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INTRODUCTION

Ordinary di�erential equations appear in many interdisciplinary areas and are the favored

language for the study of various natural phenomena that are employed extensively in natural

sciences, engineering, and technology. At present, ordinary di�erential equations are integrated

into any standard undergraduate science curriculum, while continuing to be the subject of intensive

research.

In general, most of the nonlinear di�erential equations cannot be solved by terms of elementary

functions. The qualitative or geometrical theory of di�erential equations is being used to analyze

di�erential equations whose explicit solutions are hard to �nd. These tools are originated by Henri

Poincaré in his work on di�erential equations at the end of the nineteenth century [1].

The main goal of this thesis is the global analysis of the behavior of solutions, under the point of

view of the qualitative or geometrical theory of nonlinear planar di�erential systems, especially those

depend on a parameter or several parameters then the problem is what’s happened if our di�erential

equation depends on a parameter and this parameter change?. In this work we address the question

of how the qualitative behavior of a di�erential equation change as we change the function of vector

�eld, here we are on the presence of bifurcation.

The qualitative theory o�ers two types of tools that permit the analysis of a di�erential equation.

On the one hand, there are tools of local character, some of these tools such as the Hartman-Grobman

Theorem, enable describing the singular points of the dynamical system; other techniques are used

to the analysis of the �ow in the neighborhood of singular points or periodic orbits. We should also

mention the Poincaré–Bendixson Theorem, which allows the analysis of the α and ω-limit sets in

planar dynamical systems, i.e., the values to which the orbits of the dynamical system tend, as the

time approaches the extreme values in the interval of de�nition. Furthermore, the qualitative theory

contains tools of the global portraits, such as the study of the invariant algebraic curves which are

invariant by the �ow of the di�erential system, which the calculation of a su�cient number of them

enables the calculation of �rst integrals.
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Now, we describe the structure of this thesis which is divided into three chapters, in the �rst one

we present the necessary background information to perform our study as singular points and their

nature, Hartman-Grobman theorem, Poincaré map, phase portraits, structural stability (see [2]).
Chapter 2 begins with our examination concern the Hopf bifurcations and bifurcations of limit

cycles from a multiple focus and bifurcations at non-hyperbolic periodic orbit [7], we present theorems

of creation of limit cycles from a multiple focus, bifurcations in the neighborhood of a multiple focus

of multiplicitym = 1.

In chapter 3 we tackle the Hopf bifurcations and classi�es all phase portraits of a family of rigid

systems under the form

ẋ = −y + x(a+ bx2 + cy2), ẏ = x+ y(a+ bx2 + cy2),

where b2 + c2
is not zero. Moreover, it distinguish between center and focus for these systems.
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CHAPTER I

INTRODUCTION TO BIFURCATION THEORY

In this chapter we adress the question of how the qualitative behavior of the ordinary di�erential

equation change as we change parameters. If the qualitative behavior remains the same for all nearby

vector �elds,

.
x= f(x). (I.1)

then the system (I.1) or the function f said to be structurally stable, if a vector �eld f ∈ C1(E) is

not structurally stable, it belongs to the bifurcation set in C1(E).

Our aim is to give the basic results to study a what we called a bifurcation, �rstly we mention in

which case we have bifurcation after that we need to de�ne what’s we mean by structurally stable

or unstable and we end the chapter by a technique for studying the stability and bifurcation of the

periodic orbits. This is done by the so-called "Poincaré map".

I.1 Some concepts of di�erential equations

A good place to start analyzing the nonlinear system (I.1) is to determine the equilibrium points

of (I.1) and describe the behavior of this system near its equilibrium points.

De�nition I.1 (Equilibrium points). A point x0 ∈ Rn is called an equilibrium point or critical point

of (I.1) if f(x0) = 0.

De�nition I.2. An equilibrium point x0 of (I.1) is called a sink if all of the eigenvalues of the matrix

Df(x0) have a negative real part, it is called source if all of the eigenvalues ofDf(x0) have a positive
real part. And it is a saddle if there exists an eigenvalue positive, and there exists another one negative.

De�nition I.3 (Flow). Let E be an open subset of Rn and f ∈ C1(E). For x0 ∈ E, let φt(x0) be
the solution of the initial value problem (I.1) with x0 on its maximal interval of existence I(x0). Then

6



I.1. Some concepts of di�erential equations

the set

{t ∈ I(x0) : φt(x0) = φ(t, x0)},

is called the �ow of the di�erential equation (I.1). Which satis�es the following basic properties for all

x in Rn

• φ0(x) = x,

• φt(φs(x)) = φt+s(x) for all s, t ∈ R,

• φt(φ−t(x)) = φ−t(φt(x)) = x for all t ∈ R.

The same properties preserve for a linear system have the �ow φt = eAt de�ned from R
n to Rn.

In general, the study of the local behavior of the �ow near an equilibrium point x0 is quite

complicated. Already the linear systems show di�erent classes, even for local topological equivalence.

We say thatDf(x0) is the linear part of the vector �eld f at x0. There are many types of equilibrium

points of a di�erential equation (I.1) that classify from the eigenvalues ofDf(x0).

I.1.1 Hyperbolic and non-hyperbolic equilibrium points

Hyperbolic equilibrium points

De�nition I.4 (Hyperbolic equilibrium point). The equilibrium x0 is said to be hyperbolic if all

eigenvalues of the Jacobian matrixDf(x0) have non-zero real parts.

Hartman-Grobman theorem

The Hartman-Grobman theorem is one of the very important results in the qualitative theory of

ordinary di�erential equations. The theorem shows that near a hyperbolic equilibrium point x0, the

nonlinear system (I.1) has the same qualitative structure as the linear system

.
x= Ax. (I.2)

withA = Df(x0), in what follow we shall assume that the equilibrium pointx0 has been translated

to the origin.

De�nition I.5 (Topologically equivalent). two autonomous systems of di�erential equations are said

to be topologically equivalent in a neighboorhood of the origin Nδ(0) or have the same qualitative

structure near the origin if there is a homeomorphismH mapping an openU containing the origin onto

an open set V containing the origin which map trajectories of the �rst system in U to the second one in

V and preserves their orientation by time. cf. Figure (I.1), for more details see [2].

7 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

Figure I.1: Topologically equivalent.

Theorem I.1. Let E be an open sub set of Rn containing the origin, let f ∈ C1(E), and φt be the
�ow of the nonlinear system (I.1). Suppose that the origin is an equilibrium point of (I.1) which

mean f(0) = 0 and that the matrixDf(0) has no eigenvalue with zero real part. Then there exists

H : U −→ V Homeomorphism such that for all x0 ∈ U , there is an open interval I0 ⊂ R
containing zero such that for all x0 ∈ U and t ∈ I0

H ◦ φ(x0) = eAtH(x0);

i.e.,H maps trajectories of (I.1) near the origin onto trajectories of (I.2) near the origin and preserves

the parametrization by time.

The proof consists of �ve steps, see [2] and [9].

By the Hartman-Grobman theorem the nature and stability of any hyperbolic equilibrium point

x0 of the nonlinear system (I.1) is determine by the signs of the real parts of the eigenvalues λj of

the matrixDf(x0). The stability of non-hyperbolic equilibrium points is typically more di�cult to

determine.

Non-hyperbolic equilibrium points

De�nition I.6 (Non-hyperbolic equilibrium point). If at least one eigenvalue of the Jacobian matrix

is zero or has a zero real part, then the equilibrium is said to be non-hyperbolic.

De�nition I.7 (Center). The origin is called a center for the nonlinear system (I.1) if there exists a
strictly positive ε such that every solution curve of (I.1) in the neighborhoodNε(0) containing the
origin in the interior, is a closed curve.

De�nition I.8 (Focus). The origin is called a focus for the nonlinear system (I.1) if there exists a

8 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

positive ε > 0 such that for 0 < r0 < ε and θ0 ∈ R,

r(t, r0, θ0)→ 0 and θ(t, r0, θ0)→∞,

as t→∞ for a stable focus, and t→ −∞ for unstable focus.

De�nition I.9 (Center-focus). The origin is called a center-focus for (I.1) if there exists a decreases
sequence of closed solution curves Γn; i.e., Γn+1 in the interior of Γn such that Γn → 0 as n→∞
and such that every trajectory between Γn and Γn+1 spirals toward Γn or Γn+1 as t→ ±.

