stabilité en boucle fermée de la commande, au sens de Lyapunov, qui
assure la convergence du système vers un comportement stable. Pour évaluer l’efficacité de
notre approche, des tests ont été réalisés d’abord en simulation puis expérimentalement,
impliquant deux sujets sains équipés de l’exosquelette ULEL disponible au laboratoire
LISSI de l’université Paris-Est Créteil. Les résultats obtenus sont très prometteurs, met-
tant en évidence une amélioration significative en matière de précision des mouvements,
d’adaptabilité aux variations de forces, et de confort pour les utilisateurs.
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Introduction:

In the 21st century, the field of exoskeleton robotics has advanced rapidly in various appli-
cations, including healthcare, military, industry, and consumer sectors.

Robots have been identified as a possible way to improve and automate patients’ access
to rehabilitation therapy, as well as provide new tools for therapists. In contrast to conven-
tional techniques, which require significant time and energy and often yield unsatisfactory
results, robot-assisted rehabilitation offers a promising alternative. In the current era, the
prevalence of stroke patients has reached a staggering number, with over 13.7 million new
cases recorded annually. Conventional rehabilitation techniques have proven inadequate
for effectively treating all patients, prompting the emergence of exoskeleton robots that
can assist disabled individuals in regaining control of their limbs [1–5]. These robots have
also been utilized in military domains and other fields.

Robots are mechatronic devices designed to automatically perform tasks that imitate or
reproduce human actions within a particular area. Consequently, they have a long history
of association with humans, with the first such devices being developed in the 1960s and
1970s. Although their cost is high, they are intended to replace or assist human operators
in repetitive, challenging, or dangerous tasks. The evolution of electronics and computing
has enabled the development of robots that are more precise, faster, and have a better
autonomy, which has facilitated greater data exchange, as exemplified by teleoperation
robotics. Moreover, the advent of wearable robots has prompted investigations into aspects
of physical interaction.

In general, two types of wearable robots can be distinguished: prostheses and exoskele-
tons. In contrast to prostheses, which are designed to replace a missing body part, ex-
oskeletons are intended to operate in conjunction with the human limb. The joint axes
of these devices correspond to those of the wearer’s limb, imitating its structure. Ex-
oskeletons have a number of potential applications, including the enhancement of power
in military and rescue contexts, the provision of diagnostic and technical assistance to indi-
viduals with disabilities or impaired mobility, industrial assistance and manufacturing, and
the facilitation of physical therapy [6–8], which encompasses the rehabilitation of motor
functions. Since our research involved an upper limb exoskeleton, this thesis primarily
examines similar exoskeletons and their applications.

The primary treatment for disabilities resulting from a stroke is rehabilitation therapy,
which facilitates the recovery of voluntary movements and the relearning of activities of
daily living [9]. Stroke is the leading cause of serious and long-term disability [10]. The
location and severity of the lesion determine whether a stroke results in partial or total
paralysis [11]. As the number of disabled patients continues to grow, the challenge of
providing appropriate treatment will become increasingly challenging and costly. As an
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effective solution, the utilization of exoskeletons enables the fulfillment of this expanding
demand and can enhance the well-being of patients afflicted with such conditions. Having
a kinematic profile analogous to that of the human limb, exoskeletons can facilitate a sus-
tained and comprehensive rehabilitation over extended periods and reduced expenses [12].
Additionally, exoskeletons can furnish data and measurements that could be employed to
assess the patient’s recovery.

This manuscript is organized into four chapters, in addition to an introduction and a
conclusion.

The first chapter offers a comprehensive overview of exoskeleton robots, a class of
wearable robotic devices designed to enhance, augment, or support human physical abili-
ties. It provides a historical overview of exoskeletons, examines their diverse applications,
and discusses the technological advancements that have contributed to their development.
The applications discussed include healthcare and rehabilitation, industrial assistance, mil-
itary and defense, and assistance in daily living activities. The chapter outlines the fun-
damental concepts, components, and the biomechanics, materials science, and robotics
principles underlying exoskeleton robots.

The second chapter is dedicated to the geometric, kinematic, and dynamic modeling of
the Upper Limb Exoskeleton of LISSI (ULEL), which serves as the experimental platform
for this thesis. It provides a detailed account of the mechanical properties and the inno-
vative actuation and transmission system of ULEL. Furthermore, it explores the modeling
of ULEL using the modified Denavit-Hartenberg (DH) method and examines the various
control strategies employed in limb rehabilitation, including assistive and resistive control
strategies.

The third chapter provides a comprehensive account of the Particle Swarm Optimiza-
tion (PSO) algorithm, an optimization technique inspired by the social behavior of birds
and fish. It explains the initialization phase, velocity and position updates, fitness eval-
uation, and termination conditions of the PSO algorithm. Furthermore, it examines the
significance of various parameters in the PSO algorithm, challenges such as scalability
and memory requirements, and future directions for research and application of PSO in
fields like image processing, computational biology, and recommender systems.

The final chapter presents the main contributions of this research, which focus on the
development of a real-time adaptive Super Twisting Sliding Mode Control (ST-SMC) algo-
rithm enhanced by PSO. This novel approach addresses limitations in existing exoskeleton
control methods, such as offline tuning and heavy calculation. The stability and effec-
tiveness of the proposed controller are validated through simulations and real time ex-
periments, demonstrating improved performance and robustness in controlling nonlinear
systems like exoskeletons.

The manuscript is concluded with a general conclusion and perspectives for future
work.

2
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CHAPTER 1. EXOSKELETON ROBOTS: STATE OF THE ART 4

1.1 Introduction:
Exoskeletons, are a wearable robotic devices designed to enhance, augment, or support
the physical abilities of the human body. These devices are typically worn externally and
interact with the user’s body to provide assistance, correction, and rehabilitation.

Exoskeletons have been introduced the first time in 1960s, where the first success-
ful developed prototype which called Hardiman appeared [13].It was made for military
purposes to strengthen the physical abilities of the soldiers. In the last couple decades,
exoskeletons have been utilized and revolutionized the field of daily living activities and
rehabilitation. Where it gained the potential of being a permanent solution for physically
disabled people [14], neuromuscular impairment [6, 7], post stroke rehabilitation [15, 16],
and power amplification in an industrial environment [8].

Exoskeleton robots have diverse applications across various fields [17], such:

• Healthcare and Rehabilitation: Assisting individuals with mobility impairments due
to neurological disorders, spinal cord injuries, stroke, and other conditions in regain-
ing and improving their physical abilities [18–22].

• Industrial assistance and manufacturing: augmenting human strength and endurance
to reduce the risk of injury and increase productivity during physically demanding
tasks such as lifting, carrying, or repetitive motions [23–25].

• Military and defense: Providing soldiers and first responders with enhanced strength,
maneuverability, and force in hazardous environments [26].

• Assistance in activities of daily living: Supporting elderly individuals or those with
mobility limitations in performing everyday tasks such as walking, standing, and
reaching distant locations [27].

The objective of this chapter is to provide an overview of exoskeleton robots and their
application. Starting with the fundamental concepts and different components of an ex-
oskeleton. Then classification and types of the exoskeletons are presented. After that,
various applications and use cases of this type of robot are given. Finally, the studied ex-
oskeleton robot is described in detail, followed by a discussion of the challenges and future
directions.

1.2 Fundamental concepts and components:
Exoskeletons are remarkable creations of engineering, designed to enhance human per-
formance and augment physical capabilities. The fundamental principles underlying their
design and operation encompass biomechanics, materials science, robotics, and human-
machine interaction. These principles are outlined in the following points:

1. Biomechanics [28]: Exoskeletons have been designed to imitate the natural move-
ments of the human body. An understanding of biomechanics enables engineers to
create structures and joints that move in a manner that is complementary to human
motion, which in turn reduces fatigue and strain.
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2. Materials Science [29]: The materials used in exoskeleton construction are crucial
for strength, flexibility, and weight. Lightweight yet durable materials like carbon
fiber, titanium, and advanced plastics are often used to ensure the exoskeleton is both
robust and comfortable for the user.

3. Robotics: Exoskeletons are robotic devices that incorporate actuators, sensors, and
controllers in order to assist or amplify human movement. The function of the actu-
ators is to provide the power to move the exoskeleton, while the sensors gather data
on the user’s movements and intentions in real-time. This enables the exoskeleton to
make real-time adjustments and provide real-time feedback.

4. Human-Machine Interaction [30, 31]: In order for an exoskeleton to function effec-
tively, it must be designed to seamlessly integrate with the user’s body and move-
ments. This integration is contingent upon a number of factors, including ergonomics,
the design of the user interface and control algorithms, all of which must be carefully
considered in order to ensure that the exoskeleton responds intuitively to the user’s
commands and movements.

5. Power Source [32]: The operation of exoskeletons necessitates the availability of a
power source. This can be batteries, hydraulic systems, or even human-generated
power, such as through kinetic energy harvesting [33]. It is therefore essential to
implement an efficient power management system in order to prolong battery life
and ensure the exoskeleton remains operational for extended periods.

6. Customization and Adaptability [34]: Exoskeletons frequently necessitate adjust-
ments to accommodate users of diverse sizes and physical abilities. The availability
of customized options facilitates a more accommodating fit and optimal performance
for each individual user.

Adherence to these principles permits exoskeleton designers to create devices that augment
human strength, endurance, and mobility, while assuring safety and usability. As tech-
nology progresses and our comprehension of human-machine interaction deepens, these
principles are subject to continuous evolution.

1.2.1 Key components:
Exoskeleton robots feature a number of key components and characteristics that set them
apart from other types of robots. These include

• Frame and structure [35–37]: An exoskeleton is a device comprising a rigid or
semi-rigid frame that encircles specific body parts, such as the upper or lower limbs
or the torso. This frame serves to provide structural support and to act as a platform
for mounting additional components
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Figure 1.1: Lower limb exoskeleton frame [36].

• Actuators and joints [35, 38]: Actuators, which frequently take the form of mo-
tors or pneumatic systems, are integrated into the exoskeleton with the objective of
providing mechanical assistance and facilitating movement at the joints. These ac-
tuators replicate the functionality of human muscles, enabling the user to amplify or
augment their movements.

Figure 1.2: Exoskeleton actuators and joints [39, 40].

• Sensors and control systems: Exoskeletons are equipped with sensors that are able
to detect and transform the movements and intentions of users into a exploitable sig-
nal in real time. These sensors provide feedback to sophisticated control systems,
which in turn adjust the exoskeleton’s behavior to optimize performance while en-
suring the safety and comfort of the user [41, 42].
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Figure 1.3: EMG sensors used for an exoskeleton [43].

• Power source: The operation of exoskeletons necessitates the presence of a power
source, which is responsible for the functioning of their actuators, sensors, and con-
trol systems. This power source may take the form of batteries, pneumatic systems,
or other energy storage devices, contingent upon the design and intended use of the
exoskeleton.

1.3 Types and classification:
Exoskeletons can be classified based on various criteria, including their application, design,
and control mechanism. Here are some common types:

1.3.1 Powered exoskeletons vs passive exoskeletons:
Powered exoskeletons are devices that utilize motors or actuators to enhance the strength
and mobility of the wearer, enabling tasks such as heavy lifting and providing support
during movement [44–46]. In contrast, passive exoskeletons lack active energy sources
and rely on mechanical structures and springs for support as stated in [47, 48]. While the
capabilities of powered exoskeletons are well suited to tasks that require a high level of
force, passive exoskeletons are often preferred for their inherent simplicity and reliability,
particularly in industrial settings.

1.3.2 Stationary exoskeletons vs mobile exoskeletons:
Stationary exoskeletons are designed for fixed-location use, providing targeted support
for specific tasks or aiding in rehabilitation exercises. In contrast, mobile exoskeletons
offer portability, thereby allowing users freedom of movement [49]. These devices have
applications in a number of fields, including military operations, healthcare, and assistive
technology. Their primary focus is on enhancing mobility and versatility.
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1.3.3 Medical exoskeletons vs industrial exoskeletons:
Medical exoskeletons are designed for specific medical applications, such as assisting in
rehabilitation, providing mobility for individuals with disabilities, and supporting stroke
patients as exemplified in [50]. In contrast, industrial exoskeletons are intended for use in
repetitive, heavy-duty tasks in industrial environments, including lifting heavy loads and
reducing fatigue to prevent injuries among workers [51].

1.3.4 Full-body exoskeletons vs partial exoskeletons:
Full-body exoskeletons encompass a substantial portion of the wearer’s body, offering
comprehensive support to multiple joints and muscle groups. These exoskeletons are well-
suited to tasks requiring substantial physical exertion , an example of robot designed for
elderly people is described in [52]. In contrast, partial exoskeletons are designed to provide
targeted support for specific areas of the body, enhancing task performance and addressing
mobility challenges. In contrast to full-body exoskeletons, partial exoskeletons are often
more lightweight and agile.

1.3.5 Hybrid exoskeletons:
A hybrid exoskeleton combines features from both powered and passive designs [53, 54].
These mechanical structures are combined with powered actuators. By striking a balance
between the assistance provided, the weight of the system, and the complexity of the de-
sign, hybrid exoskeletons offer versatile solutions that can be adapted to a variety of tasks
and environments. The strengths of both approaches are leveraged to optimize functional-
ity and user experience.

By considering the aforementioned classification criteria, it becomes possible for re-
searchers and developers to design exoskeletons tailored to specific applications and user
needs. These can be used in various domains, including healthcare, industry, and beyond.

1.4 Application and use cases:
It is evident that exoskeleton robots have the potential to revolutionize a multitude of appli-
cations within a diverse array of disciplines. These robots have the capacity to enhance the
capabilities of humans, augment physical strength, and facilitate rehabilitation and daily
tasks. In addition to the description of exoskeleton applications provided in the intro-
ductory section, further detail and illustrative examples of each application are presented
below.

