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Abstract : This thesis is devoted to the study of two problems related to the theory of
control of PDE.

In a first and second time, we study two nonlinear Euler-Bernoulli beams with a neutral
type delay and viscoelastic, using controls acting on the free boundaries.

By using the method of Faedo-Galerkin, we prove the existence and uniqueness of the
solution for each problem.

After that using the energy method and constructing an appropriate Lyapunov function,
under certain conditions on the neutral delay term kernel and the viscoelastic term, we
show that although, the destructive nature of delay in general, which is a very general

degrading energy problem.

Keywords: Euler-Bernoulli beam, Neutral delay, Boundary control, Viscoelasticity,

General decay, Exponential stability, Lyapunov functionals.
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Résumeé: Cette these est consacrée a I’étude de deux problemes liés a la théorie du con-
trole des PDE.

Dans un premier et deuxiéme temps, nous étudions deux poutres d’Euler-Bernoulli non
linéaires a retard de type neutre et viscoélastique, en utilisant des controles agissant sur
les frontieres libres.

En utilisant la méthode de Faedo-Galerkin, nous prouvons l’existence et 'unicité de la
solution pour chaque probleme.

Ensuite, en utilisant la méthode énergétique et en construisant une fonction de Lya-
punov appropriée, sous certaines conditions sur le noyau du terme de retard neutre et
le terme viscoélastique, nous montrons que bien que, La nature destructrice du retard

en général, qui est un probleme énergétique dégradant tres général.

Mots clés : Poutre d’Euler-Bernoulli, Retard neutre, Boundary controle, Viscoélas-

ticité, Décroissance générale, Stabilité exponentielle, Fonctionnelles de Lyapunov.
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Introduction

The exploration of partial differential equations (PDEs) and their solutions remains a
cornerstone in understanding various physical phenomena, ranging from heat conduc-
tion to fluid dynamics. However, one particular realm where the study of PDEs has

proven to be pivotal is in the field of energy dynamics and explosive phenomena.

The historical roots of investigating PDEs can be traced back to the 18th and 19th cen-
turies when pioneering mathematicians and physicists began formulating mathematical
models to describe physical processes. The likes of Leonard Euler, Joseph Fourier, and
Jean-Baptiste Joseph Fourier contributed significantly to the development of the mathe-

matical tools required to analyze and solve these equations.

As our understanding of the physical world deepened, so did the need for more sophisti-
cated mathematical models. In the realm of energy dynamics, the study of PDEs became
especially crucial. These equations allow us to describe how energy is distributed and
transformed in various systems, shedding light on the fundamental principles govern-

ing these processes.

One captivating facet of PDEs in the context of energy dynamics is their role in modeling
and understanding explosive phenomena. Whether it be the detonation of chemical re-
actions, the shockwaves in fluid dynamics, or the release of energy in nuclear reactions,

PDEs provide a powerful framework for capturing and predicting these events.

The search for stability and the quest to comprehend explosive behaviors have led math-
ematicians and scientists to delve into the intricate solutions of PDEs. The development
of numerical methods, advancements in computing technology, and interdisciplinary

collaborations haye further propelled our ability to tackle complex problems related to
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energy release and explosive events.

In this exploration, we will delve into the historical context, the mathematical foun-
dations, and the practical applications of solving PDEs pertaining to energy dynamics.
By understanding the mathematical underpinnings of these phenomena, we not only
gain insights into the past achievements of mathematical pioneers but also pave the way
for innovative solutions and advancements in addressing contemporary challenges in

energy science and technology.
This thesis is divided into three chapters.

In the opening chapter, we present sets of definitions, theorems and characteristics re-
quired to support our results, as well as a brief summary of the basic results concerning
Banach spaces, weak and weak star topologies, LP space, Sobolev spaces, and other the-
orems. Understanding all of these notations and results is essential for our research,
which we apply in the sequel without making any specific mention of it.

In the second chapter, We examine the free transverse vibration of a nonlinear Euler-
Bernoulli beam subjected to a neutral type delay. Initially, we establish a local existence
result employing the Faedo-Galerkin method. We then develop a boundary control ap-

proach using the Lyapunov method to dampen the transverse vibrations of the beam.

Chapter 3 delves into the analysis of the nonlinear Euler-Bernoulli viscoelastic equa-
tion featuring a neutral type delay. Initially, the Faedo-Galerkin method was utilized
to establish the local existence result. Subsequently, we demonstrate that even though
delays are generally destructive, a highly general decaying energy for the problem was
produced by applying the energy approach and building an appropriate Lyapunov func-

tional under specific circumstances on the kernel of the neutral delay term.



Chapter 1

Preliminaries

This chapter includes sets of definitions, theorems, and properties required in the proof
of our results. It also briefly covers the fundamental results related to the L" space,
Sobolev spaces, weak and weak star topologies, and other theorems. Understanding all
of these notations and findings is crucial to our research, which we employ in the sequel

without making any special mention of it.

m The weak topology

Let X be a Banach space and h € X’ . We denote by ¢} : X — R the linear functional
@n(x) = (h,x). As h varies over X’ we obtain a collection (¢y,),cx’ of maps from X into

R.

DerINITION 1.1 The weak topology o(X,X’) on X is the coarsest topology associated to

the collection (@p)nex’, such that every ¢y, is continuous.

ReMARK 1.1 In the weak topology o(X,X’), we write v,, — v, which represents the con-

vergence of the sequence (v,,), to v.

ProrosiTioN 1.1 [3]. Let (v,) be sequence in X. Then



1. v, = vweakly in 0(X,X’) & (h,v,) = (hv),Vhe X"
2. v, > v strongly = v,, = v weakly.

3. v, — v weakly = (v,,),, is bounded and ||v|| < liminf||v,||.

ReMARK 1.2 The weak topology and the usual topology are the same if X is finite-dimensional.

We shall introduce a third topology on X’ called the weak star topology, denoted by

o(X’,X). For every x € X:

P X' — R (1.1)
hi— @y(h) ={h,x)x x

when x cover X, we obtain a family (¢,),cx of applications to X’ in RR.

DEerINITION 1.2 The weak star topology o(X’, X) is the smallest topology on X’ associated

to the collection (@, )yex, for which every @, is continuous.

REmMARrk 1.3 [20].

(i) In the weak star topology if a sequence (h,), C X’ converges to h, we write h, BN
h(h, — hin o(X’, X)).

(ii) Since X C X" it is clear that, the usual topology is stronger then the weak topology
o(X’,X"”), and this later is stronger then the weak star topology (X', X).

ProrositioN 1.2 [20]. Let (h,) C X’. Then
1) [y = h] & [hy(x) = h(x), ¥x € X].
2) If h, — h (strongly), then h,, — h, in o(X’, X”).
3) If hy, — h, then ||h,]|| is bounded and ||h|| < liminf |||

4) If h, S hin o(X’,X) and u,, — u (strongly) in X, then h,(u,) — h(u).



Remark 1.4 If h, Shino(X,X”) and u, — u in o(X,X’). In general, it is not possible
to deduce that h,(u,)) — h(u).

1.1.1 Hilbert spaces

In many areas of mathematics and physics, particularly in quantum mechanics, Hilbert
spaces play a crucial role by offering an appropriate framework for characterizing the
state space of quantum systems. The completeness feature guarantees the right behavior
of the mathematical structure and permits the insightful analysis of limits and conver-

gent sequences.

DeriNiTION 1.3 A Hilbert space H is a complete scalar product space where the norm

derives from the scalar product.

ProrosiTION 1.3 [3]. In the weak topology of a Hilbert space, every convergent sequence

(V) is bounded.

ProrosiTION 1.4 [3]. A sequence (v,), in a Hilbert space converges weakly if it is bounded

in H.

THeorREM 1.1 [3]. Let (v,),en be a convergent sequence to v in H and (w,,),eN 15 a

weakly convergent sequence to w, then
lim (v, w,) = (v, w). (1.2)
n—oo

ProrosiTiON 1.5 Let E, F two Hilbert spaces, let (v,),en C E be a weakly convergent

sequence to v € E, let A € L(E;F). Then, the sequence (A(v,)), converges to A(v) in
o(F,F’).



Proof Let w € F, the function
w > (A(v), w)

is linear and continuous, because
KA @), w)l <lIAlllvllgllwllp, Yv € E,w e F
using Riesz theorem, there exists u € E such that
(A(v),w)=(v,u),YveE

Then
lim <A(v,),w>= lim <wv,,u>

n—o0 n—o0 ]

=<v,u>=<Av),w>.

m Functional Spaces

1.2.1 The L’(Q)) spaces

DerINITION 1.4 Let Q) be an open domain in R",n € IN, and let 1 < r < oo. we define the

Lebesgue space

L'(Q) = {h :QQ > R : his measurable and J |h(x)|]" dx < oo}.
Q

ReMARK 1.5 For r € [1,00[, we define

Il = (L hl dx)’.

If r = oo, we have

L®(Q)={h:3C >0, such that h is measurable and |h(x)| < C}.



We define

[Ihlleo = suplh(x)]-
xeQ)

ReMARK 1.6 The case r = 2, L*(Q) endowed with the scalar product

(o = f hx)g(x)dx (1.3)

Q

is a Hilbert space.

1.2.2 The Sobolev space W' (Q)

These spaces are essential to the study of partial differential equations. Let (2 an open

bounded set




DEerINITION 1.5 Let 1 € [1,00] and m be an integer. The W' (Q)) is the space of all
feL’(Q), we set

WnT(Q)={he L (Q): d*heLl’(Q) forall @ e N, with |a| < m]}

where

9% =901 9% ... 9

and the appropriate norm

llymr () = Z 10%k]|;r, 1 <7 < oo, forall he W™ (Q).

la|l<m

THEOREM 1.4 [54]. W"7(Q)) is a Banach space with their associated norm.
DEeriniTION 1.6 W' (Q) is the closure of D(Q)) in W™ (Q)).

DEeriNITION 1.7 If 1 = 2, we use the notation H™(Q) rather than W™2(Q)), endowed by
1
2
Il ) = [ > [||a“h||Lz]2]
la|<m

generated by the usual scalar product

(U, Vygmq) = Z J;) 0“ud*vdx.

lalsm

TaEOREM 1.5 [3].

1. H™(Q), equipped with the inner product denoted as (.,.)ym(q), constitutes a Hilbert

space.

2. When m’ < m, H™ (QQ) € H™(Q), with continuous embedding.



Lemma 1.1 [23]. We define H™(Q)) as a dual of Hy'(Q)), and we have
D(Q) cHy'(Q) c L*(Q)c H™Q)cD'(Q)

with continuous embedding.

The generalization of the calculus integration by parts is known as the Gaussian theo-
rem. For the theory of weak or variational solutions of partial differential equations, this
operation is crucial. It is necessary to research the conditions under which the domain’s

regularity and the functions within it are well-defined.

