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INTRODUCTION

The first publications in fuzzy set theory by Zadeh [1965] and Goguen [1967,1969] show

the intention of the authors to generalize the classical notion of a set and a proposition [state-

ment] to accommodate fuzziness.

Zadeh suggested a modified set theoretical approach in which an individual may have a

degree of membership value which is ranged over a continuum grade of values ranging between

0 and 1, rather than exactly 0 or 1.

Applications of the theory of fuzzy sets can be found, for example, in artificial intelligence,

computer science,medicine, control engineering, decision theory, expert systems, logic, man-

agement science, operations research, pattern recognition, and robotics.

The topics of fuzzy integral equations (FIE)which growing interest for some time, in partic-

ular in relation to fuzzy control, have been rapidely developed in recent years. Its importance

appears in studying and solving a large proportion of problems, in particular in relation to bi-

ologie, physics, medecine and geography.

The concept of integration of fuzzy functions was first introduced by Dubois and Prade [6]

and investigated by Goetschel and Voxman [10], Kaleva [13], Matloka [15] and others. Congxin

and Ming [5] presented the first applications of fuzzy integration. They investigated the fuzzy

Fredholm integral equation of the second kind (FFIE-2). One of the first applications of fuzzy

integration was given by Wu and Ma [17] who investigated the fuzzy Fredholm integral equation

of the second kind (FFIE-2).

This memory is organized in three chapters as follows:

In the first chapter, we give some basic notions and generalities about the fuzzy sets, their

characteristic notions and al pha-level sets, also we define fuzzy numbers with its operations

and some examples.

In the second chapter, we give definitions of kinds of fuzzy function and their integral and

properties, then we define the fuzzy linear system with example.
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In the last chapter, we use Adomian decomposition method to solve the fuzzy Fredholm

integral equation of the second kind. Using the parametric form of fuzzy number we convert

a linear fuzzy Fredholm integral equation to linear systems of integral equations of the second

kind and we present a numerical examples.



CHAPTER

ONE

GENERALITIES ON FUZZY SETS

The purpose of this chapter is to provide the concept of fuzzy set, then characteristic notions,

and operations on fuzzy sets, and paying particular attention to the basic properties of α-cuts.

1.1 Crisp and fuzzy sets

In this section, we present the concepts of fuzzy sets and crisp sets with examples.

Definition 1.1 (Crisp set) [4] By a crisp set, or a classical set, or simply set we mean a collec-

tion of distinct well-defined objects. These objects are said to be elements or members of the

set. We usually denote the sets by capital letters A, B, C, etc., and the members by a, b, c, etc.

To denote a is an element of A we write a ∈ A. The negation of a ∈ A is written a < A and means

that a does not belong to A. A set with no elements is called an empty set and will be denoted

by ∅.

Definition 1.2 (Crisp Logic) The traditional approach (crisp logic) of knowledge representa-

tion does not provide an appropriate way to interpret the imprecise and non-categorical data.

As its functions are based on the first order logic and classical probability theory. In another

way, it can not deal with the representation of human intelligence.

Example 1.1 Now, let’s understand the crisp logic by an example. We are supposed to find

the answer to the question, Does she have a pen? The answer of the above-given question is

definite Yes or No, depending on the situation. If yes is assigned a value 1 and No is assigned a

0, the outcome of the statement could have a 0 or 1. So, a logic which demands a binary (0/1)

type of handling is known as Crisp logic in the field of fuzzy set theory.

8



1.1. CRISP AND FUZZY SETS CHAPTER 1

Definition 1.3 (Fuzzy set) [11] Fuzzy set A of a universe X is characterized by a function

µA : x→ [0,1],

called membership function.

If µA : x→ {0,1}, then the set A is said to be crisp. In the nonfuzzy case, µA is called the

characteristic function (or indicator function) and it is often denoted by χA. If χA(x) = 0, then

x does not belong to A, whereas if χA(x) = 1, then x belongs to A.

Example 1.2 We consider three fuzzy sets that represent the concepts of a young, middle-aged,

and old person. A reasonable expression of these concepts by trapezoidal membership func-

tions µA1, µA2, µA3 is shown in Fig (1.1). These functions are defined on the interval [0,80] as

follows:

µA1(x)=


1 when x 6 20

35− x
15

when 20 < x < 35

0 when x > 35

, µA2(x)=



0 when either x 6 20 or x > 60
x−20

15
when 20 < x < 35

60− x
15

when 45 < x < 60

1 when 35 6 x 6 45

,

µA3(x) =


0 when x 6 45

x−45
15

when 45 < x < 60

1 when x > 60

.

Figure 1.1: Membership function representing the concepts of a young, middle-aged, and old
person

Definition 1.4 (Fuzzy logic) Unlike crisp logic, in fuzzy logic, approximate human reasoning
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1.1. CRISP AND FUZZY SETS CHAPTER 1

capabilities are added in order to apply it to the knowledge-based systems. But, what was

the need to develop such a theory? The fuzzy logic theory provides a mathematical method to

apprehend the uncertainties related to the human cognitive process, for example, thinking and

reasoning and it can also handle the issue of uncertainty and lexical imprecision.

Example 1.3 Let’s take an example to understand fuzzy logic. Suppose we need to find whether

the colour of the object is blue or not. But the object can have any of the shade of blue depending

on the intensity of the primary colour. So, the answer would vary accordingly, such as royal

blue, navy blue, sky blue, turquoise blue, azure blue, and so on. We are assigning the darkest

shade of blue a value 1 and 0 to the white colour at the lowest end of the spectrum of values.

Then the other shades will range in 0 to 1 according to intensities. Therefore, this kind of

situation where any of the values can be accepted in a range of 0 to 1 is termed as fuzzy.

Key differences between fuzzy set and crisp set

1) A fuzzy set is determined by its indeterminate boundaries, there exists an uncertainty

about the set boundaries. On the other hand, a crisp set is defined by crisp boundaries,

and contain the precise location of the set boundaries.

2) Fuzzy set elements are permitted to be partly accommodated by the set (exhibiting gradual

membership degrees). Conversely, crisp set elements can have a total membership or non-

membership.

3) There are several applications of the crisp and fuzzy set theory, but both are driven towards

the development of the efficient expert systems.

4) The fuzzy set follows the infinite-valued logic whereas a crisp set is based on bi-valued

logic.

Notation 1.1 The fuzzy set theory is intended to introduce the imprecision and vagueness in

order to attempt to model the human brain in artificial intelligence and significance of such

theory is increasing day by day in the field of expert systems. However, the crisp set theory was

very effective as the initial concept to model the digital and expert systems working on binary

logic.

Characteristic notions

The characteristics of a fuzzy set A of nonempty X which describe it, are the ones that show

how much it makes different than a classic set.
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1.1. CRISP AND FUZZY SETS CHAPTER 1

Definition 1.5 [2] Let A be a fuzzy set on X.

1) The support of A denoted by supp(A) is the subset whose elements are included at least

a little in A, and we write:

supp(A) = {x ∈ X : µA(x) > 0}.

2) The core of A denoted by core(A) is the subset whose elements are included totally in A,

and we write :

core(A) = {x : µA(x) = 1}.

3) The height denoted by H(A) correspond to the upper bound of the domain of its mem-

bership function, and we write:

H(A) = sup{µA(x) | x ∈ X}.

Example 1.4 Let X = {a,b,c,d,e, f}. Consider the fuzy set A on X defined by:

A = {(a,0.6),(b,1),(c,0.1),(e,0.8),( f ,0.5)}.

supp(A) = {a,b,c,e, f}, core(A) = {b}, H(A) = {b}.

11



1.1. CRISP AND FUZZY SETS CHAPTER 1

Figure 1.2: Support, core and height of fuzzy set
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1.1. CRISP AND FUZZY SETS CHAPTER 1

1.1.1 Operations on fuzzy sets

We define on fuzzy sets the same operations of the classic sets which are for each two fuzzy

subsets A and B of X given by the following rules.

Definition 1.6 [19]

i) A fuzzy set A is empty, we note A = ∅ if and only if

∀ x ∈ X : µA(x) = 0.

ii) Two fuzzy sets A and B are equal, we note A = B if and only if

∀ x ∈ X : µA(x) = µB(x).

iii) A fuzzy set A is contained in a fuzzy set B, we note A⊆ B if and only if

∀ x ∈ X : µA(x) ≤ µB(x).