Theorem I.2. LetE be an open subset ofR2 containing the origin and let f ∈ C1(E) with f(0) = 0.
Suppose that the origin is a center for the linear system (I.2) withA = Df(0). Then the origin is

either a center, a center-focus or a focus for the nonlinear system (I.1).

A center-focus cannot occur in an analytic system. This is a consequence of Dulac’s theorem [2].
Liapunov’s method is one tool that can be used to distinguiche a center from a focus for a nonlinear

system. In our work, we interested in the second tool which is the so-called "Poincaré map".

I.1.2 Phase portraits

Although it is often impossible (or very di�cult) to determine explicitly the solutions of a di�er-

ential equation, it is still important to obtain information about these solutions, at least of qualitative

nature. To a considerable extent, this can be done describing the phase portrait of the di�erential

equation.

Let f : D → Rn be a continuous function in an open setD ⊂ Rn and consider the autonomous

equation (I.1). The setD is called the phase space of the equation.

De�nition I.10 (Orbits). If x(t) = Φt(x) is a solution of equation (I.1) with maximal interval I ,

then the set x(t) : t ∈ I ⊂ D is called an orbit of the equation (I.1).

De�nition I.11. The phase portrait of an autonomous ordinary di�erential equation is obtained by

representing the orbits in the setD, also indicating the direction of motion. It is common not to indicate

the directions of the axes, since these could be confused with the direction of motion.

I.1.3 Global phace portais

In order to study the behavior of trajectories of a planar di�erential system near in�nity, it is

possible to use a compacti�cation. One of the possible constructions relies on the stereographic

projection of the sphere onto the plane ( for more information see [6]). A better approach to studying

the behavior of trajectories "at in�nity" is to use the so-called Poincaré sphere. However, some of the

singular points at in�nity, on the Poincaré sphere my still be very complicated (see all the details for

instance in chapter 5 of [5] and [2]).
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I.1. Some concepts of di�erential equations

Local charts

Let χ = ϕ∂ \ ∂x+ ψ∂ \ ∂y be the planar polynomial vector �eld or in other words


.
x = ϕ(x, y),
.
y = ψ(x, y),

(I.3)

We recall that n the degree of the system (I.3), is the maximum between d1, d2 degrees of ϕ and ψ.

The Poincaré sphere is de�ned as S
2 = {y = (X, Y, Z) ∈ R3 : X2 + Y 2 + Z2 = 1} and its

tangent space at the point Y ∈ S2
is denoted by TY S

2
, which is tangent to R

2
in T(0,0,1)S

2 = R
2
.

We de�ne the central projection f : T(0,0,1)S
2 −→ S

2
as follows: to each point (x, y) ∈

T(0,0,1)S
2

the central projection associates the two intersection points f+(x, y), f−(x, y) of

the straight line which connects the points (x, y) and (0, 0, 0) with the sphere S
2
. This central

projection gives two copies of (I.3) in S
2
, one in each hemisphere,H+ = {Z ∈ S2 : Z < 0} the

northen hemisphere andH− = {Z ∈ S2 : Z > 0} the southern hemisphere; cf. Figure (I.1.3).

f+(x, y) = (X, Y, Z) =
( x

∆(x, y)
,

y

∆(x, y)
,

1
∆(x, y)

)
,

f−(x, y) = (X ′, Y ′, Z ′) =
(
−

x

∆(x, y)
, −

y

∆(x, y)
, −

1
∆(x, y)

)
.

Where

∆(x, y) =
√
x2 + y2 + 1.

In this way, we obtain induced vector �elds in each hemisphere. Of course, all of them are analytically

10 Chapter I. Introduction to bifurcation theory



I.1. Some concepts of di�erential equations

conjugate to χ. the induced vector �eld onH+ is χ(f+(x, y)) = Df+(x, y)χ(x, y), and the

one inH− is χ(f−(x, y)) = Df−(x, y)χ(x, y). The equator S
1 = {Z ∈ S2 : Z = 0} can

be identi�ed with the in�nity of R
2
.

Remark I.1. We remark that χ is a vector �eld on S2\S1 that is everywhere tangent to S2.

We extend the vector �eld χ from S
2 \ S1

to S
2
, then the extended vector �eld on S

2
is called the

Poincaré compacti�cation of the vector �eld χ on R
2
, and is denoted by P (χ) (see all the details for

instance in chapter 5 of [5]).
In summary, we have two symmetric copies of χ on S

2 \ S1
, and studying the dynamics of

P (χ) near S
1
, we have the dynamics of χ at in�nity. The Poincaré disc, denoted by D2

, is the

closed northern hemisphere of {Z ∈ S2 : Z ≥ 0} projected on Z = 0 under the projection

(X, Y, Z) 7→ (x, y). The in�nity S
1

is invariant under the �ow of the Poincaré compacti�cation

P (χ).

Here two polynomial vector �eldsX andY associated to system (I.1) are topologically equivalent

if there is a homeomorphism on S
2

preserving the in�nity S
1

carrying orbits of the �ow of P (X)
into orbits of the �ow of P (Y ), either reversing or preserving the sense of all orbits. For computing

the analytic expression of P (χ) we use the fact that S
2

is a di�erentiable manifold. Thus we take

the six local charts Ui = {y = (y1, y2, y3) ∈ S2 : yi > 0}, and Vi = {y = (y1, y2, y3) ∈ S2 :
yi < 0} for i = 1, 2, 3; and the associated di�eomorphisms Fi : Ui −→ R2

andGi : Vi −→ R2

for i = 1, 2, 3 are respectively the inverses of the central projections from the planes tangent at the

points (1, 0, 0); (−1, 0, 0); (0, 1, 0); (0,−1, 0); (0, 0, 1) and (0, 0,−1). The value of Fi(y) or

Gi(y) for some i = 1, 2, 3 is denoted by z = (z1, z2), consequently according to the local charts

under consideration the same letter z represents di�erent coordinates.

After a rescaling in the independent variable in the local chart (U1, F1) the expression for P (χ) is

u̇ = vn
[
−uϕ

(
1
v
,
u

v

)
+ ψ

(
1
v
,
u

v

)]
, v̇ = −vn+1ϕ

(
1
v
,
u

v

)
;

in the local chart (U2, F2) the expression for P (χ) is

u̇ = vn
[
ϕ

(
u

v
,

1
v

)
− uψ

(
u

v
,

1
v

)]
v̇ = −vn+1ψ

(
u

v
,

1
v

)
;

and for the local chart (U3, F3) the expression for P (χ) is

u̇ = ϕ(u, v), v̇ = ψ(u, v).

In the chart (Vi, Gi) the expression for P (χ) is the same than in the chart (Ui, Fi) multiplied

by (−1)n+1
for i = 1, 2, 3. We note that the points at the in�nity S

1
in any chart have coordinates

(u, v) = (u, 0).
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The equilibrium points of P (χ) which come from the equilibrium points of χ are called �nite

equilibrium points of χ, and the equilibrium points of P (χ) which are in S
1

are called in�nite

equilibrium points of χ. We observe that the unique in�nite equilibrium points which cannot be

contained in the charts U1 ∪ V1 are the origins of the local charts U2 and V2. Therefore when we

study the in�nite equilibrium points on the charts U2 ∪ V2, we only need to verify if the origin of

these charts is an equilibrium point.

I.2 Structurally stable

In this Section, we present the concept of structurally stable vector �eld or dynamical system and

give necessary and su�cient conditions for a C1
-vector �eled f on a compact to be structurally

stable.

The idea of structural stability originated with Andronov and Pontrygin in 1937; cf. [7], p.56. We

say that f is structurally stable vector �eld if for any vector �eld g near f , the vectors f and g

topologically equivalent, which means that those two vectors �elds are close to each other.

De�nition I.12 (The C1
-Norme). If f ∈ C1 where E is an open subset of Rn, then the C1-Norme

of f which de�ned from E into E,

‖f‖1 = sup
x∈E
|f(x)|+ sup

x∈E
‖Df(x)‖.

where |.| the euclidien norme, and ‖.‖ the usual norme. So, we use the C1-Norme to measure the

distance between any two functions in C1, and if E is a compact implie that ‖f‖1 < +∞.

