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Introduction
Quadratic polynomial differential systems appear frequently in many areas of applied mathe-

matics, electrical circuits, astrophysics, in population dynamics, chemistry, neural networks, laser
physics, hydrodynamics, etc. Although these differential systems are the simplest nonlinear polyno-
mial systems, they are also important as a basic testing ground for the general theory of the nonlinear
differential systems.

There are more than one thousand papers published on quadratic polynomial differential systems
(simply QS) that are the differential systems of the form

ẋ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2,

ẏ = b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2.
(1)

Here the dot denotes the derivative with respect to an independent variable t, usually called time.
The difficulty of studying these differential systems is due to the fact that they depend on twelve

parameters. The authors of these published papers studied many subclasses of quadratic systems.
some of them :Lupan and Valu studied QS with a center [17], A.Gasull, S.Li-Ren and J. Llibre
studied QS with no finite real singularities [11], Nikolaev and Vulpe studied QS with a unique finite
singularity [19], Artés and Llibre studied QS with a focus and one anti-saddle [1], Artés, Llibre and
Vulpe studied QS with an integrable saddle [5], Llibre and Schlomiuk studied QS with a third order
weak focus [16], Gasull and Prohens studied QS with all points at infinity as singularities [12], Kalin
and Vulpe studied Hamiltonian QS [14] ), Llibre and Medrado studied Darboux integrable systems
[15], Vulpe and Sibirskii studied homogeneous QS [23], Schlomiuk and Vulpe studied QS with
invariant lines of total multiplicity greater than or equal to four [22], Cairó and Llibre studied QS
with rational first integrals [7], García, Llibre, and Pérez del Río studied QS with polynomial first
integrals [10], Coll Ferragut and Llibre studied QS with a polynomial inverse integrating factor [8].
More recently, the classification of some families of quadratic systems has been made using more
modern methods such as the algebraic and geometric invariants ; see, for instance, the classification
of the quadratic systems with a weak focus of second order [3], the classification of the quadratic
systems with a weak focus and an invariant straight line [13], and the classification of the geometric
configurations of singularities for quadratic systems [2] [4] [24] [25].

Recently, in 2019 Benterki and Llibre [6] classified the global phase portraits of quadratic po-
lynomial differential systems having some relevant classic quadratic algebraic curves as invariant
algebraic curves, i.e. these curves are formed by orbits of the quadratic polynomial differential sys-
tem. More precisely, they realized 14 different well-known algebraic curves of degree 4 as invariant
curves inside the quadratic polynomial differential systems. These realizations produced 28 topo-
logically different phase portraits in the Poincaré disc for such quadratic polynomial differential
systems.

Some results that we are need in our on differential systems and their qualitative theory are
introduced in chapter one. There we analyze the local behavior of the orbits near singular points.
The study of the singular points is the main objective of chapter 1. We mainly study the Non-
hyperbolic singular points, and we provide the basic tool for studying all singularities of polynomial
differential system in the plane. We end with a technique for constructing the global Phase Portrait
of a differential system. These systems can be extended to infinity, compactifying R2 by adding a
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circle, and extending analytically the flow to this boundary. This is done by the so-called " Poincaré
compactification, " and also by the more general "Poincaré Lyapunov compactification." In this way,
we can study the behavior of the orbits near infinity.

In the second chapter, we construct a new class of quadratic polynomial differential system which
exhibits an invariant algebraic curve of degree six. The system obtained has three parameters. We
classify all its phase portraits. More precisely, we characterize the class of this quadratic system in
the plane and we provide all the different topological phase portraits that this class exhibits in the
Poincaré disc. This is made by using the techniques described in the first chapter.

In the third chapter, we provide a new class of quadratic polynomial differential system wich
exhibits the whell- known cubic curve called cubic egg curve as the first integral, we study the
global phase portraits of this class of integrable QS with two parameters, at all their finite and infinite
singular points in the Poincaré disc.
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Chapitre 1
Preliminary concepts of differential systems

In this chapter we introduce some basic results on the qualitative theory of differential equations
with special emphasis on planar differential equations. First we recall the basic notions of singular
points and their local phase portrait.
We end the chapter by a technique for constructing the global phase portrait of differential systems.

These systems can be extended to infinity, compactifying R2 by adding a circle, and extending
analytically the flow to this boundary. This is done by the so-called " Poincaré compactification ".

1.1 Singular points

Definition 1.1 A point x0 ∈ Rn is called an equilibrium point or critical point of

ẋ = f(x), (1.1)

if f(x0) = 0.

1.1.1 Local structure of singular points

Let p be a singular point of a planar Cr vector field χ = (P,Q). In general the study of the
local behavior of the flow near p is quite complicated. Already the linear systems show different
classes, even for local topological equivalence.
We say that :

Dχ(p) =


∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)


is the linear part of the vector field χ at the singular point p.

The singular point p is called non–degenerate if 0 is not an eigenvalue.
The singular point p is called hyperbolic if the two eigenvalues of Dχ(p) have real part dif-

ferent from 0.
The singular point p is called semi-hyperbolic if exactly one eigenvalue of Dχ(p) is equal to

0.
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1.1. SINGULAR POINTS

Hyperbolic and semi-hyperbolic singularities are also said to be elementary singular points.
The singular point p is called nilpotent if both eigenvalues of Dχ(p) are equal to 0 but

Dχ(p) � 0.
The singular point p is called linearly zero ifDχ(p) ≡ 0.
The singular point p is called a center if there is an open neighborhood consisting, besides the

singularity, of periodic orbits.
The singularity is said to be a center if the eigenvalues of Dχ(p) are purely imaginary without
being zero.
The vector field χ can have either a center or a focus at p. To distinguish between a center and a
focus, it is a difficult problem in the qualitative theory of planar differential equations.
We note that a center-focus problem also exists for nilpotent or linearly zero singular points.

In order to study the local Phase Portrait at the singular point p we define the determinant, the
trace and the discriminant at p as :

det(p) =

∣∣∣∣∣∣∣∣∣
∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)

∣∣∣∣∣∣∣∣∣ ,

tr(p) =
∂P

∂x
(p) +

∂Q

∂y
(p),

∆(p) = tr(p)2 − 4det(p),

respectively. It is easy to check that
(1) if det(p) 6= 0, then the singular point is non–degenerate and it is either hyperbolic, or

linearly a center ;
(2) if det(p) = 0 but tr(p) 6= 0, then the singular point is semi-hyperbolic ;
(3) if det(p) = 0 and tr(p) = 0, then the singular point is linearly zero or nilpotent

depending on whetherDχ(p) is the zero matrix or not ;
(4) if det(p) < 0, λ1 and λ2 have different sign, the origin is a saddle ;
(5) if det(p) > 0, tr(p) > 0 and λ1, λ2 > 0, the origin is an unstable node ;
(6) if det(p) > 0, tr(p) < 0 and λ1, λ2 < 0, the origin is a stable node.
It is obvious that if p = (x0, y0) is a singular point of the differential system :

ẋ = P (x, y),
ẏ = Q(x, y).

(1.2)

Then the point (0, 0) is a singular point of the system

˙̄x = P (x̄, ȳ),
˙̄y = Q(x̄, ȳ).

(1.3)

Where x = x̄ + x0 and y = ȳ + y0 and now the functions P (x̄, ȳ) and Q(x̄, ȳ) start with
terms of order 1 in x̄ and ȳ. In other words, we can always move a singular point to the origin of
coordinates in which case system (1.2) becomes (dropping the bars over x and y).

ẋ = ax+ by + F (x, y),
ẏ = cx+ dy +G(x, y).

(1.4)
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1.2. PHASE PORTRAITS

Where F and G vanish together with their first partial derivatives at (0, 0). By a linear change of
coordinates the linearizationDχ(0, 0) regarded as the matrixa b

c d

 .
Can be placed in real Jordan canonical form. If the singularity is hyperbolic, the Jordan form is :

λ1 0
0 λ2

 or
λ1 1

0 λ2

 or
 α β

−β α

 .
With λ1, λ2 6= 0, α 6= 0 and β > 0.
In the semi-hyperbolic case and the linearly center case, we obtain, respectively

λ 0
0 0

 and
 0 β

−β 0

 .
With λ 6= 0 and β > 0, while we obtain

0 1
0 0

 and
0 0

0 0

 .
In the nilpotent case and the linearly zero case, respectively
If moreover we allow a time rescaling, introducing a new time µ = γt for some γ > 0 as is usual
when working with equivalences, then we can also suppose that in the hyperbolic case one of the
numbers λ1 or λ2 is equal to±1 and either α = ±1 or β = 1, while in the semi-hyperbolic case
λ = ±1 and in the linearly center case β = 1.

1.2 Phase portraits

Although it is often impossible (or very difficult) to determine explicitly the solutions of an
ordinary differential system, it is still important to obtain information about these solutions, at least
of qualitative nature. To a considerable extent, this can be done describing the Phase Portrait of the
differential system. We note that in this section we consider only autonomous systems.

1.2.1 Orbits

Let f : D → Rn be a continuous function in an open set D ⊂ Rn and consider the autono-
mous system :

ẋ = f(x). (1.5)

The setD is called the Phase space of the system.

Definition 1.2 If x = x(t) is a solution of system (1.5) with maximal interval I , then the set
x(t) : t ∈ I ⊂ D is called an orbit of system (1.5).
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1.3. HARTMAN-GROBMAN THEOREM

Definition 1.3 The Phase Portrait of an autonomous ordinary differential system is obtained repre-
senting the orbits in the set D, also indicating the direction of motion. It is common not to indicate
the directions of the axes, since these could be confused with the direction of motion.

Definition 1.4 A sector which is topologically equivalent to the sector shown in Figure 1.1(a) is
called a hyperbolic sector.
A sector which is topologically equivalent to the sector shown in Figure 1.1(b) is called a parabolic
sector.
And a sector which is topologically equivalent to the sector shown in Figure 1.1(c) is called an
elliptic sector. For more detail see [20].

FIGURE 1.1 – (a) A hyperbolic sector. (b) A parabolic sector. (c) An elliptic sector

1.3 Hartman-Grobman Theorem

The Hartman-Grobman Theorem is another very important result in the local qualitative theory
of ordinary differential systems. The theorem shows that near a hyperbolic equilibrium point x0, the
nonlinear system

ẋ = f(x), (1.6)

has the same qualitative structure as the linear system :

ẋ = Ax, (1.7)

with A = Df(x0). Throughout this section we shall assume that the singular point x0 has been
translated to the origin.