Let A,B ⊂P(X) two subset of X . As we know, there are the familiar operations of union,

intersection, and complement. These are given by the rules

A∪B = {x | x ∈ A or x ∈ B},

A∩B = {x | x ∈ A and x ∈ B},

Ac = {x | x < A}.

As we have noted that a classic set A of X can be represented by a function χA : X → {0,1}
writing these rules in terms of indicator functions, we get:

χA∪B(x) = max{χA(x), χB(x)},

χA∩B(x) = min{χA(x), χB(x)},

χAc(x) = 1−χA(x).

A natural way to extend these operations to the fuzzy subsets of X is by the membership func-

tions. Let A, B be two fuzzy subset of X .

13



1.1. CRISP AND FUZZY SETS CHAPTER 1

• Union: A∪B is defined by the membership function

µA∪B(x) = max{µA(x), µB(x)}.

• Intersection: A∩B is defined by the membership function

µA∩B(x) = min{µA(x), µB(x)}.

• Complement of the fuzzy subset A, is noted by Ac and is defined by the membership

function

µAc(x) = 1−µA(x).

Remark 1.1 For any collection {Ai | i ∈ I} of fuzzy subsets of X, where I is a non-empty in-

dex set and µAi its membership functions, the union and intersection of Ai are defined by the

following membership functions:

µ∪
i∈I

Ai(x) = sup
i∈I
{µAi(x)}= ∨

i∈I
Ai(x),

µ∩
i∈I

Ai(x) = in f
i∈I
{µAi(x)}= ∧

i∈I
Ai(x).

Example 1.5 (Finite case):

Let X = {a,b,c,d,e,r,s, t} the set which represent a menu of restaurant, the patron want

to classify it according to two description, tasty and cheap. Let A and B two fuzzy subset of X,

such that A represent “tasty” and B “cheap”. We get

A = {(a,0.6),(b,1),(c,0.1),(e,0.4),(r,0.8),(s,0.5)};

B = {(b,0.3),(c,0.6),(d,0.5),(e,0.9),(s,1),(t,0.7)}.

Which we give

A∪B = {(a,0.6),(b,1),(c,0.6),(d,0.5),(e,0.9),(r,0.8),(s,1)}; a fuzzy subset represent the

description “tasty or cheap”.

A∩B= {(b,0.3),(c,0.1),(e,0.4),(s,0.5)}; a fuzzy subset represent the description “tasty and

cheap”.

Ac = {(a,0.4),(c,0.9),(d,1),(e,0.6),(r,0.2),(s,0.5),(t,1)}; a fuzzy subset represent the de-

scription “not tasty”.

Bc = {(a,1),(b,0.7),(c,0.4),(d,0.5),(e,0.1),(r,1),(t,0.3)}; a fuzzy subset represent the

description “not cheap”.

14



1.1. CRISP AND FUZZY SETS CHAPTER 1

Example 1.6 (Infinite case):

The set X be the positive real numbers representing the possible ages of people, the function

µA define the fuzzy subset “young” and µB the fuzzy subset “have thirty old”, such that:

µA(x) =


1 i f x≤ 25

40−x
15 i f 25 < x < 40

0 i f 40≤ x

, µB(x) =



0 i f x≤ 25
x−25

3 i f 25 < x < 28

1 i f 28 < x < 32
35−x

3 i f 32 < x < 35

0 i f 40≤ x

.

Figure 1.3: Membership function of A and B.
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1.1. CRISP AND FUZZY SETS CHAPTER 1

The following plots are the plots of union, intersection and the complement of the fuzzy

subset A and B.

(a) A∪B. (b) A∩B.

(c) Ac. (d) Bc.

Figure 1.4: Membership functions.

1.1.2 α− cuts

One of the characteristics of a fuzzy subset A of X is the alpha-cuts or also known as the

level set. In this subsection and after given the definition of the alpha-cut, we will investigate

its basic properties.

Definition 1.7 [11] Given a fuzzy subset A of a topological space X, its α−cut (or α− levels)

are the subsets

[A]α =

{x ∈ X µA(x) > α}, i f α ∈ [0,1]

cl{x ∈ X : µA(x) > 0}, i f α = 0
,

where cl Z denotes the closure of the classical subset Z (see figure 1.2).

Theorem 1.1 Let A ∈FP(X), µA its membership function and α ∈ [0,1]. Then for all x ∈ X

it holds that

µA(x) = sup
α∈[0,1]

(α ·χAα
(x)).

16



1.1. CRISP AND FUZZY SETS CHAPTER 1

Proof 1.1 Let x ∈ X, suppose that µA(x) = β (β ∈ [0,1]).

µA(x) = β ⇒ µA(x) ≥ β

⇒ x ∈ Aβ

⇒ χAβ
(x) = 1.

On the one hand, as µA(x) = β .1 = β χAβ
(x), it follows that µA(x) ≤ sup

α∈[0,1]
(α .χAα

(x)).

On the other hand, we have

χAβ
(x) =

 1 i f µA(x) ≥ β

0 i f µA(x) ≤ β

,

it follows that,

β .χAβ
(x) =

 β i f µA(x) ≥ β

0 i f µA(x) ≤ β

.

This implies that, β .χAβ
(x) ≤ β and β = µA(x), thus, β .χAβ

(x) ≤ µA(x). Then

sup
α∈[0,1]

(α .χAα
(x)) ≤ µA(x).

Therefore, it holds that ∀x ∈ X , µA(x) = sup
α∈[0,1]

(α .χAα
(x)).

Proposition 1.1 Let A,B be two fuzzy subset of X and α ,β ∈ [0,1]. The α-cuts satisfy the

following statements:

i) (A∪B)α = Aα ∪Bα ,

ii) A⊂ B⇒ Aα ⊂ Bα ,

iii) α < β ⇒ Aβ ⊂ Aα .

Proof.

17



1.1. CRISP AND FUZZY SETS CHAPTER 1

i) Let x ∈ (A∪B)α . We have, (A∪B)α = {x ∈ X | µ(A∪B)(x) ≥ α}.

x ∈ (A∪B)α ⇔ µ(A∪B)(x) ≥ α

⇔ max{µA(x), µB(x)} ≥ α

⇔ µA(x) ≥ α or µB(x) ≥ α

⇔ x ∈ Aα or x ∈ Bα

⇔ x ∈ (Aα ∪Bα).

Then, (A∪B)α = Aα ∪Bα .

ii) Let x ∈ Aα .

x ∈ Aα ⇒ µA(x) ≥ α

⇒ µB(x) ≥ α

⇒ x ∈ Bα .

Then Aα ⊂ Bα .

iii) Let x ∈ Aβ ,

x ∈ Aβ ⇒ µA(x) ≥ β

⇒ µA(x) ≥ α

⇒ x ∈ Aα .

Then Aβ ⊂ Aα .

�

The following two theorems state some basic properties of the α− cuts of a given fuzzy set.

Theorem 1.2 Suppose that {Ai | i ∈ I} is a collection of fuzzy subsets of X. Then for any

α ∈ [0,1] it holds that

i) ∪
i∈I
(Ai)α ⊆ (∪

i∈I
Ai)α ,

ii) ∩
i∈I
(Ai)α = (∩

i∈I
Ai)α .

Moreover, if I is finite, then we have equality in (i).

18



1.2. FUZZY NUMBERS CHAPTER 1

Proof.

i) Let x ∈ ∪
i∈I
(Ai)α ,

x ∈ ∪
i∈I
(Ai)α ⇒ ∃ i ∈ I, x ∈ (Ai)α

⇒ ∃ i ∈ I, µAi(x) ≥ α

⇒ sup
i∈I
{µAi(x)} ≥ α

⇒ µ∪
i∈I

Ai(x) ≥ α

⇒ x ∈ (∪
i∈I

Ai)α .

Then ∪
i∈I
(Ai)α ⊆ (∪

i∈I
Ai)α .

ii) Let x ∈ ∩
i∈I
(Ai)α ,

x ∈ ∩
i∈I
(Ai)α ⇔ ∀ i ∈ I, x ∈ (Ai)α

⇔ ∀ i ∈ I, µAi(x) ≥ α

⇔ in f
i∈I
{µAi(x)} ≥ α

⇔ µ∩
i∈I

Ai(x) ≥ α

⇔ x ∈ (∩
i∈I

Ai)α .

