REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Mohamed Elbachir El Ibrahimi Bordj Bou Arreridj Faculté des sciences et de la technologie Département de Génie Civil

MÉMOIRE

En vue de l'obtention d'un diplôme de Master en Génie Civil

Option : Structures

Thème

Étude d'une halle métallique avec fermes en treilles à usage d'exposition

Dirigé par :

Dr. Mazoz aida

Réalisé par :

SIDIALI Benali

WAHAB Abdelmoutaleb

Devant le jury composé de :

Président : Mr.NOUI Ammar

Examinateurs : Mr.MAZOUZ Badis

Mr.DJOUDI Larbi

Mr.ABDEMEZIANE Nabil

Promotion: 2019/2020

Remerciements:

Nous remercions avant tout Allah tout puissant, de nos avoir guidé toutes ces années d'étude et de nos avoir donné la volante, la patiente, le courage pour terminer ce travail.

Nous tensons en premier lieu à remercier Md. MAZOZ AIDA ,enseignement à l'Univercité de Bordj Bou Arreridj ,mon directeur de recherche, pour nos avoir donné l'occasion de diriger ce travail tout le long de sa réalisation, sa patience, ses encouragements et ses conseils. Nous soulignons particulièrement sa rigueur, son sens de la pédagogie et son humanisme.

Nous remerciements vont ègalement tous les membres du jurys.

Nous profitons ainsi pour cette occasion de remercier Monsieur l'examinateur d'avoir examiné notre travail.

Mercí à nos parents pour qui nous ont toujours encouragé et donné le goût d'avancer .

Enfin nous remercions tous ceux qui ont bien voulu nous aidé de prés ou de loin pour réaliser ce travail.

<u>Dédícaces</u>

<u>Abdelmoutaleb</u>

Je dédie ce modeste travail

A mes très chers parents "tahar et Fatima" qui ont sacrifié les plus belles

années de leur vie pour me voir un jour réussir, mais également pour leur

soutien moral et leurs encouragements durant toute ma vie, et

particulièrement durant la réalisation de mon mémoire de fin d'études.

A toute ma famílle et tous mes amís, sans oublier tous les étudiants de ma promotion.

<u>Dédicaces</u>

<u>Benalí</u>

Je dédie ce modeste travail

A mes très chers parents "Belkacem et Louiza" qui ont sacrifié les plus belles années de leur vie pour me voir un jour réussir, mais également pour leur soutien moral et leurs encouragements durant toute ma vie, et particulièrement durant la réalisation de mon mémoire de fin d'études. A toute ma famille et tous mes amis, sans oublier tous les étudiants de ma promotion.

SOMMAIRE

Introduction Générale	01
Chapitre 1: Présentation du projet	
1.1- Présentation du projet	
1.1.1- Caractéristiques géographiques du lieu d'implantation	
1.1.2- Caractéristiques géométriques et techniques	
1.2- Prédimensionnement des éléments porteurs	05
1.3- Caractéristiques des matériaux	05
1.3.1- Acier de construction	05
1.3.2- Béton armé et brique	05
1.4- Règlements utilisés	
Chapitre 2 : Calcul des surcharges climatiques	
2.1- Action de la neige sur la toiture de la halle métallique	07
2.1.1- Charge de neige S_k sur le sol	07
2.1.2- Valeur du coefficient de forme de la toiture (μ)	07
2.2- Action du vent sur la halle métallique	
2.2.1- Détermination du coefficient dynamique Cd	09
2.2.2- Détermination de la pression dynamique du vent q _{dyn}	09
2.2.3-Détermination des coefficients de pression extérieure C _{pe} et intérieure C _{pi}	11
2.2.4- Calcul des pressions q _j dues au vent	16
2.2.5- Calcul des forces de frottement	
2.2.6- Analyse des résultats	19
2.2.7- Schémas récapitulatifs	
Chapitre 3 : Calcul des éléments du la toiture	
3.1 Introduction	
3.2 Etude de la couverture	
3.3 Calcul des pannes	21
3.3.1 Définition	
3.3.2 Détermination des charges et surcharges	
3.3.3 Combinaisons de charge les plus défavorables	
3.3.4 Combinaisons d'actions	
3.3.5 Pré dimensionnement	
3.3.6 Dimensionnement des pannes	
3.4 Dimensionnement des pannes (avec des liernes)	
3.4.1 Détermination des sollicitations	
3.4.2 Vérification de la résistance des pannes	
3.4.3 Vérification de la Condition de résistance	
3.4.4 Vérification à L'ELS	
3.5 Calcul des liernes	
3.5.1 introduction	
3.5.2 calcul de l'effort maximal revenant aux liernes	
3.5.3 Dimensionnement des liernes	
3.6 Calcul de l'échantignolle	
3.6.1 Introduction	
3.6.2 Calcul des charges revenant à l'échantignolle	

3.6.3 Calcul du moment de renversement	38
3.6.4 Dimensionnement de l'échantignolle	38
3.6.5 Calcul de l'épaisseur de l'échantignolle	38
Chapitre 4: Calcul des pans de fer	
4.1 Introduction	40
4.2 Vérification de lisse de long pan	40
4.2.1 détermination des charges et surcharges revetmats à lisse la plus chargée (lisse intermédia	ire)
	40
4.2.2 Combinaisons de charge les plus défavorable	41
4.2.3 Détermination des sollicitations	41
4.3 Vérification de lisse de pignon	45
4.3.1 Combinaisons de charge les plus défavorable	45
4.4 Calcul des liernes de long pan	50
4.4.1 calcul de l'effort de traction dans le lierne le plus sollicité	51
4.4.2 Dimensionnement des liernes	51
4.5Calcul des potelets	52
4.5.1 Introduction	52
4.5.2 Détermination des sollicitation	52
4.5.3 Calcul des charges et surcharge revenants au potelet le plus chargé (Potelet du milieu)	52
4.5.4 Dimensionnement du potelet	53
4.5.5 Vérification de la section à la résistance	54
4.5.6 Vérification de l'élément aux instabilités	55
4.6 Calcul de la poutre sablière	57
4.6.1 Prédimensionnement	58
4.6.2 conditions de la résistance	58
Chapitre 5 : Etude sismique	
5.1 Introduction	61
5.2 Différents méthodes	61
5.3 Choix de la méthode dans notre cas	61
5.3.1 Condition d'applications	61
5.3.2 Principe de la méthode statique équivalente	61
5.3.3 Calcul de l'effort tranchant V à la base	61
5.3.4 Distribution de la résultante des forces sismiques selon la hauteur	66
Chapitre 6 : Calcul des éléments structuraux	
6.1 Etude et dimensionnement de système de contreventement	67
6.1.1 Introduction	67
6.1.2 Etude de contreventement horizontal	67
6.1.3 Contreventement vertical du long-pan	70
6.2 Calcul des fermes	72
6.2.1 Introduction	72
6.2.2 Hypothèse de calcul	72
6.2.3 Calcul des charges revenant à chaque nœud	74
6.2.4 Calcul des forces selon les combinaisons de charges	75
6.2.5 Dimensionnement des éléments de la ferme	76
6.2.6 Vérification des éléments comprimés au flambement	77
627 Pásumá das Dimensions adontáes nour las áláments de la Ferme	

6.3 JUSTIFICATION DES POTEAUX (IPE330)	
6.3.1 Introduction	
6.3.2 Efforts sollicitant	
6.3.3 Vérification	
6.3.4 Vérification de l'élément aux instabilités	
Chapitre 7 : Etude de l'assemblage	
7.1- Introduction	
7.2 Calcul de l'assemblage au gousset les élément des fermes	
7.3 Calcul de l'assemblage des pieds des potelets	
7.4 Calcul de l'assemblage (poteau avec contreventement verticale)	
7.5 Calcul de l'assemblage contreventement horizontale	
7.6 Calcul de l'assemblage des pieds des poteaux avec contreventement	108
Chapitre 8 : Calcul des fondations	
8.1- Introduction	
8.2 Calcul semelle du poteau	
8.3 Calcul semelle du potelet	
Conclusion générale	140

Liste des figures :

Figure 1.1 : Perspective de la halle (dimensions en m)	03
Figure 1.2 : Élévation de la façade Pignon	03
Figure 1.3 : Élévation de la façade Long-pan	04
Figure 1.4: Plan d'implantation	04
Figure 2.1: Surcharge de Neige sur la toiture	07
Figure 2.2: Vent perpendiculaire au long-pan	08
Figure 2.3: Vent perpendiculaire au pignon	08
Figure 2.4 : Légende pour les parois verticales	11
Figure 2.5 : Répartition des C _{pe} pour les parois verticales (sens V1)	12
Figure 2.6 : Zones de pression pour la toiture (sens V1)	12
Figure 2.7 : Valeurs de C _{pe} pour chaque zone de la toiture (sens V1)	13
Figure 2.8 : Zones de pression et répartition des C _{pe} pour les parois verticales (sens V2)	14
Figure 2.9 : Zones de pression pour la toiture (sens V2)	14
Figure 2.10 : Zones de pression et répartition des C _{pe} pour la toiture (sens V2)	15
Figure 2.11 : Répartition des pressions sur les parois verticales pour le Sens V1	17
Figure 2.12 : Répartition des pressions sur la toiture pour le Sens V1	17
Figure 2.13 : Répartition des pressions sur les parois verticales pour le Sens V2	
Figure 2.14 : Répartition des pressions sur la toiture pour le Sens V2	18
Figure 2.15 : Surcharges de vent pour (sens V ₁)	20
Figure 2.16 : Surcharges de vent pour (sens V ₂)	20
Figure 3.1 : Tole nervurée	21
Figure 3.2 : Disposition de la panne sur la toiture	21
Figure 3.3 : pente de calcul	
Figure 3.4 : Schéma statique sous charge d'entretien	22
Figure 3.5 : Moment due à la charge d'entretien	23
Figure 3.6 : Présentation d'une lierne	34
Figure 3.7 : les schémas statiques	35
Figure 3.8 : représentation des efforts	
Figure 3.9 : Echantignole	
Figure 3.10 : Disposition de l'échantignole de rive	
Figure 3.11 : Dimensions de l'échantignolle	
Figure 4.1 : les schémas statiques de la lisse dans les deux plans v-v et z-z	40
Figure 4.2 : les schémas de diagramme de la lisse dans les deux plans y-y et z-z	42
Figure 4.3 : les schémas de la lisse dans les deux plans y-y et z-z	44
Figure 4.4 : les schémas statiques de la lisse dans les deux plans y-y et z-z	46
Figure 4.5 : les schémas de diagramme de la lisse dans les deux plans y-y et z-z	47
Figure 4.6 : les schémas de la lisse dans les deux plans y-y et z-z	
Figure 4.7 : les schémas statiques	50
Figure 4.8 : représentation des efforts	51
Figure 4.9 : Schéma statique du potelet	
Figure 4.10 : Schémas statique de la poutre sablière	58
Figure 4.11 : Schémas de la poutre sablière	59
Figure 6.1 : La vue en plan de la poutre au vent	67

Figure 6.2 : Les surface d'application des efforts horizontaux	68
Figure 6.3 : Schéma statique d'une partie de la poutre au vent	69
Figure 6.4 : schéma statique de la palée de stabilité en long pan	71
Figure 6.5 : Les composants de la ferme	73
Figure 6.6 : Schéma statique de la ferme	73
Figure 6.7: Surface afférente des nœuds	74
Figure 6.8 : Doubles cornières	77

Liste des tableaux :

Tableau 2-1 : Facteur de terrain
Tableau 2.3. Valeurs du coefficient d'exposition au vent Ce 10
Tableau 2.3. Valeurs de la pression dynamique 11
Tableau 2.4: Valeurs de surface et de C _{pe} pour chaque zone des parois verticales (sens V1)11
Tableau 2.5: Valeurs des surfaces des zones de vent de la toiture (sens V1) 12
Tableau 2.6. Valeurs de C _{pe} pour chaque zone de la toiture (sens V1)
Tableau 2.7: Valeurs des surfaces et C_{pe} des zones de vent pour les parois verticales (sens V2) 13
Tableau 2.8: Valeurs des surfaces des zones de vent pour la toiture (sens V2)14
Tableau 2.9: Valeurs de C _{pe} pour chaque zone de la toiture (sens V2)
Tableau 2.9: Valeurs pression sur les parois verticales pour le Sens V1 16
Tableau 2.10: Valeurs de pression sur les parois verticales pour le Sens V1
Tableau 2.11: Valeurs pression sur les parois verticales pour le Sens V2 17
Tableau 2.12: Valeurs de pression sur les parois verticales pour le Sens V2 18
Tableau 4.1. Caractéristique géométriques de IPE200
Tableau 5.1 : Facteur de qualité
Tableau 5.2 : poids total du la structure
Tableau 6.1. Les valeurs des forces horizontales 68
Tableau 6.2 : Les efforts max dans les éléments de la ferme
Tableau 6.3 : Les sections des éléments du ferme adopté

Résumé

Notre projet de fin d'études consiste à faire une étude et dimensionnement d'une halle d'exposition en charpente métallique situé à la ville de Bordj Bou Arreridj. Il est constitué de plusieurs portiques, stabilisés par des contreventements, et couvert par une toiture à deux versants symétriques. Ce projet est élaboré en plusieurs étapes ; en premier lieu l'évaluation des charges et surcharges ainsi que les effets des actions climatiques (neige et vent) selon le règlement Algérien « RNV 99 /V2013 », ensuite le dimensionnement des différents éléments (secondaires et porteurs), après l'étude dynamique de l'ouvrage selon le règlement parasismique Algérien « RPA 99 V 2003 », puis l'étude des assemblages selon le « CCM 97 », et enfin l'étude de l'infrastructure selon le « BAEL 91 », et comme logiciel nous avons utilisé le «ROBOT ». Le mémoire a été achevé par une conclusion.

Mots clés: Charpente métallique –halle d'exposition –Dimensionnement- Assemblage-Neige - Vent.

ملخص

يتكون مشروع نهاية الدراسات لدينا من إجراء دراسة وتحديد أبعاد لقاعة عرض إطار معدني تقع في مدينة برج بوعريريج. وتتكون من عدة رافعات قنطرية ، مثبتة بواسطة الدعامات ، ومغطاة بسقف بمنحدرين متماثلين. تم تطوير هذا المشروع في عدة خطوات أولا تقييم الأحمال والحمولات الزائدة وكذلك آثار الإجراءات المناخية (النتاج والرياح) 99 RNV" "2013 /حسب التنظيم الجزائري ثم تحديد أبعاد العناصر المختلفة (الثانوية والناقلات) بعد ذلك دراسة ديناميكية للهيكل حسب التنظيم الزلزالي الجزائري " RPA 99 V 2003" وأخيرا دراسة البنية التحتية وفقًا له "BAEL 91" ثم دراسة التجمعات 70 CCM 7" حسب وكبرنامج استخدمنا "ROBOT"

الكلمات المفتاحية: إطار معدني - صالة عرض - أبعاد - تجميع - ثلج - ريح

summary

Our end-of-studies project consists of carrying out a study and dimensioning of a metal frame exhibition hall located in the town of Bordj Bou Arreridj. It consists of several gantries, stabilized by bracing, and covered by a roof with two symmetrical slopes. This project is developed in several steps ; firstly the assessment of loads and overloads as well as the effects of climatic actions (snow and wind) according to the Algerian regulation "RNV 99 / V2013, then the dimensioning of the different elements (secondary and carriers), after dynamic study of the structure according to the Algerian seismic regulation "RPA 99 V 2003 ", then the study of assemblies according to "CCM 97 ", and finally the study of infrastructure according to "BAEL 91", and as software we used "ROBOT". The brief was concluded with a conclusion.

Keywords: Metal frame - exhibition hall - Dimensioning - Assembly - Snow - Wind.

INTRODUCTION GENERALE :

Les progrès techniques réalisés dans le domaine de la production métallique contribuent à l'apparition d'un nouveau matériau, appelé acier. Ce dernier, dérivant directement du fer, apparut la fin du XIX siècle, modifiant une fois encore l'environnement de la construction.

Les performances de ce nouveau matériau entrainèrent la modification des procédés d'assemblage, des techniques de laminage et de modèles de calcul. En effet, avec la soudure, on passe d'un assemblage riveté ponctuel à une liaison linéaire.

C'est également avec l'apparition de l'acier que les dimensions des produits fabriqués en usine deviennent importantes. Il est alors possible d'obtenir des profilés d'une longueur supérieure à 6 m. L'utilisation de l'acier est de plus en plus massive en cette fin de XIX siècle atteignant un taux de croissance très important.

De nos jours, la construction métallique est très utilisée dans les bâtiments et ouvrage les plus divers. La forme constructive d'un ouvrage est déterminée par l'ensemble de ses principaux éléments: poutres, fermes, poteaux, coques.

Les moyens d'assemblage tels que les soudures ou les boulons permettent de relier entre les pièces élémentaires, de formes diverses, constituant une charpente métallique. Les assemblages soudés et boulonnés représentent ainsi une composante essentielle de toute structure et méritent de ce fait une attention particulière.

De ce fait, notre projet de fin d'étude de master s'est porté sur l'étude d'un ouvrage métallique. L'ouvrage en question est une halle métallique d'exposition dont l'implantation est prévue à Bordj Bou Arreridj.

L'étude de la structure est menée essentiellement en utilisant le logiciel d'éléments finis ROBOT qui permet à la fois de modéliser, analyser et de dimensionner différents types de structure, ainsi après un redimensionnement des différents éléments de la structure, un model 3D de celle-ci est implanté le logiciel.

Ce travail est composé d'une introduction, d'une conclusion et de dix autres chapitres qui sont comme suit :

- Chapitre 1 : présentation de l'ouvrage Avant tout on commence par la présentation de l'ouvrage à étudie, les matériaux utilisés, ainsi que les différentes règlementations à respecter.
- Chapitre 2 : étude climatique C'est là que sont estimé l'action du vent et celle de la neige qui sera éventuellement appliquées à notre ouvrage afin de les prendre on compte dans les calculs.
- Chapitre 3: Calcul de la toiture (couverture + pannes)
- Chapitre4: Calcul des pans de fer (lisses de bardage + potelets+poutre sabliéer.
- Chapitre5: Etude sismiqe.
- Chapitre 6 : étude de système de contreventement et pré-dimensionnement et calcul des éléments structuraux dans lequel sont pré-dimensionnés les éléments(les fermes et les poteaux) de l'ossature sous le chargement statique, et avec lequel est réalisé ultérieurement un model 3D sous ROBOT.
- Chapitre 7 : vérification des assemblages avec le logiciel ROBOT
- Chapitre 8 : Calcul des fondations avec le logiciel ROBOT
 - Fixation des pieds des poteaux aux semelles de fondation
 - Dimensionnement des semelles en béton armé
 - Dimensionnement des longrines en béton armé

1.1- Présentation du projet :

Le projet consiste à étudier une halle en charpente métallique implantée à Bordj Bou Arreridj, destinée à l'exposition des machines électroménagers avec une toiture en pente à 2 versants. Vu son exploitation, on classe cette structure parmi les constructions de **catégorie I** qui regroupe l'ensemble des bâtiments industriels et des ouvrages de stockage. (*cf. Principes de calcul RNV 99/2013*).

1.1.1- Caractéristiques géographiques du lieu d'implantation :

Cet ouvrage sera bâti à Bordj Bou Arreridj qui est une ville située à une altitude de **928** m par rapport au niveau moyen de la mer.

On a adopté quelques classifications nécessaires dans le déroulement des calculs :

- D'après la classification des zones de vent, Bordj Bou Arreridj fait partie de la zone II. (cf. annexe 1, RNV 99/2013 page109)
- Pour les zones de neige, elle appartient à la zone B. (cf. zones de neige par commune, RNV99/2013)
- La construction est sise sur un site normal de terrain plat et sur une zone industrielle de catégorie III d'après la définition des catégories de terrain. (cf. RNV 99/2013, tableau 2.4)
- > La halle sera implantée sur un sol meuble avec une contrainte admissible : $\sigma_{sol} = 2,0$ bar. Le site est classé dans la zone sismique II.

1.1.2- Caractéristiques géométriques et techniques :

La longueur du long-pan L_l est de : $L_l = 5 \times 6 = 30$ m

La longueur du pignon L_p est de : $L_p = 20 m$

Pour les hauteurs on a :

- La hauteur des parois verticales H_{pv} est de : $H_{pv} = 9 m$
- La hauteur de la toiture **D** est de : D = 1 m
- \Rightarrow La hauteur totale **H** de la halle est alors $H = H_{pv} + D = 9 + 1$. \Rightarrow H = 10 m.

L'ossature de la halle est constituée de 6 portiques avec fermes en treillis espacés de 6m,

vérifiant la relation $\frac{H_{PV}}{2} < E < H_{PV}$

E désigne l'entraxe des portiques ; $4.5 < E < 9 \implies E = 6 \text{ m}$

Chaque portique est composé **de 2 poteaux** distants de **20m** encastrés à leur pied, reliés entre eux **par une ferme à treillis trapézoïdale** formant deux versants identiques. La pente des versants est **de 10%** c'est- à-dire que chaque versant fait un angle $\alpha = 5,71^{\circ}$ par rapport à l'horizontal.

Pour se protéger contre les précipitations, on utilisera les grands éléments de couverture, plus précisément des tôles d'acier nervurées et galvanisées de **type TN 40**. Elles sont supportées par des pannes espacées de **2m**, ce qui revient à **6 pannes par versant** fixées perpendiculairement aux fermes par l'intermédiaire **des échantignoles** pour éviter tout risque de glissement des pannes.

Figure 1.1 : Perspective de la halle (dimensions en m)

Le bardage , ayant pour rôle le remplissage des façades, est exécuté en tôle de même type que la couverture, de **5m** de haut (**bardage à simple peau**), fixé aux lisses de bardage qui s'attachent à leur tour aux **potelets** de pignon et aux poteaux pour reprendre les sollicitations dues au vent et assurer la stabilité de la structure. Sur chaque pignon, on dressera **4 potelets** espacés de **4m** articulés en tête et en pieds. Sous le bardage sera édifié un mur en brique de **4m** de haut **à double parois** pour laisser une place aux barres de contreventement et pour améliorer l'isolation thermique de la halle .

Les façades comprennent également des portes et des fenêtres :

- Chaque long-pan comporte **10 fenêtres vitrées** de 1.80mx0.60m parmi lesquelles 5 fenêtres sont ouvertes.
- De même, chaque pignon comporte un **portail** de 4mx4m et **9 fenêtres** de 1.8mx0.60m parmi lesquelles 4 fenêtres sont ouvertes.

Façade PIGNON - Portique

Figure 1.2 : Élévation de la façade Pignon

La rigidité de la structure ainsi que sa stabilité sont assurées par les portiques dans le sens transversal et par des dispositifs de contreventement dans le sens longitudinal. Tout cela pour pouvoir transmettre aux fondations la totalité de la poussée du vent qui agit sur la halle et pour conserver sa géométrie.

Figure 1.3 : Élévation de la façade Long-pan

Pour transmettre au sol d'assise toutes les charges et surcharges venant de la structure, on utilisera des semelles isolées liées entre elles par des longrines pour éviter les tassements différentielles et les déplacements horizontaux de ces semelles. Sur les massifs de béton sont fixés les pieds de poteaux et les pieds de potelets par l'intermédiaire d'une platine en tôle ,soudée à leur base ,destinée à transférer les efforts de réaction du montant(poteau, potelet) dans le béton de fondation. Cette platine est percée de plusieurs trous (2 ou 4 ou 6,... selon le cas) pour le passage des tiges d'ancrage nécessaires pour maintenir le poteau en position d'équilibre verticale afin de résister au soulèvement ainsi que pour créer un encastrement du poteau dans la fondation.

Figure 1.4: Plan d'implantation

1.2- Prédimensionnement des éléments porteurs

Le choix des éléments porteurs, est basé sur les règles empiriques de prédimensionnement suivantes :

- * Fermes à treillis : pour une ferme trapézoïdale, la petite hauteur D_0 et la grande hauteur D doivent vérifier les conditions ci-après :
- $D_0 = \frac{L}{20}$; L: portée du portique, L = 20,0m $\Rightarrow D_0 = \frac{20 m}{20} = 1 m$

•
$$\frac{L}{10} \le D \le \frac{L}{8} \implies 2.0m \le D \le 2.5m \implies D = 2.0 m,$$

- * Poteaux : profilé IPE330 (de même section que la traverse),
- ♦ Pannes : la portée $l = 6 m \implies h \cong \frac{l}{40} = 150 mm \implies$ choix IPE140 à 160,
- ♦ Lisses : pour une portée $l = 6 m \implies h \cong \frac{l}{40} = 150 mm \implies \text{choix IPE120}$.

pour une portée
$$l = 4 m \implies h \cong \frac{l}{40} = 100 mm \implies \text{choix IPE120}$$

***** Potelets : \Rightarrow choix IPE200.

1.3- Caractéristiques des matériaux

La conception et le calcul d'une halle en construction métallique sont basés sur son utilisation prévue, et essentiellement sur leurs caractéristiques de résistance pour assurer une sécurité suffisante et pour garantir une bonne aptitude au service. Ils sont alors fortement influencés par les propriétés des matériaux de construction qui composent l'ouvrage.

1.3.1- Acier de construction

 a) L'acier possède de très bonne capacité de résistance mécanique lorsqu'il est soumis à un effort de traction. Effectivement, les valeurs limites de son élasticité et de sa résistance à la traction sont très élevées.

Tous les éléments en construction métallique utilisés dans ce projet sont :

- de nuance S235, ce qui signifie que $f_y = 235 \text{ N/mm}^2$, où f_y désigne la résistance à la traction obtenue par essai de traction de l'acier.
- de module d'élasticité longitudinale E = 21000daN/mm²

En compression, son comportement est presque identique à son comportement sous un effort de traction (leur diagramme contrainte-déformation est symétrique par rapport à l'origine) mis à part les phénomènes d'instabilités éventuels.

b) Pour les pièces fortement sollicitées, les assemblages sont réalisés au moyen de boulons à haute résistance HR de classe 8×8 et 10×9 (c'est-à-dire avec des rondelles pour développer une forte résistance au glissement relatif des pièces à assembler par frottement mutuel des pièces) ; ainsi que des boulons ordinaires de classe 4×6 et 4×8 pour les autres pièces.

1.3.2- Béton armé et brique :

a) Pour les fondations et le plancher, on utilisera du béton armé qui est un matériau obtenu en enrobant dans le béton des aciers appelés « les armatures », disposées de telle façon à équilibrer les efforts auxquels le béton résiste mal par lui-même, c'-est-à- dire les efforts de traction, ou bien à renforcer le béton pour résister aux efforts de compression s'il ne peut, à lui seul, accomplir ce rôle. Le béton destiné au béton armé se différencie du béton ordinaire par son dosage et par la grosseur des granulats employés.

Comme on avait dit précédemment, les poteaux reposent sur un massif en béton armé, cela nous incite à utiliser un **béton contrôlé dosé à 350 kg/m³ de ciment**. Le dosage qui est le poids, exprimé en kilogramme, de ciment utilisé pour $1m^3$ de béton mis en œuvre (pour le béton armé, le dosage est généralement compris entre 300 et 400 kg)

La résistance caractéristique à 28 jours d'âge f_{c28} du béton utilisé est de :

$f_{c28}=\textbf{25}~\textbf{MPa}=\textbf{2,5}~\textbf{daN/mm^2}$

La contrainte admissible de compression $\overline{\sigma}_b$ du béton est : $\overline{\sigma}_b = 0.85 \frac{f_{c28}}{\gamma_b}$

 γ_b : coefficient de sécurité, dans les situations normales, elle a pour valeur $\gamma_b = 1,5$

D'où
$$\bar{\sigma}_b = 0.85 \frac{2.5}{1.5} = 14.17 \text{ MPa} \implies \bar{\sigma}_b = 14.17 \text{ MPa} = 1.417 \text{ daN/mm}^2$$

b) Pour le mur édifié sous le bardage, on utilisera des briques creuses de terre cuite dont les trous sont placées horizontalement parallèle au plan de pose (trous dirigés suivant l'axe longitudinal de la pièce). Ces briques sont bourdées au mortier de ciment et dont les joints verticaux sont décalés d'assise en assise ce qui permet d'obtenir une cohésion du mur et une meilleure répartition et transmission des charges.

1.4- Règlements utilisés

Les règlements utilisés dans l'étude de cette structure sont:

- Règles neige et vent (RNVA2013) D.T.R-C2.47.
- Charges permanentes et surcharges d'exploitation **D.T.R-B.C-22**.
- Règles parasismique algériennes (**RPA99 version 2003**) **D.T.R-B.C-2.48**.
- Règles de conception et de calcul des structures en acier (CCM97)- D.T.R-B.C-2.44.
- Règles de calcul des fondations superficielles D.T.R-B.C-2.33.

2.1- Action de la neige sur la toiture de la halle métallique

La toiture d'une construction est soumise à l'accumulation de la neige. Selon les Règles Algériennes **RNV99** qui sont applicables sur l'ensemble des constructions situées à une altitude inférieure à **200m**, la valeur représentative de la charge statique de neige dépend de la localisation du lieu d'implantation de l'ouvrage sur la carte des zones de neige, de l'altitude de ce site par rapport au niveau moyen de la mer et aussi de la forme de la toiture de l'ouvrage.

La charge caractéristique de neige (${\bf S}$) s'obtient par la formule suivante :

 $S = \mu . S_k$ [kN/m²](2.1)

avec

S : charge caractéristique de neige par unité de surface (en KN/m²)

 S_k : charge de neige sur le sol en [kN/m²]

 μ : coefficient d'ajustement des charges ou coefficient de forme

Remarque :

Il n'est pas nécessaire de calculer les charges de neige suspendues en débord des toitures, car cette charge doit être prise en compte seulement pour les constructions situées à plus de **1000m** d'altitude, ce qui n'est pas le cas dans notre étude.

2.1.1- Charge de neige S_k sur le sol

La valeur de S_k varie suivant la localisation géographique et suivant l'altitude du lieu considéré.

a) Influence de la localisation géographique

La halle métallique est construite à **Bordj Bou Arréridj**, qui fait partie de la **zone B** selon les zones de neige définis par *la* RNV 99/2013, d'où on a la formule suivante :

Pour la zone B :
$$S_k = \frac{0.04.H + 10}{100}$$
(2.2)

H : altitude par rapport au niveau de la mer du site considéré (en m).

b) Influence de l'altitude

Le site se trouve à une altitude de 928 m au dessus de la mer.

H = 928 m
$$\Rightarrow S_k = \frac{0.04*928+10}{100} \Rightarrow S_k = 0,4712 \text{ KN/m}^2 = 47,12 \text{ daN/m}^2$$

2.1.2- Valeur du coefficient de forme de la toiture (μ)

Elle est en fonction de la forme de la toiture. On a une toiture en pente de 10% (c'est-à-dire: α = 5,71°) à deux versants, sans obstacle de retenue ; (μ) s'obtient du Tableau des coefficients de forme pour une toiture à 2 versants avec une valeur unique de α :

 $0^{\circ} < \alpha = 5,71^{\circ} < 30^{\circ}$; on a : $\mu = 0,8$

d'où la charge caractéristique de neige S est comme suit:

Figure 2.1: Surcharge de Neige sur la toiture

2.2- Action du vent sur la halle métallique

L'effet du vent sur une construction métallique est généralement prépondérant, une étude approfondie doit être effectuée pour déterminer l'action du vent dans toutes les directions possibles dont le calcul est mené conformément au règlement Algérien de Neige et Vent RNV99/2013. La pression du vent dépend d'un certain nombre de facteurs, en particulier:

- la région,
- le site d'implantation,
- la hauteur de la construction,
- la forme géométrique de la construction,
- la rigidité de la construction et
- les ouvertures (ou de la perméabilité à l'air) de la construction.

Il s'agit, donc, de calculer la pression due au vent q_j qui s'exerce sur un élément de surface j. Les règles RNV99 sont applicables car notre structure a une hauteur totale H=10m < 200 m.

Le calcul doit être effectué séparément pour chacune des directions perpendiculaires aux différentes parois de la structure. Pour notre cas, on a une halle métallique de forme rectangulaire donc on considèrera les deux directions du vent qui sont :

La direction du vent perpendiculaire au long-pan (sens V₁)

La direction du vent perpendiculaire au pignon (sens V2)

Figure 2.2: Vent perpendiculaire au long-pan

Figure 2.3: Vent perpendiculaire au pignon

La pression (q_j) due au vent sur la surface de l'élément **j** est donnée par la formule suivante :

 $q_j = C_d * W(z_j)$ en [N/m²](2.3)

C_d : coefficient dynamique de la construction

 $W(z_j)$: pression nette exercée sur l'élément de surface ${\bf j},$ calculée à la hauteur z_j de l'élément, elle est donnée par :

 $W(z_j) = q_{dyn}(z_j) * [C_{pe} - C_{pi}]$ en [N/m²](2.4)

où q_{dyn} : pression dynamique du vent calculée à la hauteur z_j C_{pe} : coefficient de pression extérieure C_{pi} : coefficient de pression intérieure.