Definition 1.5 Two autonomous systems of differential equations such as (1.6) and (1.7) are said
to be topologically equivalent in a neighborhood of the origin or to have the same qualitative struc-
ture near the origin if there is a homeomorphism H mapping an open set U containing the origin
onto an open set V containing the origin which maps trajectories of (1.6) inU onto trajectories of
(1.7) in V and preserves their orientation by time in the sense that if a trajectory is directed from x1

to x2 in U , then its image is directed from H(x1) to H(x2) in V . If the homeomorphism H pre-
serves the parameterization by time, then the systems (1.6) and (1.7) are said to be topologically
conjugate in a neighborhood of the origin.

Theorem 1.1 (The Hartman-Grobman Theorem) Let E be an open subset of Rn containing the
origin, let f ∈ C1(E), and let φ(t) be the flow of the nonlinear system (1.6). Suppose that
f(0) = 0 and that the matrixA = Df(0) has no eigenvalue with zero real part. Then there exists
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1.4. SEMI-HYPERBOLIC AND NON-HYPERBOLIC SINGULAR POINTS IN R2

a homeomorphism H of an open set U containing the origin onto an open set V containing the
origin such that for each x0 ∈ U , there is an open interval I0 ⊂ R containing zero such that for
all x0 ∈ U and t ∈ I0

H ◦ φt(x0) = exp(At) ◦H(x0),

(i.e ; H maps trajectories of (1.6) near the origin onto trajectories of (1.7) near the origin and
preserves the parameterization by time).

1.4 Semi-hyperbolic and Non-hyperbolic singular points in R2

In this part we present some results on non-hyperbolic singular points of planer analytic systems.
This work originated with Poincaré and was extended by Bendixson and more recently by Andronov.
We assume that the origin is an isolated singular point of the planar system

ẋ = P (x, y),
ẏ = Q(x, y),

(1.8)

where P and Q are analytic in some neighborhood of the origin. We have already presented some
results for the case when the matrix of the linear partA = Df(0) has pure imaginary eigenvalues,
i.e ; when the origin is a center for the linearized system. In this part we give some results for the
case when the matrixA has one or two zero eigenvalues, butA 6= 0.
We first consider the case when the matrixA has one zero eigenvalue and detA = 0, but trA 6= 0.
In this case, the system (1.8) can be put into the form :

ẋ = P (x, y),
ẏ = y +Q(x, y),

(1.9)

where P and Q are analytic in a neighborhood of the origin and have expansions that begin with
second-degree terms in x and y.

Semi hyperbolic singular points

Theorem 1.2 Let the origin be an isolated singular point for the analytic system (1.9). Let y =
φ(x) be the solution of the equation y + Q(x, y) = 0 in a neighborhood of the point (0, 0),
and suppose that the function ψ(x) = P (x, φ(x)) in a neighborhood of x = 0 have the form
ψ(x) = amx

m + ..... wherem ≥ 2 and am 6= 0. Then :

1. Form odd and am > 0, the origin is an unstable node ;

2. form odd and am < 0, the origin is a (topological) saddle ;

3. form even, the origin is a saddle-node.

Example 1.1 Let the system
ẋ = x2,

ẏ = y.
(1.10)
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1.4. SEMI-HYPERBOLIC AND NON-HYPERBOLIC SINGULAR POINTS IN R2

Then we can use Theorem 1.2 y = φ(x) the solution of the equation y = 0 let the function
ψ(x) = x2 in a neighborhood of x = 0 have the form ψ(x) = amx

m with a = 1 and m = 2.
Sincem is even then according of Theorem 1.2 the origin is a saddle-node.

Even without Theorem 1.2, this system is easy to discuss since it can be solved explicitly for

x(t) = (
1
x0
− t)−1 and y(t) = y0e

t. The phase portrait for this system is shown in Figure (1.3).

FIGURE 1.2 – A saddle-node at the origin.

1.4.1 Non-hyperbolic (Nilpotent singular points)

Theorem 1.3 Let (0, 0) be an isolated singular point of the vector field χ given by :

ẋ = y,

ẏ = akx
k[1 + h(x)] + bnx

ny[1 + g(x)] + y2R(x, y),
(1.11)

where h(x), g(x) and R(x, y) are analytic in a neighborhood of the origin, h(0) = g(0) = 0,
k > 2, ak 6= 0 and n > 1.
Let k = 2m+ 1 withm > 1 in (1.11) and let λ = b2

n + 4(m+ 1)ak. Then
— If ak > 0, the origin is a (topological) saddle ;
— If ak < 0, the origin is :

1. a focus or a center if bn = 0, and also if bn 6= 0 and n > m, or if n = m and λ < 0 ;

2. a node if bn 6= 0, n is an even number and n < m and also if bn 6= 0, n is an even number
n = m and λ ≥ 0 ;

3. a critical point with an elliptic domain if bn 6= 0, n is an odd number and n < m and also
if bn 6= 0, n is an odd number n = m and λ ≥ 0.

Let k = 2m withm ≥ 1 in (1.11). Then the origin is :

1. a cusp if bn = 0 and also if bn = 0 and n ≥ m ;

9



1.5. LOCAL CHARTS

2. a saddle-node if bn 6= 0 and n < m.

Example 1.2 Let the system :
ẋ = y,

ẏ = x2 + 2x2y + xy2.
(1.12)

Then we use the theorem 1.3. aK = 1, bn = 2, n = 2. k = 2m, k > 0⇒ m = 1, k = 2m.
The phase portrait for this system is shown in Figure (1.3).

We see that a deleted neighborhood of the origin consists of two hyperbolic sectors and two
separatrices. This type of critical point is called a cusp.

FIGURE 1.3 – A cusp at the origin

1.5 local charts

Let X be the planar polynomial vector field. We define the Poincaré compactified vector field
p(X) associated toX as follows (see all the details for instance in Chapter 5 of [9] ).

The Poincaré sphere is defined as s2 = {y = (y1, y2, y3) ∈ R3 : y2
1 + y2

2 + y2
3 = 1} and

its tangent space at the point y ∈ s2 is denoted by Tys2. We identify the plane R2 where we have
our vector fieldX with the plane T(0,0,1)S2.
We define the central projection f : T(0,0,1)S2 −→ S2 as follows : to each point q ∈ T(0,0,1)S2

the central projection associates the two intersection points of the straight line which connects the
points q and (0, 0, 0) with the sphere S2.
This central projection gives two copies of X in S2, one in each hemisphere. Let X ′ be the vector
fieldDf ◦ X , which is defined in S2 minus its equator S1 = {y ∈ S2 : y3 = 0}. The equator S1

can be identified with the infinity of R2.
We extend the vector field X ′ on S2 \ S1 to a vector field p(X) on S2 as follows : p(X) is the
unique analytic extension of y7

3X ′ to S2.

10



1.5. LOCAL CHARTS

In summary, we have two symmetric copies of X on S2 \ S1, and studying the dynamics of p(X)
near S1, we have the dynamics of X at infinity. The Poincaré disc, denoted by D2, is the clo-
sed northern hemisphere of {y ∈ S2 : y3 ≥ 0} projected on y3 = 0 under the projection
(y1, y2, y3) 7→ (y1, y2).

The infinity S1 is invariant under the flow of the Poincaré compactifcation p(X).
Here two polynomial vector fieldsX andY associated to systems (1.7) are topologically equivalent
if there is a homeomorphism on S2 preserving the infinity S1 carrying orbits of the flow of p(X)
into orbits of the flow of p(Y ), either reversing or preserving the sense of all orbits.

For computing the analytic expression of p(X) we use the fact that S2 is a differentiable mani-
fold.
Thus we take the six local charts Ui = {y2 ∈ S2 : yi > 0}, and Vi = {y2 ∈ S2 : yi < 0}
for i = 1, 2, 3 ; and the associated diffeomorphisms Fi : Ui −→ R2 and Gi : Vi −→ R2 for
i = 1, 2, 3 are respectively the inverses of the central projections from the planes tangent at the
points (1, 0, 0) ; (−1, 0, 0); (0, 1, 0); (0,−1, 0); (0, 0, 1) and (0, 0,−1). The value of Fi(y)
orGi(y) for some
i = 1, 2, 3 is denoted by z = (z1, z2), consequently according to the local charts under conside-
ration the same letter z represents different coordinates.

FIGURE 1.4 – The local charts in the Poincaré sphere

After a rescaling in the independent variable in the local chart (U1, F1) the expression for p(X)
is

u̇ = vn
[
−uP

(
1
v
,
u

v

)
+Q

(
1
v
,
u

v

)]
, v̇ = −vn+1P

(
1
v
,
u

v

)
;

in the local chart (U2, F2) the expression for p(X) is

u̇ = vn
[
P

(
u

v
,

1
v

)
− uQ

(
u

v
,

1
v

)]
v̇ = −vn+1Q

(
u

v
,

1
v

)
;

and for the local chart (U3, F3) the expression for p(X) is

u̇ = P (u, v), v̇ = Q(u, v).

In the chart (Vi, Gi) the expression for p(X) is the same than in the chart (Ui, Fi) multiplied by
(−1)n+1 for i = 1, 2, 3. We note that the points at the infinity S1 in any chart have coordinates
(u, v) = (u, 0).
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1.6. TOPOLOGICAL EQUIVALENCE

The equilibrium points of p(X) which come from the equilibrium points of X are called finite
equilibrium points of X , and the equilibrium points of p(X) which are in S1 are called infinite
equilibrium points ofX .

We observe that the unique infinite equilibrium points which cannot be contained in the charts
U1 ∪ V1 are the origins of the local charts U2 and V2.
Therefore when we study the infinite equilibrium points on the charts U2 ∪ V2, we only need to
verify if the origin of these charts are equilibrium points.

FIGURE 1.5 – The local charts in the Poincaré sphere

1.6 Topological equivalence

Two polynomial vector fields X and Y on R2 are topologically equivalent if there is a homeo-
morphism on the Poincaré sphere S2 preserving the infinity S1 carrying trajectories of the flow of
p(X) into trajectories of the flow of p(Y ), either preserving or reversing the sense of all trajecto-
ries.

Here a separatrix of the Poincaré compactification p(X) is a trajectory which is either an equi-
librium point, or a limit cycle, or a trajectory which belongs to the boundary of a hyperbolic sector
at an equilibrium point, finite or infinity, or any trajectory contained at the infinity S1. We denote by
S(p(X)) the set formed by all separatrices of p(X). It is known that the set S(p(X)) is closed,
see for instance Neumann [18].

1.7 Invariant algebraic Curves

Definition 1.6 The differential system of the form

ẋ = p(x, y),
ẏ = q(x, y).

(1.13)

12



1.7. INVARIANT ALGEBRAIC CURVES

where the dependent variables x and y are real or complex, the independent one (the time) t is real,
and p and q are polynomials in the variablesx and y. We denote bym = max{deg(p), deg(q)}
the degree of the polynomial system.

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

be the planar polynomial vector field of degree m associated to system (1.13). Suppose that
system (1.13) has a trajectory (not a singular point) whose path is described by an algebraic curve.
That is, it lies within the zero set of a polynomial, f(x, y) = 0. It is clear that the derivative of f
with respect to time will not change along the curve f = 0. Since this derivative can be expressed
as a polynomial in x and y which vanishes on f = 0, we are lead directly to the equation

P
∂f

∂x
+Q

∂f

∂y
= kf. (1.14)

where k must be a polynomial in x and y of degree at most m − 1, called the cofactor of f = 0.
We shall also write this as Xf = kf . Conversely, given a polynomial f which satisfies (1.14),
it is easy to see that its zero set must be composed of trajectories of (1.13). We call a polynomial
solution of (1.14) an invariant algebraic curve of (1.13).
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Chapitre 2
Global phase portraits of quadratic systems
exhibiting an invariant algebric curve of degree
six

In this chapter we study the global phase portraits of QS with three parameters at all their finite
and infinite singular points in the Poincaré disc, this made by using the technics described in chapter
one.

The polynomial quadratic system which we are going to study have an invariant algebraic curve
of degree six.

2.1 Statement and the main results.

Our first result is the following

Theorem 2.1 The algebraic curve of degree six given by : H(x, y) = 0 with H(x, y) =
x4(y2 + x2) − (bx2 − ax3)2, for ab 6= 0 is an invariant algebraic curve with associated
cofactor k(x, y) = cy of the quadratic system :

ẋ = xy,

ẏ =
1
2
b2(4− c) + ab(c− 5)x+

1
2

(a2 − 1)(6− c)x2 +
1
2

(c− 4)y2.
(2.1)

Proof 1 To prove this theorem we can easely verify that we have the partially differential equation :

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂y
= KH.

Our main result in this chapter is given by the following theorem.

Theorem 2.2 The global phase portraits of QS (2.1) given in Theorem 2.1 are topologically equi-
valent to

(1) for a ∈ (1,+∞) and c ∈ (−∞, 4) ;

(2) for a ∈ (1,+∞) and c ∈ (4, 6) ;

14
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(3) for a ∈ (1,+∞) and c ∈ (6,+∞) ;

(4) for a ∈ (1,+∞) and c = 4 ;

(5) for a ∈ (1,+∞) and c = 6 or a ∈ (0, 1) and c = 6 ;

(6) for a = 1 and c ∈ (−∞, 4) ;

(7) for a = 1 and c = 4 ;

(8) for a = 1 and c ∈ (4, 5) ;

(9) for a = 1 and c = 5 ;

(10) for a = 1 and c ∈ (5,+∞) ;

(11) for a ∈ (0, 1) and c ∈ (−∞, 4) ;

(12) for a ∈ (0, 1) and c = 4 ;

(13) for a ∈ (0, 1) and c ∈ (4, c1) or c ∈ (c2, 6) where c1 = 5 −
√

1− a2 and c2 =
5 +
√

1− a2 ;

(14) for a ∈ (0, 1) and c ∈ (c1, c2) ;

(15) for a ∈ (0, 1) and c ∈ (6,+∞) ;

(16) for a ∈ (0, 1) and c = c1 or c = c2.

1 2 3

4 5 6
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2.2. GLOBAL PHASE PORTRAITS IN THE POINCARÉ DISC

16

2.2 Global phase portraits in the Poincaré disc

In this part we will study the global phase portraits in the Poincaré disc of the quadratic polyno-
mail differential system (2.1).

Before start the study of system (2.1) we mention the following remark.

Remark 2.1 System (2.1) is invariant under the changes
(x, y, t, a, b, c) −→ (−x,−y,−t,−a, b, c) and (x, y, t, a, b, c) −→ (−x,−y,−t, a,−b, c)

then we only need to study the system for a > 0 and b > 0.

2.3 Finite singular points

Taking into account the symmetry given in Remark 2.1, we can reduce the study of singular
points of system (2.1) for a > 0 and b > 0.

Then the finite singular points of system (2.1) are given in the following proposition :

Proposition 2.1 The following statements hold.
For all the cases except c = 4 system (2.1) has two hyperbolic singular points P1 = (0,−b)

and P2 = (0, b), such that P1 and P2 are saddles if c ∈ (−∞, 4), and P1 is a stable node and
P2 is an unstable node if c ∈ (4,+∞).

(i) Assume a > 1
• If c ∈ (−∞, 4) the system has four hyperbolic singularities : three saddles at P1, P2

and P3 and a center at P4, such that P3 =
(
(ab(c−5)+A)/((a2−1)(c−6)), 0

)
andP4 =

(
(ab(c−5)−A)/((a2−1)(c−6)), 0

)
. WhereA = −b

√
a2 + (c− 6)(c− 4).

• If c ∈ (4, 6) it has four hyperbolic singularities : a stable node at P1, an unstable node
at P2 and two saddles at P3 and P4.
• If c ∈ (6,+∞) the system has four hyperbolic singularities : a stable node at P1, an

unstable node at P2 , a center at P3 and a saddle at P4.
• If c = 4 it has one saddle at (ab/(a2 − 1), 0) and x = 0 as a line of singulariy.
• If c = 6 it has three hyperbolic singularities : a stable node at P1, an unstable node at
P2 and a saddle at (b/a, 0).

17



2.3. FINITE SINGULAR POINTS

(ii) Assume a = 1
• If c ∈ (−∞, 4) the system has three hyperbolic singularities : two saddles at P1 and P2

and a center atR = (b(c− 4)/2(c+ 5), 0).
• If c = 4 it has a line of singularity x = 0.
• If c ∈ (4, 5) ∪ (5,+∞) it has three hyperbolic singularities : a stable node at P1, an

unstable nodes at P2 and a saddle atR.
• If c = 5 it has two hyperbolic singularities : a stable node at P1 and an unstable node at
P2.

(iii) Assume 0 < a < 1
• If c ∈ (−∞, 4) the system has four hyperbolic singularities : two saddles at P1 and P2

and two centers at P3 and P4, with P3=
(
(ab(c− 5) +A)/((a2− 1)(c− 6)), 0

)
, and

P4 =
(
(ab(c−5)−A)/((a2−1)(c−6)), 0

)
whereA = −b

√
a2 + (c− 6)(c− 4).

• If c ∈ (4, c1)⋃(c2, 6) where c1 = 5 −
√

1− a2 and c2 = 5 +
√

1− a2 , it has four
hyperbolic singularities : a stable node at P1, an unstable node at P2, a center at P3 and a
sadlle at P4.
• If c ∈ (6,+∞) it has four hyperbolic singularities : a stable node at P1, an unstable node

at P2 and two saddles at P3 and P4.
• If c = 6 it has three hyperbolic singularities :a stable node at P1, an unstable node at P2

and a saddle at (b/a, 0).
• If c = c1 or c = c2 it has two hyperbolic nodes, a stable one at P1 and an unstable at P2,

the third singularity is a nilpotent cusp at P5 such that for c = c1

P5 =
(
(b(a2 − 1 +

√
1− a2))/(a − a3), 0

)
, and for c = c2 P5 =

(
(b(a2 − 1 +

√
1− a2))/(a3 − a), 0

)
.

• If c ∈ (c1, c2) it has two hyperbolic singularities : a stable node at P1 and an unstable
node at P2.
• If c = 4 it has a center at (ab/(a2 − 1), 0) and x = 0 as a line of singulariy .

Proof We start the proof by studing the nature of local phase portraits at P1 = (0,−b) and
P2 = (0, b), when we look for the singularities of system (2.1) for all the cases of the parameters
except when c = 4.

If c 6= 4 we can prove easely that P1 and P2 are singular points for system (2.1).
The Jacobian matrix of the vector field defined in (2.1) at (x0, y0) is given by :

M = Dχ(x0, y0) =

 y0 x0

ab(c− 5) + (a2 − 1)(6− c)x0 (c− 4)y0

 .
• At P1 the matrixM becomes

M =

 −b 0
ab(c− 5) (4− c)b

 .
The eigenvalues of this matrix are λ1 = −b and λ2 = (4− c)b. Hence, P1 is a hyberbolic
saddle if c ∈ (−∞, 4) and a stable node if c ∈ (4,+∞).
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• At P2 the matrixM becomes

M =

 b 0
ab(c− 5) (c− 4)b

 .
The eigenvalues of this matrix are λ1 = b and λ2 = (c − 4)b. Hence, P2 is a hyberbolic
saddle if c ∈ (−∞, 4) and an unstable node if c ∈ (4,+∞).

I Proof of statement (i)
If a ∈ (1 +∞) we distinguish many cases.
For c 6= 4 and c 6= 6, system (2.1) has four singular points : P1, P2(we have already

studied them), P3 =
(
(ab(c− 5) +A)/((a2 − 1)(c− 6)), 0

)
and

P4 =
(
(ab(c − 5) − A)((a2 − 1)(c − 6)), 0

)
, such that A = −bS where S =√

a2 + (c− 6)(c− 4).

• At P3 the eigenvalues of linear part of system (2.1) are λ1,2 = ±
bB

(a2 − 1)(c− 6)
,

whereB =
√
D andD = −S(a2 − 1)(c− 6)(S − a(c− 5)).

There fore, we have D > 0 if c ∈ (−∞, 4) ∪ (4, 6) then P3 is a saddle and we have
D < 0 if c ∈ (6,+∞) then the eigenvalues of the matrix of vector field in (2.1) are
imaginary purely such this equilibrum point is either a focus or a center, but due to the fact
that system (2.1) is symetric with respect to (xx′) axes, P3 is a center.

• At P4 the eigenvalues of the matrix M are λ3,4 =
±bV

(a2 − 1)(c− 6)
, such that V =

√
Q andQ = −S(a2 − 1)(c− 6)(S + a(c− 5)).