Then ∩
i∈I
(Ai)α = (∩

i∈I
Ai)α .

�

1.2 Fuzzy numbers

This section describes the fundamental concept of fuzzy number, then operations on fuzzy

numbers, also we introduce special kinds of fuzzy numbers such as triangular fuzzy number

and trapezoidal fuzzy number.

1.2.1 Definition and examples

Definition 1.8 [1] A fuzzy number is a fuzzy set u : R−→ [0,1] which satisfies:

1) u is upper semicontinuous.

2) u(x) = 0 outside some interval [c,d].

19



1.2. FUZZY NUMBERS CHAPTER 1

3) There are real numbers a,b,c : c 6 a 6 b 6 d for which

i) u(x) is monotonic increasing on [c,a],

ii) u(x) is monotonic decreasing on [b,d],

iii) u(x) = 1, a 6 x 6 b.

The set of all fuzzy numbers is denoted by E1.

Remark 1.2 Every real number r is a fuzzy number whose membership function is the charac-

teristic function:

χr(x) =

 1 if x = r

0 if x , r
.

Example 1.7 (Triangular fuzzy number). The triangular fuzzy number is represented with

three points as follows

A = (a1,a2,a3);

this representation is interpreted as membership function and holds the following conditions:

i) from a1 to a2 is increasing function.

ii) from a2 to a3 is decreasing function.

iii) a1 6 a2 6 a3.

µA(x) =



0 for x < a1
x−a1

a2−a1
if a1 6 x 6 a2

a3− x
a3−a2

if a2 6 x 6 a3

0 for x > a3

.

Example 1.8 (Trapezoidal fuzzy number). We can define trapezoidal fuzzy number A as

A = (a1,a2,a3,a4).

The membership of this fuzzy number will be interpreted as follows:

µA(x) =



0 for x < a1
x−a2

a2−a1
if a1 6 x 6 a2

1 if a2 6 x 6 a3
a4− x
a4−a3

if a3 6 x 6 a4

0 for x > a4

.

20



1.2. FUZZY NUMBERS CHAPTER 1

Figure 1.5: Triangular and trapezoidal fuzzy numbers

Theorem 1.3 [11] A fuzzy number A satisfies the following conditions:

a) its α− cuts are non-empty closed intervals, for all α ∈ [0,1];

b) if 0 6 α1 6 α2 6 1, then [A]α1 ⊆ [A]α2;

c) for any non-decreasing sequence (αn) in [0,1] converging to α ∈ [0,1] we have

∩∞
n=1[A]αn = [A]α ;

d) for any non-increasing sequence (αn) in [0,1] converging to zero we have

cl(∪∞
n=1[A]αn) = [A]0.

1.2.2 Operations on fuzzy numbers

In this section we give definitions of the algebraic operations between fuzzy numbers with

illustrative examples.

Definition 1.9 [3] Let A and B be two fuzzy numbers and λ a real number.

(a) The sum of the fuzzy numbers A and B is the fuzzy number A+ B, whose membership

function is

ϕ(A+B)(Z) = sup
φ(Z)

min[ϕA(x),ϕB(y)],

where φ(Z) = {(x,y) : x+ y = Z}.

(b) The multiplication of A by a scalar λ is the fuzzy number λA, whose membership function

is

21
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ϕλA(Z) =

sup{x:λx=Z}[ϕA(x)], i f λ , 0

χ{0}, i f λ = 0
=

ϕA(λ−1Z), i f λ , 0

χ{0}(Z), i f λ = 0
,

where χ{0} is the characteristic function of {0}.

(c) The difference A−B is the characteristic function of {0},

ϕ(A−B)(Z) = sup
φ(Z)

min[ϕA(x),ϕB(y)],

where φ(Z) = {(x,y) : x− y = Z}.

(d) The multiplication of A by B is the fuzzy number A.B, whose membership function is given

by:

ϕ(A.B)(Z) = sup
φ(Z)

min[ϕA(x),ϕB(y)],

where φ(Z) = {(x,y) : xy = Z}.

(e) The quotient is the fuzzy number A/B whose membership function is

ϕ(A/B)(Z) = sup
φ(Z)

min[ϕA(x),ϕB(y)],

where φ(Z) = {(x,y) : x/y = Z}.

Theorem 1.4 [3] The α-levels of the fuzzy set A⊗B are given by:

[A⊗B]α = [A]α ⊗ [B]α ,

for all α ∈ [0,1], where ⊗ is any arithmetic operation {+,−,×,÷}.
We observe again that the α-levels of a fuzzy number is always a closed interval of R given by:

[A]α = [aα
1 ,aα

2 ],

with aα
1 = min{ϕ−A 1(α)} and aα

2 = max{ϕ−A 1(α)},
where ϕ

−
A 1(α) = {x ∈R : ϕA(x) = α} is the pre-image of α .

Proposition 1.2 [3] Let A and B be fuzzy numbers with α-levels respectively given by [A]α =

[aα
1 ,aα

2 ] and [B]α = [bα
1 ,bα

2 ]. Then the following properties hold:

(a) The sum of A and B is the fuzzy number A+B whose α-levels are:

[A+B]α = [A]α +[B]α = [aα
1 + bα

1 ,aα
2 + bα

2 ].
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(b) The difference of A and B is the fuzzy number A−B whose α-levels are:

[A−B]α = [A]α − [B]α = [aα
1 −bα

2 ,aα
2 −bα

1 ].

(c) The multiplication of A by a scalar λ is the fuzzy number λA whose α-levels are:

[λA]α = λ [A]α =

[λaα
1 ,λaα

2 ], i f λ > 0

[λaα
2 ,λaα

1 ], i f λ < 0

(d) The multiplication of A by B is the fuzzy number A.B whose α-levels are:

[A.B]α = [A]α [B]α = [minPα ,maxPα ],

where Pα = {aα
1 bα

1 , aα
2 bα

2 , aα
2 bα

1 , aα
2 bα

2 }.

(e) The division of A by B, if 0 < suppB, is the fuzzy number whose α-levels are:[
A
B

]α

=
[A]α

[B]α
= [aα

1 ,aα
2 ]

[
1

bα
2

,
1

bα
1

]
.

Example 1.9 Consider the expressions nearly 2 and nearly 4 and let A and B be the triangular

fuzzy numbers that indicate these expressions. Thus, we define A = (1;2;3) and B = (3;4;5).

The results of A⊗B for each of the arithmetic operations between fuzzy numbers are shown

next. First, let us notice that:

[A]α = [1+α ,3−α] and [B]α = [3+α ,5−α].

Then by Proposition (1.2) we get

(a) [A+B]α = [A]α +[B]α = [4+ 2α ,8−2α]. Thus, A+B = (4;6;8);

(b) [A−B]α = [A]α − [B]α = [−4+ 2α ,−2α]. Thus, A−B = (−4;−2;0);

(c) [4.A]α = 4[A]α = [4+ 4α ,12−4α]. Thus, 4A = (4;8;12);

(d) [A.B]α = [A]α [B]α = [(1+α)(3+α),(3−α)(5−α)];

(e)
[

A
B

]α

=
[A]α

[B]α
= [(1+α)/(5−α),(3−α)/(3+α)].

Notice that the fuzzy numbers obtained in (d) and (e) are not triangular. However, it is easy

to verify that with triangular fuzzy numbers, the sum, the difference and the multiplication by
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a scalar results in a triangular fuzzy number. To see this, it suffices to consider the numbers

A = (a1;u;a2) and B = (b1;v;b3). Then, we have:

[A]α = [(u−a1)α + a1,(u−a2)α + a2],

[B]α = [(v−b−1)α + b1,(v−b2)α + b2].

Thus

[A+B]α = [A]α +[B]α ,

and then

[A+B]α +[{(u+ v)− (a1 + b1)}α +(a1 + b1), {(u+ v)− (a2 + b2)}α +(a2 + b2)].

We see that these intervals are the α-levels of the following triangular fuzzy number:

((a1 + b1); (u+ v); (a2 + b2)).

Finally, it is possible to conclude that (A−B)+B , A so that it follows that A−A , 0. That is,

the space of fuzzy numbers is not a vector space since there are no additive (nor multiplication)

inverses.
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CHAPTER

TWO

FUZZY INTEGRAL AND ITS PROPERTIES

In this chapter we focus on the parametric form of fuzzy number, the fuzzy integral and their

properties in order to use them in the main results in the last chapter, also we define the fuzzy

linear system with example.