THeEOREM 1.6 [23]. For open bounded set (3 C R", n > 2 with a Lipschitz boundary T,
for every v in WH1(Q) the identity given below holds

J;) div(x)dx = J;v(s) n;(s)ds,

Where n represents the unit outer normal vector on I.

Cororrary 1.1 (Green’s formula) [47]. Under the same conditions of the theorem 1.6,

then one has

dv(s)
or an

J Vv(x).Vw(x)dx = w(s)ds — J Av(x)w(x)dx.
Q Q

v, L
where — is a normal derivation of v on T.

oan

1.2.3 The Bochner L(0, T; X) spaces

DerintTiON 1.8 Consider a Banach space X, for r € [1,00[, let L"(0, T; X) represent the



space of measurable functions h |0, T[— X, such that

1

T i
(J IIh(t)Ilkdt) = [|Allzr0,7;x) < oo
0

Ifr =00

IhllLe(o,7;x) = sup |Ih(£)llx-
t€]0, T

Taeorem 1.7 [3]. L"(0, T; X) is a Banach space.

We use the notation D’(0, T; X) to represent the space of distributions :]0, T[— X, define
by
D’(0,T;X) = L(D]O, T[, X)

where L(¢@, }): space of the linear continuous operators.

Lemma 1.2 [3].

(1) Forall heD’(0,T;X), we define the distribution derivation as

o ., dp

E(q)) FTL Yo € D(]0, T[).

(2) Forall he L"(0,T; X) we have

T
hg) = fo Htp(t)dt, Vo € D0, T])

We will cite some basic results on the space L"(0, T; X). which will be very useful for the

rest of our work.

Lemma 1.3 [23]. If he L'(0,T;X), % € L'(0,T;X), then the function h is continuous
from [0, T] to X (he C(0,T;X)).



Lemma 1.4 [23]. Let Q =)0, T[xQ) be open bounded set in R, x R", let h,, h are two

functions in Lr/(Q), 1 <7’ < oo, such that
”hn”Lr’(Q) <C\VnelN
and
h, > hinQ.

Then
h,—he L"(Q).

Where L (Q) = L' (]0, T[xQ).

Lemma 1.5 [23]. Let v"™ and v be two functions in L"(]0, L[]0, T[), where 1 < r < oo,

satisfying the conditions:

lv™ Mz qo, 7(x0,2p) < C

and

v"™ — v in |0, T[x]O,L[.
Then

v"™ —wvin L'(]0, T[x]O, L)

ProposiTiON 1.7 [56]. Let Consider a reflexive Banach space X with its dual X’, 1 <
1 1 )
r’,r < oo, such that p + o= 1. Then L" (0, T; X’) is the dual of L"(0, T; X).

ProrosiTION 1.8 [54]. Given X,Y be two Banach spaces, such that X < Y, then we

have L"(0,T;X) < L"(0,T;Y).

Lemma 1.6 (Aubin-Lions) [54]. Let X,Y and Z be Banach spaces. Assume that X is

10



compactly embedded in Y and that Y is continuously embedded in Z. Let
W ={velL([0,T;X)| v eL’([0,T];Z)}, forl <77 < oo.

(i) If r < o0 : the embedding of W into L'([0, T]; X) is compact.
(ii) If r = 0o and 1’ > 1: the embedding of W into C([0, T]; X) is compact.

m Some inequalities

As our investigation relies on established algebraic inequalities, it is pertinent to revisit

a selection of these inequalities at this juncture.

Lemma 1.7 (Cauchy-Schwartz inequality)

Let V be a linear space, if vy, v, € V then

(w1, v2) <llvqll [lv2ll

if vy and v, are linearly dependent, the equality holds.

LemmMma 1.8 ( Young’s inequalities) Let a,p a real numbers and 6 > 0, then
2
<sa2+ B
ap <oat+ iy
Proof We have

(26a - B)* >0

it follows that
46%a” + p? —46ap >0

Thus
46ap < 46%a’ + B>

11



therefore

ap <oa’+ —

Lemma 1.9 [47] Let a, p > 0, then

. 1 1
with1<r’,r<oco, =+ —-=1.
roor

Proof Let I =(0,1), a,f>0andh : I — Ris integrable function, such that

Applying Jensen’s inequality, and the fact that P (t) = e' is convex, we get

1 1
IP(W L h(x)dx) < oD J; (h(x))dx.

As a result, we get

12



where, u(I) =1 and

1
u(l) Jr

elogla)tlog(p) —_ log(ap)

=ap. (1.6)

according to (1.5), the result has been proven.

Here we shall present a few significant integral inequality. These inequalities are crucial
in applied mathematics, and they will be helpful in the upcoming chapters as well.

In 1888, Rogers and Holder provided a generalization of Cauchy-Schwartz’s inequal-

ity.

Tueorem 1.8 [57].[Holder’s inequality] For r > 1,r’ > 1. Assume that h € L"(Q) and
ke L"(Q), then hk € LY(Q) and

fQ hkldx < 1Al 1Kl (1.7)

Lemma 1.10 [57]. Let hy, hy, ....., hy be N functions such that, h; e L'i(QQ), 1 <i <N,
and
1 1 1 1

—=— 4+ — . +—<1.
r 1 ry N

Then, the product hih; .... hy € L(Q) and ||hy hy...hyll, < Byl Il -

1 1 1 )
Lemma 1.11 [57]. Let r> 1, 1" > 1 and ’ =—+ 5= 1>0,and he L'(R), k e L" (R).
Then h* k € L°(IR) and
[ kllp < Il [kl - (1.8)

13



DerINITION 1.9

C([0,T],X)={v:[0,T] — X continue}.
If for every ty € [0, T], the following limit exists in X i.e.

Vit = lim Mot =¥

then we say that v is classically differentiable. If furthermore, the function t — v’(t) is

continuous, then we say that v belongs to C1([0, T], X).

When studying partial differential equations, the Poincaré Inequality is very helpful
for estimating how solutions behave in Sobolev spaces. It is the Sobolev Embedding

theorem in a localized form.

Lemma 1.12 [16]. [Poincaré Inequality] Assume p > 1, Q) is an open subset that is
bounded at least in one direction. Then, there exists a constant C,, depending only on ()

and r, such that for any function h in the Sobolev space W(l)'r(Q), it holds:

Il < CIVAI|,.

Lemma 1.13 [29]. Let h € C1([0, L)) satisfying the conditions:
h(0,t) = h(0,t) =0, Vt>0.

it follows:
112 ()lloo < 21ROl (D)]]2,

112(E)lloo < 2l (#)lla N1 ()5

forall t > 0.

Gronwall’s inequality enables one to use the solution of the associated differential or
integral equation to bound a function that is known to fulfill a particular differential or
integral inequality. The lemme is available in two forms: integral and differential. There

are multiple variations for the latter.

14



Lemma 1.14 [33].[Gronwall’s Inequality] Suppose h,g : [0,T] — IR are nonnegative
bounded continuous function and p : [0,T] — R is an integrable nonnegative function,

such that

h(t) < g(t) +J; o(t)h(t)dr, for all t € [0, T].

Then t

h(t) 5g<t>+f

0

g2(s)o(s)exp (Jt p(T)dT) ds, for allt € [0, T].

When g is constant, the following corollary holds

CoroLrLAry 1.2 [33]. Suppose h:[0,T] — R is nonnegative bounded continuous func-

tion, p: [0, T] — R is an integrable nonnegative function and g > 0 such that

h(t)<g+ J: o(t)h(t)dr, for all t € [0, T],

Then ,
h(t) < gexp(f p(r)dr),for allt €[0,T].
0

15



Chapter 2

Decay energy for a nonlinear

Euler-Bernoulli beam with neutral delay

Within this chapter, we delve into the free transverse vibration analysis of a nonlinear
Euler-Bernoulli beam subjected to a neutral type delay. Initially, we establish a local
existence result utilizing the Faedo-Galerkin method. Subsequently, a boundary control

system is devised based on the Lyapunov method to mitigate the transverse vibrations

Introduction

Due to the requirement for high-precision control of numerous mechanical systems,

of the beam.

such as marine risers for oil and gas transportation, spacecraft with flexible attachments,
or flexible robot arms, the boundary control of flexible systems has been an important
topic of study in recent years [40], [48], [34], [7], [14], [43]. The time delay is one of
several elements that have a significant impact on the dynamic properties of systems.
It became evident that its existence could not be fully neglected in many systems, and
with the rapid growth of numerous engineering disciplines, including mechanical engi-
neering, a more precise system analysis was necessary. Time delays in these systems can
lead to poor performance and unstable dynamic systems [30], [49]. As a result, through-

out the past few decades, the stability issue with time-delay systems has received a lot

16



of attention. In [27], exponential stability result for a viscoelastic Timoshenko beam
was established. The researchers in [37], used the LMI (linear matrix inequality) tech-
nique to investigate global exponential stability for neutral differential systems with
time-varying or constant delay. The asymptotic stability of delay differential equations
of neutral type has been extensively studied in [38], [1]. We consider in this chapter the

neutrally retarded nonlinear Euler-Bernoulli beam for (x,t) € (0,L) x [0,00),L > 0
t 1 X
pA lyt + J; K(t— S)})t(X,S)dSl + ETYsxxxx = PoYxx — EEA(yx)x =0, (2.1)
t

under the boundary

Vxx(0,1) = 9 (L, 1) = 9(0,8) = 0, Yt > 0,
Elyg (L, t) = Poyy(L, t) + SEAD3(L,t) + ay,(L,t),Yt > 0, > 0,

and initial conditions

Y(x,0) = yo(x), y(x,0) =y1(x),x € (0,L), (2.3)

where EJ is the beam’s flexural rigidity, pA is the beam’s mass per unit length, and y(x, ¢)
represents transverse displacement at time f with respect to the spatial coordinate x, EA
the axial stiffness, P the tension force. In this work we consider the transverse dynamics
of a beam in bending vibration and we neglect the coupling between longitudinal and
traversal displacements. Assuming that the change in length due to the axial force is
small and negligible, we take only the elongation of the beam due to the curvature. We

prove in this chapter existence and general decay result for problem (2.1) —(2.3).

m Notation and Main Results

Let us introduce the notation:

t

L
(kop) (t)= | | x(t=9)[p(x,t) = p(x,5)] dsdx
I

17



For the kernel k¥ we assume:

(K1) The kernel «x is a nonnegative summable function C!(IR, ) satisfying
x’(t) <0 forall t > 0.

(K2) 0<k= TOK(s)ds <1.
0

(K3) There exists an increasing function g (¢): R, — R, supposed to satisfy

u(t) = % is a decreasing function and

+00 +00 to
J- K(s)g (s)ds < +oo, f 1%’(s)|g (s)ds < +oo, J k" (s)|ds < +oo0.
0 0 0

t’('
We denote for t* > 0, k* = fK(s)ds,
0

A={yeH?(0,1) |(0) =0},
M={ye ANH(0,L) | Pex(0) = yu(L) = O}.