1.4.1 Medical rehabilitation and mobility assistance:
Exoskeletons are proving to be a revolutionary technology in the field of rehabilitation,
offering individuals with mobility impairments a new avenue for restoring mobility and
enabling them to regain full control of their limbs. This technology has been successfully
employed in the treatment of spinal cord injuries and other disabilities, enabling patients
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to walk again. One noteworthy example is the ReWalk exoskeleton, which has been suc-
cessfully utilized by individuals with spinal cord injuries to regain mobility and enhance
their quality of life [55, 56]. Similarly, the Ekso GT exoskeleton has been employed in a
multitude of rehabilitation centers worldwide to assist patients with stroke or spinal cord
injuries in regaining mobility and independence [57].

Indeed, the existing rehabilitation therapies can be classified into three distinct modes:
assistive, corrective and resistive [58].

Assistive rehabilitation:
The objective of this mode of operation is to assist the patient in performing move-

ments that he is unable to do independently. This mode can be further subdivided into the
following categories:

- Passive: In this mode, the subject remains completely passive during movement while
the robot drives the patient’s limb during rehabilitation exercises. The system generally
operates in simple position control. This mode of operation is particularly useful in the
initial phase of the rehabilitation process.

- Assistance as needed: In that scenario, the patient initiates the movement, and the
robot is there to assist, guide, and complete the movement. This mode of therapy is em-
ployed in rehabilitation phases where the patient has partially recovered his ability to move.

- Active: In contrast to passive and assistive modes, active control is not intended for
rehabilitation but is frequently used for diagnostic and evaluation purposes. In general,
there is a tendency to favor control strategies that provide only the minimum assistance
necessary for the subject.

Corrective rehabilitation:
In this mode, the subject is made aware of the movement and the robot attempts to

rectify it or compel it to perform the gesture with a specific articular configuration, or
solely utilizing certain joints or muscle groups. This mode can be employed as a second
phase of rehabilitation in order to enhance the patient’s ability to perform a given task.

Resistive rehabilitation:
The objective is to make the task more challenging to complete. In this instance, the

robot applies forces that are in opposition to the desired movement, with the intention of
encouraging the patient to exert greater effort during the movement.

1.4.2 Augmentation of human performance in industrial settings:
In industrial settings, exoskeletons are designed to be worn by the user as a wearable de-
vice that serves to augment human performance, primarily by reducing physical strain and
enhancing efficiency. These exoskeletons typically consist of an external framework, often
made of lightweight materials such as carbon fiber or aluminum. This framework is worn
by the users over their clothing. They are employed in a variety of industries where work-
ers are required to lift heavy objects or perform repetitive tasks. The use of exoskeletons
has been shown to reduce the risk of injury to workers and to increase productivity. For ex-
ample, Hyundai’s wearable robot [Hyundai motor leads personal mobility revolution with
advanced wearable robots] is utilized in their manufacturing facilities to assist workers in
lifting heavy objects, thereby reducing the physical strain on the workers’ bodies, and pre-
venting occupational injuries. Further illustrative examples may be found in [59], where
the majority of exoskeleton types are cataloged.
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The following description outlines the ways in which exoskeletons improve human
performance in industrial settings.

Reduced physical strain: One of the most significant benefits associated with the uti-
lization of exoskeletons is the capacity to diminish the physical strain experienced by the
wearer. These devices provide mechanical assistance to specific body regions, such as
the arms, legs, and back, thus reducing the load on muscle and joints during repetitive or
strenuous tasks. This can assist in the prevention of fatigue, muscle strain, and the risk of
musculoskeletal disorders.

Increased strength and endurance: Exoskeletons may be utilized to enhance the strength
and endurance of the wearer by providing assistance or amplification of their movements.
Powered exoskeletons, equipped with motors or pneumatic systems, can provide addi-
tional force to lift heavy objects or maintain prolonged postures, thereby enabling workers
to perform tasks that would otherwise be physically demanding or tiring. This can result
in increased productivity and efficiency.

Improved ergonomics: The promotion of proper posture and alignment through the
use of exoskeleton technology improves ergonomic conditions in industrial settings. By
maintaining neutral joint positions and distributing loads more evenly across the body,
exoskeleton use reduces the risk of ergonomic injuries caused by awkward postures or
repetitive movements. Improved ergonomics can result in greater comfort and lower rates
of work-related injuries.

Improved safety: Exoskeletons contribute to enhanced occupational safety and health
by reducing the probability of accidents and injuries. They offer stability and assistance
when lifting or transporting bulky objects, thus reducing the risk of strain injuries, slips,
and other accidents. Additionally, some exoskeletons are furnished with sensors and feed-
back systems which notify the users of potential dangers or suboptimal lifting techniques.
This further improves safety in industrial settings.

1.4.3 Military applications:
In the context of military combat, exoskeletons offer enhanced strength, endurance, and
protection for the individual soldier. They can assist in the transportation of heavy loads
over long distances, thereby reducing fatigue and increasing operational effectiveness. The
U.S. military’s Tactical Assault Light Operator Suit (TALOS) project is aimed at develop-
ing an advanced exoskeleton system to provide the soldier with improved protection and
mobility in combat situations. A brief overview of the military applications is shown be-
low.

Enhanced Strength and Endurance: Exoskeletal devices have the potential to enhance
the physical capabilities of soldiers, enabling them to transport heavier loads over longer
distances with reduced fatigue. Powered exoskeletons that incorporate motors or hydraulic
systems offer assistance during various forms of mobility, such as walking, running, or
lifting. This can enhance the ability of the soldier to traverse difficult terrain and perform
demanding tasks more effectively.

For instance, Onyx, created by Lockheed Martin, is a small exoskeleton that resembles
a knee brace and covers the entire leg Figure 1.4. This suit’s advantage is that it allows
users to perform repetitive motions that they are already capable of, but with less strain on
their musculoskeletal system. It is focused on knee-intensive activities such as climbing
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and descending stairs, hills, and harsh environments. The Onyx weighs only 20 pounds,
including its battery, rendering it suitable for use in military applications [60, 61].

Figure 1.4: Onyx exoskeleton robot.

Load Carriage and Logistics Support: The primary military application of exoskele-
tons is load-carriage support. During missions, soldiers frequently carry heavy equipment,
weapons, and supplies, which can lead to fatigue and a decline in mobility. Exoskeletons
distribute the weight of these loads more evenly across the body, providing mechanical as-
sistance that facilitates the transportation of soldiers’ gear while maintaining their mobility
and agility.

For example, the Raytheon XOS-2 exoskeleton employs high-pressure hydraulics to
enable the user to lift heavy objects at a ratio of 17:1. This means that the user experiences
a 17-lb load when in fact the object being lifted weighs only 1 lb. The XOS-2 represents a
significant advancement over the XOS-1, with notable improvements in energy efficiency.
The exoskeleton itself weighs approximately 95 kg, which is considerably more than most
other suits. This is due to its large size and the fact that it enhances both the lower and
upper body [60, 62].
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Figure 1.5: XOS-2 Exoskeleton robot

Tactical Mobility and Maneuverability: Exoskeletons enhance the tactical mobility
and maneuverability of soldiers in various combat scenarios. Lightweight exoskeletons
designed for agility and speed enable soldiers to move more rapidly and effectively across
rugged terrain and engage enemy targets with greater efficiency. By improving a soldier’s
ability to traverse challenging environments and respond rapidly to changing threats, such
Mawashi Uprise Tactical Exoskeleton [63, 64], exoskeletons have a positive impact on
overall military operations.

Figure 1.6: Mawashi uprise tactical exoskeleton robot

Specialized Applications and Mission Support: Exoskeletons can be designed to meet
the specific requirements of different military roles and missions. Specialized exoskele-
tons may be created for specific tasks, such as reconnaissance, urban combat, combat
engineering, medical evacuation, or other specialized operations. These exoskeletons in-
corporate features such as stealth capabilities, integrated communication systems, or mod-
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ular attachments to support mission objectives and enhance soldier survivability in diverse
operational environments.

1.4.4 Assistive devices for elderly care:
Exoskeletons are currently being explored as potential assistive devices in the field of el-
derly care. Their objective is to help seniors maintain their independence and perform daily
activities with greater ease. The efficacy of exoskeletons like the HAL (Hybrid Assistive
Limb) Figure 1.7 has been evaluated in elderly care facilities, with promising results [65].
These devices have been shown to enhance mobility and reduce the risk of falls among
older adults. For further details, please refer to [66], which provides a comprehensive
overview of the state of the art in lower limb exoskeletons for elderly assistance.

Figure 1.7: HAL exoskeleton.

1.5 Studied case exoskeleton:
The system under consideration in this study is the exoskeleton ULEL , which was specif-
ically designed by the RB3D1 company for the LISSI2 Laboratory of the University Paris-
Est Créteil in France. ULEL is designed with three active degrees of freedom (DoF) to be
worn on the lateral side of the upper limb and is intended to provide effective rehabilitation
for shoulder (flexion/extension), elbow (elbow/extension), and wrist (flexion/extension)
movements. More details about ULEL, including geometric, kinematic, and dynamic mod-
els are presented in Chapter 2.

1www.rb3d.com
2Laboratoire Images, Signaux et Systèmes Intelligent, Paris - France
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Remarque: Since the parameters and characteristics of the ULEL exoskeleton have
been identified previously by [58], this work is based on the obtained results and can be
considered as a follow-up of the that research.

Figure 1.8: ULEL Exoskeleton robot.

1.6 Challenges and future directions:
Exoskeleton technology is confronted with a number of significant challenges, including
high costs, bulky designs, complex control systems, and variable user acceptance. The
expense of manufacturing exoskeletons restricts accessibility, while their weight and cum-
bersome structures can induce discomfort and limit mobility. Moreover, intricate control
algorithms must accurately interpret user movements, posing technical hurdles and in-
creasing the risk of malfunction. Furthermore, social perceptions and ergonomic concerns
may also affect the extent to which exoskeletons are accepted, which could hinder their
widespread adoption across various industries and applications.

In order to overcome these difficulties, current research activities and emerging trends
are driving innovation in exoskeleton technology. Efforts have been made towards the
development of lightweight materials and compact designs, with the intention of relieving
the burden placed on users and improving comfort. Furthermore, advances have been made
in terms of sensing technologies and control algorithms, with the objective of enhancing
the responsiveness and adaptability of exoskeletons for example by using machine learning
technology [67–69], this will enable more intuitive interaction with users. In addition,
efforts to reduce manufacturing costs and streamline production processes are ongoing,
with the aim of making exoskeletons more economically feasible and accessible to a wider
audience [70].
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In the future, exoskeleton technology may undergo significant developments that could
revolutionize human augmentation. Innovations such as soft exosuits [71], neuro-prosthetics
[72], and personalized designs may facilitate more seamless integration with the human
body and enhanced user experiences. By leveraging multidisciplinary collaboration and
bio-inspired approaches [73], researchers may further optimize the performance and func-
tionality of exoskeletons, paving the way for transformative applications in healthcare,
industry, and beyond.

1.7 Conclusion:
This chapter provides a comprehensive overview of exoskeleton robot technology, illumi-
nating its current status and future prospects. The fundamental concepts and components
of exoskeletons have been explored in detail, revealing the complexity behind their design
and operation. The key components of exoskeletons that are essential for functionality
have been analyzed, thus making clear their vital role in the system. Moreover, different
types of exoskeletons have been classified, demonstrating a diverse range of designs cus-
tomized to address various user needs and application domains. The practical applications
and use cases of exoskeletons across diverse sectors have been examined and accompanied
by real-world examples to illustrate the technology’s versatility and impact. Furthermore,
a specific exoskeleton called ULEL designed for upper limb rehabilitation, has been pre-
sented in brief. Finally, the current research ideas and directions have been presented,
as well as potential future improvements and innovations in exoskeleton technology. The
following chapter will expand upon the modeling of an upper limb exoskeleton robot.



Chapter 2

Upper limb exoskeleton modeling
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2.1 Introduction:
Exoskeleton modeling serves as the fundamental basis for understanding, optimizing, and
enhancing the capabilities of these wearable robotic systems. This introductory section
provides a framework for our subsequent discussions, emphasizing the importance of
exoskeleton modeling in the context of human augmentation and assistive technologies,
specifically limb rehabilitation. An in-depth examination of the theoretical underpinnings
and practical applications of exoskeleton modeling is provided, laying the foundation for
future advancements in human augmentation technologies. The objective of this chapter
is to comprehensively explore the modeling aspects of exoskeleton robots, with a primary
focus on the ULEL exoskeleton designed for upper limb rehabilitation. We begin with an
explanation of the fundamental concepts in exoskeleton modeling, including geometric,
kinematic, and dynamic aspects. This is followed by a real-world example of modeling an
exoskeleton.

In conclusion, readers will gain a precise understanding of the theoretical foundations,
practical applications, and challenges associated with modeling exoskeletons, particularly
within the context of the ULEL exoskeleton.

2.2 Kinematics and dynamics of exoskeletons:

2.2.1 Upper limb anatomy: A comprehensive overview:
The upper limb is a term used to describe the upper extremity, which comprises three
primary segments: the arm, forearm, and hand. Each of these segments plays an essential
role in various daily activities and movements. This section provides an overview of the
anatomical elements within each segment, along with an explanation of their functional
significance based on

a. The shoulder:

The shoulder joint represents the most mobile of all human joints and serves as the pivotal
joint connecting the upper limb to the trunk (or also called Turso). The shoulder com-
plex, which is composed of the clavicle (or collarbone), the scapula (or shoulder blade),
and the humerus (or upper arm bone), offers three DoF, which facilitate flexion/extension,
adduction/abduction, and axial rotations of the upper limb.

b. The elbow:

The elbow is the intermediary articulation between the upper arm and the forearm, play-
ing a critical role in the mechanical integration of these segments. The elbow joint is
composed of the humerus, radius, and ulna and enables two primary functions, namely
flexion/extension and pronation/supination. This articulation provides two DoF, accom-
modating pivotal movements crucial for various tasks.

c. The wrist:

The wrist is situated at the distal end of the upper limb and acts as a bridge between the
forearm and hand, facilitating optimal positioning for grasping and manipulation. The
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wrist complex has two degrees of freedom, allowing for ulnar/radial deviation and flex-
ion/extension movements, which are essential for precise hand positioning and dexterity
for intricate tasks.

