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Abstract 

    Solving numerically the Schrodinger equation occupies an important place in quantum physic. 

However an enormous problem we are encountering when searching for such a solution is the 

limitation of the size of the numerical box. In this master thesis we are exploitiny the crank 

Nicolson method to solve the Schrodinger equation, then a comparative study is conducted between 

some methods devised  to avoid numerical back reflexion at the boundaries of the numerical box  

Résumé 

  Une solution numérique à l‟équation de Schrödinger occupe une place importante en physique 

quantique. Cependant un énorme problème auquel on fait  face quand on cherche à établir une telle 

solution est la limitation de la taille de la boite numérique. Dans ce mémoire de master on exploite 

la méthode de Crank Nicolson pour résoudre l‟équation de Schrödinger, une étude comparative est 

conduite entre certaines méthodes établies pour éviter la réflexion numérique qui a lien aux limites 

de la boite numérique  

  هلخص 

غيس اٌ يشكهت كبسي تىاجهُا حيٍ َبحج عٍ يثم هكرا  ,س تحتم يكاَت يهًت في انفيزياء انكىُغنًعادنت شسودياٌ انحم انسقًي      

ستغم طسيقت كساَك َكهسىٌ في حم يعاذنت شسوديُغس وبعدها يٍ خلال يركسة انًاستس هرِ َ  ,حم وهى يحدوديت انعهبت انسقًيت

عُد حدود انعهبت انسقًيت يحدثب الاَعكاس انسقًي انري ت نتجُسحيٍ بعض انطسق انًقتزاست يقازَت بتقىو بد      
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Introduction 

 

Quantum mechanics has proven to be a very powerful theoretical tool in investigating 

the microscopic world. Based on a set of postulates, this discipline never revealed to be 

wrong for nearly a century after its Birth. Among these postulates the most important one is 

unmistakably the Schrodinger equation. This is so because a solution to this differential 

equation is sufficient to provide all the information we need to describe any quantal system. 

Unfortunately analytical solutions for the Schrödinger equation are possible only for some 

theoretical or very simple physical cases (infinite well, square well, hydrogen atom…). For 

most of the cases of interest a numerical approach is unavoidable.  

The Schrödinger equation can be treated according to the physical interest into two 

frameworks: the time independent and time dependent forms. It is straight forward to describe 

any system that evolves in time in the time dependent framework. However the time 

independent frame is not to be eliminated de facto as it is a frame that imposes the time 

evolution as stationary and is not completely time independent. It is then important to analyze 

facts that make one frame or the other more appropriate physically. 

  In order to resolve the Schrödinger equation numerically the literature proposes a large 

set of approaches each with its own advantages and inconvenient. The selection of any 

candidate among these approaches is subject to a set of criteria that encompasses the 

constraints of the physical problem but also the constraints related to the numerical 

implementation in addition to the restriction imposed by the resources of the used calculator. 

The scope of this study is to address one of the numerical problems we are 

encountering when trying to resolve the time dependent Schrodinger equation. Namely we are 

dealing with the limitation of the size of the numerical box which is the numerical space used 

to discretize the equation. This limitation is a restriction due to the limitation of the calculator 

memory. In reality the wave function that we are targeting through the solution should evolve 

in the whole space. The main concern with this restriction is that we can have a back 

reflection at the boundaries of the box that can contaminate the derived observations 

especially for cases where the results at large distances are important. We can enlarge the box 

to the extent where the reflection becomes a very remote artifact but this induces more 

memory resources thing that we want to avoid. 

In this master project we are reviewing the most important techniques that could be 

used to suppress the back reflection at the edges. Our aim through this investigation is to 

establish a comparison between advantages and inconvenient between these different 
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techniques. In order to proceed towards this goal we should first provide a tool that resolves 

numerically the time dependent Schrodinger equation. This is established through a program 

we coded in FORTRAN language that uses the Crank-Nicolson numerical model for solving 

the equation.   

This master thesis is organized as follows: 

-The first chapter is a brief recall of the theory behind the Schrodinger equation. It details 

also the physical need for the wave packet rather than a wave function for an appropriate 

description of the system state. It ends with an exposé of the different strategies used to solve 

the Schrodinger equation. A special emphasize is devoted to the Crank Nicolson method as it 

is the method we used in our coding.   

-A second chapter is an overview of some of the most important methods used to overcome 

the concern of the back reflection. The aim of this chapter is to understand theory behind 

different methods that can allow us to argue about the established results during the 

implementation. 

-In the last chapter we will present the coded program used for the time dependent 

Schrodinger equation solution. It will also address the implementation of the different 

suppression methods in this program. The different results will be compared in order to derive 

conclusive comments. 
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Chapter 1: The time evolution of a quantum Gaussian wave 

packet 

 

I. Introduction 

It is well known that the starting point for the study of any quantum system is the 

resolution of the Schrodinger equation. In fact the resolution permits finding the eigenstates 

and the eigenvalues that can allow the calculation of any physical quantity related to the 

system. The resolution can be performed either in a time dependent or time independent 

framework depending on the researched features of the system. Some introductory examples 

in quantum physics can be established analytically and can be a starting point to evaluate 

other more complicated situations.  

In this first chapter we aim at presenting a simple method to solve the time-dependent 

Schrödinger equation by using a standard Crank–Nicholson method together with a Cayley‟s 

form for the finite-difference representation of evolution operator. Before doing this we 

introduce some basic concepts necessary to understand the theory of the Schrodinger 

equation.  

 

II. The Schrödinger Equation 

At the beginning of the 20th century, it had become clear that light has a wave-

corpuscle duality, that is to say that it could manifest itself, depending on the circumstances, 

either as a particle, the photon, or as an electromagnetic wave. Louis de Broglie proposed to 

generalize this duality to all known particles, although this hypothesis had the paradoxical 

consequence that electrons should be able to produce interferences like light, which was later 

verified by experiment. By analogy with the photon, Louis de Broglie associated to each free 

particle of: energy E and momentum p a frequencyν and a wavelength λ [1]. 

In 1926 Schrödinger wrote the general equations that govern the particle in 

nonrelativistic motion in a field of potential energy: it is a differential equation of the wave 

function with partial linear and homogeneous drift of the first order in time (t) and the second 

order in position (x), comparable to the equation of motion of Newton of a material point in 

classical mechanics. 

The Schrödinger equation has two „forms‟, one in which time explicitly appears, and 

so describes how the wave function of a particle will evolve in time. In general, the wave 

function behaves like a wave, and so the equation is often referred to as the time dependent 
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Schrödinger wave equation. The other is the equation in which the time dependence has been 

„removed‟ and hence is known as the time independent Schrödinger equation and is found to 

describe, amongst other things, what the allowed energies of the particle are. These are not 

two separate, independent equations – the time independent equation can be derived readily 

from the time dependent equation (except if the potential is time dependent, a development 

we will not be discussing here). In the following we will describe how the first, time 

dependent equation can be „derived‟, and in then how the second follows from the first [2]. 

