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Introduction

The study of piecewise linear differential systems is relatively recent. Such
that the dynamics of the piecewise linear differential systems started to be studied
around 1930, mainly in the book of Andronov et al [1], which is russian version.
The contribution of Andronov, Vitt and Khaikin [1] provided the basis for the
development of the theory for this system. Many researchers from different fields
interested this kind of differential systems, one of the reasons for this interest in the
mathematical community is that these systems are widely used to model phenomena
appearing in mechanics, electronics, economy, neuroscience,..., and it can be used to
model applied problems, such as electronic circuits, biological systems, mechanical
devices, etc, see for instance the book [6].

A limit cycle is a periodic orbit of a differential system in R2 isolated in the set of
all periodic orbits of that system. The study of the limit cycles goes back essentially
to Poincaré [20] at the end of the 19th century. One of the main problems in the
dynamics of the differential systems in the plane is to control the existence and
the number of their limit cycles. This problem restricted to polynomial differential
systems is the famous 16th Hilbert’s problem. see more in [12, 14, 13]. The existence
of limit cycles became important in the applications to the real world, because many
phenomena are related with their existence,see for instance the van der Pol oscillator
[22].

Thus in recent years, the theory of piecewise linear differential systems has been
increasingly developed and studied in order to understand the dynamics that such
systems may have. In this sense one of the points of greatest interest is to obtain a
lower bound for the maximum number of limit cycles that may arise around a single
equilibrium point on the discontinuity set (i.e., on the region separating the linear
differential systems).

This investigation started with the simplest possible case: the continuous piece-
wise linear differential systems with two zones separated by a staight line. Lum and
Chua [18, 19] in 1991 conjectured that such differential systems have at most one
limit cycle. Later this conjecture was proved by Freire, Ponce, Rodrigo and Torres
[9] in 1998.
while for the planar discontinuous piecewise linear differential systems in R2. Of
course, the simplest piecewise linear differential systems in R2 are the ones having
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only two pieces separated by a curve, and when this curve is a straight line. Han
and Zhang [11] obtained differential systems having two limit cycles and conjured
that the maximum number of limit cycles of such class of differential systems is two.

But in this last years many authors have studied the limit cycles of discontinuous
piecewise linear differential systems in R2. Thus the limit cycles of these last class
of discontinuous piecewise linear differential systems has been intensively studied,
see [2, 3, 7]. Up to know the results of all these papers only provide examples that
the discontinuous piecewise linear differential systems in R2 separated by a straight
line can have 3 crossing limit cycles.
we consider piecewise linear systems on the form

ẋ = Aix+ ai for x ∈ Xi .

Here Xi is a partition of the state space into operating regimes. The dynamics
in each region is described by a system of linear differential equations. Piecewise
linear systems have a wide applicability in a range of engineering sciences. Many
publications on piecewise linear differential systems come from applications, as for
instance control theory and electric circuits design. Non-linearities that appear
in real dynamical systems are very often modeled by smooth functions. Hence,
results and tools from smooth dynamics and local bifurcation theory can be fruitfully
applied. But, in some cases, considering piecewise linear functions is an alternative
that fits better, qualitatively and quantitatively, the experiment [1],[10]. Standard
piecewise linear functions are: saturation, to model amplifiers and motors, see Figure
(a); dead zone, to model valves and motors, see Figure (b); friction, to model the
static friction of motors, see Figure(c); and sign, to model relays, see Figure (d).
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Figure 1: piecewise linear functions (a)saturaction ;(b)dead zone
(c)friction;(d)sign.

In the following example, we show one of usual applications where PWLS arise in
a natural way. In our opinion these applications justify the interest in these systems.
Wien bridge: [17]
In electronic circuits design also arises a large family of examples modeled by funda-
mental systems [1],[5]. In the following example we introduce a well-known circuit,
the Wien bridge oscillator formed by two resistors, two capacitances and one oper-
ational amplifier (op-amp) with negative feedback see Figure 2.

Figure 2: Wien bridge circuit .

The circuit is formed by two loops. The first one contains the resistor R1 and
the capacitors C1 and C2. The second loop is formed by the resistor R2 and the
capacitor C2. For the sake of simplicity, we consider that the circuit is clockwise
oriented in the first loop and anticlockwise oriented in the second one. Kirchhof
laws can be used to describe the evolution of the voltages VC1 and VC2 across the
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capacitors C1 and C2, respectively, leading to the differential equations{
R1C1