Figure 2.1: Biomechanics of upper limb [74].

2.2.2 Biomechanics of upper limb movement:
The upper limb boasts a remarkable versatility, offering a total of nine DoF in its motion,
excluding the intricate joints of the fingers [75]. Let’s delve into the specific movements
afforded by each major joint:

1. Shoulder joint:

Often considered analogous to a ball joint, the shoulder joint permits a broad spectrum of
movement through three principal rotations. These include:

-Flexion / Extension (Figure 2.2.g): Forward and backward movements of the arm.
- Abduction / Adduction (Figure 2.2.h): Outward and inward movements away from

and toward the body’s midline.
- Internal Rotation / External Rotation (Figure 2.2.i): Rotational movements inwards

and outwards.
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In addition, the sternoclavicular joint contributes two degrees of freedom:
- Elevation/depression: The elevation and depression of the shoulder joint.
- Retraction/protraction: The shoulder ball joint undergoes a shift in its center of rota-

tion as it moves backward and forward.
Together, these movements provide the shoulder with a total of five degrees of freedom

[76].

1. Elbow joint:

The elbow, which is characterized by its hinge-like structure, facilitates two principal
movements:

- Flexion / extension (Figure 2.2.d): Bending and straightening of the forearm.
- Pronation / supination (Figure 2.2.f): Are rotational movements of the forearm that

allow the palm to face downward (pronation) or upward (supination).

1. Wrist joint:

The wrist is a distal joint that offers two pivotal degrees of freedom.
- Flexion / extension (Figure 2.2.a): Upward and downward movements of the hand.
- Ulnar deviation / radial deviation (Figure 2.2.b): The hand should be moved in a side-

to-side fashion, with the ulna (little finger side) or radius (thumb side) being tilted in the
direction of the movement [77].

Figure 2.2: Upper limb movements [78]

2.2.3 Mechanical structure of ULEL:
ULEL features three active revolute joints, enabling flexion/extension movements at the
shoulder, elbow, and wrist joints. Additionally, it is connected to a frame base via a passive
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ball joint, with the capability to block or release the ball via an adjustable friction system.
Figure 2 illustrates the mechanical architecture of ULEL.

Figure 2.3: Mechanical design of ULEL.

It is evident that ULEL is comprised of four modules. The frame module, which serves
as the base, is equipped with a height-adjustable stand that employs a hydraulic system,
thus ensuring that the shoulder axis of the exoskeleton aligns with that of the subject. The
frame module’s carrier is designed with wheels that can be maneuvered with ease, with
one of them equipped with a brake. This innovative system enables the exoskeleton to be
operated without the subject lifting it. The shoulder module incorporates a revolute joint
with an onboard actuator, which is connected to the frame through a passive adjustable
ball joint. The arm module is situated on the shoulder and contains the actuator that is
responsible for elbow movement. Furthermore, the wrist movement is driven by the on-
board actuator within the forearm module. The ULEL actuation and transmission system
is based on an embedded screw and cable mechanism [79]. Each joint is equipped with
a direct current (DC) brushless motor and an encoder to measure the angle of rotation.
ULEL is designed to interact directly with the user, which necessitates the inclusion of
safety features. Consequently, a power-off applied brake and limit switches are incorpo-
rated into each active joint. Table 2.1 provides a summary of the specifications for the
three ULEL active axes.
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Table 2.1: Mechanical properties of ULEL.

Joints Shoulder Elbow Wrist
Motors DC brushes

Movement Flexion / Extension
Transmission Screw and Cable System (SCS)

Magnitude (𝑑𝑒𝑔) 90 120 80
Transmission ratio 251.3 167.6 47.1

Velocity (𝑟 𝑝𝑚) 18.39 41.93 149
Torque (𝑁𝑚) 85.08 23.9 6.72
Power (𝑊) 200 150 150

The actuation and transmission system of ULEL is based on an embedded screw and
cable system (SCS). The joint is driven by a standard push-pull cable, while the cable is
driven on one side by a ball screw locked in rotation, which translates directly in its nut
without any linear guiding Figure 2.4. This system enables high operational torques thanks
to high reduction ratios. Moreover, it permits high reversibility and back drivability. The
alignment of the motor shaft with the cable provides a compact structure with a low inertia.

Figure 2.4: Embedded shoulder actuator.

2.3 ULEL exoskeleton modeling:
Modeling plays a pivotal role in the characterization of the utilized device and in the design
process of prospective controllers. Models are employed to conduct simulations, which
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facilitate the testing of system behavior and validation of the control schemes in a safe
manner. Additionally, they are utilized to identify the kinematic and dynamic parameters
that are essential for control and simulations.

The modeling of ULEL exoskeleton is carried out using the modified Denavit Harten-
berg (DH) method [80]. The kinematic diagram of the ULEL exoskeleton is illustrated in
2.5, where 𝑅𝑖 (𝑂𝑖, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) represents the frame attached to the link 𝑖 and 𝑞𝑖 is the joint
angle such that: 𝑞 = [𝑞1 𝑞2 𝑞3]𝑇 , and the range of motion is detailed in Table 2.2.

Figure 2.5: Kinematic diagram of ULEL [58].

Table 2.2: Field of motion of ULEL [58].

Joint Movement Range (𝑑𝑒𝑔)
Shoulder Flexion / Extension 0 → 90

Elbow Flexion / Extension 10 → 110
Wrist Flexion / Extension -40 → +40

2.3.1 Geometric model:
This study focuses on geometrically modeling a 3 DoF exoskeleton robot, laying the
groundwork for subsequent mechanical and kinematic analyses. The exoskeleton com-
prises of an interconnected links and joints, where each is defined by a specific geometric
parameters and constraints. By utilizing the Direct Geometric Model (DGM), we can accu-
rately determine the position and orientation of the end-effector, such as the wrist handle,
based on the joint configurations.

The general transformation matrix can be given as:
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𝑖−1𝑇𝑖 =


cos(𝜃𝑖) − sin(𝜃𝑖) 0 𝑑𝑖

cos(𝛼𝑖) sin(𝜃𝑖) cos(𝛼𝑖) cos(𝜃𝑖) − sin(𝛼𝑖) −𝑟𝑖 sin(𝛼𝑖)
sin(𝛼𝑖) sin(𝜃𝑖) sin(𝛼𝑖) cos(𝜃𝑖) cos(𝛼𝑖) 𝑟𝑖 cos(𝛼𝑖)

0 0 0 1

 (2.1)

Where:

• 𝛼𝑖 is the angle between 𝑧𝑖−1and 𝑧𝑖 around 𝑥𝑖−1.

• 𝑑𝑖 is the distance between 𝑧𝑖−1and 𝑧𝑖 along 𝑥𝑖−1.

• 𝜃𝑖 is the angle between 𝑥𝑖−1and 𝑥𝑖 around 𝑧𝑖.

• 𝑟𝑖 is the distance between 𝑥𝑖−1and 𝑥𝑖 along 𝑧𝑖.

Through the analyses of the kinematic diagram depicted in Figure 2.5, we can obtain the
DH parameters as follows:

Table 2.3: Modified DH parameters.

𝑖 𝛼𝑖 𝑑𝑖 𝜃𝑖 𝑟𝑖
1 0 0 𝑞1 0
2 0 𝑙1 𝑞2 0
3 − 𝜋

2 𝑙2 𝑞3 𝑟3

By using the transformation matrix 2.1 and Table 2.3, we can deduce:

0𝑇1 =


𝐶1 −𝑆1 0 0
𝑆1 𝐶1 0 0
0 0 1 0
0 0 0 1


1𝑇2 =


𝐶2 −𝑆2 0 𝑙1
𝑆2 𝐶2 0 0
0 0 1 0
0 0 0 1


2𝑇3 =


𝐶3 −𝑆3 0 𝑙2
0 0 1 𝑟3

−𝑆3 −𝐶3 0 0
0 0 0 1


Where:
𝐶𝑖 𝑎𝑛𝑑 𝑆𝑖 are cos(𝑞𝑖) and sin(𝑞𝑖), respectively.
The resultant transformation matrix is obtained by multiplying the above calculated

matrices.

0𝑇3 =


𝐶12𝐶3 −𝐶12𝑆3 −𝑆12 𝑙1𝐶1 + 𝑙2𝐶12 − 𝑟3𝑆12
𝑆12𝐶3 −𝑆12𝑆3 𝐶12 𝑙1𝑆1 + 𝑙2𝑆12 + 𝑟3𝐶12
−𝑆3 −𝐶3 0 0
0 0 0 1

 (2.2)
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Where:
𝐶𝑖 𝑗 𝑎𝑛𝑑 𝑆𝑖 𝑗 are cos(𝑞𝑖 + 𝑞 𝑗 ) and sin(𝑞𝑖 + 𝑞 𝑗 ), respectively.

In robotics, it is widely recognized [80] that given an arbitrary point 𝐴 located at
the Cartesian coordinates (𝑖𝐴𝑥 ,𝑖 𝐴𝑦,𝑖 𝐴𝑧) relative to frame 𝑅𝑖,the Cartesian coordinates
( 𝑗 𝐴𝑥 , 𝑗 𝐴𝑦, 𝑗 𝐴𝑧) of 𝐴 relative to another frame 𝑅 𝑗 can be computed as follows:

𝑗 𝐴 = 𝑗 𝑇𝑖 × 𝑖𝐴 (2.3)

Where:
𝑖𝐴 =

[
𝑖𝐴𝑥

𝑖𝐴𝑦
𝑖𝐴𝑧 1

]𝑇
, 𝑗 𝐴 =

[
𝑗 𝐴𝑥

𝑗 𝐴𝑦
𝑗 𝐴𝑧 1

]𝑇are the homogeneous co-
ordinates of point 𝐴 with respect to 𝑅𝑖 and 𝑅 𝑗 , respectively.

Let the Cartesian coordinates of the end-effector (terminal fixed point) of ULEL be pre-
sented in 𝑅3 frame by (3𝐴𝑥 , 3𝐴𝑦,

3𝐴𝑧). The absolute Cartesian coordinates of this position
in the frame 𝑅0can be given by: 

0𝐴𝑥
0𝐴𝑦
0𝐴𝑧
1

 =
0 𝑇3


3𝐴𝑥
3𝐴𝑦
3𝐴𝑧
1

 (2.4)

Substituting 2.2 in 2.4 yields the DGM of ULEL exoskeleton as follows:
0𝐴𝑥 =

3𝐴𝑥𝐶12𝐶3 − 3𝐴𝑦𝐶12𝑆3 − 3𝐴𝑧𝑆12 + 𝑙1𝐶1 + 𝑙2𝐶12 − 𝑟3𝑆12
0𝐴𝑦 =

3𝐴𝑥𝑆12𝐶3 − 3𝐴𝑦𝑆12𝑆3 − 3𝐴𝑧𝐶12 + 𝑙1𝑆1 + 𝑙2𝑆12 + 𝑟3𝐶12
0𝐴𝑧 = −3𝐴𝑥𝑆3 − 3𝐴𝑦𝐶3

(2.5)

2.3.2 Kinematic model:
The Direct Kinematic Model (DKM) establishes the relationship between the joint veloci-
ties and the end-effector velocity. This relationship can be expressed as ¤𝜒 = 𝐽 (𝑞) ¤𝑞, where
¤𝜒 denotes the velocity of the end-effector, ¤𝑞 ∈ R3 represents the vector of joint velocities,
and 𝐽 (𝑞) ∈ R3×3 is the Jacobian matrix. The Jacobian matrix, which is a function of the
joint parameters 𝑞, provides a linear approximation of this relationship by mapping the
joint velocities to the corresponding end-effoctor velocities. Each element of the Jacobian
matrix is derived from the partial derivatives o the end-effector’s position with respect o
each joint variable, capturing how changes in join angles affect the robot’s terminal motion.

𝐽𝑖, 𝑗 =
𝜕𝑋𝑖

𝜕𝑞 𝑗
(2.6)

where 𝐽𝑖, 𝑗 represents the element (𝑖, 𝑗) of the Jacobian matrix 𝐽.