II.1 The Time Dependent Schrodinger Wave Equation 

In the problem of the particle in an infinite potential well, it was observed that the 

wave function of a particle of fixed energy E could most naturally be written as a linear 

combination of wave functions of the form: 

 

  (   )     
 (     ) (1.1) 

 

The wave vector k and the angular frequency ω are properties of the wave and are 

related to momentum and energy (particle properties) according to the postulate expressed by 

the relations 

      (1.2) 

      (1.3) 

Then : 

 
 (   )     

 

 
(     )

 
(1.4) 

We note that by deriving the wave with respect to time, it comes then that: 

  

  
 (   )   

 

 
    

 

 
(     )   

 

 
  (   ) (1.5) 

 
  (   )    

 

  
 (   ) (1.6) 

Then the energy operator is: 

 
    

 

  
 (1.7) 

Similarly, for the gradient of this wave function, we have: 

 
 ⃗⃗   

 

 
   (   ) (1.8) 

So    (   )      ⃗⃗  (   ) (1.9) 
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Therefore  

        ⃗⃗  (1.10) 

P is the momentum operator. 

For a free particle, according to classical mechanics, the mechanical energy is given by: 

 
  

  

  
 (1.11) 

 This quantity appears in the Hamiltonian formulation for a free particle (v( )=0) of 

classical mechanics. By applying the principle of correspondence between the classical and 

quantum values, for the energy and the momentum of equation we obtain: 

    

  
  (   )    

 

  
 (   ) (1.12) 

Where:       ⃗⃗⃗⃗  is the Laplacian. 

The Hamiltonian operator of the system for a free particle is: 

 
  

   

  
  (1.13) 

Using this operator, to simplify the writing of the Schrödinger equation we obtain: 

   (   )    (   ) (1.14) 

 When the particle is immersed in a scalar potential independent of time (for example 

potential of a harmonic oscillator) according to classical mechanics, the total energy of the 

system is written as follows: 

 
  

  

  
  ( ) (1.15) 

 With this new energy value and from equation (1.12) and the operator p, the 

Schrödinger equation becomes: 

 
  

 

  
 (   )  (

   

  
   ( )) (   ) (1.16) 

The Hamiltonian operator of the system is the 

 
  

   

  
   ( ) (1.17) 

By using this operator, we can simplify the writing of the Schrödinger equation: 

 
  

 

  
 (   )    (   ) (1.18) 
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II.2 The Time Independent Schrodinger Equation: 

 We do know what the wave function looks like for a free particle of energy E and for 

the particle in an infinitely deep potential well though we did not obtain that result by solving 

the Schrodinger equation. But in both cases, the time dependence entered into the wave 

function via a complex exponential factor  [     ⁄ ]. This suggests that to„extract‟ this time 

dependence we guess a solution to the Schrodinger wave equation of the form 

  (   )   ( )      ⁄  (1.19) 

 The idea now is to see if this guess enables us to derive an equation for  (x), the 

spatial part of the wave function. If we substitute this trial solution into the Schrodinger wave 

equation, and make use of the meaning of partial derivatives, we get: 

   

  

   ( )

   
     ⁄   ( ) ( )     ⁄    (         ⁄  ( ))⁄    ( )     ⁄               (1.20) 

We now see that the factor [     ⁄ ] cancels from both sides of the equation, giving us: 

    

  

   ( )

   
  ( ) ( )    ( ) (1.21) 

II.3. The wave function 

 The solutions of the Schrödinger equation of a quantum system are called the wave 

functions, they can be considered as a quantum postulate that describes the quantum state of a 

particle and contains all the information that we want to know about the system. The wave 

function  (   )must satisfy the following conditions: 

- It must be continuous for x. 

- The derivative 
  

  
 must be continuous,  

These constraints are applied under the condition of the limit on the solutions. 

- It must be normalized. This implies that the wave function approaches zero as x 

approaches infinity that is: 

 
∫       ∫| |       (1.22) 

With | (   )|  is the probability density. 

 Since we have seen that the Schrödinger equation is a first order partial differential 

equation with respect to time and second order with respect to spatial coordinates, it is a 

difficult equation to solve for most quantum systems except for some particular simple case 

where analytical solution can be achieved. 
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II.4 The wave packet 

To introduce quantum mechanics we always talk about a wave function as 

representing the particle state. From other side we do know that the Schrödinger equation 

solution for a free particle is a plane wave (a sine function) that extends in the whole space. 

This comes as a natural consequence of the Heinsberg indetermination principle. Indeed, 

assuming in this case that the momenta of the particle is precisely determined (Δp=0) implies 

that Δx=∞). We say that the particle is delocalized. This comes as a counter sense since we 

know that the particle is somewhere. The only way to circumvent this problem is to allow 

some uncertainty on the momenta P (or equivalently the wave vector k), this means that we 

are superposing a number of sine functions that leads to the creation of the wave packet fig 

1.1.  Actually the wave packet is a way to reconcile the corpuscle and wave natures of the 

quantum particles [3]. 

 

 

fig 1.1: Construction of a wave packet from sine function with different wave number k 

A very well-known shape of the wave packet is a Gaussian form and can be given by the 

following mathematical expression: 

 
 (     )  (

 

 √  
)
  ⁄

   [ 
 

 
(
    
 

)
 

] (1.23) 

Where σ is the variance and x0 is the mean value. The coefficient of the exponent is 

normalizing this Gaussian (fig 1.2). 
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fig 1.2: A normalized Gaussian wave packet with a variance σ and centered around x0=0 

III. Evolution operator: 

 If we consider a time evolution of the wave function then the time become an explicit 

variable. Let us study the evolution of the wave function between an initial instant t0 and an 

arbitrary instant t. In other words how | (  )⟩ becomes | ( )⟩. Because of the linear 

correspondence between | (  )⟩and | ( )⟩, there exists a unitary linear operator U(t,  ), such 

that [4]: 

 | ( )⟩   (    )| (  )⟩ (1.24) 

 It is clear, from the above formula that the role of this operator is to determine the 

evolution of the state at any time, for this reason it is called evolution operator. In the 

particularly simple case where the Hamiltonian H of the system does not depend on time, the 

operator U(t,  ) has a simple form: 

 
 (    )   

  

 
 (    ) 

(1.25) 

Indeed, taking the partial derivative with respect to time of the function (1.25) we obtain: 

 
  

 

  
 (    )    (    ) 

(1.26) 

 We note that the equation (1.26) presents the same degree of difficulty as the 

Schrödinger equation, but it has more advantages when using the approximation methods. 