We define the (classical) energy of problem (2.1)-(2.3) by

t
&)= 5oAln I + £l Pl + 520+ 0 [ ete—s) s as] 2

We need the following auxiliary result:

Lemma 2.1 We have the following identity:

L t t
[ w0 | ste=aputeitsax = 3oy + 3 | we=alpioiras

18



L
PP = () [ pi(ep0)ds (25)

for all y, € C1([0,00); L?(0,L)) and x € C'[0, o).

Proof The identity is a direct consequence of

(k"op:) jf (= $)[e(5) — () Pddsdx = (1) () - w2 ()|

t L
=2 | wts) | pule=olp0)=sute—s)ldxds, 120

and
d (! 2 2
| ke-9wIPds =5 | xlipde-s)Pds
= k(Dllp (O + zj f K(S)9ualt — )it~ $)dsdx, 130,
0o Jo
From the above two relations, we find the proof of lemma 2.1. n

ProrosITION 2.1 The modified energy E(t) is non-increasing and uniformly bounded.

More precisely, we have

pA

E(t) ==

- (opi) (1) - pA@ o]l - av?(L.y <o, t>0. (2:6)

Proof Multiplying equation (2.1) by y; and integrating the result over (0, L) by parts and

using the boundary conditions, we get

1 d EA
S i leAly O + Ex e ]+ Rl 0]+ =5 2 0|

L
+pAK<t>f0 yt<t>yt<o>dx+pAL ytfo (- $)yuu(s)dsdx

1
[ Epred L)~ Pogi(L )= SEAGAL D] ilL 1),

Utilizing lemma 2.1, we determine the relation in the proposition. n
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THeEOREM 2.1 Suppose that (K1)-(K3) are satisfied. If (v, vy1) € M x A, then for T > 0,
there exists a unique solution y of problem (2.1) —(2.3)

y e L=([0,T), M),

yt € Loo([or T)' A):
i € L*([0,T),L?(0,L)).

Additionally, we have y € C([0,T), A),y; € C([0, T),L*(0,L)).

Proof We employ the Galerkin’s method to establish the proof.
Firstly, we establish the existence and uniqueness of solutions conforming to Eqs. (2.1)—(2.3).

Subsequently, we generalize this finding to encompass weak solutions through the application

of density arguments.

The variational problem associated with equations (2.1) and (2.2) can be formulated as fol-
lows: to find y € M such that

t

PA (Y, w) + pAx(0) (v, w) + pA (J; K(t - S)yt(x,S)dS;W) + EI (Y Wix)

FBy (o ) + S EA (9%, w) + agi(L (L) = 0

for all we M
Step 1: Approximate solutions
Let {w;} a complete orthogonal bases of M.

We consider WY = span{w;,w,,..., wy}, forall N eNN.
m

The approximate solution y™(x,t) = Z(E;”(t)wi(x) of the problem (2.1)-(2.3) satisfies :
i=1
t
A+ AK(O) )+ pA | [ (e = 91w+ B 32 i)
0

+P (vy's wix) + %EA((?f)3, wiy) + ay" (L, thw;(L) = 0 (2.7)
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with the initial conditions

Z ), wj)w; — vy in M,
1

m
1:

m
E ), wi)w; — yp in A.

i=1

Step 2: A Priori Estimate

We indicate by M;,i = 1,2,..., positive constants independent of m.
Estimate 1 According to (2.6) and hypothesis (K1) it follows

Eu(t)+a (9 (L)* <0 (2.8)

where £, is the energy of the solutions y™, introduced in (2.4).
The integration of the inequality (2.8) over (0, t), gives us

t
Em(t)mf (v"(L,5))* ds < E,,(0) (2.9)
0

Since the initial conditions are sufficienty smooth, then there exists a M > 0, such that
t t
[ +lllP+ o P+ o2+ | te=s)lprPasea | o s2ds<m. @10

Estimate 2 we show upper bounds of”yt”Z(O)H2
By multiplying (C");;(0) on both sides of Equation.(2.7) and summing up the resulting equa-
tions from i = 1 to i = m and considering t = 0, then integrating by parts and utilizing

boundary conditions, we obtain

PAII(O)I> = —pA(0) (3"(0), 11(0)) — E1 (31 (0), 3 (0)) + Py (112(0),334(0))
*%EA(y$<0><y?<o>>2,yfz<o>) (2.11)

Young’s inequality gives

(pAK( )?

—pAx(0) (3;"(0),9:¢(0)) < lly¢"(0 )||2+le14"§(0)||2 (2.12)
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m m (EI)Z m 2 0 m 2
~EL(932xx(0), 91(0)) < =1y (O" + 2 llyi (O (2.13)
m m P02 m 2 o m 2
Py (5x(0), 91¢(0) <~y (O + 2y (Ol (2.14)
employing again Young’s inequality, and lemma 1.13, we get
3 m m 2 m %(EA)Z m m 2112 o m 2
~SEA(p2(0)37'(0)%,971(0)) < IV(0) (v ()11 + Zllyii O]
%( 2 |,,m 2 0 m 2
< [|| P2 (O I O]+ Iy Ol
(2.15)

A)? s
< 2B ORI ORI O] + Sl )1

Substituting inequalities (2.12) —(2.15) into (2.11), we get

2 2 P2
(pA= ) RO < Mllﬂ”(o)llz + By, 0P + L)

+9 [Ilyxx M@ O)IPIL(0)]

We choose 6 so small that pA — 6 > 0 and since the initial data are arbitrary we deduce

lvi (O < M. (2.16)

Estimate 3 Next, we estimate ||[y/||?
For t,C > 0 fixed with ¢ < T —t. when we multiply (C}"),(t + C)

of Equation (2.7) and then sum the resulting equations from i = 1 to i = m, and taking the

— (C")4(t) on both sides

difference with t =t + C and t = t, we get

A d EI
P2 i+ 0) =y (O + AR} (1 + C) =9 (0IP + 2 lpttto-+.0) —yb(ol?

2 dt

+P——||yx( O) =9 (OIP + a [y (Lt +0) =L, 1)]° = Ky + K, (2.17)

2 dt
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where

L
K== [ [oresor-eror] b0 -l

L t+C t
Kz=—pAf0 UO K+ L= )l (x,5)ds - j K’<t—s>yf"<x,s>ds][yf“(ué)—y?(t)]dx

0

by integration by parts, we get

K, = —%[(y;”(L,HC)):“ — V(L] (Lt +0) =9 (L, 1)]

3EAJ [V (4 QG2+ ) — w2 ()] (90t + ) - 90 (1) dx

:K11+K12. (218)

On the other hand,by young inequality and lemma 1.12, we have
K ——%[( "L+ )% - ("L 1) [ (Lt +C) — (L, t
1= = [P (L4 0P = (L)) DL £+ £) = 9(L, 1)

— (Lt 4 0 =g (L ] x [ (L £+ 007 + 9L £+ O (L 1) + (4(L, )%

(v (Lt +C) = vy (L, t)]

m 2 (EA)2 m m 2 m m 2
<S|er@ e+ 02 + L) ]( To V(L0 =R (L) + 0 [y (L £+ 0)—y; <L,t>])

NIQJ

3L
< 5 [IpL, £+ O + Iy L DI

(EA)?
( 166

oL+ ) - yz:;<L,t>||2+6[y:"<L,t+c>—y?<L,t>]2)

2
_ 3ML(EA)

< s WKL+ O = pR(L I+ 3MULO [ (Lt +0) — 9 (L))" (219)

on the other hand, by young’s inequality, we have

KlZ—ﬁJ [yxx t+C)(yx (t+C)) yxx( yx ][yt t+C yt ]dx
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< 22+ O+ 0P~y O + 2+ ) -y o

we estimate the first term in Ky, by
It + O (£ +0))° =y (D ()1 =

it + O @ (E+T))* =yt + )@ (D)% + pia(t+ 0y (1)) = v (D (1)1
< 20y (t+ Ot +0)) =yt + O (1)1 + 2llyrn (£ + O (x' (1)) = pia (1) @3 (1)1
< 20t + NI+ 0 = G OIR + 202 IR (e + O - vl
< M; (I + )~ w2 (O + Iyt + O~ v(OIR)
then, we get
Kiz < M; 222 (It 0=y I + e + ©)~ya(0IP) + 22 yf e 4.0y o)l

(2.20)
by (2.19),(2.20), and young inequality, we get

K| <

3M,L(EA)?, . m " "
LA (1,4 ©) - y (L P + 3M LB [y (L, +.C) 37 (L, )

+M13E (Il (£ + ©) = 9 (DI + Iyt + T) =yt )+i||yt (t+0) - (1% (2.21)

2
o
det |y} (t+0) =" ()1
(2.22)
Substituting inequalities (2.21) — (2.22) into (2.17), dividing by C?, then for T — 0, the limit

L t+C t
K| = M4f lf K'(t+C—s)y(x,s)ds — f K'(t=s)y{"(x,s)ds
0o [Jo

0

yields
pA d 2 mI2 4 El d 2 2 m 2
ORI + (OO + Ty (1P + 22 L P + atoiyc o)
3M,L J3EA, 3EA
< M oL+ ZEEA o e a2 a0 2y o
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5 3EA
2+ 2l + My |

0

+7

a simple calculus yields

J f "(t=s)p{"(x,s)dsdx < supllyt |IJ [x”(s)|ds < M5
We choose 6 so small that a« —3M;L06 > 0, we substitute (2.24) in (2.23),we have

L1972 + gl + 1921P) < M+ My 1P + i + 41

then integrate over the interval (0,t), we get

911 + lpiell® + llyxi 1> < Mg +M9J (i1 + Nyl + 1317 ds

Thanks to Gronwall’s lemma, we have

2 2 2
et 1” + Iyl + IRl ™ < Mio.

Passage to the limit
From (2.10) and (2.25), We infer

(v™) bounded in L*(0,T,A),
(v{") bounded in L*(0,T,A),
(v) bounded in L>(0,T,L?(0,L)).

and

(v™)? bounded in L*(0,T,L*(0,L)).

Therefore, there exist subsequences of (y™), denoted again by (y™

y" Sy in L2(0, T, A),
y" Sy, in L2(0, T, A),
y! Sy in L°(0,T,L%(0,L)).

25

L t 2
(K’(O)yT(t)+J K”(t—s)ytm(x,s)ds) dx
0

), satisfying

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



And
(27 = (vx)? in L=(0,T,L*(0,L)). (2.29)

Studying the nonlinear terms

Thanks to the Aubin-Lions compactness lemma and (2.28), we get
y™ — y strongly in L=(0, T, Hy(0,L)) (2.30)
(2.29) and lemma 1.5, allow to write
') = @) in L*([0, T]x[0, L)) (2.31)

This allows us by passing to the limit in (2.7) to obtain a weak solution of the problem (2.1) —
(2.3).