Let 𝜒 be the position of the robot’s terminal and defined by:

𝜒 =


0𝐴𝑥
0𝐴𝑦
0𝐴𝑧
1
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Applying Equation 2.6 to the DGM results the following Jacobian matrix 𝐽𝑣 of the
end-effector for the linear velocity:

0𝐽𝑣 =



𝐽1,1 = −3𝐴𝑥𝑆12𝐶3 + 3𝐴𝑦𝑆12𝑆3 − 3𝐴𝑧𝐶12 − 𝑙1𝑆1 − 𝑙2𝑆12 − 𝑟3𝐶12
𝐽1,2 = −3𝐴𝑥𝑆12𝐶3 + 3𝐴𝑦𝑆12𝑆3 − 3𝐴𝑧𝐶12 − 𝑙2𝑆12 − 𝑟3𝐶12
𝐽1,3 = −3𝐴𝑥𝐶12𝑆3 − 3𝐴𝑦𝐶12𝐶3
𝐽2,1 = 3𝐴𝑥𝐶12𝐶3 − 3𝐴𝑦𝐶12𝑆3 − 3𝐴𝑧𝑆12 + 𝑙1𝐶1 + 𝑙2𝐶12 − 𝑟3𝑆12
𝐽2,2 = 3𝐴𝑥𝐶12𝐶3 − 3𝐴𝑦𝐶12𝑆3 − 3𝐴𝑧𝑆12 + 𝑙2𝐶12 − 𝑟3𝑆12
𝐽2,3 = −3𝐴𝑥𝑆12𝑆3 − 3𝐴𝑦𝑆12𝐶3
𝐽3,1 = 0
𝐽3,2 = 0
𝐽3,3 = − 3𝐴𝑥𝐶3 + 3𝐴𝑦𝑆3

(2.7)

Based on the ULEL’s configuration depicted in Figure 2.5, we can see that the Cartesian
coordinate of the point 𝐴 in the 𝑥−𝑎𝑥𝑖𝑠 is equal to zero. Hence, the Equation 2.7 becomes:

0𝐽𝑣 =



𝐽1,1 = 3𝐴𝑦𝑆12𝑆3 − 3𝐴𝑧𝐶12 − 𝑙1𝑆1 − 𝑙2𝑆12 − 𝑟3𝐶12
𝐽1,2 = 3𝐴𝑦𝑆12𝑆3 − 3𝐴𝑧𝐶12 − 𝑙2𝑆12 − 𝑟3𝐶12
𝐽1,3 = −3𝐴𝑦𝐶12𝐶3
𝐽2,1 = −3𝐴𝑦𝐶12𝑆3 − 3𝐴𝑧𝑆12 + 𝑙1𝐶1 + 𝑙2𝐶12 − 𝑟3𝑆12
𝐽2,2 = −3𝐴𝑦𝐶12𝑆3 − 3𝐴𝑧𝑆12 + 𝑙2𝐶12 − 𝑟3𝑆12
𝐽2,3 = −3𝐴𝑦𝑆12𝐶3
𝐽3,1 = 0
𝐽3,2 = 0
𝐽3,3 = 3𝐴𝑦𝑆3

(2.8)

In addition, The linear 𝑖𝑣𝑖 ∈ R3 and angular 𝑖𝜔𝑖 ∈ R3 velocities of the system can be
expressed in relative to the last frame 𝑅𝑛 (𝑛 = 3) using the Jacobian matrices as follows:

Linear velocity:
𝑛𝑣𝑛 =

𝑛 𝐽𝑣 (𝑞) ¤𝑞 (2.9)

Angular velocity:

𝑛𝜔𝑛 =
𝑛 𝐽𝜔 (𝑞) ¤𝑞 (2.10)

where 𝐽𝑣,𝐽𝑤 ∈ R3×3 are the Jacobian matrices of the linear and angular velocities,
respectively.

More details about the calculation of the linear and angular velocities, in addition, the
Jacobian matrices is explained in the next subsection.

2.3.3 Dynamic model:
For systems involving multiple rigid bodies, various dynamic modeling methods are avail-
able. The Euler–Lagrange method stands out as a well-established and classical approach
for dynamic modeling of multi-rigid-body systems . This method involves differentiating
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the system variables and time based on energy terms. While it might seem more com-
plex than Newtonian mechanics for simpler systems, the Euler–Lagrange method becomes
more manageable as the system’s complexity increases [81]. It relies on two fundamental
Equations: one for linear motion (translational) and the other for rotational motion. To
begin, we define the Lagrangian functions as follows:

𝐿 = 𝑇 −𝑈 (2.11)

Where 𝑇 &𝑈 denotes the kinetic and the potential energy of the system, respectively.

and the system’s output torques can be written as:

𝜏𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑞𝑖
− 𝜕𝐿

𝜕𝑞𝑖
(2.12)

where 𝑞𝑖, ¤𝑞𝑖 ∈ R3 are the system’s joint 𝑖 position and velocity vectors, respectively.
and 𝜏𝑖 ∈ R𝑛 is the exoskeleton torque or joint 𝑖.

Kinetic energy T

The generalized formula of the kinetic energy of the exoskeleton system is given by:

𝑇 =
1
2
¤𝑞𝑇𝑀 (𝑞) ¤𝑞 (2.13)

Where 𝑀 (𝑞) ∈ R3×3 represents the robot’s non-singular inertia matrix, which is sym-
metric and positive definite.

The Equation 2.13 can also be presented in König form as follows:

𝑇 =
1
2

3∑︁
𝑖=1

(𝑚𝑖𝑖𝑣𝑇𝑖 𝑖𝑣𝑖 + 𝑚𝑖𝑖𝑟𝑇𝑐𝑖𝑆(𝑖𝑣𝑖)𝑖𝜔𝑖 +𝑖 𝜔𝑇𝑖 𝑖 𝐼𝑖𝑖𝜔𝑖) (2.14)

with:

𝑖+1𝑣𝑖+1 =𝑖+1 𝑅𝑖 (𝑖𝑣𝑖 + 𝑖𝜔𝑖 ∧ 𝑖𝑃𝑖+1) (2.15)

and

𝑖+1𝜔𝑖+1 =𝑖+1 𝑅𝑖
𝑖𝜔𝑖 + ¤𝑞𝑖+1

𝑖+1𝑍𝑖+1 (2.16)

and

𝐼𝑖 =
©«

𝐼𝑖,𝑥𝑥 𝐼𝑖,𝑥𝑦 𝐼𝑖,𝑥𝑧
𝐼𝑖,𝑦𝑦 𝐼𝑖,𝑦𝑧

𝑠𝑦𝑚𝑚 𝐼𝑖,𝑧𝑧

ª®¬
Where:

• 𝑖𝑃𝑖+1 ∈ R3 is the distance between the frame 𝑖 + 1 to 𝑖.

• 𝑖+1𝑍𝑖+1 ∈ R3 is the unit vector of the same frame along 𝑧𝑖 − 𝑎𝑥𝑖𝑠 which equals to
[0 0 1]𝑇 .
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• 𝑚𝑖 ∈ R is the mass of the link 𝑖.

• 𝑖𝑣𝑖 ∈ R3 is the linear velocity vector of the same frame relative to center of mass.

• 𝑖𝜔𝑖 ∈ R3 is the angular velocity vector of the same frame relative to center of mass.

• 𝑖𝑟𝑐𝑖 = [𝑖𝑥𝑚𝑖 𝑖𝑦𝑚𝑖
𝑖𝑧𝑚𝑖]𝑇 ∈ R3 is the center of mass coordinates of link i of the same

frame.

• 𝑆(.) Is the skew-symmetric matrix operator.

• 𝑖 𝐼𝑖 ∈ R3×3 is the inertia matrix of the same frame around the center of mass.

Potential energy U

The potential energy of the system is given by:

𝑈 =

3∑︁
𝑖=1

𝑈𝑖 (2.17)

with:

𝑈𝑖 = −𝑚𝑖𝑔𝑇𝑟0,𝑐𝑖 = −𝑚𝑖𝑔𝑇 (𝑖𝑃𝑖+1 +𝑖 𝑟𝑐𝑖)

𝑈 =

3∑︁
𝑖=1

−𝑚𝑖𝑔𝑇 (𝑖𝑃𝑖+1 +𝑖 𝑟𝑐𝑖) (2.18)

where: 𝑔 ∈ R3 is the gravity acceleration vector.

Friction D

For modeling friction, a wide range of models have been proposed in the literature [80,
82–84]. The combination of viscous and Coulomb frictions for the robot joints can be
expressed in following model:

𝐷𝑖 ( ¤𝑞) = −𝐹𝑣,𝑖 ¤𝑞𝑖 − 𝐹𝑐,𝑖𝑠𝑖𝑔𝑛( ¤𝑞𝑖) (2.19)

Where 𝐹𝑣,𝑖 ( ¤𝑞) = 𝑑𝑖𝑎𝑔(𝐹𝑣,1, 𝐹𝑣,2, 𝐹𝑣,3) ∈ R3×3 is a diagonal matrix that represents the
viscous friction; and 𝐹𝑐,𝑖 ( ¤𝑞) = 𝑑𝑖𝑎𝑔(𝐹𝑐,1, 𝐹𝑐,2, 𝐹𝑐,3) ∈ R3×3 is a also a diagonal matrix
which depicts the Coulomb friction.

We have now established the dynamics of the exoskeleton. The inverse dynamic model
of the system can be written as:

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝐺 (𝑞) = 𝜏 + 𝐷 ( ¤𝑞) (2.20)

where: 𝑀 (𝑞) ∈ R3×3 is the non-singular inertia matrix; 𝐶 (𝑞, ¤𝑞) ∈ R3×3 is the Coriolis
and centrifugal matrix; 𝐺 (𝑞) ∈ R3 represent the gravity forces vector; 𝐷 ( ¤𝑞) ∈ R3 is the
dissipation term vector; 𝜏𝑒𝑥𝑜 ∈ R3 is the exoskeleton’s torques.
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The matrices and vectors presented below are derived from the calculated terms of the
dynamic model 2.20, which are obtained by applying the following Equations:2.14, 2.18,
and 2.19, then substituting them into Equation 2.12.

- Trigonometric transformation:
The simplification of the next Equations is based on the following Equations.

𝑆1 = sin(𝑞1)
𝐶1 = cos(𝑞1)

𝑆12 = sin(𝑞1 + 𝑞2)
𝐶12 = cos(𝑞1 + 𝑞2)

- Inertia matrix 𝑀:

𝑀11 = 2.𝑙1.𝑚2.(𝑥𝑚2 .𝐶1 + 𝑦𝑚2𝑆1).𝐶12 − 2.𝑙1.𝑚2.(𝑦𝑚2 .𝐶1 − 𝑥𝑚2 .𝑆1).𝑆12+
(𝑙21 + 𝑥

2
𝑚2 + 𝑦

2
𝑚2).𝑚2 + 𝑚1.(𝑥2

𝑚1 + 𝑦
2
𝑚1) + 𝐼1 + 𝐼2

𝑀12 = 𝑙1.𝑚2.(𝑥𝑚2 .𝐶1 + 𝑦𝑚2𝑆1).𝐶12 + 𝑙1.𝑚2.(𝑥𝑚2 .𝑆1 − 𝑦𝑚2 .𝐶1).𝑆12 + 𝑚2.(𝑥2
𝑚2 + 𝑦

2
𝑚2) + 𝐼2

𝑀13 = 0
𝑀21 = 𝑀12
𝑀22 = 𝐼2 + 𝑚2.(𝑥2

𝑚2 + 𝑦
2
𝑚2)

𝑀23 = 0
𝑀31 = 𝑀13
𝑀32 = 𝑀23
𝑀33 = 𝐼3

- Coriolis and centrifugal matrix 𝐶:

𝐶11 = 𝑙1 ¤𝑞2 ((𝑥𝑚2𝑆1 − 𝑦𝑚2𝐶1) 𝐶12 − 𝑆12 (𝑥𝑚2𝐶1 + 𝑦𝑚2𝑆1)) 𝑚2
𝐶12 = (−𝑙1𝑚2 (𝑥𝑚2𝐶1 + 𝑦𝑚2𝑆1) 𝑆12 − 𝑙1𝑚2 (𝑦𝑚2 𝐶1 + 𝑥𝑚2𝑆1) 𝐶12) ¤𝑞1+

(−𝑙1𝑚2 (𝑥𝑚2𝐶1 + 𝑦𝑚2𝑆1) 𝑆12 + 𝑙1𝑚2 (𝑥𝑚2 𝑆1 − 𝑦𝑚2𝐶1) 𝐶12) ¤𝑞2
𝐶13 = 0
𝐶21 = (2 𝑙1𝑚2 (𝑦𝑚2𝐶1 − 𝑥𝑚2𝑆1) 𝐶12 + 𝑙1𝑚2 (𝑥𝑚2 𝑆1 − 𝑦𝑚2𝐶1) 𝐶12+

𝑙1𝑚2 (𝑥𝑚2𝐶1 + 𝑦𝑚2𝑆1) 𝑆12 ¤𝑞1)
𝐶22 = 0
𝐶23 = 0
𝐶31 = 0
𝐶32 = 0
𝐶33 = 0

- Gravity vector 𝐺:

𝐺1 = 𝑚1.𝑔.(𝑥𝑚1 .𝑆1 + 𝑦𝑚1 .𝐶1) + 𝑚2.𝑔.(𝑥𝑚2 .𝑆12 + 𝑦𝑚2 .𝐶12 + 𝑙1.𝑆1)
𝐺2 = 𝑚2.𝑔.(𝑥𝑚2 .𝑆12 + 𝑦𝑚2 .𝐶12)
𝐺3 = 0

where 𝑔 = 9.81𝑚/𝑠2
- Dissipation vector 𝐷:

𝐷1 = 𝐹𝑣1 . ¤𝑞1 + 𝐹𝑐1 .𝑠𝑖𝑔𝑛( ¤𝑞1)
𝐷2 = 𝐹𝑣2 . ¤𝑞2 + 𝐹𝑐2 .𝑠𝑖𝑔𝑛( ¤𝑞2)
𝐷3 = 𝐹𝑣3 . ¤𝑞3 + 𝐹𝑐3 .𝑠𝑖𝑔𝑛( ¤𝑞3)
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Remarque: The zeros showed in the inertia and Coriolis matrices are due to the fact that
the last articulation is considered as a rigid mass.

2.4 Conclusion:
This chapter presents a comprehensive exploration of the domain of exoskeleton modeling,
with particular attention paid to the ULEL exoskeleton. A comprehensive analysis of piv-
otal areas, including geometric, kinematic, and dynamic aspects, was conducted with the
objective of elucidating the theoretical foundations and practical implications associated
with exoskeleton modeling. Finally, a detailed dynamic model of the ULEL exoskeleton
robot was established. The following chapter will provide a detailed discussion of the PSO
algorithm, outlining its applications and relevance to the control strategies discussed in this
chapter.



Chapter 3

Particle Swarm Optimization (PSO)
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3.1 Introduction:
Particle Swarm Optimization represents a highly effective population-based optimization
algorithm, drawing inspiration from the collective behavior observed in nature, particularly
the social dynamics of bird flocks and fish schools. PSO was developed as a result of
research efforts to emulate the collective intelligence observed in natural systems. It has
since become a widely utilized technique for solving optimization problems across various
domains.

The history and development of PSO can be traced back to the early 1990s, with Dr.
James Kennedy and Dr. Russell Eberhart being primarily credited for their seminal work
published in 1995 [85]. This introduced PSO as an optimization algorithm based on the
principles of social interaction and cooperation. Since then, PSO has undergone continu-
ous refinement and adaptation by researchers worldwide, leading to numerous variants and
applications across diverse fields.