De�nition I.13 (Structurally stable). Let E be an open subset of Rn, we said that the vector �eld

f ∈ C1 is structurally Stable, if there exist ε > 0 such that for all g ∈ C1 with

‖f − g‖1 < ε,

f and g are topologically equivalent on E, which means that there exit h from E onto E Homeo-

morphisme which map trajectories of x′ = f(x), onto trajectories of x′ = g(x) and preserve their
orientation by time, then we said f structurally unstable if the vector �eld f is not structurally stable.

As we know, a periodic orbit or a cycle of a di�erential equation is any closed solution curve, that

can be stable or unstable. In the next section we are going to de�ne the Poincaré map which allow us

to study the stability and bifurcation of periodic orbits.
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I.3 The Poincaré map

Probably the most basic tool for studying the stability and bifurcation of the periodic orbits is the

Poincaré map. The idea of the Poincaré map when Γ is a periodic orbit of the system (I.1) through

x0, with Σ is a hyperplane perpendicular to Γ at x0, then for any point x ∈ Σ su�ciently near x0

the solution of (I.1) through x at t = 0, Φt(x), will cross Σ again at P (x) near x0 ; cf.Figure

(I.2), the mapping x→ P (x) is called the Poincaré map. The Poincaré map can also be de�ned

when Σ is a smooth surface.

P(x)

x

x0

Figure I.2: The Poincaré map.

Theorem I.3 (The existence and continuity of the Poincaré map and its �rst derivative). Let E be an

open subset of Rn and let f ∈ C1(E). Suppose that Φt(x0) is a periodic solution of (I.1) of period
T and that the cycle

Γ = {x ∈ Rn | x = Φt(x0), 0 ≤ t ≤ T} ,

is contained in E. Let
∑

be the hyperplane orthogonal to Γ at x0; i.e., let

Σ = {x ∈ Rn | (x− x0) · f(x0) = 0} ,

then ∃δ > 0 and ∃! function τ (x) de�ned and continuously di�erentiable for x ∈ Nδ(x0)
such that  τ (x0) = T

Φτ(x)(x) ∈ Σ
for all x ∈ Nδ(x0).

Proof. The proof of this theorem is an immediate application of the implicit function theorem, by

the supposition of

F (t, x) = (Φt(x)− x0) · f(x0), for a given x0 ∈ Γ ⊂ E.

for more details see [2].
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De�nition I.14 (The Poincaré map). Let Γ, Σ, δ, and τ (x) be de�ned as in theorem (I.3). Then,
for x ∈ Nδ(x0) ∩ Σ, the function

P (x) = Φτ(x),

is called the Poincaré map for Γ at x0.

Remark I.2. It follows from theorem (I.3) that P ∈ C1(U) where U = Nδ(x0) ∩ Σ.

• If fanalytic in E ⇒ P analytic in U ,

• Fixed points of the Poincaré map, i.e.,(points x ∈ Σ : P (x) = x) are periodic orbits of (I.1),

• By considering the system (I.1) with t → −t, we can show that the Poincaré map P has a

C1-inverse, P−1(x) = Φ−τ(x)(x). Thus, P is a di�eomorphism; i.e., a smooth function with a

smooth inverse.

I.3.1 The Poincaré map of planar systems

Now, we are going to cite some speci�c results for the Poincaré map for planar systems. For

planar systems, if we translate the origin to the point x0 ∈ Σ ∩ Γ. The point 0 ∈ Γ ∩ Σ divide Σ
on two open segments Σ+ ∧Σ− ; cf. Figure (I.3) below. Let s be the signed distance along Σ with

s > 0 for points in Σ+
.

Figure I.3: The straight line normal Σ to Γ at 0

By theorem (I.3), the Poincaré map P (s) de�ned for |s| < δ and we have P (0). In order

to see how the stability of the cycle Γ is determined by P ′(0), let us introduce the displacement

function, which de�ned for all |s| < δ by

d(s) = P (s)− s. (I.4)

with P (0) = 0 and d′(s) = P ′(s) − 1. From the mean value theorem, for |s| < δ, ∃ σ ∈
[0, s] such that : d(s) = d′(σ)s. Since d′(s) is continuous, the sign of d′(s) will be the same
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as d′(0) for |s| su�ciently small as long as d′(0) , 0. Thus, if d′(0) < 0 implie that d(s) <
0 for s > 0 and d(s) > 0 for s < 0 and that s < 0 in Σ−; i.e., the cycle Γ is a stable limit

cycle Cf. Figure (I.3). Similarly, if d′(0) > 0 then Γ is an unstable limit cycle. So, we have

the corresponding results that if P (0) = 0 and P ′(0) < 1, then Γ is stable limit cycle and if

P (0) = 0 and P ′(0) > 1, then Γ is an unstable limit cycle.

Theorem I.4. Let the di�erential equation (I.3) in the plane, and let φ(x, y, t) be the �ow of (I.3),
and ∇ · f(x, y) be the divergence of the vector �eld f = (ϕ, ψ) at (x, y). Now, let us take
y∗ and L = {x, x1 ≤ x ≤ x2} with x1, x2 ∈ R, we chose these so that the horizontal line
Σ = L × {y∗} is transversal; i.e., ψ(x, y∗) , 0 for x in L. Assume that L

′ ⊂ L is an open

subinterval such that for each x ∈ L′
, the solution of (I.3) starting from (x, y∗) returns toL×{y∗}

for some τ (x) > 0; i.e., ψ(x, y∗) ∈ L×{y∗}, and P (x) be the �rst coordinate of the �rst return
map or the Poincaré map as indicated in (I.4). Then, for any x ∈ L′

P ′(x) =
ψ(x, y∗)

ψ(P (x), y∗)
· exp{

∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

In particular if P (x0) = x0, then

P ′(x) = exp{
∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

Figure I.4: The straight line normal Σ = L× {y∗} to φ(t, x, y) at (x, y∗).

Proof. The derivative of the �ow Dφ is known to be a fundamental matrix solution of the �rst

variational equation φ(x, y, t), i.e.,

d

dt
Dφ(x, y, t) = Df(φ(x, y, t)) ·Dφ(x, y, t),

Since det Dφ(x, y, x0) = det(id) = 1 because of φ(x, y, x0) = φ(x, y) = (x, y), the

15 Chapter I. Introduction to bifurcation theory



I.3. The Poincaré map

Abel-Liouville formula gives that

det Dφ(x, y∗, τ (x)) = exp{
∫ τ(x)

0
∇ · f(φ(x, y∗, t)) dt}.

To complete the proof it is necessary to relate P ′(x) with Dφ(x, y∗, τ (x)). Taking the partial

derivative of (P (x), y∗) = φ(x, y∗, τ (x)) gives

(P ′(x), 0) =
∂φ

∂t
(x, y∗, τ (x)) + τ ′(x) · f(φ(x, y∗, τ (x)).

Using the fact at t = 0

d

dt
φ(·, t) ◦ φ(x, y∗, τ (x)) =

d

dt
φ(·, τ (x)) · φ(x, y∗, t),

it follows that f(P (x), y∗) = Dφ(x, y∗, τ (x)) · f(x, y∗). So,

ψ(P (x), y∗) · P ′(x) = det

 P ′(x) ϕ(P (x), y∗)
0 ψ(P (x), y∗)


= det

[
∂φ
∂t

(x, y∗, τ (x)) Dφ(x, y∗, τ (x)) · f(x, y∗)
]

+det
[
τ ′(x) · f(φ(x, y∗, τ (x))) f(φ(x, y∗, τ (x)))

]
= det

 Dφ(··)
 1

0

 Dφ(··)f(x, y∗)
 + 0

= det [Dφ(··)] · det


1

f(··)
0


=

(
exp

∫ τ(x)

0
∇ · f

[
φ(x, y∗, t)

])
· ψ(x, y∗).

Dividing by ψ(P (x), y∗) gives the desired formula.

Now, we are going to cite the most useful formula of the Poincaré map for studying the stability

of limit cycles of the vector �eld f .

Corollary I.1. Let E be an open subset of R2 and suppose that f = (ϕ,ψ) ∈ C1(E), and γ(t) be
a periodic solution of (I.3) of period T . then

P ′(0) = exp{
∫ T

0
∇ · f(γ(t))dt},

is the derivative of the Poincaré map P (s) along Σ.
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Corollary I.2. Under the hypotheses of corollary (I.1), the periodic solution γ(t) is

• a stable limit cycle if
∫ T

0 ∇ · f(γ(t))dt < 0,

• an unstable limit cycle if
∫ T

0 ∇ · f(γ(t))dt > 0.