The total evolution operator can thus be decomposed into a product of operators of 

infinitesimal time evolution operators: 

  (    )   (    ) (      )     (     ) (     ) (1.27) 

 We can choose          so that the intervals between them are equal. ThusU (t,  ) 

can be written: 
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 (    )  ∏  (        )

 

   

 

(1.28) 

 We can conclude that the motion of a quantum ensemble can be assimilated toa 

succession of unitary transformations. A particular case of the transformation (1.24), having 

multiple applications in the diffusion theory of particles, is the one where the initial state is 

fixed not for   =0, but for       and the final state| ( )⟩ is considered for t = +   then 

we have:  

 | (  )⟩   (     )| (  )⟩ (1.29) 

Where it is explicitly indicated that       the operator U being de defined by the formula 

    (     )     
    
     

 (    ) (1.30) 

This operator is called the diffusion matrix. 

IV. Solving the Time-Dependent Schrodinger Equation 

Since we are interested in the time evolution of a Gaussian wave packet, it is 

straightforward to look for the ways to solve the time dependent Schrodinger equation. The 

solution for the time independent Schrodinger equation is however important to establish the 

profile of the solution for t0 and then propagate this form for ulterior times. In our case this 

first step can be skipped, since we are assuming that the first solution is represented by a 

Gaussian wave packet, with well declared parameters. Consequently we will be only 

interested by the propagation phase and for this we should solve the time dependent 

Schrodinger equation. Let us first notice that there is two important points that we should 

feature in order to reach a compromise for the searched solution. The first point concerns the 

form adopted for the evolution operator and the second is rather numerical and concerns the 

formula adopted for the finite difference, representing the partial derivatives. In this section 

we examine both points. The aim is to be able to argue about the final choice we have adopted 

in our study. 

Let us first recall the strategy of discretization for spatial and temporal derivative 

appearing in the Schrodinger equation. 

IV.1  Spatial finite difference discretization 

  In the case of complicated potential fields V (x), the numerical finite difference is a 

method of choice, to solve the Schrodinger equation. For the time independent case we can 

simply discretize the space in the Schrodinger equation and put it into matrix form, which can 
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then be numerically solved. For the one dimensional case, the Schrodinger equation at each 

point along x can be written as [5]: 

 
      

  

  
(
   

   
)
  

   ( )    (1.31) 

Using the basic finite difference approximation 

 
(
   

   
)
  

 
                

   
 (1.32) 

Where Δx is an uniform interval spacing, we can write equation (1.31) as: 

       (                )    ( )    (1.33) 

With   

 
  

  

     
 (1.34) 

This can also be written in matrix form as: 

 

 

(

 
 
 

  

  

  

 
    

  )

 
 
 
 

(

 
 
 

        
         
        

                           
                           
                             

                         
                          
                           

                    
                 
                   )

 
 
 

(

 
 
 

  

  

  

 
    

  )

 
 
 

 (1.35) 

 

This can also be written in operator form as: 

        (1.36) 

Where I is the identity matrix. This eigenvalue problem can be solved numerically, and the 

corresponding eigenvectors can be found. 

IV.2  Temporal finite element discretization 

Now we have to add to the temporal discretization to fully express the Schrodinger 

equation. This can be represented by the schematic of figure 1.3. 

For the temporal derivative, we can have different methods to express the 

descritezation of the time dependent Schrodinger equation: forward Euler, backward Euler 

and fourth order Runge-Kutta [6]. 

• Forward Euler method consists in approximating the temporal derivative by: 

   (   )

  
 
 (      )   (   )

  
 (1.37) 

The spatial part of the equation is given by: 

  (   )[ (   )] (1.38) 
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This method, despite being cheap in terms of computation, is relatively bad in terms of 

stability. 

 

fig 1.3: Schematic representation of time and space descritization 

• Backward Euler method is a modification to forward Euler that grants more stability at the 

cost of more computations per iteration. The temporal derivative is approximated as in 

forward Euler but now the spatial part is given by: 

  (   )[ (      )] (1.39) 

so we need to solve an equation system each time step. 

• Runge-Kutta of fourth order is a more complex explicit method based on quadratures that 

requires more computations every step, but has better convergence and stability. 

Based mainly on the two first strategy of discretization, there are three different 

schemes of resolving the Schrödinger equation: Explicit scheme, implicit scheme and Crank-

Nicolson scheme. Explicit methods calculate the state of a system at a later time from the state 

of the system at the current time, while an Implicit method finds it by solving an equation 

involving both the current state of the system and the later one. The Crank-Nicolson scheme 

is a special case of implicit scheme. 

IV.3 Explicit method 

Applying the explicit time-difference approximation for the time difference we have: 

 

*
  (   )

  
+
         

 
   

        

  

  
 (1.40) 

 

A stable and unitary discretization is obtained by applying a centered time difference 

which leads to a three-step explicit method 

  (     )   (     )

     (
 

  

 (     )    (   )   (     )

   
 
 ( )

 
 (   )) 

(1.41) 

 

 



Chapter 1                                                         The time evolution of a quantum Gaussian wave packet 

12 

 

In operator form this can be written: 

 
      (  

 

 
    )    (1.42) 

Where as before H is the discretized Hamiltonian (with the potential matrix V) and I is the 

unit matrix. With, The explicit scheme is not always numerically stable, actually the condition 

under which explicit scheme is stable is: 

 
  |

  

     
|  

 

 
 (1.43) 

This is non unitary scheme because:(  
 

 
   )

 

(  
 

 
   )    

   

  
    , the operator 

  
 

 
     is not unitary which is the condition under which the probability is conserved. 

IV.4  Implicit method 

In Implicit Scheme, the state of a system at later time is calculated by solving a 

equation involving states both at current time and later time. Now performing an implicit 

discretization we have: 

 
   

  
    

    
 
 

 
  * 

  

     
(     

    
     

    
      

    
)        

    
+ (1.44) 

which can also be put into operator form as: 

 
      (  

 

 
   )

  

    (1.45) 

 

The fully implicit scheme is unconditionally stable. Similarly we can show this 

scheme do not correspond to a unitary transformation. 