˙VC1 = −VC1 − VC2 − V0 ,
R1C2

˙VC2 = −VC1 − (1 + R1

R2
)VC2 − V0 ,

(1)

where V0 is the output voltage of the op-amp. The characteristic function of an
op-amp depends only on the difference between the voltage at the non-inverting
terminal and the voltage at the inverting terminal (VC2 and 0, respectively, in the
Wien bridge). In an ideal framework, this function is considered to be linear and the
slope of the function is called the open-loop gain of the amplifier. In practice, the
op-amp has a limited response range (-E,E), beyond which the amplifier is saturated.
Taking this into account, a more realistic characteristic function for the op-amp is
given by

V0 =

{
E sign(−αVC2 + E), if |αVC2| > E ,

−αVC2 , if |αVC2| ≤ E ,

where α = 1 + RF

RS
is the gain of the op-amp. Using the above expression of V0 and

making the change of variables

x1 = α
VC2

E
, x2 = α

VC1

E
,

the system of differential equations (1) can be rewritten as the fundamental system

ẋ =


Ax+ b, if x1 > 1,

Bx, if |x1| ≤ 1,

Ax− b, if x1 < −1,

where

b =

 α

R1C2α

R1C1

 , A =

 −(
1

R1C2

+
1

R2C2

) − 1

R1C2

− 1

R1C1

− 1

R1C1


and B = A+ bT e1.

This thesis is structured as follows:

The first chapter is devoted to reminders of some preliminary notions on piece-
wise differential systems. We define the piecewise linear differential system, the
solution of the continuous and the discontinuous piecewise linear differential sys-
tem, the periodic orbit of this discontinuous piecewise linear differential system,
also first integral and the bezout theorem.

In the second chapter, we will study the maximum number of crossing limit cy-
cles that can have the planar Hamiltonian discontinuous planar piecewise differential
systems formed by two or three linear differential systems separated by one or two
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straight line, such that both linear differential have no equilibria, neither real nor
virtual.

In the third and last chapter, we will study the maximum number of crossing
limit cycles that can have the planar Hamiltonian continuous and discontinuous pla-
nar piecewise differential systems formed by two or three linear differential systems
separated by one or two straight line, such that one of this differential systems is
linear center while the seconde and third differential systems have no equilibria,
neither real nor virtual.
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Preliminaries
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1.1. Introduction

1.1 Introduction

Here some basic concepts, results, and tools necessary to the development of
this work are presented. Most part of the results are given without proof, however
references where they can be found, are included. In this work, we concern about
planar discontinuous vector fields defined in two or more zones, for this reason, we
present a generic definition for this type of vector fields.

1.2 Piecewise linear differential system

Definition 1.2.1 A differential system defined on an open region S ⊆ Rn is said
to be a piecewise linear differential system on S if there exists a set of 3-tuples
{(Ai, bi, Si)}, i ∈ I such that:
Ai is a n× n real matrix; bi ∈ Rn;
Si ⊂ S is an open set in Rn satisfying that
Si ∩ Sj = ∅ if i 6= j and ∪

i∈I
Si = S ;

and Aix + bi is the vector field defined by the system when x ∈ Si. As usual Si
denotes the closure of Si.

Remark 1.2.1 Thus the vector field defined by a piecewise linear differential system
is a linear map on each of the disjoint regions Si, but is not globally linear on the
whole S.

Definition 1.2.2 let Γij = ∂Si∩∂Sj be the common boundary of the regions Si and
Sj.

If Aip + bi = Ajp + bj for every p ∈ Γij, is said to be continuous, otherwise the
piecewise linear differential system is said to be discontinuous.

In discontinuous piecewise linear differential system, two different vectors ẋ, namely
fi(x) and fj(x), can be associated to a point x ∈ Σij. If the transversal components
of fi(x) and fj(x) have the same sign, the orbit crosses the boundary and has, at
that point, a discontinuity in its tangent vector.

On the contrary, if the transversal components of fi(x) and fj(x) are of opposite
sign, i.e. if the two vector fields are ”pushing” in opposite directions, the state of the
system is forced to remain on the boundary and slide on it. Although, in principle,
motions on the boundary could be defined in different ways, the most natural one
is Filippov convex method.

1.3 Solution of Continuous piecewise linear dif-

ferential system

Theorem 1.3.1 Since the piecewise linear differential system is formed by linear
differential systems in each region Si, then the solution of linear differential system

8



1.3. Solution of Continuous piecewise linear differential system

ẋi = Aix+ bi starting at p0 isgiven by

x(s, p0) = eAisp0 +

∫ s

0

eAi(s−r)bidr. (1.1)

Since, for a continuous piecewise linear differential system we have Aip+bi = Ajp+bj
at any point of the boundary Γij separating two adjacent regions Si and Sj, then
for these systems the vector Aip + bi is uniquely defined at any point of the state
space and the orbits in region Si approaching transversely the boundary Γij, cross
it and enter into the adjacent region Sj.

