Dépôt Institutionnel de l'Université BBA

Prédiction des tumeurs cérébrales dans les images IRM par l’apprentissage profond

Afficher la notice abrégée

dc.contributor.author MERDJI, Saida
dc.contributor.author REBIAI, Soria
dc.date.accessioned 2024-10-31T11:32:04Z
dc.date.available 2024-10-31T11:32:04Z
dc.date.issued 2024
dc.identifier.issn MM/846
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5671
dc.description.abstract TThe accurate diagnosis of contemporary diseases heavily relies on the processing of medical images. This study introduces an interesting approach for automated detection of brain tumors from magnetic resonance imaging (MRI) using the deep learning model ResNet50. This model, renowned for its ability to extract complex features from images, is deployed to analyze brain MRI images and accurately identify the presence of tumors. The data used in this study include MRI images containing tumors. We compared our approach to other methods using criteria such as precision, recall, and F1 score. The proposed model, ResNet50, achieved a detection accuracy of 98%, demonstrating its effectiveness in detecting brain tumors from MRI images. These results highlight the potential of the ResNet50 model to improve early and accurate detection of brain tumors in images. en_US
dc.language.iso fr en_US
dc.publisher Université de Bordj Bou Arreridj Faculty of Mathematics and Computer Science en_US
dc.subject Image IRM, ResNet50, CNN, Apprentissage en profondeur, traitement des images ,cerveau,Tumeurs cérébrales en_US
dc.subject MRI, ResNet50, CNN, Deep Learning, Brain Tumors, Accuracy en_US
dc.title Prédiction des tumeurs cérébrales dans les images IRM par l’apprentissage profond en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte