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Introduction 

To study any physical system, it is important to find firstly a simple framework where the most 

important parameters are expressed and analyzed. However, realistic situations are far from 

being that simple as plenty of uncontrolled factors enter into play and the system becomes 

unavoidably more complex. This is clearly the case when considering dissipation or friction in 

the evolution of any physical system. Indeed, dissipation is an important player to consider in 

the dynamical study as it affects the energy hence annihilating the most important rule in 

physics which is the energy conservation rule. 

Studying dissipation in the framework of classical physics is a tedious task as its recourses to 

phenomenal considerations that break for the most the simple Lagrangian description. The task 

becomes even more complex when studying dissipation for quantal systems since the 

correspondence classical-quantal for dissipative systems is less obvious. We are let then with 

few guidelines in order to reproduce physical behavior. 

This master project is an attempt to shed light on the main difficulties we encounter when 

tackling quantal dissipative systems. For this we are studying the evolution in time of a 

Gaussian wave packet as it impinges on a square barrier potential with damping profile. In the 

non dissipative regime and with the appropriate conditions this will lead to the standard tunnel 

effect where a fraction of the wavepacket is transmitted through the barrier. We are interested 

in illustrating how the transmission is affected by the friction. The dissipation contribution is 

treated in the framework of the Caldirola-Kanai model and a FORTRAN program is built for 

the numerical implementation. The evaluation is performed in order to lead to conclusive 

results. 

This master thesis is organized in three chapters: 

-The first chapter is a brief review of the physics of the non dissipative systems at the classical 

and quantal level. It presents also the formalism behind the use of the wave packet describing 

the state of the system. It terminates with the presentation of a practical and analytical case of 

the free wave packet evolution. 

-The second chapter is a brief review of the dissipative systems. It aims at presenting the most 

important models that are devised in order to incorporate dissipation in the description of the 

system. We are giving in this review some of the problems that arise when a quantal 
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correspondence is desired. Here also we are terminating with the practical and analytical case 

of the free wave packet evolving in a medium with a constant friction factor 

-In the last chapter we are presenting the main numerical aspects of the problem and strategy 

for translating these aspects in a FORTRAN program. The validation of this program is done 

through a comparison of the numerical results to the results found for the analytical cases cited 

above. The results for the realistic case of the square barrier with a friction profile are then 

exposed and the most important features are highlighted. 
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CHAPTER I: CONSERVATIVE SYSTEMS 

I.Introduction 

In our attempt to study nonconservative systems in the framework of the evolution of a gaussian 

wave packet submitted to frictions,we should first review some of the most important features 

and theory related to conservative systems. This is important in order to understand the 

transition between the two types of systems but also in order to be able to establish comparison 

that allows the appreciation of the effectiveness of some adopted models for friction. We recall 

in this review some of the theory for classical as well as quantal systems. As we know even if 

we are interested in quantal systems, the evolution of th emean value is still classical as clearly 

stipulated by the Ehrenfest theorem. 

A. Classical conservative systems 

Rather than just giving the final Newton equation that governs the classical evolution of the 

coordinates, let us start from a more fundamental point of view which is the concept of the 

action and the principle of least action or more accurately the stationary action. Doing so, the 

formulation of any dynamical problem become free of the choice of the coordinate system and 

is only related to the evolution of its energy. 

I. Action and principle of least action 

For each physical system, there is a quantity which is the system’s action. It depends on the way 

the system evolves. In other words, the action is an attribute of the dynamics of a physical system. 

It is a mathematical functional which takes the trajectory, also called path or history of the 

system as its argument and has a real number as its result. Generally, the action takes different 

values for different paths. Action has the dimensions of [energy]·[time], and its SI unit is joule-

second. This is the same unit as that of angular momentum.The action is typically represented 

as an integral over time, taken along the path of the system between the initial time and the final 

time (figure.I.1) of the evolution of the system: 

𝐴 = ∫ 𝐿𝑑𝑡
𝑏

𝑎
                                      (1.1) 

Where the integrand 𝐿, is called the Lagrangian of the system. The Lagrangian is given as the 

difference between the kinetic and the potential energies. For the action integral to be well-

defined the trajectory has to be bounded in time and space. 
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Fig.I.1 For the different paths between the initial position A and the final position B, only the 

one with the extremum action will be the true one  

The principle of least action (PLA) or rather a stationary action is the principle that stipulates 

that a system’s actual evolution is such that the system has a quantity of action that is an 

extremum relative to other quantities of action for the other paths. Given the PLA, and once the 

action of a system has been formulated, we can deduce its equations of motion. 

The least action principle stipulates that the action of a motion between two-point “a” and “b” 

in the configuration space defined by the time integral 𝐴 = ∫ 𝐿𝑑𝑡
𝑏

𝑎
 on a given path from “a” to 

“b” must be a stationary on the unique true path for a given period of time t of the motion 

between the two points: 

𝛿𝐴 = 𝛿 ∫ 𝐿𝑑𝑡
𝑏

𝑎
= 0                                      (1.2) 

This principle yields the famous Lagrange-Euler equationgiven by: 

𝜕

𝜕𝑡

𝜕𝐿

𝜕𝑞̇𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= 0                                  (1.3) 

Where 𝑞̇ =
𝜕𝑞𝑖

𝜕𝑡
. These above equations underline a completely deterministic dynamic process: 

if the time period of the motion is given, there is only one path between two given points so 

that all the states of the systems are completely determined by equation (1.3) for every moment 

of the motion. However, this deterministic character of the dynamics does not exist anymore 

when the motion becomes random and stochastic. [1][2] 

II.The Lagrangian formalism 

The Lagrangian formalism is the use of  Hamilton’s principle of stationary action or the 

principle of least action for the derivation of the equations of motion of a system. Let us start 
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with an N-particle system in which the forces can be derived from a potential function 𝑉(𝑥). 

We shall denote the 𝑥, 𝑦 and 𝑧 coordinates of all the particles by the general letter 𝑥, giving it 

an index where necessary: 𝑥𝑖, 𝑥 = 1,… . 𝑛. The system's kinetic energy can be written in the 

form:𝑇 =
1

2
∑ 𝑚𝑖𝑥̇𝑖

2
𝑖  

and with this we define the Lagrangian function: 

𝐿 = (𝑥, 𝑥̇) = 𝑇(𝑥̇) − 𝑉(𝑥)                                (1.4) 

This is resembling the energy except for a change in sign. Newton's equations of motion can 

now be written as: 

𝜕𝐿

𝜕𝑥𝑖
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝑖
= 0                                     (1.5) 

Which we abbreviate as: 

𝜕𝐿

𝜕𝑥𝑖
= 0                                                   (1.6) 

Two facts can be deduced from this formula. The first is that 𝑳 can be used in a variational 

formulation of the laws of motion that will be closely analogous to Fermat's principle in optics. 

The second important fact about equation (1.6) is that it can immediately be generalized to other 

kinds of coordinates. 

The remarkable feature of Lagrange's equations that is now to be proved is that if we write: 

𝑥𝑖 = 𝑥𝑖(𝑞𝑖,… . . 𝑞𝑛) or 𝑥(𝑞) for short, the functional derivative of 𝑳 with respect to 𝑞 becomes: 

𝜕𝐿

𝜕𝑞𝑛
= ∑

𝜕𝐿

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑞𝑛
𝑖=1                                   (1.7) 

so that from equation (1.6) we can conclude that the laws of motion take exactly the same form 

in generalized coordinates:      
𝜕𝐿(𝑞,𝑞̇)

𝜕𝑞𝑛
= 0 

we can write:             
𝜕𝐿

𝜕𝑞𝑛
=

𝜕𝐿

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑞𝑛
 

To change variable, we have:            
𝜕𝐿

𝜕𝑞𝑛
=

𝜕𝐿

𝜕𝑞𝑛

𝜕𝑥𝑖

𝜕𝑞𝑛
+

𝜕𝐿

𝜕𝑥̇𝑖

𝜕𝑥̇𝑖

𝜕𝑞𝑛
 

Since 𝑥𝑖 does not depend on 𝑞̇, we have next: 
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𝜕𝐿

𝜕𝑞̇𝑛
=

𝜕𝐿

𝜕𝑥̇𝑖

𝜕𝑥̇𝑖

𝜕𝑞̇𝑛
                                                (1.8) 

Finally, we can write: 

𝜕𝐿

𝜕𝑞𝑛
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑛
= 0                                  (1.9) 

These are the required Lagrange’s equations of motion derived from theHamilton’s stationary 

principle. The equation also shows that the Lagrange’s equations of motion forholonomic 

system are necessary and sufficient conditions for action to have astationary value.[4/5/6] 

III. The Hamiltonian Formulation 

By performing a Legendre transformation of the Lagrangian, we can establish what is known 

in classical mechanics as the Hamiltonian. It is defined as a function of the canonical 

coordinates and momenta which satisfies Hamilton's principle: 

𝛿 ∫ {∑ 𝑞̇𝑖𝑝𝑖 −𝐻(𝑝𝑖 , 𝑞𝑖)
𝑘
𝑖=1 }𝑑𝑡 = 0

𝑏

𝑎
                  (1.10) 

Where 𝑞𝑖 is the coordinates, 𝑝𝑖 the momentum, H the Hamiltonian given by: 

𝐻 = 𝑇 + 𝑉, 𝑇 is the kinetic energy, 𝑉 is the potential energy and 𝑘 the number of degrees of 

freedom of the system. 