2.2.1- Détermination du coefficient dynamique Cd

Le coefficient dynamique C_d dépend du type de matériau de la construction ainsi que sa hauteur totale. Pour un bâtiment métallique de hauteur inférieure à 15m. On prend :

 $C_d = 1$ (chap.3§3.2 - RNV/2013)

2.2.2- Détermination de la pression dynamique du vent q_{dyn}

La pression dynamique q_{dyn} à la hauteur de référence z_e est donnée par (§2.3.1- RNV/2013) :

 $q_{dyn}(z_e) = q_{réf} * C_e(z_e)$ en [N/m²](2.5)

où $\mathbf{q}_{réf}$: pression dynamique de référence (en N/m²),

 $C_e(z_e)$: coefficient d'exposition au vent,

La valeur de la pression dynamique de référence $q_{réf}$ est en fonction de la zone de vent du lieu d'implantation. **Bordj Bou Arreridj** fait partie de la **zone II**

 \Rightarrow q_{réf} = 435 N/m² (*Tableau 2.2, RNV99/2013*)

2.2.2.1- Hauteur de référence ze

- Pour les murs au vent des bâtiments à parois verticales, la hauteur de référence z_e est déterminée selon la figure 2.1 de RNV99/ 2013. Dans notre cas, la hauteur des parois verticales (h) est inférieure à la longueur ou la largeur (b) de la halle métallique étudiée, c'est à dire (h < b), alors, la structure doit être considérée comme un tout et il n'est plus nécessaire de la subdiviser en éléments de surface **j** horizontaux $\Rightarrow z_e = h = 9m$;
- Pour les murs sous le vent et parallèles au vent, z_e est prise égale à la hauteur (h) de la halle métallique.
- Pour la toiture, z_e est prise égale à la hauteur maximale de la halle métallique, z_e =h=10m.

2.2.2.2- Coefficient d'exposition au vent Ce

Le coefficient d'exposition C_e tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent. $C_e(z)$ est donné par l'expression ci-contre :

$$C_e(z) = C_t^2(z) * C_r^2(z) * [1 + 7I_v(z)] \dots (2.6)$$

où:

Ct est le coefficient de topographie,

Cr est le coefficient de rugosité,

 I_v est l'intensité de la turbulence,

z (en m) est la hauteur considérée.

a) Coefficient de topographie Ct

Le coefficient de topographie $C_t(z)$ prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles tels que les collines et les dénivellations isolées. Notre halle métallique est sise sur un site plat:

 $(\emptyset < 0,05) \implies Ct(z) = 1$ [Fomule2.4-RNV99/2013]

b) Facteur de terrain K_T

La halle métallique est située dans une zone industrielle de catégorie III d'où les valeurs suivantes :

Catégorie de terrain	KT	$z_{o}(m)$	$z_{min}(m)$	3		
III	0,215	0,3	5	0,61		

Tableau 2-1	:	Facteur	de	terrain
-------------	---	---------	----	---------

 z_0 : paramètre de rugosité,

z_{min} : hauteur minimale,

 ϵ : coefficient utilisé pour le calcul du coefficient C_d.

c) Coefficient de rugosité Cr :

Le coefficient de rugosité $C_r(z)$ traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent. Il est défini par la loi logarithmique népérienne (chap.2 §2.4.4-RNV/2013):

• Pour les parois verticales :

 $z = 9 \text{ m} \implies z_{\min} = 5 \text{ m} \le z = 9 \text{ m} \le 200 \text{ m}$ $C_r(z) = K_T * ln\left(\frac{z}{z_0}\right) \dots (2.7)$ Donc $\Rightarrow \qquad C_r(9m) = 0,215 * ln\left(\frac{9}{0.3}\right) = 0,73$

• Pour la toiture :

 $z = 10 \text{ m} \implies z_{\min} = 5 \text{ m} \le z = 10 \text{ m} \le 200 \text{ m}$ Donc $C_r(z) = K_T * ln\left(\frac{z}{z_0}\right)$ \Rightarrow $C_r(10m) = 0,215 * ln\left(\frac{10}{0.3}\right) = 0,75$

d) Intensité de turbulence Iv :

Elle est donnée par la formule suivante (§2.4.6 -RNV99/2013) :

Pour
$$Z > Z_{\min} = 5m$$
 \rightarrow $I_{\nu}(z) = \frac{1}{C_t(z) * \ln(\frac{z}{z_0})}$ (2.8)

• Pour les parois verticales (z = 9 m)

$$I_{v}(9m) = \frac{1}{1 + \ln(\frac{9}{0.3})} = 0,294$$

• Pour la toiture (z = 10 m)

$$I_{v}(10m) = \frac{1}{1 + \ln(\frac{10}{0.3})} = 0,285$$

* Valeurs du coefficient d'exposition au vent Ce

Tableau 2.3.	Valeurs	du	coefficient d	ľ€	exposition	au	vent	C
--------------	---------	----	---------------	----	------------	----	------	---

	Coefficients	Ct	Cr	I_v	C _e (z)
Γ	Parois verticales	1	0,73	0,294	1,63
Γ	Toiture	1	0,75	0,285	1,68

Valeurs de la pression dynamique du vent q_{dyn}

Finalement, les valeurs de la pression dynamique q_{dyn} sont résumées dans le Tableau suivant:

Chapitre 2: Calcul des surcharges climatiques

				·· 1	. J	1	
	Z _e (m)	Ct	Cr	Iv	Ce	$q_{réf}$ (N/m ²)	$q_{dyn} (N/m^2)$
Parois verticales	9	1	0,73	0,294	1,63	435	709,05
Toiture	10	1	0,75	0,285	1,68	435	730,80

Tableau 2.3	. Valeurs d	e la pression	dynamique
-------------	-------------	---------------	-----------

2.2.3-Détermination des coefficients de pression extérieure C_{pe} et intérieure C_{pi} 2.2.3.1-Coefficients de pression extérieure C_{pe} :

Comme notre construction est à base rectangulaire, le coefficient de pression extérieure C_{pe} dépend alors de la valeur de la surface chargée **S** (en m²) de la paroi considérée, tel que :

♦ <u>Vent perpendiculaire au long-pan</u> (sensV1) :

a)- Parois verticales:

b = 30m; d = 20m; h = 9m; e = min(b, 2xh) = min(30, 2x9) = 18m

où **b** désigne la dimension du coté perpendiculaire au vent (en m)

d : dimension du coté parallèle au vent (en m)

e : excentricité (en m).

On a : **d = 20m > e =18m**

On divise donc, les parois verticales selon la légende du §5.1.2- chap.5-RNV99/2013) comme suit:

Figure 2.4. Légende pour les parois verticales

Par conséquent, les coefficients de pression extérieure C_{Pe} pour chaque zone sont donnés au tableau suivant :

Tableau 2.4: Valeurs de surface et de C _{pe}	pour chaque zone des parois verticales (sens V_1)
---	--

Zone	А	В	С	D	Е
Surface (m ²)	32,4	129,6	18	270	270
C _{pe}	-1	-0,8	-0,5	+0,8	-0,3

La figure suivante illustre la répartition des Cpe pour les parois verticales :

Figure 2.5. Répartition des Cpe pour les parois verticales (sens V1)

b)- Toiture:

La direction du vent V₁ est perpendiculaire aux génératrices de la toiture d'où l'angle $\theta = 0^{\circ}$ On a : $\theta = 0^{\circ}$; $\alpha = 5,71^{\circ}$; b = 30m; d = 20; h = 10m

 $e = \min(b; 2h) = \min(30; 2x10) = 20m$

Dans ce cas, on a cinq zones F, G, H, J et I qui sont présentées à la figure suivante :

Figure 2.6. Zones de pression pour la toiture (sens V1)

Les surfaces des zones F, G, H, J et I sont données par le tableau suivant :

Tableau 2.5: Valeurs des surfaces des zones de vent de la toiture (sens V	71	1	I	Ĺ		L	l))))	Ľ]]	7	V	١				;	5	5	5	5	5	5	S	1,)	ľ	J	Ľ	5	E	(;(5	S	5	((•	e	•	1	l	ι	ţı	t	i)]	Э	(t	1	L	A	Е	l	1	ļ)	•	2	Э	е	10	d	(t	t	11	1	r	3	16	V	١		e	16	d		S	28	e	1	r)])	0	20	Z	Z	Z	2	ļ	S	25	e	e	ł	Ċ	(3	s	2	3	е	e)	С	(l	a	2	E	f	•	r	1	l	J	ι	51	s	S	S	Ş			5	5	S	2	e	e	le	1	d	((
---	----	---	---	---	--	---	---	--	---	---	---	---	---	---	---	---	---	---	--	--	--	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	----	---	---	---	---	---	--	---	---	---	---	---	---	----	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	--	---	---	----	---	---	---	----	---	---	--	---	----	---	--	---	----	---	---	---	----	---	---	----	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	--	--	---	---	---	---	---	---	----	---	---	---	---

Zone	F		G		Н		J		Ι	
Dimension Géométrique	e/10	e/4	e/10	$b-\frac{2e}{4}$	$\frac{d}{2} - \frac{e}{10}$	b	e/10	b	$\frac{d}{2} - \frac{e}{10}$	b
(m)	2	5	2	20	8	30	2	30	8	30
Surface (m ²)	10		40		240		60		240	

La surface de chaque zone est $\geq 10m^2$, donc : $C_{pe} = C_{pe10}$ (Voir §5.1.1.2 - RNV99/2013).

• Pour des valeurs de α situées entre 5° et 15° les valeurs de C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de C_{pe} (5°) et C_{pe} (15°) en appliquant la relation suivante:

$$C_{pe}(\alpha) = C_{pe}(5^{\circ}) + \left[\frac{\alpha - 5^{\circ}}{15^{\circ} - 5^{\circ}} \left(C_{pe}(15^{\circ}) - C_{pe}(5^{\circ})\right)\right] \dots (2.10)$$

• Par simplification, on adopte les valeurs de C_{pe} pour l'angle (5°) qui est plus proche à la pente de notre toiture ($\alpha = 5,71^{\circ}$).

Tableau 2.6. Valeurs de C_{pe} pour chaque zone de la toiture (sens V1)

Zone	F	G	Н	Ι	J
C _{pe}	-1,7	-1,2	-0,6	-0,6	-0,6

Figure 2.7. Valeurs de C_{pe} pour chaque zone de la toiture (sens V1)

◆ <u>Vent perpendiculaire au pignon</u> (Sens V₂) :

a)- Parois verticales:

Pour la direction V₂ du vent, on a :

b = 20m; d = 30m; h = 9m; $e = min(b, 2h) = min(20, 2 \times 9) = 18m$.

On voit bien que d > e, donc les parois verticales parallèles au vent V2 seront subdivisées en trois zones A, B et C comme l'indique la figure 2.4 précédente.

Les surfaces des zones A, B, C, D, et E et les valeurs de C_{pe} correspondant à ces zones sont portées sur le tableau suivant :

Zone	А		В		С		D		Е	
Dimension	e/5	Н	e-e/5	Н	d-e	h	b	h	В	h
Géométrique	3,6	9	14,4	9	12	9	20	9	20	9
(m)										
Surface (m ²)	32,4		129,6		108		180		180	
$C_{pe} = C_{pe10}$	-1		-0,8		-0,5		+0,8		-0,3	

Tableau 2.7: Valeurs des surfaces et	C_{pe} des zones de vent p	pour les parois verticales (sens V2)
--------------------------------------	------------------------------	--------------------------------------

La figure 2.8 illustre la répartition des Cpe pour les parois verticales :

Figure 2.8. Zones de pression et répartition des C_{pe} pour les parois verticales (sens V2)

b)- Toiture:

La direction du vent est parallèle aux génératrices de la toiture donc $\theta = 90^{\circ}$

On a : $\alpha = 5,71^{\circ}$; b = 20m; d = 30m; h = 10m

e = min (b; 2h) = min (20; 2x10) = 20m

Selon le paragraphe (§5.1.8.1-RNV99/2013), on a quatre zones F, G, H et I qui sont présentées à la **figure 2.9** suivante :

Figure 2.9. Zones de pression pour la toiture (sens V2)

Les surfaces des zones F, G, H et I sont données par le tableau suivant :

Tableau 2.8: Valeurs des surfaces des zones de vent pour la toiture (sens V2)

Zone	F		G		Н		Ι	
Dimension	e/10	e/4	e/10	b/2 -e/4	e/2 -e/10	b/2	d- e/2	b/2
Géométrique (m)	2	5	2	5	8	10	20	10
Surface (m ²)	10		10		80		200	

N.B.: Pour toutes les zones, la surface de chacune est $\geq 10m^2$, donc : $C_{pe} = C_{pe10}$

Chapitre 2: Calcul des surcharges climatiques

- Pour des valeurs de α situées entre 5° et 15° les valeurs de C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de C_{pe} (5°) et C_{pe} (15°).
- Par simplification, on adopte les valeurs de C_{pe} pour l'angle (5°) qui est plus proche à la pente de notre toiture ($\alpha = 5,71^{\circ}$).
 - Le tableau suivant donne les valeurs de C_{pe} de chaque zone :

Tableau 2.9: Valeurs de C_{pe} pour chaque zone de la toiture (sens V2)

Zone	F	G	Н	Ι
$C_{pe} = C_{pe10}$	-1,6	-1,3	-0,7	-0,6

Figure 2.10. Zones de pression et répartition des Cpe pour la toiture (sens V2)

2.2.3.2- Coefficients de pression intérieure C_{pi} :

Pour les bâtiments sans face dominante, le coefficient de pression intérieure C_{pi} est déterminé à partir de (la figure 5.14 - RNV99/2013) avec (h) la hauteur du bâtiment, (d) sa profondeur et μ_p l'indice de perméabilité donné par:

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ où \ C_{pe} \leq 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$$

✤ <u>Vent perpendiculaire au long-pan</u> (sensV1) :

- La sommes des surfaces de toutes les ouvertures = 18 fenetres et 2 portes = $51,44 \text{ m}^2$
- La sommes des ouvertures où $C_{pe} \le 0 = 13$ fenetres et 2 portes = 46,04 m²

$$\Rightarrow \mu_p = \frac{46,04}{51,44} = 0,895$$

D'autre part, on a : 0.25 < h/d = 9/20 = 0.45 < 1

Donc, le coefficient de pression intérieure C_{pi} doit être calculé par une interpolation linéaire :

$$C_{pi}\left(\mu_{p};\frac{h}{d}\right) = C_{pi}\left(\mu_{p};0,25\right) + \left[\frac{\frac{h}{d}-0,25}{1-0,25}\left(C_{pi}\left(\mu_{p};1\right)-C_{pi}\left(\mu_{p};0,25\right)\right)\right]$$
$$C_{pi}(0,895;0,45) = -0,3 + \left[\frac{0,45-0,25}{1-0,25}\left(-0,43+0,3\right)\right] = -0,33$$
$$C_{pi} = -0.33$$

- ✤ <u>Vent perpendiculaire au pignon</u> (sens V2) :
- La sommes des surfaces de toutes les ouvertures = 18 fenetres et 2 portes = $51,44 \text{ m}^2$
 - La sommes des ouvertures où $C_{pe} \le 0 = 14$ fenetres et 1 porte = 31,12 m²

$$\Rightarrow \ \mu_p = \frac{31,12}{51,44} = 0,605$$

D'autre part, on a : 0.25 < h/d = 9/30 = 0.30 < 1

Le coefficient de pression intérieure C_{pi} doit être calculé par une interpolation linéaire :

$$C_{pi}\left(\mu_{p};\frac{h}{d}\right) = C_{pi}\left(\mu_{p};0,25\right) + \left[\frac{\frac{h}{d}-0,25}{1-0,25}\left(C_{pi}\left(\mu_{p};1\right)-C_{pi}\left(\mu_{p};0,25\right)\right)\right]$$
$$C_{pi}(0,605;0,30) = 0,02 + \left[\frac{0.30-0,25}{1-0,25}\left(-0,05-0,02\right)\right] = +0,015$$
$$C_{pi} = +0,015$$

2.2.4- Calcul des pressions q_j dues au vent :

La pression (q_j) due au vent sur la surface de l'élément **j** est donnée par la formule suivante : $q_j = C_d * W(z_j)$ en [N/m²]

$$\begin{split} W(z_j) &: \text{ pression nette exercée sur l'élément de surface } \mathbf{j}, \text{ calculée à la hauteur } \mathbf{z}_j \text{ de l'élément:} \\ W(z_j) &= q_{dyn}(z_j) * \left[\mathcal{C}_{pe} - \mathcal{C}_{pi} \right] \quad \text{en } [N/m^2] \\ \text{donc :} \quad q_j &= \mathcal{C}_d * q_{dyn}(z_j) * \left[\mathcal{C}_{pe} - \mathcal{C}_{pi} \right] \end{split}$$

où

 $C_d \hspace{0.1 cm} : \text{coefficient dynamique de la construction}$

qdyn : pression dynamique du vent calculée à la hauteur zj

C_{pe} : coefficient de pression extérieure

C_{pi} : coefficient de pression intérieure.

***** Vent perpendiculaire au long-pan (Sens V₁) :

a) Parois verticales :

Le tableau 2.9 donne les valeurs de pression q_j sur les parois verticales pour le sens V1: Tableau 2.9: Valeurs pression sur les parois verticales pour le Sens V1

Zone	C _d	q_{dyn} (N/m^2)	C _{pe}	C _{pi}	q_j (N/m ²)
А			-1		- 475,06
В			-0,8		- 333,25
С	1	709,05	-0,5	- 0,33	- 120,54
D			+0,8		+ 801,23
E			-0,8		- 333,25

Chapitre 2: Calcul des surcharges climatiques

Figure 2.11. Répartition des pressions sur les parois verticales pour le Sens V1

b) Toitures :

Le tableau 2.10 donne les valeurs de pression q_j sur la toiture pour le sens V1 Tableau 2.10: Valeurs de pression sur les parois verticales pour le Sens V1

	1401044 21101	valears ac press	ion sur ies purois	vertieules pour r	
Zone	C _d	q_{dyn} (N/m^2)	C _{pe}	C _{pi}	q_j (N/m ²)
F			- 1,7		- 1001,20
G			- 1,2		- 635,80
Н	1	730,8	- 0,6	- 0,33	- 197,32
Ι			- 0,6		- 197,32
J			- 0,6		- 197,32

Figure 2.12. Répartition des pressions sur la toiture pour le Sens V1

***** Vent perpendiculaire au pignon (sens V₂) :

a)- Parois verticales :

Le tableau 2.11 donne les valeurs de pression q_j sur les parois verticales pour le sens V2: Tableau 2.11: Valeurs pression sur les parois verticales pour le Sens V2

		I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I	r T	
Zone	C _d	q_{dyn} (N/m^2)	C _{pe}	C _{pi}	q_j (N/m ²)
А			-1		- 719,69
В			-0,8		- 577,88
С	1	709,05	-0,5	+ 0,015	- 365,16
D			+0,8		+ 556,60
Е			-0,3		- 223,35

Figure 2.13. Répartition des pressions sur les parois verticales pour le Sens V2

b)-<u>Toiture</u> :

Le tableau 2.12 donne les valeurs de pression *q_j* sur la toiture pour le **sens V2 Tableau 2.12:** Valeurs de pression sur les parois verticales pour le **Sens V2**

Zone	C _d	q_{dyn} (N/m ²)	C _{pe}	C _{pi}	q_j ($N\!/m^2$)
F			- 1,6		- 1180,24
G			- 1,3		- 961,00
Н	1	730,8	- 0,7	+ 0,015	- 522,52
Ι			- 0,6		- 449,44

Figure 2.14. Répartition des pressions sur la toiture pour le Sens V2

2.2.5- Calcul des forces de frottement

Selon RNV99/ 2013 (Chap.2-§ 2.6.3), les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent (au vent et sous le vent).

***** Vent perpendiculaire au Long-pan (sens V₁) :

• Calcul de toutes les surfaces parallèles au vent :

Les surfaces des deux pignons : = $2\left[(9 \times 20) + \left(\frac{1 \times 20}{2}\right)\right] = 380m^2$

La toiture qui est faiblement inclinée par rapport de la direction du vent := $2 \times \left(\frac{10}{\cos 5,71^{\circ}}\right) \times 30603m^2$

Chapitre 2: Calcul des surcharges climatiques

 \Rightarrow Total des surfaces parallèle au vent = $380m^2 + 603m^2 = 983m^2$

- Calcul des surfaces perpendiculaire au vent (et sous le vent) :
- Les surfaces des deux long-pans : = $2 \times (9 \times 30) = 540m^2$
- Vérification de la condition du § 2.6.3-RNV99/2013 :
- Total des surfaces parallèles au vent $\leq 4 \times$ Total des surfaces perpendiculaire au vent: $983m^2 < 4 \times 540m^2 = 2160m^2$, C'est vérifiée.
- ⇒ On peut, donc, négliger l'effet de frottement pour le cas du vent perpendiculaire au longpan.

✤ Vent perpendiculaire au Pignon (sens V₂) :

 Calcul de toutes les surfaces parallèles au vent : Les surfaces des deux long-pans : 2 × 9 × 30 = 540m² La toiture qui est faiblement inclinée par rapport de la direction du vent :

$$= 2 \times \left(\frac{10}{\cos 5,71^\circ}\right) \times 30 = 603m^2$$

 \Rightarrow Total des surfaces parallèles au vent = $540m^2 + 603m^2 = 1143m^2$

• Calcul des surfaces perpendiculaire au vent (et sous le vent) :

Les surfaces des deux pignons : = $2\left[(9 \times 20) + \left(\frac{1 \times 20}{2}\right)\right] = 380m^2$

• Vérification de la condition du § 2.6.3-RNV99/2013 :

Total des surfaces parallèles au vent $\leq 4 \times$ Total des surfaces perpendiculaire au vent:

 $1143m^2 < 4 \times 380m^2 = 1520m^2$, C'est vérifiée.

 \Rightarrow On peut, donc, négliger l'effet de frottement pour le cas du vent perpendiculaire au pignon.

2.2.6- Analyse des résultats :

a) Parois verticales :

Sens V1

• Pour le long-pan :

On prendra en compte la valeur de $q_i' = + 801,23 \text{ N/m}^2$

• Pour le pignon :

En faisant la moyenne des pressions de vent, on a :

$$q_j = \frac{-475,06 - 333,25 - 120,54}{3} = -309,62 \text{ N/m}^2$$

222.25 120.54

Sens V₂

* Pour le long-pan :

$$qj'' = \frac{-719,69 - 577,88 - 365,16}{3} = -554,24 \text{N/m}^2$$

***** Pour le pignon : on prendra q_j "= + 556,60 N/m²

D'où, la charge de vent normal V_n qui agit sur long-pan est : $V_n = q_j' = + 801,23 \text{ N/m}^2$ Et celle du pignon est $V_n = q_j'' = + 556,60 \text{ N/m}^2$

b) <u>Toiture</u> :

Sens V1

En faisant la moyenne des charges de vent agissant sur le versant le plus sollicité de la toiture, on obtient :

$$q_{j}' = \frac{-1001,20 - 197,32}{2} = -599,26 \text{ N/m}^2$$

Sens V2

En faisant la même procédure que précédente, on a :

$$q_{j}$$
" = $\frac{-1180,24 - 522,52}{2}$ = -851,38 N/m²

Donc, le cas le plus défavorable donne la charge du vent normal \mathbf{V}_n au niveau de la toiture, d'où :

 $V_n = q_j'' = -851,38 \text{ N/m}^2$

2.2.7- Schémas récapitulatifs

Après avoir calculé les surcharges climatiques de vent en respectant *la RNV 99/2013*, nous allons récapituler ici les surcharges de vent qu'on prendra en compte dans le prochain calcul.

***** Vent perpendiculaire au Long-pan (sens V₁) :

Figure 2.15. Surcharges de vent pour (sens V1)

***** Vent perpendiculaire au Pignon (sens V₂) :

Figure 2.16. Surcharges de vent pour (sens V₂)

3.1 Introduction :

Dans ce chapitre, on à vérifié la résistance des profilés choisis, aux différents efforts. Les éléments concernés par cette étude sont : les pannes,les couvertures.

Les formules de vérification utilisées sont tirées de CM97 règles de conception et de calcul des structures en acier.

3.2 Etude de la couverture :

On à une charge **1168.84** N/m² d'après l'étude ou vent ce qui donne la couverture est en tole nervurée type **TN40** d'épaisseur **10/10^{éme}**, de longeur **6m** et de largeur **0.726m**, elle sera disposée de manière à utilisier son module de résistance maximal, (I/V)_{max}.

726 mm

Figure 3.1: Tole nervurée

- Poids propre (TN40 10/10 ^{éme})	$P = 10 \text{ dan/m}^2$.
- Contrainte de rupture	$f_u \!= 400 \ N/m^2\!.$
- Contrainte de élastique	$f_y = 160 \text{ N/mm}^2$.
- Fléche admisible	$\delta_{max} = 1/200.$
- Module de résistance	$w = 9.24 \text{ cm}^3/\text{ml}.$
- Moment d'inertie	$I = 27.21 \text{ cm}^4/\text{ml}.$

3.3 Calcul des pannes :

3.3.1 Définition :

Les pannes sont des éléments qui ont pour fonction de supporter la couverture, sont disposées parallèlement à la ligne de faîtage, dans les plans des versants. Elles sont calculées en flexion déviée, sous l'effet des charges permanentes et d'exploitation et des charge climatiques

Figure 3.2 Disposition de la panne sur la toiture.

Figure 3.3 pente de calcul.

3.3.2 Détermination des charges et surcharges :

a) Les charges permanentes : (selon le DTR .b1.c.2.2)

Poids propre de la couverture (TN40).....10 kg/m²

Poids propre des pannes est estimés à(IPE100)8.1 kg/m²

 $G = [(PTN40 + P accessoires) \times e] + Ppannes .$ Espacement des pannes e =2.01m $G = [(10 + 5) \times 2.01] + 8.1 = 36.24kg/ml = 0.362KN/ml .$ b) Surcharge d'entretien P_{eq} :

Dans le cas des toitures inaccessible on considère uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente a deux charges concentrées de 100 kg chacune située à 1/3 et 2/3 de la portée de la panne.

Figure 3.4 Schéma statique sous charge d'entretien

$$Mmax = 100 \times 2 = 200 \ kg.m$$

La charge uniformément répartie (P_{eq}) due à la surcharge d'entretien est obtenue en égalisant les deux moments max dues à P_{eq} aux charges ponctuelles P.

Figure 3.5 Moment due à la charge d'entretien

a) Surcharge climatique due au vent :

La panne la plus sollicitée est celle exposée au vent sur la façade latérale gauche et latérale droite avec :

$$V = -0.851 \text{ KN/m}^2$$
 (chapitre2)
 $V = -0.851 \times 2.01 = -1.71 \text{KN/ml.}$

b) Surcharge climatique due a la neige :

 $S = 0.38 \text{ KN/m}^2$. (chapitre2) $S = 0.38 \times 2.01 = 0.76 \text{ KN/ml}$.

3.3.3 Combinaisons de charge les plus défavorables

• Les charges et surcharges appliquée :

 $\begin{array}{l} G \;=\; 0.362\; \text{KN/ml} \;. \\ Peq \;=\; 0.444\; \text{KN/ml} \;. \\ V \;=\; -1.71 \text{KN/ml} \;. \\ S \;=\; 0.76\; \text{KN/ml} \;. \end{array}$

- Decomposition de charges:
 - Suivant l'axe Z-Z

Suivant l'axe Y-Y

3.3.4 Combinaisons d'actions :

Remarque :

les charges d'entretien ne se combinent pas avec les charges climatiques (vent et neige) d'après le DTR.

```
• ELU
```

 \succ Axe Z-Z:

Gmax +
$$1.5V = 0.3 + 1.5 \times -1.71 = -2.183$$
KN/ml.
 1.35 Gz + 1.5 Sz = $1.35 \times 0.36 + 1.5 \times 0.756 = 1.62$ KN/ml.
 1.35 Gz + 1.5 Qz = $1.35 \times 0.36 + 1.5 \times 0.442 = 1.15$ KN/ml.

> Axe Y-Y :

 $1.35Gy + 1.5Sy = 1.35 \times 0.036 + 1.5 \times 0.0756 = 0.162 \text{ KN/ml}.$ $1.35Gy + 1.5Qy = 1.35 \times 0.036 + 1.5 \times 0.0442 = 0.115 \text{KN/ml}.$

• ELS

> Axe Z-Z

Gz + V = 0.36- 1.71 = -1.35KN/ml. Gz + Sz = 0.36 + 0.756 = 1.12KN/ml. Gz + Qz = 0.36 + 0.442 = 0.82 KN/m.l.

> Axe Y-Y

Gy + Sy = 0.036 + 0.0756 = 0.112KN/ml. Gy + Qy = 0.036 + 0.0442 = 0.08 KN/ml.

3.3.5 Pré dimensionnement :

Le pré dimensionnement se fait par la condition de la flèche :

$$f = \frac{5 \times qs \times l^4}{3 \times 384 \times E \times I} \le fadm = \frac{l}{200} = \frac{600}{200} = 3cm.$$

l: la langeur de la panne

 $q_{s\,:}$ la charge la plus défavorable a l'ELS Suivant l'axe Z-Z :

$$\mathbf{Iy} \ge \frac{5 \times qs \times l^4}{3 \times 384 \times E} = \frac{5 \times 1.35 \times 600^4 \times 10^{-1}}{3 \times 384 \times 2.1 \times 10^5} = \mathbf{361}.6cm^4$$

✤ Donc on choisit IPE140.

Ces caractéristiques sont :

- Iy = 541.2cm⁴. - Iz =44.9cm⁴. - A = 16.4cm². - H = 14 cm. - P =12.9 Kg/m. Le poids propre réel G : G = $(10 + 5) \times 2.01 + 12.9 = 0.428$ KN/ml. Gz = G × cos5.71 = 0.43KN/ml. Gy = G × sin 5.71 = 0.043KN/ml.

3.3.6 Dimensionnement des pannes :

Les pannes sont dimensionnées pour satisfaire les conditions suivantes :

 \checkmark Condition de la flèche.

✓ Condition de résistance.**3.3.6.1 Les combinaisons de calcul :**

* ELU

(1)
$$\begin{cases} qz = 1.35Gz + 1.5Qz = 1.35 \times 0.43 + 1.5 \times 0.442 = 1.24KN/ml. \\ qy = 1.35Gy + 1.5Qy = = 1.35 \times 0.043 + 1.5 \times 0.0442 = 0.124 KN/ml. \end{cases}$$

(2)
$$\begin{cases} qz = Gz + 1.5Vz = 0.43 + 1.5 \times -1.71 = -2.126 \text{KN/ml.} \\ qy = 1.35Gy + 1.5Vy = 1.35 \times 0.043 + 1.5 \times 0 = 0.058 \text{KN/ml.} \\ \end{cases}$$
(3)
$$\begin{cases} qz = 1.35Gz + 1.5Sz = 1.35 \times 0.43 + 1.5 \times 0.756 = 1.70 \text{KN/ml.} \\ qy = 1.35Gy + 1.5Sy = = 1.35 \times 0.043 + 1.5 \times 0.0756 = 0.170 \text{KN/ml.} \end{cases}$$

 $y = 1.353 + 1.5 \times 0.0756 = 0.170 \text{KM/ml}.$ Selon les deux axes Yet Z, lescharge (maximale et correspondante) à l'ELU revenant à panne la plus sollicitée sont:

 $q_z = \text{Gmax} + 1.5\text{Vz} = -2.126\text{KN/ml(maximale)}$ $q_y = 1.35\text{Gy} + 0 = 0.058 \text{KN/ml(correspondente)}$

3.3.6.2 Détermination des sollicitations :

• Moments

✓ Sous le vent :

Axe Z_ZMy =
$$qz \frac{l^2}{8} = 2.126 \times \frac{6^2}{8} = 9.57$$
KN.mAxe Y_YMz = $qy \frac{l^2}{8} = 0.058 \times \frac{6^2}{8} = 0.26$ KN.m

✓ Sous charge d'exploitation:

Axe Z_Z My =
$$qz \frac{l^2}{8} = 1.24 \times \frac{6^2}{8} = 5.58$$
KN.m
Axe Y_Y Mz = $qy \frac{l^2}{8} = 0.124 \times \frac{6^2}{8} = 0.558$ KN.m

✓ Sous charge de la neige:

Axe Z_ZMy =
$$qz \frac{l^2}{8} = 1.70 \times \frac{6^2}{8} = 7.65$$
 KN. mAxe Y_YMz = $qy \frac{l^2}{8} = 0.170 \times \frac{6^2}{8} = 0.765$ KN. m

✓ Effort tranchant:

- Effort tranchant due au vent: $Vv = q \cdot l/2 = -2.126 \times 6/2 = -6.38$ KN.
- Effort tranchant due à neige: Vs = $q \cdot l/2 = 1.70 \times 6/2 = 5.1$ KN.
- Effort tranchant due au poids propre: $V_G = q \cdot l/2 = 0.43 \times 6/2 = 1.29$ KN.
- Effort tranchant due aux charge d'exploitation: $V_Q = q.1/2 = 1.24 \times 6/2 = 3.72$ KN.

1^{er} combinaison :

 $V_Z = V_G + 1.5 V_V = 1.29 + 1.5 \times -6.38 = -10.86 \text{ KN}.$

2^{eme} combinaison :

 $V_Z = 1.35V_G + 1.5V_Q = 1.35 \times 1.29 + 1.5 \times 3.72 = 7.32$ KN. **3**^{eme} combinaison :

 $V_Z = 1.35V_G + 1.5V_S = 1.35 \times 1.29 + 1.5 \times 5.1 = 9.39$ KN.

3.3.6.3 Vérification de la résistance des pannes :

a) Vérification a l'effort tranchant :

Selon les régles CCM97, la vérification à l'effort de cisaillement est donnée par la formule suivante $V_Z \leq V_{PLZ}$

Où: Vplz est la valeur de calcul de la résistance plastique au cisaillement de l'acier donnée par :

$$Vplz = \frac{Avz \times Fy}{\gamma M0 \times \sqrt{3}}$$
 EC3 Art 5.4.3
Avec :

Fy : Résistance limite d'élasticité.

V_{plz}: Effort tranchant résistant de la section.

Avz: Aire de cisaillement qui peut etre.

Profils laminés Iou H la aire de cisaillement donée par :

$$A_{vz} = A - 2 \times b \times tf + (tw + 2 \times r) \times tf$$
$$A_{vz} = 16.4 - 2 \times 7.3 \times 0.69 + (0.47 + 2 \times 0.7) \times 0.69 = 7.6cm^{2}$$
$$Vplz = 7.6 \times \frac{23.5}{\sqrt{3}} \times 1.1 = 113.43KN$$

• Sous le vent:

Vz = 10.86KN < Vplz= 113.43KN vérifiée.

• Sous le la charge verticale:

• Sous la neige:

b) Vérification au diversement :

a) La vérification à faire est : $M_{sd.y} \le \chi_{lt} \times \beta_w \times \frac{W_{pl.y \times f_y}}{\gamma_{M1}}$ EC3 Art5.5.2

 $\beta_w=1$ \rightarrow section de classe 1

 χ_{lt} : cofficient de réducation en fonction de λ_{lt}

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_{W} W_{\text{ply}} fy}{M_{CT}}} \approx \frac{\lambda_{LT}}{\lambda_{1}} \cdot \sqrt{\beta_{W}}$$

M_{cr}: est le moment critique de déversement.

$$Mcr = \frac{C1.\pi^2.E.Iz}{(K \times L)^2} \left\{ \left[\left(\frac{K}{Kw} \right)^2 \times \frac{Iw}{Iz} + \frac{(K.L)^2.G.It}{\pi^2.E.Iz} + (C2.Zg - C3.Zj)^2 \right]^{\frac{1}{2}} - (C2.Zg - C3.Zj) \right\}^{\frac{1}{2}} \right\}$$

 C_1, C_2, C_3 : facteurs dépendant des conditions de charge et d'encastrement.

 $C_1 = 1,132$, $C_2 = 0,459$, $C_3 = 0,525$; EC3 Tab F.1.2

K et K_w : les facteurs de longueur effective avec : K=1 appui simple , K_w =1 ; EC3 Tab F.1.2

L= 600 cm; Zg = Za - Zs. $\begin{cases}
Za = -7 cm & \text{sous le vent} \\
Za = 7 cm & \text{sous la charge vertical.}
\end{cases}$ $\begin{cases}
Zs = 0 & \text{section doublement symétrique EC3 Figuer F .1.1} \\
Zg = Za - Zs = -7 cm. & \text{sous le vent} \\
Zg = Za - Zs = 7 cm. & \text{sous le vent} \\
Zg = Za - Zs = 7 cm. & \text{sous la charge vertical} \\
It = 2.45 cm^4.
\end{cases}$ $Iw=Iz \times \left(\frac{h - tf}{2}\right)^2 = 44.90 \times \left(\frac{14 - 0.69}{2}\right)^2 = 1988.57 cm^6$ $G = \frac{E}{2 \times (1 + V)}$ $G = \frac{210000}{2 \times (1 + 0.3)} = 80770 MPa$

✓ Sous le vent :

$$M_{cr} = \frac{1,132 \times \pi^{2} \times 2,1 \times 44.9}{(1 \times 6)^{2}} \left\{ \left[\left(\frac{1}{1}\right)^{2} + \frac{1988.57 \times 10^{-4}}{44.9} + \frac{(1 \times 7)^{2} \times 80770 \times 10^{-5} \times 2.45}{\pi^{2} \times 2,1 \times 44.9} + \left((0,459 \times -0,07) - 0\right)^{2} \right]^{\frac{1}{2}} - \left((0,459 \times -0,07) - 0\right) \right\}$$

Mcr = 4.33 KN.

$$\overline{\lambda}_{y} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] (\beta_{w})^{0.5} = \sqrt{\frac{1 \times 88.3 \times 10^{-6} \times 235}{4.33 \times 10^{-3}}} = 2.18 > 0.4$$

Donc il y a un risque de diversement α_{LT} : Coefficient d'imperfection de déversement. Profilé laminé; $\alpha = 0.21$;

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\bar{\lambda}_{LT} - 0.2 \right) + \bar{\lambda}_{LT}^2 \right] = 0.5 \times [1 + 0.21(2.18 - 0.2) + 2.18^2] = 3.08$$
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \bar{\lambda}_{LT}^2}} = 0.189$$

On à $M_{sd.y}$ = 9.57 KN.m

$$M_{sd.y} \le 0.189 \times 1 \times \frac{88.3 \times 235 \times 10^{-3}}{1.1} = 3.56 KN.m$$

Donc:
$$Msd.y = 9.57 > Mb.rd = 3.56$$
 condition non vérifiée.

Le déversement n'est pas vérifié donc on adopte des liernes, les résultats de la nouvelle vérification sont donnés comme suite :

3.4 Dimensionnement des pannes (avec des liernes).

3.4.1 Détermination des sollicitations :

✓ Sous le vent :

Axe Z_Z	My = $qz \frac{l^2}{8} = 2.126 \times \frac{6^2}{8} = 9.57$ KN. m
Axe Y_Y	Mz = qy $\frac{l^2}{8}$ = 0.058 × $\frac{3^2}{8}$ = 0.065 KN.m
✓ Sous charge d'exploitation:	
Axe Z_Z	My = $qz \frac{l^2}{8} = 1.24 \times \frac{6^2}{8} = 5.58$ KN. m
Axe Y_Y	Mz = $qy \frac{l^2}{8} = 0.124 \times \frac{3^2}{8} = 0.14$ KN.m
✓ Sous charge de la neige:	
Axe Z_Z	My = $qz \frac{l^2}{8} = 1.70 \times \frac{6^2}{8} = 7.65$ KN.m
Axe Y_Y	Mz = $qy \frac{l^2}{8} = 0.170 \times \frac{3^2}{8} = 0.19$ KN. m

✓ Effort tranchant:

- Effort tranchant due au vent: $Vv = q.\frac{1}{2} = -2.126 \times 6/2 = -6.38$ KN. - Effort tranchant due à neige: $Vs = q.1/2 = 1.70 \times 6/2 = 5.1$ KN. - Effort tranchant due au poids propre: $V_G = q \cdot l/2 = 0.43 \times 6/2 = 1.29$ KN.

- Effort tranchant due aux charge d'exploitation: $V_Q = q.1/2 = 1.24 \times 6/2 = 3.72$ KN.

1^{er} combinaison :

$$V_Z = V_G + 1.5 V_V = 1.29 + 1.5 \times -6.38 = -10.86 \text{ KN}.$$

2^{eme} combinaison :

$$V_Z = 1.35V_G + 1.5V_Q = 1.35 \times 1.29 + 1.5 \times 3.72 = 7.32$$
 KN.

3^{eme} combinaison :

$$Vz = 1.35V_G + 1.5V_S = 1.35 \times 1.29 + 1.5 \times 5.1 = 9.39$$
 KN.

3.4.2 Vérification de la résistance des pannes :

a) Vérification a l'effort tranchant :

Selon les régles CCM97, la vérification à l'effort de cisaillement est donnée par la formule suivante : V_z et V_{plz}

Où: Vplz est la valeur de calcul de la résistance plastique au cisaillement de l'acier donnée par :

$$Vplz = \frac{Avz \times Fy}{\gamma M0 \times \sqrt{3}}$$
 EC3 Art 5.4.3

Avec :

Fy : Résistance limite d'élasticité.

V_{plz}: Effort tranchant résistant de la section.

A_{vz}: Aire de cisaillement qui peut etre.

Profils laminés Iou H la aire de cisaillement donée par :

$$A_{vz} = 7.6cm^2$$
$$Vplz = 113.43KN$$

• Sous le vent:

.

Vz=7.32KN < Vplz= 113.43KN

──────────────────────vérifiée.

• Sous la neige:

Vz=9.39KN < Vplz= 113.43KN

vérifiée.

b) Vérification au diversement :

a) La vérification à faire est : $M_{sd,y} \le \chi_{lt} \times \beta_w \times \frac{W_{pl,y} \times fy}{\gamma_{M_1}}$ EC3 Art5.5.2 $\beta_w=1$ section de classe 1

 χ_{lt} : cofficient de réducation en fonction de λ_{lt}

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_{W} W_{\text{ply}} f y}{M_{cr}}} \approx \frac{\lambda_{LT}}{\lambda_{1}} \cdot \sqrt{\beta_{W}}$$

M_{cr}: est le moment critique de déversement.

$$Mcr = \frac{C1.\pi^{2}.E.Iz}{(K \times L)^{2}} \left\{ \left[\left(\frac{K}{Kw} \right)^{2} \times \frac{Iw}{Iz} + \frac{(K.L)^{2}.G.It}{\pi^{2}.E.Iz} + (C2.Zg - C3.Zj)^{2} \right]^{\frac{1}{2}} - (C2.Zg - C3.Zj) \right\}^{\frac{1}{2}} \right\}$$

C1, C2, C3 : facteurs dépendant des conditions de charge et d'encastrement.

 $C_1 = 1,132 \quad , \quad C_2 = 0,459 \qquad , C_3 = 0,525 \qquad ; \mbox{EC3 Tab F.1.2}$

K et K_W : les facteurs de longueur effective avec : K=1 appui simple, K_w =1 ; EC3 Tab F.1.2

L= 300 cm;Zg = Za - Zs.

 $\begin{cases} Za = -7 cm & sous le vent \\ Za = 7 cm & sous la charge vertical. \\ \\ Zs = 0 & section doublement symétrique & EC3 Figure F .1.1 \\ \\ Zj = 0 & section doublement symétrique & EC3 Figure F .1.1 \end{cases}$

Zg = Za - Zs = -7cm. sous le vent Zg = Za - Zs = 7cm. sous la charge vertical It =1.74 cm⁴.

Iw=Iz
$$\times \left(\frac{h-tf}{2}\right)^2 = 44.9 \times \left(\frac{14-0.69}{2}\right)^2 = 1988.57 cm^6$$

$$G = \frac{E}{2 \times (1+V)}$$

$$G = \frac{210000}{2 \times (1 + 0.3)} = 80770 MPa$$

✓ Sous le vent :

$$M_{cr} = \frac{1,132 \times \pi^{2} \times 2,1 \times 44.9}{(1 \times 3)^{2}} \left\{ \left[\left(\frac{1}{1}\right)^{2} + \frac{1988.57 \times 10^{-4}}{44.9} + \frac{(1 \times 3)^{2} \times 80770 \times 10^{-5} \times 2.45}{\pi^{2} \times 2,1 \times 44.9} + \left((0,459 \times -0,07) - 0\right)^{2} \right]^{\frac{1}{2}} - \left((0,459 \times -0,07) - 0\right) \right\}$$

Mcr =22.1 KN.

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_{W} W_{\text{ply}} fy}{M_{CT}}} \approx \frac{\lambda_{LT}}{\lambda_{1}} \cdot \sqrt{\beta_{W}} = \sqrt{\frac{1 \times 88.3 \times 10^{-6} \times 235}{22.1 \times 10^{-3}}} = 0.97 > 0.4$$

Donc il y a un risque de diversement

 α_{LT} : Coefficient d'imperfection de déversement. Profilé laminé; $\alpha = 0.21$;

$$\Phi_{LT} = 0.5 \Big[1 + \alpha_{LT} \left(\bar{\lambda}_{LT} - 0.2 \right) + \bar{\lambda}_{LT}^2 \Big] = 0.5 \times [1 + 0.21(0.97 - 0.2) + 0.97^2] = 1.05$$
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \bar{\lambda}_{LT}^2}} = 0.68$$

On à $M_{sd.y} = 9.57 \text{KN.m}$

$$M_{sd.y} \le 0.68 \times 1 \times \frac{88.3 \times 235 \times 10^{-3}}{1.1} = 12.83 KN.m$$

Donc: M_{sd.y}= 9.57KN.m < M_{b.rd} 12.83 KN .m condition vérifiée

3.4.3 Vérification de la Condition de résistance :

La condition à vérifier est :

$$\left(\frac{My}{Mpl.\,y}\right)^{\alpha} + \left(\frac{Mz}{Mpl.\,z}\right)^{\beta} \le 1 \qquad EC3 \,Art \, 5.8.8.1(11)$$

Avec : section en I et H : $\alpha = 2$, $\beta = 1$.

$$Mply = \frac{wply \times FY}{\gamma M0} = \frac{88.3 \times 235 \times 10^{-3}}{1.1} = 18.86 \text{ kn. m}$$
$$Mplz = \frac{19.2 \times 235 \times 10^{-3}}{1.1} = 4.1 \text{ kn. m}$$

• Sous le vent:

$$\left(\frac{9.57}{18.86}\right)^2 + \left(\frac{0.065}{4.1}\right)^1 = 0.27 \le 1 \qquad C.V$$

• Sous la charge vertical:

$$\left(\frac{5.58}{18.86}\right)^2 + \left(\frac{0.14}{4.1}\right)^1 = 0.12 \le 1 \qquad C.V$$

3.4.4 Vérification à L'ELS :

3.4.4.1 Combinaisons de calcul :

(1)
$$\begin{cases} qz = Gz + Qz = 0.43 + 0.442 = 0.87 \text{KN/ml.} \\ qy = Gy + Qy = 0.043 + 0.0442 = 0.087 \text{KN/ml.} \end{cases}$$

(2)
$$\begin{cases} qz = Gz + Vz = 0.43 + -1.71 = -1.28KN/ml. \\ qy = Gy + Vy = 0.043 + 0 = 0.043 KN/ml. \end{cases}$$

(3)
$$\begin{cases} qz = Gz + Sz = 0.43 + 0.756 = 1.178 \text{KN/ml.} \\ qy = Gy + Sy = = 0.043 + 0.0756 = 0.1178 \text{KN/ml.} \\ \text{Selon les deux axes Yet Z, lescharge maximale à l'ELS revenant à panne la plus sollicitée sont:} \\ q_z = Gz + Vz = -1.28 \text{ KN/ml(maximale).} \\ q_y = Gy + Sy = 0.1178 \text{ KN/ml(maximale).} \end{cases}$$

3.4.4.2 Calcul de la flèche :

$$f = \frac{5 \times qs \times l^4}{384 \times E \times l} \le fadm = \frac{l}{200} = \frac{600}{200} = 3cm$$

• suivant l'axe Z-Z:

$$f = \frac{5 \times qz \times l^4}{384 \times E \times I_y} = \frac{5 \times 1.28 \times 6^4 \times 10^2}{384 \times 541.2 \times 2.1} = 1.90 cm \le fadm = \frac{l}{200} = \frac{600}{200} = 3cm$$

• suivant l'axe Y-Y:

$$f = \frac{5 \times qy \times l^4}{384 \times E \times I_z} = \frac{5 \times 0.1178 \times 3^4 \times 10^2}{384 \times 44.9 \times 2.1} = 0.13 cm \le fadm = \frac{l/2}{200} = \frac{300}{200} = 1.5 cm$$

Donc on choisit pour toutes les pannes un IPE140.

3.5 Calcul des liernes :

3.5.1 Introduction

Les liernes sont des tirants, qui fonctionnent en traction elle sont généralement formés de barres rondes ou de petites cornières leur rôle principale est d'éviter la déformation latéral des pannes.

Compte tenu de la faible inertie transversale des pannes, et des lors que la pente des versants (α) atteint 8 à 10%, l'effet de la charge $Q_{y.sd}$ (perpendiculaire à l'ame de la panne) devient préjudiciable et conduit à des section de pannes importantes, donc onéreuse.

La solution consiste à réduire la portée transversal des pannes en les reliant entre elle par des l'iernes (tirants). Situés à mi- portée.

Chaque fois que les pannes en parfilés sont disposées normalement ou versant, il convient de les entretoiser par un ou plusieurs cours de l'iernes en fer rond ou en cornière ces liernes, reliées entre eux ou niveau du faitage, permenttent d'éviter la déformation latéral des pannes ,très préjudiciable ou bon aspect de la couverture.

Figure 3.6 Présentation d'une lierne

Figure 3.7 les schémas statiques

3.5.2 calcul de l'effort maximal revenant aux liernes:

La réaction **R** ou niveau du lierne: $R = 1.25 \times Q_{sd.y} \times \frac{l}{2} = 1.25 \times 1.7 \times 3 = 6.3$ *KN*. Effort de traction dans le tronçon de lierne **L**₁ provenant de la panne sablière

$$T1 = R/2 = 6.3/2 = 3.15 \text{ KN}$$

Effort dans le tronçon $L_2: T_2 = R + T_1 = 6.3 + 3.15 = 9.45 KN$

Effort dans le tronçon L₃ : $T_3 = R + T_2 = 6.3 + 9.45 = 15.75KN$ Effort dans les diagonales L₄ : $2 \times T_4 \times sin\theta = T_3$ $\theta = arctg \frac{2.01}{3} = 33.82^\circ$

$$T_4 = \frac{T_3}{2 \times \sin\theta} = \frac{15.75}{2 \times \sin 33.82^\circ} = 14.19 \text{ KN}$$

Remarque:

les liernes sont des tirants qui fonctionnent en traction et qui sont soumis à des efforts croissants , ou fur et à mesure qu'ils se rapprochent du faitage les efforts de traction sollicitant les liernes ne peuvent pas être attachés aux pannes faitières, qui périraient transversalement ils sont donc transmis aux fermes (traverse) par des tirants en diagonale (bretelles).

Figure 3.8 représentation des efforts

3.5.3 Dimensionnement des liernes :

Le tronçon le plus sollicité est L3

 \rightarrow Elément tendu:

$$N_{sd} \leq N_{pl.rd}$$

 $N_{pl.rd} = \frac{A. f_y}{\gamma_{M0}};$ Résistance plastique de la section brute

$$N_{sd} = T3 \le \frac{A.f_y}{\gamma_{M0}}$$

A
$$\leq \frac{\text{T3.}\gamma_{\text{M0}}}{f_{\text{y}}} = \frac{157.5 \times 1.1}{2350} = 0.074 \ cm^2$$

$$A = \pi \times \frac{\varphi^2}{4} \ge 0.074 \ cm^2$$
$$\varphi \ge \sqrt{\frac{4 \times 0.074}{3.14}} = 0.31 \ cm$$

Soit une barre ronde de diamétre : $\Phi = 0.3$ cm=3. mm.

Pour des raison pratiques et pour plus de sécurité on opte pour une barre ronde de diamétre

Φ=10 mm

On va choisir un $\emptyset 10$ pour les liernes des pannes.

3.6 Calcul de l'échantignolle

3.6.1 Introduction.

L'échantignolle est un dispositif de fixation permettant d'attacher les pannes aux fermes, le principal effort de résistance de l'échantignolle est le moment de renversement due au chargement (surtout sous l'action de soulèvement du vent).

Figure 3.9: Echantignole

l'excentrement (t) est limité par la condition suivant:

$$2 \times \left(\frac{b}{2}\right) \le t \le 3 \times \left(\frac{b}{2}\right)$$

Pour un IPE140:

$$b = 7.3$$
cm; et $h = 14$ cm

donc:

$$2 \times \left(\frac{7.3}{2}\right) = 7.3 cm \le t \le 3 \times \left(\frac{7.3}{2}\right) = 10.95 cm$$
$$7.3 cm \le t \le 10.95 cm \qquad \text{soit: } \mathbf{t} = \mathbf{8 cm}.$$

3.6.2 Calcul des charges revenant à l'échantignolle :

$$G = (10 + 5) \times 2.01 + 12.9 = 0.428 \text{KN/ml}$$
$$Gz = G \times \cos 5.71 = 0.43 \text{KN/ml}.$$

 $Gy = G \times \sin 5.71 = 0.043 \text{KN/ml}.$

a) Effort de soulèvement :

 $Qz = Gz + 1.5Vz = 0.43 + 1.5 \times -1.71 = -2.157KN/ml$ **b)** Effort suivant rampant:

 $Qy = 1.35Gy + 1.5Vy = 1.35 \times 0.043 + 1.5 \times 0 = 0.058KN/ml$ ***** Echantignolle de rive :

R'z = Qz ×
$$\frac{l}{2}$$
 = 2.157 × $\frac{6}{2}$ = 6.47 KN
R'y = Qy × $\frac{l}{2}$ = 0.058 × $\frac{6}{2}$ = 0.174 KN

Figure 3.10 Disposition de l'échantignole de rive

* Echantignolle intermédiaire :

$$Rz = R'z \times 2 = 6.47 \times 2 = 12.94 \text{ KN}$$

 $Ry = R'y \times 2 = 0.174 \times 2 = 0.348 \text{ KN}$

3.6.3 Calcul du moment de renversement :

$$M_R = Rz \times t + Ry \times \frac{h}{2} = 12.94 \times 0.08 + 0.348 \times 0.07 = 1.06KN.m.$$

3.6.4 Dimensionnement de l'échantignolle :

Flexion simple

Remarque: Généralement les échantignolle sont des éléments formes à froid. La classe de section est au moins de classe 3.

_ _

$$M_{sd.y} \le M_{el.rd}$$
$$M_{el.rd} = \frac{W_{el} \cdot f_y}{\gamma_{M0}}$$

Mel.rd: Moment de résistance élastique de la section brute.

3.6.5 Calcul de l'épaisseur de l'échantignolle :

$$W_{el} \ge \frac{M_R \times \gamma_{M0}}{f_y} = \frac{1.06 \times 10^5 \times 1.1}{235 \times 10^2} = 4.96 \ cm^2.$$

$$W_{el} \ge \frac{b \times e^2}{6}$$

pour les section rectangulaires

Figure 3.11 Dimensions de l'échantignolle.

Remarque : la largeur de l'échantignolle « b » est calculée après avoir dimensionné la membrure supérieure de la ferme 2L ($70 \times 70 \times 7$).

b = 7 + 7 + 0.7 = 14.7 cm; avec l'épaisseur des gousset de 15 mm.

Donc:

$$e \ge \sqrt{\frac{6 \times w_{el}}{b}} = \sqrt{\frac{6 \times 4.96}{14.7}} = 1.42 \ cm.$$

Soit: e = 1.5 cm.

4.1 Introduction :

Les lisses de bardages sont constituées des poutrelles (IPE, UAP,UPE) ou des profils minces pliés. Disposées horizontalement, elles se portent sur les poteaux de portiques ou éventuellement sur des potelets intermédiaires. L'entre axe des lisses est déterminé par la portée admissible des bacs de bardage.

Les lisses, destinées à reprendre les efforts du vent sur le bardage, sont posées naturellement pour présenter leur inertie maximale dans le plan horizontal.

La lisse fléchit verticalement en outre, sous l'effet de son poids propre et du poids du bardage qui lui est associé, et de ce fait fonctionne à la flexion déviée.

4.2 Vérification de lisse de long pan:

4.2.1 détermination des charges et surcharges revetmats à lisse la plus chargée (lisse intermédiaire) :

D'après le tableau 1 des panneaux sandwich :

h= 5m \rightarrow 3 (nombre espacement) H poteau= 9 m Donc n =3 \rightarrow e = 1.5m

Figure 4.1 les schémas statiques de la lisse dans les deux plans y-y et z-z.

a) Les charges permanentes

$$G = \left[\left(P_{bardage} + P_{accessoire} \right) \times e \right] + P_{lisse}$$
$$G = \left[(10+5) \times 1.5 \right] + 10.4 = 34.4 \ kg/m^2$$

b) Surcharge climatique due au vent (suivant le plan de l'ame).

On calcul les lisses avec la valeur max obtenue lors de l'étude au vent: $V = 801.23 \text{ N/m}^2$.

V = 001.25 IV/m

 $V = 80.12 \times 1.5 = 120.18 \text{ daN/ml}.$

4.2.2 Combinaisons de charge les plus défavorable:

1.35G + 1.5V $Q_{z.sd} = 1.5V = 1.5 \times 120.18 = 180.27 daN/m^2$. $Q_{v.sd} = 1.35G = 1.35 \times 34.4 = 46.44 daN/m^2$.

4.2.3 Détermination des sollicitations

***** Moments :

• Poutre sur deux appuis :

$$M_{y.sd} = \frac{Q_{z.sd} \times l^2}{8} = \frac{180.27 \times 6^2}{8} = 811.22 \ daN.m$$

• Poutre sur trois appuis :

$$M_{z.sd} = \frac{Q_{y.sd} \times (l/2)^2}{8} = \frac{46.44 \times 3^2}{8} = 52.25 \ daN.m$$

4.2.3.1 Vérification de la sécurité des lisses :

* E L U

a) Vérification à la flexion :

Nature de sollicitation: flexion déviée.

- Classe de la section IPE120:
- ✓ Classe de la semelle(comprision):

$$\frac{C}{t_f} = \frac{\frac{b_f}{2}}{t_f} \le 10\varepsilon$$
$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1.$$
$$\frac{\frac{b_f}{2}}{t_f} = \frac{\frac{64}{2}}{6.3} = 5.08 \le 10$$

Semelle de classe 1.

✓ Classe de l'ame(flexion):

$$\frac{d}{t_w} \le 72\varepsilon \rightarrow \frac{93.4}{4.4} = 21.23 < 72$$

Ame de classe 1. La section est de classe 1.

k <u>Remarque:</u>

les profilés laminés de calibres inférieur ou égale à 1' **IPE120**, sont généralement d'un section de **classe1**.

La vérification de la section à la résistance est donnée par la formule suivant:

Section de classe 1 et 2

$$\left(\frac{M_{y.sd}}{M_{ply.rd}}\right)^{\alpha} + \left(\frac{M_{z.sd}}{M_{plz.rd}}\right)^{\beta}$$

Ou α et β sont des constantes qui placent en sécurité. Si elles sont prises égale à l'unité, mais qui peuvent prendre les valeurs suivantes :

Section I et H:

$$\alpha = 2; \quad \beta = 5n \ge 1 \text{ avec: } n = \frac{N_{sd}}{N_{pl}}$$

* Caractéristique géométriques de IPE120:

$$W_{el.y} = 53 \text{ cm}^3; W_{el.z} = 8.64 \text{ cm}^3; W_{pl.y} = 60.7 \text{ cm}^3; W_{pl.z} = 13.6 \text{ cm}^3; I_y = 317.8 \text{ cm}^4; I_z = 27.65 \text{ cm}^4; A_{vz} = 6.3 \text{ cm}^2; A_{vy} = 8.6 \text{ cm}^2; M_{ply.rd} = \frac{W_{pl.y} \cdot f_y}{\gamma_{M0}} = \frac{60.7 \times 2350 \times 10^{-2}}{1.1} = 1296.8 \text{ daN. m}$$
$$M_{plz.rd} = \frac{W_{pl.z} \cdot f_y}{\gamma_{M0}} = \frac{13.6 \times 2350 \times 10^{-2}}{1.1} = 290.54 \text{ daN. m}$$

♦ <u>**Remarque:**</u> Dans notre cas ,l'effort normale($N_{sd}=0$) β =1

$$\left(\frac{M_{y.sd}}{M_{ply.rd}}\right)^{\alpha} + \left(\frac{M_{z.sd}}{M_{plz.rd}}\right)^{\beta} = \left(\frac{620.6}{1296.8}\right)^{2} + \left(\frac{52.25}{290.54}\right)^{1} = 0.41 < 1 \dots C.V$$

b) Vérification ou cisaillement :

La vérification ou cisaillement est donner par les formule suivant:

$$V_{z.sd} \leq V_{plz.Rd}$$
 et $V_{plz.Rd} = \frac{A_{\nu z} \left(\frac{J_{\nu}}{\sqrt{3}}\right)}{\gamma_{M0}}$

Figure 4.2 les schémas de diagramme de la lisse dans les deux plans y-y et z-z.

$$V_{z.sd} = \frac{Q_{z.sd} \cdot l}{2} = \frac{180.27 \times 6}{2} = 540.81 \, daN.$$

$$V_{y.sd} = 0.625. Q_{y.sd} \cdot \frac{l}{2} = 0.625 \times 46.44 \times \frac{6}{2} = 87.075 \, daN$$

$$V_{plz.Rd} = \frac{6.3. \left(\frac{2350}{\sqrt{3}}\right)}{1.1} = 7771 \, daN.$$

$$V_{ply.Rd} = \frac{8, 6. \left(\frac{2350}{\sqrt{3}}\right)}{1.1} = 10607 \, daN.$$

$$V_{z.sd} = 540.81 \, daN \le V_{plz.Rd} = 7771 \, daN.$$

$$C.V$$

$$V_{y.sd} = 87.075 \, daN \le V_{ply.Rd} = 10607 \, daN.$$

c) Vérification ou déversement :

Il n y pas de risque de déversement de la lisse du moment que la semelle comprimée est soutenue latéralement sur toute sa longueur.

Figure 4.3 les schémas de la lisse dans les deux plans y-y et z-z.

* ELS

a) vérification à la flèche:

le calcule de la fléche se fait par les combinaisons de charge et charge service (non pondérées)

G+V

Condition de vérification: $f \leq fadm$

Avec:

$$fadm = \frac{l}{200}$$

• Fléche verticale suivant y-y (sur trois appuis):

$$f = \frac{2.05 \times G \times (l/2)^4}{384 \times E \times Iz} \le f \text{adm} = \frac{l}{200} = \frac{300}{200} = 1.5 cm$$

$$f = \frac{2.05 \times 34.4 \times 10^{-2} \times (600/2)^4}{384 \times 2.1 \times 10^6 \times 27.65} = 0.26cm \le fadm = \frac{l}{200} = \frac{300}{200} = 1.5cm \qquad C.V$$

Plan y-y

• Fléche horizontale suivant z-z (sur deux appuis):

$$f = \frac{5 \times V \times l^4}{384 \times E \times Iy} \le fadm = \frac{l}{200} = \frac{600}{200} = 3cm$$

 $f = \frac{5 \times 120.18 \times 10^{-2} \times 600^4}{384 \times 2.1 \times 10^6 \times 317.8} = 2.95 cm \le fadm = \frac{l}{200} = \frac{600}{200} = 3 cm \qquad C.V$

Plan z-z

4.3 Vérification de lisse de pignon:

La lisse de pignon est soumise à un vent de dépression de: V= 556.6 N/m² V = 55.66 \times 1.5 = 83.49 daN/ml.

4.3.1 Combinaisons de charge les plus défavorable:

G + V

$$Q_{z.sd} = 1.5V = 1.5 \times 83.49 = 125.24 \ daN/ml$$

$$Q_{y.sd} = 1.35G = 1.35 \times 34.4 = 46.44 \, daN/ml$$

4.3.2 Détermination des sollicitations

- ***** Moments :
 - Poutre sur deux appuis :

$$M_{y.sd} = \frac{Q_{z.sd} \times l^2}{8} = \frac{125.24 \times 4^2}{8} = 250.47 \ daN.m$$

• Poutre sur trois appuis :

$$M_{z.sd} = \frac{Q_{y.sd} \times (l/2)^2}{8} = \frac{46.44 \times 2^2}{8} = 23.22 \ daN.m$$

4.3.3 Vérification de la sécurité des lisses :

* E L U

a) Vérification à la flexion biaxiale:

IPE120 est de classe 1

$$\left(\frac{M_{y.sd}}{M_{ply.rd}}\right)^{\alpha} + \left(\frac{M_{z.sd}}{M_{plz.rd}}\right)^{\beta}$$

$$M_{ply.rd} = \frac{W_{pl.y.}f_y}{\gamma_{M0}} = \frac{60.7 \times 2350 \times 10^{-2}}{1.1} = 1296.8 \, daN.m$$

$$M_{plz.rd} = \frac{W_{pl.z.}f_y}{\gamma_{M0}} = \frac{13.6 \times 2350 \times 10^{-2}}{1.1} = 290.54 \ daN.m$$

Figure 4.4 les schémas statiques de la lisse dans les deux plans y-y et z-z.

$$\left(\frac{M_{y.sd}}{M_{ply.rd}}\right)^{\alpha} + \left(\frac{M_{z.sd}}{M_{plz.rd}}\right)^{\beta} = \left(\frac{250.47}{1296.8}\right)^{2} + \left(\frac{23.22}{290.54}\right)^{1} = 0.12 < 1 \dots C.V$$

b) Vérification ou cisaillement :

La vérification ou cisaillement est donner par les formule suivant:

$$V_{z.sd} \le V_{plz.Rd} \quad et \ V_{plz.Rd} = \frac{A_{vz} \cdot \binom{f_y}{\sqrt{3}}}{\gamma_{M0}}$$
$$V_{y.sd} \le V_{ply.Rd} \quad et \ V_{ply.Rd} = \frac{A_{vy} \cdot \binom{f_y}{\sqrt{3}}}{\gamma_{M0}}$$

Figure 4.5 les schémas de diagramme de la lisse dans les deux plans y-y et z-z.

$$V_{z.sd} = \frac{Q_{z.sd} \cdot l}{2} = \frac{125.24 \times 4}{2} = 250.48 \, daN.$$

$$V_{y.sd} = 0.625. Q_{y.sd} \cdot \frac{l}{2} = 0.625 \times 46.44 \times \frac{4}{2} = 58.05 \, daN.$$

$$V_{plz.Rd} = \frac{6.3. \left(\frac{2350}{\sqrt{3}}\right)}{1.1} = 7771 \, daN.$$

$$V_{ply.Rd} = \frac{8, 6. \left(\frac{2350}{\sqrt{3}}\right)}{1.1} = 10607 \, daN.$$

$$V_{z.sd} = 250.48 \, daN \le V_{plz.Rd} = 7771 \, daN.$$

$$V_{y.sd} = 58.05 daN \le V_{ply.Rd} = 10607 daN$$
 C.V

c) Vérification de l'élément ou déversement :

La semlle comprimée sous l'action du vent de dépresion est susceptble de déverser du moment qu'elle est libre sur toute sa longueur.

Figure 4.6 les schémas de la lisse dans les deux plans y-y et z-z.

La formule de vérification ou déversement est donnée comme suit :

$$\frac{M_{y.sd}}{M_{b.rd}} + \frac{M_{z.sd}}{M_{plz.rd}} \le 1$$

Calcul du moment de résistance ou déversement Mb.rd:

$$M_{b.rd} = \chi_{l.t} \times \beta_w \times M_{ply.rd}$$

 $\beta_w = 1$: pour les section de classe 1 et 2.

Calcul du coefficient de réduction pour le déversement $\chi_{L,t}$:

 $\chi_{L,t}$: est donné dans les tableau de χ en fonction de l'élancement appropriée. Profilés laminés : courbe de flombement **a**.