Remark I.3. It may be a stable, unstable, or semi-stable limit cycle or it may belong to a continuous

band of cycles if this quantity is zero.

I.3.2 A multiple limit cycle of multiplicity k

De�nition I.15 (A multiple limit cycle of multiplicity k). Let P (s) be The Poincaré map for a cycle Γ
of planar analytic system (I.1) and let

d(s) = P (s)− s,

be the displacement function. Then if

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and dk(0) , 0,

Γ is called a multiple limit cycle of multiplicity k. If k = 1 then Γ is called a simple limit cycle.

Remark I.4. It can be shown the stability of the limit cycle Γ from ”k”.

1. k even⇒ Γ is semi-stable limit cycle,

2. k odd⇒ Γ is stable limit cycle if d(k)(0) < 0 and unstable limit cycle if d(k)(0) > 0.

We shall see in the next chapter that if Γ multiple limit cycle of multiplicity k, then ”k” limit cycles

can be made to bifurcate from Γ under a small periodic perturbation of the di�erential system (I.1).
Then it can be shown that in the analytic case, d(k)(0) = 0 for k = 0, 1, 2, . . . i� Γ belongs to a

continuous band of cycles.

I.3.3 The Poincaré map for a focus

In this part, we discuss The Poincaré map in the neighborhood of a focus, of course for planar

analytic systems, and to de�ne what we mean by a multiple focus.

Suppose that the planar analytic system (I.1) has a focus at the origin and that Df(0) , 0.

Then (I.1) is linearly equivalent to the system

 ẋ = ax− by + p(x, y),
ẏ = bx+ ay + q(x, y),

(I.5)
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with b , 0, and the power series expansions of p, q with second or higher degree terms. In polar

coordinates (I.5) equivalent to

 ṙ = ar + O(r2),
θ̇ = b+ O(r2),

(I.6)

Suppose that r(t, r0, θ0) and θ(t, r0, θ0) are the solution of (I.6) satisfying r(0, r0, θ0) = r0

and θ(0, r0, θ0) = θ0. Then for r0 > 0 su�ciently small and b > 0, θ is strictly increasing

function of t. Let t(θ, r0, θ0) be the inverse of this strictly increasing function and for a �xed θ0,

we de�ne the function

P (r0) = r(t(θ0 + 2π, r0, θ0), r0, θ0).

P (r0) is called the Poincaré map for the focus at the origin of (I.6); cf. Figure(I.5).

Figure I.5: The Poincaré map for a focus at the origin.

Lemma I.1. There exist r > 0, such that for all s, 0 < |s| 6 r

d(s) · d(−s) < 0.

For the proof see ([7]).

The following theorem gives us the stability and the multiplicity of a multiple focus .

Theorem I.5. Let P (s) be the Poincaré map for a focus at the origin of planar analytic system (I.5),
and d(s) = P (s)− s the displacement function then by lemma (I.1) and

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and d(k)(0) , 0,

k is an odd number; i.e., k = 2m+ 1 this fact provide in the next chapter. The integer m = (k−
1)/2 is called the multiplicity of the focus.
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• If m = 0 the focus is called a simple focus, then the sign of d′(0) = a , 0 determine the

stability of the focus; i.e., ( stable if a < 0 else unstable). But if d′(0) = 0 which means

a = 0; i.e., ((I.5) has a multiple focus or center at the origin), and the �rst nonzero derivative

δ ≡ dk(0) , 0 is called the Laypunov number for the focus, and the stability of this focus

depends on the sign of δ.

• If k = 3 then

δ3 = d′′′(0) = 3π
2b{[3(a30 + b03) + (a12 + b21)]− 1

b
[2(a20b20 − a02b02)

−a11(a02 + b20) + b11(a02 + b20)]},

where

p(x, y) =
∑

i+j≥2
aijx

iyj and q(x, y) =
∑

i+j≥2
bijx

iyj.

This information will be useful in the next chapter where we shall see thatm limit cycles can be

made to bifurcate from a multiple focus of multiplicitym under a suitable small perturbation of the

system (I.5). Now we are going to prove the Laypunov number for k = 3.

Proof. Suppose that the planar analytic system (1.5) has a focus at the origin and thatDf(0) , 0,

 x′ = ax− by + a02y
2 + a03y

3 + a11xy + a12xy
2 + a20x

2 + a21x
2y + a30x

3,

y′ = ay + bx+ b02y
2 + b03y

3 + b11xy + b12xy
2 + b20x

2 + b21x
2y + b30x

3,

with b , 0. In polar coordinates this system has the form



ṙ = ar + r2
(
(a02 + b11) sin2(θ) cos(θ) + a11 + b20) sin(θ) cos2(θ) + a20 cos3(θ)

+b02 sin3(θ)) + r3((a03 + b12) sin3(θ) cos(θ) + (a12 + b21) sin2(θ) cos2(θ)
+(a21 + b30) sin(θ) cos3(θ) + a30 cos4(θ) + b03 sin4(θ)).

θ̇ = r(−a02 sin3(θ)− (a11 − b02) sin2(θ) cos(θ)− (a20 − b11) sin(θ) cos2(θ)
+b20 cos3(θ)) + r2(−a03 sin4(θ)− (a12 − b03) sin3(θ) cos(θ)− (a21 − b12)×
sin2(θ) cos2(θ)− (a30 − b21) sin(θ) cos3(θ) + b30 cos4(θ)) + b.

then
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dr

dθ
= (ar + r2((a02 + b11) sin2(θ) cos(θ) + (a11 + b20) sin(θ) cos2(θ) + a20 cos3(θ)

+b02 sin3(θ)) + r3((a03 + b− 12) sin3(θ) cos(θ) + (a12 + b21) sin2(θ) cos2(θ)

+(a21 + b30) sin(θ) cos3(θ) + a30 cos4(θ) + b03 sin4(θ)))/(r(−a02 sin3(θ)

−(a11 − b02) sin2(θ) cos(θ)− (a20 − b11) sin(θ) cos2(θ) + b20 cos3(θ)]

+r2[−a03 sin4(θ)− (a12 − b03) sin3(θ) cos(θ)− (a21 − b12) sin2(θ) cos2(θ)

−(a30 − b21) sin(θ) cos3(θ) + b30 cos4(θ)) + b).

Now, by using the series of Taylor of the 5th order with a = 0, then F2(r, θ) the coe�cients of r2

which given by

F2(r, θ) =
[
(a02 + b11) sin2(θ) cos(θ) + a20 cos3(θ) + b02 sin3(θ) + (b20 + a11)

sin(θ) cos2(θ)
]
/b,

by integration of F2(r, θ) between 0 and 2π all over 2π we �nd 0, the next degree is 3 and F3(r, θ)
is the coe�cients of r3

. By integration, we obtain δ3.
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CHAPTER II

BIFURCATION THEORY

In this chapter, we consider two types of bifurcations, that can occur at a non-hyperbolic equilib-

rium point x0 of a di�erential system which depends on a parameter µ,

.
x= f(x, µ). (II.1)

with µ ∈ R, here for studying the stability we have two cases for the matrixDf(x0, µ0). The �rst

one is if it has a simple zero eigenvalue, in the second case we see if the saddle-node bifurcations

were generic.

II.1 Hopf bifurcations and bifurcations of limit cycles from

a multiple focus

In this section, we are interested in the one which has only a simple pair of purely imaginary

eigenvalues ( i.e., no other eigenvalues with zero real part ). Here the implicit function theorem

guarantees that in the neighborhood of µ0 there will be a unique equilibrium point xµ near x0.

We illustrate the idea and present a general theory for planar systems. For the more general

theory of Hopf bifurcation in higher dimensional system see [3] or [4]. Let the planar analytic system


.
x = µx− y + p(x, y),
.
y = x+ µy + q(x, y),

(II.2)

where the analytic functions p, q de�ned as in chapter (I).
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Changing over polar coordinates (r, θ) we �rst obtain the system


dr
dt

= F (r, θ) = µr + p(rcosθ, rsinθ)cosθ + q(rcosθ, rsinθ)sinθ,

dθ
dt

= 1 + Θ(r, θ) = 1 + q
r
cosθ − p

r
sinθ,

(II.3)

and then the equation

dr

dθ
= R(r, θ) =

F (r, θ)
1 + Θ(r, θ)

. (II.4)

De�nition II.1 (Hopf bifurcation). A Hopf bifurcation occurs, where a periodic orbit or limit cycle

is created as the stability of the equilibrium point xµ changes, arises or goes away as a parameter µ

varies. When a stable limit cycle surrounds an unstable equilibrium point, the bifurcation is called a

supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium point,

then the bifurcation is called a subcritical Hopf bifurcation.