This integral between any two arbitrary times 𝑎 and 𝑏 for the actual path must be minimum (or 

extremum). This requirement gives us Hamilton's canonical equations: 

𝑞𝑖̇ =
𝜕𝐻(𝑝𝑖,𝑞𝑖)

𝜕𝑝𝑖
        𝑝̇𝑖 = −

𝜕𝐻(𝑝𝑖,𝑞𝑖)

𝜕𝑞𝑖
,   𝑖 = 1,…𝑛                                (1.11)   

These first order differential equations for 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡) determine the position and 

momentum of the 𝑖𝑡ℎ degree of freedom as a function of time if we assume that the initial 

conditions are known:  

𝑞𝑖(𝑡 = 0) = 𝑞0(0),   𝑝𝑖(𝑡 = 0) = 𝑝0(0)                                                 (1.12) 

By eliminating 𝑝𝑖 between the two sets of equation (1.11), we find the Newton equations of 

motion:[3][4][5] 

𝑚𝑖𝑞̈𝑖 = 𝐹𝑖(𝑞1, … 𝑞𝑛,
𝜕𝐻

𝜕𝑝1
, …

𝜕𝐻

𝜕𝑝𝑛
)                      (1.13) 
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IV. Newton’s law of motion and equations of motion: 

We recall here the more familiar law of motion of  Newton that can be derived in a more general 

way from the Euler-Lagrange equation or the Hamilton equations. The motion of a particle is 

governed by Newton’s second law, relating the unbalanced forces on a particle to its 

acceleration. If more than one force acts on the particle, the equation of motion can be written: 

∑𝐹 = 𝐹𝑅 = 𝑚𝑎 

𝑚𝑥̈ + 𝑘𝑥 = 0                   (1.14) 

Where 𝐹𝑅 = −𝑘𝑥 is the resultant force, which is a vector that sum all the forces. Here, we 

assume that the force is the gradient of the quadratic potential. [1][7] 

B. Quantum conservative systems 

The principal object of classical dynamics is to find where every thing is at time t; that is, to 

find a set of 𝑞𝑛(𝑡). The principal object of quantum mechanics is to find a wave function 

𝜓(𝑞, 𝑡). From this we cannot calculate where every thing is in the sense of classical physics, 

but you can calculate all there is to know. The Lagrangian and Hamiltonian dynamics find 𝑞(𝑡) 

and 𝑞̇(𝑡) or 𝑝(𝑡) by means of ordinary differential equations. In 𝜓(𝑞, 𝑡), 𝑞 is in no sense a 

function of 𝑡, since 𝜓 has a value for every 𝑞 and every 𝑡. The equation it solves is a partial 

differential equation. The differences between the two mathematical descriptions are so wide 

that they seem to belong to different universes of ideas. It is worth mentioning at this level that 

the quantum mechanics is a theory built on a set of mathematical postulates but a century after 

its birth, none of these postulates revealed to be wrong. 

We are going in this section recall some of the most important fundamentals of quantum 

physics. Encompassing all the aspects of the field in the scope of this thesis is out of reach 

consequently we are going to focus on the concepts which we are going to use in developing 

our problematic. 
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I. Brief review of quantum physics basics 

I.1.The wave function 

A we have stated just above the state of the quantal system is no longer given in term of the 

relationship between the generalized coordinate versus the time but are rather given by a value 

at each time and space position otherwise in term of a wave function 𝜓(𝑞, 𝑡). Besides being a 

mathematical function, which has no physical meaning, the square of the modulus of this 

function |𝜓(𝑞, 𝑡)|2 expresses the density probability of finding the particle at the position “𝑞” 

and at the time “𝑡”.   

I.2.The operational representation 

Associated with each measurable parameter in a physical system is a quantum mechanical 

operator. The application of this operator to the state of the system gives the eigen values that 

can be associated within a certain probability to the physical measure. For these eigen values to 

be real, the operator must be Hermitian. 

The operator associated with the system energy is called the Hamiltonian. In classical 

mechanics, the system energy can be expressed as the sum of the kinetic and potential energies. 

For quantum mechanics, the elements of this energy expression are transformed into the 

corresponding quantum mechanical operators. The Hamiltonian contains the operations 

associated with the kinetic and potential energies and for a particle in one dimension can be 

written: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑥)                                     (1.15) 

And 𝑝2 = −ℏ2
𝜕2

𝜕𝑥2
 , the equation (1.15) become: 

𝐻 =
−ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)                               (1.16) 

The expectation or the mean value of any measurable quantity α is given by the mean value of 

the operator 𝛼̂representing the quantity as: 

〈𝛼̂〉 = ⟨𝜓∗|𝛼̂|𝜓⟩ = ∫𝑑𝑟 𝜓∗𝛼̂𝜓                  (1.17) 
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I.3. Schrodinger equation 

The central part in the study of any quantum system is the determination of the wave function 

that will contain all the information we want to know about the system. A way to reach this 

function is to solve the Schrodinger equation. It is a differential equation that will govern the 

evolution the system according to its Hamiltonian.  

Consider for example a particle of mass 𝑚 moving in a one-dimensional space 𝑥 under the 

influence of a potential 𝑉(𝑥, 𝑡), the time-dependent Schrodinger equation is given by: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = [

𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)]𝜓(𝑥, 𝑡)                    (1.18) 

This equation is analytically solvable only for simple cases (𝑉(𝑥) = 0 or simple forms of 𝑉(𝑥)), 

otherwise this equation is very complex and most of the time we will be using numerical recipes 

to try to be as close as possible to the physical solution.  

I.4. Ehrenfest theorem 

Ehrenfest's theorem simply states that expectation values of quantum mechanical operators 

obey the laws of classical mechanics. In general terms, the time variation of expectation value 

of any arbitrary quantum mechanical operators given by: 

𝑑⟨𝛼⟩

𝑑𝑡
=
𝑑

𝑑𝑡
∫𝑑𝑟𝜓∗𝛼̂𝜓 

= ∫𝑑 𝑟 [
𝜕𝜓∗

𝜕𝑡
𝛼𝜓 + 𝜓∗

𝜕𝛼

𝜕𝑡
𝜓 + 𝜓∗𝛼

𝜕𝜓

𝜕𝑡
] 

= ⟨
𝜕𝛼

𝜕𝑡
⟩ +

1

𝑖ℏ
∫𝑑𝑟 [− (−𝑖ℏ

𝜕𝜓∗

𝜕𝑡
) 𝛼𝜓 + 𝜓∗𝛼 (𝑖ℏ

𝜕𝜓

𝜕𝑡
)]                      (1.19) 

Making use of time-dependent Schrodinger equation (1.18), and its complex counterpart, we 

arrive at: 

𝑑⟨𝛼⟩

𝑑𝑡
= ⟨
𝜕𝛼

𝜕𝑡
⟩ +

1

𝑖ℏ
∫𝑑𝑟𝜓∗(𝛼𝐻̂ − 𝐻̂𝛼)𝜓 

𝑑⟨𝛼⟩

𝑑𝑡
= ⟨

𝜕𝛼

𝜕𝑡
⟩ +

1

𝑖ℏ
⟨[𝛼, 𝐻̂]⟩                                             (1.20) 

Where the commutator [𝛼, 𝐻]̂  is equal to  𝛼𝐻̂ − 𝐻̂𝛼. If this amount equation (1.20) is equal to 

zero we say that α is a constant of motion. [8][9] 
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I.5. Tunnel effect 

Quantum tunnelling is the quantum mechanical phenomenon where a wave function can 

propagate through a potential barrier even if the energy of the particle is less than the height of 

the barrier. The transmission through the barrier can be finite and depends exponentially on the 

barrier height and barrier width. The wave function may disappear on one side and reappear on 

the other side. The wave function and its first derivative are continuous. In steady-state, the 

probability flux in the forward direction is spatially uniform. No particle or wave is lost 

(figureI.2). 

We are recalling in this section briefly the notion of quantum tunneling, since we are interested 

in our study to see how the tunneling proprieties are affected by the friction factor. The most 

important parameter that is affected by the friction is the transmission coefficient which is the 

fraction of the wave that penetrates the barrier and could be given as: [10] 

𝑇𝑤𝑝(𝐸𝑖) = ∫ 𝑑𝑞|𝜓(𝑞, 𝑡𝑓 , 𝐸𝑖)|
2+∞

0
                          (1.21) 

 

FigI.2. Tunneling of a wave function through a rectangular barrier 
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II. The gaussian wave packet evolution 

II.1.Wave or wave packet? 

To introduce quantum mechanics, we always talk about a wave function as representing the 

particle state. From otherside we do know that the Schrodinger equation solution for a free 

particle is a plane wave (a sine function) that extends in the whole space. This comes as a natural 

consequence of the Heinsberg indetermination principle. Indeed, assuming in this case that the 

momenta of the particle is precisely determined (∆𝑝 = 0) implies that ∆𝑥 = 0. We say that the 

particle is delocalized. This comes as a counter sense since we know that the particle is some 

where. The only way to circumvent this problem is to allow some uncertainty on the momenta 

𝑃 (or equivalently the wave vector 𝑘), this means that we are superposing a number of sine 

functions that lead to the creation of the wave packet (figure I.3). Actually, the wave packet is 

a way to reconcile the corpuscle and wave natures of the quantum particles. 

 

Fig.I.3. Construction of the wave packet from sine functions 

 

II.2. Profile of the Gaussian wave packet 

The superposition of an infinite number of plane waves of different wave number, needed to 

localize a particle, can be achieved throw the formula:   

𝜓(𝑥, 𝑡) = ∫ 𝜓̅(𝑘)𝑒𝑖(𝑘𝑥−𝑤𝑡)𝑑𝑘
+∞

−∞
                                  (1.22) 
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Using the Fourier’s theorem, which states that if: 

𝑓(𝑥) =
1

√2𝜋
∫ 𝑓(̅𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
+

−∞
                                          (1.23) 

then: 

𝑓(̅𝑘) =
1

√2𝜋
∫ 𝑓(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
+∞

−∞
                                        (1.24) 

Here, 𝑓(̅𝑥) is known as the Fourier transform of the function 𝑓(𝑥). We can use Fourier 

transform to find the 𝑘 space function 𝜓̅(𝑘) which generates any given 𝑥 space wave 

function 𝜓(𝑥) at a given time. 

Suppose that at 𝑡 = 0, the wave function of our particle takes the form of a Gaussian then: 

𝜓(𝑥, 0) ∝ exp [𝑖𝑘0𝑥 −
(𝑥−𝑥0)

2

4(𝜎)2
]                                        (1.25) 

Where 𝑥0 is the mean value, and sigma is the variance of the Gaussian where  and the amplitude 

has yet to be determined to normalize this function. 

Thus, the initial probability density of the particle is written: 

|𝜓(𝑥, 0)|2 ∝ exp [−
(𝑥−𝑥0)

2

2(𝜎)2
]                                   (1.26) 

This particular probability distribution is called a Gaussian distribution, and is plotted in 

(figure I.4). It can be seen that a measurement of the particle's position is most likely to yield 

the value 𝑥0, and very unlikely to yield a value which differs from 𝑥0 by more than 3∆𝑥. Thus, 

the equation (I.26) is the wave function of a particle which isinitially localized around 𝑥 = 𝑥0 

in some region whose width is of order ∆𝑥. This type of wavefunction is known as a Gaussian 

wave packet. 

Now, according to equation (I.22)  

𝜓(𝑥, 0) = ∫ 𝜓̅(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
+∞

−∞
                          (1.27) 

Hence, we can employ Fourier's theorem to invert this expression to give: 

𝜓̅(𝑘) ∝ ∫ 𝜓(𝑥, 0)𝑒−𝑖𝑘𝑥𝑑𝑥
+∞

−∞
                        (1.28) 
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An elementary and well known equation (1.27) analysis based on completing squares in the 

exponent of the integrals gives then: [11] 

𝜓̅(𝑘) ∝ exp [−𝑖𝑘𝑥0 −
(𝑥−𝑥0)

2

4(∆𝑘)2
]                    (1.29) 

 

Fig I.4. A gaussian wave packet with the most important parameters 

 

Where:                     ∆𝑘 =
1

2𝜎
 

Now, if |𝜓(𝑥)|2 is proportional to the probability density of a measurement of the particle's 

position yielding the value x then it stands to reason that |𝜓̅(𝑘)|
2
 is proportional to the 

probability density of a measurement of the particle's wave number yielding the value 𝑘 (Recall 

that 𝑝 = ℏ𝑘, so a measurement of the particle's wave number k is equivalent to a measurement 

of the particle's momentum 𝑝). According to equation (1.28): 

|𝜓̅(𝑘)|
2
=∝ exp [−

(𝑘−𝑘0)
2

2(∆𝑘)2
]                    (1.30) 

Note that this probability distribution is a Gaussian in 𝑘 space. Hence, a measurement of 𝑘 is 

most likely to yield the value 𝑘0, and very unlikely to yield a value which differs from 𝑘0 by 

more than 3∆𝑘. Incidentally, a Gaussian is the only mathematical function in 𝑥 space which 

has the same form as its Fourier transform in 𝑘 space. 
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We have just seen that a Gaussian probability distribution of characteristic width ∆𝑥 in 𝑥 space 

transforms to a Gaussian probability distribution of characteristic width ∆𝑘 in 𝑘 space, where:                           

𝜎. ∆𝑘 =
1

2
 

This illustrates an important property of wave packets. Namely, if we wish to construct a packet 

which is very localized in 𝑥 space (i.e., if ∆𝑥 is small) then we need to combine plane waves 

with a very wide range of different 𝑘 values (i.e., ∆𝑘 will be large). Conversely, if we only 

combine plane waves whose wave numbers differ by a small amount (i.e., if ∆𝑘 is small) then 

the resulting wave packet will be very extended in 𝑥 space (i.e., 𝜎 will be large). 

To finish this section, we recall that if a motion of the wave packet is considered then we have 

to deal with two types of velocity: 

-The group velocity which is the speed of the centroid or the mean value of the packet position 

that can be established by the Ehrenfest relation.  This speed amount has a classical behavior. 

-And a phase speed and this is related the nodes speed or the speed of waves composing the 

packet and can be given by the relation: 

𝑉𝑝 =
𝑑𝑤

𝑑𝑘
 

𝜔 being the angular frequency and k the wave vector. [11][12] 

II.3. Motion of wave packet without dissipation: 

Once we have introduced all the ingredients, let us consider the evolution in time of a free 

Gaussian wave packet, moving with no dissipation. We shall be looking for wave function 

𝜓(𝑥, 𝑡) satisfying the free time dependent Schrödinger equation and having a definite form 

𝑓(𝑥) at 𝑡 = 0, that is: 

𝑖
𝜕𝜓

𝜕𝑡
= −

1

2

𝜕2

𝜕𝑥2
 

𝜓(𝑥, 0) = 𝑓(𝑥)                             (1.31) 

Where here we are working in natural units: the masse of the particle 𝑚 = ℏ = 1 

Using Fourier integrals 𝜓(𝑥, 𝑡) can be expressed as: 

𝜓(𝑥, 𝑡) =
1

√2𝜋
∫ 𝑔(𝑝)
+∞

−∞
exp [𝑖 (𝑝𝑥 −

1

2
𝑝2𝑡)]𝑑𝑝                              (1.32) 
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𝑔(𝑝) =
1

√2𝜋
∫ 𝑒−𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞
                                                           (1.33) 

We shall assume 𝑓(𝑥) having a gaussian form: 

𝑓(𝑥) =
1

√𝜎𝜋
1
4

𝑒
−
(𝑥−𝑥0)

2

2𝜎2 𝑒𝑖𝑝0𝑥                                                                (1.34) 

So that |𝑓(𝑥)|2 is normalized and gives a probability density concentrated around 𝑥0 with a 

dispersion Δ𝑥 = 𝜎.  

As we have seen before the Fourier transform in this case is given by: 

𝑔(𝑝) =
√𝜎

𝜋
1
4

𝑒−𝑖(𝑝−𝑝0)𝑥0𝑒−
𝜎2(𝑝−𝑝0)

2

2                                             (1.35) 

And then we have: 

𝜓(𝑥, 𝑡) =
√𝜎

𝜋
1
4√𝜎2+𝑖𝑡

𝑒𝑖(𝑝0𝑥−
1

2
𝑝0
2𝑡)𝑒

−
(𝑥−𝑥0−𝑝0𝑡)

2

2(𝜎2+𝑖𝑡)                              (1.36) 

The probability density for finding the particle at the point 𝑥 at time t is then given by: 

𝑝(𝑥, 𝑡) ≡ |𝜓(𝑥, 𝑡)|2 =
1

√𝜋𝜎√(1+
𝑡2

𝜎4
)

𝑒𝑥𝑝 {−
(𝑥−𝑥0−𝑝0𝑡)

2

𝜎2(1+
𝑡2

𝜎4
)
}                           (1.37) 

Clearly at time 𝑡 the center of the wave packet has moved from 𝑥 = 𝑥0 to  𝑥 = 𝑥0 + 𝑝0𝑡, i.e., 

it moves with group velocity 𝑝0. The width of the wave packet also changes from 𝜎 to 

𝜎[1 + (
𝑡2

𝜎4
)]2 quantifying the natural spreading which is the result of the difference between the 

phase velocity of the modes composing the wave packet (see figure I.5). [12] 

This analytical result possible only for a free Gaussian wave packet, will be considered as 

benchmark to test the validity of our coded software. An analytical result is also possible for 

the case of a constant friction in the whole space as will be seen in chapter two. These two 

analytical results will be the starting point for our comparison and for a more extended 

investigation. 
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Fig I.5. Spreading of the free wave packet as it evolves in time
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CHAPTER II: NON CONSERVATIVE SYSTEMS 

I.Introduction  

The main scope of this study is to feature basically open quantum systems or in other words 

non conservative systems. In the first chapter we have addressed a basic review of the main 

tools needed to study conservative systems at the classical and quantal levels. A practical case 

of calculation of the motion of a quantal Gaussian wave packet was presented. Is it possible to 

extend the same formalism to the case of non conservative systems by establishing a way that 

introduces the friction felt by the system? It will be seen that the case of non conservative 

systems is not obvious neither for classical nor for quantal systems. This will explain the 

recourse to phenomenological approaches where the only guideline is to reproduce the equation 

of motion for these systems. 

In this second chapter we will present a brief review of some of the phenomenological 

approaches that are used for the classical systems. We will see how the canonical relations are 

used to extend these formulations to quantal systems. We will see also that a similar equation 

of motion is adopted in average for a quantal system with different modulizations of the 

dissipation occurring during the system motion. For the quantal treatment we will distinguish 

two approaches: the semi quantal (or phenomenological) treatment where the dissipation is 

introduced in a phenomenological way as the Caldirola-Kanai and Kostin-Albrecht method and 

the pure microscopic approach as given by the Caldeira-Legett method. To integrate a more 

general type of dissipations which are of stochastic nature, the stochastic Langevin equation as 

phenomenological approach to classical systems, is introduced. Finally, to illustrate the case of 

non conservative systems, we present the analytical case of the motion of a Gaussian wave 

packet in a medium with a constant rate of friction. 

II.Classical non conservative systems 

II.1. The Lagrangian formalism 

As we have seen in the previous chapter the description of any classical systems begins with 

the definition of its Lagrangian (or equivalently its Hamiltonian). Unfortunately, not all 

mechanical systems have an Euler-Lagrangian description. Couplings of a system to other 

degrees (environmental degrees of freedom) lead to dissipation when the number of the degrees 

is large and hence the energy conservation where the Lagrangian formalism is obvious is no 
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longer guaranteed. For example, the equations of motion for the damped oscillator are only a 

small modification of those of the harmonic oscillator: 

𝑚𝑞̈ = −𝑘𝑞 − 𝛾𝑞̇                                             (2.1) 

but the additional force, where γ is the damping rate:           

𝑓 = −𝛾𝑞̇ 

is not conservative. 

 It is not possible to add an extra potential to the Lagrangian, not even one that depends on 

velocities, to account for the force 𝑓. The equations of motion become of the (general) form: 

𝑑

𝑑𝑡
(
𝑑𝐿

𝑑𝑞̇
) −

𝑑𝐿

𝑑𝑞
= 𝑓                                     (2.2) 

We can write: 𝑓 =
𝜕𝐷

𝜕𝑞̇
 with 𝐷(𝑞̇, 𝑞) = −

1

2
𝛾𝑞̇2. The equation of motion becomes: [4/5/6/13] 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) −

𝜕𝐿

𝜕𝑞
=
𝜕𝐷

𝜕𝑞̇
                                           (2.3) 

II.2.  Caldirola-Kanai phenomenological approach  

There are different strategies to construct Hamiltonian functions to account for dissipative 

systems and then, from them, to obtain the corresponding quantum Hamiltonian operator. One 

of them consists in considering time-dependent Lagrangian (and there fore Hamiltonians), 

which  avoids us to deal explicitly with the environmental degrees of freedom. This approach 

preserves the canonical formalism and can be a good starting point to find out the quantal analog 

of the corresponding dissipative dynamics. Here, the Caldirola-Kanai Hamiltonian model 

constitutes a paradigm of dissipation. This model arises from the classical equation of motion 

for a damped particle of mass 𝑚 under the action of an external potential 𝑉(𝑥). For one-

dimensional models and a mean friction 𝛾 we have: 

𝑚𝑥̈ +𝑚𝛾𝑥̇ + 𝜕𝑥𝑉(𝑥) = 0                                      (2.4) 

with the short-hand notation 𝑥̇ = 𝑑𝑥/𝑑𝑡 and 𝑥̈ = 𝑑2𝑥/𝑑𝑡2 for total time derivatives, and 𝜕𝑘𝜂 =

𝜕𝑘/𝜕𝜂𝑘 and for the 𝑘 − 𝑡ℎ derivative with respect to a given variable η. Multiplying this 

equation by 𝑒𝛾𝑡, it can be recast as: 

𝑑

𝑑𝑡
(𝑚𝑒𝛾𝑡𝑥̇) + 𝜕𝑥[𝑉(𝑥)𝑒

𝛾𝑡] = 0                               (2.5) 
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If we consider the change of variable 𝑋 = 𝑥 and: 

𝑃 ≡ 𝑚𝑒𝛾𝑡𝑥̇ = 𝑝𝑒𝛾𝑡                                                   (2.6) 

Where 𝑝 = 𝑚𝑥̇ is the physical momentum, we readily notice that it is just the Lagrange equation 

satisfied by the time-dependent Lagrangian function: 

𝐿 = [
1

2
𝑚𝑋̇2 − 𝑉(𝑋)] 𝑒𝛾𝑡 =

𝑃2

2𝑚
𝑒−𝛾𝑡 − 𝑉(𝑋)𝑒𝛾𝑡                  (2.7) 

where 𝑃 plays the role of a canonical momentum, i.e., 𝑃 = 𝜕𝑥𝐿. This equation allows us by 

using the Legendre transformation, to obtain straight forwardly the corresponding Hamiltonian 

𝐻 = 𝑋̇𝑃 − 𝐿 =
𝑃2

2𝑚
𝑒−𝛾𝑡 + 𝑉(𝑋)𝑒𝛾𝑡                                           (2.8) 

Which is a function of the canonical variables 𝑋 and 𝑃, satisfying the Hamilton equations: 

𝑋̇ = 𝜕𝑃𝐻,   𝑃̇ = −𝜕𝑋𝐻                                                 (2.9) 

respectively. equation (2.8) defines the Caldirola-Kanai Hamiltonian. In terms of this time 

dependent Hamiltonian model, the system classical energy can be recast as: 

𝐸 =
𝑃2

2𝑚
+ 𝑉(𝑥) = 𝐻𝑒−𝛾𝑡                                                (2.10) 

Which explicitly exhibits the typical exponential decay associated with equation (2.8) 

regardless of the implicit time-dependence that 𝐻 might display [15]. 

In this section we shall systematically use 𝑋 and 𝑃 as we shall mention later that they are related 

to 𝑥, 𝑝 by a non-canonical transformation.Apparently, the Hamiltonian is depending on 𝑡, 

however, it does not generally represent dissipative systems but it does represent physical 

systems with an exponentially increasing mass with time 𝑚(𝑡) = 𝑚𝑒𝛾𝑡. 

Using Hamilton’s equations, we get from 𝐻 that: 

𝑋̇ =
𝜕𝐻

𝜕𝑃
= 𝑒−𝛾𝑡𝑃                                                               (2.11) 

𝑃̇ = −
𝜕𝐻

𝜕𝑋
= −𝑒𝛾𝑡

𝜕𝑉(𝑋)

𝜕𝑋
                                                    (2.12) 

And thus, from equation (2.11) we have: 

𝑃 = 𝑒𝛾𝑡𝑋̇,   𝑃̇ = 𝛾𝑒𝛾𝑡𝑋̇ + 𝑒𝛾𝑡𝑋̈                                    (2.13) 
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Subtracting equation (2.12) from the 𝑃̇ in equation (2.13) and canceling the common factor 𝑒𝛾𝑡 

we get then the equation of motion: 

𝑋̈ + 𝛾𝑋̇ +
𝜕𝑉

𝜕𝑋
= 0                                                          (2.14) 

Which is exactly the one in equaion (2.14) but in terms of the 𝑋 and 𝑃 coordinates. 

Note that in the units (ℏ = 𝑚 = 1), we have in the non-dissipative case 𝑝 = 𝑥 ̇ while in equation 

(2.13) 𝑃 = 𝑒𝛾𝑡𝑋̇ . This implies that 𝑃 = 𝑒𝛾𝑡𝑝 which will be relevant for the later analysis. 

II.3. Stochastic Langevin equation 

Actually, the dissipation in general is not just the result of an opposition to the dynamical 

evolution of the system (where the friction force is proportional to the velocity and opposes the 

motion) but also results from a stochastic process known as a Brownian motion. In this case the 

equation of motion is rather well sketched by the Langevin equation.              

Langevin equation (named after Paul Langevin) is a stochastic differential equation describing 

the time evolution of a subset of the degrees of freedom. If we consider for simplicity an open 

system with a single degree of freedom, which we associate with the coordinate 𝑞(𝑡) of a 

particle with mass 𝑚, the simplest assumptions about the dissipative process one can make is 

that dissipation is state independent. Then the frictional force is a linear functional of the history 

of the velocity 𝑞̇(𝑡), and the stochastic force 𝜉(𝑡) obeys stationary Gaussian statistics. It is fully 

characterized by the ensemble averages: 

〈𝜉(𝑡)〉 = 0,   〈𝜉(𝑡)𝜉(0)〉𝑐𝑙 ≡ 𝜒𝑐𝑙(𝑡)                                  (2.15) 

Where the first equation is giving the time average of the stochastic force and the second is its 

time correlation average. This second equation is quantifying a time memory.   

A classical heat reservoir at temperature 𝑇 with zero memory time constitutes a white noise 

source. Then the frictional force is local in time: 

𝐹𝑓𝑟𝑖𝑐(𝑡) = −𝑀𝛾𝑞̇(𝑡)                                              (2.16) 

The stochastic force is correlated according to: 

𝜒𝑐𝑙(𝑡) = 2𝑀𝛾𝑘𝐵𝑇𝛿(𝑡)                                           (2.17) 

Where 𝑘𝐵 is Boltzmann constant and 𝛿(𝑡) is a delta function. 

The dynamics of the damped particle is described by the Langevin equation 
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𝑀𝑞̈ +𝑀𝛾𝑞̇(𝑡) + 𝑉 ′(𝑞) = 𝜉(𝑡)                                             (2.18) 

The time local friction proportional to the velocity is usually called Ohmic because of the 

correspondence with a series resistor in an electrical circuit.  

In many cases of practical interest, the heat reservoir exhibits retardation. Then it is a source of 

colored noise, which has finite memory time, and friction depends on the velocity in the past. 

The corresponding dynamical equation is the generalized Langevin equation: 

𝑀𝑞̈ +𝑀∫ 𝑑𝑡′𝛾(𝑡 − 𝑡′)𝑞̇(𝑡′) + 𝑉 ′(𝑞) = 𝜉(𝑡)
𝑡

−∞
                    (2.19) 

Since the random force 𝜉(𝑡) has zero mean, the effect of the reservoir on average is in the 

memory-friction kernel 𝛾(𝑡), which obeys causality, 𝛾(𝑡) = 0 for 𝑡 < 0. [17] 

II. Phenomenological quantum friction models  

Once the Hamiltonian is defined it is possible to use the canonical transformation to establish 

the operator 𝐻 and then try to resolve the Schrodinger equation. If we consider a system with a 

particle whose mass is 𝑚, moving in a one-dimensional space 𝑥 with a potential 𝑉(𝑥) and a 

linear frictional force. Ignoring the stochastic process of dissipation, the classical equation of 

motion for the particle reads as given before as: 

𝑑𝑝

𝑑𝑡
+ 𝛾𝑝 +

𝜕𝑉

𝜕𝑥
(𝑥) = 0                                                          (2.20) 

From this classical equation of motion, the time derivative of the energy 𝐸 = 𝑝2 2𝑚 + 𝑉(𝑥)⁄  

reads: 

𝑑𝐸

𝑑𝑡
= −

𝛾0

𝑚
𝑝2                                                        (2.21) 

This equation is characterizing the energy dissipation during the dynamical evolution. 

In constructing the phenomenological quantum friction models, equations (2.20) and (2.21) 

should be used as a guiding principle, that is, it is demanded that the time dependence of the 

expectation values obeys these same equations. Different models are devised to introduce the 

friction effect in the Schrodinger equation, we are going to review two of these models: the 

Caldirola-Kanai and the Kostin-Albrecht models. 

II.1. The Caldirola-Kanai model 

As we mentioned equation (2.20) gives no hint on how it can be translated to a quantum 

mechanical form. We must then look into more phenomenologically motivated ways to obtain 
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equation (2.20) and in particular, on those that include some type of effective Hamiltonians. 

Starting from the Hamiltonian established in equation (2.8) we can use the canonical 

transformation to achieve the quantal formulation. To pass to the quantum mechanical form of 

the dissipative problem we can proceed as in going from equation (1.13) to equation (1.15) but 

now replacing in equation (2.12) 𝑃 by −
𝑖𝜕

𝜕𝑋̅
, 𝑋 by 𝑋̿ and 𝐻 by 

𝑖𝜕

𝜕𝑡
 to get the equivalent of the 

Schrodinger equation but in the dissipative case: 

𝑖
𝜕𝜓̅

𝜕𝑡
= 𝑒−𝛾𝑡 (−

1

2

𝜕2𝜓̅

𝜕𝑥̅2
) + 𝑒𝛾𝑡𝑉(𝑥̅)𝜓̅                              (2.22) 

Here 𝜓̅ is not the physical wave function since it is relate to P and X. 

In the Caldirola-Kanai model, the Hamiltonian depends explicitly on time 𝑡 and P is a canonical 

momentum conjugate to 𝑥. The canonical quantization [𝑥, 𝑃] = 𝑖ℏ with 𝑝 = 𝑃𝑒−𝛾0𝑡 leads to 

the desired equations: 

𝑑

𝑑𝑡
〈𝑝〉 + 𝛾0〈𝑝〉 + 〈

𝜕𝑉

𝜕𝑥
(𝑥)〉 = 0                                             (2.23) 

𝑑

𝑑𝑡
〈𝐸〉 = −

𝛾0

𝑚
                                                                   (2.24) 

Here, the expectation value of an operator 𝒪 is denotedas 〈𝒪〉 = ∫𝑑𝑞𝜓∗𝒪𝜓 with a wave 

function 𝜓 = 𝜓(𝑞, 𝑡).  

Since the Hamiltonian equation (2.9) is Hermitian, the probabilityis conserved with the 

continuity equation of: 

𝜕𝜌

𝜕𝑡
+
𝜕𝐽

𝜕𝑞
𝑒−𝛾0𝑡 = 0                                                     (2.25) 

where 𝜌 = |𝜓|2 and 𝐽 = (
ℏ

𝑚
)ℑ(𝜓∗

𝜕𝜓

𝜕𝑞
) are the probability density and the current, respectively, 

ℑ denoting the imaginary part. 

Since the kinetic momentum operator in this model depends explicitly on time, the commutation 

relation between the coordinate and the physical momentum is of the form: 

[𝑥, 𝑝(𝑡)] = 𝑖ℏ𝑒−𝛾0𝑡                                                                (2.26) 

Hence, the quantum fluctuation disappears as 𝑡 ≫ 1 𝛾0⁄ . Consequently, we loss the quantal 

nature of the problem. One may consider that this unphysical feature can beneglected if one 

considers only a short time behavior. However, the friction is not active in that time regime, 
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since the factor 𝑒−𝛾0𝑡 determines how much the momentumis damped, and thus the dynamics 

may be rather trivial there. This feature of this Hamiltonian expression is rather remarkable as 

it induces several consequences at physical description of the system. [16] 

II.2. The Kostin and the Albrecht models 

In the Kostin and the Albrecht models, the momentum operator is kept time-independent, but a 

non-linear potential 𝑊 is introduced in the Hamiltonian: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑞) + 𝛾0𝑊                                                              (2.27) 

𝑊𝐾𝑂 =
ℏ

2𝑖
(𝑙𝑛

𝜓

𝜓∗
− 〈

𝜓

𝜓∗
〉) = ℏ[ℑ𝑙𝑛𝜓 − 〈ℑ𝑙𝑛𝜓〉]                            (2.28) 

We can notice that this potential is nothing else than the phase of the wave function. 

While in the Albrecht model it is taken as: 

𝑊𝐴𝑙 = 〈𝑝〉(𝑥 − 〈𝑥〉)                                                                        (2.29) 

With the canonical quantization, one can derive the equation (2.24) to gether with 

𝜕𝜌

𝜕𝑡
+
𝜕𝐽

𝜕𝑞
= 0                                                                                     (2.30) 

for both Hamiltonians. 

The energy dissipation for the Kostin model is given by: 

𝑑

𝑑𝑡
〈𝐸〉 = −

𝛾0

𝑚
〈(
𝑚𝐽

𝜌
)2〉                                                                 (2.31) 

Kan and Griffin rederived the Kostin Hamiltonian from a fluid dynamics point of view. In that 

context, 
𝑚𝐽

𝜌⁄  in equation (2.31) is the kinetic momentum, and hence equation (2.31) is similar 

to equation (2.21). For the Albrecht model, on the other hand, one obtains 

𝑑

𝑑𝑡
〈𝐸〉 = −

𝛾0

𝑚
〈𝑝〉2                                                                              (2.32) 

as is desired. Notice that the energy dissipation is proportional to 〈𝑝〉2 in the Caldirola-Kanai 

and the Kostin models, while it is 〈𝑝2〉 in the Albrecht model. In the classical limit, these 

quantities are the same to each other, but they may differ in quantum mechanics. [16] 
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III. Microscopic Approach 

The typical approach to describe dissipation is to split the total system in two parts: the quantum 

system where dissipation occurs, and a so called environment or bath where the energy of the 

former will flow to wards. The way both systems are coupled depends on the details of the 

microscopic model, and hence, the description of the bath. To include an irreversible flow of 

energy (i.e., to avoid Poincarerecurrences in which the energy eventually flows back to the 

system), requires that the bath contains an infinite number of degrees of freedom. Notice that 

by virtue of the principle of universality, it is expected that the particular description of the bath 

will not affect the essential features of the dissipative process, as far as the model contains the 

minimal ingredients to provide the effect. 

III.1. Caldeira–Leggett model 

Caldeira–Leggett model is a generic microscopic model describing quantum dissipation. It is a 

simple semi-empirical model to treat a quantum mechanical anharmonic oscillator which is 

linearly coupled to a heat bath consisting of a set of non-interacting or independent harmonic 

oscillators. Hence in this description the bath is a sum of an infinite number of harmonic 

oscillators, that in quantum mechanics represents a set of free bosonic particles. 

The model enables us to investigate dissipation phenomena in the framework of quantum 

mechanics. Although the model is relatively simple, it enables us to reproduce several 

properties of realistic dissipative systems without running into difficulties that can appear in the 

usual way of quantization. Further more, the interaction-independent construction of the model 

opens up the possibility of application to a wide range of physical systems exhibiting dissipative 

phenomena. The principle of the model is to consider a system coupled to the environment 

called bath and which freedom degree causes the energy dissipation. The total Hamiltonian 

reads then as: 

𝐻𝑡𝑜𝑡 = 𝐻𝑠 + 𝐻𝑏 + 𝑉𝑐𝑜𝑢𝑝                                                   (2.33) 

Where 𝐻𝑠 is the system Hamiltonian, 𝐻𝑏 is the bath Hamiltonian and 𝑉𝑐𝑜𝑢𝑝 is the coupling 

between the system and the bath. We illustrate the situation in (figure II.1).  

The heat bath can be considered as the environment of the physical system, which in Caldeira-

Leggett model corresponds to the anharmonic oscillator. As is known the environment plays a 

crucial role in the appearance of the decoherence phenomenon, the manner by which a quantum 

system turns effectively into a classical one. Its coupling to the environment makes the physical 

https://en.wikipedia.org/wiki/Poincar%C3%A9_recurrence_theorem
https://en.wikipedia.org/wiki/Universality_(dynamical_systems)
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system an open quantum system in which quantum dissipation and entanglement may occur, so 

that the Caldeira-Leggett model may provide a good framework to discuss such phenomena. 

 

 

Fig.II.1. A quantum system interacting with the infinitely many degrees of freedom of an 

environment. 

The Hamiltonian reads then: 

𝐻 =
1

2
𝑀𝑞̇2 + 𝑉(𝑞)
⏞        

+ ∑ (
1

2
𝑚𝑗𝑥̇𝑗

2 −
1

2
𝑚𝑗𝜔𝑗

2𝑥𝑗
2)𝑁

𝑗=1

⏞                
+ 𝑞∑ 𝑔𝑗𝑥𝑗

𝑁
𝑗=1

⏞      − 𝑞2∑
𝑔𝑗
2

2𝑚𝑗𝜔𝑗
2

𝑁
𝑗=1         (2.34) 

Where 𝑔𝑗 are constants. 

The first bloc corresponds to the Hamiltonian of a quantum particle of mass 𝑀 and 

momentum 𝑞̇, in a potential 𝑉(𝑞) at position 𝑞. The second bloc describes the bath as an infinite 

sum of harmonic oscillators with masses 𝑚𝑗 and momentum 𝑥̇𝑗, at positions 𝑥𝑗. 𝜔𝑗 are the 

frequencies of the harmonic oscillators. The next bloc describes the way the system and the 

bath are coupled. The last term is simply a counter term not depending on the oscillator 

coordinates. The physical reason forthe introduction of such term is to let the minimum of the 

Hamiltonian, and thus of the energy, correspond to the minimum of the external potential 𝑉(𝑞). 

This term must be included to ensure that dissipation is homogeneous in all space. As the bath 

couples to the position, if this term is not included the model is not translationally invariant, in 

the sense that the coupling is different wher ever the quantum particle is located. This gives rise 

to an unphysical renormalization of the potential, which can be shown to be suppressed by 

employing real potentials. 

https://en.wikipedia.org/wiki/Translational_symmetry
https://en.wikipedia.org/wiki/Renormalization
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 Going in all the details of the resolution of this model is beyond the framework of this study. 

It is however interesting to report that a propagator can be derived from the Hamiltonian and a 

solution can be deduced for this model. The remarkable point to notice is that the only feature 

of the bath that enters this propagator is its spectral density.[14] 

IV. Motion of wave packet with dissipation 

In this section we are going to exploit the already given formalism to illustrate how the motion 

of a Gaussian wave packet is modified when the medium is characterized by a constant rate of 

friction. We will expose the solution of the time dependent Schrodinger equation only for the 

case of the Caldirola-Kanai model of the friction. As the Hamiltonian was established for the 

variable 𝑋 and 𝑃, we will note the wave function as 𝜓̅(𝑋, 𝑡) as it is related with the physical 

𝜓(𝑥, 𝑡) by a non-unitary connection. We now restrict ourselves to the case when 𝑉(𝑋) = 0 and 

consider again the problem of the previous section in the presence of dissipation. This implies 

finding the 𝜓̅(𝑋, 𝑡) solution of 

𝑖
𝜕𝜓̅

𝜕𝑡
= 𝑒−𝛾𝑡(−

1

2

𝜕2𝜓̅

𝜕𝑋2
)                                                  (2.35) 

𝜓̅(𝑋, 𝑡 = 0) = 𝑓(𝑋)                                                     (2.36) 

Where 𝑓(𝑥) is the initial Gaussian wave packet as given in the previous chapter but this time 

as function of 𝑋. 

If we multiply equation (2.35) by 𝑒𝛾𝑡 we can replace on the left hand side the time variable 𝑡 

by: 𝜏 =
1

𝛾
(1 − 𝑒−𝛾𝑡) and as it has the property that for 𝑡 = 0, 𝜏 = 0, our problem reduces to 

finding the solution of: 

𝑖
𝜕𝜓̅

𝜕𝜏
= −

1

2

𝜕2𝜓̅

𝜕𝑋2
                                                   (2.37) 

𝜓̅(𝑋, 𝜏 = 0) = 𝑓(𝑋)                                              (2.38) 

Which is exactly the same problem that we have discussed in the previous chapter but in which 

we have to substitute 𝑡 by 𝜏 and 𝑥 by 𝑋. 

Thus, the absolute value squared of the solution of equation (2.37) is: 

|𝜓̅(𝑋, 𝜏)|
2
=

1

√𝜋𝑎√(1+
𝜏2

𝑎4
)

𝑒

[−
(𝑋−𝑥0−𝑝0𝜏)

2

𝑎2(1+
𝜏2

𝑎4
)

]

                 (2.39) 
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We could discuss the dependence of |𝜓̅(𝑋, 𝜏)|
2
on 𝑋, 𝜏 exactly in the same way as we did in the 

previous chapter for the non-dissipative problem, but in order to do comparison we have to 

express this probability density in terms of the physical variables 𝑥, 𝑝 rather than 𝑋, 𝑃 and also 

consider the non-unitary change from 𝜓̅ to 𝜓 and renormalize the latter.  

For the coordinate and momentum observables we have: 

𝑋 = 𝑥  𝑎𝑛𝑑  𝑃 = 𝑝𝑒𝛾𝑡                                                      (2.40) 

which stresses the non-canonical relation between 𝑥, 𝑝 and 𝑋, 𝑃. 

Making use of the Hamiltonian-Jacobi equation in these variables and Schrödinger relation 

between the action 𝑆 and the wave function 𝜓 one obtains: 

𝜓̅ = 𝜓𝑒𝛾𝑡                                                                           (2.41) 

which is clearly a non-unitary kind of transformation. From equation (2.41) we have that: 

|𝜓(𝑥, 𝑡)|2 = |𝜓̅(𝑋, 𝜏)|
2𝑒−𝛾𝑡

                                                (2.42) 

and replacing the first term in the right hand side by its value in equation (2.35) we obtain for 

the problem with dissipation that: 

|𝜓(𝑥, 𝑡)|2 = [
1

√𝜋𝜎√(1+
𝜏2

𝜎4
)

]−𝑒
𝛾𝑡
exp [−

(𝑥−𝑥0−𝑝0𝜏)
2

𝑒𝛾𝑡𝜎2(1+
𝜏2

𝜎4
)
]             (2.43) 

This is not yet the probability density of finding the particle at point 𝑥 at time 𝑡 as the 

normalization of the wave function was affected by the non-unitary transformation of equation 

(2.41). In our present problem, where |𝜓(𝑥, 𝑡)|2 is a gaussian of width √𝑒𝛾𝑡𝜎2(1 + 𝜏2𝜎−4), 

we just have to replace the first bracket in equation (2.43) by the inverse of this width and 

keeping the factor (
1

√𝜋
) we get: 

𝑃(𝑥, 𝑡) ≡
1

√𝜋𝑒
𝛾𝑡
2 𝑎√(1+𝜏2𝑎−4)

exp [−
(𝑥−𝑥0−𝑝0𝜏)

2

𝑒𝛾𝑡𝑎2(1+
𝜏2

𝑎4
)
]                (2.44) 

The 𝑃(𝑥, 𝑡) is now the normalized probability density for the problem with dissipation for 

finding the particle at the point 𝑥 and time 𝑡. 