As a result, we have Q < 0 if c ∈ (−∞, 4) then the eigenvalues of the matrix of vector
field in (2.1) are imaginary purely such this equilibrum point is either a focus or a center,
but due to the fact that system (2.1) is symetric with respect to (xx′) axes, P4 is a center
and we haveQ > 0 if c ∈ (4, 6) ∪ (6,+∞) then P4 is a saddle.
For c = 4 the differential system (2.1) becomes

ẋ = xy,

ẏ = −abx+ (a2 − 1)x2.
(2.2)

This system has x = 0 as a line of singularity.
Doing a rescling of the time xdt = ds, the system (2.2) becomes

ẋ = y,

ẏ = −ab+ (a2 − 1)x.
(2.3)

This system has one singular point q = (ab/(a2 − 1), 0) and the Jacobian matrix of this
system at q is

Dχ(
ab

a2 − 1
, 0) =

 0 1
(a2 − 1) 0

 .
Its eigenvalues are λ1 =

√
a2 − 1 and λ2 = −

√
a2 − 1. Hence, q is a hyperbolic saddle.
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2.3. FINITE SINGULAR POINTS

For c = 6 the differential system (2.1) becomes

ẋ = xy,

ẏ = −b2 + abx+ y2 (2.4)

This system has three singular points P1, P2 and (b/a, 0)
At (b/a, 0) the eigenvalues of the linear part of system (2.4) are λ1,2 = ±b. So this point
is a hyperbolic saddle .

I Proof of statement (ii)
For a = 1 and c 6= 5 the differential system (2.1) becomes

ẋ = xy,

ẏ =
1
2
b2(4− c) + b(c− 5)x+

1
2

(c− 4)y2.
(2.5)

In addition toP1 andP2, this system has an other singular pointsR = (b(c− 4)/2(c− 5), 0) .

• AtR the eigenvalues of the matrix of vector field in (2.5) are λ1,2 = ±
b
√
c− 4
√

2
.

If c ∈ (−∞, 4) the eigenvalues of the matrix of vector field in (2.5) at R are imaginary
purely such this equilibrum point is either a focus or a center, but due to the fact that system
(2.5) is symetric with respect to (xx′) axes,R is center .
For c = 4 the differential system (2.5) becomes

ẋ = xy,

ẏ = −bx.
(2.6)

The differential system (2.6) has a line of singularity x = 0.
If c ∈ (4, 5) ∪ (5,+∞)R is a saddle.
For c = 5, the differential system (2.5) becomes

ẋ = xy,

ẏ =
−b2

2
+
y2

2
.

(2.7)

It has only two singularities P1 and P2.
I Proof of statement (iii)

For a ∈ (0, 1) we distinguish many cases.
If c ∈ (−∞, 4) system (2.1) has four singular points : P1, P2, P3, and P4 such that

P3 =
( ab(c− 5) +A

(a2 − 1)(c− 6)
, 0
)

and P4 =
( ab(c− 5)−A

(a2 − 1)(c− 6)
, 0
)

, where A = −bS and S =√
a2 + (c− 6)(c− 4).
• The jacobien matrix at P3 is

M =

 0
A+ ab(c− 5)
(a2 − 1)(c− 6)

−A 0

 .
Its eigenvalues areλ1,2 = ±

ibB

(a2 − 1)(c− 6)
, such thatB =

√
S(1− a2)(c− 6)(S − a(c− 5)).

This eigenvalues are imaginary purely such this equilibrum point is either a focus or a center, but
due to the fact that system (2.1) is symetric with respect to (xx′) axes , P3 is center.
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• The jacobien matrix at P4 is

N =

0
−A+ ab(c− 5)
(a2 − 1)(c− 6)

A 0

 .

Its eigenvalues areλ1,2 = ±
ibV

(a2 − 1)(c− 6)
, such thatV =

√
S(1− a2)(c− 6)(S + a(c− 5)).

This eigenvalues are imaginary purely such this equilibrum point is either a focus or a center, but
due to the fact that system (2.1) is symetric with respect to (xx′) axes , P4 is center.

If c ∈ (4, c1)∪ (c2, 6) the system has in addition to P1 and P2 two other singularities P3 and
P4 wich we have already mentioned then.

The eigenvalues of the jacobien matrix at P3 are λ1,2 = ±
ibB

(a2 − 1)(c− 6)
. Hence, P3 is a

center.

The eigenvalues of the jacobien matrix at P4 are λ1,2 = ±
bV

(a2 − 1)(c− 6)
. Hence, P4 is a

saddle.
If c ∈ (6,+∞) it has four singularities P1, P2, P3 and P4.

The eigenvalues of the jacobien matrix at the point P3 are λ1,2 = ±
bB

(a2 − 1)(c− 6)
. Hence,

P3 is a saddle.

The eigenvalues of the jacobien matrix at the point P4 are λ1,2 = ±
bV

(a2 − 1)(c− 6)
. Hence,

P4 is a saddle.
If c = 6 the differential system (2.1) becomes (2.3).
In this case the differentail system (2.3) has in addition to P1 and P2 an other singular point

(b/a, 0).
The eigenvalues of the linear part of differential system (2.3) at (b/a, 0) are λ1,2 = ±b. So

this point is a hyberbolic saddle.
If c = c1 where c1 = 5−

√
1− a2, the differential system (2.1) becomes

ẋ = xy,

ẏ =
1
2

(
(−1 +

√
1− a2)b2 − 2a

√
1− a2bx

)
+

1
2

(
(a2 − 1)(1 +

√
1− a2)x2 − (

√
1− a2 − 1)y2

)
.

(2.8)

System (2.8) has in addition toP1 andP2 an other singular pointP5 at
((a2 − 1 +

√
1− a2)b

a(a2 − 1)
, 0
)
.

The associated jacobien matrix of system (2.8) at P5 is non zero with eigenvalues λ1 = λ2 =
0, then we conclude that it is a nilpotent singular point. In order to know the nature of this singular
point.

First, we put this singular point at the origin of the coordinates by performing the translation

21



2.3. FINITE SINGULAR POINTS

(x, y) = (x1 +
(a2 − 1 +

√
1− a2)b

a(a2 − 1)
, y1), and we get the folowing system :

ẋ1 =
(a2 − 1 +

√
1− a2)b

a(a2 − 1)
y1 + x1y1,

ẏ1 =
1 +
√

1− a2

2
x2

1 −
√

1− a2 − 1)
2

y2
1.

(2.9)

Second, we transforme this system by doing the following change ds =
(a2 − 1 +

√
1− a2)b

a(a2 − 1)
dt

into its normal forme, then we get

ẋ1 = y1 +A(x1, y1)
ẏ1 = B(x1, y1).

(2.10)

where

A(x1, y1) =
a(a2 − 1)

(a2 − 1 +
√

1− a2)b
x1y1,

B(x1, y1) =
ab
√

1− a2

2
x2

1 −
b(
√

1− a2 − 1)(a2 − 1 +
√

1− a2)
2a(a2 − 1)

y2
1.

By solving the equation y1 +A(x1, y1) = 0 for the variable y1 we obtain y1 = f(x1), where
f(x1) = 0.

We substituate the value of y1 = f(x1) in the expresionB(x1, y1), we get

F (x1) = B(x1, f(x1)) =
ab
√

1− a2

2
x2

1.

Now we have to concluate the functionG(x1) =
( ∂A
∂x1

+
∂B

∂y1

)
(x1, f(x1)) = 0.

By applying theorem (3.5) of [9] we obtain that the origin is a cusp.
The local phase portrait of P5 consists of two hyperbolic sectors .
If c = c2 where c2 = 5 +

√
1− a2 the differential system (2.1) becomes

ẋ = xy,

ẏ =
1
2

(−1−
√

1− a2)b2 + a
√

1− a2bx+
1
2

(a2 − 1)(1−
√

1− a2)x2

+
1
2

(1 +
√

1− a2)y2.

(2.11)

this system has three singular points P1, P2 and P5, such that P5 =
((1− a2 +

√
1− a2)b

a(1− a2)
, 0
)

The associated jacobien matrix of system (2.8) at q1 is non zero with eigenvalues λ1 = λ2 =
0, then we conclude that it is a nilpotent singular point. In order to know the nature of this singular
point.

First, we put this singular point at the origin of the coordinates by performing the translation

(x, y) = (x1 +
(1− a2 +

√
1− a2)b

a(1− a2)
, y1), and we get the folowing system :
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ẋ1 =
(1− a2 +

√
1− a2)b

a(a2 − 1)
y1 + x1y1,

ẏ1 =
(a2 − 1)(

√
1− a2 − 1)
2

x2
1 +

1 +
√

1− a2

2
y2

1.

(2.12)

Second, we transforme this system by doing the following change ds =
(1− a2 +

√
1− a2)b

a(1− a2)
dt

into its normal forme, then we get

ẋ1 = y1 +A(x1, y1)
ẏ1 = B(x1, y1).

(2.13)

where

A(x1, y1) =
a(1− a2)

(1− a2 +
√

1− a2)b
x1y1,

B(x1, y1) =
(a2 − 1)(

√
1− a2 − 1)
2

x2
1 +

1 +
√

1− a2

2
y2

1.

By solving the equation y1 +A(x1, y1) = 0 for the variable y1 we obtain y1 = f(x1), where
f(x1) = 0.

We substituate the value of y1 = f(x1) in the expresionB(x1, y1), we get

F (x1) = B(x1, f(x1)) =
(a2 − 1)(

√
1− a2 − 1)
2

x2
1.

Now we have to concluate the functionG(x1) =
( ∂A
∂x1

+
∂B

∂y1

)
(x1, f(x1)) = 0 By applying

theorem (3.5) of [9] we obtain that the origin is a cusp.
The local phase portrait of P5 consists of two hyperbolic sectors.
If c ∈ (c1, c2) the differential system (2.1) has two singular points P1 and P2.

If c = 4 the differential system (2.2) has one singular point
(

ab

a2 − 1
, 0
)

.

The Jacobian matrix of the vector field defined in (2.2) at
(

ab

a2 − 1
, 0
)

is :

Dχ(
ab

a2 − 1
, 0) =

 0 1
1− a2 0

 .
The eigenvalues of this matrix are λ1,2 = ±

√
a2 − 1. This eigenvalues are pure imaginary such

this equilibrum point is either a focus or a center, but due to the fact that system (2.2) is symetric
with respect to (xx′) axes, So this point is center.

2.4 Infinite singular points

The main gool of this part is to give the local phase portrait of systems (2.1) at infinite singular
points. To give a full study about the infinite singular points in the Poincaré disc we present the
analysis of the vector field at infinity.