The essence of PSO is a straightforward yet sophisticated concept: a population of
potential solutions, known as particles, navigates the solution space to identify optimal
solutions. Each particle represents a potential solution and modifies its position in accor-
dance with its own experiences and the collective knowledge of the swarm.

The fundamental principles underlying the PSO algorithm are as follows:
- Particles which represent individuals within the swarm, each associated with a posi-

tion and velocity in the solution space.
- The fitness function is defined as the objective to be optimized, thereby guiding the

search for optimal solutions.
- Velocity and Position Updates: The velocity and position of particles in the PSO un-

dergo updates influenced by two main factors. Firstly, each particle’s velocity and position
are adjusted based on its own optimal solution, referred to as pbest, which signifies the ve-
locity and position that would result in the best individual experience. Secondly, the global
best-known solution, or gbest, exerts an influence on these adjustments. In contrast to
pbest, which is specific to each particle, gbest represents the optimal velocity and position
for the entire swarm. This adjustment mechanism, shaped by cognitive and social influ-
ences, aims to achieve a balance between exploration and exploitation within the solution
space, which is defined as the range of all potential outcomes within given constraints.

This chapter introduces the Particle Swarm Algorithm and its applications. It starts by
explaining PSO’s basics, followed by a detailed look at how the algorithm works. Different
versions and adaptations of PSO are then discussed. Afterward, the chapter explores where
PSO is used in real-world scenarios and how its parameters are fine-tuned for optimal
performance. It also touches upon the challenges faced and potential future directions for
PSO.

3.2 Algorithm description:
The following detailed description presents a comprehensive overview of the PSO algo-
rithm, accompanied by a clear exposition of the role of parameters and pseudocode, which
explains the algorithm’s operational mechanics.
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3.2.1 PSO algorithm:
A- Initialization phase:

- Initialize the swarm of particles randomly within the solution space.
- Assign initial velocities to the particles in a random manner.
B- Velocity and position updates:
- For each particle in the swarm –> Update the particle’s velocity using the following

formula:

𝑉
𝑗+1
𝑖

= 𝑤 𝑗 𝑉
𝑗

𝑖
+ 𝑐1

(
𝑃
𝑗

𝑖
− 𝑋 𝑗

𝑖

)
+ 𝑐2

(
𝐺 𝑗 − 𝑋 𝑗

𝑖

)
(3.1)

where 𝑗 the iteration and

• 𝑐1, 𝑐2 ∈ R are positive constants.

• 𝑃 𝑗
𝑖
∈ R𝑚 is the personal best vector of the 𝑖-th particle at the iteration 𝑗 .

• 𝐺 𝑗 ∈ R𝑚 is the global best vector of all particles at the iteration 𝑗 .

• 𝑋 𝑗

𝑖
, 𝑋

𝑗+1
𝑖

∈ R𝑚 are the current and updated position vectors separately of the 𝑖-th
particle.

• 𝑉 𝑗

𝑖
, 𝑉

𝑗+1
𝑖

∈ R𝑚 are the current and updated velocity vectors, respectively of the 𝑖-th
particle.

• 𝑤 𝑗 ∈ R is a constant positive weigh.

- Update the particle’s position using the following Equation:

𝑋
𝑗+1
𝑖

= 𝑋
𝑗

𝑖
+𝑉 𝑗+1

𝑖
(3.2)

C- Fitness evaluation: The fitness of each particle must be evaluated using a cost func-
tion that measures the quality of the solution represented by the particle’s position.

D- Termination conditions: The algorithm should be terminated if a predefined stop-
ping criterion is met. This criterion could be, for example, reaching a maximum number
of iterations, achieving a satisfactory solution, or stagnation of the algorithm.

3.2.2 Significance of parameters in PSO algorithm:
- Swarm Size: This parameter is constant and determines the number of particles present
in the swarm, which influences the swarm’s exploration and exploitation abilities.

- Inertia Weight (𝑤): This concept balances the trade-off between exploration and ex-
ploitation. High inertia values encourage exploration, while low values promote exploita-
tion.

- Acceleration Coefficients (𝐶1 and 𝐶2): They are essential to ascertain the influence
of personal best positions (𝑃) and global best positions (𝐺) on particle velocity updates.

- Termination Criteria: It is necessary to determine the point at which the algorithm
should be terminated in order to prevent the unnecessary expenditure of computational
resources and to ensure convergence.
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3.2.3 Pseudocode:
The below descripted code represents the standard PSO version.

1. Initialize swarm of particles randomly
2. Initialize personal best position (𝑃𝑏𝑒𝑠𝑡) for each particle
3. Initialize global best position (𝐺𝑏𝑒𝑠𝑡) of the swarm
4. Set maximum number of iteration or convergence criteria
5. Loop {Iteration = Max}

{
a. For each particle in the swarm:

Update particle velocity using formula 3.1
Update particle position using formula 3.2
Evaluate fitness of particle
Update personal best position if fitness improves
Update global best position if fitness improves

b. Incerement iteration counter
} End loop

3.3 Variant and modifications:
Particle Swarm Optimization has attracted considerable interest in the field of optimization
due to its simplicity, effectiveness, and versatility. Over time, researchers have proposed
a number of variations and modifications to the basic PSO algorithm, with the aim of
enhancing its performance, addressing the local optimal stacking issue, and extending its
applicability to a range of diverse optimization problems. This section examines several
prominent variants and modifications of PSO, including swarm initialization, mutation
operators’ updating, the constriction coefficient approach, inertia weight updating [86],
and Hybrid PSO algorithms.

3.3.1 Initialization:
The initialization of particles in PSO is crucial for its performance. Poor initialization
can lead to inefficient exploration of the solution space, resulting in difficulty finding the
optimal solution. The success of PSO heavily relies on well-designed initialization strate-
gies, which guide the algorithm toward promising regions and accelerate convergence.
Therefore, careful attention to initialization is essential for achieving robust and efficient
optimization outcomes [87–91].

3.3.2 Mutation operators:
To improve the performance of PSO and to avoid local minima stagnation, researchers
have developed several variants that incorporate mutation operators. These mutations tar-
get either the global or local best particle, introducing diversity into the search process.
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Applying various techniques encourages exploration of new regions in the solution space,
enabling more effective navigation of complex landscapes and avoiding premature conver-
gence [89, 92–98].

3.3.3 Constriction coefficient approach:
The constriction coefficient approach is a modification of the standard PSO algorithm
aimed at improving its convergence behavior and stability. In tradition, PSO’s particles
update their velocities based on three main components: inertia, cognitive (personal best),
and social (global best) terms. However, these updates can sometimes lead to excessive
particle velocities leading to overshooting and instability, especially in high-dimensional
or complex optimization problems.

The constriction coefficient approach incorporates a constriction factor, denoted χ, into
the velocity update Equation to regulate particle motion. By adjusting the particle velocity
according to the constriction factor, this approach optimizes the convergence properties
and reduces the risk of divergence, thereby increasing the effectiveness of the PSO al-
gorithm. By introducing an additional parameter to control particle velocity updates, the
approach ensures that particle movements are constrained, preventing them from growing
indefinitely and improving the overall stability of the optimization process. The use of
the constraint factor provides a balanced trade-off between exploration and exploitation,
leading to more efficient and reliable optimization results [99–101].

3.3.4 Inertia weight:
The inertia weight plays a key role in balancing the exploration-exploitation tradeoff in the
PSO algorithm, similar to the constriction coefficient. A higher inertia weight value pro-
motes exploration by encouraging particles to explore a larger search space. Conversely,
a lower inertia weight value emphasizes exploitation, allowing particles to focus on the
refinement of promising solutions. Several strategies for manipulating the inertia weight
have been explored by researchers. Some use a fixed inertia weight, while others use
linearly or nonlinearly decreasing schemes [92, 102–107].

3.3.5 Hybrid PSO algorithms:
Hybrid PSO algorithms integrate PSO with other optimization techniques or problem-
solving approaches in order to leverage the strengths of each method and overcome their
respective limitations. In the literature, the local optimum problem in PSO has been
discussed, and various variants of PSO algorithms have been developed to address this
problem. For example, researchers have attempted to incorporate evolutionary operators
such as crossover, mutation, selection, and the Differential Evolution (DE) algorithm itself
into PSO. As a result, hybrid versions of PSO have been tested and produced, includ-
ing hybrid evolutionary PSO [108], genetic algorithm (GA) and PSO [109, 110], genetic
programming-based adaptive evolutionary hybrid PSO [Psogp: a genetic programming
based adaptive evolutionary hybrid particle swarm optimization], and many others [111].
Such improvements perform well with PSO and have the potential to avoid getting stuck
at the local optimum. However, the problem of premature convergence still exists in
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some high-dimensional complex problems, even when the local optima obstacle is absent.
Therefore, PSO does not always work properly for high-dimensional models [112].

There are unique advantages, limitations, and applications to each variant and mod-
ification of PSO. The constriction coefficient approach improves convergence properties
through balancing between exploration and exploitation. Hybrid PSO algorithms provide
flexibility and adaptability to different optimizing scenarios. In addition to these variations,
several key factors have a significant impact on the performance and effectiveness of PSO:
Initialization sets the initial positions and velocities of the particles, which affects the con-
vergence behavior; mutation operators introduce diversity into the search process, which
mitigates stagnation at local minima; and the inertia weight parameter balances exploration
and exploitation. Tuning these factors along with PSO variants provides a comprehensive
understanding of the algorithm’s capabilities, limitations, and potential applications in var-
ious optimization tasks.

More details about variants and improvements of the PSO are depicted in Figure 3.1.

Figure 3.1: PSO methods classification.

3.4 Application of PSO:
The PSO algorithm has been demonstrated to be effective and adaptable in addressing a
diverse range of optimization challenges across various domains. This section provides a
comprehensive categorization of the practical applications of PSO in different real-world
fields [112], including health care, environmental, industrial, commercial, smart city, and
general aspects. A summary of PSO applications is illustrated in Figure 3.2.
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3.4.1 Health care:
PSO can be used in healthcare for tasks such as optimizing treatment plans, measuring
drug dosages, diagnosing diseases, and segmentation and classifying of medical images.
For example, a disease diagnostic system is presented in [113] for identifying and classify-
ing the most beneficial genes and for Alzheimer’s disease diagnosis in [114]. Next, a can-
cer diagnosis and classification using DNA microarray technology is introduced in [115].
Furthermore, a medical image segmentation, an electrocardiogram (ECG) signal analysis,
and an intelligent Leukaemia diagnosis are demonstrated in [116–118], respectively.

3.4.2 Environmental:
PSO can facilitate environmental management by optimizing processes such as waste man-
agement, pollution control, and renewable energy generation. For instance, a short-term
temperature prediction system utilizing ambient sensors is presented in [119]. Next, a mul-
tipurpose water reservoir operation system is introduced in [120]. Then, an atmospheric
pollutant concentration forecasting, daily suspended sediment load predicting, and images
segmentation and classification of a plants based on leaf pictures systems are presented
in [121–123], respectively. Additionally, more applications related to environments are
exhibited in [124–127].

3.4.3 Industrial:
In industrial settings, PSO can be utilized to optimize various aspects of manufacturing
processes, allocating daily electrical loads, defects prediction, and power dispatch. PSO
algorithms can be employed to optimize parameters in manufacturing processes such as
the parameters of plastic injection machines, thereby enhancing efficiency, reducing waste,
and improving product quality. For example, a logistics planning for food grain industry
considering wastages system is developed in [128]. Also, a photovoltaic/thermal system-
based building energy performance prediction system has been developed in [129]. Fur-
thermore, an optimal design of a mechatronic quadrotor, nuclear power plant potential
faults recognizing and diagnosing, multi-objective optimization design of the airborne
electro-optical platform, sizing of an off-grid house with solar panels and wind turbines
systems are presented in [125, 130–132], respectively. Moreover, additional applications
for industrial purposes are illustrated in [133–135].

3.4.4 Commercial:
PSO is applicable in a multitude of commercial domains, including, but not limited to,
marketing, finance, and logistics. To elaborate, it may optimize marketing campaigns by
identifying the most effective advertising channels or by optimizing pricing strategies in
order to maximize profit. Furthermore, PSO can be employed in the domain of finance
for the purpose of cost prediction, profit calculation, and risk assessment. For example,
an electric business center location optimization system has been introduced in [136], fol-
lowed by building materials’ prices forecasting system presented in [137]. Next, a profit
calculation module is proposed in [138] with a cost prediction of a transmission line project
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exhibited in [139]. Finally, a forecasting volatility from financial time series is presented
in [140].

3.4.5 Smart city:
In smart cities, PSO can be employed to optimize traffic management by adjusting sig-
nal timings and route planning. It can also be utilized to manage energy usage, optimize
waste collection routes, aid in urban infrastructure planning, and balance energy supply
and demand in smart grids. For instance, managing energy in smart homes system has
been proposed in [141]. Next, a forecasting day ahead traffic flow, scheduling shiftable
appliances, and building’s heating load estimation and controlling systems have been pre-
sented in [142–144], respectively. In addition, many applications of PSO in smart city can
be found in [145–148].

3.4.6 General aspects:
PSO is applicable to a wide range of domains, including computer science, service alloca-
tion, image segmentation, scheduling, prediction, and security management. It optimizes
the allocation of resources, enhances the accuracy of image analysis, improves the effi-
ciency of task scheduling, enables the accurate forecasting of outcomes, and strengthens
security measures by iteratively refining parameters in order to converge towards optimal
solutions. For example, in [149], a permission based detection of android malwares mod-
ule has been proposed. Next, a job shop scheduling problem, task scheduling in cloud
computing, traveling salesman problem, and path planning of multi-robots propositions
are presented in [150–154], respectively. Moreover, many applications in various fields
are demonstrated in [155–160].
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Figure 3.2: PSO applications.