Let F0 be a function of class k0 or analytical function in an open region G of R
n

, δ is some

positive number, r is a natural number such that r ≤ k0.

De�nition II.2 (δ-Closeness to rank r). A function F1 of class k1, r ≤ k1 or analytical in an open

regionG of Rn is said to be δ-close to rank r to the function F0, if at any point of the region

|F1 − F0| < δ, |F (l)
1xα1

1 xα2
2 . . . xαn

n
− F (l)

0xα1
1 xα2

2 . . . xαn
n
| < δ,

where l = 1, 2, . . . , r, all αi are non-negative numbers and α1 + α2 + · · ·+ αn = l.

Remark II.1. It is clear that

• If two functions are δ-close to rank r in some regionG, they are δ-close to any rank; moreover,

for any δ1, δ1 ≥ δ they are δ1-close to rank r in any subregion ofG.

• If we only have the one inequality everywhere in the regionG,

|F1 − F0| < δ,

i.e., only the functions as such are δ-close, but not their derivatives, the functions F1 and F0 are

said to be δ-close to rank 0.

De�nition II.3 (Focal value). The k-th focal value of the focusO is the value of the k-th derivative of

the displacement function (I.15) at the origin, i.e., d(k)(0).

Lemma II.1. If there exists k such that

d
′(0) = d

′′(0) = · · · = d(k−1)(0) = 0, and d(k)(0) , 0. (II.5)
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and the origin is a focus, then k is odd number.

Proof. Let suppose that k the multiplicity of the focus is even number, by (II.3) and (II.4), r = 0
is a solution of equation (II.4). Therefore

d(0) = 0. (II.6)

By using the series of Taylor to the displacement function d and using relations (II.5) and (II.6)
we �nd

d(s) =
d(k)(ηs)
k!

sk,

where 0 < η < 1. Therefore, if k is even, d(r) has the same sign for all su�ciently small r both

negative and positive. contraduction with (I.1).

De�nition II.4. If the lemma (II.1) satis�ed, and k = 2m + 1, m > 0, we shall say that the

focusO is a focus of multiplicitym.

The next theorem shows that a dynamic system may only have a �nite number of di�erent

bifurcations in the neighborhood of a focus of a �nite multiplicitym.

Theorem II.1 (Theorem of creation of limit cycles from a multiple focus). If the originO is a multiple

focus of multiplicitym ≥ 1 of a dynamic system (A), of classN ≥ 2m+ 1 then

1. there exist ε0 > 0 and δ0 > 0 such that any system (Ã) δ0-close to rank 2m+ 1 to system

(A) has at mostm closed paths in the neighborhood of the originNε0(O);

2. for any ε < ε0 and δ < δ0 there exists a system (Ã) of classN to rank 2m+ 1 to (A) and
hasm closed paths inNε0(O).

i.e., If the originO is a multiple focus of multiplicitym ≥ 1 of (A), systems (Ã) su�ciently close to

(A) to rank 2m+ 1 can have at mostm closed paths in a su�ciently small neighborhood of the focus.

Thus it may createm, but no more thanm limit cycles.

For the details of the proof of this theorem, see [7].

Now lets consider one particular case, which is often encountered in applications, namely a system

dependent on a single parameter and its bifurcations in the neighborhood of a multiple focus of

multiplicity 1 when the parameter is varied. Let the planar analytic system


.
x = a(µ) x+ b(µ) y + ϕ(x, y, µ),
.
y = c(µ) x+ d(µ) y + ψ(x, y, µ),

(Aµ)
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Theorem II.2 (Bifurcations in the neighborhood of a multiple focus of multiplicitym = 1). For a

planar analytic system has a focus at the origin, if δ3 , 0 de�ned as in the �rst chapter theorem (I.5)
then a Hopf bifurcation occurs at the origin of the planar analytic system (Aµ) at the bifurcation value

µ = 0;

1. if δ3 < 0, a unique stable limit cycle bifurcates from the origin of (Aµ) in this case, we have

what is called a supercritical Hopf bifurcation;

2. in the second case, if δ3 > 0, the critical point generates an unstable limit cycle as µ passes

through the bifurcation value µ = 0, we have what is called a subcritical Hopf bifurcation.

Proof. Let (Aµ) be a dynamic system which depends on the parameter µ, so we will consider the

bifurcations of this system associated with the variation of the parameter µ , in the neighborhood of

an equilibrium point O(0, 0), whenO(0, 0) is a multiple focus of multiplicity 1. For simplicity, we

assume that µ = 0 is the bifurcation value. Let

σ(µ) = a(µ) + d(µ), (II.7)

∆(µ) =
∣∣∣∣∣∣ a(µ) b(µ)
c(µ) d(µ)

∣∣∣∣∣∣ . (II.8)

Then

σ(0) = 0, (II.9)

∆(µ) > 0. (II.10)

We apply the transformation

ξ = x, η = −
a(0)√
∆(0)

x−
b(0)√
∆(0)

, (II.11)

which reduces (A0) ((Aµ) with µ = 0) to the canonical form

dξ

dt
= −

√
∆(0)η+ ϕ (ξ, η),

dη

dt
=

√
∆(0)ξ+ ψ (ξ, η). (II.12)

Since (II.11) is non-singular transformation, O remains a multiple focus of multiplicity 1 for

(II.12) also, and its stability does not change either, with the third derivative of the displacement

function does not vanish. We have seen in the �rst chapter that if δ3 < 0, the origin is a stable focus,

and if δ3 > 0 it is an unstable focus.

Let V0 be a su�ciently small neighborhood of the pointO bounded by a cycle without contact C

of system (A0) which contains no closed paths or equilibrium point other than O of this system,

and let σ0 > 0 be so small that any system (Aµ) for which has the following properties :

24 Chapter II. Bifurcation theory



II.1. Hopf bifurcations and bifurcations of limit cycles from a multiple focus

1. the curve C is a cycle without contact for this system;

2. system (Aµ) has no equilibrium point, other thanO, in V0;

3. the pointO is a focus of (Aµ);

4. system (Aµ) has at most one closed path in V0.

Suppose σ(µ) that reverses its sign as the system passes through the bifurcation value of the

parameter µ = 0, i.e., the focus O changes its stability. This condition is clearly satis�ed if

σ′(0) , 0. Let us now consider the di�erent possible cases.

The case (i): If δ3 < 0 we assume that when we passing through the bifurcation value µ = 0,

σ(µ) changes its sign from minus to plus. If σ′(µ) , 0 then this conditions are satis�ed when µ

increases, for σ′(µ) > 0; when µ decreases, for σ′(µ) < 0.

Since δ3 < 0, the focusO is a stable focus of (A0) for µ = 0. Therefore all the paths of (Aµ) enter

into the cycle without contact C as t increases. For σ(µ) < 0, O is a stable focus of (Aµ)). By

theorem (II.1), (Aµ) has at most one limit cycle in V0, and if this cycle exists, it is a simple cycle,

i.e., either stable or unstable. Clearly, for σ(µ) < 0 no such cycle exists. Indeed, if this cycle existed,

it would be stable from outside and unstable from the inside, i.e., it could not be simple. We have

thus established that if δ3 < 0 and σ(µ) < 0, (Aµ) has no limit cycles in V0.

Conversely, if σ(µ) > 0,O is an unstable focus of (Aµ). Then, reasoning as before, we conclude

that there is a single limit cycle Lµ of (Aµ) inside V0, and this is a simple stable cycle. It is ok seen

that if µ is su�ciently small, the cycle Lµ is arbitrarily close toO.