Profilés soudés : courbe de flombement b.

Calcul de l'élancement réduit :

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_w \times w_{\text{ply}} \times f_y}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] (\beta_w)^{0.5}$$

Calcul de l'élancement $\lambda_{L.t}$:

Pour les poutres àsection constantes est doublement symétriques en I et H.

$$A_{L.t} = \frac{\frac{L}{i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{L}{i_z} - \frac{L}{h_{f_f}} \right)^2 \right]^{0.25}}$$

Avec:

L: longueur de flambement latérale.

 C_1 : coefficient qui dépend de la nature du diagramme des moment est des conditions de fixation

$$\lambda_1 = 0.93$$
 E: élancement eulérien . avec: $\varepsilon = \sqrt{\frac{235}{f_y}}$

4

Calcul du coefficient C1 qui dépond de la nature du diagramme des moment d'extrémités.

$$C1 = 1.88 - 1.40\psi + 0.52\psi^2 \le 2.7$$

$$\boldsymbol{\psi} = \frac{\boldsymbol{M}\boldsymbol{a}}{\boldsymbol{M}\boldsymbol{b}} \qquad avec: \boldsymbol{M}_a < \boldsymbol{M}_b$$

Poutre simplement appuyée avec lierne à mi_travée

L= 400cm: longueur libre entre appuis latéraux.

$$\psi = \frac{Ma}{Mb} = 0 \quad \rightarrow C1 = 1.88.$$

$$\lambda_{L.t} = \frac{\frac{150}{1.45}}{1.88^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{\frac{150}{1.45}}{\frac{12}{0.63}}\right)^2\right]^{0.25}} = 60.15$$

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_w \times w_{\text{ply}} \times f_y}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] (\beta_w)^{0.5} = \frac{60.15}{93.9} = 0.64$$

 $\chi_{L,t}$: tableau de χ en fonction de l'élancement réduit

En utilisant la courbe de flambement **a** pour les profilés laminés dans le calcul de $\chi_{L,t}$

Pour $\lambda_{l,t}=0.64$ on lit dans le tableau la valeur de $\chi_{L,t}$; suivant: $\chi_{L,t}=0.873$

$$M_{b.rd} = \chi_{l.t} \times \beta_w \times M_{ply.rd} = 0.873 \times 1 \times 1296.8 = 1132.21 \ daN.m$$
$$\frac{M_{y.sd}}{M_{b.rd}} + \frac{M_{z.sd}}{M_{plz.rd}} \le 1 = \frac{250.47}{1132.21} + \frac{23.22}{290.6} = 0.30 \le 1 \qquad C.V$$

* ELS

- a) vérification à la flèche:
- Fléche verticale suivant y-y (sur trois appuis):

$$f = \frac{2.05 \times G \times (l/2)^4}{384 \times E \times Iz} \le fadm = \frac{l}{200} = \frac{200}{200} = 1cm$$

$$f = \frac{2.05 \times 34.4 \times 10^{-2} \times (400/2)^4}{384 \times 2.1 \times 10^6 \times 27.65} = 0.0506 cm \le fadm = \frac{l}{200} = \frac{200}{200} = 1 cm \qquad C.V$$

Plan y-y

• Fléche horizontale suivant z-z (sur deux appuis):

$$f = \frac{5 \times V \times l^4}{384 \times E \times Iy} \le fadm = \frac{l}{200} = \frac{400}{200} = 2cm$$

$$f = \frac{5 \times 83.49 \times 10^{-2} \times 400^4}{384 \times 2.1 \times 10^6 \times 317.8} = 0.42 cm \le f \text{adm} = \frac{l}{200} = \frac{400}{200} = 2 cm \qquad C.V$$

Plan z-z

Donc on choisit pour toutes les lisse de bardage un IPE120.

4.4 Calcul des liernes de long pan:

Figure 4.7 les schémas statiques

4.4.1 calcul de l'effort de traction dans le lierne le plus sollicité:

La réaction **R** ou niveau du lierne:

$$R = 1.25 \times Q_{sd.y} \times \frac{l}{2} = 1.25 \times 46.44 \times 3 = 174.15 \ daN.$$

Effort de traction dans le trançon de lierne L1 provenant de la lisse inférieure

$$T1 = R/2 = 174.15/2 = 87.075 \text{ daN}.$$

Effort dans le tronçon L₂ : $T_2 = R + T_1 = 174.15 + 87.075 = 261.225 daN$ Effort dans les diagonales L₃ : $2 \times T_3 \times sin\theta = T_2$

$$\theta = arctg \frac{1.5}{3} = 26.56^{\circ}$$

Figure 4.8 représentation des efforts

4.4.2 Dimensionnement des liernes:

Le trançon le plus sollicité est L3

 \rightarrow Elément tendu:

$$N_{sd} \leq N_{pl.rd}$$

 $N_{pl.rd} = \frac{A.f_y}{\gamma_{M0}}; \qquad \text{Résistance plastique de la section brute}$ $N_{sd} = T3 \le \frac{A.f_y}{\gamma_{M0}}$ $A \le \frac{T3.\gamma_{M0}}{f_y} = \frac{292.11 \times 1.1}{2350} = 0.137 \ cm^2$ $A = \pi \times \frac{\varphi^2}{4} \ge 0.137 \ cm^2$ $\varphi \ge \sqrt{\frac{4 \times 0.137}{3.14}} = 0.42 \ cm$

Soit une barre ronde de diamétre : $\Phi = 0.42$ cm= 4.2. mm.

Pour des raison pratiques et pour plus de sécurité on opte pour une barre ronde de diamètre $\Phi = 10 \text{ mm}$

• On va choisir un $\emptyset 10$ pour les liernes des lisses de bardage.

4.5Calcul des potelets :

4.5.1 Introduction :

Les potelets sont le plus souvent des profiles en I ou H destinés à rigidifier la clôture(bardage) et résister aux efforts horizontaux du vent. Leurs caractéristiques varient en fonction de la nature du bardage (en maçonnerie ou en tôle ondulée) et de la hauteur de la construction. Ils sont considérés comme articulés dans les deux extrémités.

Façade PIGNON - Portique

Figure 4.9 : Schéma statique du potelet.

4.5.2 Détermination des sollicitation

Le Potelet, travaille à la flexion sous l'action de l'effort du vent provenant du bardage et des lisses, et à la compression sous l'effet de son poids propre, du poids du bardage et des lisses qui lui est associé, et de ce fait fonctionne à la flexion composée.

4.5.3 Calcul des charges et surcharge revenants au potelet le plus chargé (Potelet du milieu) :

4.5.3.1 charges permanentes G :(verticale concentrée)

Poids propre de bardage (TN40)	.10 kg/m ²
Poids propre d'accessoires d'attache	5 kg/m ²
Poids propre de la lisse on suppose un (IPE120).	10.4 kg/m ²

La longueur de la lisse et de : L = 4,00m, et le nombre des lisses supporter par le potelet N = 4 lisses.

La surface tributaire revenant au potelet le plus chargé : $S = 8 \times 4 = 32 m^2$ L'entraxe des potelets **4 m** (cas le plus défavorable).

$$G = \left[\left(P_{bardage} + P_{accessoire} \right) \times s \right] + P_{lisse} \times 4 \times 4$$

 $G = [(10+5) \times 32] + 10.4 \times 4 \times 4 = 646.4 \, daN$

4.5.3.2 Surcharge climatique V (vent) :

La direction la plus défavorable du vent est celle sur pignon

 $V = 55.66 \times 4 = 222.64 \text{ daN/ml}.$

4.5.4 Dimensionnement du potelet :

Sous la condition de flèche :

La vérification de la fléche se fait sous le vent normale (non pondéré) V=2.506 KN/ml

$$f = \frac{5 \times V \times l^4}{384 \times E \times I} \le f \operatorname{adm} = \frac{l}{200} = \frac{800}{200} = 4cm.$$

$$\mathbf{Iy} \ge \frac{5 \times V \times l^3 \times 200}{384 \times E} = \frac{5 \times 222.64 \times 10^{-2} \times 800^3 \times 200}{384 \times 2.1 \times 10^6} = \mathbf{1413.59} cm^4$$

Ce que nous donne $Iy \ge 1413.59cm^4$.

Donc: on opte pour un IPE200

✤ Caractéristiques du profilé IPE200

Profilé	h (mm)	b (mm)	d (mm)	tw (mm)	tf (mm)	r (mm)	A (cm ²)
IPE200	200	100	159	5.6	8.5	12	28.5
	Iy	Wely	Wply	Iz	Welz	Wplz	It
	(<i>cm</i> ⁴)	(cm^3)	(<i>cm</i> ³)	(<i>cm</i> ⁴)	(cm^3)	(<i>cm</i> ³)	(cm^4)
	1943.2	194.3	220.6	142.31	28.46	44.6	6.98

$$\boldsymbol{G} = \left[\left(P_{bardage} + P_{accessoire} \right) \times s \right] + P_{potelet} \times 4 \times 4$$

$$G = [(10+5) \times 32] + 22.4 \times 4 \times 4 = 838.4 \, daN = 8.384 \, KN$$

4.5.5 Vérification de la section à la résistance :

4.5.5.1 sous la flexion :

 $M_{y.sd} \leq M_{c.Rd}$

Ou M_{c.rd} est le moment résistant qui dépend de la classe de la section.

$$M_{c,rd} = M_{ply,rd} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{220.6 \times 23.5}{1.1} = 47.13KN.m$$

$$Q_{z,sd} = 1.5V = 1.5 \times 2.226 = 3.34 KN/m^2$$

$$M_{y,sd} = \frac{Q_{z,sd} \times l^2}{8} = \frac{3.34 \times 8^2}{8} = 26.72 KN.m$$

$$M_{y,sd} = 26.72KN.m \le M_{c,Rd} = 47.13.m$$

$$C.V$$

4.5.5.2 Sous l'effort normal :

Si: $N_{sd} \leq min\left(0.25N_{pl.rd}; 0.5A_w \times \frac{f_y}{\gamma_{M0}}\right)$.

il n'y a pas d'interaction entre le moment résistant et l'effort normal.

$$N_{sd} = 1.35G = 1.35 \times 8.384 = 11.32 \text{ KN}.$$

$$N_{pl.rd} = \frac{A.f_y}{\gamma_{M0}} = \frac{28.5 \times 23.5}{1.1} = 608.86\text{KN}.$$

$$0.25N_{pl.rd} = 0.25 \times 608.86 = 152.22\text{KN}.$$

$$A_w = A - (2 \times b \times t_f) = 28.5 - (2 \times 10 \times 0.85) = 11.5\text{cm}^2$$

$$0.5A_{w} \times {}^{f_{y}}/\gamma_{M0} = 0.5 \times 11.5 \times {}^{23.5}/_{1.1} = 122.84 \text{ KN}.$$

$$N_{sd} = 11.32\text{KN} \le \min(152.22; 122.84) = 122.84\text{KN}.$$

Donc: pas d'interaction entre le moment résistant et l'effort normal.

- Classe de la section IPE200:
- ✓ Classe de la semelle(comprision):

$$\frac{C}{t_f} = \frac{\frac{b_f}{2}}{t_f} \le 10\varepsilon$$
$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1.$$

$$\frac{\frac{b_f}{2}}{t_f} = \frac{\frac{100}{2}}{8.5} = 5.88 \le 10$$

semelle de classe 1.

✓ Classe de l'ame(flexion):

$$\frac{d}{t_w} \le 33\varepsilon \rightarrow \frac{159}{5.6} = 28.39 < 33$$

Ame de classe 1.

La section est de classe 1.

4.5.6 Vérification de l'élément aux instabilités :

Le potelet est sollicité à la flexion (due au vent) et à la compression (due à son poids propre, Aux poids des bacs de bardage et des lisses) .En aucun cas, il ne supporte la toiture (il est assujetti au portique par appui glissant).il travaille la flexion composée.

La vérification aux instabilités est donnée par la formule suivante :

4.5.6.1 Flexion composée avec risque de déversement :

$$\frac{N_{sd}}{\chi_z \times N_{pl,rd}} + \frac{K_{lt} \times M_{y,sd}}{\chi_{lt} \times M_{pl,rd}} \le 1.$$

Calcul du coefficient de réduction minimal pour le flambement χ_{min}

$$\chi_{min} = min(\chi_y; \chi_z).$$

Flambement par rapport a' l'axe fort y-y (dans le plan du portique) :

 α : facteur d'imperfection correspondant à la courbe de flambement appropriée, donne par le tableau 5.5.1 de l'Eurocode 3.

$$\lambda_y = \frac{l_y}{l_y} = \frac{800}{8.26} = 96.85.$$

$$\overline{\lambda}_{y} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] (\beta_{w})^{0.5} = \frac{96.85}{93.9} \times \sqrt{1} = \mathbf{1.03} > 0.2$$

Courbe de flambement : (voire tableau5.5.3 EC3)

$$h/b = 200/100 = 2 > 1.2$$

Axe de flambement y-y \rightarrow courbe de flambement a ; α = 0.21 (tableau 2).

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^{2} \right] = 0.5 \times [1 + 0.21(1.03 - 0.2) + 1.03^{2}] = 1.12$$

$$\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}^2 - \overline{\lambda}_{LT}^2}} = \mathbf{0.64}$$

Flambement par rapport à l'axe faible z-z (hors du plan de portique):

$$\lambda_y = \frac{l_z}{i_z} = \frac{150}{2.24} = 66.96.$$

avec lz:entre axe de lisse

$$\overline{\lambda}_{y} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] \left(\beta_{w}\right)^{0.5} = \frac{66.96}{93.9} \times \sqrt{1} = \mathbf{0}.\,\mathbf{71} > 0.2$$

Courbe de flambement : (voire tableau 5.5.3 EC3)

Axe de flambement z-z \rightarrow courbe de flambement a ; α = 0.34 (tableau 2).

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^{2} \right] = 0.5 \times [1 + 0.34(0.71 - 0.2) + 0.71^{2}] = 0.84$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^{2} - \overline{\lambda}_{LT}^{2}}} = 0.78$$
$$\chi_{min} = min(\chi_{y}; \chi_{z}) = min(0.64; 0.78) = 0.64$$

Calcul de l'élancement réduit vis-à-vis de déversement $\overline{\lambda}_{LT}$ $\lambda_{L.t} = \frac{\frac{Lz}{i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{Lz}{h}_{t_f} \right)^2 \right]^{0.25}} = \frac{\frac{150}{2.24}}{0.132^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{150}{20}_{0.85} \right)^2 \right]^{0.25}} = 169.29$ $\overline{\lambda}_{LT} = \left(\frac{\lambda_{lt}}{\lambda_1} \right) \cdot (\beta_A)^{0.5} = \left(\frac{169.29}{93.9} \right) \cdot (1)^{0.5} = \mathbf{1.8}$ $\lambda_{\text{It}} = .1.8 > 0.4 \qquad \text{il y-un risque de déversement.} \\ \overline{\phi}_{\text{LT}} = 0.5 \left[1 + \alpha_{\text{LT}} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2 \right] = 0.5 \times [1 + 0.21(1.8 - 0.2) + 1.8^2] = 2.29 \\ \chi_{\text{LT}} = \frac{1}{\phi_{\text{LT}} + \sqrt{\phi_{\text{LT}}^2 - \overline{\lambda}_{LT}^2}} = 0.27$

 $\chi_{Lt} = 0.27 < 1$ Calcul de coefficient k :

$$\boldsymbol{\mu}_{y} = \overline{\lambda}_{y} (2.\beta_{MY} - 4) + \frac{w_{ply} - w_{ely}}{w_{ely}} = 1.03(2 \times 1.3 - 4) + \frac{220.6 - 194.3}{194.3} = -1.31$$

Avec : $\mu_y = -1.31 < 0.9$

$$K_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y} = 1 - \frac{-1.31 \times 11.32}{0.64 \times 28.5 \times 23.5} = 1.034$$

Avec : $K_y = 1.034 < 1.5$

$$\boldsymbol{\mu_{Lt}} = 0.15 \times \lambda_z \times \beta_{MLt} - 0.15 = 0.15 \times 0.71 \times 1.3 - 0.15 = -0.012 \le 0.9$$

$$K_{Lt} = 1 - \frac{\mu_{Lt} \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 1 - \frac{-0.012 \times 11.32}{0.78 \times 28.5 \times 23.5} = 1$$
$$M_{y.sd} = \frac{1.5 \times V \times l^2}{8} = \frac{3.34 \times 8^2}{8} = 26.72 \text{ KN. } m$$
$$N_{pl.rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{28.5 \times 23.5}{1.1} = 608.86 \text{ KN}$$
$$M_{pl.rd} = \frac{W_{pl.y} \times f_y}{\gamma_{M0}} = \frac{220.6 \times 23.5}{1.1} = 47.12 \text{ KN. } m$$

4.5.6.2 Vérification au déversement :

$$\frac{N_{sd}}{\chi_z \times N_{pl.rd}} + \frac{K_{lt} \times M_{y.sd}}{\chi_{lt} \times M_{pl.rd}} \le \mathbf{1} \to \frac{11.32}{0.78 \times 608.86} + \frac{1 \times 26.72}{0.27 \times 47.12} = \mathbf{0}.92 < 1 \quad C.V.$$

L'IPE200 convient comme potelet.

4.6 Calcul de la poutre sablière

La poutre sablière est considérée comme une barre de contreventement verticale, donc elle est soumise à un effort horizontal et son poids propre, d'où la vérification se fera en flexion composée.

Figure 4.10. Schémas statique de la poutre sablière

La poutre sablière de portique longitudinal intermédiaire reçoit deux réactions de la poutre au vent de pignon calculées précédemment qui sont considérer comme un effort de compression.

avec : $N_{Sd} = R_B = 4261.65 \text{ daN}.$

4.6.1 Prédimensionnement

Le pré dimensionnement se fait en compression simple :

$$N_{sd} \le N_{pl.rd} = \frac{A.f_y}{\gamma_{M0}} \to A \ge \frac{N_{sd}.\gamma_{M0}}{f_y} = \frac{4261.65 \times 10^{-2} \times 1}{23.5} = 1.82 \ cm^2 \ .$$

On opte sur un **HEA120**

Figure 4.11 Schémas de la poutre sablière

Avec: section de classe 1:
$$\begin{cases} \beta_A = 1\\ \varepsilon = 1\\ \lambda_1 = 93.9 \end{cases}$$
 acier (S235)

4.6.2 conditions de la résistance :
4.6.2 .1 Vérification de la poutre sablière au flambement :

Si en doit tenir compte le risque de flambement, et la vérification à faire est comme suit :

$$N_{t.sd} \le \chi_{l.t} \times \beta_A \times A \times \frac{f_y}{\gamma_{M1}}$$

Avec:
$$C1 = 0.132$$
$$\beta_w = 1: \text{ pour les section de classe 1 et 2.}$$
$$\lambda_1 = 93.9$$
$$\overline{\lambda}_{max} = max(\overline{\lambda}_{-}; \overline{\lambda}_{-})$$

 $\overline{\lambda}_{max} = max(\overline{\lambda}_y; \overline{\lambda}_z)$ - Calcul de $\overline{\lambda}_y$; $\overline{\lambda}_z$:

$$\lambda_{y} = \frac{l_{y}}{l_{y}} = \frac{600}{4.89} = 122.7 \rightarrow \overline{\lambda}_{y} = \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \cdot (\beta_{A})^{0.5} = \left(\frac{122.7}{93.9}\right) \cdot (1)^{0.5} = 1.31.$$

$$\lambda_z = \frac{l_w}{l_w} = \frac{600}{3.02} = 198.67 \rightarrow \overline{\lambda}_z = \left(\frac{\lambda_z}{\lambda_1}\right) \cdot (\beta_A)^{0.5} = \left(\frac{198.67}{93.9}\right) \cdot (1)^{0.5} = 2.12.$$

 $\overline{\lambda}_z = 2.12 > 0.2$ donc: il y a le risque de flambement -Calcul de x_{LT} :

 x_{LT} : cofficient de réduction en fonction de $\overline{\lambda}_{lt}$. $\overline{\lambda}_{lt}$: est l'élancement réduit vis-à-vis déversement.

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta_w \times w_{\text{ply}} \times f_y}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] (\beta_w)^{0.5}$$

$$A_{L.t} = \frac{l_{i_z}}{(C_1)^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{l_{i_z}}{h_{t_f}}\right)^2\right]^{0.25}} = \frac{600/3.02}{(1.132)^{0.5} \left[1 + \frac{1}{20} \cdot \left(\frac{600/3.02}{11.4/0.8}\right)^2\right]^{0.25}} = 103$$

$$\overline{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] (\beta_w)^{0.5} = \left[\frac{103}{93.9}\right] (1)^{0.5} = 1.1 \ge 0.4 \quad \text{II ya un risque de déversement.}$$

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2\right] = 0.5 [1 + 0.21(1.1 - 0.2) + 1.1^2] = 1.2$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} = \frac{1}{1.2 + \sqrt{1.2^2 - 1.1^2}} = 0.6 < 1$$

$$N_{t.sd} = 4261.65 \, daN \le 0.6 \times 1 \times 25.3 \times \frac{2350}{1.1} = 32430 \, daN. \quad C.V$$

4.6.2.2 Vérification de la flexion composée :

La vérification à faire est comme suit:

$$\frac{N_{sd}}{A.f_y/\gamma_{M0}} + \frac{M_{y.sd}}{M_{pl.y}} \le 1$$

Avec:

 $N_{sd} = 4261, 65 \text{ daN}$

$$M_{pl.rd} = \frac{W_{pl.y} \times f_y}{\gamma_{M0}} = \frac{119.5 \times 23.5}{1.1} = 2553 \ daN.m$$

$$M_{y.sd} = \frac{(1,35G_{HEA120}) \times l^2}{8} = \frac{1,35 \times 19,9 \times 6^2}{8} = 120,89 \, daN. \, m$$

$$\frac{4261.65}{25.3 \times 10^2 \times 2350 \times 10^5/1.1} + \frac{120.89}{2553} = 0.048 \le 1 \qquad C.V$$

<u>L'HEA 120</u> convient comme poutre sablière

5.1 Introduction

Afin d'éviter tout risque de ruine qui pourra surgir lors d'un éventuel séisme nous Avons jugés une étude sismique primordiale.

De cette faite nous allons consacrer ce chapitre au calcul de l'effort sismique maximal qui Menacera notre structure lors d'un séisme. Dans ce contexte nous allons calculer les efforts Tranchants dus au séisme.

Les efforts tranchants trouvés seront combinés avec les surcharges d'exploitation et les Charges permanentes. Nous utiliserons les résultats pour le dimensionnement de l'ossature Principale de notre structure.

5.2 Différents méthodes

Le RPA 99 propose trois méthodes de calcul

1 – méthode statique équivalente

- 2 méthode d'analyse modèle spectrale
- 3 méthode d'analyse dynamique par accélérogramme.

5.3 Choix de la méthode dans notre cas

Les deux dernières méthodes sont utilisées dans tous les cas, mais la première méthode, Nommé méthode statique équivalente, pour qu'elle soit appliqué, il faut que la structure vérifie un certain nombre de conditions

5.3.1 Condition d'applications

(Voir article n°4.2 Page 33 de RPA 99 / version 2003).

Notre bâtiment satisfait aux conditions de régularité en plan et en élévation, il est situé dans la zone sismique **II a** : (BORDJ BOU ARRERIDJ). Et il a une hauteur de **10 m** inférieur **30m**. Dans notre étude on opte pour la méthode statique équivalente.

5.3.2 Principe de la méthode statique équivalente

Le principe de la méthode est de remplacer les efforts (Effort tranchant) dus à l'action Sismique par des forces statiques fictives équivalentes.

5.3.3 Calcul de l'effort tranchant V à la base

L'effort sismique totale applique à la base de la structure est donné par la formule suivant : (voir RPA 4.2.3 Page 34)

$$V = \frac{A.\,D.\,Q}{R} W$$

Avec :

V: effort tranchant totale agissant à la base de la structure dans les deux directions Horizontale est orthogonale (longitudinale Vx, transversale Vy).

A: Coefficient d'accélération des zones (tableau 4.1).

D : facteur d'amplification dynamique moyen.

Q: facteur de qualité (tableau 4.4).

W : poids actif de la structure.

R : coefficient de comportement global de la structure.

a) Détermination du coefficient d'accélération de zone A

(Voir RPA 99 / version 2003 tab 4.1 Page 35).

Le hangar (bâtiment industriels) est classé dans le **groupe 3**(Page22) et il est situé en zone Sismique **IIa**.

A=0.10

b) Calcul du facteur d'amplification dynamique D

Le facteur d'amplification dynamique moyen est donné par la formule suivante : (Voir RPA 99 / version 2003 formule 4.2 Page 35).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 0.3 S \\ 2.5\eta \left(\frac{T_2}{3}\right)^{\frac{3}{2}} \left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 0.3 S \end{cases}$$

T2 : période caractéristique associé à la catégorie du site. (Voir RPA 99 /version 2003 tab 4.7 Page 45).

Site : S3 : site meuble (voir RPA 99 /version 2003 tab 3.2 Page 23).

D'où :

T1 = 0.15s

T2 = 0.50

ξ: Pourcentage d'amortissement de la structure (Voir RPA 99 / V 2003 tab 4.2 Page 35). *η*: Facteur de correction d'amortissement (quand l'amortissement est. différent de 5%).

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7 \to \xi = 4\% \implies \eta = \sqrt{\frac{7}{2+4}} = 1.08.$$

Estimation de la période fondamentale de la structure

La période fondamentale de la structure est donnée par la formule empirique Suivante :

• Dans le sens transversal :

Le système de contreventement dans le sens transversal et de type portique auto stable en acier avec remplissage en maçonnerie Ct = 0.05

On a:
$$T = min \begin{cases} C_t (h_n)^{\frac{3}{4}} \\ 0.09 \frac{h_N}{\sqrt{D}} \end{cases}$$
 (voir RPA99/v2003 p 42)

 h_N : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau Dans notre cas $h_N = 10 \text{ m}$

CT : Coefficient fonction du système de contreventement et de type de remplissage (tab 4.6Page 42).

D = 20m: est la dimension du hangar mesurée à sa base dans la direction de calcule Considérée.

Donc :

$$T = min \left\{ \begin{array}{l} 0.05 \times (10)^{3/4} = 0.28 \, s \\ 0.09 \frac{10}{\sqrt{20}} = 0.20 \, s \end{array} \right\}$$

Tx =0.20s

• Dans le sens longitudinal :

Le système de contreventement dans le sens longitudinal de type portique auto stable en acier avec le remplissage en maçonnerie. Ct=0.05

Avec :

$$T = min \begin{cases} C_t (h_n)^{\frac{3}{4}} \\ 0.09 \frac{h_N}{\sqrt{D}} \end{cases} \quad (\text{voir RPA99/v2003 p 42})$$

D = 30 m: est la dimension du bâtiment mesurée à sa base dans la direction de calcule Considérée.

Donc :

$$T = min \left\{ \begin{array}{l} 0.05 \times (10)^{3/4} = 0.28 \, s \\ 0.09 \frac{10}{\sqrt{30}} = 0.16 \, s \end{array} \right\}$$

Ty =0.16s

On est dans le cas ou $0 \le T \le T2$ et d'après la formule (4.2) de **RPA/V2003** on aura :

$$D = 2.5\eta = 2.5 \times 1.08 = 2.7$$
.

c) Détermination du facteur de qualité Q :

Le facteur de qualité de la structure est fonction de:

- La redondance et de la géométrie des structures qui la constituent.

- La régularité en plan et en élévation.
- La qualité du contrôle de la structure.

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_q$ (*RPA*, 4.4)

 P_q : La pénalité à retenue selon que le critère de qualité q''est satisfait ou non'', sa valeur est donné au tableau (4.4)

Tableau 5.1 : Facteur de qualité

Critère	Pq
1-conditions minimales sur les files de contreventements.	0.05
2-redondance en plan.	0
3-regularité en plan.	0
4-régularité en élévation.	0
5-control de la qualité des matériaux.	0.05
6-contrôle de la qualité de l'exécution.	1

Q = 1 + 0.1 = 1.1

d) Détermination de R

On prend la valeur de R Voir tableau 4.3 page 38

On a :

Catégorie : B acier

Sens transversale : portique auto stable ordinaire : $\mathbf{R}\mathbf{x} = \mathbf{4}$

Sens longitudinal : $\mathbf{R}\mathbf{y} = \mathbf{3}$: ossature contreventée par des palées triangulées en V.

e) Calcul du poids actif de la structure soumis au séisme W

Le poids actif de la structure soumis au séisme est donné par la formule 4.5 :

$$W = \sum_{0}^{1} W_{i} \qquad avec \qquad W_{i} = W_{Gi} + \beta W_{Qi}$$

WGi : poids due aux charges permanentes.

WQi: poids due aux charges d'exploitations.

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation (donnée par le tableau 4-5 RPA).

 $=>\beta = 0.5$; (Cas 4 : entrepôts, hangars)

Poids de la structure

 Tableau 5.2 : poids total du la structure

Profilé	Туре	Poids unitaire en (daN/m)	Poids total (daN)
Poteaux	IPE330	49,1	2651.4
Potelets	IPE200	26.2	838.4
Poutres sablières	HEA120	19,9	1194
Palée de stabilité verticale en V	UAP80	8,38	181.53
Diagonales de contreventement horizontales	Cornières L60X60X6	5.42	455.75
Membrures Supérieur	Cornières 2L70X70X7	14.76	296.68
Membrures Inférieur	Cornières 2L70X70X7	14.76	295.2
Montants	Cornières L70X70X7	7.38	103.32
Diagonales	Cornières L70X70X7	7.38	306.90
Lisses de long-pan	IPE120	10.4	130.4
Lisses de Pignon	IPE120	10.4	832
Pannes	IPE 140	12,9	4644
Bardage	TN40+Accessoires 11daN/m2 + 4daN/m2	15	11850
Couverture	TN40+Accessoires 4+11daN/m2	15	9015

Poids du aux charges permanentes :

 $W_{Gi} = 32794.58 \text{ daN}$

 $W_{Qi} = [(Pneige + Pvent) \times Stoiture]$

 $W_{Qi} = [(37,7 + 30.962) \times 601] = 41265.862 \text{ daN}$

Cumul des poids :

 $\mathbf{W} = \boldsymbol{W}_{Gi} + \mathbf{0.5} \, \boldsymbol{W}_{Qi}$

 $W = 32794.58 + (0.5 \times 41265.862) = 53427.51 \text{ daN}.$

Sens longitudinale :

$$V_y = \frac{A \times D \times Q}{R_y} \times W = \frac{0.1 \times 2.7 \times 1.1}{3} \times 53427.5 = 5289.32 \text{ daN}.$$

Sens transversal :

$$V_x = \frac{A \times D \times Q}{R_x} \times W = \frac{0.1 \times 2.7 \times 1.1}{4} \times 53427.51 = 3967 \text{ daN}.$$

5.3.4 Distribution de la résultante des forces sismiques selon la hauteur :

La résultante des forces sismiques à la base V doit être distribuée sur la hauteur de la structure. selon les formules suivantes:

$$\mathbf{V} = \mathbf{F}_{t} + \sum_{1}^{2} \mathbf{F}_{i}$$

F_t : Force concentrée ou somet de la structure.

 $F_t = 0$: Puisque la période fondmentale de notre structure et inférieur 0.7s *Tx et Ty* < 0.7*s* donc: Ft = 0

$$F_{i} = \frac{(V - F_{t}) W_{i} h_{i}}{\sum_{j=1}^{n} W_{j} h_{j}} \quad (\text{RPA formule 4.11})$$

 \mathbf{h}_i : niveau ou s'exerce la force

Niveau	$W_{i}(t)$	h _i (m)	Wi.hi	$V_{y}(t)$	$\mathbf{V}_{\mathbf{x}}\left(\mathbf{t}\right)$
1	53.42751	9	480.85	5.28932	3.967

5.3.4.1- Sens longitudinal :

$$F_Y = \frac{V_{x.} (W_{i.} h_{i})}{W_{i.} h_{i}} = \frac{3.967 \times (480.85)}{480.85} = 3.97 t.$$

5.3.4.2- Sens transversal :

$$F_{\rm X} = \frac{V_{\rm y}.~(W_{\rm i}.\,h_{\rm i})}{W_{\rm i}.\,h_{\rm i}} = \frac{5.28932 \times (480.85)}{480.85} = 5.28 \, {\rm t} \, .$$

6.1 Etude et dimensionnement de système de contreventement

6.1.1 Introduction

Les contreventements sont des éléments qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales telles que le vent, le freinage des ponts roulants, l'action sismique...etc. Ils sont destinés pour garantir le bon cheminement des efforts horizontaux vers les fondations. Ils sont disposés en toiture dans le plan des versants : poutre au vent "contreventement horizontal" et en façades :

Palée de stabilité "contreventement vertical", et doivent reprendre les efforts horizontaux appliqués tant sur le pignon que sur les long-pans.

6.1.2 Etude de contreventement horizontal

La poutre au vent sera calculée comme une poutre en treillis sur deux appuis chargés par des forces F_1 , F_2 , F_3 , qui sont des efforts dues aux réactions horizontales des potelets.

Figure 6.1 La vue en plan de la poutre au vent

6.1.2.1 Evaluation des efforts horizontaux

On à :

$$F_{i} = 1.5 \left[(W \times S_{i}) + \frac{F_{fr}}{n} \right]$$

Avec :

W : Charge de vent sur le pignon pour (surpression dans la zone D) avec :

$W = 55.66 \text{ daN/m}^2$

 \mathbf{F}_{fr} : Force de frottement pour la direction de vent V2 avec : $F_{fr} = 0$ KN

n : Nombre de nœud dans la poutre au vent avec : N=6 nœud.