A comparison between the evolution in time of the wave packet for the case of conservative 

and non conservative system is presented in (figure II.2). As expected, the dissipative case is 

retarded compared to the case with no dissipation and the spreading of the Gaussian is also 
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more important for the dissipative case. The maximum of the Gaussian is also smaller for the 

dissipative system. These results can be induced from a straight forward comparison between 

the two mathematical formulas. [12] 

 

Fig.II.2. Comparison for four different sample of time between the dissipative case (full line) 

and the non dissipative case (dashed line) for the motion of a Gaussian wave packet 
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CHAPTER III: IMPLEMENTATIONAND EVALUATION 

I. Introduction 

We have presented in the previous chapters through some theoretical developments, two main 

practical results related to the propagation of a Gaussian wave packet: 

-An analytical expression for the motion of the wave packet with no dissipation taken into 

consideration. 

-An analytical expression for the motion of the wave packet in the case of the propagation in a 

medium with a constant friction factor. 

We have to bear in mind that these results are established in the case of free motion i.e., no 

potential of any kind is assumed. However, the case of a motion in particular potentials are the 

most interesting cases that we encounter in reality. In these cases, however it is impossible to 

reach an analytical solution and the only alternative is to resolve the problem numerically. The 

physical situation in which we are interested is the case of particles that could be electrons or 

nuclei penetrating a barrier or a general collision problem. The particles are represented by a 

Gaussian wave packet and to start, we are considering the penetration of a simple square barrier. 

For the case of dissipative systems, the friction should be limited to the barrier region and for 

this, the Caldirola-Kanai model is adopted for the friction study.  We use FORTRAN software 

for the coding and some numerical recipes are needed to overcome the non linearity 

encountered in this kind of problems. To test the efficiency of our program, we compare the 

numerical results with the analytical expressions in the case with no dissipation and the case of 

a medium with a constant friction. The validity of these tests will assure mainly the validity of 

the results in the case of the barrier penetration. 

II. Numerical strategy 

To resolve the time dependent Schrödinger equation several methods are proposed in the 

literature. The most popular approach is maybe the Crank-Nicolson scheme where the 

propagator of the solution at time zero to ulterior times is written in a symmetric form assuring 

the unconditional stability of this method. However, this strategy is only possible in the linear 

form of the Schrödinger equation. Assuming the Caldirola-Kanai model for the dissipative 

regime we can straight for wardly notice that the Schrödinger equation is no longer linear and 

more investment should be devoted to the elaboration of the solution encompassing not only 

the theoretical formulation but also management of the computer resources.  
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Let us explicit more the situation. The origin of the non linearity comes from the fact that the 

propagator 𝑈(𝑡, 𝑡0) of the solution in the Schrödinger equation without friction is given by: 

|𝜓(𝑡)⟩ = 𝑈(𝑡, 𝑡0)|𝜓(𝑡0)⟩                                (3.1) 

Where: 

𝑈(𝑡, 𝑡0) = 𝑒
−𝑖
ħ
𝐻(𝑡−𝑡0) 

𝐻 is the Hamiltonian of the system. Hence it is obvious that to reach the solution |𝛹(𝑡)⟩ at any 

instant 𝑡 it is sufficient to evaluate the propagator 𝑈(𝑡, 𝑡0). In the Cayleyor the Crank Nicolson 

method a symmetric form of the exponential is developed to the first order and results in: 

𝜓𝑡𝑗+1 =
𝐼−𝑖𝐻

𝐼+𝑖𝐻
𝜓𝑡𝑗                                      (3.2) 

The discretization of this formula will lead us to the evaluation of a tridiagonal matrices which 

are the same at each time iteration. 

However, when we use the Caldirola-Kanai approach the Hamiltonian becomes time-dependent 

and this non linearity will violate the superposition principle. In addition, in the original models 

for quantum friction, the friction constant 𝛾0 is treated to be a constant. When considering 

friction in a collision problem, however, we have to introduce a friction form factor 𝑓(𝑥), since 

the energy dissipation occurs only during interaction. That is, the form factor 𝑓(𝑥) vanishes 

outside the range of the potentiall 𝑉(𝑥). A naive replacement of  𝛾0 in the model Hamiltonians 

with 𝛾0𝑓(𝑥) does not work due to the 𝑥 dependence in the form factor. Alternatively, in this 

study we consider a time dependent friction coefficient 𝛾(𝑡) which vanishes after the 

interaction. In the simple form of 𝛾(𝑡) = 𝛾0𝑓(< 𝑞 >𝑡) the dissipation continuously occurs even 

after the interaction if an incident wave is equally bifurcated into transmitted and reflected 

waves. To avoid this undesired behavior, we choose the form: 

𝛾(𝑡) = 𝛾0〈𝑓(𝑞)〉𝑡                                             (3.3) 

For the Caldirola-Kanai model, on the other hand, the following modification is necessary:[16] 

𝐻 =
𝜋2

2𝑚
𝑒−∫ 𝑑𝑡′𝛾(𝑡′)

𝑡
0 + 𝑒∫ 𝑑𝑡′𝛾(𝑡′)

𝑡
0                         (3.4) 

Here we have assumed that the initial time is 𝑡 = 0. The uncertainty relation is now changed 

from equation (2.26) to: 
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[𝑞, 𝑝(𝑡)] = 𝑖ℏ𝑒−∫ 𝑑𝑡′𝛾(𝑡′)
𝑡
0                                   (3.5) 

Instead of using the Crank-Nicolson scheme, we carry out the numerical integration in the 

following way. The discretized Schrödinger equation may be given at the 𝑛𝑡ℎ time grid by: 

𝑖ℏ
𝜓𝑛+1−𝜓𝑛

∆𝑡
=

𝐻𝑛+1𝜓𝑛+1+𝐻𝑛𝜓𝑛

2
                             (3.6) 

Here H is the Hamiltonian which depends on 𝜓. In our calculation, we simply neglect the time 

dependence of the Hamiltonian and obtain: 

𝑖ℏ
𝜓𝑛+1−𝜓𝑛

Δ𝑡
= 𝐻𝑛

𝜓𝑛+1+𝜓𝑛

2
                                  (3.7)  

Then the discretization of the second derivative of the kinetic operator in the Hamiltonian gives: 

(
𝑑2𝜓

𝑑𝑥2
)
𝑥𝑛
=

𝜓𝑥𝑛+1−2𝜓𝑥𝑛+𝜓𝑥𝑛−1

𝑎2
                            (3.8) 

And the whole equation can be put in following form: 

𝜓𝑛+1 = 𝐷1
−1𝐷2𝜓

𝑛                                                   (3.9) 

Where: 

𝐷1=

(

 
 
 
 

𝛾1 𝛼
𝛼 𝛾2 𝛼

𝛼 𝛾3 𝛼

⋱ ⋱ ⋱
𝛼 𝛾𝑁−1 𝛼

𝛼 𝛾𝑁)

 
 
 
 

 

And: 

𝐷2=

(

 
 
 
 

𝜉1 −𝛼
−𝛼 𝜉2 −𝛼

−𝛼 𝜉3 −𝛼

⋱ ⋱ ⋱
−𝛼 𝜉𝑁−1 −𝛼

−𝛼 𝜉𝑁)

 
 
 
 

 

With:          𝛼 =
𝑖Δ𝑡

4Δ𝑥2
,         𝛾𝑗 = 1 − 𝛽𝑗 ,            𝜉𝑗 = 1 + 𝛽𝑗 

And 𝛽𝑗 =
𝑖Δ𝑡

2
(
1

Δ𝑥2
𝑒−𝛾(𝑡)∗𝑡 + 𝑉𝑗𝑒

𝛾(𝑡)∗𝑡) 
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We consider here:  ℏ = 𝑚 = 1 

This final form is used in our program to follow the evolution of the Gaussian wave packet. 

III. Coding strategy and implementation 

To translate the numerical results established at the end of the previous section we are using 

FORTRAN software for the coding and the LAPACK libraries for the routines of 

diagonalization, matrix-matrix product and matrix-vector product. Besides being very 

commonly used by the physicists community, the FORTRAN software is a very versatile 

language allowing through its object orientation and low structure plenty of manipulations that 

are not possible with other languages. When FORTRAN coding is coupled with LAPACK 

libraries which are ready to use FORTRANroutines, coding becomes easier and more compact. 

The program includes an input part where we assign values to some parameters whether 

physical or needed for the structure of the program as for example the   friction constant, 

parameters for the initial wave packet, assignment of matrices elements of the Hamiltonian… 

and the spatial and temporal paces (Δ𝑥 and Δ𝑡)… For each iteration we have the evaluation of 

inverse matrix 𝐷1
−1 then the matrices product 𝐷1

−1𝐷2 and then the matrix-vector product 

𝐷1
−1𝐷2𝜓

𝑛. Where for this operation we are using the complex-valuated routines: cgetrf, cgetri, 

cgemm and cgemmv. These different operations could be summarized by the flowchart of 

(figureIII.1) 
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Fig.III.1. flowchart of the elaborated program 

The program is outputting formatted files for gnuplot. It is possible then to create an animation 

that allows the observation of the evolution of the wave packet across time. Only snapshots of 

this animation are captured to sketch the main features of the process. An example of these 

snapshots is illustrated on (figure III.2) and (figure III.3). On (figure III.2) we can see the natural 

spreading of the Gaussian wave packet as it evolves in time when no potential is considered. 