In particular if the vector field

Ẋ =

{
f1 (X) = A1X + b1, if H (x) > 0,
f2 (X) = A2X + b2, if H (x) < 0,

(1.2)

with the boundary

Γ =
{
x ∈ R2 : H (x) = 0

}
,

and two regions

S1 =
{
x ∈ R2 : H (x) > 0

}
, S2 =

{
x ∈ R2 : H (x) < 0

}
,

is continuous

Let (x1 (t) , y1 (t)) and (x2 (t) , y2 (t)) are solutions of system (1.2) on S1 and
S2 respectively. Then, the trajectory corresponding to the initial condition X0 =
(x01, y01) of the system (1.2) on S1 is crossed the curve H(x) = 0, at the instance
t∗ in this case the initial condition of the second system (on S2 ) is (x02, y02) =
(x2 (t∗) , y2 (t∗)).

Furthermore, for continuous piecewise linear differential system (1.2), we have if

X(s, p0) = eA1sp0 +

∫ s

0

eA1(s−r)b1dr,

is a solution of linear differential system piecewise linear differential system starting
at p0 in S1, then there exist a point q = (x1, y1) ∈ Γ and the finite time t∗ such
that the orbit of linear differential system in S1 starting at the point p is crossed
the curve H(x) = 0, at the instance t∗ at the point

q0 = (x1, y1) = eA1t∗p0 +

∫ t∗

0

eA1(t∗−r)b1dr,

by the continuity of piecewise linear differential system, the solution of this system
in S2 is

X(s, q0) = eA2sq0 +

∫ s

0

eA2(s−r)b2dr.
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1.4. Solution of discontinuous piecewise linear differential system

1.4 Solution of discontinuous piecewise linear dif-

ferential system

We consider planar Filippov systems and assume, for simplicity, that there are only
two regions Si, i.e.

ẋ =

{
f1 (x) , x ∈ S1,
f2 (x) , x ∈ S2.

(1.3)

Moreover, the discontinuity boundary separating these two regions is described as

Σ =
{
x ∈ R2 : H (x) = 0

}
,

where H is a smooth scalar function with nonvanishing gradient OH (x) =
(
∂H
∂xi

)T
on Σ, and

S1 =
{
x ∈ R2 : H (x) > 0

}
, S2 =

{
x ∈ R2 : H (x) < 0

}
.

The boundary is either closed or goes to infinity in both directions and f1 6= f2 on
Σ.

1.4.1 Standard and sliding solutions

Definition 1.4.1 The standard solutions of system (1.3) are the solution of this
system in the regions Si and is given by

ϕi(s, p0) = eAisp0 +

∫ s

0

eAi(s−r)bidr,

and sliding solutions of system (1.3) are the solution of this system in the boundary
Σi,j.

Sliding solutions

The sliding solutions on Σ obtained with the well-known Filippov convex method.
Let

δ(x) = 〈OH(x), f1(x)〉 〈OH(x), f2(x)〉 ,
where 〈., .〉 denotes the standard scalar product.

Definition 1.4.2 We define the crossing set Σc as

Σc = {x ∈ Σ : δ(x) > 0} ⊂ Σ.

It is the set of all points x ∈ Σ, where the two vectors fi(x) have nontrivial normal
components of the same sign. By definition, at these points the orbit of (1.3) crosses
Σ.
We define the sliding set Σs as the complement to Σc in Σ, i.e.

Σs = {x ∈ Σ : δ(x) ≤ 0} ⊂ Σ.

10



1.4. Solution of discontinuous piecewise linear differential system

Remark 1.4.1 The crossing set is open, while the sliding set is the union of closed
sliding segments and isolated sliding points.

Definition 1.4.3 Points x∗ ∈ Σs, where

〈∇H(x∗), f1(x
∗)− f2(x∗)〉 = 0,

are called singular sliding points.
At such points, either both vectors f1(x) and f2(x) are tangent to Σ, or one of

them vanishes while the other is tangent to Σ, or they both vanish.

Remark 1.4.2 In general we define
Escaping region (unstable sliding):

Σes = {x ∈ Σ : 〈OH(x), f1(x)〉 > 0 and 〈OH(x), f2(x)〉 < 0} .

Attractive sliding region (stable sliding):

Σas = {x ∈ Σ : 〈OH(x), f1(x)〉 < 0 and 〈OH(x), f2(x)〉 > 0} .

Then, the sliding set

Σs = {x ∈ Σ : δ(x) ≤ 0}
= {x ∈ Σ : 〈OH(x), f1(x)〉 > 0 and 〈OH(x), f2(x)〉 < 0}
∪ {x ∈ Σ : 〈OH(x), f1(x)〉 < 0 and 〈OH(x), f2(x)〉 > 0}
∪ {x ∈ Σ : 〈OH(x), f1(x)〉 〈OH(x), f2(x)〉 = 0} .