2.1 Parametric form of a fuzzy number

In the following, we give another definition equivalent to fuzzy number called parametric

form.

2.1.1 Definition and Examples

Definition 2.1 [1] A fuzzy number u is a pair (u,u) of function u(α),u(α);0 6 α 6 1 which

satisfying the following requirements:

1) u(α) is a bounded left-continuous non-decreasing function over [0,1].

2) u(α) is a bounded left-continuous non-increasing function over [0,1] .

3) u(α) 6 u(α), 0 6 α 6 1.

Remark 2.1 If (u,u) is the parametric form of u then

µ(x) = sup{α | u(α) 6 x 6 u(α)}.
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Example 2.1 The parametric form of triangular fuzzy number defined in Example (1.7) is

(u(α),u(α)) = (a1 +α(a2−a1),a3−α(a3−a2)).

Example 2.2 The parametric form of trapezoidal fuzzy number defined in Example (1.8) is

(u(α),u(α)) = (a1 +α(a2−a1),a4−α(a4−a3)).

Properties 2.1 [1] For arbitrary u = (u,u), v = (v,v) and K > 0 we define addition (u+ v)

and multiplication by k as

(u+ v)(α) = u(α)+ v(α), (u+ v)(α) = u(α)+ v(α), (2.1)

ku(α) =

ku(α),ku(α), k > 0

ku(α),ku(α), k < 0
. (2.2)

The collection of all fuzzy numbers with addition and multiplication as defined by Eq. (2.1) and

(2.2) is denoted by E1.

2.1.2 Distance between two fuzzy numbers

In this section we will try to find an application d : E1→R+ that should satisfy the proper-

ties of distance.

Proposition 2.1 Let

d : E1×E1 → R+

(u,v) 7→ d(u,v) = max{ sup
06α61

|u(α)− v(α)|, sup
06α61

|u(α)− v(α)|}.

Then d is distance on E1.

Proof 2.1 Clearly that d(u,u) = 0 and d(u,v) = d(v,u). It reminds to show that

d(u,w) 6 d(u,v)+ d(v,w).
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we have

d(u,w) = max{ sup
06α61

|u−w|, sup
06α61

|u−w|}

= max{ sup
06α61

|(u− v)+(v−w)|, sup
06α61

|(u− v)+(v−w)|}

6max{ sup
06α61

(|u− v|+ |v−w|), sup
06α61

(|u− v|+ |v−w|)}

6max{( sup
06α61

|u− v|, |u− v|)}+max{( sup
06α61

|v−w|, |v−w|)}

= d(u,v)+ d(v,w).

Definition 2.2 [1] For arbitrary Fuzzy numbers u = (u,u) and v(v,v) the quantity

D(u,v) = max{ sup
06r61

|u(r)− v(r)|, sup
06r61

|u(r)− v(r)|}, (2.3)

is the distance between u and v.

2.2 Fuzzy function

Fuzzy function can be classified into following three groups according to which aspect of

the crisp function the fuzzy concept was applied.

2.2.1 Kinds of fuzzy function

1) Crisp function with fuzzy constraint.

2) Crisp function which propagates the fuzziness of independent variable to dependent vari-

able.

3) Function that is itself fuzzy. This fuzzifying function blurs the image of a crisp indepen-

dent variable.

1) Function with fuzzy constraint

Definition 2.3 [14] Let X and Y be crisp sets, and f be a crisp function. A and B are

fuzzy sets defined on universal sets X and Y respectively. Then the function satisfying the

condition µA(x) 6 µB( f (x)) is called a function with constraints on fuzzy domain A and

fuzzy range B.
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Example 2.3 There is a function f : X → Y assume that the function f has fuzzy con-

straint like this,

"if x is a member of A, Then y is a member in B".

"The membership degree µA(x) of x for A is less than that µB(y) of y for B"

or ”µA(x) 6 µB(y)”.

The previous fuzzy constraints denote the sufficient fuzzy condition for y to be a member

of B.

"If membership degree of x for A is α , then that of y for B would be no less than α".

Example 2.4 Consider two fuzzy sets:

A = {(1,0.5),(2,0.8)}, B = {(2,0.7),(4,0.9)},
and a function

y = f (x) = 2x , for x ∈ A , y ∈ B.

We see the function f satisfies the condition, µA(x) 6 µB(y).

2) Propagation of fuzziness by crisp function

Definition 2.4 (Fuzzy extension function) [14] Let X and Y be two universes and f :

X → Y a classical function. For each A ∈ FP(X) we define the extension of f as

f̂ (A) ∈FP(Y) such that

µ f̂ (A)(y) =

sups∈ f−1(y) µA(s), i f f−1(y) ,∅

0, i f f−1(y) = ∅

,

for all y ∈ Y , where f−1(y) = {x ∈ X : f (x) = y}.

Example 2.5 Let f (x) = ax+ b with a,b ∈R, a , 0.

Since

f−1(y) =
(y−b)

a
,

the extension of f is the fuzzy function f̂ such that, given X ∈FP(R),

µ f̂ (x)(y) = sup
x= (y−b)

a

µX(x) = µX(
(y−b)

a
),

for all y ∈R. Or

µ f̂ (x)(ax+ b) = µX(x),
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that is,

f̂ (X) = aX + b.

3) Fuzzifying function of crisp variable

Fuzzifying function of crisp variable is a function which produces image of crisp do-

main in a fuzzy set.

Definition 2.5 (Single fuzzifying function) [14] Fuzzifying function from X to Y is the

mapping of X in fuzzy power set FP(Y),

f : X →FP(Y).

That is to say, the fuzzifying function is a mapping from domain to fuzzy set of range.

Fuzzifying function and the fuzzy relation coincides with each other in the mathematical

manner. So to speak, fuzzifying function can be interpreted as fuzzy relation R defined as

following:

∀(x,y) ∈ X×Y , µ f (x)(y) = µR(x,y).

Example 2.6 Consider two crisp sets A = {2,3,4} and B = {2,3,4,6,8,9,12}
A fuzzifying function f maps the elements in A to power set FP(B) in the following

manner:

f (2) = B1, f (3) = B2, f (4) = B3,

where

FP(B) = {B1,B2,B3},

B1 = {(2,0.5),(4,1),(6,0.5)}, B2 = {(3,0.5),(6,1),(9,0.5)}, B3 = {(4,0.5),(8,1),(12,0.5)}.
The function f maps element 2 ∈ A to element 2 ∈ B1 with degree 0.5, to element 4 ∈ B1

with 0,1, and to element 6∈B1 with 0.5. Now we apply α−cut operation to the fuzzifying

function.

f : 2→{2,4,6} f or α = 0.5,

f : 2→{4} f or α = 1.

In the same manner

f : 3→{3,6,9} f or α = 0.5,

f : 3→{6} f or α = 1.
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Again

f : 4→{4,8,12} f or α = 0.5,

f : 4→{8} f or α = 1.

Definition 2.6 A function f : R−→ E1 is called a fuzzy function. If for arbitrary fixed t0 ∈R,

and ε > 0, a δ > 0 such that

| t− t0 |< δ ⇒ D[ f (t), f (t0)] < ε ,

exist, f is said to be continuous.

2.3 Integral of fuzzy function

In this section, we present a definition of fuzzy integral using Riemann integral concept.

Goetschel and Voxman approach

Definition 2.7 [1] Goetschel and Voxman defined the integral of fuzzy function using the Rie-

mann integral concept.

Let f : [a,b] −→ E1. For each partition p = {t0, t1, . . . , tn} of [a,b] with h = max|t1 −→ t1−1|
and for arbitrary points ξi : ti−1 6 ξi 6 ti,1 6 i 6 n let

Rn =
n

∑
i=0

f (ξi)(ti− ti−1). (2.4)

The definite integral of f (t) over [a,b] is

∫ b

a
f (t)dt = limRn, h−→ 0, (2.5)

provided that this limit exists in the metric D ( and is independent of the partition and the

selected points ξi ).

If the fuzzy function f (t) is continuous in the metric D, its definite integral exists.