IV.5 Crank Nicolson method 

The Crank Nicolson scheme is based on central difference in space, and the 

trapezoidal rule in time, giving second order convergence in time. Equivalently, it is the 

average of the Euler forward method and the Euler backward method in time. This leads to 

the following equation: 
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   (   )

   
  ( ) (   )+

 

   

 
 

 
* 

  

  

   (   )

   
  ( ) (   )+

 

 

 

 

(1.46) 

After the spatial discretization this become: 
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(     

       

        

  )        

  + 

(1.47) 

After rearranging terms the equation can be put in formal expression as: 

 (    )     (    )   (1.48) 

Where H has now a modified form and is a tridiagonal matrix.  We will explicit this in 

the coming section. So we have the numerical difference equation in the Cayley or the Crank 

Nicolson form: 

 
      

    

    
    (1.49) 

The temporal operator that relate    to      is now not only numerically stable but 

also unitary; this can be shown as: 

 
(
    

    
)
 

(
    

    
)  (

    

    
) (

    

    
)    (1.50) 

 

Through this unitary property, equation (1.50) then satisfies conservation of 

probability as required. 

From the analysis above, it follows that, numerical solutions of the time dependent 

Schrödinger discretized with finite differences can be accomplished using the explicit scheme 

or the Crank Nicholson implicit scheme. The explicit approach requires more memory 

storage, since the solution at three time levels must always be known. The implicit scheme 

requires the solution of a tridiagonal matrix at each time step. 

V. choices for our study 

 After considering the most important thing to bear in mind when tackling the 

resolution of the time dependent Schrodinger equation, we opted for the use of the Crank 

Nicholson method in our coding. This is the case since the method is numerically stable and is 

acceptable in term of time consumption.  We are presenting in this section the details of a 

simple method to solve the time-dependent Schrodinger equation by using a standard Crank 

Nicholson method together with a Cayley‟s form for the finite-difference representation of 

evolution operator as implemented in our program [7]. 

Let us consider the Schrodinger equation in atomic units, i.e. m = ћ = 1 

 
 
 

  
 (   )   (   ) (   ) (1.51) 

with the Hamiltonian given by 
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 (   )  

  

 

  

   
  (   ) (1.52) 

 The idea is to compute the time evolution of the wave function   (x, t) for     , 

given an initial state (    ). We start by dividing the time interval into n subintervals of 

equal length    (    )  , and use an implicit Crank Nicholson integrator to propagate 

the wave function from one time step to the next one. 

The formal solution to (1.51) could be expressed in terms of the time evolution operator as 

  (   )   (    ) (   ) (1.53) 

 The effective time evolution operator U for one discrete time step ∆t, can be expressed 

using Cayley‟s form for the finite-difference representation of      , whichis a combination 

of a fully implicit and a fully explicit method 

 
 (      )  

  (    ⁄ ) (   )

  (    ⁄ ) (   )
 (1.54) 

 Such a representation of U is second-order accurate in space and time and also unitary. 

The integration scheme for the wave function then reads 

 
(  

   

 
 (   )) (      )  (  

   

 
 (   )) (   ) (1.55) 

The wave function can be expanded on a discrete lattice as 

 

 (    )  ∑  
 

 

   

   (1.56) 

 Where    
   (     ) is the value of the wave function at the position    of the jth 

lattice site at time           with a grid basis: 

 
   {     

 

 
        

 

 
  

                   
 

(1.57) 

Here    (         )  ⁄ , with      and      the boundaries of the finite grid. Using 

the finite-difference representation for the kinetic part of the Hamiltonian, we have 

(  
   

 
 ) (     )    

  
   

 
( 

    
     

      
 

    
   

   
 )                                        (1.58) 

 With      (     ). By introducing      (  
        

        
 ), the lattice 

representation of equation (1.55) finally reads 

        
     

  (1.59) 

Where we define 
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   (  

   

 
 )  (   )          (  

   

 
 )  (   ) (1.60) 

With   (    ⁄ ) . The matrix product can be rewritten as 

                                     
     (   )  (   )     

                                           (1.61) 

 Then, the wave packet evolution is achieved just by inverting the matrix   .For the 

case of time-independent potentials, the explicit N × N representation of    and    reads 

 

   

(
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(1.62) 
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 (1.63) 

With: 

  
   

    
                                                    

   

 
(

 

   
   )                        (1.64) 

 These are the basic ingredients that should be introduced in our program to establish 

the numerical solution for the time dependent Schrodinger equation. 
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Chapter 2: Methods for suppression of the numerical reflection 

 

I. Introduction 

The first chapter was dedicated to a review of some fundamentals related to the Schrodinger 

equation as well as the numerical aspects that could be exploited to resolve this equation in cases 

where analytical solutions are no longer possible. The aim was to understand the structure of the 

problem to be able to make a choice of a solution which is a compromise between simplicity, 

stability and memory resources. We have opted for a solution using the Cranck Nicolson method 

with the Cayley form of finite difference. In the solution proposed, the only task of importance to be 

elaborated is the inversion of the matrix D1, which can be achieved easily by exploiting 

functionalities of programs in the Lapack library. The program established this way, can solve the 

Schrodinger equation with any linear form of the potential.  

The problem that emerges when a numerical solution is searched is the fact that 

computational area must be limited to a finite grid because of the finite capacity of the computer 

memory. We talk generally about the limited size of the numerical box fig 2.1. This finite grid 

produces unwanted reflections at the artificial boundaries of the computational area. This reflection 

can be a source of error in many applications where the shape of wave packet at large distance is 

important in the interpretation of the simulation results, as it is the case for experiments with strong 

laser beams and high harmonic spectra [8]. To suppress this numerical artifact we should create 

mathematical conditions at the boundaries that simulate the motion of the wave packet as it should 

be the case in infinite space. In this chapter we will review an ensemble of methods that minimize 

this numerical artificial effect and suppress the back-reflection. Some of these methods will be 

implemented in our program and their performances will be evaluated in the next chapter. 

 

fig 2.1: Schematic of the artificial boundaries of the numerical box 
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II.The mask function 

One of the simplest methods to eliminate the artificial reflection of wave packets is what we 

call masking functions. In this method a relaxation operator can be constructed and applied to the 

wave packet at the edge of the numerical box. Let M(r) be a masking function so that [9]: 

 

 
 ( )  {

                 
 ( )                      

 (2.1) 

 

The range of lattice sites      , . . . ,  close to the reflecting wall now represent a finite 

subspace that corresponds to a finite number of lattice sites beyond the subspace (    ) In the 

region of the edge the wave function is allowed to relax by way of an amplitude-absorbing mask. 

The masking function f (r) can be chosen to be continuously differentiable at    to high order in 

order to minimize effects of discontinuities. Masking is effected by simply multiplying the state 

vector after every time interval      by the masking operator M which is diagonal in the lattice 

basis.The application of M is equivalent to a nonunitary evolution operator 

       (   )     (        ) (2.2) 

 

generated by an optical potential      
 

       (   )   ⁄  (2.3) 

 

We note that masking functions introduce a specific classof optical potentials which can be 

expressed in terms of equation (2.3). However, an arbitrary smooth optical potential cannot, in 

general, be reduced to a simple masking function equation (2.1).   does not explicitly depend on 

  .Implicitly, however,    enters through the application of themasking operator after every time 

interval   . A bunch  of functions are proposed in the literature and only tests on several parameters 

of the problem can guide us throw the compromised choices one can do.  