S_i: Surface d'application des efforts horizontaux

$$S_{1} = \left[\frac{9}{2} \times 2\right] + \left[(9.2 - 9) \times 2 \times \frac{1}{2}\right] = 9.2 \ m^{2}.$$

$$S_{2} = \left[\left(9.2 - \frac{9.4}{2}\right) \times 4\right] + \left[(9.6 - 9.2) \times 4 \times \frac{1}{2}\right] = 18.8 \ m^{2}.$$

$$S_{3} = \left[\left(9.6 - \frac{9.8}{2}\right) \times 4\right] + \left[(10 - 9.6) \times 4 \times \frac{1}{2}\right] = 19.6 \ m^{2}.$$

Les forces F2, F3, sont des réactions intermédiaires donc il faut les multiplier par 1.25

Figure 6.2 Les surface d'application des efforts horizontaux

Les résultats de Fi sont résumés dans le tableau ci-dessous

Tableau 6.1. Les valeurs des forces horizontales

	1	2	3
$W(daN/m^2)$	55.66	55.66	55.66
Si (m ²)	9.2	18.8	19.6
Fi(daN)	767	1960	2043

Les réactions d'appuis :

$$R = R_A = R_B = \sum \frac{F1}{2} + F2 + F3 = \frac{767}{2} + 1960 + 2043 = 4386 \text{ daN}$$

6.1.2.2 Dimensionnement de la diagonale

Dans ce genre de système, seules les diagonales tendues sont prises en compte dans le calcul. Il suffit d'étudier la diagonale la plus sollicitée en traction, celle proche à l'appui. Le calcul des diagonales comprimées est négligé, d'où on aura à étudier le schéma statique représenté dans la figure suivante.

Figure 6.3Schéma statique d'une partie de la poutre au vent Par la méthode d'isolation des nœuds on aura :

 $\begin{cases} / x: F_{13} = 0 \\ / y: F_{12} + R_A = 0 \Longrightarrow F_{12} = -4386 \ daN \end{cases}$

Nœud 1 :

Nœud 2: $\begin{cases} / x: F_{24} = -F_{23}\cos\beta = 3180.85 daN \\ / y: F_{23} = \frac{-F_{21} - F_1 / 2}{\sin\beta} = -5732.88 daN \end{cases}$

Nœud3:
$$\begin{cases} /x: F_{35} = F_{32} \cos \beta = -3180.85 daN \\ /y: F_{34} = -F_{32} \sin \beta = 4749.5 daN \end{cases}$$

Nœud 4:
$$\begin{cases} /x: F_{46} = -F_{45} \cos \beta + F_{24} = 1090.76 daN \\ /y: F_{45} = \frac{-F_2 + F_{43}}{\sin \beta} = 3376.98 daN \end{cases}$$

 F_2

Le diagonale le plus sollicite est F_{23} , avec : $N_{t.sd} = 5732.88 daN$

6.1.2.3 Calcul de la section brute :

La section brute doit vérifier la résistance suivante :

$$N_{sd} \le N_{plrd} = \frac{(A \times fy)}{\gamma_{m0}} \to A \ge \left(\frac{N_{t,sd} \times \gamma_{M0}}{f_y}\right) = \left(\frac{5732.88 \times 1}{2350}\right) = 2.44cm^2.$$

On opte un cornière : L×60 ×60 ×6

$$A = 6.91 \ cm^2 \ge 2.44 \ cm^2.$$

6.1.2.4 Vérification les diagonales à la traction :

On vérifie : $N_{t,sd} \le N_{Rd}$ $N_{Rd} = \min(N_{pl}; N_u; N_{net}) = N_{pl}$ par ce que les cornières sans assembler avec soudure

$$N_{pl} = \frac{A \cdot f_y}{\gamma_{M0}} \to N_{pl} = \frac{23.5 \times 691}{1} = 16238.5 \ daN.$$

 $N_{t,sd} = 5732.88 \ daN \le N_{Rd} = N_{pl} = 16238.5 \ daN$ la traction est vérifiée pour les diagonal

Donc: la cornière L $60 \times 60 \times 6$ conviens comme diagonale pour poutre au vent.

6.1.3 Contreventement vertical du long-pan :

Les palées de stabilités sont destinées à assurer la stabilité des parois ou files d'ossature, vis àvis des efforts horizontaux qui peuvent les solliciter :

- ✓ Vent.
- ✓ Freinage des ponts roulants.
- ✓ Effets des séismes.
- ✓ Flambement et déversement.

Le dimensionnement s'effectue en négligent les diagonales comprimées on admet qu'elles flambent. Dans ce cas tous les efforts sont reprise par les diagonales en traction.

6.1.3.1 Dimensionnement de la palée de stabilité :

Figure 6.4 : schéma statique de la palée de stabilité en long pan 6.1.3.2 Calcul de l'effort de traction dans la diagonale Nt :

On a : $R_B = 4386 \text{ daN}$

Calcul des angles des diagonales

$$\alpha = arctg(5/3) = 59.03^{\circ}$$

 $\beta = arctg(4/3) = 53.13^{\circ}$

Calcul les langueurs des diagonales

$$D_1 = \sqrt{(5)^2 + (3)^2} = 5.83 m$$
$$D_2 = \sqrt{(4)^2 + (3)^2} = 5 m$$

6.1.3.3 Vérification des diagonales D1 et D2 à la traction :

a) Pour le diagonal D₁:

 $R_B = 4386 \ daN$

 $R_B = 2 \times \cos \alpha \times N_{Sd} \rightarrow N_{Sd} = R_B / 2 \cos 59.03^\circ = 4261.65 \text{ daN.}$ **b)** Pour le diagonal D₂: $R_B = 2 \times \cos \beta \times N_{Sd} \rightarrow N_{Sd} = R_B / 2 \cos 53.13^\circ = 3655 \text{ daN.}$

La force Maximum dans Le diagonal $D_1: N_{Sd} = 4261.65 \text{ daN}.$ il faut vérifier que :

$$A \ge \frac{N_{sd}.\gamma_{M0}}{f_y} = \frac{4261.65 \times 10^{-2}.1}{23.5} = 1.82 \ cm^2 \ .$$

 $A \geq 1.82 \ cm^2 \ .$

Donc: pour la palée de stabilité on prendra un profiler : UAP80

 $A = 10,67 \ cm^2 \ge A = 1.82 \ cm^2$

6.1.3.4 Vérification à la traction des diagonales :

On vérifie : $N_{sd} < N_{Rd}$

$$N_{Rd} = \min(N_{pl}; N_u; N_{net}) = N_{pl}$$

$$\gamma_{M0} = 1; \quad f_y = 235N/mm^2; A = 10.67 \text{ cm}2$$

$$N_{pl} = \frac{A.f_y}{\gamma_{M0}} = \frac{10.67 \times 10^2.23.5}{1} = 22795 \text{ daN}$$

$$N_{sd} = 4261.65 \text{ daN} < N_{Rd} = N_{pl} = 22795 \text{ daN}$$

Donc: la traction des diagonales est vérifiée.

- la cornière L $60 \times 60 \times 6$ conviens comme diagonale pour poutre au vent.
- la palée de stabilité on prendra un profiler : UAP80.

6.2 Calcul des fermes:

6.2.1 Introduction :

Les fermes jouent un rôle de poutre (poutres maitresses) d'une toiture en charpente métallique, constituées par des barres assemblées entre elles formant des triangles, composées de

- d'une membrure supérieure (arbalétrier).
- d'une membrure inférieure (entrait).
- d'une âme treillis constituées d'élément verticaux (montant) et oblique (diagonales) elles sont généralement articulées à leurs appuis.

6.2.2 Hypothèse de calcul:

Les barres sont considérées comme rigides et indéformables. l'allongement ou le raccourcissement des barres, pris individuellement, sont faibles. Leurs cumuls exigent cependant de vérifier la déformation globale de la flèche.

- les barres sont considérées comme articulées, sans frottement, aux nœuds.les assemblages aux nœuds se font par boulons, rivets ou soudures sur goussets. Les axes neutres des barres sont supposés concourants aux nœuds ou elles convergent.
- > Le poids propre des barres est négligé vis-à-vis des charges extérieures.
- > La ferme est considérée comme reposante sur deux appuis.
- Les forces extérieures sont supposées être situées dans le plan du système est appliquées aux nœuds, ce qui conduit à des efforts normaux, exclusivement, dans les barres (compression, traction).

L'étude se fait selon la combinaison la plus défavorable des deux combinaisons suivantes:

- Cas de soulèvement : G + 1.5V.

- Cas de la neige seule: 1.35G + 1.5S.

Le schéma statique de la ferme à étudier :

Dans notre cas, notre Hangar est constitué de toiture a (2) versants, donc on aura (01) fermes de longueur de **20.00m** chacune.

Par symétrie on se contentera d'étudier une seule ferme de longueur de **20,00m** avec des forces concentrées verticales dues à la charge transmise par la toiture et avec l'intermédiaire des pannes. Le schéma statique sera comme le suivant :

Avec : l : la longueur de la ferme (l=20.00m)

Figure 6.6 : Schéma statique de la ferme

On a des fermes de forme trapézoïdale de **20.00 m** de longueur supportent 6 pannes par versant. L'entre axes horizontal des pannes est de **2.01 m** ; L'entre axe des fermes est de 6 m.

On dimensionne les barres de la ferme les plus sollicitées en compression et en traction. (Membrure supérieure, membrure inférieure, montants, et diagonales).

6.2.3 Calcul des charges revenant à chaque nœud :

Figure 6.7: Surface afférente des nœuds

6.2.3.1 Nœud intermédiaire.

$$S = 2.01 \times 6 = 12.06 m^2$$

• Poids propre

- Total	
- Les contreventements	$0.0542 \times 12.06 = 0.653 KN_{\odot}$
- La panne (IPE 140)	$0,129 \times 6 = 0.774 \ KN.$
- La couverture (TN 40) + accessoires de pose	$0,15 \times 12.06 = 1.81 KN.$

• Surcharges climatiques.

1) Surcharges du vent :

$$q_j = -0.309 KN/m^2$$
 (chapitr2)

$$V = q_i \times S = -0.309 \times 12,06 = -3.72 \text{ KN}$$

2) Surcharges de la neige.

 $S = 0.38 \text{ KN/m}^2$. (Chapitre2)

La surface revenant à chaque nœud est de

6.2.3.2 Nœud de rive :

La surcharge revenant au nœud de rive.

$$S = 0.38 \times 6.03 = 2.28 m^2$$

• Poids propre

- La couverture (TN 40) + accessoires de pose.....0, $15 \times 6.03 = 0.904 \text{ KN}$.
- La panne (IPE 140)..... $0,129 \times 6 = 0.774 \text{ KN}.$
- Les contreventements $0.0542 \times 6.03 = 0.327 \text{ KN}$.

• Surcharges climatiques.

1) Surcharges du vent :

$$q_j = -0.309KN/m^2$$
 (chapitr2)
 $V = q_j \times S = -0.309 \times 6.03 = -1.86 KN$

2) Surcharges de la neige.

 $S = 0.38 \times 6.03 = 2.30 \, KN$

6.2.4 Calcul des forces selon les combinaisons de charges :

6.2.4 .1 Nœud intermédiaire :

a) Soulèvement

$$F = G \times 1,5V = 3.24 + 1.5(-3,72) = -2,34 KN$$

b)neige

$$F = 1.35G + 1.5S = (1,35 \times 3,24) + (1,5 \times 4.58) = 11.24 KN$$

6.2.4 .2 Nœud de rive :

a) Soulèvement

$$F = G \times 1,5V = 2.00 + 1.5(-1.86) = -0.79KN$$

b) neige

 $F = 1.35G + 1.5S = (1,35 \times -1.86) + (1,5 \times 2,30) = 0.94 KN$

La détermination des efforts dans les éléments de la ferme est obtenue à l'aide d'un modèle 2D avec le logiciel ROBOT 2009 On enregistre seulement les efforts max dans les différents éléments de la ferme :

Eléments	Sous : G+1.5V (kN)	Sous :1.35G+1.5S (kN)
Membrures supérieure	-5,63 KN	94,29 KN
Membrues inférieure	-39,94 KN	-93,17 KN
Montants	23,35 KN	–28,67 KN
Diagonales	43,93 KN	88,76 KN

Tableau 6.2 : Les efforts max dans les éléments de la ferme.

Remarque :

la combinaison la plus défavorable pour toutes les barres est : G + 1.5V

Convention de signe (+) traction et (-) compression.

6.2.5 Dimensionnement des éléments de la ferme.

Les éléments sont dimensionnés sur la base des efforts normaux N_{sd} qui les sollicitent. Et ils doivent vérifiés la condition suivante:

$$N_{pl} = \frac{A.f_y}{\gamma_{m0}} \ge N_{max}$$

$$\gamma_{m0} = \mathbf{1} ; f_y = \mathbf{235}MPa \qquad \qquad \mathbf{EC3} \text{ Art 5.4.3.1}$$

6.2.5.1 Membrure supérieure :

 $N_{max} = -5, 63 \text{ KN} (Compression)$

$$\frac{A.F_y}{\gamma_{m0}} \ge N_{max} \rightarrow A = \frac{N_{max} \times \gamma_{m0}}{f_y} = \frac{-5.63 \times 1}{235} = -0,024 \ cm^2$$
$$A \ge -0,024 \ cm^2$$

***** Soit 2L (70.70.7) de section $\implies A_S = 18,80 cm^2$ 6.2.5.2 Membrure inférieure. $N_{max} = -39,94$ KN (Compression) $\frac{A.F_y}{\gamma_{m0}} \ge N_{max} \rightarrow A = \frac{N_{max} \times \gamma_{m0}}{f_y} = \frac{-39,94 \times 1}{235} = -0,17cm^2$ $A \ge -0, 17 cm^2$ • Soit 2L (70.70.7) de section $\implies A_S = 18,80 cm^2$ 6.2.5.3 Les Diagonal $N_{max} = 43,93 \text{ KN}$ $\frac{A.F_y}{\gamma_{m0}} \ge N_{max} \rightarrow A = \frac{N_{max} \times \gamma_{m0}}{f_y} = \frac{43,93 \times 1}{235} = \mathbf{0}, \mathbf{187}cm^2$ $A \ge 0, 187 cm^2$ * Soit L (70.70.7) de section $\implies A_s = 9,40 cm^2$ 6.2.5.4 Les montants: $N_{max} = 23,35 \text{ kN}$ $\frac{A.F_y}{\gamma_{m0}} \ge N_{max} \rightarrow A = \frac{N_{max} \times \gamma_{m0}}{f_y} = \frac{23,35 \times 1}{235} = \mathbf{0}, \mathbf{099}cm^2$ $A \geq 0,099 cm^2$ Soit L (70.70.7) de section $\Longrightarrow A_S = 9.4$ cm²

6.2.6 Vérification des éléments comprimés au flambement :

Figure 6.8 : Doubles cornières

Il faut vérifier la condition suivant :

$$N_{crd} = \chi_{\min} \times \beta_w \times \frac{A \times f_y}{\gamma_{m1}} \ge N_{sd}$$

5.5.1.1 Art EC

6.2.6.1 Vérification des Membrure supérieure.

 $N_{max} = -5,63 \text{ KN}$ $l_K = 201 \text{ cm}$

- Soit 2L (70.70.7) de section $\implies A_S = 18,80cm^2$ $I_Z = 2(I_\beta + A_C \times \Delta^2)$
 - I_{β} :Inertie (z,z) d'une seule corniere.
 - I_{α} : Inertie(y,y) d'une seule corniere.

 A_c : Aire d'une seule corniere

$$\begin{split} &\Delta^2 = (d+0,5)^2 \\ &l_y = 2l_\alpha \\ &\Delta^2 = (1,97+0,5)^2 = 6,1cm \\ &l_y = 2\times42,24 = 84,49cm^4 \\ &l_z = 2(l_\beta + A_c \times \Delta^2) = 2(42,24+9,4\times6,1) = 199,16cm^4 \\ &i_y = \sqrt{\frac{l_y}{A}} = \sqrt{\frac{84,49}{18,80}} = 2,12cm \\ &i_z = \sqrt{\frac{l_z}{A}} = \sqrt{\frac{199,16}{18,80}} = 3,25cm \\ &\lambda_y = \frac{l_y}{l_y} = \frac{201}{2,12} = 94,81 \\ &\lambda_z = \frac{l_z}{l_z} = \frac{201}{3,25} = 61,85 \\ &\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \times [\beta_w]^{0,5} \quad \text{Avec} : \beta_w = 1 \\ &\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = 93,9 \xi \\ &\xi = \left[\frac{235}{f_y}\right]^{0.5} = 1 \\ &\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = 93,9 \\ &\bar{\lambda}_y = \left(\frac{\lambda_y}{93,9\xi}\right) = \left(\frac{94,81}{93,9}\right) = 1,01 \\ &\bar{\lambda}_z = \left(\frac{\lambda_z}{93,9\xi}\right) \left(\frac{61,85}{93,9}\right) = 0,658 \\ &\bar{\lambda}_y \ge 0,2 \rightarrow 1,01 \ge 0,2 \\ &\bar{\lambda}_z \ge 0,2 \rightarrow 0,658 \ge 0,2 \\ \text{II y'a lieu de tenir compte du risque de flambement.} \\ &-\text{Calcul}\chi_{\min} \quad \text{de} : \end{split}$$

On a section en forme de L \rightarrow courbe $\mathbf{c} \rightarrow \boldsymbol{\alpha} = \mathbf{0}, \mathbf{49} \implies$ type du profile : soude $\boldsymbol{\phi} = 0, 5[1 + \alpha(\bar{\lambda} - 0, 2) + \bar{\lambda}^2]$ $\boldsymbol{\phi} = 0, 5[1 + 0, 49(1, 01 - 0, 2) + 1, 01^2] = 1,208$ $\boldsymbol{\phi} = \mathbf{1}, \mathbf{208}$ $x_y = \frac{1}{\boldsymbol{\phi} + (\boldsymbol{\phi}^2 - \bar{\lambda}_y^2)} = \frac{1}{1,208 + (1,208^2 - 1,01^2)} = 0,607$ $x_z = \frac{1}{\boldsymbol{\phi} + (\boldsymbol{\phi}^2 - \bar{\lambda}_z^2)} = \frac{1}{1,208 + (1,208^2 - 0,658^2)} = 0,447$ $\chi_{min} = \min(x_y; x_z) = x_z = \mathbf{0}, \mathbf{447}$ $N_{crd} = \chi_{\min} \times \beta_w \times \frac{A \times f_y}{\gamma_{m1}} \ge N_{sd}$ 5.5.1.1 Art EC3

$$\begin{split} N_{crd} &= 0.447 \times 1 \times \frac{18.80 \times 23.5}{1.1} = 179,53 \geq N_{sd} = 5,63KN \rightarrow Verifier \\ \textbf{62.6.2 Vérification des Membrure Inférieure.} \\ N_{max} &= -39.94 KN (Compression) \\ l_k &= 200cm \\ &\Rightarrow Soit 2L (70.70.7) de section \implies A_S = 18,80cm^2 \\ I_Z &= 2(l_B + A_C \times \Delta^2) \\ I_B : Inertie (z,z) d'une seule comière. \\ I_Q : Inertie (y,y) d'une seule comière. \\ A_C : Aire d'une seule comière. \\ A_C : Aire d'une seule comière. \\ A_C : Aire d'une seule comière. \\ I_Q : Inertie (x,y) d'une seule comière. \\ A_C : Aire d'une seule comière. \\ A_Q : Aire d'une seule comière. \\ I_Q : 21a \\ I_Y &= 22a \\ I_Y &= 22a \\ I_Y &= 2242,24 = 84,49cm^4 \\ I_Z &= 2(l_B + A_C \times \Delta^2) = 199,16cm^4 \\ i_Y &= \sqrt{\frac{I_Y}{A}} = \sqrt{\frac{199,6}{18,80}} = 2,12cm \\ i_Z &= \sqrt{\frac{I_Y}{A}} = \sqrt{\frac{199,6}{18,80}} = 3,25cm \\ \lambda_Y &= \frac{I_Y}{I_Y} = \frac{200}{3,25} = 61,53 \\ \tilde{\lambda} &= (\frac{2}{I_X}) \times |\beta_M|^{0.5} \quad \text{Avec} : \beta_W = 1 \\ \lambda_1 = \pi \left[\frac{E}{I_Y}\right]^{0.5} = 33.9 \\ \tilde{\xi} &= \left[\frac{235}{I_Y}\right]^{0.5} = 1 \\ \lambda_1 = \pi \left[\frac{E}{I_Y}\right]^{0.5} = 93.9 \\ \tilde{\lambda}_Y &= (\frac{\lambda_Y}{93,9\xi}) = (\frac{64,34}{93,9}) = 1,00 \\ \tilde{\lambda}_Z &= (\frac{\lambda_Z}{03,9\xi}) (\frac{61,53}{93,9}) = 0,655 \\ \tilde{\lambda}_Y &\geq 0.2 \to 0.655 \geq 0,2 \end{split}$$

Il y'a lieu de tenir compte du risque de flamberret.

-Calcul χ_{min} de :

On a section en forme de L \rightarrow courbe c $\rightarrow \alpha = 0,49$

type du profile : soude

_

$$\begin{aligned} \phi &= 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right] \\ \phi &= 0.5 \left[1 + 0.49(1,00 - 0.2) + 1.00^2 \right] = 1.196 \\ \phi &= 1.196 \\ x_y &= \frac{1}{\phi + (\phi^2 - \bar{\lambda}_y^2)} = \frac{1}{1.196 + (1.196^2 - 1.00^2)} = 0.615 \\ x_z &= \frac{1}{\phi + (\phi^2 - \bar{\lambda}_z^2)} = \frac{1}{1.196 + (1.196^2 - 0.655^2)} = 0.455 \\ \chi_{min} &= \min(x_y; x_z) = x_z = 0.455 \\ N_{crd} &= \chi_{min} \times \beta_w \times \frac{A \times f_y}{\gamma_{m1}} \ge N_{sd} \\ N_{crd} &= 0.455 \times 1 \times \frac{18,80 \times 23.5}{1.1} = 182.74 \ge N_{sd} = 39.41KN \\ \rightarrow & Verifier \\ 6.2.6.3 Vérification des Diagonale. \\ N_{max} &= 43.93 \text{ KN} \\ l_k &= 270 cm \end{aligned}$$

Solit (70.70.7) de section
$$\implies A_S = 9,4cm^2$$

 $I_Z = 2(I_\beta + A_C \times \Delta^2)$
 I_β :Inertie (z,z) d'une seule cornière.
 A_c :Aire d'une seule cornière
 $\Delta^2 = (d + 0,5)^2$
 $\Delta^2 = (1,97 + 0,5)^2 = 6,1cm$
 $I_y = 2I_\alpha$
 $I_y = 22 \times 21,12 = 42,24 \ cm^4$
 $I_Z = 2(I_\beta + A_C \times \Delta^2) = 2(21,12 + 4,7 \times 6,1) = 99,58 \ cm^4$
 $i_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{42,24}{9,4}} = 2,12cm$
 $i_z = \sqrt{\frac{I_z}{A}} = \sqrt{\frac{99,58}{9,4}} = 3,25cm$
 $\lambda_y = \frac{I_y}{i_y} = \frac{270}{2,12} = 127,36$
 $\lambda_z = \frac{I_z}{i_z} = \frac{270}{3,25} = 83,07$
 $\bar{\lambda} = (\frac{\lambda}{\lambda_1}) \times [\beta_w]^{0.5}$ Avec : $\beta_w = 1$
 $\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = 93,9 \ \xi$
 $\xi = \left[\frac{235}{f_y}\right]^{0.5} = 1$

$$\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = 93.9$$

$$\overline{\lambda_y} = \left(\frac{\lambda_y}{93.9\xi}\right) = \left(\frac{127.36}{93.9}\right) = 1.35$$

$$\overline{\lambda_z} = \left(\frac{\lambda_z}{93.9\xi}\right) \left(\frac{88.07}{93.9}\right) = 0.937$$

$$\overline{\lambda_y} \ge 0.2 \to 1.35 \ge 0.2$$

$$\overline{\lambda_z} \ge 0.2 \to 0.937 \ge 0.2$$

Il y'a lieu de tenir compte du risque de flambement.

-Calcul χ_{min} de :

On a section en forme de L \rightarrow courbe c $\rightarrow \alpha = 0,49$ \longrightarrow type du profile : soude

$$\begin{aligned} \phi &= 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right] \\ \phi &= 0.5 \left[1 + 0.49(1.35 - 0.2) + 1.35^2 \right] = 1.693 \\ \phi &= 1.693 \\ x_y &= \frac{1}{\phi + (\phi^2 - \bar{\lambda}_y^{-2})} = \frac{1}{1.693 + (1.693^2 - 1.35^2)} = 0.365 \\ x_z &= \frac{1}{\phi + (\phi^2 - \bar{\lambda}_z^{-2})} = \frac{1}{1.196 + (1.196^2 - 0.937^2)} = 0.571 \\ \chi_{min} &= \min(x_y; x_z) = x_z = 0.571 \\ N_{crd} &= \chi_{min} \times \beta_w \times \frac{A \times f_y}{\gamma_{m1}} \ge N_{sd} \\ N_{crd} &= 0.571 \times 1 \times \frac{9.4 \times 23.5}{1.1} = 114.67 \ge N_{sd} = 43.93KN \rightarrow Verifier \\ 6.2.6.4 \text{ Vérification des Montants.} \\ N_{max} &= 23.35 \text{ kN} \\ l_k &= 200 \text{cm} \end{aligned}$$

Soit L (70.70.7) de section $\implies A_S = 9,40cm^2$

$$\begin{split} I_{Z} &= 2(I_{\beta} + A_{C} \times \Delta^{2}) \\ I_{\beta} : \text{Inertie} (z, z) \text{ d'une seule corniere.} \\ I_{\alpha} : \text{Inertie(y, y) d'une seule corniere.} \\ A_{c} : \text{Aire d'une seule corniere} \\ \Delta^{2} &= (d + 0, 5)^{2} \\ \Delta^{2} &= (1,97 + 0, 5)^{2} = 6,1cm \\ I_{y} &= 2I_{\alpha} \\ I_{y} &= 2X 21,12 = 42,24 \ cm^{4} \\ I_{Z} &= 2(I_{\beta} + A_{C} \times \Delta^{2}) = 2(21,12 + 4,7 \times 6,1) = 99,58 \ cm^{4} \end{split}$$

$$i_{y} = \sqrt{\frac{I_{y}}{A}} = \sqrt{\frac{42,24}{9,40}} = 2,12cm$$

$$i_{z} = \sqrt{\frac{I_{z}}{A}} = \sqrt{\frac{99,58}{9,40}} = 3,25cm$$

$$\lambda_{y} = \frac{l_{y}}{i_{y}} = \frac{200}{2,12} = 94,34$$

$$\lambda_{z} = \frac{l_{z}}{i_{z}} = \frac{200}{3,25} = 61,53$$

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_{1}}\right) \times [\beta_{w}]^{0.5} \quad \text{Avec} : \beta_{w} = 1$$

$$\lambda_{1} = \pi \left[\frac{E}{f_{y}}\right]^{0.5} = 93,9 \xi$$

$$\bar{\xi} = \left[\frac{235}{f_{y}}\right]^{0.5} = 93,9$$

$$\bar{\lambda}_{y} = \left(\frac{\lambda_{y}}{93,9\xi}\right) = \left(\frac{94,34}{93,9}\right) = 1,00$$

$$\bar{\lambda}_{z} = \left(\frac{\lambda_{z}}{93,9\xi}\right) \left(\frac{61,53}{93,9}\right) = 0,655$$

$$\bar{\lambda}_{y} \ge 0,2 \to 1,00 \ge 0,2$$

$$\bar{\lambda}_{z} \ge 0,2 \to 0,655 \ge 0,2$$

Il y'a lieu de tenir compte du risque de flambement. -Calcul χ_{min} de :

On a section en forme de L \rightarrow courbe c $\rightarrow \alpha = 0,49$ \implies type du profile : soude

$$\begin{split} & \phi = 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right] \\ & \phi = 0.5 \left[1 + 0.49(1.00 - 0.2) + 1.00^2 \right] = 1.196 \\ & \phi = 1.196 \\ & x_y = \frac{1}{\phi + (\phi^2 - \bar{\lambda}_y^2)} = \frac{1}{1.196 + (1.196^2 - 1.00^2)} = 0.615 \\ & x_z = \frac{1}{\phi + (\phi^2 - \bar{\lambda}_z^2)} = \frac{1}{1.196 + (1.196^2 - 0.655^2)} = 0.455 \\ & \chi_{min} = \min(x_y; x_z) = x_z = 0.455 \\ & N_{crd} = \chi_{min} \times \beta_w \times \frac{A \times f_y}{\gamma_{m1}} \ge N_{sd} \\ & S.5.1.1 \, Art \, EC3 \\ & N_{crd} = 0.455 \times 1 \times \frac{9.4 \times 23.5}{1.1} = 91.37KN \ge N_{sd} = 23.35KN \rightarrow Verifier \end{split}$$

6.2.7 Résumé des Dimensions adoptées pour les éléments de la Ferme.

Les sections choisies sont données dans le tableau suivant :

Tableau 6.3 : Les sections des éléments du ferme adopté

Eléments	Section choisie
Membrures supérieures	2L(70x70x7)
Membrures inferieures	2L(70x70x7)
Diagonales	L(70x70x7)
Montants	L(70x70x7)

6.3 JUSTIFICATION DES POTEAUX (IPE330)

6.3.1 Introduction

Après le pré-dimensionnement des éléments et leur modalisation, on procède à la vérification (traction, flambement et résistance) sous les efforts les plus défavorables tirés du logiciel ROBOT 2009.

Avant de commencer la modalisation de la structure, on doit préalable définir quelques paramètres (préférence de l'affaire), concernant les règlements adoptés pour les calculs, et les unités.

Nous pouvons commencer la modélisation de la structure, une étape primordiale pour pouvoir dimensionner une structure avec logiciel ROBOT et que sa traduit par la conception de la structure étudie a 3D, en prenant sois de bien choisir pour chaque élément un type de profile couramment utilisé en réalité.

Après avoir modaliser la structure, on passe aux chargements, en affectant à la structure les déférents charges à quelle elle est soumise.

Notre structure est à chaque type d'élément soumise aux charges suivantes :

- \checkmark Poids propre de la structure
- ✓ Charges permanentes (couverture, accessoires)
- ✓ Charge d'exploitation
- ✓ Charges climatiques (vent, la neige)

Ayant terminé le chargement de la structure, on passe à la définition des combinaisons (ELU, ELS, ACC) avec lesquelles le logiciel ROBOT effectué le dimensionnement et la vérification, ensuite on affecte à chaque type d'élément les paramètres de flambement et de déversement pour le calcul à ELU, ainsi que les déplacements et la flèche à ELS, selon le type de chaque élément, et on lance l'analyse de la structure.

Après avoir effectué toute ces étapes, on pourra passer de pré-dimensionnement des éléments de la structure en procède comme suite :

Pour avoir effectué un pré-dimensionnement au pour chaque type d'élément ce qu'on appelle une famille, en sélection la listes des profils on veut que le logiciel dimensionne notre élément. On lance le calcul, et on choisit parmi les résultats.

6.3.2 Efforts sollicitant

Les efforts de sollicitations les plus défavorables calculées par le logiciel ROBOT sont :

 $M_{sd.y} = -99.91 \text{ KN. } m$ $M_{sd.z} = 0.18 \text{ KN. } m$ $N_{sd.max} = 22.69 \text{ KN}$ $V_{sd.max} = 0.78 \text{ KN}$

6.3.3 Vérification :

6.3.3.1 Vérification à la résistance

Classe de la section

Classe de la semelle : (comprimée)

$$c / tf = b/2 \times tf \le 10\epsilon$$
 donc $160/2.11.5) = 6.95 \le 10\epsilon$ Semelle de classe 1

Classe de l'âme : (fléchie)

 $d / tw = 271 / 7.5 = 36.13 < 72 \epsilon$

Ame de classe 1

Les poteaux de section IPE330 sont de classe 01

6.3.3.2 Vérification de l'efforttranchant:

Il faut vérifier que : $Vsd \leq 0.5V_{pl.Rd}$ Vsd = 0.78 KN

$$V_{pl.Rd} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{30.8 \times 23.5}{\sqrt{3} \times 1.1} = 379.89 \ KN$$

 $0.5V_{pl.Rd} = 189.9 KN$

 $Vsd = 0.78 KN < 0.5V_{pl.Rd} = 189.9 KN$

6.3.3.3 Vérification à l'effort normal:

Il faut vérifier que $Nsd < N_{pl.Rd}$

Nsd = 22.69 KN

$$N_{pl.Rd} = \frac{A \times f_y}{\gamma_{m0}} = \frac{62.6 \times 23.5}{1.1} = 1337.30 \ KN$$

$$Nsd = 22.69 KN < N_{pl.Rd} = 1337.30 KN$$
 vérifiée

6.3.3.4 Vérification au moment fléchissant:

Il faut vérifier que : $Msd \leq M_{pl.Rd}$ $M_{sd.y} = 99.91 KN.m$ $M_{pl.Rd} = \frac{w_{pl.y} \times f_y}{\gamma_{m0}} = \frac{804.3 \times 10^{-3} \times 235}{1.1} = 171.83 KN.m$ $M_{sd.y} = 99.91 KN.m < M_{pl.Rd} = 171.83 KN.m$ vérifiée

vérifiée

6.3.4 Vérification de l'élément aux instabilités:

La vérification aux instabilités est donnée par les formules suivantes :

6.3.4.1 Flexion composée avec risque de flambement :

$$\frac{N_{sd}}{\chi_{min} \times N_{pl.rd}} + \frac{K_y \times M_{y.sd}}{M_{ply.rd}} + \frac{K_z \times M_{z.sd}}{M_{plz.rd}} \le 1.$$

Calcul de χ_{min} min :

$$\chi_{min} = min(\chi_y; \chi_z)$$
.