Uniqueness

Assume that y and y are two different solution to the system (2.1)—(2.3), and Y =y -7y, with
Y (0) = Y;(0) = 0, then Y satisfies

t

pA (Y, wi) + pAx(0) (Y, w;) + pA(J «'(t —s)Y(x,s)ds, wi) + EI(Yyy Wixy)
0
#By (Ve wie) + 5 EA (7,1 = [l wie) + @VilL (1) = 0 (232)

When we multiply (C")(t) on both sides of Equation 2.32 and then sum the resulting equa-

tions with respect to i, we obtain

t

PA(Yy, Yy) + pAx(0) (Yy, Yy) + PA(j K'(t —s)Y;(x,s)ds, Yt) +EI(Yyy, Yixx)
0

1 —
+Py (Yo, Vi) + S EA([7,° = 72, Vi) + @(Yi(L, 1) = 0
then, we have

El d
2 dt

PAd Ly 2
VIR + p AR +

Py d

Yoo l? + =2
IVl + 5 =

1Yl + (Y (L, 1))?
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t
= —pA(J; K'(t = 5)Y,(x, 5)ds, Yt) - %EA([?X]"’ ~ (3 Vi) (2.33)

with the same technique in Estimate 3, by integration by parts, we get

SEA(FLP [ Vo) = o [P0~ BP0 % Vi)

3“[ (7252 = P32 i (2.34)

on the other hand, by young’s inequality and lemma 1.12, we have

‘% |3, P@) - [P0 x vi(L) = —%Yt(L) x Yy (L)X
[[Z/x L)+7 (L) xy(L +[3’x] ]

< (17 >+[%]2<L>)(%[Y >12+6[Yt<L>]2)

(EA)?
2 2
et e« 5

w(DII? +6[Yt<L>12)

- 3M,L*(EA)?

< s Il DIP +3M LS [Yy(L)]* (2.35)

on the other hand, we have

3EA 3EA
f[yxx 7. Tl ex < 2245, 5, - a2+ A e

3EA — 3EA
< ”yxxyx yxxyx"'yxxyx yxxy2”2+T”Yt”2

3 3EA - 3EA
||yxx(yx+yx)( yx)” +_||yx(yxx yxx)||2+_||Yt”2

3EA
< My |lYy ||2+M11”Yxx”2+—||yt”2 (2.36)
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by young, Holder’s inequalities, we have

, 5
K’ (t = 5)Yy(x,8)ds||* + §||Yt||2

—pA (J: «'(t —s)Y(x,s)ds, Yt) < (p;;)z

<
- 20

Substituting inequalities (2.34) — (2.37) into (2.33), we get

(p4) f [ (t = s)IlIYe (x, S)IIZdS+—|IY||2 (2.37)

A d EI d )%
= IR + p AR + -1Vl + 2 ||Y I+ (= 3My LO)(Y, (L, 1))°
A to S 3EA 3M;L%(EA)?
) o>f e (E= 1Y (%, 5Pt S VP Mo Yl P My oM EA e
25 . 271 85

We choose 6 so small that a —3M;Lo > 0 after that integrating over (0, t), using this estimate
t , t
[2 {0 (r = MY()Pdsdr <1l 0. fo 1Ye(s)Ids, we see that

t
I+ 1Yl + 1Yl < Muf (Y + 1Yl + 1Y) (2.38)
0

Thus, Gronwall’s inequality guarantees the uniqueness of the solution. n

m Asymptotic behavior
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we introduce the functionals

L t

L

W) = pA | u | x-opeisax
J

0 0

t
W (f) = pA y[yﬁfk(ts)yt(s)ds]dx,
0

t
Py
Wi(t) = — | Kg(t—3s)llyx(s) s)|I%ds,
2]
A —
(1) = p7f(z<g<t—s>+f<g<t—s)||yt<s>||2ds,
0

and

t

JKg (t—ys) yx s)dsdx,
0

L
EA
JAKg yxx dsdx 7 J
0 0

+00 +00

where K,(t) =g (t) f |k’(s)|g (s)ds, and Eg(t) =g (t) f k(s)g(s)ds,

t t

and g (t) is specified above. We define the second modified functional by

Tt
=
I
m
=
+
.Mm

1=1

(2.39)

for A; >0,i=1,...,5 to be specified later. Our first study indicated that this functional is

reasonable to consider.
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ProposiTiON 2.2 There exist n; > 0,i = 1,2 such that

ny (E() +Ws(t) + Wy(t) + Ws(t)) < F(t)
< 115 (E(£) + Wa(t) + Wy (£) + Wi (£)), £ > 0. (2.40)

Proof It is easy to see, from the above definitions, that

t

|| pe () + fx £—5)llye(s)[12ds

o

<0

t
O ol + %fx(m)llyt(s)nzds]
0

where q; = Lmax(1, k).

t

n O+ O7F [ xte-s)u(sIPds

0

20AL% P,
IIt I+ =2

<492

A A t
O sl + 2 o]+ %fx(tsmyt(s)uzds].

0

— 2
where g, = Lmax(1,k, %). Taking into account these considerations, we have

A
F(t) < (1+/\1q1+/\2¢]2)p7“}’t(t)||2 Bl ]+ 22+ (14 Ao [ 0]
t
A
P2 IR0 + 1+ dagy + daga) 2 fx(t—s)llyt(s)llzds
0

+/\3\I]3(t) + /\4\114(1') + /\5‘1’5(”
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and

(1) = (=g~ dag2)pA [ (O] + En s 0] + 2 52 0]
t
(1= Aaq0) By o ()] + (1= g1 4y - Azqz)pAJK(t—S)Ilyt(S)Ilzds
0

+2/\3\Ij3(t) + 2/\4‘1’4(1’) + 2/\5\115(”, t>0.

Therefore,

ny (E(t) + A3W5(8) + AWy (t) + A5\WP5(1)) < F(t)
1y (E(f) + A3Ws(t) + AWy (t) + A5 W5(t))

IA

. 1— 1-
for some n; >0 and A;, i = 1,2 such that Aq < 2*(121‘12, 1, < z)élqu'

In the following, we state and prove our main result.

THEOREM 2.2 Let us suppose that k and g satisfy the hypotheses (K1) —(K3). Then, there
exist positive constants C and o such that

E(t)<Cg(t) 7, t>0. (2.41)

Proof Differentiating \V; (t), with respect to t and utilizing the equation (2.1), we obtain

L t
-
W(1)=—pA | 3, x(t—s)%( )dsdx
00
L t
Y/ (t) = —-pA yt[fxts Vi(s ]dx pAfy jK(t—s)yt(s)dsdlel+Iz.
J
0 0 0o 0

31



Clearly

L t
L = —PAfyt K(O)Vt+fk,(t5)yt(5)d5]
0 0
L t
L= —pax(Olll -4 [ 5 | -5 sidsdx
0 0
A 2 . 2
< —pr(O)Ilytllﬁf—éollytli +pA60K<o>f|K'<t—s>|||yt<s>|| ds
0
1 t
< pA(4—bO x( >)||yt||2 roasox) [ <=9l dsdo=0.  (242)
0

The equation (2.1) allows us to write

L t
I, = pA [ K(t—s)yt(s)ds]dx
J I
EA

L
J Elyxxxx Poyxx (lfx) )
0

t

jK(l‘ —5)ys(s)ds

0

t

—+

t
yo + JK,(t - S)y(S)dS]dX = 121 + I22,
0

where

L t

Iy = pAJ K(O)yt+f7<’(t—s)yt(s)ds][
' Lt ! L t t

= pAx(0) | v; | x(t—s)ys(s)dsdx+pA K'(t=s)pi(s)ds | x(t—s)y(s)dsdx.
Il J ]

o%w

K(t—s)yt(s)ds]dx
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Using young and Cauchy Schwartz inequality, for 6¢ > 0, we estimate

t

A—
pAK(0)250 ”yt”z + Z_éok J K(t—s) ”yt(s)”2 ds
0

IN

Iy

— t

t
pAk
pAK(0)50j|K/(f—S)H|yt || ds+ P20 15, K(t—S)”yt(S)”ZdS
0 0

+

IA

_ ot
pAx(0 60”yt|| +pTJK t—s)“yt(s)“st
0

t

pAK(O)(SOﬂK’(t—s)]||yt(s)||2ds. (2.43)

+

Then, we have

I,

L t
f(EIyxxx—Poyx—%yi)x[uow—ut)wfx'(t—s)y@)ds]dx
0 0

EA
Elyxxx (L t) Pny(Lrt) - —}]S(L, t))

( t

t
EA )
(Elyxxx - Pny - 7%?) K(O)yx - K(t)yxo + J K (t - S)yx(s)ds]dx'
0

|
o %
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Using boundary control and young inequality, for 61,0,,03 > 0, we find

I, <ay(L,t) [K(O)y(L, t)—x(t)y(L,0) + J-K,(t - s)y(L,s)ds]

0

+EL(6(0)+ K(000) ] + B 0610)+ k02l + Z5 ol
EA (t)(1 + 83) P
#5080y KR 2Py B P By

fEIym Py ;‘yx)[fw—s)yx(s)ds]dx.