23



2.4. INFINITE SINGULAR POINTS

Proposition 2.2 The local phase portraits at the infinite singular points of system (2.1) in the local
chart U1 are :

1. One nilpotent singularity at the origin of coordinate, where its local phase portrait consits of
one hyperbolic, one elliptic and two parabolic sectors, for a = 1 and c 6= 5 ;

2. a linearly singular zero singular point at the origin and its local phase portrait consits of two
parabolic and one hyperbolic sectors, for a = 1and c = 5 ;

3. no singularity if a ∈ (0, 1) ;

4. the infinity is a line of singularily if a ∈ (1,+∞) and c = 6 ;

5. two singular points q1 = (
√
a2 − 1, 0) and q2 = (−

√
a2 − 1, 0), for a ∈ (1,+∞)

and c 6= 6, such that :

(a) q1 and q2 are hyperbolic saddles if c ∈ (6,+∞) ;

(b) q1 is an unstable node and q2 is a stable node if c ∈ (−∞, 6).

Proposition 2.3 The local phase portrait of the origin of the local chart U2 is :

1. A saddle if c ∈ (4, 6) and a node if c ∈ (−∞, 4) ∪ (6,+∞) ;

2. not a singularity if c = 4 or c = 6.

Proof of Proposition (2.2) The expression of system (2.1) in the local chart U1 is given by

u̇ = 1/2(−6− a2(c− 6)− 6u2 + 2ab(c− 5)v + 4b2v2 + c(1 + u2 − b2v2)),
v̇ = −uv.

(2.14)
Any arbitrary infinite sigular point of system (2.14) take the form (u0, 0).

I Proof of statement (1)
If a = 1 and c 6= 5 system (2.14) becomes

u̇ = (c− 5)v +
1
2

(c− 6)u2 +
1
2

(4b2 − b2c)v2,

v̇ = −uv.
(2.15)

The origin is the only singular point of differential systems (2.15) which is a nilpotent singular
point with eigenvalus λ1 = λ2 = 0.
In order to obtain the local phase portrait at this singular point we use the theorem (3.5) of [9] .

We transform this system into its normal form by doing the change ds = b(c− 5)dt, then we
get

u̇ = v +A(u, v),
v̇ = B(u, v).

(2.16)

Where

A(u, v) =
c− 6

2b(c− 5)
u2 +

b(4− c)
2(c− 5)

v2,

B(u, v) = −
1

b(c− 5)
uv.
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2.4. INFINITE SINGULAR POINTS

By solving the equation v+A(u, v) = 0 for the variable v we obtain v = f(u), where f(u) =
6− c

2b(c− 5)
u2.

We substituate the value of v = f(u) in the expressionB(u, v) we get

F (u) = B(u, f(u)) =
c− 6

2b2(c− 5)2
u3 = au3, such that a =

6− c
2b(c− 5)

, then we have

m = 3 is odd integer.

We need to calculate the function G(u) =
c− 7
b(c− 5)

u = ku, such that k =
c− 7
b(c− 5)

, then

we have n = 1. By applying Theorem (3.5) of [9] we know that
If c− 6 > 0 the origin is a saddle.
If c− 6 < 0 we shoud calculate αn = k2 + 4a(n+ 1).

After calculation, we obtain that αn =
1
b2
> 0, then the local phase portrait of (0, 0) consists

of one hyperbolic, one elliptic and two parabolic sectors.
I Proof of statement (2)

If c = 5 the origin is a linearly zero singular point.
We need to do the blow-up to describe the local behavior at this point. We perform the directional

blow-up (u, v) −→ (u,w), with w =
v

u
and we get the following system :

u̇ = −
1
2
u2 −

b2

2
u2w2,

ẇ = −
1
2
uw +

b2

2
uw3.

(2.17)

We eliminate the common factoru between u̇ and ẇ by doing a rescaling of the independent variable
udt = ds, then we get

u̇ = −
1
2
u−

b2

2
uw2,

ẇ = −
1
2
w +

b2

2
w3.

(2.18)

This system has three singularities for u = 0 : a stable node at (0, 0) and two saddle at
(

0,±
1
b

)
.

Going back through the change of variables w =
v

u
and udt = ds, and taking into acount

the signe of the vector field at the axes u̇/u = 0 and ẇ/w = 0, we conclud that the local phase
portrait of the origin consists of two parabolic and one hyparbolic sector.

I Proof of statement (3)
If a ∈ (0, 1) system (2.14) has non sigularity.

I Proof of statement (4)
If a > 1 and c = 6 the expression for system (2.14) becomes

u̇ = abv − bv2,

v̇ = −uv.
(2.19)

For all u, v = 0 is a singularity for this system.Then the infinity if the singular for the system.
I Proof of statement (5)

If a > 1 and c 6= 6 the diferential systems (2.14) has two singularities (±
√
a2 − 1, 0).
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2.4. INFINITE SINGULAR POINTS

The Jacobian matrix of the vector field defined in (2.14) at (u0, v0) is given by :

N = Dχ(u0, v0) =

(c− 6)u0 ab(c− 5) + 4b2(4− c)v0

−v0 −u0


• At (−

√
a2 − 1, 0) the matrixN is given by :

N =

(6− c)
√
a2 − 1 ab(c− 5)

0
√
a2 − 1


The eigenvalues of the matrix N are λ1 = (6− c)

√
a2 − 1 and λ2 =

√
a2 − 1. So the

singular point (−
√
a2 − 1, 0) is a saddle if c > 6 and an unstable node if c < 6.

• At (
√
a2 − 1, 0) the matrixN is given by :

N =

(c− 6)
√
a2 − 1 ab(c− 5)

0 −
√
a2 − 1


The eigenvalues of the matrix N are λ1 = (c − 6)

√
a2 − 1 and λ2 = −

√
a2 − 1. So the

singular point (
√
a2 − 1, 0) is a saddle if c > 6 and a stable node c < 6.

Proof of Proposition (2.3)
The diferential systems (2.1) in the local chart U2 given by :

u̇ = 1
2u ((a2 − 1) (c− 6)u2 − 2ab(c− 5)uv + b2(c− 4)v2 − c+ 6) ,

v̇ = 1
2v (c ((a2 − 1)u2 − 1)− 6 (a2 − 1)u2 − 2ab(c− 5)uv + b2(c− 4)v2 + 4) .

(2.20)
The Jacobian matrix of its vector field at (0, 0) is given by :

Dχ(0, 0) =

3− c/2 0
0 2− c/2

 .
The eigenvalues of the matrix are λ1 = 3−

c

2
and λ2 = 2−

c

2
.

So, the origin is a saddle if c ∈ (4, 6) and an unstable node if c ∈ (−∞, 4) and a stable node
if c ∈ (6,+∞).

For c = 4 the expression of systems (2.20) becomes

u̇ = u(1 + buv),
v̇ = buv2,

(2.21)

u = 0 is singular of the system by doing a change of variable ds = udt, we have the system :

u̇ = 1 + buv,

v̇ = bv2,
(2.22)

it is clear the origin is not a singularty of the system.
For c = 6 the expression of systems (2.20) becomes

u̇ = buv(−au+ bv),
v̇ = v(−1− abuv + b2v2).

(2.23)
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2.4. INFINITE SINGULAR POINTS

v = 0 is singular of the system by doing a change of variable ds = vdt, we have the system :

u̇ = bu(−au+ bv),
v̇ = b2v2 − 1− abuv.

(2.24)

it is clear the origin is not a singularty of the system.
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Chapitre 3
Global phase portraits of an integrable
quadratic polynomial differential system with
two parameters

In this chapter we apply the techniques and the theorems that we saw in the first chapter to study
a class of integrable quadratic polynomial system with two parameters and classify all its the global
phase portraits. More precisely, we characterize locale phase portraits of all its finite and infinite
singular points in the Poincaré disc.

3.1 Statement and the main results.

Firstly, we consider the well-known algebraic curve of degree three which is called Cubic egg
and we find the differential quadratic polynomial system of second degree which accept this alge-
braic curve as a first integral.

Secondly, we analyze the local behavior of the finite and infinite singular points of the following
system.

Theorem 3.1 The algebraic curve Cubic egg of degree three given by H(x, y) = x2 + (1 +
x)y2 − 1 = 0 is a first integral of the quadratic system,

ẋ = −1 + x2 + ay + axy,

ẏ = −b−
a

2
+ (b−

a

2
)x+

y

2
+
xy

2
+ by2,

(3.1)

so, it’s associated cofactor k(x, y) = 0.

Proof To prove this theorem we can easily verify that we have the following partial differential
equation :

∂H

∂t
= P (x, y)

∂H

∂x
+Q(x, y)

∂H

∂y
= 0.

we will solve geometrically the differential system of second degree (3.1) and we will give all
its subsolution according to the two parameters a and b.

Our second main result in this chapter is given in the following Theorem.
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3.1. STATEMENT AND THE MAIN RESULTS.

Theorem 3.2 The global phase portraits of QS (3.1) given in Theorem 3.1 are topologically equi-
valent to

(1) for a = 2b and b ∈

0,
√

2
2

 ∪
√2

2
,+∞

 ;

(2) for a = 0 and b = 0 ;

(3) for a =
√

2 and b =
√

2
2

;

(4) for a = b and b 6= 0 ;

(5) for a =
√

2 and b = 0 ;

(6) for a ∈
(
0,
√

2
)
∪
(√

2,+∞
)

and b = 0 ;

(7) for a ∈
(
0,
√

2
)

and b ∈ (0, b2) ; a ∈
(√

2,
9
4

)
and b ∈ (b1, b2) or a ∈ (0, b0)

and b ∈ (−∞, b1) with b0 = b +
√
b2 + 2, b1 =

−9 + 8a2 −
√

81− 16a2

16a
and

b2 =
−9 + 8a2 +

√
81− 16a2

16a
;

(8) for a ∈
(
0,
√

2
)

and b ∈

b2,

√
2

2

 ;

(9) for a ∈
(√

2,
9
4

)
and b ∈

(
0,
a2 − 2

2a

)
∪
(
a2 − 2

2a
, b1

)
∪
(
b2,

a

2

)
; a =

9
4

and

b ∈
(

0,
49
72

)
∪
(

49
72
,
9
8

)
; a ∈

(
9
4
, b0

)
and b ∈

(
a2 − 2

2a
,
a

2

)
or a ∈ (b0,+∞) and

b ∈
(

0,
a2 − 2

2a

)
;

(10) for a =
√

2 and b ∈
(

0,
7

8
√

2

)
∪

 7
8
√

2
,

√
2

2

 ;

(11) for a = 0 and b ∈ (−∞, 0) or a =
9
4

and b ∈ (
(

9
8
,
9
4

)
∪
(

9
4
,+∞

)
;

(12) for a =
√

2 and b ∈

√2
2
,
√

2

 ∪ (√2,+∞
)

;

(13) for a =
√

2 and b ∈ (−∞, 0) ;

(14) for a ∈
(√

2,+∞
)

and b ∈ (−∞, 0) ;

(15) for a ∈
(
b0,
√

2
)

and b ∈ (−∞, b1) ∪ (b1, 0) ;

(16) for a ∈ (0, b0) and b ∈ (b1, 0) or a ∈ (b0,+∞) and b ∈
(a

2
, a
)
∪ (a,+∞) ;

(17) for a = b0 and b ∈ (−∞, 0) ;

(18) for a = b0 and b ∈
(

0,
b0

2

)
∪
(
b0

2
, b0

)
∪ (b0,+∞).
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3.1. STATEMENT AND THE MAIN RESULTS.