✓ Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

$$\lambda_{y} = \frac{0.7l_{y}}{i_{y}} = \frac{0.7 \times 900}{13.71} = \mathbf{45.95}.$$

$$\overline{\lambda}_{y} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] (\beta_{w})^{0.5} = \frac{45.95}{93.9} \times \sqrt{1} = \mathbf{0}.4\mathbf{9} > 0.2$$

Courbe de flambement : (voire tableau5.5.3 EC3)

$$h/b = 330/160 = 2.06 > 1.2$$

Axe de flambement y-y \rightarrow courbe de flambement a ; α = 0.21 (tableau 2).

$$\phi_{y} = 0.5 \left[1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2} \right] = 0.5 \times [1 + 0.21(0.49 - 0.2) + 0.49^{2}] = 0.65$$
$$\chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda}_{y}^{2}}} = 0.93 < 1$$

✓ Flambement par rapport à l'axe faible z-z (hors du plan de portique):

$$\lambda_{y} = \frac{0.7l_{z}}{i_{z}} = \frac{0.7 \times 900}{3.55} = \mathbf{177.46}.$$
$$\overline{\lambda}_{z} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] \left(\beta_{w}\right)^{0.5} = \frac{177.46}{93.9} \times \sqrt{1} = \mathbf{1.89} > 0.2$$

Courbe de flambement : (voire tableau 5.5.3 EC3)

Axe de flambement z-z \rightarrow courbe de flambement a ; $\alpha = 0.34$ (tableau 2).

$$\phi_z = 0.5 \left[1 + \alpha_y (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2 \right] = 0.5 \times [1 + 0.34(1.89 - 0.2) + 1.89^2] = 2.57$$

$$\chi_z = \frac{1}{\varphi_z + \sqrt{\varphi_z^2 - \overline{\lambda}_z^2}} = 0.23 < 1$$

$$\chi_{min} = min(\chi_y; \chi_z) = min(0.93; 0.23) = 0.23$$

* Calcul du moment critique :

$$Mcr = \frac{C1.\pi^{2}.E.Iz}{(K \times L)^{2}} \left\{ \left[\left(\frac{K}{Kw} \right)^{2} \times \frac{Iw}{Iz} + \frac{(K.L)^{2}.G.It}{\pi^{2}.E.Iz} + (C2.Zg)^{2} \right]^{\frac{1}{2}} - (C2.Zg) \right\}$$

 C_1, C_2 : facteurs dépendant des conditions de charge et d'encastrement.

$$C_1 = 1,132$$
, $C_2 = 0,459$; **EC3 Tab F.1.2**
K et K_W : les facteurs de longueur effective avec : K=1 appui simple, $K_w = 1$; EC3 Tab F.1.2
L= 900cm;
Zg = Za - Zs.

 $\begin{cases} Za = -16.5 \text{ cm} & \text{sous le vent} \\ Za = 16.5 \text{ cm} & \text{sous la charge vertical.} \end{cases}$

$$\begin{cases} Zs = 0 & \text{section doublement symétrique EC3 Figuer F.1.1} \\ Zj = 0 & \text{section doublement symétrique EC3 Figuer F.1.1} \\ Zg = Za - Zs = -16.5 \text{ cm.} & \text{sous le vent} \\ Zg = Za - Zs = 16.5 \text{ cm.} & \text{sous la charge vertical} \\ It = 28.15 \text{ cm}^4. \\ Iw = Iz \times \left(\frac{h - tf}{2}\right)^2 = -788 \times \left(\frac{33 - 1.07}{2}\right)^2 = 200846.40 \text{ cm}^6 \\ M_{cr} = \frac{1,132 \times \pi^2 \times 2,1 \times 788}{(1 \times 9)^2} \left\{ \left[\left(\frac{1}{1}\right)^2 + \frac{200846.40 \times 10^{-4}}{788} + \frac{(1 \times 9)^2 \times 80770 \times 10^{-5} \times 28.5}{\pi^2 \times 2,1 \times 788} + \left((0,459 \times -1.16)\right)^2 \right]^{\frac{1}{2}} - \left((0,459 \times -1.16)\right) \right\} \\ M_{cr} = 1488.8 \text{KN.} \end{cases}$$

$$\overline{\lambda}_{y} = \sqrt{\frac{\beta_{w} \times w_{\text{ply}} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] (\beta_{w})^{0.5} = \sqrt{\frac{1 \times 804.3 \times 10^{-6} \times 235}{148.88 \times 10^{-3}}} = 0.126 < 0.2$$

Donc: il n'y pas à un risque de diversement

♦ Calcul des coefficients réducteurs :
$$\mu_{y} = \overline{\lambda_{y}} (2.\beta_{My} - 4) + \frac{w_{ply} - w_{ely}}{w_{ely}} = 0.49(2 \times 1.3 - 4) + \frac{804.3 - 713.1}{713.1} = -0.56$$

$$\mu_{z} = \overline{\lambda_{z}} (2.\beta_{Mz} - 4) + \frac{w_{plz} - w_{elz}}{w_{elz}} = 1.89(2 \times 1.3 - 4) + \frac{153.7 - 98.5}{98.5} = -2.08$$

♦ Calcul des coefficients Ky et Kz :
$$K_{y} = 1 - \frac{\mu_{y} \cdot N_{sd}}{\chi_{y} \cdot A.f_{y}} = 1 - \frac{-0.56 \times 22.69}{0.93 \times 62.6 \times 23.5} = 1 < 1.5$$
C.V
$$K_{z} = 1 - \frac{\mu_{z} \cdot N_{sd}}{\chi_{z} \cdot A.f_{y}} = 1 - \frac{-2.08 \times 22.69}{0.23 \times 62.6 \times 23.5} = 1.14 < 1.5$$
C.V
6.3.4.2 Vérification au flambement :
$$M_{sd,y} = -99.91 \text{ KN.m}$$

$$N_{sd,max} = 22.69 \text{ KN}$$
N_{pl.rd} = $\frac{A \times f_{y}}{\gamma_{M0}} = \frac{62.6 \times 23.5}{1.1} = 1337.36 \text{ KN}$

$$M_{pl,rdy} = \frac{W_{pl,y} \times f_y}{\gamma_{M0}} = \frac{804.3 \times 23.5}{1.1} = 17182.77 \text{ KN. m}$$

$$M_{pl.rdz} = \frac{W_{pl.z} \times f_y}{\gamma_{M0}} = \frac{153.7 \times 23.5}{1.1} = 3283.59 \, KN. \, m$$

 $\frac{N_{sd}}{\chi_{min} \times N_{pl.rd}} + \frac{K_y \times M_{y.sd}}{M_{pl.rdy}} + \frac{K_z \times M_{z.sd}}{M_{pl.rdz}} \rightarrow \frac{22.69}{0.23 \times 1337.36} + \frac{1 \times -99.91}{17182.77} + \frac{1.14 \times 0.18}{3283.59} = 0.06 \le 1$

Le profilé choisi IPE330 est adéquat comme poteau

7.1- Introduction

Une construction métallique est édifiée par assemblage de plusieurs pièces élémentaires la caractéristique essentielle des ossatures métalliques est d'être composées d'éléments élaborés en des lieux et des instants différents qui sont ensuite assemblés sur le site de construction les liaisons ont ainsi un double rôle elé permettre la constitution d'une structure spatiale apte à recueillir le "contenu" du bâtiment et sur tout assurer la pérennité et la stabilité de cette structure vis à vis de toutes les actions à court, moyen et long terme. Étant obtenus par laminage, les éléments qui constituent une ossature sont généralement linéiques (profilés, poutrelles, barres) avec une section ouverte (I ou H) pour être optimisés vis-à-vis des sollicitations.

-En fait la distinction n'est aussi tranchée et les assemblages peuvent avoir des comportements intermédiaires semi articulation ou semi encastrement en fonction d'un certaine flexibilité des pièces à proximité du nœud ou du nœud lui-même

7.2 Calcul de l'assemblage au gousset les élément des fermes

GÉNÉRAL

Assemblage N° :

Nom de l'assemblage : Gousset - noeud membrure de treillis

1

Noeud de la structure : 8

Assemblage N° : 1 Barres de la structure : 5, 5, 6, 15,

GÉOMÉTRIE

BARRES

		Barre 1	Barre 2	Barre 4	Barre 5	
Barre N° :		5	5	6	15	
Profilé :		2 CAE 70x7 INV	2 CAE 70x7 INV	CAE 70x7	CAE 70x7	
	Н	70	70	70	70	Mm
	b_{f}	70	70	70	70	Mm
	tw	7	7	7	7	Mm
	tf	7	7	7	7	Mm
	R	9	9	9	9	Mm
	А	18.794	18.794	9.397	9.397	cm2
Matériau :		ACIER	ACIER	ACIER	ACIER	
	$\mathbf{f}_{\mathbf{y}}$	235.00	235.00	235.00	235.00	MPa
	$\mathbf{f}_{\mathbf{u}}$	365.00	365.00	365.00	365.00	MPa
Angle	α	180.0	0.0	90.0	26.6	Deg
Longueur	L	20.00	20.00	1.20	2.24	Μ

SOUDURES

Soudures des barres

Barre 1-2

$l_1 =$	500	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	200	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	3	[mm]	Epaisseur des soudures d'angle longitudinales

Barre 4

$l_1 =$	220	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	150	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	3	[mm]	Epaisseur des soudures d'angle longitudinales

Barre 5

$l_1 =$	120	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	100	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	3	[mm]	Epaisseur des soudures d'angle longitudinales

GOUSSET

h =	350	[mm]	Hauteur de la platine	
b =	500	[mm]	Largeur de la platine	
t =	15	[mm]	Epaisseur de la platine	
Centre	de grav	ité de la tô	le par rapport au centre de gravité des barres	(25;90)
Matéria	au :		ACIER E28	
$f_y =$	275.00	[MPa]	Résistance	

COEFFICIENTS DE MATÉRIAU

$\gamma_{M0} =$	1.00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1.25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas :		Calculs manuels	
$N_{b1,Ed} = 1019.72 [kG]$	Effort axial		
$N_{b2,Ed} = 1019.72 [kG]$	Effort axial		
$N_{b4,Ed} = 1019.72 [kG]$	Effort axial		
$N_{b5,Ed} = 1019.72 [kG]$	Effort axial		
RÉSULTATS			

<u>BARRE 1-2</u>

VÉRIFICATION DES SOUDURES

a —	2	[]	Excentricité de l'effort axial par rapport au	
e =	Z		centre de gravité du groupes de boulons	
$M_0 =$	0.00	[kG*m]	Moment fléchissant reel	$M_0 = 0.5 * N_{b1,Ed} * e$
$A_s =$	70.000	$[cm^2]$	Aire de la section des soudures	
$I_0 =$	15217.738	[cm ⁴]	Moment d'inertie polaire des soudures	
$\sigma_{ m N}$ =	0.00	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_{\rm N}{=}0.5{*}N_{b1,Ed}\!/A_s$
$\sigma_{\rm Mx}$ =	0.00	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx} = M_0 * z / I_0$

Chapitre 7: ETUDE DE L'ASSEMBLAGE

e =	2	[mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons	l
			Contrainte composante due à l'influence de	
σ_{Mz} =	0.00	[MPa]	l'effort du moment sur la direction z	$\sigma_{\mathrm{Mz}}=\mathrm{M}_{0}*\mathrm{x}/\mathrm{I}_{0}$
$\sigma =$	0.00	[MPa]	Contrainte résultante	$\sigma = \sigma[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2]$
$\gamma_{\rm w} =$	0.80		Coefficient de correlation	[Tableau 4.1]
$f_{vw,d} =$	381.05	[MPa]		$f_{vw,d} = f_u / (\sigma 3^* \sigma_w^* \sigma_{M2})$
$\sigma \leq f_{vI}$	Rd		0.00 < 381.05 vérifié	(0.00)

RÉSISTANCE DE LA SECTION

A =	9.397	[cm ²] Aire de la section	
N _{plRd} =	=22518.13	[kG] Résistance de calcul plastique de la section brute N_{plRd} =A*f _{yl} /a	σ _{M0}
0.5*N	$ _{b1,Ed} \leq N_p$	0.00 < 22518.13 vérifié ((0.00)

BARRE 4

VÉRIFICATION DES SOUDURES

e =	8	[mm]	Excentricité de l'effort axial par rappo	ort au	
•	Ũ	[]	centre de gravité du groupes de boulo	ns	
M ₀ =	- 7.87	[kG*m]	Moment fléchissant reel		$M_0 = N_{b4,Ed} * e$
$A_s =$	37.000	$[cm^2]$	Aire de la section des soudures		
$I_0 =$	1851.734	[cm ⁴]	Moment d'inertie polaire des soudures	5	
$\sigma_{ m N}$ =	2.70	[MPa]	Contrainte composante due à l'influen l'effort axial	ice de	$\sigma_N = N_{b4,Ed} / A_s$
σ_{Mx}	= 0.20	[MPa]	Contrainte composante due à l'influen moment sur la direction x	ice du	$\sigma_{Mx}=M_0*z/I_0$
$\sigma_{ m Mz}$	= 0.52	[MPa]	Contrainte composante due à l'influen l'effort du moment sur la direction z	ice de	$\sigma_{Mz}=M_0*x/I_0$
$\sigma =$	2.95	[MPa]	Contrainte résultante		$\sigma = \sigma_{\rm Mz} (\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2]$
$\gamma_{\rm w} =$	0.80		Coefficient de corrélation		[Tableau 4.1]
f _{vw,d}	= 381.05	[MPa]			$f_{vw,d} = f_u/(\sigma 3^* \sigma_w^* \sigma_{M2})$
$\sigma \leq$	f_{vRd}		2.95 < 381.05	vérifié	(0.01)

RÉSISTANCE DE LA SECTION

$N_{plRd} = 22518.13 [kG]$	Résistance de calcul plastique de la sec	tion brute	$N_{plRd} = A^* f_{y4} / \gamma_{M0}$
$ N_{b4,Ed} < N_{pl,Rd}$	1019.72 < 22518.13	vérifié	(0.05)

BARRE 5

VÉRIFICATION DES SOUDURES

e =	12	[mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons			
$M_0 =$	11.88	[kG*m]	Moment fléchissar	nt réel		$\mathbf{M}_0 = \mathbf{N}_{\mathrm{b5,Ed}} * \mathbf{e}$
$A_s =$	22.000	$[cm^2]$	Aire de la section	des soudures		
$I_0 =$	583.712	[cm ⁴]	Moment d'inertie p	polaire des soudures		
$\sigma_{\rm N}$ =	4.55	[MPa]	Contrainte compos de l'effort axial	sante due à l'influenc	$\sigma_{ m N}=N_{b5,Ed}/A_{s}$	
$\sigma_{\rm Mx} =$	0.87	[MPa]	Contrainte compos du moment sur la c	sante due à l'influenc direction x	$\sigma_{\mathrm{Mx}}=\mathrm{M_0*z/I_0}$	
$\sigma_{\rm Mz}$ =	1.29	[MPa]	Contrainte compos de l'effort du mom	Contrainte composante due à l'influence le l'effort du moment sur la direction z		$\sigma_{ m Mz}=M_0*x/I_0$
$\sigma =$	5.57	[MPa]	Contrainte résultar	nte		$\sigma = \sigma_{\rm Mz} \left[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2 \right]$
$\gamma_{\rm w} =$	0.80		Coefficient de correlation			[Tableau 4.1]
f _{vw,d} =	381.05	[MPa]				$f_{\rm vw,d} = f_{\rm u}/(\sigma \ 3^* \sigma_{\rm w}^* \sigma_{\rm M2})$
$\sigma < f_v$	Rd		5.5	57 < 381.05	vérifié	(0.01)

RÉSISTANCE DE LA SECTION

$N_{plRd} = 22518.13 [kG]$ Résistance de calcul plastique de la section brute $N_{plRd} = A*f_{y5}/\gamma_{M0}$						
$ N_{b5,Ed} < N_{pl,Rd}$	1019.72 < 22518.13	vérifié	(0.05)			
Assemblage satisfaisant vis à	Ratio	0.05				

7.3 Calcul de l'assemblage des pieds des potelets

Section 1.01 Général

Assemblage N° : 2 Nom de l'assemblage : Gousset - noeud intérieur

Section 1.02 Géométrie

(a) Barres

		Barre 3	Barre 4	
Profilé :		UAP 80	UAP 80	
	h	80	80	Mm
	b_{f}	45	45	Mm
	tw	5	5	Mm
	t _f	8	8	Mm
	r	8	8	Mm
	А	10.675	10.675	cm2
Matériau :		ACIER E28	ACIER E28	
	$\mathbf{f}_{\mathbf{y}}$	275.00	275.00	Mpa
	$\mathbf{f}_{\mathbf{u}}$	405.00	405.00	Мра
Angle	σ	-59.0	-122.0	Deg
--				

(b) Soudures

Soudures des barres

Barre 3

$l_1 =$	280	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	230	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

Barre 4

$l_1 =$	280	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	230	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

(c) Gousset

h =	270	[mm]	Hauteur de la platine
b =	425	[mm]	Largeur de la platine
t =	10	[mm]	Epaisseur de la platine
ъ	N		

Paramètres

$b_1 =$	245	[mm]	Dimension
$b_2 =$	180	[mm]	Dimension
b ₃ =	245	[mm]	Dimension
$b_4 =$	180	[mm]	Dimension
$h_1 =$	270	[mm]	Dimension
$h_2 =$	0	[mm]	Dimension
$h_3 =$	270	[mm]	Dimension
$h_4 =$	0	[mm]	Dimension

Centre de gravité de la tôle par rapport au centre de gravité des barres (-33;-135)

Matériau :

ACIER

 $f_y = 235.00$ [MPa] Résistance

(d) Coefficients de matériau

$\gamma_{M0} =$	1.00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1.25	Coefficient de sécurité partiel	[2.2]

Section 1.03 Efforts

Cas: Calculs manuels

$N_{b3,Ed} = 3019.72 [kG]$	Effort axial
$N_{b4,Ed} = 3019.72 [kG]$	Effort axial

Section 1.04 Résultats

(a) Barre 3

(i) Vérification des soudures

e =	4	[mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons	
$M_0 =$	13.32	[kG*m]	Moment fléchissant réel	$M_0 = N_{b3,Ed} \ast e$
$A_s =$	51.000	$[cm^2]$	Aire de la section des soudures	
$I_0 =$	3949.245	$[cm^4]$	Moment d'inertie polaire des soudures	
$\sigma_{ m N}$ =	5.81	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_{\rm N} = N_{b3,Ed}/A_s$
$\sigma_{\rm Mx}$ =	0.16	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx}=M_0*z/I_0$
$\sigma_{\rm Mz}$ =	0.50	[MPa]	Contrainte composante due à l'influence de l'effort du moment sur la direction z	$\sigma_{\text{Mz}}=M_0*x/I_0$
σ=	5.99	[MPa]	Contrainte résultante	$\sigma = \sigma_{\rm Mz} \left[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2 \right]$
$\gamma_{\rm w} =$	0.80		Coefficient de corrélation	[Tableau 4.1]
f _{vw,d} =	325.63	[MPa]		$f_{vw,d} = f_u/(\sigma 3^* \sigma_w^* \sigma_{M2})$
$\sigma < f$	vRd		5.99 < 325.63 vérifié	(0.02)

(ii) Résistance de la section

 N_{plRd} = 29934.20 [kG] Résistance de calcul plastique de la section brute N_{plRd} =A*f_{y3}/ σ_{M0}

$ N_{b3,Ed} < N_{pl,Rd}$	3019.72 < 29934.20	vérifié	(0.10)

(b) Barre 4

(i) Vérification des soudures

e =	4	[mm]	Excentricité de l'effort axial par rap centre de gravité du groupes de bou	port au Ilons	
$M_0 =$	13.32	[kG*m]	Moment fléchissant réel		$M_0 = N_{b4,Ed} * e$
$A_s =$	51.000	$[cm^2]$	Aire de la section des soudures		
$I_0 =$	3949.245	$[cm^4]$	Moment d'inertie polaire des soudur	res	
$\sigma_{\rm N}$ =	5.81	[MPa]	Contrainte composante due à l'influ de l'effort axial	ence	$\sigma_{\rm N} = N_{b4,Ed}/A_s$
$\sigma_{\rm Mx}$ =	0.16	[MPa]	Contrainte composante due à l'influ du moment sur la direction x	ence	$\sigma_{Mx}=M_0*z/I_0$
σ_{Mz} =	0.50	[MPa]	Contrainte composante due à l'influ de l'effort du moment sur la direction	ence on z	$\sigma_{\mathrm{Mz}}=\mathrm{M}_{0}*\mathrm{x}/\mathrm{I}_{0}$
$\sigma =$	5.99	[MPa]	Contrainte résultante		$\sigma = \sigma_{\rm Mz}[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2]$
$\sigma_{ m w}$ =	0.80		Coefficient de corrélation		[Tableau 4.1]
$f_{vw,d} =$	325.63	[MPa]			$f_{vw,d} = f_u / (\sigma 3^* \sigma_w^* \sigma_{M2})$
$\sigma < f_{vRd}$	l		5.99 < 325.63 vé	érifié	(0.02)

(ii) Résistance de la section

$N_{plRd} = 29934.20 [kG]$	Résistance de calcul plastique de la sect	tion brute $N_{plRd}=A*f_{y4}/\gamma_{M0}$
$ N_{b4,Ed} < N_{pl,Rd}$	3019.72 < 29934.20	vérifié (0.10)

Assemblage satisfaisant vis à vis	Datio	0.10
de la Norme	Katio	0.10

7.4 Calcul de l'assemblage (poteau avec contrevontemment verticale):

Section 1.06 Géométrie

		Barre 1	
Profilé :		UAP 80	
	h	80	Mm
	\mathbf{b}_{f}	45	Mm
	$t_{\rm w}$	5	Mm
	t _f	8	Mm
	r	8	Mm
	А	10.675	cm2
Matériau :		ACIER E28	
	$\mathbf{f}_{\mathbf{y}}$	275.00	Mpa
	f_u	405.00	Mpa
Angle	α	37.0	Deg

(a) Barres

Barre 1

(b) Soudures

Soudures des barres

Barre 1

$l_1 =$	100	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	46	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

Soudures d'angle du gousset

a =	8	[mm]	Bord a
b =	8	[mm]	Bord b

(c) Gousset

h =	300	[mm]	Hauteur de la platine	
b =	366	[mm]	Largeur de la platine	
t =	15	[mm]	Epaisseur de la platine	
Centre de	gravité de	la tôle par raj	pport au centre de gravité des barres	(221;109)

$e_{V} = 40$	[mm]	Distance verticale de l'extrémité du gousset du point d'intersection des axes des barres
$e_{\rm H} = 40$	[mm]	Distance horizontale de l'extrémité du gousset du point d'intersection des axes des barres
Matériau:	ACIER	E28
-		

 $f_y = 275.00$ [MPa] Résistance

(d) Coefficients de matériau

$\gamma_{M0} =$	1.00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1.25	Coefficient de sécurité partiel	[2.2]

Section 1.07 Efforts

Cas: Calculs manuels

 $N_{b1,Ed} = 4019.72 \,[kG] \, Effort \ axial$

Section 1.08 Résultats

(a) Barre 1

(i) Vérification des soudures

e –	17	[mm]	Excentricité	de l'effort axial par raj	pport au	
C –			centre de gra	vité du groupes de bo		
$M_0 =$	66.90	[kG*m]	Moment fléc	chissant réel		$\mathbf{M}_0 = \mathbf{N}_{b1,Ed} * \mathbf{e}$
$A_s =$	14.600	$[cm^2]$	Aire de la se	ction des soudures		
$I_0 =$	370.835	$[cm^4]$	Moment d'in	ertie polaire des soudu	ires	
$\sigma_{\rm N} =$	27.00	[MPa]	Contrainte c	omposante due à l'influ	uence	$\sigma_{\rm N} = N_{\rm b1~Ed}/A_{\rm s}$
• 11			de l'effort axial			
$\sigma_{Mx} =$	10.91	[MPa]	Contrainte c	Contrainte composante due à l'influence		$\sigma_{Mx}=M_0*z/I_0$
			du moment s	sur la direction x		
$\sigma_{M_7} =$	10.35	[MPa]	Contrainte c	omposante due à l'influ	uence	$\sigma_{M_7} = M_0 * x / I_0$
O WIZ	0 MZ = 10.55 [WH a]		de l'effort du moment sur la direction z			
$\sigma =$	39.29	[MPa]	Contrainte re	ésultante	$\sigma = \sigma_{\rm Mz} \left[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2 \right]$	
$\gamma_{\rm w} =$	0.80		Coefficient de corrélation			[Tableau 4.1]
$f_{vw,d} =$	381.05	[MPa]	$f_{vw,d} = f_u/d$			$f_{\rm vw,d} = \overline{f_{\rm u}/(\sigma \ 3^* \sigma_{\rm w}^* \sigma_{\rm M2})}$
$\sigma < f_{vRo}$	1			39.29 < 381.05	vérifié	(0.10)

(ii) Résistance de la section

$$\begin{split} N_{plRd} = & 29934.20 \, [kG] \, \text{R}\acute{e}sistance \ de \ calcul \ plastique \ de \ la \ section \ brute \ N_{plRd} = & A^* f_{yl} / \gamma_{M0} \\ |N_{b1,Ed}| < & N_{pl,Rd} \ & |4019.72| < & 29934.20 \ & v\acute{e}rifi\acute{e} \ & (0.13) \end{split}$$

(b) Attache gousset à une membrure

(i) Vérification des soudures d'angle

e =	196	[mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons	
$M_0 =$	0.47	[kG*m]	Moment fléchissant réel	$M_0 = N_1 * \cos(\alpha_1) * e$
$A_s =$	58.560	$[cm^2]$	Aire de la section des soudures	
$I_0 =$	6549.54	6 [cm ⁴]	Moment d'inertie polaire des soudures	
$\sigma_{\rm Nx}$ =	5.38	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_{\rm Nx} = [N_1 * \cos \alpha_1)]/A_s$
$\sigma_{ m Nz}$ =	4.05	[MPa]	Contrainte composante due à l'influence de l'effort tranchant	$\sigma_{\rm Nz} = [N_1 * \sin(\alpha_1)] / A_s$
$\sigma_{\rm Mx}$ =	0.28	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx}=M_0*x/I_0$

Chapitre 7: ETUDE DE L'ASSEMBLAGE

e = 19	96	[mm]	centre de gravité du groupes de boulons	
$\sigma_{\rm Mz} = -13$	3.00	[MPa]	Contrainte composante due à l'influence de l'effort du moment sur la direction z	$\sigma_{Mz}=M_0*z/I_0$
$\sigma = 17$	7.96	[MPa]	Contrainte résultante	$\sigma = \sigma_{\rm Mz} \left[(\sigma_{\rm Nx} + \sigma_{\rm Mx})^2 + (\sigma_{\rm Nz} + \sigma_{\rm Mz})^2 \right]$
$\gamma_{\rm w} = 0.$.80		Coefficient de corrélation	[Tableau 4.1]
$f_{vw,d} = 38$	81.05	[MPa]		$f_{vw,d} = f_u/(\sigma 3^* \sigma_w^* \sigma_{M2})$
$\sigma < f_{vRd}$			17.96 < 381.05 vérifié	(0.05)

Assemblage satisfaisant vis à vis de la Norme Ratio 0.13

7.5 Calcul de l'assemblage contreventement horizontale :

Section 1.09 Général

Assemblage N° : 4 Nom de l'assemblage : Gousset - noeud intérieur

Section 1.10 Géométrie

		Danna 1	Dame 1	Danna 2	Downs 4	
		Barre 1	Barre 2	barre 5	Barre 4	
Profilé :		CAE 60x6	CAE 60x6	CAE 60x6	CAE 60x6	
	h	60	60	60	60	Mm
	b_{f}	60	60	60	60	Mm
	$t_{\rm w}$	6	6	6	6	Mm
	t _f	6	6	6	6	Mm
	r	8	8	8	8	Mm
	А	6.909	6.909	6.909	6.909	cm2
Matériau :		ACIER E28	ACIER E28	ACIER E28	ACIER E28	
	$\mathbf{f}_{\mathbf{y}}$	275.00	275.00	275.00	275.00	Mpa
	f _u	405.00	405.00	405.00	405.00	Mpa
Angle	α	130.0	26.6	-50.0	-153.5	Deg

(a) Barres

Barre 1 Barre 2 Barre 3 Barre 4

(b) Soudures

Soudures des barres

Barre 1-3

$l_1 =$	100	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	100	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

Barre 2

$l_1 =$	100	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	100	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

Barre 4

$l_1 =$	100	[mm]	Longueur 1 de la soudure d'angle longitudinale
$l_2 =$	100	[mm]	Longueur 2 de la soudure d'angle longitudinale
a =	2	[mm]	Epaisseur des soudures d'angle longitudinales

(c) Gousset

h =	400	[mm]	Hauteur de la platine
b =	631	[mm]	Largeur de la platine
t =	10	[mm]	Epaisseur de la platine

Paramètres

$b_1 =$	301	[mm]	Dimension
$b_2 =$	330	[mm]	Dimension
b ₃ =	301	[mm]	Dimension
$b_4 =$	330	[mm]	Dimension
$h_1 =$	200	[mm]	Dimension
$h_2 =$	200	[mm]	Dimension
h ₃ =	200	[mm]	Dimension
$h_4 =$	200	[mm]	Dimension

Centre de gravité de la tôle par rapport au centre de gravité des barres

103

Matériau :

ACIER E28

 $f_y = 275.00$ [MPa] Résistance

(d) Coefficients de matériau

$\gamma_{M0} =$	1.00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1.25	Coefficient de sécurité partiel	[2.2]

Section 1.11 Efforts

Cas: Calculs manuels

$N_{b1,Ed} = 1019.72 [kG]$	Effort axial
$N_{b2,Ed} = 1019.72 [kG]$	Effort axial
$N_{b3,Ed} = 1019.72 [kG]$	Effort axial
$N_{b4,Ed} = 1019.72 [kG]$	Effort axial

Section 1.12 Résultats

(a) Barre 1-3

(i) Vérification des soudures

e = 13	12	[mm]	Excentricité de l'effort axial par rapport au			
	15	[111111]	centre de gravité du groupes de boulons			
$M_0 =$	0.00	[kG*m]	Moment fléchissant réel	$M_0 = N_{b1,Ed} \ast e$		
$A_s =$	16.000	$[cm^2]$	Aire de la section des soudures			
$I_0 =$	319.147	$[cm^4]$	Moment d'inertie polaire des soudures			
$\sigma_{\rm N}$ =	0.00	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_{\rm N} = N_{b1,Ed}/A_s$		
$\sigma_{\rm Mx} =$	0.00	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx}=M_0*z/I_0$		
$\sigma_{\rm Mz}$ =	0.00	[MPa]	Contrainte composante due à l'influence de l'effort du moment sur la direction z	$\sigma_{Mz}=M_0*x/I_0$		
$\sigma =$	0.00	[MPa]	Contrainte résultante	$\sigma = \sigma \left[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2 \right]$		
$\gamma_{\rm w} =$	0.80		Coefficient de corrélation	[Tableau 4.1]		
f _{vw,d} =	381.05	[MPa]		$f_{vw,d} = f_u/(\sigma 3^* \sigma_w^* \sigma_{M2})$		
$\sigma < f_v$	Rd		0.00 < 381.05 vérifié	(0.00)		

(ii) Résistance de la section

Chapitre 7: ETUDE DE L'ASSEMBLAGE

N _{plRd} =	=19373.4	30[kG]R	ésistance de calcul plastique de la section	brute $N_{plRd} = A^* f_{y1} / \gamma_{M0}$
Nb1,Ed	$ $ $<$ $N_{pl,Rd}$		0.00 < 19373.43 vér	ifié (0.00)
	()	b) Barre	2	
		(i) Véri	fication des soudures	
e =	13	[mm]	Excentricité de l'effort axial par rapport a centre de gravité du groupes de boulons	u
$M_0 =$	13.38	[kG*m]	Moment fléchissant réel	$\mathbf{M}_0 = \mathbf{N}_{b2,Ed} * \mathbf{e}$
$A_s =$	16.000	$[cm^2]$	Aire de la section des soudures	
$I_0 =$	319.147	[cm ⁴]	Moment d'inertie polaire des soudures	
$\sigma_{ m N}$ =	6.25	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_{N} = N_{b2,Ed} / A_{s}$
$\sigma_{\rm Mx}$ =	1.40	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx}=M_0*z/I_0$
$\sigma_{ m Mz}$ =	2.06	[MPa]	Contrainte composante due à l'influence de l'effort du moment sur la direction z	$\sigma_{Mz} = M_0 * x / I_0$
$\sigma =$	7.92	[MPa]	Contrainte résultante	$\sigma = \sigma_{\rm Mz} \ [(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2]$
$\sigma_{ m w}$ =	0.80		Coefficient de corrélation	[Tableau 4.1]
$f_{vw,d} =$	381.05	[MPa]		$f_{vw,d} = f_u/(\sigma \ 3^* \sigma \ _w^* \sigma \ _{M2})$
$\sigma < f_{vF}$	Rd		7.92 < 381.05 vérifié	(0.02)

(ii) Résistance de la section

$N_{plRd} = 19373.43 [kG]$	Résistance de calcul plastique de la section brute N _{plRd}	$=A*f_{y2}/\gamma_{M0}$
$ N_{b2,Ed} < N_{pl,Rd}$	1019.72 < 19373.43 vérifié	(0.05)