0 0
Young inequality gives us

t

EIyxxx Poyy = _yx)[f K'(t - S)yx(s)ds]dx <Eld4 ||yxx||2
0

t t
EI«(0) Pyx(0)
o [ e =5 oo ds-+ sl + o

0 0
t

L
" %fygfk/(t_s)yx(s)ydedx; 04,05 > 0.
0 0

O%h

<(t=5)] o) ds
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By using Holder’s and young’s inequalities, for 6¢ > 0, we estimate

t

L
92 | ' (t = 5)pyls)podsdx
]
L 1/2 L ; 5
[f(yi)zdx] [J[J|K’(t—s)|yx(s)yxds] dx]
0 0 \0

1/2

IA

L t
< %Hy,%”2+% K’(t—S)';}f(s)ds "(t - s|y2dsdx
1 x(0)o t
< e Hk’t Abtolacs 21
0
t
1 (0) o6k(0) 1
< 5[ 2 252 [ -l o as
0

Applying young’s inequality and lemma 1.12 , we find

<(t=3)|Jpe(s)]|”ds,

t
(L, t) J K'(t=s)y(L,s)ds < Lytz(L, t)+ %LK(O)
2b, 2
0

boL
DL YLD < 5oyR 0+ 2

1 b
- WL (L0) < 5y, AL+ 2% [yl
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Hence,

Therefore,

W (t)

IA

a%myf@, f) +p0(1<(0) + 1 (£)S, + 05 + bOLK(O))I|yx||2
EL(k(0) + x(8)51 + 6 [pua]| + (T(_ )j (=)o (s)|[2 s
:
%(K@(“z;% a 5“53 NI« =5 pel”
(32 atol ) Dyl + fog oyl
B0 (-t s 250 [ -l s @as
s o

(1+x(0)+x(t) ,
2bg

v (L, 1)+ pA(%éO —x(0)+ K(O)zéo) ol

t t
2pA1<(0)60J‘ik'(t—s)|”yt(s)”2ds+pTJK (t— s)“yt(s)szs
0 0

EuK«n+Kuw1+5@”%AF+H%K«»+KUWZ+53+

EA 1\ 1+x(t)(1+63) EI
B w01+ 55 )+ FAL 0 oy, 2L Ol
P (1) EA

(2 + ot <2l st

t
EI x(0) [ P
(0 f /(£ =5)||[pe(s)]| s + <2>(2;5 Lbo)ﬂkt )| || ()| s
0

t
561( J
0

2O

(t-— s|||yx szs. (2.45)
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In view of equation (2.1), the derivative of \W,(t) is given by

L t
dx + pAJy% [yt + jk(t - s)yt(s)ds]dx

0 0

L t
Wy (t) = PAJyt (yt + | k(t=s)yi(s)ds

0

o C

t

L L
2 h EA
= pA ||| +pAJyt k(t—s)yt(s)dsdﬂfy( Elysnx + —- (90 +P0yxx)dx~
0 0

J
0

Therefore, for 64 > 0,

pAk

W < pA(1+ 2 ) lye])*+ k(t=9)||9e(s)||” ds = BT |||

0

EA
— P[]’ ——||yx|| +9(L)(~ETY (L, 1) + Popy(L, £) + —-p3 (L, 1))

It follows from the boundary conditions that

Ak
(1) < pA + 2 o + B f—5>||%<5>||2d5—51 sl
0
b
-po(l—““)n =Sl gptwn 240
The derivative of \V5(t) satisfies
t
W) = Dk 0y + ng (t =) lex(s)IP ds
P P, :
< 0K H H ——u Jth s)”yx(s)”zds—?0J_lrc'(t—s)lnyx(s)nzds,t20.
0 0

(2.47)
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Further, differentiating \V (t) yields

Py (1)

IA

A~ A
% (R (0) + K, (0)) Jwe (1) + % j (Ry(t =)+ Kyt =) ||pits)|* ds
0

kS

t

t
(R (0) + Ko (0)) (0] * - %u(t)J(fg(t—s) + Kyt =) ||ve(s)]) ds
0

t

% J (k(t = 5) + | (t = 9)) |pe(s)||” s, = 0.

0

Direct computations give us

W5 (1)

that is

IA

(2.48)
EI El t
SO+ 5 [ Kgte=a ol s Sk 012
A . 0
5 [rie-a el as
0
EI EI
KO + 5 O3 - 5 J (=5 (9] s
t
%u(t)fKg<t—s>||y,%<s>||2ds—%flx'(t—s)llly,%(s)szs
0 0
EI : 2
7u(t)ng(t—s)||yxx(s)|| ds, t > 0. (2.49)
0
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Collecting the estimations (2.45)-(2.49), we find

A

F'(t) < %(Kloyt)(t) + % {—K(t) + 2)\1(%60 —x(0) + K(O)zéo)

+2/\2(1 + 54) + /\4(Eg(0) + Kg(o))] ||yt”2

+Po(/\1(K(0)+K(t)52+55+M)—/\2(1—aLbO) A3K ))nyﬂz

2D, 2 gl

+EI(/’\1(K(O)+1<(t)51 +04) — /\2+% )nyx”

P (A (2] 4 0) (1 1)) - A, + AsK(0)) 52
t

A K
- ( FRRE A4) [ k(t=9)llp:(s)IIPds

oA (2100100 - 22) [ e - 9y (9P
0

o[-0 SR s abon) Of /(¢ 5)lpsls)Pds

W (/\1% - ) [ 15”8 = )lipals)Pds = Astu() Wa(0) ~ A (1)94()
0

EA 06 (0 EI
e P ) e

K(t
R ‘2)(2—(;’0+aboL)||yxo||2

1+x(0)+x(t) A
+a(—1+/\1 T +2b20 v2(L, 1) — Asu(t)Ws(t).
Choosing
PO 1 2 /\l
by =2, o 03=01=1,06 = ——=, 04 = 2x(0), A5 = —,
0 a2LO (0)3 116K(0)4 x(0), As 2
A3 =x(0)(=—+1)A4.

265
Therefore (2.50) takes the form
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F(t) < % {—K(t) + A1@ +2A5(1 + 2x(0)) + A4(Kq(0) + Kg(O))} ||yt”2

A
+ pT(K’O}’t)(f) + B (/\1 (K(t)52 +05+ 3(0) + K(O)(Zés + 1)Kg(0)) - %) “?x“2

2 2

K,(0)

4 EI(A1(31<(O) k() + gT) - /\2) s + pA(Z/\l - %)f I’ (t = 5)llly (s)][2ds
0

" % (/\1 ( 1+ ZK(t) + Kz(o)(z + K(O)) N Kgio) ) _ /\2) ||}}£||2 _ /\3u(t)\113(t)
' %(Alwo)+ 212(3 _“)J (£ = 9)lly (I ds — Aquu (1) V() = Asue(£) W5 (1)
0

Ay (EI EA x(0
05 (Sl + S0 4 (S 41 ial?)

+ a(—1+/\lw+?)y (L, t). (2.51)

We need A so small that

A 5O 20,5 (1 4 20(0) + A4 (K (0) + K, (0)) < k(1)

1 (3x(0) + () + &) < 1,
A1(1+2K<> K(O)2+(0) °)<Ab

2
M RK(0) + 5255 < A,
Al < %,

3x(0 0 A
Ay (x(t) S0+ KL + 1)K (0)) < 22,

1+x(0)+x(t) |, Ay
As a consequence of the above consideration, for t > t*, we get

F,(t) < _ClE;(t) — /\3”(1’)‘1’3(1’) — /\4u(t)\If4(t) — A5u(t)‘lf5(t) + CzK(t), > t*;

A . . .
where C, = T(Elllymoll2 EA||yx(3||2+P0( )||3/xo|| ) As u(t) is nonincreasing, we
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have u(t) < u(0) for all t > t*. we can write
F/(t) < ——=u(t)E(t) = Asu(t)Ws5(t) — Agu(t)Wy(t) — Asu(t)Ws(t) + Coxc(t), t>t".
Using the equivalence (2.40), we obtain
F'(t) < —Csu(t)F(t) + Cox(t), t>t, (2.52)
where C;,i = 1,..., 3 are positive constants. A simple integration of (2.52) over [t*,t] gives
‘

-Cs [ u(s)ds
F(t)<Ne * , t>t

for some positive constant N. Then utilizing the inequality (2.40) of Proposition 2.2, we get

—C3fu(s)ds
nq (E(t)+\I’3(t)+\If4(t)+\If5(t))SNe # , t>t

Due to the continuity of E(t) over the interval [0,t"], we deduce

for some positive constants C and o. [
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Chapter 3

Stabilization of a nonlinear
Euler-Bernoulli viscoelastic beam

subjected to a neutral delay

This chapter is concerned with the nonlinear Euler-Bernoulli viscoelastic equation with
a neutral type delay. First we established the local existence result by using the Faedo-
Galerkin method. Next using the energy method and constructing an appropriate Lya-
punov functional, under certain conditions on the kernel of neutral delay term, we show

that despite of the destructive nature of delays in general, a very general decaying en-

ergy for the problem was obtained.

Infroduction

Many practical dynamic systems have delays, but they are often neglected for simplicity.
However, the presence of time delays can lead to poor performance and instabilities in
control systems, so it is important to take them into account. The modeling of several
physical systems includes delay phenomena (mechanical, economic, biological, ecolog-
ical and telecommunications systems) [25]. More and more researchers have focused
on the stability of delay-differential neutral systems in the last two decades due to its

widespread application [17, 21, 58, 41].
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However, time delay is typically time-varying in many real-world neutral systems, which
can significantly alter the neutral system’s dynamics in some cases [9, 60].
In [52] Park considered a weak viscoelastic beam equation subject to time-varying delay

of the form

Uy (x,t) + A%u(x, t) — M(|| Vu(t) [|?)Au(x, t) + U(t)fotg(t —1)Au(x,t)dt
bous(x,t)+byus(x,t—s(t)) =0,(x,t) e QA xR,

u(x,t) = f"”a(;'” =0,(x,t) e xR,,

u(x,0) = ugp(x), us(x,0) = uq(x),x € Q,
uy(x,t) = ho(x, 1), (x,t) € Q x[-s(0),0)

where O € R" is a bounded domain, 7 is the unit outward normal to boundary I of (),
by is a positive constant, b; is a real number, g, 0, and M are functions. A general decay
rate under conditions on ¢ and the kernel ¢ was showed. Feng [4] studied the strong

time-dependent delay in the viscoelastic wave equation

Vit = Ay + [y gt = )9i(1)dT — g Ay, — upAyy(t = (1) = 0, (x,1) € A xRy,
y(x,t)=0,(x,t) eI xRy,

y(x,0) = po(x), x €Q,

V(%) = ho(x, 1), (x, 1) € Q x [~5(0), 0)

where u;, u, are constants and s(¢) > 0 denotes the time dependent delay. He obtained
general decay of energy for the problem. In [55] Tatar examined the following wave

equation with neutral delay

Vit = Pex = Vi~ [ gt = Ty(0)dT, (x,1)€(0,1) xR,
v(0,t) =y(1,t)=0, teR,,

p(x,0)=p0(x),  p:(x,0)=p1(x), x€(0,1)

and the exponential decay of the solution was shown. The neutrally retarded viscoelas-
tic Timoshenko system was studied by Kerbal and Tatar [27], the authors proved an

exponential decay result of energy under some conditions on the kernel. In the absence
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of time delay [11], the authors studied the vibrating flexible beam system

PAU(X, 1) + ElUyyy (X, 1) = Pythyy (X, £) — %EAuxx(x, t)u,%(x, t)=0,

n (0,L) x [0, 00),

Uy (0,1) = uy (L, t) = u(0,¢) =0,Vt > 0,

—Eluyy (L t) + Pyuy(L, t) + sEAu3(L, t) = —mou,(L, 1), ¥t > 0,mp > 0

at the boundary, authors applied a linear control force and obtained an exponential de-
cay of energy. Inspired by this work [11], in this chapter we consider the Euler-Bernoulli

viscoelastic equation with a neutral type delay

d t EA 0 3
PA= (9 + [y k(t=5)9i(s)ds) = ~Epsans + -5 (97)
t
+P, (yxx - j c(t— s)yxx(s)ds) in (0,L) x R* (3.1)
0

under the boundary conditions

Yax(0,1) = yx(L, 1) = 9(0,£) =0, V£ >0,
1 t
ElYyun(L,t) = Pops(L, t) + SEAPR(L 1) = Py [ c(t = s)yx(L,5)ds (3.2)
0

+ay(L,t), Yt>0, a>0.