 

III. The complex absorbing potential  

  In order to avoid affection of the undesirable spurious reflections at the boundaries in the 

long time period, in a modern time-dependent wave packet calculation, usually a complex 

absorbing potential (CAP) of the form  ( )     ( ) or an equivalent damping function is 

introduced near the edge of the grid to attenuate the wave function gradually . Due to its simplicity 

and local nature, the CAP gains general applications and usually is efficient. The method is effected 

by adding a complex potential    ( ) to the operator on the right hand side of the Schrodinger 

equation: 
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  (   )

  
  

  

  

   (   )

   
  ( ) (   )    ( ) (   ) (2.4) 

 

 ( )is typically zero everywhere, except near the numerical boundarywhere energy is 

absorbed by letting the real part of  ( )be positive. Much effort has been devoted to finding 

effective and optimized CAPs for different applications, by minimizing the reflection and the 

transmission coefficients [10]. The reflection and transmission coefficients describe the relation 

between the amplitudes of an incident wave and the waves that are reflected on and transmitted 

through the CAP, respectively. By minimizing the sum of the two the absorption is maximized. 

However, the reflection of the CAP increases with increasing frequency, while the transmission is 

reduced with increasing frequency. Thus, a CAP can only be optimized for certain frequencies. 

Also, numerical reflections arise from the region where the CAP is active, and pollute the solution 

in the interior. 

When the distribution of the translational energy in the wave packet is of broad range, 

especially involving ultra-slow translational energy, the CAP becomes very inefficient. Since it 

must be strong enough to damp the part moving rapidly, at the same time, it must go up gently 

enough to avoid the reflection of the part moving slowly.The major advantage of the CAP is its 

simplicity. The major disadvantage is that it has required a relatively large spatial range to be 

effective, thus consuming non negligible computational resources. 

Let us investigate how a CAP changes the norm [11]. This can be done by differentiating the 

norm as: 

  

  
‖  ‖  

 

  
⟨ | ⟩  ⟨ ̇| ⟩  ⟨ | ̇⟩       ⟨    | ⟩  ⟨ |    ⟩

  ⟨ |    | ⟩ 

(2.5) 

With   

 

 

                         
  

                          (W being scalar) 
(2.6) 

 

 

Where   is a parameter controlling the strength of the potential. 

It follows that:  

  

  
‖ ‖     ⟨ | | ⟩ 

 

  
‖ ‖    

⟨ | | ⟩

‖ ‖
 

(2.7) 
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fig 2.2: Decrease of the norm of a wave packet being annihilated by a complex absorbing potential 

starting at rc. 

Hence the norm of the WF decreases when the wave packet enters the CAP. We want to 

inspect in more detail how the CAP annihilates the wave packet. We know the formal solution of 

the Schrödinger equation 

           (   )   (       )  ( )                    

      
 

           
 

  ( )   (  ) 
(2.8) 

 

I.e. in the middle of each time step, the wave function is multiplied by       see fig 2.2. A 

correct location of the potential and the adequate range can ensure enough attenuation before 

reaching the edge and hence avoiding reflection fig 2.3 

 

fig 2.3: Example of the correct location of a CAP. 

 

The origin of the reflection is easy to understand. It is related to the Heisenberg uncertainty 

principle. We change the form of the wave packet, i.e. its coordinate distribution. But this implies 

that one also changes the momentum distribution which is just the Fourier-transform of the 

coordinate representation and this means reflection. To see this, let us turn to the time-independent 

picture fig 2.4: 
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fig 2.4: Illustration of CAP behavior in the time independent domain. 

At energy E the wave function must be a linear combination of      and       where the energy 

       ⁄ . Hence: 

 

  ( )                         (2.9) 

 

Where R denotes the reflection coefficient. If we put an infinite wall at x = 0, we have total 

reflection (R = 1) 

  ( )                            ( )    (2.10) 

Using scattering theory and semi classical arguments one can derive approximate formulas: 

 
   |

  

    
|
 

 
  

     
 |

  

    
|
 

 (
  

  
)

 

 
  

    
 (2.11) 

 
      ( 

        

 (   )
)     ( 

  ( )

 
 
   

   
) (2.12) 

Where n is the number of time iteration where the attenuation is effective and L is the range 

of the CAP 

One wants          this requires weak (η small) and long range (L large) CAPs. Note 

that k. L= 2π is equivalent to say that L equals one Debroglie wave length. A CAP should be at 

least two de-Broglie wavelengths long. 

IV. The complex scaling of space coordinate 

A more elegant and mathematically rigorous approach for dealing with the continuum is 

complex scaling of the spatial coordinate. Complex scaling involves an analytical continuation into 

the complex plane: 

        (2.13) 

Where   is a positive and real constant. We can show that the resulting complex scaled 

Hamiltonian,   ( )   (    ), has complex eigenvalues that are identified as resonances. The 

method of complex scaling provides a mean of dealing with both bound states and resonance states 

through the same formalism [12], since the eigenfunctions of    are square-integrable. Although 

most frequently used in time-independent settings, this method was recently used for the time-

dependent Schrodinger equation. The scaling of the Hamiltonian through (2.13) implies scaling of a 
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potential energy surface. This might be difficult, for instance if the potential is given as a set of 

abinitio points instead of an analytic expression. Exterior complex scaling (ECS) circumvents this 

issue to a large extent, by introducing the rotation into the complex plane beyond some     , 

where the potential is close to constant. For instance, if the potential is given as a set of points in the 

interaction region, but analytically continued in the asymptotic region, it is possible to perform the 

coordinate transformation for the potential for     . McCurdy et al. [13] recommend ECS for 

practical use of complex scaling in time-dependent problems. A similar approach to ECS is smooth 

exterior scaling (SES). The difference between ECS and SES consists of the transition to the 

complex plane being simply rotated or rotated through a smooth transition function. In the 

continuous setting, the SES interface is non-reflecting, whereas the ECS interface is not. From a 

numerical point of view, the smoothness of the transition function is of importance in order to avoid 

numerical reflections from the absorbing layer. 

V. Transparent Boundary Conditions (CTBC) 

The role of the absorbing boundary conditions is to eliminate the numerical reflection of the 

wave packet at the boundary of the numerical box , these are local boundary conditions that 

approximate the one way wave equation of a wave function. In this section we are going to expose 

the method by which we establish analytical solutions that can simulates a transparent boundaries. 