We thus obtain the following results. If δ3 < 0 and σ′(0) > 0, system (Aµ) has no limit cycles in

V0 for small negative µ and µ = 0, andO is the stable focus. As the system crosses the bifurcations

value (i.e., for µ > 0). The focus becomes unstable, and a stable limit cycle develops inside the

neighborhood V0. If µ varied in the opposite direction, i.e., we move from positive to negative µ,

the stable limit cycle which originally existed in V0 would contract to the focusO and vanish for

µ = 0, and the focus will change its stability accordingly.

As µ is further decreased, the focus remains stable and the topological structure of V0 does not

change.

For δ3 < 0 and σ′(0) < 0, the stable limit cycle is created on passing from positive to negative µ,

and conversely it disappears when µ increases and reaches zero.

The case (ii): For δ3 > 0. The investigation proceeds along the same lines as before.

The above results can be summarized in the following table :
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µ < 0 µ = 0 µ > 0

δ3 < 0, σ′(0) > 0
Unstable focus,

no cycle

Stable focus,

no cycle

Unstable focus,

stable cycle

δ3 < 0, σ′(0) < 0
Unstable focus,

stable cycle

Stable focus,

no cycle

Stable focus,

no cycle

δ3 > 0, σ′(0) > 0
Stable focus,

unstable cycle

Unstable focus,

no cycle

Unstable focus,

no cycle

δ3 > 0, σ′(0) < 0
Unstable focus,

no cycle

Unstable focus,

no cycle

Stable focus,

unstable cycle

The above analysis shows that the change in µ brings about a change in the stability of the focus

if a limit cycle is created from the focus disappears contracting into the focus. A stable focus creates

a stable cycle, and an unstable focus, an unstable cycle. Thus a focus creates a limit cycle of the same

stability, and the stability of the focus changes in the process.

Conversely, when the cycle disappears (when it is absorbed by the focus), the focus acquires the

same stability as that of the cycle before absorption. This state of things is not limited to the case

of a focus of multiplicity 1 : it is observed whenever a focus creates or absorbs a cycle of de�nite

stability(i.e., not semistable cycle).

Remark II.2. The same results are reserve for system (II.2), because of (II.2) is a special case of
(Aµ).

The next theorem proved the existance of the Hopf bifurcation in higher dimensional systems

where the Jacobian matrix has a pair of pure imaginary eigenvalues and no other eigenvalues with

zero real part; i.e., λi = ±βi for all i, with β > 0.

Theorem II.3 (Hopf). Suppose that the C4-system (II.1) with x ∈ Rn, µ ∈ R which has (x0, µ0)
as a critical point, with simple pair of purely imaginary eigenvalues and no other eigenvalues with zero

real part. Then there is a smooth curve of equilibrium points x(µ) and the eigenvalue, λ(µ) and λ(µ)
ofDf(x(µ), µ) which are pure imaginary at µ = µ0. Furthermore, if

d

dt
[Reλ(µ)]µ=µ0

, 0,

then there is a unique two-dimensional center manifold passing through the point (x0, µ0) and a smooth

transformation of coordinates such that the system (II.1) on the center manifold is transformed into

the normal form


.
x = −y + ax(x2 + y2)− by(x2 + y2) + O(|x|4),
.
y = x+ bx(x2 + y2) + ay(x2 + y2) + O(|x|4),

(II.13)
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in a neighborhood of the origin for a , 0, has a weak focus of multiplicity one at the origin and


.
x = µx− y + ax(x2 + y2)− by(x2 + y2),
.
y = x+ µy + bx(x2 + y2) + ay(x2 + y2),

(II.14)

is a universal unfolding of this normal form in a neighborhood of the origin on the center manifold.

This theorem can be proved by a direct application of the center manifold (cf.[10]).

The following theorem shows that at most m limit cycles can bifurcate from the origin which

is a weak focus or a multiple focus of multiplicity m > 1 as the parameter µ varies through the

bifurcations value and that there is an analytic perturbation of the vector �eld in (II.15), which

has exactly m limit cycles.


.
x = −y + p(x, y),
.
y = x+ q(x, y),

(II.15)

Theorem II.4 (The bifurcation of limit cycles from a multiple focus). If the origin is a multiple focus

of multiplicitym of the analytic system (II.15) then for k ≥ 2m+ 1

1. there is a δ > 0 and an ε > 0 such that any system ε-close to (II.15) in the Ck-norm has at

mostm limit cycles inNδ(0) and,

2. for any δ > 0 and ε > 0 there is an analytic system which is ε-close to (II.15) in theCk-norm

has exactlym simple limit cycles inNδ(0).

For the proof you can see [7].
In this section, we considered a multiple focus and showed that it may create closed paths. In next

section we will elucidate the number of paths that may be created in the neighborhood of a multiple

limit cycle.

II.2 Bifurcations at non-hyperbolic periodic orbit

Many interesting types of bifurcations can take place at a non-hyperbolic periodic orbit. This is

the case when the derivative of the Poincaré map at x0 ∈ Γ, has an eigenvalue equal to one.

De�nition II.5 (Non-hyperbolic periodic orbit). A non-hyperbolic periodic orbit is a periodic orbit

have two or more characteristic exponents with zero real part.

The system (II.1) is said to have a non-hyperbolic periodic orbit Γ0 through x0 at the bifurcation

value µ0 ifDP (x0, µ0) has an eigenvalue of unit modulus.
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De�nition II.6. A closed path Γ0 of a dynamic system (A) of class N is said to be limit cycle of

multiplicity k if

d′(0) = d′′(0) = . . . = d(k−1)(0) = 0, and d(k)(0) , 0,

(k is a natural number, k ≤ N ).

The three simplest types of bifurcations that can occurs at a non-hyperbolic periodic orbit in R
2

are illustrated in the following theorem.

Theorem II.5. Suppose that f ∈ C2(E × J) whereE is an open subset of R2 and J ⊂ R. Assume

that the system (II.1) has a periodic orbit Γ0 at the bifurcation value µ = µ0 and its Poincaré map

is P (s, µ) de�ned in a neighborhood Nδ(0) of the origin which is a multiple limit cycle. Then if

P (0, µ0) = 0,DP (0, µ0) = 1 we have three cases;

• ifD2P (0, µ0) , 0 and Pµ(0, µ0) , 0, a saddle-node bifurcation occurs at the non-hyperbolic

periodic orbit Γ0 at the bifurcation value µ = µ0, the periodic orbit Γ0 is a multiple limit cycle

of multiplicity 2 and exactly two limit cycles.

• if Pµ(0, µ0) = 0, DPµ(0, µ0) , 0 and D2P (0, µ0) , 0, then a transcritical bifurcation

occurs at the non-hyperbolic periodic orbit Γ0 at the bifurcation value µ = µ0,

• then if Pµ(0, µ0) = 0, DPµ(0, µ0) , 0, D2P (0, µ0) = 0 and D3P (0, µ0) = 0 a

pitchfork bifurcation occurs at the non-hyperbolic periodic orbit Γ0 at the bifurcation value

µ = µ0.

De�nition II.7. The rootO of the equation

g0(x) = 0, (II.16)

is called a root of multiplicity r of (II.16) if g0 is a function of class k > r and we have the following

condition are satis�ed

1. there exist ε0 > 0, σ0 > 0 such that any equation g(x) = 0 of class r which is σ0-close to

rank r to the function g0(x) has at most r roots for |x| < ε0,

2. for any positive ε < ε0 and σ there exists a function g(x), σ-close to rank r to the function

g0(x) such that the equation (II.16) has precisely r roots for |x| < ε.

A root x0 of a function g0(x) is said to be of multiplicity r ≥ 1 if functions g(x) su�ciently

close to g0(x) cannot have more than r roots in a su�ciently small neighborhood of the root x0,

but there is any number of functions su�ciently close to g0(x) which have exactly r roots in any

arbitrarily small neighborhood of x0.
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Figure II.1: The values of Γ0 correspond to the values of the parameter s .

Lemma II.2. We called the number x0 a root of multiplicity r of the function g0(x) if and only if

g0(x0) = g′0(x0) = g′′0 (x0) = . . . = g
(r−1)
0 (x0) = 0, and g(r)

0 (x0) , 0.

For more detail see [7].

Theorem II.6 (Theorem of the creation of limit cycles from a multiple limit cycle). If (A) is a

dynamic system of classN > 1 or an analytical system, and Γ0 is a multiple limit cycle of multiplicity

k (2 ≤ k ≤ N ), then

1. there exist ε0 > 0 and δ0 > 0 such that any system (Ã) δ0-close to rank k to system (A) has
at most k closed paths inNε0(Γ0);

2. for any ε < ε0 and δ < δ0 there exists a system (Ã) of classN (of analytical class, respectively)

which is δ0-close to rank k to (A) and has k closed paths inNε0(Γ0).