The initial conditions are

(x,0) = yo(x), pe(x,0) = 1(x), x € (0, L). (3.3)

The system parameters are as follows: L is the beam’s length, EI is its uniform flexural
rigidity, pA is the mass per unit length, EA is the axial stiffness, y(x, t) denotes the beam
transversal displacement and P, is the tension force. Here we suppose that the variation
in length due to axial force is small and that just the elongation of the beam due to
bending is taken into account. First we established the local existence result by using
the Faedo-Galerkin method, and next we prove general decaying energy for the problem

(3.1)—(3.3) using weaker assumptions on the relaxation function ¢ and some conditions
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on the kernel k.

M Notation and Main Results

In this section we present our assumptions about both kernels, Then we aim to show the
global existence and uniqueness of the problem .

Let’s assume

(H1) The kernel k is a nonnegative continuously differentiable and summable function

satisfying

(H2) The relaxation function ¢ : R, — IR, is a differentiable function satisfying

+00 t*
0<Il= J-g(s)ds <1 and for t* > O,fc(s)ds =¢, >0.
0 0

(H3) ¢’(t) <0 for almost all t > 0.

"(t
(H4) There exists a positive increasing function g (¢) such that i ((t)) = u(t) is a decreas-
+0o
ing function and f c(s)g(s)ds < +oo.
0

We introduce the following notation

L t
(cof)(t) = c(t=s)[f(x,t) = f(x,5)]* dsdx
2%
Lo
(cxf)(t) = c(t—s)f(x,s)dsdx, t > 0.
J J
0 0
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We denote

A= {y e H?(0,L) / y(0) = 0},
M={y e ANH*(0,L) 9,x(0) = pex(L) = 0}.

We define the (classical) energy of problem (3.1) —(3.3) by

t
E‘(t):%[pA||yt”2+EInyx||2+ b2 +P0[1_jg(5)ds]||yxl|2
0
t

+Po<cuyx><t>+pAfk<t—s>||yt<s>||2ds] (3.4)
0

ProrosiTION 3.1 The energy E(t) is nonincreasing and uniformly bounded. More pre-

cisely, we have

) A Ak P
£'(6) = 22 k) (0 2 P+ Dermy (- Reoipl - aiizn <0, 120
(3.5)

To prove the proposition we need to establish some lemmas

Lemma 3.1 It is easy to see that

t

[ et =51 0uts)patends = =3 om0+ 3 pa 0

0
t
25[“% GOlls fg(s)ds]—%g(t)llyxu)l i
0

,t>0.
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LemMa 3.2 We have the following identity:

[ oo [ ku-satordsax = =S+ 35 [ Ke-sllpPds
0 0

k(t I
oI =k(0) | te)

for all y, € C1([0,00); L%(0, L)) and k € C'[0, ).

Proof The identity is a direct consequence of

(k'ay,)(t) = k(®)lly: (1) ~v:(0)II° —2ff $)Vee(t = 5) [e(t) =9 (t —5)] dsdx, t>0.

and
d (! d (!
G | Ko=slmeras = 5 [ koo lpas
L t
= k()OI + 2f0 fo k()7 (t - $)yi(t — s)dsdx, £2 0.

From the above two relations, we find the proof of lemma 3.2 n

Proof (of the Proposition)
Multiplying equation (3.1) by vy, and integrating the result over (0,L), and using integration

by parts and the boundary conditions, we get

1d L
zd—[pAII%II + Byl + Po s +—||yx|| ]+pAk )L P1(1):(0)dx
+PAJO ytL k(f—5)32”(5)61561%—1’0J‘0 G(t=5)(9x(s), pue(t))ds

EA !
= l_EIyxxx(Lrt)+P0yx(Lrt)+TyS(LJt)_POJ (,‘(t—S)yx(L,S)dSlyt(L,t)
0

Then, applying lemma 3.1 and lemma 3.2, we find the relation in the proposition n
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THEOREM 3.1 Assume (H1)— (H4) are satisfied. If (vo,v1) € MtimesA, then for T > 0,
there exists a unique solution y of problem (3.1) — (3.3) such that

y € Loo([of T): M)’ yt € Loo([of T): A)’ ytt € Lz([or T),LZ(O,L))

Additionally, we have y € C([0,T), A),y; € C([0, T),L?(0,L)).

We will apply the Faedo Galerkin method to establish the existence and uniqueness of

solution of the problem (3.1)—(3.3).

Proof We employ the Galerkin’s method to establish the proof.

Firstly, we establish the existence and uniqueness of solutions conforming to Eqs. (3.1)—(3.3).
Subsequently, we generalize this finding to encompass weak solutions through the application
of density arguments.

The variational problem associated with equations (3.1) and (3.2) can be formulated as fol-
lows: find y € M such that

t

PA (Y11, w) + pAk(0) (v, w) + pA (J; K'(t - S)yt(S)ds,W) + EI (Ysxy Wyx) + Po (Ve W)

_PO(LtC(t_S)yX(S)dS’wx)+%EA((yx)3:wx)+0(w(L,t)yt(L’ =0,

for all we M

Step 1: The approximate problem

Let {w;} a complete orthogonal bases of M. We consider WN = span{w,, w,,...,wy)}, for allN €
m

IN. Given initial data yy € M,y € A, the approximate solution y™(x,t) = Z(E;-n(t)wi(x) of
i=1

the problem (3.1) —(3.3) satisfies :

t

PA (vii, wi) + pAk(0) (v, wi) + pA U k't —s)yi"(s)ds, wi) + EL(yyy Wixe) + Po (93 wix)
0

-Py (J:g(t —~ S)??(S)ds,wix) + %EA((%*C”){wix) +aw;(L, t)y/"(L, t) = 0.(3.6)
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with the initial conditions

Z ), wj)w; — vy in M,
1

m
1:

m
E ), wi)w; — yp in A.

i=1

Step 2: A Priori Estimate

We indicate by M;,i = 1,2,..., positive constants independent of m.
Estimate 1: According to (3.5) and hypothesis (H1) — (H4) it follows

£, (1) + =2ty + a (p"(L,1)* < 0 (3.7)

2

where £, is the energy of the solutions y™, introduced in (3.4).
The integration of the inequality (3.7) along the (0, t), gives us

PO ' m ' m 2
B+ 2 | M EIPds va [ 6L ds < E,00), 5.9

As the initial conditions are sufficiently smooth, then there exists a constant My > 0, indepen-

dent of m, such that

t
ot + Il + o I+ 2?1 + (cmpiier + fo (e =s)lor )| ds
t
o[ eomreirass [ orwaras<m. @)
Estimate 2 Searching for an upper bound of||yt’;‘(0)||2
By multiplying (C");;(0) on both sides of Equation.(3.6) and summing up the resulting equa-

tions from i = 1 to i = m and putting t = 0, then integrate by parts, and taking into account

the boundary conditions, it follows

PAIE(O)IP + pAK(0) (37(0), 312 (0)) + (ET3}2ss(0) — Poyi(0), 9(0))
EA(OGIO)3H0) =0, (310
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By young’s inequality we can write

I[#; (O)ll < M. (3.11)

Estimate 3. Searching for an upper bound of ||y}||
Now let’s fix t,C > 0 with C +t < T. When we multiply (C?"),(t + C) — (C}"),(t) on both sides
of equation (3.6) and then sum the resulting equations from i = 1 to i = m, and taking the

difference with t =t +C and t = t, we get

pA d El d
PR Ly (C+ 0= 3 I + pAKONBE'(C + 1)~ 3" (O + 5 T p(c + )~ ys(o)P?
P
+ dtllyx (C+0) =g (I +a [y (LC+0) =y (L) = K + Ky + K5 (3.12)
where

L
_%L [W(C+f))3—(y?(t))ﬂ[yi’i(c+t)—y;’i(t)]dx,
C+t t
Kz:_pAL Uo Klert=spr <x’5>ds—fok<t—s>yt %5 ds][yt C+H-3"(B)]dx,

L C+t t
K, =Pof0 UO c<c+t—s>yz1<x,s>ds—f0 c(t—s)y?(x,sms] [IHC + 1)~ pli(1)) dx

Integrating by parts, we get

Ky = —% (Lt +0)) = @I (L) | (L £+ 0) = 9" (L, )]

3EAJ [Vt + O+ 02—y ()] w0t + ) - 3 (0)] d

:H11+H12. (313)

On the other hand, by young inequality and lemma 1.12, we have

Hy = —% (@2 (L 1+ 00 = (L )| (L £+ £) = 9(L, 1)
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= L+ O = g (L ] <[ £+ ©) 432 (L £+ L L 1)+ (2L )]

[yx (th+ C) —Vx (L, t)]

(EA)®
166

3

<s|lwr@e+o) (y;"u,t))]( (Lt + )~ y;”wt)]z+6[yr<L,t+c>—y?<L,t>12)

3L
< (I £+ OIP + gL DI ] x

((EA)2

AL+ O LI+ S 30+ O -5 (L P

2
 3MIL(EA)

S s 92 (L, £+ C) =9 (L, 1)1 + 3M, LS [y (L, t + C) — y"(L, 1)) (3.14)

on the other hand, by young’s inequality, we have

HIZ—ﬁJ‘ [yxx t+C)(yx (t+C)) yxx( yx ][yt t+C) Yt ( )]d

3EA ’

< I+ (1 + ) = vEO@E O + ETAIIyl”(t +0) =" (P

we estimate the first term in Hy, by
[yt + )y (8 + ) =y (@Y ()11 =

e (t + )Y (E+0))° = vt + Q)R (5)% + yxx(t + O (5" (1) = v D)y (0) P
< 20yt + Oy (E+0))7 = vt + Q)@Y ()17 + 2yt + Oy (8)* = pix (1) w3 (D)1
< 20+ OIPN@Y (£ +0))% = @ (1)1 + 20" (D)5 lyea(t +T) = v ()l
M (' (£ +C) =2 ()P + Iyt + C) = pi(DIP)
then, we get

Hip < M 22 (I (e + 0) =9 (P + (e 40 = I ) + g6+ - (0
(3.15)
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by (3.14), (3.15), and young inequality, we get

K| <

3M;L(EA)?
A (0, 4+.0) L I + ML L[ (L, £+ 0~ (L, )

FME 22 (I )= g O + phte-+ O = o)+ 2 I+ ) =3P )P (3.16)

Young’s inequality, leads to

L[ i+ ¢ 2 5
ol < [ | [0 cosinsias = [ KG-ds| axesroso-son?
(3.17)

2
ity [ [ [ eterc-sitnsnts [ ett-apiin | axedreso-swor
(3.18)
Substituting inequalities (3.16) — (3.18) into (3.12), we calculate the limit when C — 0 after
dividing C?, we find

Ad B EI d .
Pz dt”ytt( DI? + pAk(0)llysi (1)II” + 5 dt”yxxt( BlI” + > dt”yxt( DI + a(yif (L, 1) <
m 3M,L(EA 3EA o 3EA
i Lo+ (CPREEAY 3B 12+ 12+ 224 o

3EA
|

0

L t 2
(k’(O)yt’”(t)+J; k”(t—s)ytm(x,s)ds) dx

L t 2
+M5L (Q(O)y;’;(t)—i-J; g’(t—s)y;’;(x,s)ds) dx. (3.19)

On the other hand we have
f J "(t=s)p{"(x,s)dsdx < supllyt |IJ [x”(s)|ds < M5 (3.20)

and
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J f Sy, >dsdx<sup||yxx||f ¢/ (s)lds < Mg, (3.21)

(0,T]

Substituting (3.20) and (3.21) into (3.19), integrating along the interval ( 0,t), we obtain

911 + el + Ny 12 SM9+M10J (1% + llyxell” + 1yl ds

Thanks to Gronwall’s lemma, we have

9117 + 193 ll® + Nyl < My (3.22)

Sep 3 Passage to limits.