Theorem 2.1 If the fuzzy function f : [a,b]−→ E1 is continuous ( with respect to the metric D

) and if for each t ∈ [a,b], f (t) has the parametric form

( f (α , t), f (α , t)),
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then
∫ b

a
f (t)dt exists, belongs to E1, and is parametrized by

(∫ b

a
f (α , t)dt,

∫ b

a
f (α , t)dt

)
. (2.6)

Proof 2.2 That
∫ b

a
f (t)dt exists and is parametrized by Eq.(2.6) is an emmediate consequence

of equicontinuity of the families of functions under the metric D. To see that
∫ b

a
f (t)dt is a

fuzzy number note that for each t, a 6 t 6 b, and for 0 6 α1 6 α2 6 1, we have

f (α1, t) 6 f (α2, t) 6 f (α2, t) 6 f (α1, t).

Therefore,

∫ b

a
f (α1, t)dt 6

∫ b

a
f (α2, t)dt 6

∫ b

a
f (α2, t)dt 6

∫ b

a
f (α1, t)dt, (2.7)

and it follows from Eq.(2.7) and earlier remarks that
∫ b

a f (t)dt satisfies conditions (1),(2),

and (3) of definition (2.1).

Observe also that for a 6 t 6 b and 0 < k 6 1,

lim
α→k−1

f (α , t) = f (k, t), lim
α→k−1

f (α , t) = f (k, t),

and

lim
α→0+

f (α , t) = f (0, t), lim
α→0+

f (α , t) = f (0, t).

It now follows from the monotone convergence theorem for integrable functions that
∫ b

a
f (t)dt

also satisfies conditions of defintion (2.1). Consequently,
∫ b

a
f (t)dt ∈ E1, as was to be shown.

Remark 2.2 if f (t) is continuous, Lebesgue approach [13] yield the same value. Moreover, the

representation of the fuzzy integral using Eqs. (2.4) and (2.5) is more convenient for numerical

calculations.

2.3.1 Properties of integral of fuzzy function

Next we provide some properties of integral of fuzzy function.

Properties 2.2 ([7],[9]) Let f ,g : [a,b]→ E1 be integrable and λ ∈R, then the following are

satisfied:
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1)
∫ b

a
λ f (x)dx = λ

∫ b

a
f (x)dx.

2) If f : [a,b]→E1 is a continuous fuzzy function, then for each triple of real numbers a,b,c,

∫ c

a
f (x)dx+

∫ b

c
f (x)dx =

∫ b

a
f (x)dx.

3) If f : [c,d]→ E1 and g : [c,d]→ E1 are integrable fuzzy functions, and if α and β are

real numbers, then

∫ d

c
(α f (x)+βg(x))dx = α

∫ d

c
f (x)dx+β

∫ d

c
g(x)dx.

2.4 Fuzzy linear systems

In this section, we will define the fuzzy linear system and give its solution with example.

Definition 2.8 [8] The n×n linear system

a11x1 + a12x2 + ...+ a1nxn = y1

a21x1 + a22x2 + ...+ a2nxn = y2

...

an1x1 + an2x2 + ...+ annxn = yn

where the coefficient matrix A = (ai j), 1 ≤ i, j ≤ n is a crisp n×n matrix and xi,yi ∈ E1, 1 ≤
i≤ n is called a fuzzy linear system(FLS).

Definition 2.9 (Solution of fuzzy linear system):[8] a fuzzy number vector (x1,x2, ...,xn)T

given by xi = (xi(r),xi(r)), 1≤ i≤ n, 0≤ r ≤ 1, is called a solution of the fuzzy system if

n

∑
j=1

ai jx j =
n

∑
j=1

ai jx j = yi,
n

∑
j=1

ai jx j =
n

∑
j=1

ai jx j = yi. (2.8)

If, for a particular i, ai j > 0, 1≤ j ≤ n, we simply get

n

∑
j=1

ai jx j = yi,
n

∑
j=1

ai jx j = yi. (2.9)

Let us now rearrange the linear system of Eq. (2.8) so that the unknowns are xi,(−xi),1 ≤
i ≤ n, and the right-hand side column is Y = (y1,y2, ...,yn,−y1,−y2, ...,−yn)

T . We get the
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(2n)× (2n) linear system



s11x1 + s12x2 + ...+ s1nxn + s1,n+1(−x1)+ s1,n+2(−x2)+ . . .+ s1,2n(−xn) = y1
...

sn1x1 + sn2x2 + . . .+ snnxn + sn,n+1(−x1)+ sn,n+2(−x2)+ . . .+ sn,2n(−xn) = yn

sn+1,1x1 + sn+1,2x2 + . . .+ sn+1,nxn + sn+1,n+1(−x1)+ sn+1,n+2(−x2)+ . . .+ sn+1,2n(−xn) = −y1,
...

s2n,1x1 + s2n,2x2 + . . .+ s2n,nxn + s2n,n+1(−x1)+ s2n,n+2(−x2)+ . . .+ s2n,2n(−xn) = −yn,

where si j are determined as follows:

ai j ≥ 0 ⇒ si j = ai j, si+n, j = ai j,

ai j < 0 ⇒ si, j+n = −ai j, si+n, j = −ai j, (2.10)

and any si j which is not determined by Eq. (2.10) is zero. Using matrix notation we get

SX = Y , (2.11)

where S = (Si j), 1≤ i, j ≤ 2n and

X =



x1
...

xn

−x1
...

−xn


Y =



y1
...

yn

−y1
...

−yn


.

The following theorem guarantees the existence of a fuzzy solution for general case.

Consider the dual fuzzy linear system, and transform its n× n coefficient matrix A and B into

(2n)× (2n) matrices as:
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

s11x1 + ...+ s1nxn + s1,n+1(−x1)+ ...+ s1,2n(−xn) = y1

+t11x1 + ...+ t1nxn + t1,n+1(−x1)+ ...+ t1,2n(−xn),
...

sn1x1 + ...+ snnxn + sn,n+1(−x1)+ ...+ sn,2n(−xn) = yn

+tn1x1 + ...+ tnnxn + tn,n+1(−x1)+ ...+ tn,2n(−xn),

sn+1,1x1 + ...+ sn+1,nxn + sn+1,n+1(−x1)+ ...+ sn+1,2n(−xn) = −y1

+tn+1,1x1 + ...+ tn+1,nxn + tn+1,n+1(−x1)+ ...+ tn+1,2n(−xn),
...

s2n,1x1 + ...+ s2n,nxn + s2n,n+1(−x1)+ ...+ s2n,2n(−xn) = −yn

+t2n,1x1 + ...+ t2n,nxn + t2n,n+1(−x1)+ ...+ t2n,2n(−xn),

where si j and ti j are determined as follows:

ai j > 0 ⇒ si j = ai j, si+n, j+n = ai j, (2.12)

ai j < 0 ⇒ si, j+n = −ai j, si+n, j = −ai j,

bi j > 0 ⇒ ti j = bi j, ti+n, j+n = bi j,

bi j < 0 ⇒ ti, j+n = −bi j, ti+n, j = −bi j,

and any si j and ti j which is not determined by Eq (2.12) is zero. Using matrix notation we get

SX = Y +T X , (2.13)

therefore, we have:

(S−T)X = Y , (2.14)

where S = (si j) > 0 and T = (ti j) > 0, 1 6 i, j 6 2n, and

X =



x1
...

xn

−x1
...

−xn


, Y =



y1
...

yn

−y1
...

−yn


.
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Example 2.7 Consider the dual fuzzy linear system:x1− x2 = y1 + 2x1 + x2,

x1 + 2x2 = y2 + x1−2x2.
(2.15)

Let y1 = α , y1 = 2−α and y2 = 4+α , y2 = 7−2α , the extended 4×4 matrices are

S =


1 0 0 1

1 2 0 0

0 1 1 0

0 0 1 2

 , T =


2 1 0 0

1 0 0 2

0 0 2 1

0 2 1 0

 ,

and

Y =


α

4+α

α−2

2α−7

 , X =


x1

x2

−x1

−x2

 .

We obtain that the system Eq.(2.15) is equivalent to the function equation system

SX = Y +TY ,

Consequently 
1 0 0 1

1 2 0 0

0 1 1 0

0 0 1 2




x1

x2

−x1

−x2

=


α

4+α

α−2

2α−7

+


2 1 0 0

1 0 0 2

0 0 2 1

0 2 1 0




x1

x2

−x1

−x2

 ,

Also

(S−T)X = Y .