Proof. Lets prove the �rst proposition,let the displacement function d de�ned for all s, |s| ≤ η∗,

where η∗ some positive number. And let Γ0 be a limit cycle of multiplicity k of system (A), so

d
′(0) = d

′′(0) = · · · = d(k−1)(0) = 0, d(k)(0) , 0.

we see that 0 is a root of multiplicity k of the displacement function d, then by lemma (II.2) and

de�nition (II.7), there exist a positive number ε < η∗ and σ such that any function d̃(s) de�ned

for all s, |s| ≤ ε, and σ-close to d(s) to rank k may have at most k roots on the segment [−ε, ε]
(Figure (II.1)). By the second proposition of the de�nition (II.7), a su�ciently small positive

number is taken ε0, and σ0 is taken also so small that the following condition is satis�ed: if system

(Ã) σ0-close to rank k toA the function d̃(s) is de�ned for (Ã) on the arc Σ for all s, |s| ≤ η∗,
and for |s| ≤ η∗ the function d̃(s) is σ0-close to d(s) to rank k.
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CHAPTER III

RIGID SYSTEM

All rigid planar systems are given by the di�erential equation of the form

 ẋ = −y + x q(x, y),
ẏ = x+ y q(x, y),

(III.1)

where q : R2 → R is an analytic function. A di�erential planar system in which angular speed is

constant is called a rigid system. It is simple to see this system has the origin as the only equilibrium

point which is of center-focus type when q(0, 0) = 0. There are the following open questions:

• How to decide the stability of the equilibrium point at the origin?

• How to know whether the system presents or not a center at the origin?

These questions are also related to the second part of Hilbert’s 16th problem is still unsolved,

even in the quadratic case. The objective of this chapter is to classify the phase portraits of system

ẋ = −y + x(a+ bx2 + cy2), ẏ = x+ y(a+ bx2 + cy2), (III.2)

in the Poincaré disc. We assume that b2 + c2
is not zero.

Theorem III.1. The phase portraits in the Poincaré disc of systems (III.2) with b2 + c2 , 0 are

topologically equivalent to one of the four phase portraits given in Figure (III.1).
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Figure III.1: All topologically di�erent phase portraits in the Poincaré disc of systems (III.2).

.

III.1 The local phase portraits of system (3.2)

Study of systems (3.2) in the �nite region

Let us study the singular points and periodic orbits of systems (III.2) in the �nite region. For that,

the following lemma is needed.

Lemma III.1. For all θ ∈ [0, 2π] and λ > 0, the function

φ : θ → φ(θ) = −
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ λ,

is strictly positive if one of the following conditions holds.

(i) b > c, c > 0 and (b+ 2a2b+ c)(1− e4aπ)/2a(1 + a2) + λ > 0.

(ii) b > c and b < 0.

(iii) b < c, b > 0 and (b+ 2a2b+ c)(1− e4aπ)/2a(1 + a2) + λ > 0.

(iv) b < c and c < 0.

(v) b = c , 0 and (b/a)(1− e4aπ) + λ > 0.
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Proof.

The case (i): We assume that b > c, c > 0 and

(b+ 2a2b+ c)(1− e4aπ)/2a(1 + a2) + λ > 0.

Let the function

φ : θ → φ(θ) = −
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ λ.

The derivative of this function with respect to θ is

dφ

dθ
= −(b− c)e2aθ(

b+ c

b− c
+ cos 2θ).

From the conditions b > c and c > 0 it is easy to notice that (b+ c)/(b− c) > 1 which gives

(b+ c)/(b− c) + cos 2θ > 0 for all θ ∈ [0, 2π], thus φ is a strictly decreasing function for all

θ ∈ [0, 2π]. Since φ(0) = λ > 0, φ(2π) = (b+ 2a2b+ c)(1− e4aπ)/2a(1 +a2) +λ > 0
and φ is a strictly decreasing function we obtain that φ is strictly positive for all θ ∈ [0, 2π]. We

use the same argument to prove the case (iii).

The case (ii): We assume that b > c and b < 0, this implies (b+ c)/(b− c) < −1 what means

(b+ c)/(b− c) + cos 2s < 0, we get

φ(θ) = (c− b)
∫ θ

0
e2as(

b+ c

b− c
+ cos 2s)ds+ λ > 0.

Then φ is strictly positive. We use the same argument to prove the case (iv).

The case (v): Under the condition b = c , 0 the function φ becomes

φ(θ) = −
∫ θ

0
2be2asds+ λ.

The derivative of this function with respect to θ is

dφ

dθ
= −2be2aθ.

So, φ is strictly increasing or decreasing between φ(2π) = (b/a)(1 − e4aπ) + λ > 0 and

φ(0) = λ > 0. Then φ is strictly positive.

The singular points of systems (III.2) in �nite are studied in the proposition below.

Proposition III.1. Polynomial di�erential systems (III.2) have only one �nite singular point which

is the origin of coordinates. If a > 0 this singular point is an unstable focus or a stable focus if a < 0.
When a = 0, the origin is a center if b = −c and a focus if b , −c.
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Proof. Since the eigenvalues of the linear part at the origin are a± i, it follows that the origin is a

focus, which is unstable if a > 0 and stable if a < 0. In the case when a = 0, we use the Poincaré

map to distinguish between center and focus. The use of the polar coordinates systems (III.1)
become equivalent to the following Bernoulli equation

dr

dθ
= ar +

1
2

(b+ c+ (b− c) cos 2θ)r3.

By solving this last equation, we get

r(θ, r0) = e(−2aθ)
(
−
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

0

)−1
2

.

From Lemma (III.1) we see that r(θ, r0) is well de�ned. For this, we can de�ne the Poincaré map

by

P : r0 → P (r0) = r(2π, r0),

where r(2π, r0) = e(−4aπ)
(
−
∫ 2π

0 e2as(b+ c+ (b− c) cos 2s)ds+ r−2
0

)−1
2
.

For a = 0, we have

P (r0) = r(2π, r0) = (−2(b+ c)π + r−2
0 )−1

2 .

If b = −c we obtain r(2π, r0) = r0 for all r0 ∈ R+
, then the origin is center. If b , −c we get

r(2π, r0) , r0 for all r0 ∈ R+
, hence the origin is a focus.

In the following Proposition, limit cycles of systems (III.2) are studied.

Proposition III.2. The polynomial di�erential systems (III.1) have a unique limit cycle if (a >
0, b < 0, c < 0) or (a < 0, b > 0, c > 0), and its expression in polar coordinates is

r(θ) = e(−2aθ)
(
−
∫ θ

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

∗

)−1
2

,

where

r∗ =
(
−(b+ 2a2b+ c)

2a(1 + a2)

)−1
2

Proof. We have de�ned P in the proof of Proposition (III.1) by

P (r0) = r(2π, r0) = e(−4aπ)
(
−
∫ 2π

0
e2as(b+ c+ (b− c) cos 2s)ds+ r−2

0

)−1
2
.

To get a periodic orbit we must verify the equality r(2π, r0) = r0. So the unique positive value to
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verify this equation is

r∗ =
(
−(b+ 2a2b+ c)

2a(1 + a2)

)−1
2

.

From Lemma (III.1) and the value r∗ to be positive, we must take (a > 0, b < 0, c < 0) or

(a < 0, b > 0, c > 0). Then the proof of the proposition is completed.

The study of systems (3.2) in the in�nite region

Throughout this part, we will study the in�nite singular points in the Poincaré disc. Therefore,

we need to study all singular points in the chart U1 and verify whether the origin of the chart U2 is

a singular point. For that, we use the notations given in chapter 1 section (I.1.3), consequently,

then following proposition is deduced.

Proposition III.3. In the local chart U1, if cb > 0 the in�nity of systems (III.2) is �lled by singular

points, and if cb < 0 the in�nity of systems (III.2) is �lled by singular points and when eliminating

the common factor we get two others singular points (±
√
−b/c, 0). If b > 0 the singular point

(
√
−b/c, 0) is saddle and (−

√
−b/c, 0) is weak focus. If b < 0 the singular point (

√
−b/c, 0) is

weak focus and (−
√
−b/c, 0) is saddle.