1 2 3

4 5 6

7 8 9

10 11 12
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3.2. GLOBAL PHASE PORTRAITS IN THE POINCARÉ DISC

13 14 15

16 17 18

3.2 Global phase portraits in the Poincaré disc

In this part we are going to study the global phase portraits in the Poincaré disc of the quadratic
polynomail differential system (3.1).

We use the following remark to reduce the study of system (3.1)

Remark 3.1 System (3.1) is invariant under the change (x, y, t, a, b) −→ (x,−y, t,−a,−b),
then we only need to study them for a > 0 or a = 0 and b ≥ 0.

3.3 Finite singular points

Taking into account the symmetry geving in Remark 3.1, then the finite singular points of system
(3.1) are geving in the following proposition :

Proposition 3.1 The following statements hold.
I. Assume a = 2b

(i) If b ∈

0,
√

2
2

 the system has three hyperbolic singularities : a stable node at p1, a

saddle at p2 and an unstable node at q1, such that p1 =
(
−1,−

√
2
)
, p2 =

(
−1,
√

2
)

and q1 = (1− 4b2, 2b).
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3.3. FINITE SINGULAR POINTS

(ii) If b ∈

√2
2
,+∞

 it has three hyperbolic singularities : a stable node at p1, an unstable

node at p2 and a saddle at q1.
(iii) If b = 0 and a = 0 the system has a line of singularity x + 1 = 0, and a hyperbolic

unstable node at q2, with q2 = (1, 0) .

(iv) If b =
√

2
2

and a =
√

2 it has two singularities : a stable node at p1 and saddle-node
at p2.

II. Assume a 6= 2b
(i) For a 6=

√
2 and b 6= 0 the system has four hyperbolic singularities p1, p2, p3 and

p4, such that p1 =
(
−1,−

√
2
)
, p2 =

(
−1,
√

2
)
, p3 = (1 − a2, a) and p4 =(

1−
2a

a− 2b
,

2
a− 2b

)
, and we have the following subcases :

(a) If a ∈ (0, b0) and b ∈ (−∞, 0) system (3.1) has a saddle at p1, a stable node at p2

and an unstable node at p3, with b0 = b+
√
b2 + 2.

(b) If a ∈
(
b0,
√

2
)

and b ∈ (−∞, 0) it has two saddles at p1 and p3, and a stable node
at p2.

(c) If a ∈
(√

2,+∞
)

and b ∈ (−∞, 0) it has two saddles at p1 and p2 , and a stable
node at p3.

(d) If a ∈
[
0,
√

2
)

and b ∈ (0,+∞) system (3.1) has a stable node at p1, a saddle at
p2 and an unstable node at p3.

(e) If a ∈
(√

2, b0
)

and b ∈ (0,+∞) it has a stable node at p1, an unstable node at p2

and a saddle at p3.
(f) If a ∈ (b0,+∞) and b ∈ (0,+∞) it has two stable nodes at p1 and p3, and an

unstable node at p2.
— the nature of the fourth singuler point p4 for all the six previous cases is given in the table

(3.1)
(ii) If a 6=

√
2 and b = 0 it has a hyperbolic node at p3 and a line of singularity x+ 1 = 0.

(iii) If a =
√

2 and b ∈ (−∞, 0) it has two hyperbolic singularities a saddle at p1 and an
unstable focus at q3 and a semi-hyperbolic saddle-node at p2,

where q3 =

1 +
2

√
2b− 1

,

√
2

1−
√

2b

.

(iv) If a =
√

2 and b ∈
(

0,
7

8
√

2

)
it has two hyperbolic singularities a stable node at p1

and a stable focus at q3 and a semi-hyperbolic saddle-node at p2.

(v) If a =
√

2 and b ∈

 7
8
√

2
,

√
2

2

 it has two hyperbolic stable nodes at p1 and q3 and a

semi-hyperbolic saddle-node at p2.

(vi) If a =
√

2 and b ∈

√2
2
,+∞

 it has two hyperbolic singularities a stable node at p1

and a saddle at q3 and a semi-hyperbolic saddle-node at p2.
(vii) If a =

√
2 and b = 0 it has a hyperbolic unstable node at p2 and a line of singularity

x+ 1 = 0.
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3.3. FINITE SINGULAR POINTS

0 < a <
√

2

b ∈ (−∞, b1) Unstable Focus
b ∈ (0, b2) Stable Focus
b ∈ (b1, 0) Unstable Node
b ∈ (b2,+∞) Saddle

√
2 < a < 9

4

b ∈ (−∞, 0) Unstable Focus
b ∈ (0, (a2 − 2)/2a) Saddle
b ∈ ((a2 − 2)/2a, b1) Stable Node
b ∈ (b1, b2) Stable Focus
b ∈ (b2, a/2) Stable Node
b ∈ (a/2,+∞) Saddle

a >
9
4

b ∈ (−∞, 0) Unstable Focus
b ∈ ((a2 − 2)/2a, a/2) Stable Node
b ∈ (0, (a2 − 2)/2a) ∪ (a/2,+∞) Saddle

a = 0 Saddle

a =
9
4

b ∈ (−∞, 0) Unstable Focus
b ∈ (0, 49/72) or b ∈ (9/8,+∞) Saddle
b ∈ (49/72, 9/8) Stable Node

b1 =
−9 + 8a2 −

√
81− 16a2

16a
, b2 =

−9 + 8a2 +
√

81− 16a2

16a

TABLE 3.1 – The nature of the singuler point p4.

(viii) If a = b0 and b ∈ (−∞, 0) it has two hyperbolic singularities a saddle at p1 and a
stable node at p2 and a semi-hyperbolic saddle-node at q4,
where q4 =

(
−1− 2b(b+

√
2 + b2, b+

√
2 + b2

)
.

(ix) If a = b0 and b ∈ (0,+∞) it has two hyperbolic singularities a stable node at p1 and
an unstable node at p2 and a semi-hyperbolic saddle-node at q4.

Proof
I Proof of statement (I) of Proposition 3.1

If a = 2b the differential system (3.1) becomes

ẋ = −1 + x2 + 2by + 2bxy,
ẏ = −2b+

y

2
+
xy

2
+ by2.

(3.2)

This system is invariant under the change (x, y, t, b) −→ (x,−y, t,−b), then we only
need to study systems (3.2) for b ≥ 0.
The differential system (3.2) has three singularities p1, p2 and q1, such that p1 =

(
−1,−

√
2
)
,

p2 =
(
−1,
√

2
)

and q1 = (1− 4b2, 2b).
↪→ At p1 the eigenvalues of the matrix of vector field in (3.2) are λ1 = −2

√
2b and λ2 =

−2(1 +
√

2b).
↪→ At p2 the eigenvalues of the matrix of vector field in (3.2) are λ1 = 2

√
2b and λ2 =

−2 +
√

2b.
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3.3. FINITE SINGULAR POINTS

↪→ At q1 the eigenvalues of the matrix of vector field in (3.2) are λ1 = 1−2b2 and λ2 = 2.
Then we have the following result :

• If b ∈

0,
√

2
2

, p1 is a hyperbolic stable node, p2 is a hyperbolic saddle and q1 is a

hyperbolic unstable node. So the statement (i) holds for b ∈

0,
√

2
2

.

• If b ∈

√2
2
,+∞

, p1 has the same nature as the previous case, p2 is a hyperbolic uns-

table node and q1 is a hyperbolic saddle. So the statement (ii) holds for b ∈

√2
2
,+∞

.

• If b = 0 and a = 0 the diferential system (3.2) take the from

ẋ = x2 − 1,
ẏ =

y

2
+
xy

2
.

(3.3)

This system has a line of singularity x + 1 = 0, then we take the change of variable
ds = (x+ 1)dt, we get the following system :

ẋ = x− 1,
ẏ =

y

2
.

(3.4)

System (3.4) has a singular point q2 = (1, 0) and the eigenvalues of its associated matrix

are λ1 = 1 and λ2 =
1
2

, which means that q2 is a hyperbolic unstable node. So the

statement (iii) holds for b = 0 and a = 0.

• If b =
√

2
2

and a =
√

2 the differential system (3.2) becomes

ẋ = −1 + x2 +
√

2y +
√

2xy,

ẏ = −
√

2 +
y

2
+
xy

2
+
y2
√

2
.

(3.5)

This system has the singularities p1 and p2.
↪→ At p1 the eigenvalues of the matrix of vector field in (3.5) are λ1 = −4 and λ2 = −2.

Then p1 is a hyperbolic stable node.
↪→ At p2 the eigenvalues of the matrix of vector field in (3.5) are λ1 = 0 and λ2 = 2. Then

we conclude that p2 is a semi-hyperbolic singularity. In order to know the local phase portrait
of p2, first must translate p2 at the origin of coordinates by doing the change (x, y) =
(x1 − 1, y1 +

√
2), and we get the following system

ẋ1 = x2
1 +
√

2x1y1,

ẏ1 =
√

2
2
x1 + 2y1 +

x1y1

2
+
y2

1√
2
,

(3.6)

second, we put the system (3.6) into the normal form

ẋ = p(x, y),
ẏ = y + q(x, y).

(3.7)
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3.3. FINITE SINGULAR POINTS

In order to get the normal form of the system (3.6) we need to procedure the following steps.
Firstly, we consider the following change of the variablex1

y1

 = P

x
y

 , (3.8)

where P =

−4 0√
2 1

 presents the passage matrix of the linear part of the system (3.6).

By doing the change of the variables 1/2dt = ds and by considering the change of the
variables (3.8), system (3.6) becomes

ẋ =
1
2

(
√

2xy + 2x2),

ẏ = y +
y2

2
√

2
− xy +

x2
√

2
.

(3.9)

Which is the norml form of the differential system (3.6) where p(x, y) =
1
2

(
√

2xy−2x2)

and q(x, y) = −xy +
x2
√

2
+

y2

2
√

2
.

By solving the equation y + q(x, y) = 0 for the variable y we obtain that y = ψ(x),

where ψ(x) = −
x2
√

2
.