The structure of S and T implies that:

S =

C D

D C

 ,T =

E F

F E

 ,

where C and E contains the positive entries of A and B respectively, and D and F the absolute
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values of the negative entries of A and B,i.e. A =C−D and B = E−F. Therefore

S−T =

C−E D−F

D−F C−E

 .

Theorem 2.2 1) [12] The matrix S−T is nonsingular if and if the matrix (C+D)− (E +

F) and (C+F)− (E +D) are both nonsingular.

Proof 2.3 Assuming that S−T is nonsingular we obtain of the Eq.(2.14)

X = (S−T)−1Y . (2.16)

2) If (S−T)−1 exists it must have the same structure as S,i.e.

(S−T)−1 =

G H

H G

 ,

and

G =
1
2
[((C+D)− (E +F))−1 +((C+F)− (E +D))−1],

H =
1
2
[((C+D)− (E +F))−1− ((C+F)− (E +D))−1].

3) The unique solution X of Eq.(2.16) is a fuzzy vector for arbitrary Y if and only if (S−
T)−1 is nonnegative, i.e.

((S−T)−1)i j > 0, 1 6 i 6 2n, 1 6 j 6 2n.

Definition 2.10 [12] Let X = {(xi(α),xi(α)), 1 6 i 6 n} denotes the unique solution of

Eq.(2.13), if yi(α),yi(α) are linear functions of α , then the fuzzy number vector

U = (ui(α),ui(α), 1 6 i 6 n),

defined by

ui(α) = min{xi(α),xi(α),xi(1)}, ui(α) = max{xi(α),xi(α),xi(1)}.

Is called the fuzzy solution of Eq. (2.13). If (xi(α),xi(α)), 1 6 i 6 n, are all fuzzy numbers

then ui(α)= xi(α), ui(α)= xi(α), and then U is called a strong fuzzy solution. Otherwise,

U is a weak fuzzy solution.
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CHAPTER

THREE

THE DECOMPOSITION METHOD APPLIED TO FUZZY

FREDHOLM INTEGRAL EQUATION OF THE SECOND

KIND

A fuzzy integral equation is the equation in which the unknown fuzzy function appears

under an integral sign. One of the simplest integral equations is the fuzzy Fredholm integral

equation of the first type:

U(t) =
∫ b

a
K(s, t)U(s)ds.

If the unknown fuzzy function occurs both inside and outside the integral, then it is the fuzzy

Fredholm integral equation of the second type (FFIE-2 for short).

Therefore, in this chapter we will use the parametric form of fuzzy number to convert a linear

FFIE-2 to a linear system of integral equation of the second kind in crisp case.

3.1 Fuzzy integral equation

The fuzzy integral equation which are discussed in this section are the fuzzy Fredholm

equations of the second kind. The Fredholm integral equation of the second kind is [6]

U(t) = f (t)+β

∫ b

a
k(s, t)U(s)ds, (3.1)

where β > 0 , k(s, t) is an arbitrary kernel function over the square a 6 s, t 6 b and f (t) is

a function of t : a 6 t 6 b. If f (t) is a crisp function then the solutions of Eq.(3.1) are crisp

as well. However, if f (t) is a fuzzy function these equations may only possess fuzzy solu-

tions. Sufficient conditions for the existence of a unique solution to the fuzzy Fredholm integral
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equation of the second kind where f (t) is a fuzzy function, are given in [17].

3.1.1 Transforme FFIE-2 to a system of Fredholm integral equation in

crisp case

Let ( f (t,α), f (t,α)) and (u(t,α),u(t,α)), 0 6 α 6 1 and t ∈ [a,b] are parametric form

of f (t) and u(t), respectively then, parametric form of FFIE-2 (3.1), is as follows:


u(t,α) = f (t,α)+β

∫ b

a
v1(s, t,u(s,α),u(s,α))ds,

u(t,α) = f (t,α)+β

∫ b

a
v2(s, t,u(s,α),u(s,α))ds,

(3.2)

where

v1(s, t,u(s,α),u(s,α)) =

k(s, t)u(s,α), k(s, t) > 0

k(s, t)u(s,α), k(s, t) < 0
, (3.3)

and

v2(s, t,u(s, t),u(s, t)) =

k(s, t)u(s,α), k(s, t) > 0

k(s, t)u(s,α), k(s, t) < 0
, (3.4)

for each 0 6 α 6 1 and a 6 t 6 b .

We can see that (3.2) is a system of linear Fredholm integral equation in crisp case for each

0 6 α 6 1 and a 6 t 6 b.

In the following section, we use Adomian method to solve system of linear Fredholm integral

equation in crisp case then, we find approximating solution for u(t,α) and u(t,α) for each

0 6 α 6 1 and a 6 t 6 b.

3.2 Adomian decompostion method

The Adomian decomposition method, decomposes each solution as an infinite sum of com-

ponents, where these components are determined recurrently. We explain the main algorithm of

Adomian decomposition method that applied to a system of linear Fredholm integral equation

of the form

U(t) = F(t)+
∫ b

a
k(s, t)U(s)ds, (3.5)

U(t) = (u1(t),u2(t))T ,

F(t) = ( f1(t), f2(t))T ,
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K(s, t) =

K11 K12

K21 K22

 .

Where the unknown functions u1(t) and u2(t) appear only under the integral sign, a and b

are constants. However, for systems of Fredholm integral equations of the second kind, the

unknown functions u1(t) and u2(t) appear inside and outside the integral sign. The second

kind is represented by the form

u1(t) = f1(t)+
∫ b

a

2

∑
j=1

K1 j(s, t)u j ds, (3.6)

u1(t) = f1(t)+
∫ b

a
K11(s, t)u1 +K12(s, t)u2ds,

u2(t) = f2(t)+
∫ b

a

2

∑
j=1

K2 j(s, t)u j ds, (3.7)

u2(t) = f2(t)+
∫ b

a
K21(s, t)u1 +K22(s, t)u2 ds,

Eq.(3.6),(3.7) can be written as:

u1(t) = f1(t)+N1(u1,u2), (3.8)

u2(t) = f2(t)+N2(u1,u2), (3.9)

where

Ni(u1,u2)(t) =
∫ b

a

2

∑
j=1

Ki ju j ds, i = 1,2 (3.10)

N1(u1,u2) =
∫ b

a
K11(s, t)u1 +K12(s, t)u2 ds,

N2(u1,u2) =
∫ b

a
K21(s, t)u1K22(s, t)u2 ds,

then new form of Eq.(3.5) is:

u1 = f1 +N1(u1,u2), (3.11)

u2 = f2 +N2(u1,u2). (3.12)

To use Adomian decomposition method, let

u1 =
∞

∑
m=0

u1m, (3.13)
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∞

∑
m=0

u1m = u10 + u11 + ...+ ...

u2 =
∞

∑
m=0

u2m, (3.14)

∞

∑
m=0

u2m = u20 + u21 + ...+ ...

and

N1(u1,u2) =
∫ b

a

2

∑
j=1

K1 j(s, t)(
∞

∑
m=0

u1m)ds, (3.15)

N1(u1,u2) =
∫ b

a
K11(s, t)(u10 + u11 + ..+ ..)+K12(s, t)(u20 + u21 + ..+ ..)ds.

N2(u1,u2) =
∫ b

a

2

∑
j=1

K2 j(s, t)(
∞

∑
m=0

u2m)ds, (3.16)

N2(u1,u2) =
∫ b

a
K21(u10 + u11 + ..+ ..)+K22(u20 + u21 + ..+ ..)ds.

Substituting Eq.(3.13),(3.14) in (3.8),(3.9) we get:

∞

∑
m=0

u1m = f1 +
∫ b

a

2

∑
j=1

K1 j(s, t)(
∞

∑
m=0

u jm)ds, (3.17)

u10 + u11 + ..+ .. = f1 +
∫ b

a
K11(u10 + u11 + ..+ ..)+K12(u20 + u21 + ..+ ..)ds.

∞

∑
m=0

u2m = f2 +
∫ b

a

2

∑
j=1

k2 j(s, t)(
∞

∑
m=0

u jm)ds, (3.18)

u20 + u21 + ..+ .. = f2 +
∫ b

a
K21(u10 + u11 + ..+ ..)+K22(u20 + u21 + ..+ ..)ds.