Proof. The systems (III.2) on the local chart U1 is

u̇ = v2 + u2v2, v̇ = −bv − cu2v − av3 + uv3. (III.3)

If bc > 0, the line {v = 0, ∀u ∈ R} verify the algebraic system

u̇ = 0, v̇ = 0,

thus the in�nity of systems (III.2) is a line of singularities. when we eliminate the common factor v

systems (III.2) on the local chart U1 becomes

u̇ = v + u2v, v̇ = −b− cu2 − av2 + uv2. (III.4)

If bc < 0 these systems have two singular points (
√
−b/c, 0) and (−

√
−b/c, 0) with eigen-

values ±
√

2(b− c)
√
−b/c and ±

√
−2(b− c)

√
−b/c, respectively. In the case b > 0 the

value −2(b − c)
√
−b/c is negative, then the point (

√
−b/c, 0) is saddle and the eigenvalues

of (−
√
−b/c, 0) are±i

√
2(b− c)

√
−b/c. To distinguish if the singular point (−

√
−b/c, 0)

is center or focus, we need to move this singular point at the origin by the change of variable

u = w −
√
−b/c, thus systems (III.4) become

ẇ = −2
√
−b
c
w + (

−b
c

+ 1)v + w2, v̇ = 2
√
−b
c
cw − (a+

√
−b
c

)v2 − cw2 + v2w.
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The eigenvalues of the origin are −
√
−b/c ± i

√
−2

√
−b/c(c− b+

√
−b/c)/c. Then, the

singular point (−
√
−b/c, 0) is focus. We use same argument to prove in the case b < 0 that the

singular point (
√
−b/c, 0) is focus. The systems (III.2) on the chart U2 is

u̇ = −v2 − u2v2, v̇ = −bv − cu2v − av3 − uv3. (III.5)

The origin of the local chart U2 is one point of the line of singularities v = 0.

III.2 The global phase portraits of systems (3.2)

This section includes all information from subsection (III.1) to prove the global phase portraits

of systems (III.2).

III.2.1 The case: a = 0

In this case, the eigenvalues of the origin in �nite are purely imaginary. We use the Proposition

(III.1) to distinguish if the origin is a center or a focus. And with the help of Proposition (III.3),

we prove all di�erent cases in in�nite.

The case: (a = 0, b = −c)

From Proposition (III.1) the origin in �nite is a center and there is no limit cycle. And from

Proposition (III.3) in in�nite there is a line of singularities and two singular points (
√
−b/c, 0)

and (−
√
−b/c, 0) in the chart U1; saddle and focus respectively if b > 0, focus and saddle

respectively if b < 0. Then there is a unique possible global phase portrait in the Poincaré disc given

in Figure (III.2).

The case: (a = 0, bc > 0)

From Proposition (III.1), the origin in �nite is a focus; additionally, there is no limit cycle. Also,

from Proposition (III.3) in in�nite there is a line of singularities; along with a unique possible

global phase portrait in the Poincaré disc given in Figure (III.3).

The case: (a = 0, b , −c, bc < 0)

From Proposition (III.1), the origin in �nite is a focus and there is no limit cycle. Further-

more, from Proposition (III.3) in in�nite there is a line of singularities and two singular points

(
√
−b/c, 0) and (−

√
−b/c, 0) in the chart U1; saddle and focus respectively if b > 0, focus and
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Figure III.2: The global phase portrait of systems (III.2) for a = 0 and b = −c, has eleven separatrices (S=11)

and three canonical regions (R=3). The phase portrait can be obtained by taking a = 0, b = 1, c = −1.

Figure III.3: The global phase portrait of systems (III.2) for a = 0, b , −c and bc > 0, has tow separatrices

(S=2) and one canonical region (R=1). The phase portrait can be obtained by taking a = 0, b = 1, c = 1.
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III.2. The global phase portraits of systems (3.2)

Figure III.4: The global phase portrait of systems (III.2) for a = 0, b , −c and bc < 0, has thirteen

separatrices (S=13) and four canonical regions (R=4). The phase portrait can be obtained by taking a = 0,

b = 1, c = −2.

saddle respectively if b < 0. Then there is a unique possible global phase portrait in the Poincaré

disc given in Figure (III.4).

III.2.2 The case: a , 0

In this case, the eigenvalues of the origin are complex where the real part is not zero, thus the

origin in �nite is focus.

The case: when there is a limit cycle

From Proposition (III.2), in the cases (a > 0, ,b < 0, c < 0) or (a < 0, ,b > 0, c > 0) there

is a limit cycle. And from Proposition (III.3) in in�nite, there is a line of singularities. From there

on, there is a unique possible global phase portrait in the Poincaré disc given in Figure (III.5).

The case: when there is no limit cycle

From Proposition (III.2), there is a limit cycle if only if one of these conditions (a > 0, b < 0,

c < 0) or (a < 0, b > 0, c > 0) is veri�ed. If these conditions are not veri�ed and a , 0, the

global phase portrait of systems (III.2) in the Poincaré disc is given in Figure (III.4) if bc < 0 and

is given in Figure (III.3) if bc > 0.

37 Chapter III. Rigid system



III.2. The global phase portraits of systems (3.2)

Figure III.5: The global phase portrait of systems (III.2) when there is limit cycle has three separatrices (S=3)

and tow canonical regions (R=2). The phase portrait can be obtained by taking a = 1, b = −6, c = −2.
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CONCLUSION

This thesis has tried to show the global analysis of the behavior of solutions of a non-linear

planar di�erential system, more precisely those depend on a parameter or several parameters. For

that, we have �rst presented the necessary information as singular points and their nature, Hartman-

Grobman theorem, Poincaré map, phase portraits and structural stability. Then next we have tried to

understand in general theorems concern Hopf bifurcations and bifurcations of limit cycles from a

multiple focus and bifurcations at non-hyperbolic periodic orbit where limit cycles can be made to

bifurcate. Finlly, we have presented an example of a family of rigid systems that Hopf bifurcation

and global phase portraits have been studied, and we get four di�rent global phase portraits where

only one limit cycle created from the origin which is a multiple focus of multiplicity one.
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Abstract

In this work, we have focused on the planar polynomial systems and studied

the Hopf bifurcations and bifurcations of limit cycles from a multiple focus and

bifurcations at non-hyperbolic equilibrium point where limit cycles can be made

to bifurcate. In particular, the limit cycles and global phase portrait of class of

rigid systems under its parameters. The results of bifurcations of limit cycles are

proved by the uses of the Poincaré map and drawing all diffrent phase portraits.

Key words : Hopf bifurcation, Poincaré map, phase portrait, rigid system, limit

cycle, non-hyperbolic.

ملخص
للحلول والتشعبات هوبف تشعبات ودرسنا الحدود متعددة المستویة ا±نظمة علی رکزنا ، العمل هذا فی
الحلول نشاة یمکن حیث القطعی غیر التوازن نقطة عند التشعبات و الترکیز نقاط من المعزولة الدوریة
تاثیر تحت الصلبة ا±نظمة لفئة الکلی والرسم المعزولة الدوریة الحلول ، الخصوص وجه علی المعزولة. الدوریة
الحلول. ورسم بوانکاری ماب باستخدام مبرهنة المعزولة الدوریة الحلول دراسة من المستخرجة النتائج متغیراتها.

توازن نقطة ، حد دورة ، الصلبة ا¯نظمة ، الحلول رسم ، بوانکاریه ،ماب هوبف تشعب المفتاحیة: الکلمات
زائدی. غیر

R`éṡfi˚u‹m`é
Dans ce travail, nous sommes concentrés sur les systèmes polynomiaux pla-

naires et nous sommes étudié les bifurcations de Hopf et les bifurcations des cycles

limites à partir d’un foyer multiple, et des bifurcations au point d’équilibre non

hyperbolique où les cycles limites peuvent cree. En particulier, les cycles limites et

le portrait de phase global de la classe des systèmes rigides sous ses paramètres.

Les résultats des bifurcations de cycles limites sont prouvés par les utilisations de

la carte de Poincaré et par le dessin de tous différents les portraits de phase .

Mots clés : Bifurcation de Hopf, carte de Poincaré , portrait de phase, system

rigide, cycle limite, non hyperbolique.
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