Since we deduce first the continuous solution and then discretize the result to introduce it in the 

numerical resolution, this strategy is known as transparent boundary condition (TBC) or coutinuous 

boundary condition (CTBC).  

We have the Schrodinger equation depending on the time as: 

 
  

 

  
 (   )  (

   

  

  

   
  (   )) (   ) (2.14) 

In order to obtain the formulas for the absorbing boundary conditions, we consider the 

special solutions 

  (   )   (  (     )) (2.15) 

   

These are states of definite energy E satisfying the dispersion relation 

     √  (    ) (2.16) 

The absorbing boundary conditions must be designed to satisfy the dispersion relation given 

by the plus signed equation (2.16) at the boundary     and the minus signed at the boundary     . 

However, function (2.16) is not rational and cannot be converted into a partial differential equation, 

nonetheless, this relation can be linearly approximated by: 

      (    )     (2.17) 



Chapter 2                                                                          Methods for suppression of the numerical reflection 

22 

 

With : 

 

    
√     √    

     
          

  √       √    
     

 (2.18) 

 

 

fig 2.5: Schematic of the linearization process of the dispersion relation. Note the line should 

coincide with the function and this is possible only on a narrow range (α1 α2 are the intersection 

point extracted accordingly). 

The correspondence of  
 

  
     and  

 

  
    leads us to rewrite equation (2.18) into the 

partial differential equation: 

 
  

 

  
 (   )  (   

 

    
   

  
  
) (   ) (2.19) 

 

Now we outline how to incorporate the ABC into the lattice representation of the wave 

function (with ħ = m = 1). The idea is to replace the differential equation for the boundary 

components   
  and   

  of the state vector  . In order to obtain an accurate expression for the 

derivative at the borders of the grid, it is convenient to introduce an intermediate point ̂ between 

thelast two points of each side of the grid, then for example, at the right-hand side thewave function 

must be replaced by 

 
 ( ̅  )  

 

 
[ (    )   (      )] (2,20) 

In the grid representation, the finite difference equation for the right- and left-hand sides 

reads respectively: 

and 

  

   
(  

        
      

      
 )

 
  

    
(  

      
 )  

 

 
(  

  
  
) (  

      
 ) 

(2.21) 

α1 α2 

 𝜔  𝑉 

k 
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 ) (2.22) 

Equations (2.21) and (2.22) allow a straightforward incorporation into the matrix representation. 

The new matrices      are given by: 
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(2.23) 

 

 
      

 

   
  (2.24) 

 

 
   

 

   
 

 

    
 
 

 
(  

  
  
) (2.25) 

 

 
   

 

   
 

 

    
 
 

 
(  

  
  
) (2.26) 

 

Let us write the matrix product as: 

     
     (2.27) 

 

The main cause of artificial back reflection for plane waves in the presence of the above 

boundary conditions comes from the approximate nature of the finite difference evaluation. Clearly, 

these approximations become better decreasing for the grid spacing ∆x. 

VI. Perfectly matched layers 

The perfectly matched layer (PML) is an absorbing layer, for which a modified set of 

equations are solved in the layer. The significant feature of the PML in contrast to a general 

absorbing layer is the perfect matching, which guarantees that the continuous PML is non-reflecting 

at the interface to the interior domain for all frequencies, and all incoming angles in the multi-

dimensional case. However, discretization introduces numerical reflections at the interface. 

The PML method was developed for Maxwell‟s equations in electromagnetics, and is widely 

used for hyperbolic problems in general. The PML approach has been used also for the Schrodinger 
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equation, but the extent of the investigations is far from that of hyperbolic PMLs. A common 

approach for the TDSE is the modal ansatz PML, where the starting point of the PML derivation is 

modal solutions in the frequency domain. An alternative way is to introduce a coordinate change, as 

in the case of ECS and SES. For most hyperbolic problems, the modified equations in frequency 

domain cannot be transformed back into time-domain without the introduction of auxiliary 

variables, which leads to additional equations in the system. However, no auxiliary variables need 

to be introduced for the Schrodinger equation. Thus, when solving the TDSE with PML no 

additional equation needs to be solved. However, extra computational effort is required, compared 

to the solution with ABC, due to the additional grid points in the layer. On the other hand, 

compared to ABC the PML formulation is easier to extend to multi-dimensional problems. 

Application of PMLs have also been made to the nonlinear TDSE, where we construct a PML for a 

system of two-dimensional coupled nonlinear Schrodinger equations with mixed derivatives. Due to 

the mixed derivatives, waves with opposite phase and group velocities are supported. For many 

hyperbolic problems, this would lead to unstable layers, in the sense of exponentially growing 

solutions for the continuous problem. Here, however, it only leads to a stability condition on the 

layer parameters. Stability analysis for Schrodinger PMLs is an area of research which needs more 

consideration. However, stability problems have not been observed for the TDSE without mixed 

derivatives. In order to derive a PML of the Schrödinger equation , we need to make the assumption 

that the potential is independent of x, i.e. V (x, t) = V (t). For the multi-dimensional case, the 

requirement is that the potential in the layer is independent of the normal direction in which the 

PML is imposed, but it can depend on other spatial variables. By performing the coordinate 

transformation 

 
       ∫  ( )  

 

   

        | |      (2.28) 

 

By introducing this transformation in the Schrodinger equation we arrive at the PML equation: 
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      ( )
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 (       )   (      )                                                                             

 (   )    ( )                                                                                                            

 

 

(2.29) 

 

The absorption function σ(x) is a nonnegative, real function in [−x0 − d, −x0] ∪ [x0, x0 + d], 

and zero in [−x0, x0], and γ should be in the range 0 <γ<π/ 2. 

Perfect matching means that there are no reflections at the interface. This is achieved if 

   (   )   , since it implies continuity of   and    at the interface. In the continuous setting, the 
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damping introduced by the PML depends only on the value of the integral in (2.29), due to the 

perfect matching property. Hence, a large value of the integral results in a large damping, and 

allows the use of a thin layer. However, the case is different for the discretized problem and  ( ) 

needs to be chosen carefully in order to avoid numerical reflections. Thus, a balance between a 

sufficiently steep slope of  ( ) , such that the width of the PML can be kept small, and a 

sufficiently smooth function in order to avoid numerical reflections is advisable. 