3.5 Challengies and future directions:
Despite its pervasive adoption and efficacy in numerous optimization domains, PSO still
necessitates further enhancements. Consequently, this section elucidates the existing limi-
tations of PSO and proposes prospective avenues for its advancement.

3.5.1 Challenges and limitations:
• Premature Convergence: PSO algorithms may exhibit premature convergence, whereby

the swarm reaches suboptimal solutions prematurely, before fully exploring the solu-
tion space. This limits the algorithm’s ability to identify global optima, particularly
in complex, multimodal optimization problems.

• Convergence speed controller: Despite the typical fast convergence of PSO, there
is a possibility that it may be trapped into a local optimum due to premature conver-
gence. Consequently, it is imperative that researchers consider the implementation
of a convergence speed controller as a means of achieving the ultimate goal of solv-
ing this problem. The convergence speed can be slowed down when the particle
prematurely converges. Conversely, when the particle is unable to update its optimal
solution in the present moment, the convergence speed is accelerated. For this rea-
son, a significant remaining challenge is the development of an effective convergence
speed controller [161].

• Scalability issues: The scalability of PSO is negatively impacted by an increase in
the dimensionality of the search space or when handling a large-scale optimization



CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO) 39

problems. The computation complexity of PSO algorithms grows exponentially with
the size of the problem, resulting in prolonged computation times and necessity of
greater resources. Consequently, a challenge is raised to improve the PSO algorithm,
so that it adapts with the high dimensional problems. Indeed, in [162], a high dimen-
sional feature selection problem has been solved by using only a small set of relevant
features from a wide range of features.

• Memory requirements: Storing promising solutions of the PSO can be considered
as a performance upgrade. Because the algorithm can reuse historical solutions in
subsequent stages to find the optimal solution, as presented in [163].

• Parameter and topology selection: In PSO, achieving peak performance depends on
fine-tuning control parameters, which is often challenging due to a lack of clear guid-
ance. Future research should focus on methods such as simulations, limited-resource
parametric analysis, and heuristic-based hyper-parameter selection. Additionally,
the effectiveness of PSO in engineering relies heavily on selecting suitable topolo-
gies, an area that needs more exploration. Research should consider factors such
as topological degree and particle count to identify appropriate deterministic regular
topologies [164]. Moreover, the exploration of tree topologies and the suggestion of
diverse ones for specific goals, such as optimal PID controller design [165], are vital
areas that require further investigation.

3.5.2 Future directions:
In the future, the potential for PSO to contribute to a range of domains is promising, driven
by ongoing advancements in optimization techniques and the emergence of new appli-
cation areas. As computational power continues to increase and interdisciplinary collab-
oration expands, PSO is poised to play a pivotal role in addressing complex optimiza-
tion challenges and pushing the boundaries of innovation. In the field of image process-
ing, PSO’s capacity to optimize parameters in algorithms for processing colored images
presents promising avenues for enhancing image quality, enabling more accurate object
detection, and facilitating advanced computer vision applications. In computational biol-
ogy, PSO serves as a valuable tool for elucidating the intricacies of biological systems.
By optimizing parameters in biological models and algorithms, PSO can facilitate pro-
tein structure prediction, gene sequence alignment, and the inference of gene regulatory
networks. Moreover, in the domain of recommender systems, PSO’s capacity to refine
recommendation algorithms offers considerable potential for delivering personalized and
pertinent content to users across diverse platforms. In summary, as researchers and prac-
titioners continue to investigate new avenues and refine existing methodologies, PSO will
continue to evolve and improve across various fields.

3.6 Conclusion:
Particle swarm optimization has emerged as a cornerstone in the realm of optimization,
offering a versatile and robust framework for addressing complex optimization problems
across diverse domains. This chapter provided a comprehensive understanding of PSO’s
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significance and potential contributions to the field of optimization through an in-depth
exploration encompassing foundational principles, algorithmic descriptions, variants, ap-
plications, challenges, and future directions. The synthesis of these key contributions un-
derscores the significance of PSO as a powerful optimization technique with profound
implications for research, industry, and societal advancement. As researchers continue to
unravel the mysteries of swarm behaviour and optimization dynamics, PSO holds promise
for unlocking novel solutions to complex optimization problems, driving innovation, and
shaping the future of optimization research and practice. The next chapter will present our
principal contribution to the field of robotic rehabilitation and exoskeleton control.



Chapter 4

Real-time adaptive super twisting
algorithm based on PSO
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4.1 Introduction:
Exoskeleton robots have emerged as a promising tool for enhancing rehabilitation therapy
and providing support to therapists. Conventional rehabilitation techniques are character-
ized by prolonged periods of time, high energy expenditure, and variable outcomes. Given
the rising prevalence of stroke, with over 13.7 million new cases annually, conventional
approaches are inadequate for effectively treating all patients. Exoskeleton robots present
a viable solution for individuals with disabilities, assisting them in regaining limb con-
trol [1–5] and being utilized in various domains, including military applications [166,167].

Despite the advancements in exoskeleton utilization, the industry has yet to widely
adopt them for therapeutic purposes. A multitude of research endeavors have been dedi-
cated to the development of control strategies for wearable robots in passive, assistive, and
active rehabilitation modes, employing a variety of techniques, including Sliding Mode
Control (SMC) [2, 3, 168], neural network control [1, 4, 169–172], adaptive PID con-
trol [173–175], EMG-based control [176–180], and impedance control. Among these,
the Super Twisting Sliding Mode Control (ST-SMC) stands out due to its robustness and
effectiveness in managing nonlinear systems.

This chapter introduces an adaptive ST-SMC algorithm optimized through PSO [181].
The proposed approach addresses the shortcoming of classic ST-SMC, such as offline
parameter tuning, by enabling optimal online tuning of controller parameters. This en-
hancement improves the performance and stability of the control system, making it more
effective for real-time applications in exoskeleton robots. Simulation results validate the
proposed method, demonstrating its superiority over traditional control techniques.

This chapter begins with an examination of the dynamics of the exoskeleton, which
serves as the foundation for our study. We then proceed to present our novel control al-
gorithm that have been developed as part of this thesis. Additionally, we exhibits the
simulation and experimental results obtained from the implementation of our new control
approach, considering various scenarios to demonstrate its performance and robustness.

4.2 Considered system
The system under examination in this study is comprised of the wearer and the ULEL ex-
oskeleton, designed by RB3D for the LISSI Laboratory. The ULEL features three active
revolute joints that enable the flexion and extension movements of the shoulder, elbow, and
wrist. Additionally, an adjustable passive ball joint can be used to position the exoskele-
ton’s arm, as illustrated in Figure 4.1. The specifications of the ULEL’s three active joints
are presented in Table 2.1

4.2.1 Dynamic model
The dynamic model of the examined system that consists of the exoskeleton and the wearer
can be expressed by using Euler-Lagrange formalism as follows:

𝑀 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝜏𝑒𝑥𝑜 + 𝜏ℎ𝑢𝑚 (4.1)

with
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𝐻 (𝑞, ¤𝑞) = 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝐺 (𝑞) + 𝐹 ( ¤𝑞)
thatand

𝑢 = 𝜏𝑒𝑥𝑜

where 𝑞 ∈ R𝑛, ¤𝑞 ∈ R𝑛 and ¥𝑞 ∈ R𝑛 are the joints positions, velocities, and accelerations,
respectively; 𝑀 (𝑞) ∈ R𝑛×𝑛 is the non-singular inertia matrix; 𝐶 (𝑞, ¤𝑞) ∈ R𝑛×𝑛 is the
Coriolis and centrifugal matrix; 𝐺 (𝑞) ∈ R𝑛 represent the gravity forces vector; 𝐹 ( ¤𝑞) ∈ R𝑛

is the dissipation term; 𝜏𝑒𝑥𝑜 ∈ R𝑛 and 𝜏ℎ𝑢𝑚 ∈ R𝑛 are the exoskeleton and human torques,
respectively; 𝑢 ∈ R𝑛 is the control signal input.

The dynamic model of the system 4.1 can be written as

¥𝑞 = 𝑓 (𝑞, ¤𝑞) + 𝑔 (𝑞) 𝑢 + 𝑑 (𝑡) (4.2)

where 𝑓 (𝑞, ¤𝑞), 𝑔 (𝑞) and 𝑑 (𝑡) are given by

𝑓 (𝑞, ¤𝑞) = −𝑀 (𝑞)−1 𝐻 (𝑞, ¤𝑞)

𝑔 (𝑞) = 𝑀 (𝑞)−1

𝑑 (𝑡) = 𝑀 (𝑞)−1 𝜏ℎ𝑢𝑚

where 𝑑 (𝑡) ∈ R𝑛 is considered as the unknown uncertainties and external bounded distur-
bances vector, which will be compensated by the controller.

The following assumptions are considered:
Assumption 1: The positions 𝑞 (𝑡) and the velocities ¤𝑞 (𝑡) are measured.
Assumption 2: The disturbance 𝑑 (𝑡) is differentiable with respect to time and its

derivative ¤𝑑 (𝑡) is bounded.
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(a) ULEL prototype.

(b) Permitted CAD model. (c) Shoulder CAD model.

Figure 4.1: Mechanical structure of ULEL.

4.3 Adaptive super twisting sliding mode controller
In this study, the Adaptive ST-SMC (AST-SMC) is employed to address the limitations of
the classical super twisting algorithm, particularly its need for frequent parameter adapta-
tion for each user. The decision to use a second-order controller like the ST-SMC algorithm
over alternatives such as classical SMC or PID is based on its demonstrated superiority in
robustness and reliability, which includes several advantages:

• Ensuring high-quality trajectory tracking in both position and velocity

• Capable of achieving equilibrium within finite time for both the sliding surface and
its derivative

• Effectively and smoothly eliminating external disturbances within finite time

• Providing comfort and safety for the wearer.

This section details the controller design and introduces an online adaptation PSO-based
algorithm. The stability analysis and proof of finite-time convergence of the proposed
controller are presented in appendix 4.5.
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4.3.1 Controller design
The control law has been structured into two steps: initially choosing the sliding surface,
followed by the subsequent design of the controller.

Let the sliding surface of the super twisting controller be defined as:

𝑆 = ¤𝑒 + 𝜆𝑒 (4.3)

where 𝑆𝑇 = [𝑆1, ..., 𝑆𝑛] ∈ R𝑛 is the sliding manifold, 𝜆 ∈ R is a positive constant; 𝑒, ¤𝑒 ∈ R𝑛

are the joint position and velocity errors, respectively, such 𝑒 = 𝑞𝑑 − 𝑞 and ¤𝑒 = ¤𝑞𝑑 − ¤𝑞 with
𝑞𝑑 , ¤𝑞𝑑 ∈ R𝑛 are the desired position and velocity joints separately.

Remark: In order to achieve exponential convergence of the error dynamics within the
sliding mode (𝑆 = 0), it has been determined that the constant 𝜆 should be positive.

The proposed AST-SMC, derived from references [182,183], is formulated as follows:

𝑢 = 𝑔 (𝑞)−1
(
¥𝑞𝑑 − 𝑓 (𝑞, ¤𝑞) + 𝜆 ¤𝑒 + 𝐾1

√︁
|𝑆 |𝑠𝑖𝑔𝑛 (𝑆) +

�
𝐾2𝑠𝑖𝑔𝑛 (𝑆) 𝑑𝑡

)
(4.4)

where 𝐾1 = 𝑑𝑖𝑎𝑔
(
𝐾1,1, ..., 𝐾1,𝑛

)
∈ R𝑛×𝑛 and 𝐾2 = 𝑑𝑖𝑎𝑔

(
𝐾2,1, ..., 𝐾2,𝑛

)
∈ R𝑛×𝑛 the con-

troller’s parameters which are constrained within bounds defined in the proof section sec-
tion 4.5, and they will be optimized using the PSO algorithm detailed in section 4.3.2 and
illustrated in Figure 4.2, these parameters are formed by positive diagonal matrices.

√︁
|𝑆 |

is a matrix such
√︁
|𝑆 | = 𝑑𝑖𝑎𝑔

(√︁
|𝑆1 |, ...,

√︁
|𝑆𝑛 |

)
∈ R𝑛×𝑛; whereas 𝑠𝑖𝑔𝑛 (𝑆) is a vector such

𝑠𝑖𝑔𝑛 (𝑆) = [𝑠𝑖𝑔𝑛 (𝑆1) , ..., 𝑠𝑖𝑔𝑛 (𝑆𝑛)]𝑇 ∈ R𝑛 and ¥𝑞𝑑 ∈ R𝑛 is the desired acceleration.

Substituting the control law 4.4 into the Equation 4.2 gives:

¥𝑞 = 𝑓 (𝑞, ¤𝑞) + 𝑔 (𝑞) 𝑢 + 𝑑 (𝑡)
= ¥𝑞𝑑 + 𝜆 ¤𝑒 + 𝐾1

√︁
|𝑆 | 𝑠𝑖𝑔𝑛 (𝑆) +

�
𝐾2 𝑠𝑖𝑔𝑛 (𝑆) 𝑑𝑡 + 𝑑 (𝑡)

Then it comes:

¥𝑞𝑑 − ¥𝑞 + 𝜆 ¤𝑒 + 𝐾1
√︁
|𝑆 | 𝑠𝑖𝑔𝑛 (𝑆) +

�
𝐾2 𝑠𝑖𝑔𝑛 (𝑆) 𝑑𝑡 + 𝑑 (𝑡) = 0 (4.5)

Since the derivative of the sliding surface 𝑆 is given by ¤𝑆 = ( ¥𝑞𝑑 − ¥𝑞 + 𝜆 ¤𝑒) then the
Equation 4.5 can be written the following Super Twisting (ST) form:

¤𝑆 = −𝐾1
√︁
|𝑆 | 𝑠𝑖𝑔𝑛 (𝑆) −

�
𝐾2 𝑠𝑖𝑔𝑛 (𝑆) 𝑑𝑡 − 𝑑 (𝑡) (4.6)

The Equation 4.6 can still be written in the following system:{ ¤𝑆 = −𝐾1
√︁
|𝑆 | 𝑠𝑖𝑔𝑛 (𝑆) + 𝑍

¤𝑍 = −𝐾2 𝑠𝑖𝑔𝑛 (𝑆) − ¤𝑑 (𝑡) (4.7)

A recall of the Lyapunov stability analysis of the ST algorithm is given in the Appendix
4.5. Therefore, the system 4.7 which represents the closed loop dynamics is stable and its
finite-time convergence is guaranteed.
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4.3.2 PSO algorithm
Because the super twisting algorithm contains many parameters, selecting a meta-heuristic
algorithm like PSO to optimize their eigenvalues is an effective method to enhance and
adapt any controller. However, the evaluation criteria must be thoroughly studied and
tailored to the specific application. The custom PSO algorithm applied in this work is
adopted from [184], with the relevant Equations provided below.