(c) Barre 4

(i) Vérification des soudures

e =	13	[mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons	l
$M_0 =$	13.38	[kG*m]	Moment fléchissant réel	$M_0 = N_{b4,Ed} \ast e$
$A_s =$	16.000	$[cm^2]$	Aire de la section des soudures	
$I_0 =$	319.147	[cm ⁴]	Moment d'inertie polaire des soudures	
$\sigma_{ m N}$ =	6.25	[MPa]	Contrainte composante due à l'influence de l'effort axial	$\sigma_N = N_{b4,Ed}/A_s$
$\sigma_{\rm Mx}$ =	1.40	[MPa]	Contrainte composante due à l'influence du moment sur la direction x	$\sigma_{Mx}=M_0*z/I_0$
$\sigma_{ m Mz}$ =	2.06	[MPa]	Contrainte composante due à l'influence de l'effort du moment sur la direction z	$\sigma_{Mz}=M_0*x/I_0$
σ =	7.92	[MPa]	Contrainte résultante	$\sigma = \sigma_{\rm Mz} \left[(\sigma_{\rm N} + \sigma_{\rm Mx})^2 + \sigma_{\rm Mz}^2 \right]$
$\gamma_{\rm w} =$	0.80		Coefficient de corrélation	[Tableau 4.1]
$f_{vwd} =$	381.05	[MPa]		$f_{\rm vw d} = f_{\rm u}/(\sigma 3^* \sigma_{\rm w}^* \sigma_{\rm M2})$

7.6 Calcul de l'assemblage des pieds des poteaux avec contreventement verticale

Section 1.13 Général

Assemblage N° : Nom de l'assemblage : 3 Gousset - barre simple

Section 1.14 Géométrie

(a) Barres

		Barre 1	unité
Profilé :		UAP 80	
	h	80	mm
	b_{f}	45	mm
	tw	5	Mm
	t _f	8	Mm
	r	8	Mm
	А	10.675	cm2
Matériau :		ACIER	
	$\mathbf{f}_{\mathbf{y}}$	235.00	Мра
	fu	365.00	Mpa
Angle	α	47.0	Deg

(b) Boulons

Barre 1

Classe =	8.8		Classe du boulon
d =	16	[mm]	Diamètre du boulon
$d_0 =$	18	[mm]	Diamètre du trou de boulon
$A_s =$	1.570	$[cm^2]$	Aire de la section efficace du boulon
$A_v =$	2.011	$[cm^2]$	Aire de la section du boulon
$f_{yb} =$	550.00	[MPa]	Limite de plasticité
$f_{ub} =$	800.00	[MPa]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons
Espacom	nt das hou	long 60.4	50 [mm]

Espacement des boulons 60;60 [mm]

$h_1 = 35$	[mm]	Distance du centre de gravité du premier boulon de l'extrémité de la barre
$e_{b} = 40$	[mm]	Distance de l'axe des boulons du bord de la barre

- e_c = 100 [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres
 - (c) Soudures

Soudur	es d'a	ngle du gou	isset			
b =	5	[mm]	Bord b			
		(d) Gousse	et			
h =	250	[mm]	Hauteur de la platine			
b =	240	[mm]	Largeur de la platine			
t =	10	[mm]	Epaisseur de la platine			
Centre	de grav	vité de la tôl	e par rapport au centre de g	ravité des	barres	(144;94)
$e_V = 0$	[mm]	Distance ve des barres	rticale de l'extrémité du gou	isset du po	int d'intersection des axes	
е _н = 10	[mm]	Distance ho des barres	rizontale de l'extrémité du g	gousset du	point d'intersection des ax	tes
Matéria	.u :		ACIER E28			
$f_y\!\!=\!275$.00			[MPa]	Résistance	
		(e) Coeffic	cients de matériau			
$\gamma_{M0} =$	1.00			Coefficie	nt de sécurité partiel	[2.2]
$\gamma_{M2} =$	1.25			Coefficie	nt de sécurité partiel	[2.2]
	Sec	ction 1.15	Efforts			
Cas:			Ca	lculs manu	iels	
N _{b1,Ed} =	1019	.7200 [kG]	Effort axial			
	Se	ction 1.16	Résultats			
		(a) Barre	1			
		(i) Rési	stance des boulons			
$F_{v,Rd} =$	7873.	.00 [kG]	Résistance de la tige cisaillement	d'un bou	$\lim_{F_{v,Rd}=0.6*f_{ub}*A_v*}$	$m/\gamma_{\rm M2}$
Pressio	n du b	oulon sur l	a barre			
Directio	on x					
$k_{1x} =$	2.50	Coeffic	eient pour le calcul de F _{b,Rd}		k1x=min[2.8*(e2/d	0)-1.7, 2.5]
$k_{1x} > 0.$	0		2.50 > 0.00		vérifié	
$\gamma_{\rm bx}=0.$	65	Coefficient des boulon	t dépendant de l'espacement s	t	$\gamma_{bx} = \min[e_1/(3*q_0)-0.25],$	d ₀), f _{ub} /f _u , 1]
$\gamma_{\rm bx} > 0.$	0		0.65 > 0.00		vérifié	
F _{b,Rd1x} =	= 3859.	.8 [kG]	Résistance de calcul à l'éta plastification	t limite de	$F_{b,Rd1}=k_1*\gamma_b*f_u$	*d*t _i /γ _{M2}
			de la paroi du trou			
Directio	on z					

Matériau :	ACIER E28		
$f_y = 275.00$		[MPa]	Résistance
	(e) Coefficients de matériau		
$\gamma_{M0} = 1.00$		Coefficie	nt de sécurité partiel [2.2]
$k_{1z} = 2.50$	Coefficient pour le calc	ul de F _{b,Rd}	k _{1z} =min[2.8*(e ₂ /d ₀)- 1.7, 2.5]
$k_{1z} > 0.0$	2	.50 > 0.00	vérifié
$\gamma_{bz} = \frac{0.7}{4}$	Coefficient pour le calcul de F _{b,Rd}		$\gamma_{bz}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$\gamma_{bz} > 0.0$		0.74 > 0.	00 vérifié
$F_{b,Rd1z} = 441$	1.2 2 [kG] Résistance d'un boulon	en pressior	a diamétrale $F_{b,Rd1z} = k_{1z} * \gamma_{bz} * f_u * d * t_i / \gamma_{M2}$
Pression du b	oulon sur la platine		
Direction x			
$k_{1x} = \frac{2.50}{00}$	Coefficient pour le calcul de F _{b,Rd}		$k_1 = \min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2.50 > 0.00	vérifié	
$\gamma_{bx} = \begin{array}{c} 0.7 & \text{Coe} \\ 5 & \text{des} \end{array}$	fficient dépendant de l'espacement boulons	γ _{bx} =mi	$n[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$\gamma_{\rm bx} > 0.0$	0.75 > 0.00	vérifié	
$F_{b,Rd2x} = 6689$	Résistance de calcul à l'ét 9.29 [kG] plastification de la paroi du trou	tat limite	de $F_{b,Rd2x}=k_1*\gamma_b*f_u*d*t_i/\gamma_{M2}$
Direction z			
$k_{1z} = 2.50$ $k_{1z} > 0.0$	Coefficient pour le calcul c $2.50 > 0.00$ vér	le F _{b,Rd} ifié	$k_{1z}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$\gamma_{\rm bz} = 0.75$	Coefficient pour le calcul de $F_{b,Rd} * \gamma_{l}$	_{bz} =min[e ₁ /($(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$\gamma_{bz} > 0.0$	0.75 > 0.00		vérifié
$F_{b,Rd2z} = 6689.2$	29 [kG] Résistance d'un boulon en pres	sion diamé	$itrale F_{b,Rd2z} = k_{1z} * \gamma_{bz} * f_u * d * t_i / \gamma_{M2}$
	(ii) Vérification de l'assembla boulons	age pour	r les efforts agissant sur les
cisaillement des bo	oulons	1 111 01	
$F_{NSd} = 339.91$	[kG] Force résultante dans le boulon c de l'effort axial	lue à l'influ	$F_{NSd} = N_{b1,Ed}/n$
$F_{x,Ed} = 339.91$	[kG] Effort de calcul total dans le bou direction x	lon sur la	$F_{x,Ed} = F_{NSd}$
$F_{z,Ed} = 0.00$	[kG] Effort de calcul total dans le bou direction z	lon sur la	$F_{z,Ed} = F_{MSd}$
$F_{Rdx} = 3859.81$	[kG] Résistance résultante de calcul d	u boulon s	ur $F_{Rdx}=min(F_{vRd}, F_{bRd1x}, F_{bRd2x})$

Chapitre 7: ETUDE DE L'ASSEMBLAGE

$F_{NSd} = 339.91 [kG]$	Force résultante de l'effort axial	dans le boulon due à l'influenc	$e^{e}F_{NSd} = N_{b1,Ed}/n$	
	la direction x			
$F_{Rdz} = 4411.22 [kG]$	Résistance résul la direction z	tante de calcul du boulon sur	F _{Rdz} =min(F _{vRd} , F _{bRd1z}	, F _{bRd2z})
$ F_{x,Ed} < F_{Rdx}$		339.91 < 3859.81	vérifié	(0.09)
$ F_{z,Ed} < F_{Rdz}$		0.00 < 4411.22	vérifié	(0.00)

(iii) Vérification de la section de la poutre affaiblie par les trous

$A_{net} = 9.775$ [cm ²]] Aire de la section nette	$A_{net} = A - t^* d_0$	
$N_{uRd} = 26194.38 [kG]$	Résistance de calcul de la section nette	$N_{u,Rd} = (0.9*A_{net}*f_{u1})/\gamma_{1}$	M2
$N_{plRd} = 25580.14 [kG]$	Résistance de calcul plastique de la section brut	$eN_{plRd}\!\!=\!\!A^*f_{yl}/\gamma_{M0}$	
Nb1,Ed <ntrd< td=""><td> 1019.72 < 26194.38</td><td>vérifié (0.0-</td><td>4)</td></ntrd<>	1019.72 < 26194.38	vérifié (0.0-	4)
$ N_{b1,Ed} < N_{pl,Rd}$	1019.72 < 25580.14	vérifié (0.0	4)

(iv) Vérification de la barre pour le cisaillement de bloc

Ant =	1.550	[cm ²]	Aire nette de la zone de la section en traction		
$A_{nv} =$	5.500	[cm ²]	Aire de la zone de la section en traction		
$V_{effRd} =$	9917.00	[kG]	Résistance de calcul de la section affaiblie par les trous	$V_{effRd} = 0.5 * f_u * A_{nt} / \gamma_{M2} + (1/\sigma 3)$	$P^*f_y^*A_{nv}/\gamma_{M0}$
$ N_{b1,Ed} <$	VeffRd		1019.72 < 9917.00 véri	fié	(0.10)

(b) Attache gousset

(i) Vérification des soudures d'angle

e =	110	[mm]	Excentricité de l'effort axial par rapport Au centre de gravité du groupes de boulons	
M ₀ =	41.02	[kG*m]	Moment fléchissant réel	$M_0 = 0.5*N_{b1,Ed}*sin(\alpha)*e$
A _s =	12.00 0	[cm ²]	Aire de la section de la soudure	$A_s = a^*l$
σ=	11.43	[MPa]	Contrainte normale dans la soudure	$\sigma=0.5*N_{b1,Ed}*sin(\alpha)/A_s+M_0/W_y$ s
$\sigma_{ m N}$ =	= 8.08	[MPa]	Contrainte normale perpendiculaire dans la soudure	$\sigma_{ m N}= N_{b1,Ed} $ / $A_{ m s}$

Chapitre 7: ETUDE DE L'ASSEMBLAGE

Assemblage satisfaisant vis à vis de la Norme Ratio 0.10						
$\sigma_{\rm II} [\sigma_{\rm N}^2 + 3*(\sigma_{\rm II}^2 + \sigma_{\rm II})]$	N^{2}] * f _u /($\Box_{w}*\Box_{M2}$) 16.89 < 275	5.00 vérifié	(0.04)			
$\gamma_{\rm w} = 0.80$	Coefficient de corrélation	[Tableau 4.1]				
$\sigma_{\text{II}} = 2.84 \text{ [MPa]}$	Contrainte tengentielle parallèle	$\sigma_{\mathrm{II}} = 0.5 * \mathrm{N_{b1,Ed}}$	$_{\rm d}*\cos(\alpha)/A_{\rm s}$			
$\sigma_{\text{N}}=8.08$ [MPa]	Contrainte tengentielle perpendie	culaire				
σ_{N} =0.9* $f_{\mathrm{u}}/\gamma_{\mathrm{M2}}$	8.08 < 198.00 ve	érifié	(0.04)			

8.1- Introduction

Une fondation est destinée à transmettre au sol dans les conditions les plus favorables, les charges provenant de la superstructure.

Les problèmes les plus fréquents de la géotechnique sont les problèmes de fondations.

Il existe deux types de fondations: on appelle "Fondations superficielles" les fondations reposant à la surface du massif de sol ou à faible profondeur, tandis que les "Fondations profondes" reportent en profondeur les charges d'art.

- Fondation superficielles (semelles filantes ou isolées): D/B < 1.5

- Fondation profonds: $D/B \geq 10$

Avec :

D: l'encastrement dans le sol de fondation.

B: largeur de la semelle B (ou le petite coté B).

Les exigences relatives aux fondations des bâtiments et ouvrages sont de" même nature que pour tous les types d'ouvrages de la géotechnique conditions de stabilité et de déformations acceptables sous certains systèmes de charges imposés, que ce soit pour calculer des tassements ou pour évaluer la stabilité, la première opération concernant les fondations consiste à définir par des essais, sondages ou tout autre moyen, la géométrie et les caractéristiques physiques et mécaniques, des couches de sols et de roches sur le site, ensuite, des abaques, formules ou programmes de calcul permettent de faire les calculs de déformations ou de stabilité nécessaires à la justification de l'ouvrage, les schémas de calcul sont inspirés des observations faites sur les ouvrages, l'instabilité peut prendre la forme d'une glissement, d'un poinçonnement (tassement excessif) ou d'une rotation et les déplacements peuvent prendre des formes semblables.

8.2 Calcul semelle du poteau :

Article II. Général

Article III.	Géométrie
Barres de la structure :	2
Noeud de la structure :	3
Nom de l'assemblage :	Pied de poteau encastré
Assemblage N° :	1

Article IV.

IPE 330

Profilé : Barre N° :

Barre N° :			2	
$L_c =$	9.00	[m]	Longueur du poteau	
$\alpha =$	0.0	[Deg]	Angle d'inclinaison	
$h_c =$	330	[mm]	Hauteur de la section du poteau	
$b_c =$	160	[mm]	Largeur de la section du poteau	
$t_{wc} =$	8	[mm]	Epaisseur de l'âme de la section du poteau	
$t_{fc} =$	12	[mm]	Epaisseur de l'aile de la section du poteau	
$r_c =$	18	[mm]	Rayon de congé de la section du poteau	
$A_c =$	62.606	$[cm^2]$	Aire de la section du poteau	
I _{yc} =	11766.90	$00 [cm^4]$	Moment d'inertie de la section du poteau	

<u>Poteau</u>

$L_c =$	9.00 [m]	Longueur du poteau
Matér	iau : ACIER	
$f_{yc} =$	235.00 [MPa]	Résistance
$f_{uc} =$	365.00 [MPa]	Résistance ultime du matériau

Article V. <u>Platine de prescellement</u>

) [mm]	Longueur
) [mm]	Largeur
[mm]	Epaisseur
ACIER E	228
)	[MPa] Résistance
)	[MPa] Résistance ultime du matériau
	0 [mm] 0 [mm] [mm] ACIER E 0

Article VI. <u>Ancrage</u>

Classe =	HR 10.9)	Classe de tiges d'ancrage
$f_{yb} =$	900.00	[MPa]	Limite de plasticité du matériau du boulon
$f_{ub} =$	1200.00	[MPa]	Résistance du matériau du boulon à la traction
d =	24	[mm]	Diamètre du boulon
$A_b =$	3.530	$[cm^2]$	Aire de section efficace du boulon
$n_h =$	2		Nombre de colonnes des boulons
$n_v =$	3		Nombre de rangéss des boulons
$a_h =$	470	[mm]	Ecartement
$a_v =$	160	[mm]	Entraxe

Dimensions des tiges d'ancrage

$l_1 =$	100	[mm]
$l_2 =$	640	[mm]
$l_3 =$	145	[mm]
$l_4 =$	125	[mm]

Plaquette

	A	Article VIII.	Coefficients de matériau
$d_2 =$	30	[mm]	Grugeage
$d_1 =$	30	[mm]	Grugeage
$t_s =$	15	[mm]	Epaisseur
$h_s =$	200	[mm]	Hauteur
$b_s =$	480	[mm]	Largeur
	A	Article VII.	<u>Raidisseur</u>
t =	15	[mm]	Epaisseur
w =	48	[mm]	Largeur
1 =	48	[mm]	Longueur

$\gamma_{M0} =$	1.00		Coefficient de sécurité partiel
$\gamma_{M2} =$	1.25		Coefficient de sécurité partiel
$\gamma_{\rm C} =$	1.50		Coefficient de sécurité partiel
	Art	ticle IX.	Semelle isolée
a =	1490	[mm]	Longueur de la semelle
b =	1490	[mm]	Largeur de la semelle
h =	1290	[mm]	Hauteur de la semelle

Béton

Classe

BETON25

 $f_{ck} = 25.00$ [MPa] Résistance caractéristique à la compression

Mortier de calage

t _g =	33	[mm]	Epaisseur du mortier de calage
f _{ck,g} =	12.00	[MPa]	Résistance caractéristique à la compression
$C_{f,d} =$	0.30		Coef. de frottement entre la plaque d'assise et le béton

Article X. Soudures

$a_p =$	10	[mm]	Plaque principale du pied de poteau
$a_{pl} =$	10	[mm]	Plaquette
$a_r =$	10	[mm]	Raidisseurs

Article XI. Efforts

Cas: Calculs manuels

	Articl	e XII.	Résultats
$M_{j,Ed,z} =$	18.35	[kG*m]	Moment fléchissant
$M_{j,Ed,y} =$	-9991.13	[kG*m]	Moment fléchissant
$V_{j,Ed,z} =$	3125.76	[kG]	Effort tranchant
$V_{j,Ed,y} =$	7.79	[kG]	Effort tranchant
$N_{j,Ed} =$	2269.58	[kG]	Effort axial

Article XIII. Zone comprimée

COMPRESSION DU BETON

f 16.67		Régistence de celeul à le compression	EN	1992-
1_{cd} - 10.07		Resistance de calcur a la compression	1:[3.1.6.(1)]	
$f_j = 29.14$	[MPa]	Résistance de calcul du matériau du joint sous la plaque d'assise	[6.2.5.(7)]	
$c = t_p * (f_{yp}/($	$3*f_j*\gamma_{M0}))$			

c =	35	[mm]	Largeur de l'appui additionnelle		[6.2.5.(4)]
b _{eff} =	82	[mm]	Largeur efficace de la semelle de tronçon	ιT	[6.2.5.(3)]
$l_{eff} =$	231	[mm]	Longueur efficace de la semelle de tronço	on en T	[6.2.5.(3)]
$A_{c0} =$	190.411	[cm ²]	Zone de contact de la plaque d'assise avec	c la fondation	EN 1992-1:[6.7.(3)]
$A_{c1} =$	1713.700	$[cm^2]$	Aire de calcul maximale de la répartition	de la charge	EN 1992-1:[6.7.(3)]
F _{rdu} =	Aco*fcd*	$f_{i} * (A_{c1}/A_{c1$	A_{c0} + 3* A_{c0} * f_{cd}	C	
$A_{c1} =$	1713.700	$[cm^2]$	Aire de calcul maximale de la répartition	de la charge l	EN 1992-1:[6.7.(3)]
$\gamma_i =$	0.67		Coefficient réducteur pour la compression	n	[6.2.5.(7)]
$f_{jd} = \gamma$	∕ _j *F _{rdu} /(b _e	eff*leff)			
f _{jd} =	33.33	[MPa]	Résistance de calcul du matériau du join	t[6.2.5.(7)]	
۸ –	406.040	$\int [am^2]$	Aire de flexion My	[6282(1)]	
A _{c,y} –	400.943			[0.2.8.3.(1)]	
$A_{c,z} =$	406.949	J[cm ²]	Aire de flexion Mz	[6.2.8.3.(1)]	
$F_{c,Rd,i}$	$= A_{C,i} * f_{jd}$				
F _{c,Rd,y}	=138324	.18[kG]	Résistance du béton à la flexion My	[6.2.8.3.(1)]]
F _{c,Rd,z}	=138324	.18[kG]	Résistance du béton à la flexion Mz	[6.2.8.3.(1)]]

AILE ET AME DU POTEAU EN COMPRESSION

CL =	1.00		Classe de la section	EN 1993-1-1:[5.5.2]
$W_{pl,y} =$	804.399	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
M _{c,Rd,y} =	19276.08	[kG*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
$h_{f,y} =$	319	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
Fc,fc,Rd,y	$= M_{c,Rd,y} /$	$h_{f,y}$		
Fc,fc,Rd,y	=60521.4	4[kG]]	Résistance de l'aile et de l'âme comprimées [6.	.2.6.7.(1)]

$W_{pl,z} =$	153.683	$[cm^3]$	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,z} =$	3682.76	[kG*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
$h_{f,z} =$	121	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
Fc,fc,Rd,z	$= M_{c,Rd,z}$	/ h _{f,z}		
F _{c,fc,Rd,z} :	=30410.0	65 [kG]	Résistance de l'aile et de l'âme comprimées [6.2.6.7.(1)]

RESISTANCE DE LA SEMELLE DANS LA ZONE COMPRIMEE

$$\begin{split} F_{C,Rd,y} &= min(F_{c,Rd,y},F_{c,fc,Rd,y}) \\ F_{C,Rd,y} &= 60521.44\,[kG] \quad \text{Résistance de la semelle dans la zone comprimée}\,[6.2.8.3] \\ F_{C,Rd,z} &= min(F_{c,Rd,z},F_{c,fc,Rd,z}) \\ F_{C,Rd,z} &= 30410.65\,[kG] \quad \text{Résistance de la semelle dans la zone comprimée}\,[6.2.8.3] \end{split}$$

Article XIV. Zone tendue

RUPTURE DU BOULON D'ANCRAGE

$A_b =$	3.530	[cm ²]	Aire de section efficace du boulon		[Tableau 3.4]
$f_{ub} =$	1200.00	[MPa]	Résistance du matériau du boulon à la tract	ion	[Tableau 3.4]
Beta =	0.85		Coefficient de réduction de la résistance du	ı boulon	[3.6.1.(3)]
F _{t,Rd,s1}	= beta*0	.9*f _{ub} *A	A_b/γ_{M2}		
F _{t,Rd,s1}	=26435.	45 [kG]	Résistance du boulon à la rupture	[Tablea	u 3.4]
$\gamma_{Ms} =$	1.20		Coefficient de sécurité partiel	CEB [3	.2.3.2]
$f_{yb} =$	900.00 [MPa]	Limite de plasticité du matériau du boulon	CEB [9	.2.2]
F _{t,Rd,s2}	$= f_{yb} * A_b$	$\gamma_{\rm Ms}$			
F _{t,Rd,s2}	=26996.	99[kG]	Résistance du boulon à la rupture	CEB [9	.2.2]

$$\begin{split} F_{t,Rd,s} &= min(F_{t,Rd,s1},F_{t,Rd,s2}) \\ F_{t,Rd,s} &= 26435.45\,[kG] \qquad \text{Résistance du boulon à la rupture} \end{split}$$

ARRCHEMENT DU BOULON D'ANCRAGE DU BETON

 $f_{ck}=~25.00\,[\text{MPa}]~$ Résistance caractéristique du béton à la compression EN 1992-1:[3.1.2] $f_{ctd}=0.7*0.3*{f_{ck}}^{2/3}\!/f_C$

$f_{ctd} =$	1.20 [M	Pa] Résis	stance de calcul	à la traction		EN 1:[8.4.2.(2)	1992-)]
$\gamma_1 =$	1.00	Coef l'adh	. dépendant de érence	s conditions	du bétonnage	et de EN 1:[8.4.2.(2)	1992-)]
$\gamma_1 =_2 =$	= 1.00	Coef	. dépendant du d	iamètre du bo	ulon d'ancrage	EN 1:[8.4.2.(2)	1992-)]
$f_{bd} = 2$	$.25*\gamma_1*\gamma_2$	*f _{ctd}					
f _{bd} =	2.69 [[MPa]	Adhérence de ca	alcul admissit	De EN 1	992-1:[8.4.2.(2)]	
h _{ef} =	640 [[mm]	Longueur effica	ce du boulon	d'ancrage EN 1	992-1:[8.4.2.(2)]	
F _{t,Rd,p} =	$= \gamma^* d^* h_{ef}^*$	[*] f _{bd}					
F _{t,Rd,p} =	=13252.29	9[kG]	Résistance de c	alc. pour le so	oulèvement EN 1	1992-1:[8.4.2.(2)]	

ARRACHEMENT DU CONE DE BETON

$h_{ef} =$	390	[mm]	Longueur efficace du boulon d'ancrage CEE	B [9.2.4]
$N_{Rk,c}{}^0$	$= 7.5[N^{0.2}]$	⁵ /mm ^{0.5}]*f	$\mathbf{F}_{ck} * \mathbf{h}_{ef}^{1.5}$	
$N_{Rk,c}{}^0$	=29451.5	51 [kG]	Résistance caractéristique du boulon d'ancra	age CEB [9.2.4]
s _{cr,N} =	1170	[mm]	Largeur critique du cône de béton	CEB [9.2.4]
$c_{cr,N} =$	585	[mm]	Distance critique du bord de la fondation	CEB [9.2.4]
$A_{c,N0}$ =	= 24436.0	$000 [cm^2]$	Aire de surface maximale du cône	CEB [9.2.4]
$A_{c,N} =$	22201.0	$000 [\rm cm^2]$	Aire de surface réelle du cône	CEB [9.2.4]
$\gamma_{\rm A,N} =$	$A_{c,N}/A_{c,N}$	0		
γ _{A,N} =	0.91	Coe	f. dépendant de l'entraxe et de la pince des bo	ulons d'ancrage CEB [9.2.4]
c =	510 [m	m] Pinc	e minimale boulon d'ancrage-extrémité	CEB [9.2.4]

$\gamma_{s,N} = 0.7 + 0.3 * c/c_{cr.N} < 1.0$	
$\gamma_{s,N} = 0.96$ Coef. dépendant du pince boulon d'ancrage-extrémité de la	fondation CEB [9.2.4]
$\gamma \gamma_{ec,N} = 1.00$ Coef. dépendant de la répartition des efforts de traction dan	s les boulons d'ancrage CEB [9.2.4]
$\gamma_{re,N} = 0.5 + h_{ef}[mm]/200 < 1.0$	
$\gamma_{re,N} = 1.00$ Coef. dépendant de la densité du ferraillage dans la fond	ation CEB [9.2.4]
$\gamma_{\text{ucr,N}} = 1.00$ Coef. dépendant du degré de fissuration du béton	CEB [9.2.4]
$\gamma_{Mc} = 2.16$ Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{t,Rd,c} = N_{Rk,c}{}^{0*}\gamma_{A,N}{}^{*}\gamma_{s,N}{}^{*}\gamma_{ec,N}{}^{*}\gamma_{re,N}{}^{*}\gamma_{ucr,N}/\gamma_{Mc}$	
$F_{t,Rd,c} = 11911.40 \ [kG] \frac{\text{Résistance de calcul du boulon d'ancrage}}{\text{l'arrachement du cône de béton}}$	à EN 1992-1:[8.4.2.(2)]
FENDAGE DU BETON	
$h_{ef} = 640$ [mm] Longueur efficace du boulon d'ancrage CEB [9	0.2.5]
$N_{Rk,c}{}^0 = 7.5[N^{0.5}/mm^{0.5}] * f_{ck} * h_{ef}{}^{1.5}$	
$N_{Rk,c}^{0} = 61912.82$ [kG] Résistance de calc. pour le soulèvement CEB	[9.2.5]
$s_{cr,N} = 1280$ [mm] Largeur critique du cône de béton CEB	[9.2.5]
$c_{cr,N} = 640$ [mm] Distance critique du bord de la fondation CEB	[9.2.5]
$A_{c,N0} = 28000.000 [cm^2]$ Aire de surface maximale du cône CEB	[9.2.5]
$A_{c,N} = 22201.000 [cm2]$ Aire de surface réelle du cône CEB	[9.2.5]
$\gamma_{\mathrm{A,N}} = \mathrm{A_{c,N}}/\mathrm{A_{c,N0}}$	
$\gamma_{A,N} = 0.79$ Coef. dépendant de l'entraxe et de la pince des boulo	ons d'ancrage CEB [9.2.5]
c =510 [mm] Pince minimale boulon d'ancrage-extrémité	CEB [9.2.5]
$\gamma_{s,N} = 0.7 + 0.3 * c/c_{cr.N} * 1.0$	
$\gamma_{s,N} = \frac{0.9}{4}$ Coef. dépendant du pince boulon d'ancrage-extrémité de la for	ndation CEB [9.2.5]
$\gamma_{ec,N}~1.0$ Coef. dépendant de la répartition des efforts de traction dat	ns les boulons CEB
= 0 d'ancrage	[9.2.5]
$\gamma_{re,N} = 0.5 + h_{ef}[mm]/200 < 1.0$	
$\gamma_{re,N} = 1.00$ Coef. dépendant de la densité du ferraillage dans la fonda	ation CEB [9.2.5]
$\gamma_{ucr,N} = 1.00$ Coef. dépendant du degré de fissuration du béton $\gamma_{h,N} = (h/(2*h_{ef}))^{2/3} * 1.2$	CEB [9.2.5]
$\gamma_{h,N} = 1.01$ Coef. dépendant de la hauteur de la fondation CEB	[9.2.5]
$\gamma_{M,sp} = 2.16$ Coefficient de sécurité partiel CEB	[3.2.3.1]
$F_{t,Rd,sp} = N_{Rk,c}^{0*} \gamma_{A,N}^{*} \gamma_{s,N}^{*} \gamma_{ec,N}^{*} \gamma_{re,N}^{*} \gamma_{ucr,N}^{*} \gamma_{h,N} / \gamma_{M,sp}$	
$F_{t,Rd,sp} = 21453.05 [kG]$ Résistance de calcul du boulon d'ancrage au fen	dage du béton CEB [9.2.5]

RESISTANCE DU BOULON D'ANCRAGE A LA TRACTION

 $F_{t,Rd} = min(F_{t,Rd,s} \text{ , } F_{t,Rd,p} \text{ , } F_{t,Rd,c} \text{ , } F_{t,Rd,sp})$

 $F_{t,Rd} = 11911.40$ [kG] Résistance du boulon d'ancrage à traction

FLEXION DE LA PLAQUE DE BASE

Moment fléchissant M_{j,Ed,y}

$l_{eff,1} =$	240	[mm]	Longueur efficace pour un boulon pour le mode	1 [6.2.6.5]
$l_{eff,2} =$	240	[mm]	Longueur efficace pour un boulon pour le mode	2 [6.2.6.5]
m =	62	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]
$M_{pl,1,Rd}$ =	=673.01	[kG*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd}$ =	=673.01	[kG*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]
$F_{T,1,Rd} =$	43420.17	7[kG]	Résistance de la dalle pour le mode 1	[6.2.4]
$F_{T,2,Rd} =$	29501.26	6[kG]	Résistance de la dalle pour le mode 2	[6.2.4]
$F_{T,3,Rd} =$	35734.20)[kG]	Résistance de la dalle pour le mode 3	[6.2.4]
F _{t,pl,Rd,y} =	= min(F _{T,1}	$_{,\rm Rd}$, $F_{\rm T,2,\rm Rd}$	1, F _{T,3,Rd})	
E –	20501.20		Asistanas de la delle neurole made à la traction [6	2 41

 $F_{t,pl,Rd,y} = 29501.26 [kG]$ Résistance de la dalle pour le mode à la traction [6.2.4]

Moment fléchissant M_{j,Ed,z}

$l_{eff,1} =$	260	[mm]	Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
$l_{eff,2} =$	260	[mm]	Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m =	62	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]
$M_{pl,1,Rd}$ =	729.80	[kG*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd}$ =	729.80	[kG*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]
$F_{T,1,Rd} =$	47083.75	[kG]	Résistance de la dalle pour le mode 1	[6.2.4]
$F_{T,2,Rd} =$	23697.95	[kG]	Résistance de la dalle pour le mode 2	[6.2.4]
$F_{T,3,Rd} =$	23822.80)[kG]	Résistance de la dalle pour le mode 3	[6.2.4]
F _{t,pl,Rd,z} =	min(F _{T,1}	_{Rd} , F _{T,2,Rd}	, F _{T,3,Rd})	
F _{t,pl,Rd,z} =	23697.95	[kG] R	ésistance de la dalle pour le mode à la traction [6.2	2.4]

RESISTANCES DE SEMELLE DANS LA ZONE TENDUE

Résistance de la semelle à la traction axiale [6.2.8.3]
Résistance de la semelle dans la zone tendue [6.2.8.3]
Résistance de la semelle dans la zone tendue [6.2.8.3]

Article XV. <u>Contrôle de la résistance de l'assemblage</u>

N _{j,Ed} / N	j,Rd < 1,0 ((6.24)	0.04 < 1.00	vérifié	(0.04)
$e_y =$	4402	[mm]	Excentricité de l'effort axial	[6.2.8.3]
$z_{c,y} =$	159	[mm]	Bras de levier F _{C,Rd,y}	[6.2.8.1	.(2)]
$z_{t,y} =$	235	[mm]	Bras de levier F _{T,Rd,y}	[6.2.8.1	.(3)]
$M_{j,Rd,y} =$	11224.81	[kG*m]	Résistance de l'assemblage à la flexion	n [6.2.8.3]