 

VII. Summary 

 It is clear from this short review that the problem of the suppression of the unwanted 

numerical reflection at the boundary is far from being solved. The bunch of proposed solutions, are 

partially satisfactory and the unified solution if it exists really, is still to be established. However we 

can conclude that all the efforts in this direction are providing continuously more accuracy and 

more portability of the proposed solutions. In our investigation we are going to limit the calculation 

to the simplest approaches and try to elaborate a conclusive comparison 
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Chapter 3: Numerical implementation and evaluation 

 

I. Introduction 

In this last chapter we are interested in establishing a comparative study between different 

suppression methods. The aim is to shed light on the advantages and inconvenient of some of these 

methods and thereby evaluate their effectiveness. Before that it is important to establish a program 

that resolves the time dependant Schrodinger equation. For that, the conventional Cranck- Nicolson 

method is exploited. We are using FORTRAN software to perform the coding with the help of 

LAPACK library for the matrix inversion and multiplication.  

II. Coding strategy and implementation 

To translate the numerical results established at the end of the previous chapters we are 

using FORTRAN software for the coding and the LAPACK libraries for the routines of inversion, 

matrix-matrix product and matrix-vector product. Besides being very commonly used by the 

physicists community, the FORTRAN software is a very versatile language allowing through its 

object orientation and low structure plenty of manipulations that are not possible with other highly 

structured languages. When FORTRAN coding is coupled with LAPACK libraries which are ready-

to-use FORTRAN routines, coding becomes easier and more compact. 

The program includes an input part where we assign values to some parameters whether 

physical or needed for the structure of the program as for example the parameters for the initial 

wave packet, assignment of matrices elements of the Hamiltonian… and the spatial and temporal 

paces (Δx and Δt)… we first evaluate the inverse matrix   
    and then the matrix-vector product 

(     
  ) . For each iteration, the wave packet function is multiplied by the resultant matrix to 

promote the result to the next instant. Where for these operations we are using the complex-valuated 

routines: cgetrf,cgetri and cgemmv. These different operations could be summarized by the 

flowchart of figure 1. 

The program is outputting formatted files for gnuplot. It is possible then to create an 

animation that allows the observation of the evolution of the wave packet across time. Only 

snapshots of this evolution are captured in our figures to sketch the main features of the process. 

Notice that the values of the parameters are given in atomic units (a.u) so we omit the mention of 

the unit for most of the stated values. 
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fig 3.1. flowchart of the elaborated program 

 

III. Calculation at the boundary 

First let us show explicitly the problem we are encountering at the edge of the numerical box 

when no appropriate conditions are implemented to handle the reflection occurring at the 

boundaries. The figure .3. 2 below represents snapshots of the evolution of a wave packet before 

and after the impact at the edge in case where no condition is imposed at the edge. The calculation 

is performed for a free (the potential is nil) and a normalized Gaussian wave packet with a variance 

σ=1.0 and for a momentum p=10 u.a. We are considering also Δx=0.1 and Δt=0.0002. We can 

notice that once the wave reaches the edge, it is completely reflected as if impinging on an infinitely 

high barrier. This is a numerical problem related to the size of the box as in reality the wave should 

evolve to infinity. We can see as in figure 3.3 and 3.4 that changing the energy of the wave 

(consequently p) changes a little to the problem and only the interference pattern is more complex 

for higher energy. 

          Input  

-Matrices assignement 

-Matrix inverse 

 

Time iteration 

Matrix-vector product 

 

     End 

Counter 
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fig 3.2:  Snapshots of a free Gaussian wave packet with no condition imposed at the edges. We 

have p=10. 

 

 

fig 3.3: The same as figure 3.2 for p=20  
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fig 3.4: The same as figure 3.2 for p=30 

  

IV. Masking method 

 As seen in the previous section the reflection at numerical box edge is an artifact that could 

contaminate the physical results in this region of the space. We can extend the numerical box to the 

range where no interference is possible but this will unavoidably mean more memory resources that 

sometimes we are not able to afford. The simplest way to get rid of this reflection is masking the 

wave at the edge. For this we are going to check the effectiveness of some masking functions. The 

mathematical expressions for these mask-functions are given below and are depicted on figure 3. 5. 

These are decreasing function from the threshold value of one and the main difference between 

these function is their relative slope. We are going to analyze how these masks are affecting the 

back reflection and this is done by illustrating snapshots before and after the impact on the edge. 

The time of each capture is accordingly indicated. 

 



Chapter 3                                                                                     Numerical implementation and evaluation 

30 

 

 

fig 3.5: Comparison of the different masks 

 

IV.1  First mask: 

Firstly we are considering a cosine function given by: 

 

 ( )     ( 
|    |

 (       )
)

 

 

 

(3.1) 

 

 

 

xmax is the edge of the box taken here to be 30 u.a and x0is the point where the mask starts to affect 

the wave function ( considered here to be 2/3 xmax). α is an exponent that control the smoothness of 

the slope of the function and hence can improve the transmission. Taking α=1, we can see in figures 

3. 6 and 3.7 that this first masking function is effective in reducing refection until p=70 a.u and then 

refection starts to reappear for higher energies as in figure3.8 for p=75. 
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fig 3.6: Snapshots of the Gaussian wave packet in case where the first mask is implemented (α=1, 

p=10). The mask is set at x=20. The wave has completely disappeared in the last figure proving the 

effectiveness of the mask at the indicated energy 

 

fig 3.7: The same as figure 6 for α=1 and P=60 a.u 
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fig 3.8:The same as figure 6 for α=1 p=75 a.u 

 We checked if changing the exponent α to 8 can improve the situation for the last calculation 

and we can see on figure 3.9 that this attenuates the wave to a better rate without reaching the 

complete cancellation. We can conclude that the exponent can contribute to the improvement of the 

effectiveness of the first mask. 

 

fig 3.9. Same as figure 6 for α=8 p=75 a.u 
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IV.2  Second mask: 

Let us check the results in the same manner for another masking function given as: 

  ( )   [    (
  

   
)] 

 

(3.2) 

Where α is equal to 1. Here also we can notice that the mask is effective at low energy as in figure 

3.10 and3. 11 and loses effectiveness for high energy as in figure 3.12. 

  

 

fig 3.10: Snapshots of a Gaussian wave packet in the case where the second mask function is 

implemented at the edge for p=10. The last figure is indicating the complete cancelation of the wave 

packet  
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fig 3.11:The same as figure 10 for p=70 

 

 

fig 3.12: The same as figure 10 for p=75 
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IV.3 Third mask: 

 Similar to the second mask but with a higher exponent, we are checking the results of a third 

mask function given by: 

 ( )      * 
(      )

 

   
+                 (3.3) 

 The results are however similar to the second mask and the exponent being affecting only 

the interference pattern at the edge (figures 3.13, 3.14 and 3.15) which is the result the different 

slopes. 

 

fig 3.13: Snapshots of a Gaussian wave packet in the case where the third mask function 

implemented at the edge for p=10 
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fig 3.14: The same as figure 13 for p=60. 