𝑉
𝑗+1
𝑖

= 𝑤 𝑗 𝑉
𝑗

𝑖
+ 𝑐1

(
𝑃
𝑗

𝑖
− 𝑋 𝑗

𝑖

)
+ 𝑐2

(
𝐺 𝑗 − 𝑋 𝑗

𝑖

)
+ 𝑐3

𝑟 𝑗

| |𝑉 𝑗

𝑖
| |2

(4.8)

𝑋
𝑗+1
𝑖

= 𝑋
𝑗

𝑖
+𝑉 𝑗+1

𝑖
(4.9)

where 𝑗 the iteration and

• 𝑐1, 𝑐2, 𝑐3 ∈ R are positive constants.

• 𝑟 𝑗 ∈ R𝑚 is a random positive vector at the iteration 𝑗 .

• 𝑃 𝑗
𝑖
∈ R𝑚 is the personal best vector of the 𝑖-th particle at the iteration 𝑗 .

• 𝐺 𝑗 ∈ R𝑚 is the global best vector of all particles at the iteration 𝑗 .

• 𝑋 𝑗

𝑖
, 𝑋

𝑗+1
𝑖

∈ R𝑚 are the current and updated position vectors separately of the 𝑖-th
particle.

• 𝑉 𝑗

𝑖
, 𝑉

𝑗+1
𝑖

∈ R𝑚 are the current and updated velocity vectors, respectively of the 𝑖-th
particle.

• 𝑤 𝑗 ∈ R is a positive weigh computed by

𝑤 𝑗 = 𝑤𝑚𝑎𝑥 −
(
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑗𝑚𝑎𝑥

)
× 𝑗 (4.10)

where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 are the minimal and the maximal value and 𝑗𝑚𝑎𝑥 is the maximal
value of the iteration 𝑗 .

The parameters are calculated using the following Equation:

𝜃 (𝑡 + 𝑑𝑡) = 𝜃 (𝑡) + 𝐺 𝑗𝑚𝑎𝑥

where 𝑑𝑡 is the sampling time, 𝜃 (𝑡) = [𝐾1,1(𝑡), ..., 𝐾1,𝑛 (𝑡), 𝐾2,1(𝑡), ..., 𝐾2,𝑛 (𝑡)]𝑇 ∈ R2𝑛 is
the parameter vector at the moment 𝑡 and 𝐺 𝑗𝑚𝑎𝑥 ∈ R𝑚 is the global best vector of all
particles at the final iteration 𝑗𝑚𝑎𝑥 .

Before defining the objective function, lets introduce the following hypothesis.
Assumption 3: Let 𝑇 ∈ R+ be a short period of time such 𝑢 (𝑡) and ¥𝑞 (𝑡) remain

constants for 𝑡 ∈ [𝑡, 𝑡 + 𝑇].
The Equation of motion will be defined by

¤𝑞 (𝑡 + 𝑇) = ¥𝑞 (𝑡) 𝑇 + ¤𝑞 (𝑡) (4.11)

and
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𝑞 (𝑡 + 𝑇) = 1
2
¥𝑞 (𝑡) 𝑇2 + ¤𝑞 (𝑡) 𝑇 + 𝑞 (𝑡) (4.12)

The objective function employed in this thesis incorporates the norms of the predictive
sliding surface 𝑆 (𝑡 + 𝑇), the control signal 𝑢 (𝑡), and the swarm position 𝑋 (𝑡) to prevent
high gains and minimize power consumption. It is defined as follows:

𝐽 = 𝛼 ∥𝑆 (𝑡 + 𝑇)∥ + 𝛽 ∥𝑢 (𝑡)∥ + 𝛾 ∥𝑋 (𝑡)∥ (4.13)

with

𝑆 (𝑡 + 𝑇) = ( ¤𝑞𝑑 (𝑡 + 𝑇) − ¤𝑞 (𝑡 + 𝑇)) + 𝜆 (𝑞𝑑 (𝑡 + 𝑇) − 𝑞 (𝑡 + 𝑇)) (4.14)

where 𝑡 ∈ R is the current time; 𝛼, 𝛽, 𝛾 ∈ R are positive constant scalars.

A summary of the PSO algorithm optimization is presented in Table 4.1. Additionally,
the control diagram of the newly proposed controller is depicted in Figure 4.2.

Table 4.1: PSO Algorithm.
1. Set parameters ranges
2. Initialize the swarm
3. Particles initial assessment
4. Select the initial global best
5. Loop {Iteration = max}

{
a. Update velocity and position
b. Check the limits
c. Evaluate the particles
d. Update the global best
}

6. Save positions and velocities
7. Take the global best as the optimal solution
8. Calculate the real parameters (𝐾1and 𝐾2)
9. Verify upper and lower limits
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Figure 4.2: Controller diagram.

4.4 Results and analysis
To verify and validate the performance of the proposed online adaptive controller, both
simulations and real-time experiments were conducted on the ULEL robot, which is a 3
DoF right upper limb exoskeleton robot. This exoskeleton, which was designed by RB3D
for arm rehabilitation, has the mechanical characteristics detailed in Tables 2.1 and 2.2.
The tests conducted for this study focused solely on the 2 DoF of the shoulder and elbow,
allowing for flexion/extension movements. The parameter values used for the PSO are
summarized in Table 4.2.

Table 4.2: Parameters values.

Parameter Eigenvalue
Particle position 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 1]
Particle velocity 0

Iteration 10
Population 20
𝑤𝑚𝑎𝑥 1.7
𝑤𝑚𝑖𝑛 0.4
𝑐1 0.7
𝑐2 0.3
𝑐3 10−8

𝛼 0.001
𝛽 8
𝛾 5
𝜆 3
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4.4.1 Simulation results
Initially, simulations were conducted using the dynamic model of the exoskeleton outlined
in Chapter 2. To assess the robustness of the proposed approach, sinusoidal resistive and
assistive external disturbance forces were applied in software, depicted in Figure 4.5 and
described by Equation 4.15. These forces represent assistive and resistive rehabilitation
therapies, respectively, where the patient initially remains passive during the early stages
of therapy. After a certain period, the patient is encouraged to either resist or assist the
robot to enhance brain control recovery. The amplitudes of these disturbances exceed
20% of the maximum applied torques on both joints. A comparison between the proposed
AST-SMC control law and the classical ST-SMC algorithm is presented to demonstrate the
performance of the proposed controller.

𝑑1 (𝑡) =


−5 sin
(
0.5 𝑡 − 𝜋

2
)

if 𝑡 ∈ [20, 40]
+5 sin

(
0.5 𝑡 − 𝜋

2
)

if 𝑡 ∈ [60, 80]
0 otherwise

𝑑2 (𝑡) =


−2 sin
(
0.7 𝑡 + 𝜋

2
)

if 𝑡 ∈ [20, 40]
+2 sin

(
0.7 𝑡 + 𝜋

2
)

if 𝑡 ∈ [60, 80]
0 otherwise

(4.15)

The classical super twisting control law, as described in section 4.4, is identical to the
adaptive version, with the exception of its non-adaptive parameters (fixed) 𝐾1 and 𝐾2.

𝐾1 =

[
6 0
0 4

]
, 𝐾2 =

[
6 0
0 4

]
The desired trajectories that have been used are sinusoidal and expressed as the follow-

ing: {
𝑞𝑑1 (𝑡) = 𝜋

10 sin
(
0.5𝑡 − 𝜋

2
)
+ 𝜋

6
𝑞𝑑2 (𝑡) = 𝜋

10 sin
(
0.7𝑡 + 𝜋

2
)
+ 𝜋

6
(4.16)

Discussion:

Figure 4.3 demonstrates the minimization of the objective function and its convergence
to nearly zero, indicating that the optimal parameters have been found. In other words,
the figure illustrates the effectiveness of the PSO algorithm in identifying the appropriate
eigenvalues required for the controller.

Figure 4.4 illustrates the behavior of the controller parameters during the online search.
Despite initializing parameters 𝐾1 and 𝐾2 with random values within the ranges [1 − 5]
and [1 − 3], respectively, the proposed technique successfully converges to the optimal
values, as shown in the figure. However, starting with better initial values would accelerate
the convergence to the optimal parameters. Although 𝐾′

1 and 𝐾′
2 began with poor initial

guesses, leading to relatively suboptimal tracking performance, Figure 4.3 demonstrates
their eventual convergence to the optimal values.

For joint position trajectory tracking, Figures 4.6 and 4.7 illustrate the tracking position
and its associated error. These figures highlight the superior performance of the proposed
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controller compared to the classical ST-SMC, particularly in terms of trajectory tracking
and robustness against external disturbances. Specifically, at moments 20s and 80s, the
error of the classical controller is almost double that of the proposed one for the shoulder
joint, confirming the proposed controller’s efficiency.

The joint velocity trajectory tracking is depicted in Figures 4.8 and 4.9, demonstrating
the performance of the proposed approach. The start and end moments of the external
disturbances further emphasize the efficiency of the proposed adaptive controller compared
to other controllers.

Figure 4.10 shows the torques applied to the shoulder and elbow joints. Despite the
presence of resistive and assistive perturbations, the proposed PSO algorithm enables the
controller to generate adequate and optimal torques.

The Root Mean Square (RMS) of the steady-state tracking errors in position and veloc-
ity is illustrated in Figure 4.11. This figure demonstrates the effectiveness of the proposed
adaptive controller over the classical ST-SMC, even though the parameters of the classical
ST-SMC algorithm were carefully chosen.
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Figure 4.3: Evolution of the objective function
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Figure 4.4: Controller parameters obtained with PSO in good 𝐾 and bad 𝐾′ initial guesses
cases.



CHAPTER 4. REAL-TIME ADAPTIVE SUPER TWISTING ALGORITHM BASED
ON PSO 51

0 20 40 60 80 100 120

Time (Seconds)

-6

-4

-2

0

2

4

6

Ex
te

rn
al

 fo
rc

e 
(N

.m
)

Joint1 Joint2   External assistive force   External resistive force

Figure 4.5: External disturbances efforts applied on joint 1 and 2
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Figure 4.6: Position trajectory tracking of joint 1 of the proposed controller AST-SMC and
classic ST-SMC, respectively: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.7: Position trajectory tracking of joint 2 of the proposed controller AST-SMC and
classic ST-SMC, respectively: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.8: Velocity trajectory tracking of joint 1 of the proposed controller AST-SMC and
classic ST-SMC, respectively: (a) Velocity trajectory tracking; (b) Velocity tracking error.
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Figure 4.9: Velocity trajectory tracking of joint 2 of the proposed controller AST-SMC and
classic ST-SMC, respectively: (a) Velocity trajectory tracking; (b) Velocity tracking error.
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Figure 4.10: Input control torques for joints 1 and 2 with external disturbances: (a) Rep-
resent joint 1; (b) Represent joint 2.



CHAPTER 4. REAL-TIME ADAPTIVE SUPER TWISTING ALGORITHM BASED
ON PSO 54

Joint 1 Joint 2
0

0.5

1

1.5

2

2.5

3

R
M

S
 (

ra
d

)

10
-3

Proposed controller Classic STW

(a) Position tracking error.

Joint 1 Joint 2
0

0.002

0.004

0.006

0.008

0.01

R
M

S
 (

ra
d

/s
)

Proposed controller Classic STW

(b) Velocity tracking error.

Figure 4.11: Position and velocity tracking error RMS.

4.4.2 Experimental results
Experiment validation was conducted to verify the effectiveness of the proposed adaptive
controller. The exoskeleton actuators use current-controlled DC motors from MAXON.
Encoders measure the real position of each joint. Safety requirements, including limit
switches, current limits, and mechanical stops, were considered and activated during the
experiments. A first-order Euler solver with a sufficiently small sampling time of 0.004s
was used. The experimental setup, shown in Figure 4.12, is based on a computer equipped
with a dSpace DS1103 PPC real-time controller card and MATLAB/Simulink software
with the dSpace control desk application.

Before starting experiments with a real subject, the following safety protocol was im-
plemented:

1. Conducting test runs without a subject.

2. Adjusting mechanical stops to prevent unwanted positions.

3. Setting electrical current limits for the actuators’ motors to bound the applied torques.

4. Ensuring emergency stop buttons are always accessible near the handle.

• Experimental Scenarios

Tests were initially conducted on the ULEL exoskeleton without any wearer, followed by
experiments with two subjects detailed in Table 4.3.

During the tests, the subjects were instructed to:

1. Remain completely passive without applying any resistive or assistive efforts:

𝜏ℎ𝑢𝑚 = 0.

1. Exert an assisting muscular effort: 𝜏ℎ𝑢𝑚 ≠ 0 in the same direction as 𝜏𝑒𝑥𝑜, and a
resistive muscular effort: 𝜏ℎ𝑢𝑚 ≠ 0 in the opposite direction of 𝜏𝑒𝑥𝑜 during specific
time intervals.
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Discussion:

Figures 4.13 and 4.14 demonstrate sustained trajectory tracking in position for both joints
1 and 2. Although human subjects were instructed to remain completely passive, this is not
entirely feasible in practice. Notably, during the intervals [40 - 60] seconds and [100 - 120]
seconds, the subjects were not completely passive. Even with this lack of passiveness, the
error remains negligible, highlighting the quality and efficiency of the proposed controller.