We substitute the value of y = ψ(x) in the expresion of p(x, y), we get
ϕ(x) = p(x, ψ(x)) = −2x2 − x3 = amx

m + ....
By applying Theorem (2.19) of [20] we know that m = 2 and am = −2 < 0, then
the origin is a semi-hyperbolic saddle-node. It result immediately that p2 is semi-hyperbolic
saddle-node. Then the statement (iv) holds for b =

√
2

2 and a =
√

2.
I Proof of statement (II) of Proposition 3.1
• If a 6=

√
2 and b 6= 0 the differential system (3.1) has in addition to p1 and p2 (mentioned

in the first statement) two other singularities p3 and p4, with p3 = (1 − a2, a) and p4 =(
1−

2a
a− 2b

,
2

a− 2b

)
.

↪→ At p1 the eigenvalues of the matrix of vector field in (3.1) are λ1 = −2
√

2b and λ2 =
−2−

√
2a.

↪→ At p2 the eigenvalues of the matrix of vector field in (3.1) are λ1 = 2
√

2b and λ2 =
−2 +

√
2a.

↪→ At p3 the eigenvalues of the matrix of vector field in (3.1) are λ1 = −a2 + 2ab+ 2 and

λ2 =
−a2

2
+ 1.

∗ If a ∈ (0, b0) and b ∈ (−∞, 0), p1, p2 and p3 are a hyperbolic saddle, a stable node and
an unstable node respectively, where b0 = b+

√
b2 + 2. Then the statement (a) holds.

∗ If a ∈
(
b0,
√

2
)

and b ∈ (−∞, 0), p1 and p3 are two hyperbolic saddles and p2 is a
hyperbolic stable node. Then the statement (b) holds.
∗ If a ∈

(√
2,+∞

)
and b ∈ (−∞, 0), p1 and p2 are two hyperbolic saddles, p3 is a

hyperbolic stable node. Then the statement (c) holds.
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3.3. FINITE SINGULAR POINTS

∗ If a ∈
[
0,
√

2
)

and b ∈ (0,+∞), then p1, p2 and p3 are a hyperbolic stable node, a
saddle and an unstable node respectively. Then the statement (d) holds.
∗ If a ∈

(√
2, b0

)
and b ∈ (0,+∞), p1, p2 and p3 are a hyperbolic stable node, an unstable

node and a saddle respectively. Then the statement (e) holds.
∗ If a ∈ (b0,+∞) and b ∈ (0,+∞), p1 and p3 are two hyperbolic stable nodes and p2 is

a hyperbolic unstable node. Then the statement (f) holds.
Now we are going to study the local phase portraits of the singuler point p4.
At p4 the jacobien matrix of the vector field defined in (3.1) is given by :

A = Dχ
(−a− 2b
a− 2b

,
2

a− 2b

)
=


−

4b
a− 2b

4ab
a− 2b

−
a

2
+

1
a− 2b

+ b
2b

a− 2b

 .

The eigenvalues of the matrix are λ1,2 =
b±

√
b(2a(−2 + (a− 2b)2) + 9b)

2b− a
.

We distinguish the following cases :

∗ If a ∈
(
0,
√

2
)

and b ∈ (−∞, b1), a ∈
(√

2,
9
4

)
and b ∈ (−∞, 0) or a ∈

[
9
4
,+∞

)
and b ∈ (−∞, 0), the eingenvalues λ1 and λ2 are complex and the real part of them is

positive. Then p4 is an unstable focus, such that b1 =
−9 + 8a2 −

√
81− 16a2

16a
and

b2 =
−9 + 8a2 +

√
81− 16a2

16a
.

∗ If a ∈
(
0,
√

2
)

and b ∈ (0, b2) or a ∈
(√

2,
9
4

)
and b ∈ (b1, b2), the eingenvalues λ1

and λ2 are complex and the real part of them is negative. Then p4 is a stable focus.

For the following cases we have λ1 and λ2 are reals and we have λ1 + λ2 = −
2b

a− 2b

and λ1.λ2 = −
2b(−2 + a2 − 2ab)

a− 2b
.

∗ If a ∈
(√

2,
9
4

)
and b ∈

(
0,
a2 − 2

2a

)
∪
(a

2
,+∞

)
, a =

9
4

and b ∈
(

0,
49
72

)
∪(

9
8
,+∞

)
, a ∈

(
0,
√

2
)

and b ∈ (b2,+∞), or a = 0, then λ1.λ2 < 0. So p4 is a

saddle.
∗ If a ∈

(
0,
√

2
)

and b ∈ (b1, 0), then λ1.λ2 > 0 and λ1 + λ2 > 0. So p4 is an unstable
node.

∗ If a ∈
(√

2,
9
4

)
and b ∈

(
a2 − 2

2a
, b1

)
∪
(
b2,

a

2

)
, a ∈

(
9
4
,+∞

)
and b ∈(

a2 − 2
2a

,
a

2

)
or a =

9
4

and b ∈
(

49
72
,
9
8

)
, then λ1.λ2 > 0 and λ1 + λ2 < 0. So

p4 is a stable node. Then the statement (i) holds.
• If a 6=

√
2 and b = 0 the differential system (3.1) becomes

ẋ = −1 + x2 + ay + axy,

ẏ =
1
2

(−a− ax+ y + xy).
(3.10)
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The differential system (3.10) has a line of singularity x+ 1 = 0.
Then, we take the change of variable ds = (x+ 1)dt, we get

ẋ = (1− x) + ay,

ẏ =
y − a

2
.

(3.11)

This system has a singular point p3 with the eigenvalues of its associated matrix are λ1 =
2 − a2 and λ2 =

1
2

(2 − a2). Then p3 is a hyperbolic unstable node if a ∈
[
0,
√

2
)

and

a hyperbolic stable node if a ∈
(√

2,+∞
)
. So the statement (ii) holds for a 6=

√
2 and

b = 0 .
• If a =

√
2 the differential system (3.1) becomes

ẋ = −1 + x2 +
√

2y +
√

2xy,
ẏ = − 1√

2 − b+ (b− 1√
2)x+

y

2
+
xy

2
+ by2.

(3.12)

This system has three singularities p1, p2 and q3, with q3 =

1 +
2

√
2b− 1

,

√
2

1−
√

2b

.

↪→ At p1 the eigenvalues of the matrix of vector field in (3.12) are λ1 = −4 and λ2 =
−2
√

2b. So it’s a hyperbolic saddle if b ∈ (−∞, 0) and a hyperbolic stable node if b ∈

R+
∗ \ {

7
8
√

2
,

√
2

2
}.

↪→ At p2 the eigenvalues of the matrix of vector field in (3.12) are λ1 = 2
√

2b and λ2 = 0.

So it’s a semi-hyperbolic if b ∈ R \ {0,
7

8
√

2
,

√
2

2
}, now we are going to give the nature

of semi-hyperbolic singuler point p2 in the following steps. In order to know the local phase
portrait of p2, first we must translate it at the origin of coordinates by doing the change
(x, y) = (x1 − 1, y1 +

√
2), and we get the following system

ẋ1 = x2
1 +
√

2x1y1,

ẏ1 = bx+ 2
√

2by + by2 +
xy

2
,

(3.13)

second,we put the system (3.13) into the normal form

ẋ = p(x, y),
ẏ = y + q(x, y).

(3.14)

In order to get the normal form of the system (3.13) we need to procedure the following
steps.
First, we consider the following change of the variablex1

y1

 = P

x
y

 , (3.15)

where P =

−4 0√
2 1

 presents the passage matrix of the linear part of the system (3.13).

By doing the change of the variable 1/2dt = ds and by considering the change of the
variable (3.15), system (3.13) becomes

37



3.3. FINITE SINGULAR POINTS

ẋ =
xy

2b
−

x2
√

2b
,

ẏ = y +
1

2
√

2b
(by2 − 4xy + 2

√
2bxy + 2bx2).

(3.16)

Which is the norml form of the differential system (3.13), where q(x, y) =
xy

2b
−

x2
√

2b
and q(x, y) =

1
2
√

2b
(by2 − 4xy + 2

√
2bxy + 2bx2).

By solving the equation y + q(x, y) = 0 for the variable y we obtain that y = ψ(x),

where ψ(x) =
−x2
√

2
.

We substitute the value of y = ψ(x) in the expresion p(x, y), we get

ϕ(x) = p(x, ψ(x)) = −
x2
√

2b
−

x3

2
√

2b
= amx

m + ...

By applying Theorem (2.19) of [20] we know that m = 2 and am = −
1
√

2b
, then origin

is semi-hyperbolic saddle-node.
It result immediately that p2 is semi-hyperbolic saddle-node.

↪→ At q3 the eigenvalues of the matrix of vector field in (3.12) areλ1,2 =
−b±

√
b2(8
√

2b− 7)
√

2− 2b
.

we have λ1.λ2 =
b2(8− 8

√
2b)

(
√

2− 2b2 − 2b)2
, and λ1 + λ2 =

−2b
√

2− 2b
.

∗ If b ∈ (−∞, 0), the real part of λ1, λ2 negative. Then q3 is a hyperbolic unstable focus.

∗ If b ∈
(

0,
7

8
√

2

)
, the real part of λ1, λ2 positive. Then q3 is a hyperbolic stable focus.

For the following cases we have λ1 and λ2 are reals.

∗ If b ∈

 7
8
√

2
,

√
2

2

, we have λ1.λ2 > 0 and λ1 + λ2 < 0. Then q3 is a hyperbolic

stable node.

∗ If b ∈

√2
2
,+∞

, we have λ1.λ2 < 0. Then q3 is a hyperbolic saddle.

Abstract in summary . So the statements (iv), (v) and (vi) holds.
• If a =

√
2 and b = 0 the differential system (3.1) becomes

ẋ = (1 + x)(−1 + x+
√

2y),

ẏ = −
1
2

(1 + x)(
√

2− y).
(3.17)

This system has a line of singularity x+ 1 = 0.
Then, we take the change of variable ds = (x+ 1)dt, we get the following system

ẋ = −1 + x+
√

2y,

ẏ = −
1
2

(
√

2− y).
(3.18)

which has the singular point p2 with its corresponded eigenvalues λ1 = 1 and λ2 =
1
2

. So
p2 is a hyperbolic unstable node. Then the statement (vii) holds.
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• If a = b0 with b0 = b+
√
b2 + 2 the differential system (3.1) becomes

ẋ = −1 + x2 + (b+
√

2 + b2)y + (b+
√

2 + b2)xy,

ẏ = −b−
1
2

(b+
√

2 + b2) + (b−
1
2

(b+
√

2 + b2))x+
y

2
+
xy

2
+ by2.