Equating powers of Eq.(3.17),(3.18) gives:

u10 = f1,

u11 =
∫ b

a
K11(s, t)u10 +K12(s, t)u20,

u12 =
∫ b

a
K11(s, t)u11 +K12(s, t)u21,

...

u1k =
∫ b

a
K11(s, t)u1k−1 +K12(s, t)u2k−1.

u20 = f2,

u21 =
∫ b

a
K21(s, t)u10 +K22(s, t)u20,

u22 =
∫ b

a
K21(s, t)u11 +K22(s, t)u21,

...
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u2k =
∫ b

a
K21(s, t)u1k−1 +K22(s, t)u2k−1.

We approximate u1 by:

ϕ1K = ∑
k−1
m=0 u1m where limk→∞ ϕ1K = u1,

and we approximate u2 by:

ϕ2k = ∑
K−1
m=0 u2m where limk→∞ ϕ2K = u2.

Theorem 3.1 [16] Let K(s, t) be continuous for a 6 s, t 6 b and f (t) a fuzzy continuous func-

tion of t, a 6 t 6 b . If 1 < 1
M(b−a) , where M = maxa6s,t6b |K(s, t)|, then the iterative proce-

dure

u10 = f1,

u1k =
∫ b

a K11(s, t)u1k−1 +K12(s, t)u2k−1,

and

u20 = f2,

u2k =
∫ b

a K21(s, t)u1k−1 +K22(s, t)u2k−1,

converges to the unique solution.

In the following we discuss the general case.

General case: The general form of Fredholm integral equation of the second kind is:

U(t) = (u1(t), ...,un(t))T ,

F(t) = ( f1(t), ..., fn(t))T ,

k(s, t) = [ki j(s, t)], i = 1, ...,n, j = 1, ...,n.

The second kind of (3.5) is represented by the form:

ui(t) = fi(t)+
∫ b

a

n

∑
j=1

ki j(s, t)u j(s)ds, (3.19)

Eq.(3.19) can be written as:

ui = fi +Ni(u1,u2, ...,un)(t), (3.20)

where

Ni(u1,u2, ...,un)(t) =
∫ b

a

n

∑
j=1

ki j(s, t)u j(s)ds, (3.21)

then new form of Eq. (3.5) is:

ui = fi +Ni(u1,u2, ...,un). (3.22)
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To use Adomian decomposition method, let

ui =
∞

∑
m=0

uim, (3.23)

and

Ni(u1, ...,un) =
∫ b

a

n

∑
j=1

ki j(s, t)(
∞

∑
m=0

u jm)ds. (3.24)

Substituting (3.23) and (3.24) in (3.20) we have:

∞

∑
m=0

uim = fi +
∫ b

a

n

∑
j=1

ki j(s, t)(
∞

∑
m=0

u jm)ds. (3.25)

Equating powers on both sides of Eq.(3.25) gives:

ui0 = fi,

ui,k+1 =
∫ b

a

n

∑
j=1

ki j(s, t)u jkds, i = 1, ...,n, k = 0, ...

We usually approximate ui by ϕik = ∑
k−1
m=0 uim, where limk→∞ ϕik = ui.

Example 3.1 Consider the following system of linear Fredholm integral equations with the ex-

act solutions f1(t) = t + 1 and f2(t) = t2 + 1


f1(t) =

t
18

+
17
36

+
∫ 1

0

s+ t
3

( f1(s)+ f2(s))ds,

f2(t) = t2− 19
12

t + 1+
∫ 1

0
st( f1(s)+ f2(s))ds.

To derive the solutions by using the decomposition method, we can use the following Ado-

mian scheme:
f10(t) =

t
18

+
17
36
' 0.0556t + 0.4722,

f20(t) = t2− 19
12

t + 1' t2−1.5833t + 1,

and


f1,m+1(t) =

∫ 1

0

(s+ t)
3

( f1m(s)+ f2m(s))ds,

f2,m+1(t) =
∫ 1

0
st( f1m(s)+ f2m(s))ds, m = 0,1,2, ...

For the first iteration, we have:
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
f11(t) =

∫ 1

0

(s+ t)
3

( f10(s)+ f20(s))ds =
25
72

t +
103
648
' 0.3472t + 0.1590t,

f21(t) =
∫ 1

0
st( f10(s)+ f20(s))ds =

∫ 1

0
st( f1m(s)+ f2m(s))ds =

103
216

t ' 04769t.

In practice, all terms of the series fi(t) = ∑
∞
m=0 fim(t) cannot be determined and so we use an

approximation of the solution by the following truncated series:

ϕik(t) =
k−1

∑
m=0

fim(t), with lim
k→∞

ϕik(t) = fi(t).

The approximated solutions with two terms are:ϕ12(t) = f10(t)+ f11(t) ' 0.4028t + 0.6312,

ϕ22(t) = f20(t)+ f21(t) ' t2−1.1065t + 1.

Next terms are:


f12(t) =

∫ 1

0

(s+ t)
3

( f11(s)+ f21(s))ds =
185
972

t +
17

144
' 0.1903t + 0.1181,

f22(t) =
∫ 1

0
st( f11(s)+ f21(s))ds =

17
48

t ' 0.3542t.

Solutions with three terms are:ϕ13(t) = f10(t)+ f11(t)+ f12(t) ' 0.5931t + 0.7492,

ϕ23(t) = f20(t)+ f21(t)+ f22(t) ' t2−0.7523t + 1.

In the same way, the components ϕ1k(t) and ϕ2k(t) can be calculated for K = 3,4, ... The

solutions with eleven terms are given as:ϕ1,11(t) = f10(t)+ f11(t)+ . . .+ f1,10(t) ' 0.9813t + 0.9885,

ϕ2,11(t) = f20(t)+ f21(t)+ . . .+ f2,10(t) ' t2−0.0345t + 1.

3.3 Numerical results

In this section, we apply the previous algorithm to two examples. We compare results with

exact solutions using the metric of Definition (2.2) (see Tables 1 and 2). The approximate

solutions and exact solutions are compared in Figs.(3.1), (3.2) and (3.3) for a fixed t.

Example 3.2 Consider the fuzzy Fredholm integral equation with

f (t,α) = sin(t/2)(13/15(α
2 +α)+ 2/15(4−α

3−α)),
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f (t,α) = sin(t/2)(2\15(α
2 +α)+ 13/15(4−α

3−α)),

and kernel

K(s, t) = 0.1sin(s) sin(t/2), 0 6 s, t 6 2π ,

and a = 0, b = 2π . The exact solution in this case is given by:

u(t,α) = (α
2 +α) sin(t/2),

u(t,α) = (4−α
3−α) sin(t/2).

Some first terms of Adomian decomposition series are:

u0(t,α) = f (t,α) =
1

15
sin(t/2)(13α

2 + 11α + 8−2α
3),

since

K(s, t) = 0.1sin(s)sin(t/2) > 0, i f 0 6 s 6 π ,

K(s, t) = 0.1sin(s)sin(t/2) < 0, i f π 6 s 6 2π ,

then from (3.3), it follows that:

u1(t,α) =
∫

π

0
k(s, t)u0(s,α)ds+

∫ 2π

π

K(s, t)u0(s,α)ds

=
sin(t/2)

10

[∫
π

0
1/15sin(

s
2
) sin(s)(13α

2 + 11α + 8−2α
3)ds

+
∫ 2π

π

1/15sin(s) sin(
s
2
)(2α

2−11α + 52−13α
3 ds
]

=
sin(t/2)

150

[
(13α

2 + 11α + 8−2α
3)
∫

π

0
sin(s) sin(

s
2
)ds

− (2α
2−11α + 52−13α

3)
∫

π

0
sin(s) sin(

s
2
)ds
]

=
sin(t/2)

150
(11α

2 + 22α−44+ 11α
3)
∫

π

0
sin(s) sin(

s
2
)ds,

we have

I =
∫

π

0
sin(s) sin(

s
2
)ds = −cos(s) sin(

s
2
)

]π

0
+

1
2

∫
π

0
cos(s)cos(

s
2
)ds,

and ∫
π

0
cos(s)cos(

s
2
)ds = sin(s)cos(

s
2
)

]π

0
+

1
2

∫
π

0
sin(s)cos(

s
2
)ds,

then

I = −cos(s) sin(
s
2
)

]π

0
+

1
2

sin(s)cos(
s
2
)

]π

0
+

1
4

I,
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this implies that
3
4

I = 1. Hence, I =
4
3

. We conclude that

u1(t,α) =
2

225
sin(t/2)(11α

2 + 22α−44+ 11α
3)

=
22

225
sin(t/2)(α

2 + 2α−4+α
3).