Figures 4.15 and 4.16 illustrate the trajectory tracking in velocity for both joints 1 and
2. These figures show the effectiveness of the proposed controller in achieving the desired
velocity in the presence of measurement noise.

The control inputs shown in Figure 4.17 depict the efforts applied by the controller
on the actuators and clearly illustrate the impact of the subjects on the control torques.
Although the varying sizes and weights of the wearers, the proposed controller generates
smooth torques for each subject.

Figure 4.12: Experimental setup.

Table 4.3: Subjects used in experiments

Subjects No 1 No 2
Sex Male Male

Age (year) 46 16
Weight (Kg) 67 78
Height (m) 1.65 1.79
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Figure 4.13: Position trajectory tracking of joint 1, trial without a subject and with subjects
1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.14: Position trajectory tracking of joint 2, trial without a subject and with subjects
1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.15: Velocity trajectory tracking of joint 1, trial without a subject and with subjects
1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.16: Position trajectory tracking of joint 2, trial without a subject and with subjects
1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.17: Input control torques for joints 1 and 2 without any external perturbations:
(a) Represent joint 1; (b) Represent joint 2.

Since the controller has been applied to two joints (shoulder and elbow), it is chal-
lenging for the wearers to exert identical external resistive and assistive efforts on both
articulations simultaneously. As a result, the impact of external disturbances on the ap-
plied torques, shown in Figure 4.22, might be unclear. However, this impact is evident in
the position and velocity trajectory tracking.

Figures 4.18 and 4.19 show the position trajectory tracking of joints 1 and 2 in the
presence of external disturbances. Despite the strong perturbation forces, especially in
joint 2, the proposed controller remains stable and maintains smooth position trajectory
tracking.

Figures 4.20 and 4.21 illustrate the velocity trajectory tracking of joints 1 and 2 under
external disturbances. It is evident that the proposed controller effectively handles external
disturbances of varying amplitudes, highlighting its performance.

Figure 4.22 displays the generated torques in joints 1 and 2 for each subject. These
results show that the proposed controller responded consistently with the test subjects.
Additionally, the interactions with the exoskeleton varied between the wearers, yet the
controller maintained smooth torques. This demonstrates the optimization of the torques
in conjunction with the controller parameters, proving the efficiency and performance of
the proposed controller.
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Figure 4.18: Position trajectory tracking of joint 1 with the presence of disturbances, trial
with subjects 1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.19: Position trajectory tracking of joint 2 with the presence of disturbances, trial
with subjects 1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.20: Velocity trajectory tracking of joint 1 with the presence of disturbances, trial
with subjects 1 and 2: (a) Position trajectory tracking; (b) Position tracking error.
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Figure 4.21: Velocity trajectory tracking of joint 2 with the presence of disturbances, trial
with subjects 1 and 2: (a) Position trajectory tracking; (b) Position tracking error.



CHAPTER 4. REAL-TIME ADAPTIVE SUPER TWISTING ALGORITHM BASED
ON PSO 61

0 20 40 60 80 100 120

Time (Seconds)

-20

-10

0

10

20

30

40

Sh
ou

ld
er

 to
rq

ue
 (N

.m
)

With subject 1 With subject 2

  External resistive force   External assistive force

(a)

0 20 40 60 80 100 120

Time (Seconds)

-10

-5

0

5

10

15

20

El
bo

w 
to

rq
ue

 (N
.m

)

With subject 1 With subject 2

  External resistive force   External assistive force

(b)

Figure 4.22: Input control torques for joints 1 and 2 with the presence of external distur-
bances: (a) Represent joint 1; (b) Represent joint 2.

4.5 Conclusion
In this chapter, a real-time adaptive controller is introduced for an upper limb exoskeleton
rehabilitation robot. This approach utilizes the Super-Twisting algorithm, with its param-
eters computed through a novel online PSO algorithm. The novelty of the proposed tech-
nique lies in formulating the optimization criterion’s cost function. Moreover, adaptation
focuses on optimizing parameter variations rather than the parameters themselves. The
algorithm’s parameters are dynamically adjusted based on closed-loop stability analysis
conditions.

The effectiveness of this approach has been evaluated through simulations and real-life
experiments involving two healthy subjects. Simulation results demonstrate the superiority
of the proposed controller over classical method. Consequently, experiments exclusively
utilized the proposed controller under two scenarios: subjects remaining passive or exert-
ing external resistive/assistive forces.

The satisfactory experimental outcomes within rehabilitation contexts validate the ef-
fectiveness of the proposed approach. They highlight its robustness against external dis-
turbances, contrasting with previous studies employing offline or non-adaptive controllers.



Conclusion:

This doctoral thesis focuses on the development of a novel control algorithm for a portable
exoskeleton robot designed to facilitate upper limb rehabilitation. The exoskeleton is avail-
able at the LISSI laboratory in France and has been specifically engineered to support and
enhance the rehabilitation process by accurately replicating natural arm movements. The
control algorithm was developed to ensure that the exoskeleton could adapt to real-time
changes and maintain stability and precision.

A comprehensive review of existing exoskeleton technologies was conducted, encom-
passing a variety of exoskeletons and their applications across diverse fields. This state-
of-the-art review provided a robust foundation for comprehending the extant technological
landscape and identified avenues for enhancement. Subsequently, a comprehensive mod-
eling of the exoskeleton’s dynamics was performed. This was a critical step in the design
of an efficient control law, as precise models facilitate the accurate tailoring of control
strategies for the exoskeleton robot.

An in-depth study of the PSO algorithm was conducted to examine its potential in re-
fining control parameters for exoskeletons. Indeed, the third chapter delves deeply into the
PSO algorithm, detailing its mechanics and how it can be effectively applied to optimize
the performance of a control system. By simulating various scenarios and adjusting the
control parameters through PSO, the research showed an improved efficiency and adapt-
ability of the exoskeleton’s control algorithm. This optimization process was the key to
enhance the overall functionality of the exoskeleton, ensuring that it can reliably assist
with upper limb rehabilitation under diverse conditions.

The efficacy of the newly developed control algorithm was evaluated through both
simulation and experimental testing on two healthy subjects. The experimental validation
involved three distinct scenarios: passive movement (no effort from the wearer), coopera-
tive movement (the wearer and exoskeleton work in unison), and resistive movement (the
wearer resists the exoskeleton). The results exhibits excellent performance in all scenar-
ios, with the algorithm maintaining accurate trajectory tracking and robust performance
against external disturbances.

The findings from this research were published in a renowned scientific journal, high-
lighting the significance of this new control approach in the field of medical robotics. The
successful implementation and validation of the algorithm underscore its potential to en-
hance the effectiveness of exoskeleton-assisted rehabilitation.

Future research directions include integrating intelligent control strategies based on
user intentions (EMG) and incorporating impedance control to better manage the interac-
tion forces between the wearer and the exoskeleton. These advancements aim to make the
exoskeleton more intuitive and responsive, ultimately improving the rehabilitation experi-
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ence for users.

Appendix:

A.1 Lyapunov stability analysis of the Super-Twisting algorithm
Consider the standard Super-Twisting algorithm (ST) with a perturbation term{

¤𝜎1 = −𝑘1
√︁
|𝜎1 |𝑠𝑖𝑔𝑛 (𝜎1) + 𝜎2

¤𝜎2 = −𝑘2 𝑠𝑖𝑔𝑛 (𝜎1) + 𝜉 (𝑡, 𝜎)
(A1)

where 𝜎1, 𝜎2 ∈ R and the perturbation term 𝜉 is uniformly bounded (|𝜉 | < 𝛿).
Let us prove the stability of the equilibrium point (𝜎1, 𝜎2) = (0, 0) using the work

stated in [185, 186].
Consider the following Lyapunov function:

𝑉 = 𝜁𝑇𝑃𝜁 (A2)

where 𝜁 = [
√︁
|𝜎1 |𝑠𝑖𝑔𝑛 (𝜎1) , 𝜎2]𝑇and 𝑃 is a positive definite matrix.

Notice that 𝑉 (𝜁, 𝑡) is continuous and differentiable except when 𝜎1 = 0.In fact, when
𝜎1 ≠ 0, ¤𝑉 exists and is negative definite. However, before arriving at the equilibrium point
(𝜎1, 𝜎2) = (0, 0), the solution of system A1 crosses the line 𝜎1 = 0 when 𝜎2 ≠ 0. This
means that the derivative of the Lyapunov function exists almost everywhere while 𝑉 (𝑡)
decreases until the system reaches the equilibrium. As presented in [186],𝑉 (𝑡) is a strong
Lyapunov funtion for Equation A1 in the form of Equation A2.

Moreover, this Lyapunov function is positive definite but radially unbouneded

𝛾𝑚𝑖𝑛 (𝑃) ∥𝜁 ∥2 ≤ 𝑉 ≤ 𝛾𝑚𝑎𝑥 (𝑃) ∥𝜁 ∥2 (A3)

where ∥𝜁 ∥2
2 = |𝜎1 | + 𝜎2

2 represents the Euclidian norm of 𝜁 .
The construction of suitable positive definite matrices 𝑃 = 𝑃𝑇 , provided in [186], is

based on the following algebraic LMI Equation:[
𝐴𝑇𝑃 + 𝑃𝐴 + 𝜖𝑃 + 𝛿2𝐶𝑇𝐶 𝑃𝐵

𝐵𝑇𝑃 −1

]
< 0 (A4)

where

𝐴 =

[
−1

2 𝑘1
1
2

−𝑘2 0

]
; 𝐵 =

[
0
1

]
;𝐶 =

[
1 0

]
with 𝑘1and 𝑘2 are postive gains.

Using the vector 𝜁 = [
√︁
|𝜎1 |𝑠𝑖𝑔𝑛 (𝜎1) , 𝜎2]𝑇 , the system A1 can be rewritten as

¤𝜁 =
1
|𝜁1 |

(𝐴𝜁 + 𝐵𝜉 (𝑡)) (A5)

where the transformed perturbation 𝜉 (𝑡, 𝜁) = |𝜁1 | 𝜉 (𝑡, 𝜎) satisfies
��𝜉 (𝑡, 𝜁)�� ≤ 𝛿 |𝜉1 |. As a

consequence, 𝜔(𝜉, 𝜁) = −𝜉2(𝑡, 𝜁) + 𝛿2𝜁2
1 ≥ 0.
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As 𝑘1and 𝑘2 are positive gains, the system (A,B,C) is observable and controllable, so
we can use the bounded-real [187]. It is shown that the Linear Matrix Inequality A4 is
feasable if and only if the inear system defined by 𝐻 (𝑠) = 𝛿𝐶 (𝑠𝐼 − 𝐴)−1𝐵 is nonexpansive,
i.e.

𝑚𝑎𝑥
𝜔

|𝐻 ( 𝑗𝜔) | < 1

This implies the following condition:

𝑚𝑎𝑥
𝜔

|𝐺 ( 𝑗𝜔) | < 1
𝛿

where

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵 =

1
2

𝑠2 + 1
2 𝑘1𝑠 + 1

2 𝑘2

The previous equality yields to two conditions on gains. By choosing one of them

𝑚𝑎𝑥
𝜔

|𝐺 ( 𝑗𝜔) | = 1
𝑘2
𝑖 𝑓 𝑘2

1 > 4𝑘2

We can then deduce conditions on gains 𝑘1and 𝑘2as follows:

𝑘2 > 𝛿

𝑘2
1 > 4𝑘2

Consider the Lyapunov function defined by Equation A2. Its derivative writes

¤𝑉 (𝜁) = 1
|𝜁1 |

[
𝜁𝜉

]𝑇 [
𝐴𝑇𝑃 + 𝑃𝐴 𝑃𝐵

𝐵𝑇𝑃 0

] [
𝜁𝜉

]
≤ 1

|𝜁1 |

{[
𝜁𝜉

]𝑇 [
𝐴𝑇𝑃 + 𝑃𝐴 𝑃𝐵

𝐵𝑇𝑃 0

] [
𝜁𝜉

]
+ 𝜔(𝜉, 𝜁)

}
≤ 1

|𝜁1 |
[
𝜁𝜉

]𝑇 [
𝐴𝑇𝑃 + 𝑃𝐴 + 𝛿2𝐶𝑇𝐶 𝑃𝐵

𝐵𝑇𝑃 −1

] [
𝜁𝜉

]
≤ 1

|𝜁1 |
[
𝜁𝜉

]𝑇 [
𝐴𝑇𝑃 + 𝑃𝐴 + 𝜖𝑃 − 𝜖𝑃 + 𝛿2𝐶𝑇𝐶 𝑃𝐵

𝐵𝑇𝑃 −1

] [
𝜁𝜉

]
≤ − 𝜖

|𝜁1 | 𝜁
𝑇𝑃𝜁

Finally
¤𝑉 ≤ − 𝜖

|𝜁1 |
𝜁𝑇𝑃𝜁 = − 𝜖

|𝜁1 |
𝑉 (𝜁) (A6)

From Equation A3, we deduce the following inequality:

|𝜁1 | ≤ ∥𝜁 ∥2 ≤ 𝑉
1/2(𝜁)

𝛾
1/2
𝑚𝑖𝑛

{𝑃}

We can then conclude that ¤𝑉satisfies

¤𝑉 ≤ −𝛼𝑉 1/2(𝜁)

where
𝛼 = 𝜖𝛾

1/2
𝑚𝑖𝑛

{𝑃} (A7)
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The previous result guarantees the finite convergence of vector 𝜎 = [𝜎1, 𝜎2]𝑇 to zero.
This time is bounded by

𝑇0 =
2𝑉 1/2(𝜁 (0))

𝛼
(A8)

where 𝜁 (0) is the initial value of 𝜁 and 𝛼 is given by Equation A7.
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