M _{j,Ed,y} /	′ M _{j,Rd,y} <	< 1,0 (6.23	3)	0.89 < 1.00	vérifié	(0.89)
a —	8	[mm]	Excentricitá	le l'effort avial	[6 2 8 3	1
$z_z = z_{c,z} =$	61	[mm]	Bras de levier	F _{C,Rd,z}	[6.2.8.1]	.(2)]
$z_{t,z} =$	160	[mm]	Bras de levier	F _{T,Rd,z}	[6.2.8.1	.(3)]
M _{j,Rd,z} =	=364.77	[kG*m]	Résistance de	l'assemblage à la flexi	on [6.2.8.3]]
M _{i.Ed.z} /	′ M _{i.Rd.z} <	<1.0		0.05 < 1.00	vérifié	(0.05)
J,,-	J, , - , - , - , - , - , - , - , - ,	,				
M _{j,Ed,y} /	$M_{j,Rd,y}$ -	$+ M_{j,Ed,z} / I$	M _{j,Rd,z} * 1,0	0.94 < 1.00	vérifié	(0.94)

Article XVI. <u>Cisaillement</u>

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE

Cisaillement par l'effort V_{j,Ed,y}

$\gamma_{d,y} = 1.03$	Coef. d'emplacement des boulons en direction	[Tablaau 2 4]
	du cisaillement	[1a01cau 3.4]
$\gamma_{\rm b,y} = 1.00$	Coef. pour les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,y} = 2.50$	Coef. d'emplacement des boulons perpendiculairement à la direction du cisaillement	[Tableau 3.4]

 $F_{1,vb,Rd,y} = k_{1,y} * \gamma_{b,y} * f_{up} * d * t_p / \gamma_{M2}$

F_{1,vb,Rd}=39646.57 [kG] Résistance du boulon d'ancrage à la pression sur la plaque d'assise [6.2.2.(7)]

Cisaillement par l'effort V_{j,Ed,z}

$\gamma_{d,z} = 1.15$	Coef. d'empla	cement des boulons en direction du cisaillement		[Tableau 3.4]		
$\gamma_{b,z} = 1.00$	Coef. pour le	s calculs de la résistance F _{1,vb,Rd}		[Tableau 3.4]		
$k_{1,z} = 2.50$	Coef. d'empla direction du c	cement des boulons perpendiculairement à la isaillement		[Tableau 3.4]		
$F_{1,vb,Rd,z} = k_{1,z} \gamma_{b,z} f_{up} d^{*}t_{p} / \gamma_{M2}$						
$F_{1,vb,Rd,z} = 39646.57 [kG]$		Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]			

CISAILLEMENT DU BOULON D'ANCRAGE

$\gamma_{b} = 0.25$	Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{bv} = 4.524$ [cm ²]	Aire de section efficace du boulon	[6.2.2.(7)]
$f_{ub} = 1200.00 [MPa]$	Résistance du matériau du boulon à la traction	[6.2.2.(7)]
$\gamma_{M2} = 1.25$	Coefficient de sécurité partiel	[6.2.2.(7)]
$F_{2,vb,Rd} = \gamma_b * f_{ub} * A_{bv} / \gamma$	M2	
$F_{2,vb,Rd} = 10982.84$ [kG] Résistance du boulon au cisaillement - sans	effet de levier $[6.2.2.(7)]$

γм=	2.00		Coef. dépendant de l'ancrage du boulon dans la fondation	CEB [9.3.2.2]
M _{Rk,s} =	=119.51	[kG*m]	Résistance caractéristique de l'ancrage à la flexion	CEB [9.3.2.2]
$l_{sm} =$	53	[mm]	Longueur du bras de levier	CEB [9.3.2.2]
$\gamma_{\rm Ms} =$	1.20		Coefficient de sécurité partiel	CEB [3.2.3.2]
F _{v,Rd,sm}	$\gamma = \gamma_M * N$	$I_{Rk,s}/(l_{sm}*$	γмs)	
F _{v,Rd,sm}	=3794.	07[kG]	Résistance du boulon au cisaillement - avec l'effet de levi	er CEB [9.3.1]

RUPTURE DU BETON PAR EFFET DE LEVIER

$N_{Rk,c} = 25728.63 [kG]$	Résistance de calc. pour le soulèvement	CEB [9.2.4]
$k_3 = 2.00$	Coef. dépendant de la longueur de l'ancrage	CEB [9.3.3]
$\gamma_{\rm Mc} = 2.16$	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,cp} = k_3 * N_{Rk,c} / \gamma_{Mc}$		
$F_{v,Rd,cp} = 23822.80 [kG]$	Résistance du béton à l'effet de levier	CEB [9.3.1]

ECRASEMENT DU BORD DU BETON

Cisaillement par l'effort $V_{j,Ed,y}$

$V_{Rk,c,y}^{0} = 134238.39 [kG]$	Résistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]
$\gamma_{A,V,y} = 0.58$	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
$\gamma_{\rm h,V,y} = 1.00$	Coef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
$\gamma_{s,v,y} = 0.87$	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]
$\gamma_{\rm ec,V,y} = 1.00$	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon d'ancrage	CEB [9.3.4.(e)]
$\gamma \alpha_{\rm,V,y} = 1.00$	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]
$\gamma_{ m ucr,V,y} = 1.00$	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]
$\gamma_{\rm Mc} = 2.16$	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,c,y} = V_{Rk,c,y}{}^0 * \gamma_{A,V,y} * \gamma_{1}$	h,V,y* γ s,V,y* γ ec,V,y* γ α ,V,y* γ ucr,V,y/ γ Mc	
$E_{\rm DM} = -21581.72 [kG]$	Péristance du béton nour l'écressement du bord CEP [0.2	11

F_{v,Rd,c,y} = 31581.72 [kG] Résistance du béton pour l'écrasement du bord CEB [9.3.1]

Cisaillement par l'effort V_{j,Ed,z}

$V_{Rk,c,z}{}^0 =$	109269.31 [kG]	Résistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]
γ A,V,z =	0.76	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
$\gamma_{\rm h,V,z} =$	1.00	Coef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
$\gamma_{\rm s,v,z} =$	0.93	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]

$V_{-1} = 0$	100260 21 [1-0]	Péristance correctéristique du boulon d'anorage	CEB		
$\mathbf{v}_{\mathrm{Rk,c,z}} =$	109209.31 [KG]	Resistance caracteristique du bouton d'ancrage	[9.3.4.(a)]		
N	1.00	Coef. d'irrégularité de la répartition de l'effort	CEB		
$\gamma_{ec,V,z} \equiv$	1.00	tranchant sur le boulon d'ancrage	[9.3.4.(e)]		
$\gamma \alpha_{,v,z} =$	1.00	Coof dénombert de l'angle d'action de l'affart transhart	CEB		
	1.00	Coef. dependant de l'angle d'action de l'erfort tranchant	[9.3.4.(f)]		
	1.00	Coef. dépendant du mode de ferraillage du bord de la CEB			
γ ucr,V,z =	1.00	fondation	[9.3.4.(g)]		
$\gamma_{\rm Mc} =$	2.16	Coefficient de sécurité partiel	CEB [3.2.3.1]		
$F_{v,Rd,c,z} = $	$V_{Rk,c,z}^{0*} \gamma_{A,V,z}^* \gamma$	h,V,z* γ s,V,z* γ ec,V,z* $\gamma \alpha$,V,z* γ ucr,V,z/ γ Mc			
$F_{v,Rd,c,z} = 3$	35953.99[kG] I	Résistance du béton pour l'écrasement du bord CEB [9.3.1	L]		

GLISSEMENT DE LA SEMELLE

$C_{\mathrm{f,d}}=\ 0.30$	Coef.	de frottement entre la plaque d'assise e	t le béton [6.2.2.(6)]
$N_{c,Ed} = 0.00 [kG]$	Effort	de compression	[6.2.2.(6)]
$F_{f,Rd} = C_{f,d} \ast N_{c,Ed}$			
$F_{f,Rd} = 0.00$ [[kG]	Résistance au glissement	[6.2.2.(6)]

CONTROLE DU CISAILLEMENT

$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y},F_{2,vb,Rd},F_{v,Rd,sm},F_{v,Rd,cp},F_{v,Rd,c,y}) + F_{f,Rd}$					
$V_{j,Rd,y} = 22764.44 [kG]$	Résistance de l'assemblage au cisaillement CEB	[9.3.1]			
$V_{j,Ed,y} / V_{j,Rd,y} < 1,0$	0.00 < 1.00 vérifié	(0.00)			

$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}, F_{v,Rd,sn})$	$F_{v,Rd,cp}, F_{v,Rd,c,z}) + F_{f,Rd}$		
$V_{j,Rd,z} {=} 22764.44[kG] R\acute{e}sistance \; definition definition of the second state of the second$	l'assemblage au cisaillen	nent CEB [9.3.1]
$V_{j,Ed,z} / V_{j,Rd,z} < 1.0$	0.14 < 1.00	vérifié	(0.14)
$V_{j,Ed,y} \ / \ V_{j,Rd,y} + V_{j,Ed,z} \ / \ V_{j,Rd,z} < 1,0$	0.14 < 1.00	vérifié	(0.14)

Article XVII. <u>Contrôle des raidisseurs</u>

Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)

$M_1 =$	648.52	[kG*m]	Moment fléchissant du raidisseur	
$Q_1 =$	8106.47	[kG]	Effort tranchant du raidisseur	
7 —	15	[mm]	Position de l'axe neutre (à partir de la base	
$L_{\rm S}$ –	$Z_{\rm S} = 43$	[111111]	de la plaque)	
$I_{s} =$	3505.351	[cm ⁴]	Moment d'inertie du raidisseur	
σ. –	4 40		Contrainte normale au contact du raidisseur et de la EN	1993-1-
$o_{\rm d} = 4.49$	[mPa]	dalle 1:[6.2.1.(5)]	

Raidiss	eur per	pendicul	aire à l'âme (sur le prolong	gement des ailes du pote	au)		
$M_1 = 64$	18.52	[kG*m]	Moment fléch	nissant du raidi	sseur			
$\sigma = 21$	80		Contrainta no	rmala dana laa	fibras supáriouras	EN		1993-1-
$0_{\rm g} - 51$.00		Contrainte no		notes superieures	1:[6.2	.1.(5)]	
$\sigma_{\rm H} = 26$	5 50	[MD ₂]	Contrainte ter	nantielle dans	le raidisseur	EN		1993-1-
$0_{\rm II} = 20$	5.50		Contrainte tengentiene dans le faldisseur		1:[6.2	.1.(5)]		
$\sigma_{-} - A \epsilon$	5.12	[MPa]	Contrainte équ	uivalente au co	ontact du raidisseur et de la	αEN		1993-1-
$O_2 = +C$).12		dalle			1:[6.2	.1.(5)]	
$\max(\sigma)$	g, σ / (0.	.58), σ_{z})	$/(f_{yp}/\gamma_{M0}) < 1$.0 (6.1)	0.17 < 1.00 vérifié	(0.17)		
	Article XVIII. <u>Soudures entre le poteau et la plaque d'assise</u>							
$\sigma_{ m N}$ =	2	3.60	[MPa]	Contrainte no	rmale dans la soudure		[4.5.3.(7))]
$\sigma_{ m I}=$	2	3.60	[MPa]	Contrainte ter	ngentielle perpendiculaire		[4.5.3.(7))]
$\sigma_{ m yII}$ =	= 0.	.00	[MPa]	Contrainte ter	ngentielle parallèle à V _{j,Ed}	,у	[4.5.3.(7)]
$\sigma_{ m zII}$ =	: 4.	.99	[MPa]	Contrainte ter	ngentielle parallèle à V _{j,Ed}	,Z	[4.5.3.(7)]
$\gamma_{\rm W} =$	0.	.85		Coefficient de	épendant de la résistance		[4.5.3.(7)]
$\sigma_{ m I}$ (f	u/ M2)) <	(4.1))		0.08 < 1.00		vérifié (0	.08)
$\sigma_{ m I}$ (σ	$N^{2} + 3.0$	$(\sigma_{yII}^2 +$	$\sigma_{zII}^2)) / (f_u/(\gamma$	$W^* \gamma_{M2}))) < 1.0$	0 (4.1) 0.14 < 1.00		vérifié (0	.14)
$\sigma_{ m I}$ (σ	$N^{2} + 3.0$	$(\sigma_{zII}^2 +$	$\sigma_{yII}^2)) / (f_u/(\gamma_V))$	$_{W}^{*}\gamma_{M2}))) < 1.0$	(4.1) 0.13 < 1.00		vérifié (0	.13)

Article XIX. <u>Soudures verticales des raidisseurs</u>

Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)

$\sigma_{ m N}$ =	33.73	[MPa]	Contrainte normale dans la soudure	[4.5.3.(7)]
$\sigma_{\rm I}$ =	33.73	[MPa]	Contrainte tengentielle perpendiculaire	[4.5.3.(7)]
σ_{II} =	19.87	[MPa]	Contrainte tengentielle parallèle	[4.5.3.(7)]
σ_z =	75.73	[MPa]	Contrainte totale équivalente	[4.5.3.(7)]
$\gamma_{\rm W} =$	0.85		Coefficient dépendant de la résistance	[4.5.3.(7)]
max (σ_{t} ,	$\sigma_{II} * \sigma_{3}, \sigma_{3}$	$\sigma_z) / (f_u/(\gamma_W *$	$(\gamma_{M2})) < 1.0 (4.1) 0.22 < 1.00$	vérifié (0.22)

Article XX. <u>Soudures horizontales des raidisseurs</u>

Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)

$\sigma_{ m N}=$	17.57	[MPa]	Contrainte normale dans la soudure	[4.5.3.(7)]
σ_{I} =	17.57	[MPa]	Contrainte tengentielle perpendiculaire	[4.5.3.(7)]
$\sigma_{ m II}$ =	30.60	[MPa]	Contrainte tengentielle parallèle	[4.5.3.(7)]
σ_z =	63.58	[MPa]	Contrainte totale équivalente	[4.5.3.(7)]
$\gamma_{\rm W} =$	0.85		Coefficient dépendant de la résistance	[4.5.3.(7)]
max (σ_N	$\sigma_{\rm II} * \sigma_{\rm II}$, $\sigma_{\rm z}$) / (f _u /($\gamma_{\rm W}$	$v^* \gamma_{M2})) < 1.0 (4.1) 0.17 < 1.00$	vérifié (0.17)

Article XXI. <u>Rigidité de l'assemblage</u>

Moment fléchissant M_{j,Ed,y}

$p_{eff} = 82$ [mm] Largeur efficace de la semelle de tronçon T [6.2.5.(3)]
$_{eff} = 231$ [mm] Longueur efficace de la semelle de tronçon en T[6.2.5.(3)]
$K_{13,y} = E_c * l_{0,y} * (b_{eff} * l_{eff}) / (1.275 * E)$
$x_{13,y} = 16$ [mm] Coef. de rigidité du béton comprimé [Tableau 6.11]
$_{eff} = 240$ [mm] Longueur efficace pour un boulon pour le mode 2[6.2.6.5]
m = 62 [mm] Pince boulon-bord de renforcement [6.2.6.5]
$x_{15,y} = 0.850 * l_{eff} * t_p^{-3} / (m^3)$
$x_{15,y} = 7$ [mm] Coef. de rigidité de la plaque d'assise en traction [Tableau 6.11]
$L_b = 272$ [mm] Longueur efficace du boulon d'ancrage [Tableau 6.11]
$x_{16,y} = 1.6 * A_b / L_b$
$x_{16,y} = 2$ [mm] Coef. de rigidité du boulon d'ancrage en traction [Tableau 6.11]
$_{0,y} = 0.70$ Elancement du poteau [5.2.2.5.(2)]
$S_{j,ini,y} = 8790219.15 [kG*m]$ Rigidité en rotation initiale [Tableau 6.12]
$S_{j,rig,y} = 8399229.09 [kG*m]$ Rigidité de l'assemblage rigide [5.2.2.5]
$S_{j,ini,y} > S_{j,rig,y} RIGIDE$ [5.2.2.5.(2)]
Moment fléchissant M _{j,Ed,z}

$k_{13,z} = E_c * l_{0,y^*} (A_{c,z}) / (1.275 * E)$

 $k_{13,z} = 24$ [mm] Coef. de rigidité du béton comprimé [Tableau 6.11]

$$\begin{split} l_{eff} &= 260 \quad [mm] \quad \text{Longueur efficace pour un boulon pour le mode 2 [6.2.6.5]} \\ m &= 62 \quad [mm] \quad \text{Pince boulon-bord de renforcement} \\ k_{15,z} &= 0.850* l_{eff} * t_p^{-3} / (m^3) \\ k_{15,z} &= 7 \quad [mm] \quad \text{Coef. de rigidité de la plaque d'assise en traction [Tableau 6.11]} \end{split}$$

 $\begin{array}{lll} L_{b}=&272 \quad [mm] \quad Longueur \mbox{ efficace du boulon d'ancrage [Tableau 6.11]} \\ k_{16,z}=1.6^{*}A_{b}/L_{b} \\ k_{16,z}=2 \quad [mm] \quad Coef. \mbox{ de rigidité du boulon d'ancrage en traction [Tableau 6.11]} \end{array}$

 $l_{0,z} = 2.70 & \text{Elancement du poteau} & [5.2.2.5.(2)] \\ S_{j,ini,z} = 10417928.84 [kG*m] Rigidité en rotation initiale & [6.3.1.(4)] \\ S_{j,rig,z} = 562577.54 & [kG*m] Rigidité de l'assemblage rigide & [5.2.2.5] \\ S_{j,ini,z} > S_{j,rig,z} RIGIDE & [5.2.2.5.(2)]$

Article XXII. <u>Composant le plus faible :</u> PLAQUE D'ASSISE A LA FLEXION

Assemblage satisfaisant vis à vis de la Norme Ratio 0.94

8.3 Calcul semelle du potelet :

Analysis Autodesk Robot Structural Professional 2009 Calcul du Pied de Poteau articulé Eurocode 3: EN 1993-1-8:2005 + CEB Design Guide: Design of fastenings Ratio on concrete 0.32

Article XXIII. Général

Assemblage N° :

Nom de l'assemblage : Pied de poteau articulé

Géométrie Article XXIV. Article XXV. **Poteau**

Profilé :

IPE 200

$L_c =$	5.00	[m]	Longueur du poteau
$\alpha =$	0.0	[Deg]	Angle d'inclinaison
$h_c =$	200	[mm]	Hauteur de la section du poteau
$b_c =$	100	[mm]	Largeur de la section du poteau
$t_{\rm wc} =$	6	[mm]	Epaisseur de l'âme de la section du poteau
$t_{\rm fc} =$	9	[mm]	Epaisseur de l'aile de la section du poteau
$r_c =$	12	[mm]	Rayon de congé de la section du poteau
$A_c =$	28.484	$[cm^2]$	Aire de la section du poteau
$I_{yc} =$	1943.170)[cm ⁴]	Moment d'inertie de la section du poteau
Matéria	u : AC	ER	
$\mathbf{f}_{yc} =$	235.00 [MPa]	Résistance
$\mathbf{f}_{uc} =$	365.00 [MPa]	Résistance ultime du matériau

Platine de prescellement Article XXVI.

$l_p =$	380	[mm]	Longueur	
$b_p =$	270	[mm]	Largeur	

Article XXVI. <u>Platine de prescellement</u>

$l_p =$	380	[mm]	Longueur
$t_p =$	20	[mm]	Epaisseur
Matéri	au :	ACIER	E28
$f_{yp} = 27$	75.00		[MPa]Résistance
$f_{up} = 40$)5.00		[MPa] Résistance ultime du matériau

Article XXVII. Ancrage

Classe =	=HR 10.9)	Classe de tiges d'ancrage
$f_{yb} =$	900.00	[MPa]	Limite de plasticité du matériau du boulon
$f_{ub} =$	1200.00	[MPa]	Résistance du matériau du boulon à la traction
d =	24	[mm]	Diamètre du boulon
$A_b =$	3.530	$[cm^2]$	Aire de section efficace du boulon
n =	2		Nombre de rangéss des boulons
$a_v =$	110	[mm]	Entraxe

Dimensions des tiges d'ancrage

$l_1 =$	100	[mm]
$l_2 =$	470	[mm]
$l_3 =$	144	[mm]
$l_4 =$	120	[mm]

Plaquette

-			
l =	40	[mm]	Longueur
w =	40	[mm]	Largeur
t =	15	[mm]	Epaisseur
	Ar	ticle XXV	III. <u>Coefficients de matériau</u>
$\gamma_{M0} =$	1.00		Coefficient de sécurité partiel
$\gamma_{M2} =$	1.25		Coefficient de sécurité partiel
$\gamma_{\rm C} =$	1.50		Coefficient de sécurité partiel
	Ar	ticle XXIX	K. <u>Semelle isolée</u>
a =	1200	[mm]	Longueur de la semelle
b =	1200	[mm]	Largeur de la semelle

h = 1300 [mm] Hauteur de la semelle

Béton

Classe

BETON25

$f_{ck} =$	25.00	[MPa]	Résistance caractéristique à la compression
------------	-------	-------	---

Mortier de calage

$t_g =$	30	[mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	12.00	[MPa]	Résistance caractéristique à la compression
$C_{f,d} =$	0.30		Coef. de frottement entre la plaque d'assise et le béton

Article XXX. <u>Soudures</u>

a _p =	8	[mm]	Plaque principale du pied de poteau
$a_{pl} =$	8	[mm]	Plaquette

Article XXXI. Efforts

Cas: Calculs manuels

Article XXXII. Résultats					
$V_{j,Ed,z} = 2019.72 \ [kG]$	Effort tranchant				
$V_{j,Ed,y} = 2119.72 \ [kG]$	Effort tranchant				
$N_{j,Ed} = -1659.72 [kG]$	Effort axial				

Article XXXIII. Zone comprimée

COMPRESSION DU BETON

$f_{cd} \\$	=16.670	[MPa _{Dá}	sistence de calcul à la compression	EN	1992-
=	0] Ke	sistance de calcul à la compression	1:[3.1.6.(1)]	
$f_j =$	33.33	[MPa Ré] d'a	sistance de calcul du matériau du joint sous la plaqu ssise	^{ie} [6.2.5.(7)]	
c =	$t_p * (f_{yp}/(3$	$(f_j * \gamma_{M0}))$			
c =	33	[mm]	Largeur de l'appui additionnelle	[6.2.5.(4)]	
beff	= 75	[mm]	Largeur efficace de la semelle de tronçon T	[6.2.5.(3)]	
l _{eff} =	= 166	[mm]	Longueur efficace de la semelle de tronçon en T	[6.2.5.(3)]	
A_{c0}	= 124.47	$1 [cm^2]$	Zone de contact de la plaque d'assise avec la fondatio	n EN 1992-1:[6	.7.(3)]
A_{c1}	= 1120.22	$37 [cm^2]$	Aire de calcul maximale de la répartition de la charge	EN 1992-1:[6	.7.(3)]
F_{rdu}	$= A_{c0} * f_{cd}$	* $f_j (A_{c1}/A)$	A_{c0}) * 3* A_{c0} * f_{cd}		
A_{c1}	= 1120.2	$37 [cm^2]$	Aire de calcul maximale de la répartition de la charge	EN 1992-1:[6.7	7.(3)]
$\gamma_j =$	0.67		Coefficient réducteur pour la compression	[6.2.5.(7)]	
f _{jd} =	fj*Frdu/(t	o _{eff} *l _{eff})			
f _{jd} =	33.33	[MPa]	Résistance de calcul du matériau du joint [6.2.5.(7)]		
A _{c,n} F _{c,R}	= 332.8 $_{i,i} = A_{C,i}*_{i,i}$	863 [cm ²] f _{jd}	Aire de compression efficace [6.2.8.2.(1)]]	
F _{c,R}	_{d,n} =1131	42.06[kG	Résistance du béton à la compression [6.2.8.2.(1)]	

RESISTANCE DE LA SEMELLE DANS LA ZONE COMPRIMEE

 $N_{j,Rd} = F_{c,Rd,n} \\$

 $N_{j,Rd} = 113142.06 [kG]$ Résistance de la semelle à la compression axiale [6.2.8.2.(1)]

Article XXXIV. Contrôle de la résistance de l'assemblage

$1N_{i,Ed} / 1N_{i,Rd} < 1.0 (0.24) 0.01 < 1.00 verifie (0.$	N _{i.Ed} / N	i.Rd < 1,0	(6.24)	0.01 < 1.00	vérifié	(0.01)
--	-----------------------	------------	--------	-------------	---------	-------	---

Article XXXV. Cisaillement

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE

Cisaillement par l'effort V_{j,Ed,y}

$\gamma_{d,y} =$	1.03	Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
$\gamma_{b,y} =$	1.00	Coef. pour les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
k _{1,y} =	2.50	Coef. d'emplacement des boulons perpendiculairement à la direction du cisaillement	on [Tableau 3.4]
-		 ale C ale Tales /	

 $F_{1,vb,Rd,y} = k_{1,y} * \gamma_{b,y} * f_{up} * d * t_p / \gamma_{M2}$

F_{1,vb,Rd,y} = 39646.57 [kG] Résistance du boulon d'ancrage à la pression sur la plaque d'assise [6.2.2.(7)]

Cisaillement par l'effort V_{j,Ed,z}

$\gamma_{d,z} = 2.44$	Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
$\gamma_{\rm b,z} = 1.00$	Coef. pour les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,z} = 2.50$	Coef. d'emplacement des boulons perpendiculairement à la direction du cisaillement	ⁿ [Tableau 3.4]
$F_{1,vb,Rd,z} = k_1$	$_{z}$ * $\gamma_{b,z}$ * f_{up} * d * t_{p} / γ_{M2}	
$F_{1,vb,Rd,z} =$	39646.57 [kG] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]

CISAILLEMENT DU BOULON D'ANCRAGE

$\gamma_b = 0.25$	Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{bv} = 4.524$ [cm ²]	Aire de section efficace du boulon	[6.2.2.(7)]
$f_{ub} = 1200.00 [MPa]$	Résistance du matériau du boulon à la traction	n[6.2.2.(7)]
$\gamma_{M2} = 1.25$	Coefficient de sécurité partiel	[6.2.2.(7)]
$F_{2,vb,Rd} = \gamma_b * f_{ub} * A_{bv} / \gamma$	M2	
$F_{2,vb,Rd} = 10982.84$ [kC	[] Résistance du boulon au cisaillement - sans	s effet de levier $[6.2.2.(7)]$

γм =	2.00		Coef. dépendant de l'ancrage du boulon dans la fondation	CEB	[9.3.2.2]
M _{Rk,s} =	186.83	[kG*m]	Résistance caractéristique de l'ancrage à la flexion	CEB	[9.3.2.2]
$l_{sm} =$	50	[mm]	Longueur du bras de levier	CEB	[9.3.2.2]
$\gamma_{\rm Ms} =$	1.20		Coefficient de sécurité partiel	CEB	[3.2.3.2]
F _{v,Rd,sm}	$= \gamma_{M} * N$	$I_{Rk,s}/(l_{sm}*)$	γ _{Ms})		
F_{v,Rd,sm} = 6290.57 [kG] Résistance du boulon au cisaillement - avec l'effet de levier CEB [9.3.1]

RUPTURE DU BETON PAR EFFET DE LEVIER

$N_{Rk,c} = 27252.11 [kG]$	Résistance de calc. pour le soulèvement	CEB [9.2.4]
$k_3 = 2.00$	Coef. dépendant de la longueur de l'ancrage	CEB [9.3.3]
$\gamma_{\rm Mc} = 2.16$	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,cp} = k_3 * N_{Rk,c} / \gamma_{Mc}$		
$F_{v,Rd,cp} = 25233.44 [kG]$	Résistance du béton à l'effet de levier	CEB [9.3.1]

ECRASEMENT DU BORD DU BETON

Cisaillement par l'effort $V_{j,Ed,y}$

$V_{Rk,c,y}{}^0 =$	113480.51 [kG]	Résistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]
$\gamma_{\mathrm{A,V,y}} =$	0.73	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
$\gamma_{h,V,y} =$	1.00	Coef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
$\gamma_{\rm s,V,y} =$	0.92	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]
$\gamma_{c,V,y} =$	1.00	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon d'ancrage	CEB [9.3.4.(e)]
$\gamma_{\rm dV,y} =$	1.00	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]
$\gamma_{\rm ucr,V,y} =$	1.00	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]
$\gamma_{\rm Mc} =$	2.16	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,c,y} = V_{Rk,c,y}{}^{0*}\gamma_{A,V,y}{}^{*}\gamma_{h,V,y}{}^{*}\gamma_{s,V,y}{}^{*}\gamma_{ec,V,y}{}^{*}\gamma_{d,V,y}{}^{*}\gamma_{ucr,V,y}/\gamma_{Mc}$			
$F_{v,Rd,c,y} = 3$	35481.78[kG] R	ésistance du béton pour l'écrasement du bord CEB [9.3	.1]

Cisaillement par l'effort V_{j,Ed,z}

$V_{Rk,c,z}^{0} =$	131085.12 [kG]	Résistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]
$\gamma_{\mathrm{A,V,z}} =$	0.61	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
$\gamma_{\rm h,V,z} =$	1.00	Coef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
$\gamma_{s,V,z} =$	0.88	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]
$\gamma_{\rm ec,V,z} =$	1.00	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon d'ancrage	CEB [9.3.4.(e)]
$\gamma_{\rm d,V,z} =$	1.00	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]
$\gamma_{\rm ucr,V,z} =$	1.00	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]
$\gamma_{\rm Mc} =$	2.16	Coefficient de sécurité partiel	CEB [3.2.3.1]

Chapitre 8: CALCUL DES FONDATIONS

GLISSEMENT DE LA SEMELLE

$C_{f,d} = 0.30$	Coef. de frottement entre la plaqu	e d'assise et le béton [6.2.2.(6)]
$N_{c,Ed} = 1659.72 [kG]$	Effort de compression	[6.2.2.(6)]
$F_{f,Rd} = C_{f,d} \ast N_{c,Ed}$		
$F_{f,Rd} = 497.92 \ [kG]$	Résistance au glissement	[6.2.2.(6)]

CONTROLE DU CISAILLEMENT

$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y},F_{2,vb,Rd},F_{v,Rd,sm},F_{v,Rd,cp},F_{v,Rd,c,y}) + F_{f,Rd}$				
$V_{j,Rd,y} = 13079.06 [kG]$	Résistance de l'assemblage au cisailleme	ent CEB [9	.3.1]	
$V_{j,Ed,y} / V_{j,Rd,y} < 1,0$	0.16 < 1.00	vérifié	(0.16)	

$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z},F_{2,vb,Rd},F_{v,Rd,sm},F_{v,Rd,cp},F_{v,Rd,c,z}) + F_{f,Rd}$				
$V_{j,Rd,z} = 13079.06 [kG]$	Résistance de l'assemblage au cisaill	ement CEB [9.	3.1]	
$V_{j,Ed,z} / V_{j,Rd,z} < 1,0$	0.15 < 1.00	vérifié	(0.15)	

 $V_{j,Ed,y} \,/\, V_{j,Rd,y} + V_{j,Ed,z} \,/\, V_{j,Rd,z} < 1,0 \qquad 0.32 < 1.00 \qquad \qquad \text{vérifié} \qquad (0.32)$

Article XXXVI. Soudures entre le poteau et la plaque d'assise

$\sigma_{\rm N}$ =	1.43	[MPa]	Contrainte normale dans la soudure	[4.5.3.(7)]
$\sigma_{\rm t}$ =	1.43	[MPa]	Contrainte tengentielle perpendiculaire	[4.5.3.(7)]
$\sigma_{ m yII}$ =	6.68	[MPa]	Contrainte tengentielle parallèle à $V_{j,Ed,y}$	[4.5.3.(7)]
$\sigma_{\rm zII}$ =	6.76	[MPa]	Contrainte tengentielle parallèle à $V_{j,Ed,z}$	[4.5.3.(7)]
$\gamma_{\rm W} =$	0.85		Coefficient dépendant de la résistance	[4.5.3.(7)]
$\sigma_{ m N}$ / (f _u / $\gamma_{ m N}$	₁₂)) < 1.0 (4	.1)	0.00 < 1.00	vérifié (0.00)
$\sigma_{\rm N}$ ($\sigma_{\rm t}^2$ +	3.0 (σ_{yII}^2 +	$\sigma_{\rm y}^{2})) / ({\rm f_u}/(\gamma_{\rm W}$	(4.1) 0.03 < 1.00	vérifié (0.03)
$\sigma_{\rm N}$ ($\sigma_{\rm t}^2$ +	3.0 (σ_{zII}^2 +	$\sigma_{\rm y}^{2})) / ({\rm f_u}/(\gamma_{\rm W}$	$(\gamma^* \gamma_{M2}))) < 1.0 \ (4.1) \ 0.04 < 1.00$	vérifié (0.04)

Article XXXVII. Composant le plus faible :

BOULON D'ANCRAGE AU CISAILLEMENT - AVEC EFFET DE LEVIER

Assemblage satisfaisant vis à vis de la Norme Ratio 0.32

CONCLUSION GENERALE

L'étude de ce projet nous a permis, d'une part d'acquérir des nouvelles connaissances concernant le domaine de la construction métallique et d'approfondir nos connaissances déjà acquise durant notre cursus sur la réglementation en vigueur.

Par ailleurs, cette étude nous a permis d'arriver à certaines conclusions qui sont :

- Le dimensionnement des différents éléments de la structure s'est fait avec le calcul statique, sans tenir compte des surcharges sismiques et cela due à la légèreté de notre structure.
- Les actions du vent sont plus défavorables dans les structures métalliques.
- Durant l'étude de la structure on remarque que la plupart des éléments sont dimensionnés visà-vis au déversement et cela est dû au risque major que peu produire ce phénomène.
- L'acier permet de construire des ouvrages très importants du point de vue capacité portante, légèreté et rapidité d'exécution .ce qui de construire sur des sols ayant une faible capacité portante.

La forme de la structure joue un rôle très important sur la disposition des poteaux (orientation des axes faible et fort).

- La stabilité d'ensemble est obtenue à partir de la rigidité les connexions et de l'utilisation de système de contreventement.
- La modélisation doit, autant que possible, ce qui permet d'avoir un bon comportement de la structure proche du réel.