The (figure III.3) on the other side gives an example of the impact of the wave packet on a 

square potential and we can see clearly the bifurcation of the wave in a reflected part at the left 

and a transmitted part on the right and a resonant part at the barrier. This is clearly depicting a 

tunnel passage of the barrier. 

          Input  

Time iteration 

-Evaluation of the average friction form factor 

-Matrices assignement 

-Matrix inverse 

-Matrices product 

-Matrice-vector product 

 

     End 

counter 
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Fig.III.2.Snapshots of the evolution of the free Gaussian wave packet without dissipations 

 

Fig.III.3. Snapshots of the evolution of the Gaussian wave packet without dissipations 

through a square barrier. 
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IV. Tests and the program validation 

It is important to test our program for case where analytical results exist. This benchmark of 

tests will allow us to be confident about the results established for the other cases where no 

analytical results exist.  For this we are going to use the two analytical results presented before 

for the case with no friction and the case of a medium with a constant friction factor. 

IV.1.Analytical-numerical comparison for the case without friction 

As we have showed in the first chapter an analytical solution for the propagation of a Gaussian 

wave packet without dissipation exists and the probability density is as: 

𝑝(𝑥, 𝑡) ≡ |𝜓(𝑥, 𝑡)|2 =
1

√𝜋𝜎√(1+
𝑡2

𝜎4
)

𝑒𝑥𝑝 {−
(𝑥−𝑥0−𝑝0𝑡)

2

𝜎2(1+
𝑡2

𝜎4
)
}              (3.10) 

To perform the comparison of this result with our program we are setting 𝜎 = 1 , 𝑝0 = 10 and 

𝛾 = 0.00, ∆𝑥 = 0.05 and ∆𝑡 = 0.00023 (all in atomic units) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.III.4. Numerical-analytical comparison for a Gaussian wave packet with no dissipation 

 

The comparison of the wave packet for equidistant time intervals equal to 600 ∗ ∆𝑡 is illustrated 

in (figure III.4). We can see clearly that our numerical results agree perfectly well with the 
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analytical results. Let us however report that it is important to take ∆𝑥 as small as the value 

given previously to assure the stability of our calculation and to avoid cumulating numerical 

error originating from the assumption that the Hamiltonian is time independent between two 

time iterations. We could establish this result quiet easily using the Cranck-Nicolson method 

with no numerical constraint but we are rather interested in the limit of our non linear program 

in the case of systems with no dissipations. 

IV.2. Analytic-numerical with friction 𝜸 = 𝟏 

Similarly, we have given the analytical expression of the density probability of the Gaussian 

wave packet in case where the whole medium is characterized with a constant friction factor 

as: 

𝑃(𝑥, 𝑡) ≡
1

√𝜋𝑒
𝛾𝑡
2 𝜎√(1+𝜏2𝜎−4)

exp [−
(𝑥−𝑥0−𝑝0𝜏)

2

𝑒𝛾𝑡𝜎2(1+
𝜏2

𝜎4
)
]             (3.11) 

To perform the calculation, we are setting: setting σ= 1 , 𝑝0 = 10 and 𝛾 = 1.00, ∆𝑥 = 0.05 

and ∆𝑡 = 0.00023 (all in atomic units). 

 

Fig.III.5.Numerical-analytical comparison for a Gaussian wave packet with a friction factor 

𝛾 = 1.00 

The wave packet for equidistant time interval of 600 ∗ ∆𝑡  is illustrated in (figure III.5). In these 

calculations we are setting 𝛾 = 1.00 without averaging this value between two time iterations. 
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We can notice the perfect agreement for the first curves and a small disagreement starts to 

appear for the last curves as a result of the accumulation of a numerical error. We have checked 

that the shift is related to the value of ∆𝑥 by seeing that the shift is smaller for a smaller ∆𝑥. It 

was unfortunately impossible to go below the value mentioned above because of the limitation 

of computer memory resources. We can however ascertain that besides this numerical 

shortcoming our program reproduces quiet well the analytical results. We can then move to the 

following step of this study where we perform the calculation fora square barrier potential. 

V. Penetration of square barrier potential 

For this section we are considering a square barrier potential given by the following 

formulation: 

𝑉(𝑥) = {
𝑝0
2

2
             − 𝑥𝑏 < 𝑥 < 𝑥𝑏

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where: 𝑥𝑏 = 2 𝑢𝑎   and 𝑝0is the initial momentum of the wave packet 

The shape of this potential is illustrated in (figure III.6) 

 

Fig. III.6.Square barrier as used in this study 
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V.1.Dissipation effect on the barrier transmission: 

In this first calculation we are going to show in a qualitative way the effect of the friction on 

the portion of the wave packet that is transmitted through the barrier. The friction is limited 

only to the region of the barrier through the averaging process that we have explained before. 

We are taking the case with γ=0 as the reference for our calculation and then we introduce 

friction gradually through increasing the value of γ and keep track of what is happening to the 

wave packet. Through the snapshots of (figure III.6) that starting from the same wave packet 

we end up with different bifurcation schemes and this is due mainly to the effect of the friction 

at the barrier. It is clear from this illustration that the dissipation leads to the decrease of the 

proportion of the transmitted wave packet. 

 

Fig. III. 7. Snapshots of the evolution of the wave packet with different friction factors. 

 

In a more quantative manner we can see on (figure III.8) the transmission percentage versus 

time for different friction constants that the transmission decreases clearly with increasing 

friction.  
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Fig. III.8. Transmission percentage versus time for different friction constants  

 

 

In summary we can state that our appropriate handling of a realistic case of dissipative systems 

which is the penetration of a square barrier can lead to conclusive results. The consideration of 

friction was performed through Caldirola-Kanai model. However, the implementation of this 

model at the numerical level for study case requires a special treatment of the friction rate as it 

is only limited to the barrier region. The final results illustrate as expected a direct correlation 

between the friction rate and the barrier transmission.   



Conclusion 

40 
 

Conclusion 

The main aim of this study is to analyze the effect of the friction on the wave packet 

transmission through a square barrier potential. To reach this goal, we started by presenting a 

theoretical review of the physics for non conservative and conservative systems. It was obvious 

through that very short review that the incorporation of dissipation in the dynamical evolution 

of the physical system is quite ubiquitous. 

It was important in a second place to illustrate the physical advantages behind the use of the 

wave packet for describing the system and in which extent this more appropriate physically. 

The main contribution of this study is the build of a FORTRAN program that implements the 

numerical aspects of our problem. Particularly the non linearity of the equation was clearly 

addressed and implemented. 

In order to quantify the correctness of our numerical tool, a systematic comparison with well 

established analytical cases was performed.  The comparison is satisfactory within the 

numerical constraints imposed by the computer resources. 

For the realistic case of the square barrier transmission, we used our program in order to 

evaluate the effect of the friction on the transmission rate. It was clear from the qualitative and 

quantitative results that the transmission is decreasing with increasing damping rate.
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Abstract:  

Friction is an important player in any dynamical evolution of the physical system. The 

introduction of friction in the formalism for classical system is quite complicated  and relies 

essentially on phenomenological approaches. Situation becomes even more difficult for 

quantum systems where the correspondence relation for the Hamiltonian is not obvious. In this 

master project we are attempting to review the theorical basis for the introduction of friction in 

classical and quantal system. We are specially interesseted in the effect of friction on the 

transmission of a wave packet tunneling through  a square barrier. 

 

 

Résumé:  

Les frottements jouent un role important dans l’evolution dynamique de tout system physique. 

L’introduction des frottements pour les systemes classiques est assez compliquées et repose 

essentiellement sur les approches phenomenologiques. La sutiation devient plus difficile pour 

les systèmes quantiques ou les relations de correspondance pour le Hamiltonian n’est pas 

evidentes. Dans ce projet de master on tente de revoir les bases theoriques pour l’introduction 

des frottements dans les systemes classiques et quantiques, on est interessé specialement par 

l’effet des frottements sur la transsmision du packet d’onde qui passe par effet tunnel à travers 

une barrière carrée.  

   

 

 الملخص: 

زيائي. ادخال الاحتكاك في التعبير الرياضي للأنظمة الكلاسيكية  ييلعب الاحتكاك دورا مهما في التطور الديناميكي لأي نظام ف

معقد إلى حد كبير ويعتمد أساسا على مقاربات ظواهرية. يصبح الأمر أكثر تعقيدا من أجل الأنظمة الكمية أين تكون علاقات 

في الأنظمة الكلاسيكية والكمية. نحاول تقديم الأسس النظرية لادخال الاحتكاك  الربط للهاملتونين أقل وضوحا. في هذا العمل  

 يتعلق الأمر خصوصا بدراسة أثر الاحتكاك على اختراق حزمة الأمواج التي تمر بفعل النفق من خلال حاجز مربع.