 

fig 3.15:The same as figure 13 for p=70 
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 In conclusion, despite the fact that the masking technique is very easy to implement as it is 

just a product of the masking function and the wave function, it presents the inconvenient of being 

non local as it needs  an interval non negligible of the numerical box to be effective. This implies a 

proportion of the memory devoted to convey this constraint. It presents also the inconvenient of 

being non effective at high energy. The whole method suffers from the absence of a clear quantative 

criteria in order to assert of the convenience of different masks and it becomes just a matter of “try 

and see”. We can notice that the back reflection for high energy is due to the fit between the slope 

of the masking function and the momentum. 

V. The complex absorbing potential: 

 We move now to another technique for the reflection suppression which is the use of a 

negative complex potential. Introduced in the Hamiltonian expression, this potential will act as an 

attenuation that will affect the whole wave amplitude at each time iteration. This method is also non 

local as it needs an interval on which the potential will act on the wave function. To test this method 

we propose three expressions for the complex potential: the quadratic, the quartic and single 

exponential potentials. The mathematical expressions for these potentials are given below and their 

different shapes are compared in figure 3.16. All of these potentials are highly negative and the 

most important difference is their decreasing rate, the quartic potential having the most dramatic 

decrease and the single potential the most gentle one. This is more clearly apparent in the 

attenuation curve which is the exponential of the potential value. We can  see on figure 3.16 that the 

situation is reversed as the exponential potential decreases gradually and have the time to affect in  

a more important manner the amplitude of the wave packet. 

 

fig 3.16. Comparison of the different potentials 
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fig 3.17. Comparison of the potentials attenuation  

V.1  Quadratic complex potential: 

For this case the potential is given as: 

     (    )
  (3.4) 

 Where α is a factor considered to be equal to one and x0 is the point where the potential 

starts to affect the wave function where we consider        . We are setting the damping potential 

on only one side of the box and we are extending the edge on one side to 40.  

 

Fig.3.18: Snapshots of Gaussian wave packet evolution in case where a quadratic complex 

potential is implemented at the edge, p=10. 
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fig.3.19: The same as figure 18 with p=70. 

 

fig 3.20 : The same as figure 18 with p=75. 

 

 We can see through the figures 3.18 and 3.19 that the energy range on which the suppression 

is effective is more important since we can extend the value to p=75 u.a. The space range on which 

the potential is effective is comparable to that of the masking method (around 10).  
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V.2  Quartic complex potential : 

The expression of the second potential we are testing is given by: 

     (    )
  (3.5) 

 The results of the attenuation of the reflection for different energies are illustrated on figures 

3.21 and 3.22. The energy and the spatial range is comparable to those of the quadratic potential but 

the attenuation of the wave is extended on the whole spatial range in rather more “gentle” effect. 

 

fig 3.21: Snapshots of wave packet evolution in case of the quartic potential p=10 
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fig 3.22: The same as figure 21 for p=70.  

 

V.3  Single exponential complex potential: 

The third potential is expressed as: 

                                                (   (   ⁄ ))                                  (3.6) 

 The expression of this potential is constructed in such way to assure continuity at x0 and for 

this we are setting α =80 and β=30. 

 We can notice that the single exponential absorbing potential records are quite similar to the 

two other potentials with regards to the energy effectiveness and the spatial range. Nonetheless this 

method is reaching similar results in a smaller time which is due to the quick attenuation introduced 

by this potential. 

 

fig 3.23: Snapshots of wave packet evolution in case of the single exponential complex potential 

p=10 
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fig 3.24: The same as figure 23 for p=75.  

 

VI.3 Absorbing boundary Conditions: 

 We study now t another category of suppression methods which are local by nature ( no 

need for a spatial range for the method to be effective) and more particularly we are studying  the 

absorbing boundary conditions method. As introduced in chapter 2, the method is approximative 

and is based on the rationalization of the dispersion relation to accommodate one way wave at the 

right and the left edge of the box. The Hamiltonian matrix in the program should be changed 

accordingly and for this we are using the following constant values ( α1=24 and  α2=25 ) and    and 

   are calculated according to the formulas  

 
    

√     √    
     

        
  √       √    

     
 (3.7) 

 

 We can see straightforwardly on figure 3.25 that this type of condition simulates more 

naturally the outgoing wave for p=7. However the effectiveness of the method start to break 

gradually around a narrow range of energy as seen in figures 3.26 and 3.27 for p=10 and p=13 

respectively. Consequently the constant of linearization should be tailored for a narrow interval of 

energy separately. The major advantage of this method is that it does not any space interval and is 

practically a point-method. 
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fig 3.25: Snapshots of wave packet evolution in case the ABC‟s method for p=7 

 

 

 fig 3.26: The same as figure 25 for p=10 
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fig 3.27: The same as figure 25 for p=13 
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Conclusion 

 A numerical solution to the Schrodinger equation is an unavoidable choice in numerous 

physical cases of interest, if we are attempting to extracte eigenvalues and eigenvectors that 

highlight the most important features of the quantal system. To reach a numerical solution to the 

Schrodinger equation, many methods are devised, each with its own advantages and inconvenient. 

In our study we opted for the Crank-Nicolson method as it is a simple and a stable one. In addition 

it is a method which is less memory demanding as compared to other methods. 

Understanding the numerical approach of Crank-Nicolson allowed us to build a FORTRAN 

program that uses  the LAPACK librairies to handle the most important matrix operations. Once the 

program established, it was then possible for us to implement some of the different methods that are 

devised to handle the artifact of the back reflection at boundaries of the numerical box.  

The implementation  of the masking method is the easiest one as it is just a multiplication of the 

wave by the masking function. As for the complex absorbing potential (CAP), it is important to 

incorporate the potential in the hamiltonian matrix. These two suppression methods are non local 

and need an extra spatial interval in order to be efffective. This is the constraint of these two 

methods as this means the need for extra memory resources. The advantage of these methods is 

their effectiveness on a large energy range (around 70 for the masking method and 75 for the CAP). 

The performances of the two methods are quite similar however the CAP method is more 

systematic as we can evaluate the attenuation introduced by different potentials and thereby 

appreciate the way and the time needed for a complete cancellation of the wave amplitude.  

We studied from another side the performances of a local method which is the absorbing boundary 

conditions (ABC).  This method leads to a non tridiagonal hamiltonian matrix and thereby the 

propagator evaluation becomes slightly more complicated. The energy range on which this method 

is effective is very limited as it is related to the approximation needed for the linearization process. 

The major advantage of this method is the fact that it is local and does not need any extra spatial 

interval to be effective. 

 In summary it is important for us to know the specificities of the physical problem and 

performances of our machine and try to relate these facts with the performances of the different 

suppression methods in order to reach the best compromise. 
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