(3.19)
This system has three singularities p1, p2 and q4 where
q4 =

(
−1− 2b(b+

√
2 + b2, b+

√
2 + b2

)
.

↪→ At p1 the eigenvalues of the matrix of vector field in (3.19) are λ1 = −2
√

2b and
λ2 = −2 −

√
2(b +

√
2 + b2). So it’s a hyperbolic saddle if b ∈ (−∞, 0) and a

hyperbolic stable node if b ∈ (0,+∞).
↪→ At p2 the eigenvalues of the matrix of vector field in (3.19) are λ1 = 2

√
2b and λ2 =

−2+
√

2(b+
√

2 + b2). So it’s a hyperbolic stable node if b ∈ (−∞, 0) and a hyperbolic
unstable node if b ∈ (0,+∞).

↪→ At q4 the eigenvalues of the matrix of vector field in (3.19) are λ1 = 0 and λ2 =
−b(b+

√
2 + b2). So it’s a semi-hyperbolic singular point.

By applying Theorem (2.19) of [20] we know that m = 2 is even, then the origin is semi-
hyperbolic saddle-node. It result immediately that q4 is semi-hyperbolic saddle-node. Then
the statements (viii) and (ix) holds

3.4 Infinite singular points

The main goal of this part is to give the local phase portraits of system (3.1) at its infinite
singular points. To give a full study about the infinite singular points in the Poincaré disc we present
the analysis of the vector field at infinity.

Proposition 3.2 The local phase portraits at the infinite singular points of system (3.1) in the local
chart U1 consists of

(i) Two singular points : first singularity is a hyperbolic stable node at q1 = (0, 0) and the

second singularity is q2 =
( 1

2(b− a)
, 0
)

, such that a 6= b, which is a hyperbolic unstable

node if b ∈ (a/2, a), a hyperbolic saddle if b ∈ (−∞, a/2) ∪ (a,+∞), and a semi-
hyperbolic saddle-node if a = 2b.

(ii) One singular point at q1 = (0, 0), which is a stable node, for a = b.

Now, we give the local phase portaits of the origin of the local chart U2.

Proposition 3.3 The origin of the local chart U2 is :

(i) An unstable node if b ∈ (−∞, 0), a saddle if b ∈ (0, a) and a stable node if b ∈
(a,+∞).

(ii) Not a singularity if b = 0 and a 6= 0.

(iii) A semi-hyperbolic saddle-node if a = b and b 6= 0.
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(iv) lineary zero singularity where its local phase portait consists of four hyperbolic sectors if
a = 0 and b = 0.

Proof of Proposition (3.2)
The expression of system (3.1) in the local chart U1 is given by

u̇ = (1/2)(−2u2(a− b+ av) + u(−1 + v + 2v2)−
v(2b(−1 + v) + a(1 + v)))
v̇ = −v(1 + au− v)(1 + v).

(3.20)

Any arbitrary infinite singular points of differential system (3.20) take the forme (u0, 0).
I Proof of statement (i) of Proposition (3.2)
• If a 6= b the differential system (3.20) has two singular points q1 and q2, such that q1 =

(0, 0) and q2 =
( 1

2(b− a)
, 0
)

.

The eigenvalues of q1 for the matrix of vector field in (3.20) are λ1 = −1 and λ2 = −
1
2

.
So the origin is a stable node.
The Jacobian matrix of vector field in (3.20) at q2 is given by :

Dχ(
1

2(b− a)
, 0) =


1
2
a(−1

2 −
1

(4(a− b)2
)−

1
(4(a− b)

+ b

0 −1 +
a

(2a− 2b)

 .

The eigenvalues of this matrix are λ1 =
1
2

and λ2 = −
(a− 2b)
2(a− b)

. So q2 is an unstable

node if b ∈ (a/2, a), a saddle if b ∈ (−∞, a/2) ∪ (a,+∞) and a semi-hyperbolic
singularity if a = 2b . In order to know the local phase portrait at q2, first must translate it at

the origin of coordinates by doing the change (u, v) = (u1−
1
2b
, v1), we get the following

system

u̇1 =
1
2

(u1 −
3v1

2b
− 2bu2

1(1− 2v1) + 5bu1v1 + (2u1 − 4b−
1
b

)v2
1),

v̇1 = −2bu1v1 + v2
1 − 2bu1v

2
1 + v3

1,
(3.21)

second,we put the system (3.21) into the normal form

u̇ = p(u, v),
v̇ = v + q(u, v).

(3.22)

In order to get the normal form of the system (3.21) we need to procedure the following
steps.
First, we consider the following change of the variableu1

v1

 = P

u
v

 , (3.23)

where P =

1 3
0 2b

 presents the passage matrix of the linear part of the system (3.21).
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By doing the change of the variable
1
2
dt = ds and by considering the change of the variable

(3.23), system (3.21) becomes

u̇ = −8bu2 − 16b2u3 − 4buv − 8b2u2v,

v̇ = v + 32bu2 − 16b3u2 + 10buv − 16b2u2v − 2bv2 − 8b2uv2.
(3.24)

Which is the normal form of the differential system (3.21), where p(u, v) = −8bu2 −
16b2u3 − 4buv − 8b2u2v and q(u, v) = 32bu2 − 16b3u2 + 10buv − 16b2u2v −
2bv2 − 8b2uv2.
By solving the equation v + q(u, v) = 0 for the variable v we obtain that v = ψ(u),
where ψ(u) = 32bu2 − 16b3u2.
We substitute the value of v = ψ(u) in the expresion p(u, v), we get
ϕ(u) = p(u, ψ(u)) = −8bu2 − 144b2u3 + 64b4u3 − 256b3u4 + 128b5u4 =
amx

m + ...

By applying Theorem (2.19) of [20] we know that m = 2and am = −8b, then origin is
semi-hyperbolic saddle-node. It result immediately that q2 is semi-hyperbolic saddle-node.
Then the statement (i) holds.
I Proof of statement (ii) of Proposition (3.2)

• If a = b the differential system (3.20) becomes

u̇ = (1/2)(−2au2v + u(−1 + v + 2v2)− av(3v − 1)),
v̇ = −v(1 + au− v)(1 + v).

(3.25)

This system has one singular point at the origin of coordinates which is a hyperbolic stable
node. Then the statement (ii) holds.
Proof of Proposition (3.3)
The differential system (3.1) in the local chart U2 takes the forme :

u̇ = 1
2((u− 2v)(u+ v) + a(u+ v)(2 + uv) + 2bu(−1− uv + v2)),

v̇ = 1
2v((u+ v)(−1 + av)− 2b(1 + uv − v2)).

(3.26)

The origin is a singular point of this system.
The eigenvalues of (0, 0) for the matrix of vector field in (3.26) are λ1 = −b and λ2 =
a − b. So the origin is an unstable node if b ∈ (−∞, 0), a saddle if b ∈ (0, a), and a
stable node if b ∈ (a,+∞). Then the statement (i) holds.
• If a 6= 0 and b = 0 the differential system (3.26) becomes

u̇ = (u+ v)(u− 2v + a(2 + uv)),

v̇ =
1
2
v(u+ v)(−1 + av).

(3.27)

This system has u+ v = 0 as a line of singularity.
Then, we take the change of variable (u+ v)dt = ds, we get

u̇ = u− 2v + a(2 + uv),

v̇ =
1
2
v(−1 + av).

(3.28)
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It is clear that the origin is not a singularity for this system. Then the statement (ii) holds.
• If a = b and b 6= 0 the differential system (3.26) becomes

u̇ =
1
2

(u2 − uv − 2v2 − 2bu(1 + uv − v2) + b(2v + u2v + u(2 + v2))),

v̇ =
1
2
v((u+ v)(bv − 1)− 2b(1 + uv − v2)).

(3.29)
The origin is a singular point of this system.
The eigenvalues of its corresponded matrix are λ1 = 0 and λ2 = −b, which means that the
origin is a semi-hyperbolic singularity.
We should drive the system (3.29) into its normal form

u̇ = p(u, v),
v̇ = v + q(u, v).

(3.30)

To do that we need to use the following change of variableu1

v1

 = P

u
v

 , (3.31)

where P =

1 −1
0 1

 presents the passage matrix of the linear part of the system (3.29).

Now we use the change of variable −bdt = ds and the change of variable (3.31) we get
the following system

u̇ =
2
b
uv − u2v −

u2

2b
+
u2v

2
,

v̇ = v − 2u3 +
uv

2b
+
vu2

2
,

(3.32)

which it’s the normal form where p(u, v) =
2
b
uv − u2v −

u2

2b
+
u2v

2
and q(u, v) =

−2u3 +
uv

2b
+
vu2

2
.

By solving v + q(u, v) = 0 for the variable v we obtain v = ψ(u), where ψ(u) = 0.
We substitute the value of v = ψ(u) in the expresion p(u, v), we get

ϕ(u) = p(u, ψ(u)) =
−u2

2b
= amx

m + ...

By applying Theorem (2.19) of [20] we obtain m = 2 and am =
−1
2b

, so origin is a
semi-hyperbolic saddle-node. Then the statement (iii) holds.
• If a = 0 and b = 0, the differential system (3.26) becomes

u̇ = 1
2(u2 − uv − 2v2),

v̇ = 1
2(−u− v)v.

(3.33)

The origin is a linearly zero singular point.
We need to do the blow-up to describe the local behavior at this point. We perform the
directional blow-up (u, v) −→ (u,w), with w =

v

u
and we get the following system :

u̇ = −
1
2
u2(−1− w + 2w2),

ẇ = uw(w2 − 1).
(3.34)
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We eliminate the common factor u between u̇ and ẇ by doing a rescaling of the independent
variable udt = ds then we get

u̇ = −
1
2
u(−1− w + 2w2),

ẇ = w(w2 − 1).
(3.35)

Going back through the change of variables w =
v

u
and udt = ds, we conclud that the

local phase portrait of the origin consists of four hyperbolic sectors. Than the statement (iv)
holds.

Conclusion

In our work we ag to study the global phase portraits in the Poincaré disc of two quadratic
polynomial differential systems .

We construct a new class of quadratic polynomial differential systems with three parametres
a, b and c. These differential systems exhibit an invariant algebraic curve of the degree six, we
classify all the phase portraits of these systems and we obtain sixteen phase portraits topologically
non equivalent.

In the other hand we give another new class of integrable quadratic differential systems with two
parameters a and b. Such systems have a cubic algebraic curve "Cubic egg" as a first integral, and
we realize that these differential systems have eighteen phase portraits topologically non equivalent.
re interestin
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