By the same method we find:

u2(t,α) =
88

3375
sin(t/2)(α

2 + 2α−4+α
3),

u3(t,α) =
352

50625
sin(t/2)(α

2 + 2α−4+α
3).

And

u0(t,α) = f (t,α) = 1/15sin(t/2)(2α
2−11α + 52−13α

3),

since

K(s, t) = 0.1sin(s) sin(t/2) > 0, i f 0 6 s 6 π ,

K(s, t) = 0.1sin(s) sin(t/2) < 0, i f π 6 s 6 2π ,

then from (3.4), it follows that:

u1(t,α) =
∫ Π

0
K(s, t)u0(s,α)ds+

∫ 2π

π

K(s, t)u0(s,α)ds

=
sin(t/2)

10

[∫
π

0
1/15sin(s) sin(

s
2
)(2α

2−11α + 52−13α
3)ds

+
∫ 2π

π

1/15sin(s) sin(
s
2
)(13α

2 + 11α + 8−2α
3)ds

]
=

sin(t/2)
150

[
(2α

2−11α + 52−13α
3)
∫

π

0
sin(s) sin(

s
2
)ds

− (13α
2 + 11α + 8−2α

3)
∫ 2π

π

sin(s) sin(
s
2
)ds
]

=
sin(t/2)

150
(−11α

2−22α + 44−11α
3)
∫

π

0
sin(s) sin(

s
2
)ds,

we have

I =
∫

π

0
sin(s) sin(

s
2
)ds = −cos(s) sin(

s
2
)

]π

0
+

1
2

∫
π

0
cos(s)cos(

s
2
)ds,

and ∫
π

0
cos(s)cos(

s
2
)ds = sin(s)cos(

s
2
)

]π

0
+

1
2

∫
π

0
sin(s)cos(

s
2
)ds,
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then

I = −cos(s) sin(
s
2
)

]π

0
+

1
2

sin(s)cos(
s
2
)

]π

0
+

1
4

I,

this implies that
3
4

I = 1. Hence I =
4
3

. We conclude that

u1(t,α) =
2

225
sin(t/2)(−11α−22α + 44−11α

3)

= − 22
225

sin(t/2)(α
2 + 2α−4+α

3).

By the same method we find:

u2(t,α) = − 88
3375

sin(t/2)(α
2 + 2α−4+α

3),

u3(t,α) = − 352
50625

sin(t/2)(α
2 + 2α−4+α

3).

We approximate

u(t,α) with ϕ
4
(t,α) = − 1

50625
(128α3−50497α2−50369α−512)× sin(t/2).

and

u(t,α) with ϕ4(t,α) = − 1
50625

(50497α3−128α2 + 50369α−201988)× sin(t/2).

Table 1: The absolute error between the exact and approximate solution.for Example (3.2)

t 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

Error 0 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0039 0.0044 0.0048

1.1000 1.2000 1.3000 1.4000 1.5000

0.0053 0.0057 0.0061 0.0065 0.0069
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Figure 3.1: Exact solution and approximate solution for Example 3.2 (t=1)
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Figure 3.2: Exact solution and approximate solution for Example 3.2 (t=1.5)

Example 3.3 Consider the following fuzzy Fredholm integral equation with

f (t,α) = αt + 3/26−3/26α−1/13t2−1/13t2
α ,

f (t,α) = 2t−αt + 3/26α + 1/13t2
α−3/26−3/13t2,

and kernel

K(s, t) = (s2 + t2−2)/13, 0 6 s, t 6 2,

and a = 0,b = 2. The exact solution in this case is given by

u(t,α) = αt

u(t,α) = (2−α)t.

We can see that, some first terms of Adomian decomposition series are as follows:

u0(t,α) = f (t,α) = αt + 3/26−3/26α−1/13t2−1/13t2
α ,

u1(t,α) = 29/338α−499/5070+ 11/169t2
α + 29/507t2,

u2(t,α) =
−235
19773

+
51

2197
α +

1298
98865

t2 +
22

2197
t2

α ,

u3(t,α) =
146

28561
α− 28114

6426225
+

44
28561

t2
α +

1468
296595

t2,

u4(t,α) =
−425948

751868325
+

380
371293

α +
908008

751868325
t2 +

88
371293

t2
α ,

u5(t,α) =
72

371293
α− 17922712

146614323375
+

176
4826809

t2
α +

744752
2255604975

t2,
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and

u0(t,α) = f (t,α) = 2t−αt + 3/26α + 1/13t2
α−3/26−3/13t2,

u1(t,α) = 371/5070−29/338α + 95/507t2−11/169t2
α ,

u2(t,α) =
−51
2197

α +
683

19773
− 22

2197
t2

α +
3278

98865
t2,

u3(t,α) =
37586

6426225
− 146

28561
α +

30964
3855735

t2− 44
28561

t2
α ,

u4(t,α) =
−380

371293
α +

1113052
7518687325

− 88
371293

t2
α +

1264408
751868325

t2,

u5(t,α) =
38939288

146614323375
− 72

371293
α +

11820176
293228646675

t2− 176
4826809

t2
α .

Then

ϕ
6
(t,α) =

32
4826809

t2α− 3540832
29322864675

t2− tα + 2t +
16

371293
α− 10586032

146614323375
and

ϕ6(t,α) = − 32
4826809

t2α− 242464
2255604975

t2 + tα− 16
371293

α +
2049968

146614323375

are aproximation for u(t,α) and u(t,α), respectively.

Table 2: The absolute error between the exact and approximate solution for Example (3.3)

t 0 0.1000 0.2000 0.3000 0.4000 0.5000

Error 7.22×10−5 7.34×10−5 7.70×10−5 8.31×10−5 9.15×10−5 1.024×10−4

0.6000 0.7000 0.8000 0.9000 1.0000

1.157×10−4 1.314×10−4 1.495×10−4 1.700×10−4 1.930×10−4
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Figure 3.3: Exact solution and approximate solution for Example 3.3 (t=1)
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CONCLUSION

In this work, we have introduced the concepts of fuzzy sets, fuzzy numbers with examples.

We have solved the linear fuzzy Fredholm integral equation of the second kind. Using the Ado-

mian method, it is possible to find the exact solution or the approximate solution of the problem

in the form of a series, the proposed method is illustrated by solving some examples. The so-

lution of the fuzzy Fredholm integral equation can be found directly from the crisp solution

without going through the complexity of fuzziness.
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Abstract

After introducing basic concepts in fuzzy mathematics, we focused our at-

tention to solve the linear fuzzy Fredholm integral equation of the second kind

by Adomian method. Using parametric form of fuzzy numbers a linear FFIE-2

is converted to a linear system of integral equations of the second kind in crisp

case. We illustrated by a numerical algorithm applied to some examples.

Résumé
Dans ce travail, on a utilisé la forme paramétrique des nombres flous pour

convertir une équation intégrale floue de Fredholm linéaire du deuxième type
en un système linéaire d’équations intégrales du deuxième type.
On a utilisé la méthode Adomian pour trouver la solution approximative de ce
système et donc obtenir une approximation pour la solution floue de l’équation
intégrale linéaire floue de Fredholm du deuxième type.
Enfin, on a illustré cette méthode en l’appliquant à quelque exemples.



 ملخص
الضبابية  للأعداداستخدمنا الشكل الوسيطي  ،في هذا العمل    

لتحويل المعادلات التكاملية الخطية الضبابية لفريدهولم من النوع 

من المعادلات التكاملية الخطية الكلاسيكية الثاني الى جملة خطية 

الحل  لإيجادمن النوع الثاني. لقد استخدمنا طريقة ادوميان 

التقريبي لهذه الجملة الخطية ومن ثم حصلنا على تقدير تقريبي 

للحل الضبابي للمعادلة التكاملية الخطية الضبابية لفريدهولم من 

 النوع الثاني.

في الاخير لتوضيح هذه الطريقة قمنا بتطبيقها على بعض       

 الامثلة.
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