According to the above estimates we conclude

y™ are bounded in L*(0,T;.A),

v, are bounded in L*(0,T;.A),
(3.23)

v are bounded in L*(0,T;L?(0,L)),

(v™)? are bounded in L=(0,T;L?(0,L)).

Therefore, there exist subsequences of (y™), denoted again by (y™), satisfying

p" - y inL*(0,T,A),

m o in L0, T, A),
Yt Vt ( ) (3.24)

v >y in L(0,T,L%(0,L)).

(¥2")? = (92)? in L2(0,T,L*(0,L)).
Thanks to the Aubin-Lions compactness lemma and (3.24), we get

y™ —y strongly in L*(0, T, Hp(0,L)) (3.25)
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(3.25) and lemma 1.5, allow to write
(")’ = (px)® in L*([0, T]x [0, L]). (3.26)

This allows us by passing to the limit in (3.6) to obtain a weak solution of the problem (3.1) —
(3.3).

Uniqueness

Assume that v, and y, are two different solution to the system (3.1)—(3.3), and Y = y; —p,,
with Y(0) = Y;(0) = 0, then Y satisfies

t

pA(Yttlwi) + pAk(O) (Yt: wi) + PA(J; k,(t - S)Yt(xls)dsr wi) +EI(Yyy, wixx)

t
C(t - s)Yx(x,s)ds, wix) + %EA((}JI )2 - (yZ))?;' wix) + aYt(LI t)wi(Ll t) =0

+PF (Yx: wix) - B (L
(3.27)
When we multiply (C")(t) on both sides of Equation 2.32 and then sum the resulting equa-

tions with respect to i, we get

t

PA (Yy, Yy) + pAk(0) (Y, Yt)+PA(J k'(t —s)Yy(x,s)ds, Yt)‘l'EI(Yxxr Yixx)
0

t

+PO (Yx1 th)_PO (J; C(t - S)Yx(x;s)dsr th)"’%EA((yl )y3c - (y2)33c’ th)+a(Yt(L, t))z =0 (3'28)

then, we have

— YT+ ARONY ™+ — — Vx| + = IVl "+ (Ve (L, )" = —p A | k(£ =5)Yi(x,5)ds, Y,
2ar TP A T : PAL ], t ;
t 1 ; .
+P0(J; c(t=s)Yy(x,5)ds, Yxt)—EEA((yl)x—(yz)x, th). (3.29)

Considering the same technique in Estimate 3, utilizing young’s, Holdre’s inequalities, we
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3M,L*(EA)?

85 ||Yxx(L)||2+3M1L5(Yt(L t))2+M12”Yxx”2

3EA
Ml Yll? + —IIYtIIZ-

_%EA((yl)fé - (12)3 th) <

(3.30)
t t 5 5 5

_pA(J k'(t—s)Yt(x,s)ds,Yt)§M13j |k’ (t = s)||| Ve, 9)|| ds+§||Yt|| . (3.31)
0 0

t t 5
B [ et os 1) <My [ cte-olvutmolPas e SR (332
0 0

Substituting (3.30) — (3.32) into (3.29), then integrating along the interval ( 0,t), we obtain

t
Y1 + 1Y all® + 1Yl < My f (Yl + Yall® + 1Y) ds. (3.33)

0
Thus, Gronwall’s inequality guarantees the uniqueness of the solution. [

Next, we introduce the functionals

L t
~ 2

D (t) = pAfy i+ | k(t—s)yi(s)ds dx+ a2 L’t),

J

0 0

t

L t
, (f) = —aAJﬁyt+ Ht—SWAﬂds&[cﬁ—sXyU)—yQ»dwha
0 0 0

®W)=%J@UﬂmeM
0

t
QN)=HJQWﬂMAW%%—f@FMMMWS

t
D5 () = %ngt-s||yt )|?ds.
0
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5
J';(t):E(t)+Z/\,-CDZ-(t), t>0 (3.34)

i=1

for A;>0,i=1,2,3,4,5 to be specified later. Our first result shows that this functional

is an appropriate one to consider.

ProrosiTioN 3.2 There exist n; > 0,i = 1,2 such that
ny (E(t) + D3(t) + Dy(t) + Ds(t)) < L(t) < np (E(8) + D3(t) + Dy(t) + Ds(t)), t > 0. (3.35)

Proof It is easy to see, from the above definitions, that

t

@1(0) < (pacy + S+ O Il + 5°F [ ke -slutsPas,
0

t

_ Al
(1) < pA|n.|)” + pAkjk(t = $)llps(s)Pds + 22 (cop) (1),
0
Moreover
t
3pA 3 Al
D1 (1)+02(1) < (pAcy+ ) [ + 205 ]+ p fkt SMlye(s)Pds+ 222 (capo) (1)
0
t
2pAc, +aL p A Alc, P
< LDl 3l + 5K [ ke olutoRds + 52 2 capae

0

t

A A—

<t O o+ 2l + 7R [ kte-llpi(oiPas %uguyx)(t)],
0
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2pAc, +al ) o
where ¢; = max(3, P—). With these in mind, we have
0

A
B < (4 +A0)e) 2 ol 2 ol + S 520 + 0 + A)ead) 2 (e (1)
t

t
+ [1 - f c(s)ds+ (A + Az)cl] % || + (1+ (A1 +Ag)erk) %Jk(t —5)|l(s)||>ds
0 0
+A3D3 (1) + 14Dy (t) + A5 D5 (t)

and

2L(1) = (1—ci (A + A)pAl[pi||" + (1= 1= (A; + A)er) Pollyx||2

(1= (A + Aa)er]) Py (c09) (6)+ EI [y + 22 IIyxll
t

(1= (A + Az)cli)pAfk(t —5)|[9e(s)I1Pds + 2A3D5 (t) + 24, Dy (£) + 2A5D5 (£), £ > O.
0

Therefore, ny (E(t) + D@5 (1) + Dy(t) + D5(t)) < L(t) < 1y (E(t) + D3 (t) + Dy(t) + D5(t)) for some

constant n; > 0 and Ay, A, such that

1_
/\1+/\2<—l. [ ]
€1

To show our stability result, the following lemma will be utilized.

LEMMA 3.3 We have for a continuous function ¢ on [0,00) and y € H'(0,L)

Jyxfc (t = $)yx(s)dsdx

t t
;( fes ds)nyxu 1 ct-9)lp (6P ds - Jeamalient 20
0 0

m Asymptotic behavior

In this section we state and show our result.
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THEOREM 3.2 Assume that ¢ and g satisfy the hypotheses (H1)-(H4). Then, there exist

positive constants C and u such that

E(t)<Cg(t)™, t>0. (3.36)

Proof A differentiation of ®y (t), with respect to t along the solution of (3.1)—(3.3), gives

, L L 0 t
Dy (t) = pAfytzdx + pAJyE [yt + fk(t - s)yt(s)ds]dx—i-
0 0 0
L ¢
+pA [ y; [ k(t=s)pe(s)dsdx + apy(L, t)p(L, ).
0 0

For the second term we use equation (3.1), the boundary conditions and lemma 3.3, we obtain

L t
d
pAfya {yt + fk(t s)w(s)ds]dx = ~an(L (L)~ By~ 2 () (1)
0 0

t t
-y [1 - %fc ds] lysll* + 7°fc<t =5)[lpe (0)]) " ds - == ||yx|| (3.37)
0 0
Applying young’s inequality to the third term, we find
L t AE t
pA [y; [k(t—s)pi(s)dsdx < pAs, ||yt||2 + ‘Zlek(t —5)|lv: (s)||2ds, 81> 0. (3.38)
0 0 0

By substituting the relations (3.37) — (3.38) in @] (t) we obtain

t
@] (1) < ~E1 [y - 2 (cOp) 1 —Po(l -2 C(S)dS] vl (3.39)
P t
e [et=a)lp ol 5= [y2] + patt a0y
pAK

s LG 12 (s)|) ds.

OHN
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It is easy to see that differentiating ®,(t) gives

L

D, (t) = —pAJ

0

Vr + Jk(t - s)yt(s)ds] J-c;(t —s)(y(t) —v(s))dsdx,
t

0

L
_PAJ. Y+
0

Integrating J, by parts and using the boundary conditions, we get

P

1 ——pAf[yt+fk t—5s)ys(s ds] fc; (t=s)(v(t)—v(s))dsdx,
t0

= (Elyxxx (L, t) - Pny (L, t) - ETyx (L, t) + POIC(t - S)yx (L,s)ds)
0
timesftg(t —s)(y(L,t)—y(L,s))ds
0

0

L t
+f (—Elyxxx<t>+%y O+ Poge(t) = Po [ c(t = 5)ys(s))ds )
0

times (ftg (t=5)(px(t)— yx(s))ds)dx
0

t
=ay (L, t) fct s)( -y(L,s))ds

o

_IEIyxxx(t fgt 5 yx yx(s)ds]dx
0
t
+7 AL (j o(t =) (elt ms))ds)dx
;0
+PO(1 jc; s)ds )fyx (fgt S)(Vx(t) — yx(s)ds)dx
0
L 2
+POJ jct s (yx(t)_yx(s)ds) dx
0 \0

t
= ap(Lt) [ c(t=s)W(L,t) = p(L,s)ds+J11 + 12+ 13+ 14 £20.

0
Again utilizing young’s inequality, we get
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t t t
Jk (t=5)ys(s ds][jc; ds+ytjg( )ds]dx.
0 0 0

(3.40)



ayi(L,t) | c(t=s)(v(L, t) = y(L,s))ds

O~

t t
= ayy(L, t)y( Ltjg ds—aytLtfgt—s
0 0

2
<—(l+1)yt2(L,t)+%yz(L,t)+—0 fg(t—s)y(L,s)ds ,t>0.
2580 2 2 |

For the second and the third term in (3.41), we have

v2(L,t) < L”yx”Z,

t t L 2
Ig(t—s)y(L,s)ds = Jg(t—s)fyx(x,s)dxds] ,
0 0 0

and
t 2 t s
fg(t—s)y(L,s)ds lefg(t—s)ny(s)” ds, t > 0.
0 0

Hence,

ayy(L,t) | c(t =s)(v(L,t) —y(L,s))ds

e~

als
sziéo(zn)yt (L) + 2L ]+

CY(SO

For 6, > 0, we can write

L t
Ji1 J-Elyxx(t)[Jg(t5)(yxx(t)yxx(5))d5]dx

0 0

IA

0 0
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Llfg (t—s ||yx )||2ds.

t t t
EI
Er[qu)dw62]||yxx<t>||2 : E[Ig(s)ds]fcus)liyxx<s>||2ds
0

(3.41)

(3.42)



and

t L t
r r r
Lo = o [ ewastext o2 ] -2 | 52 (0) [ cli-sIpalsipa(tidsax
v DR
EA . 2 EA ¢ :
= = c(s)dstext ||v2 (¢)| - v2(t) | SY2(t=s)py(s)c 2 (t — s)yy(t)dsdx
0 "0
L V2op s 2 \12
< Szl + 5 [ (30 ] [JUc”z(t—S)yx(S)c”z(t—S)yx(t)dS] dx
0 0 \0
EA EA EA ol ( 2
< Sl ol + 5 [fcl%—s>yx<s>c”2<t—s)yxu)ds] dx
A EA EA 0£ ? .
< SRzl + SRR 0N+ 5 | [ te-swdods [ cte-sioasds
6 0 0
t
EA EA EA| 1255 !
< Sl = Izl + = chf—sliyx >Il2ds+5—3||y§<t>llz]
0
t
EA l 1 EA
< 7(l+2—63+§)||y£(t)”2+ﬁé312 f c(t—)[p2 (o) ds.
0

Now we proceed to estimate |3 and J,4. We obtain for 64> 0

t

]13SP0[1_J.C( ](64”})x ” CDyx)( )],

0

and

J14a < Byl(cOyy)(t), t > 0.
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We decompose the second integral ], into

t L t
Jo=—-pA g(s)dsllytll2 - pAJyt J- ¢'(t—s)(p(t)—y(s))dsdx
0

0
L t

pAOJ Jkt—s V(s [OJQ (t—s)( ())ds]dx
L

t t
—pAJc dsfytfkt—syt )dex:—PAJC(S)dS||yt||2+]21+]22+]23-
0

t

o

For 6¢ > 0, we have

L t
Jor = —pA |y | S (t=5)(®(t) —p(s))dsdx
J»]

A
e

b

o
AN
™~

and

L
Joo = —PAJ
0

0

For 67 > 0, we have

t L t
Bs = -pa| [ ctords| [ u | ke -smdsax
0 0 0
t
< pAdlulP +15 R [ K=ol (o)Pds
7
0

Taking into account (3.41) — (3.42) and the above estimations of J11, J12, J13» J1a J21, J22, J23,



we obtain

OCLZOO

Py(1) < pA(Ss— e+ 570 il + EIL+ 5 v + (

t t
+%(+_+ )|| P+ 52 [ty Eo2re [t o) s
0 0

+Py(1-cy) 64)||ny|

t

ALc(0) IET
e - P a0 3 [Lar-9) o] ds

0

t
_ 1-
+pAk(56+4L67)Jk(t—s)||yt )| ds+Pol(1+ 5. )(gljyx)(t), t> 1. (3.43)
0

Further, a differentiation of @3 (t) yields

t
@} (1) = Py (0) || (0)|| + Po [ Ky =) Jyals)||” ds
0

i : ) t ) (3.44)
< PoKy (0) ||y (0)][” = Poue() [ Kot =5) [[yx(s)]|"ds = Po [ c(t =) [[u(s)]|"ds, > 0.
0 0
Regarding @, (t) it appears that
. EA
®(1) = EH<g<0>llzuxxof>||2+EIfK;(t—s)||yxx(s>||2ds+7Kg<0>||;v§<t>||2
EA ( 0
2 [ Kie-a el as (3.45)
0
that is
t
(1) < EIK, (0)[pas0] + oK ) 200~ E1 [ ott=5) Jpust)] s
0
EA ! 5, 12
—Elu(t)ng(t—s)||yxx(s)|| ds - —jg(t—s)”yx(s)” ds (3.46)
0

—%u fK t— s”yx ” ds, t > 0.
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Moreover, a differentiation of @5 (t) yields

A~ —~
@50 = ROl + % [ R-9lo) s
0

t

A~ A —

< 2ROl - S ute) | Kyte=3)to)]as
0
t
A
_%Jk(t—s)nyt(s)”zds, £>0. (3.47)

Collecting the estimations (3.39), (3.43) —(3.47), we find for t > t,

ALc(0 A
v < 2-nlTE ) o G wom
K, (0
+pA[ A2(06 — Gk + 071) + As g( )+/\1(1+51)—¥ ||3’t||2

! aLld, c(1) 2
+Po(—/\1(1—5)+/\2( 2P, +(1_C*)64)+A3Kg(0)_7)||yx||

+EI( A+ (L +062) + 4K, (0)) ”3’XXHZ

+EI(—/\2—/\4)jc; nyx (s)”zds

J%(%Az —A4) [ett=9)[p2 )" ds (3.48)

P Ll !
(/\1 0 /\20( OO

)\3P0)jg (t =) |[vy ()|* ds
0

1- I+1 )
+P0(l(1+ 464 )/\2—7)((;E|yx)(t)+a(/\22—6o—l)yt (L,t)
EA l 1
t— _/\1+/\2<Z+K+ 2)+/\4K (0) )ny”
T t
P
Az +2A,k(S¢ + — k(t-s ds
2 ( 5 2k(06 457 )of ||3’t H
—A3u(t)Ds (1) — Agu(t)Dy () - Asu(t)q)s( )
66P0 pALQ( ) PO

. . P o
At this step, we select A, < m, to satisfy 30 D) 20, 2 4 and A, < l_O so that

64



2p0ALc(0)" 1+

v < 2wy

] ] K,(0) k(t
+PA(/\2(56—C*+571)+/\5 g2 +/\1(1+51)—% l[v:lI?
l aLll 1-¢, c(t) 2
+P0(—/\1(1—5)+/\2(T+ 5 )+/\3Kg(0)—7 ”yx”
2
+EI(—/\1 + 22 (31+ Kg(O)))”yxx“
A all t
+P0(71+/\27—/\3)Jg(t—s)”yx(s)” ds
0
(3—cu)! A I+1
Po( 2* /\2—71 (cOp:)(t) + /\22—130—1 2 (L, t)
EA 1 Kg(0) 2
+T(—/\1+/\2(l+§ E-l— 2 ))” %“
pA — l E/\l t
+7(—/\5+2/\2k(56+4—67)+4—51 ({k(t—S)”}}t(S)” ds
=Azu(t)D3(t) = Agu(t)Dy(t) — Asu(t)Ds (1)

Further, we need

)+/\3Kg(0)</\1(1—é)+?;

I (s
2( 2 T2

A
S Bl Kg(0) < Ay,

ng(O) +A1(1+09)< M,

2

A2(06 = Gx + 071) + A5

(3—co)lAr <Ay,

P 1 Kg(0
(l+—+—+ g ))/\2</\1,
8 2 2

- Ik
2/\2k(66 + —) + i < /\5,
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(3.49)

(3.50)

(3.51)



We will focus on the first set of inequalities

all 1-¢, Iy cl(t)
/\2(74— )+/\3Kg(0)</\1(1—§)+7,

K, (0 t 3.52
A0 (14.81) < Aol -5 - a71) + L, (3.52)

(3—cu)lAy <Ay

A 1
let Ny = (3+1)and A, = ﬁl Take a = 7 and we select dg, 07 so small and t large so
1
that the second condition in (3.52) is satisfied. In order to achieve (3.51) (the second set of
inequalities), it is sufficient to choose A3, As large enough. As a result of these choices, we

conclude
L/ (t) < =Ny E(t) = A3u(t)D@3 (£) — Agu(t)Dy (t) — Asu(t)D5 (), Ny >0, t > t*. (3.53)
Since u(t) < u(0), then
L'(t) < ——=u(t)E(t) — A3u(t)D@sz (t) — Agu(H)Py (t) — Asu(t)Ds (t),t > . (3.54)
According to (3.35), we obtain
L' (t) < =Nzu(t)G(t), N3 > 0. (3.55)
Integrating (3.55) over [t*,t], we obtain

t
—Nj J u(s)ds

L<e = B(ff) t>1%
Using again the equivalence (3.35), we get

—Nj; f u(s)ds

Ef)y<e = L(#*) txt".

Since E(t) is continuous over [0, t*], we conclude that




for some positive constants C and u.
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Conclusion

In conclusion, the qualitative exploration of selected Partial Differential Equations (PDEs)
concerning temporal dynamics with damping, particularly focusing on the examination
of two non-linear Euler-Bernoulli beams featuring neutral-type delays and viscoelastic-

ity, has yielded significant insights into their behaviors.

The investigation has uncovered intricate dynamics within the Euler-Bernoulli beams,
shedding light on the intricate interplay between nonlinearity, damping effects, and
temporal delays. Incorporating viscoelastic properties has introduced additional lay-
ers of complexity, influencing the overall system responses in nuanced ways.

Stability analysis has played a pivotal role in comprehending the long-term behaviors of
the systems under scrutiny. By scrutinizing spectral properties and employing advanced
analytical techniques such as Lyapunov functionals, criteria for stability have been de-
lineated, offering valuable discernment into the conditions dictating system stability or
instability.

The implications of this study extend beyond theoretical realms, offering practical in-
sights applicable to various engineering domains, including vibration control, structural
health monitoring, and the design of damping systems. Understanding the complexities
inherent in such systems is paramount for ensuring the reliability and performance of

engineered structures.

While significant strides have been made, numerous avenues for future exploration re-
main open. These include delving into more intricate beam configurations, exploring
diverse damping mechanisms, accounting for uncertainties and parameter variations,

and broadening the analysis to encompass other classes of PDEs sharing similar charac-
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teristics.
We believe that it would be interesting to study in future the following Timoshenko

beam with thermodiffusion effects:

pl—h;% — Qux k(@ +1Px) = 6105 = 62, =0,

Pl i — k(@ + i) — [ (11 + 392)): = 0,
PhO’Ztt - (’7x T %‘/’%)x =0,

cor+dP - oj w1 (8)0xx(t —8)ds =01 = 0,

dpy+ 1P, - f @)(5)Prx(t = 5)ds — 024, = 0.
0
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