Remark 1.4.3 At the points belonging to Σc, the standard solutions of the two sys-
tems can be joined to form a solution whose orbit crosses the discontinuity collector.

Example 1.4.1 Consider the planar system piecewise linear differential system
with two zones separated by the straight line and

Σ =
{
x ∈ R2 : H (x) = 0

}
=
{
x ∈ R2 : y = 0

}
,

and

f1 (x) =

{
ẋ = −6x− 6y − 30,
ẏ = 6x+ 6y − 2,

if y > 0, (1.4)

f2 (x) =

{
ẋ = −x− y + 2,
ẏ = x+ y + 1,

if y < 0,

We have

OH (x) =

(
∂H

∂x
,
∂H

∂y

)T
=
(

0 1
)T

= k.

11



1.4. Solution of discontinuous piecewise linear differential system

(a) Crossing region

(b) Attracting region (stable sliding) (c) Escaping region (instable sliding)

The sliding region (stable sliding) is

Σas =
{
x ∈ Σ : kTf2 (x) > 0 and kTf1 (x) < 0

}
,

=

{
x ∈ Σ : −1 ≤ x ≤ 1

3

}
.

The crossing set

Σc =
{
x ∈ Σ :

(
kTf2 (x)

)
.
(
kTf1 (x)

)
> 0
}

= ]−∞,−1[ ∪
]

1

3
,+∞

[
.

1.4.2 Filippov method

Within the sliding set, the Filippov method can be used to construct solutions, to
be considered as extensions for solutions of (1.3). Such a method consists in defining
a new vector field computed from an adequate convex combination g(x) of the two
original vector fields fi(x) to each nonsingular sliding point x ∈ Σs, namely

g(x) = λf1(x) + (1− λ)f2(x),

where for each x ∈ Σs the value of λ is selected such that 〈OH(x), f2(x)− f1(x)〉 6= 0.
A simple computation shows that

λ = λ (x) =
〈OH(x), f2(x)〉

〈OH(x), f2(x)− f1(x)〉
,

12



1.4. Solution of discontinuous piecewise linear differential system

provided the above denominator does not vanish and then, by using the definition
of Σs, one concludes that

0 ≤ λ (x) ≤ 1.

Therefore, we have a explicit definition for the sliding vector field, namely

g(x) =
〈OH(x), f1(x)〉 f2(x)− 〈OH(x), f2(x)〉 f1(x)

〈OH(x), f2(x)− f1(x)〉
(1.5)

Figure 1.1: Construction de Filippov in the case unstable sliding region

Example 1.4.2 For system (1.4) we have Σs =
{
x ∈ Σ : −1 ≤ x ≤ 1

3

}
, and

g(0, x) =
〈OH(x), f1(x)〉 f2(x)− 〈OH(x), f2(x)〉 f1(x)

〈OH(x), f2(x)− f1(x)〉
=

(
− (50x+26)

5x−3
0

)
Remark 1.4.4 If 〈OH(x), f2(x)− f1(x)〉 = 0 for some x ∈ Σs, then we say that
such x is a singular sliding point. This can happen in three cases: both vector fields
are tangent; one is tangent and the other vanishes; both vector fields vanish at the
point. In all these singular cases, if we exclude infinitely degenerate cases and the
sliding point is non-isolated, it is possible to define the vector field g by continuity
arguments. For isolated singular sliding points it will be taken g (x) = 0. Clearly,
the boundary of the sliding set Σs (as a subset of Σ) is associated to each one of
the two equalities 〈∇H(x), f1(x)〉 = 0, 〈∇H(x), f2(x)〉 = 0; that is, λ(x) = 0 or
λ(x) = 1 with x ∈ Σ .

1.4.3 The constant solutions

As usual in the analysis of dynamical systems, we must look for the simplest solutions
organizing the dynamics, namely the constant solutions associated to rest points
normally called equilibria. Of course, the Filippov system (1.3) inherit the equilibria
of each vector field fi(x), but we must be cautious and distinguish between real or
virtual equilibria. In particular,

13



1.4. Solution of discontinuous piecewise linear differential system

Definition 1.4.4 We call
• admissible or real equilibrium points to all the solutions of f1(x) = 0 that belong
to S1 and the solutions of f2(x) = 0 that belong to S2, while
• virtual equilibrium points are the solutions of f1(x) = 0 that belong to S2, and the
solutions of f2(x) = 0 that belong to S1.

Remark 1.4.5 Although virtual equilibria are not equilibria of X, they can still
organize the dynamics in the corresponding region.

Example 1.4.3 For system

ẋ = 2(−4 + 4x+ 5y), ẏ = −8(1 + x+ y), x > 1,
ẋ = 1 + 2y, ẏ = 1− 2x, x < 1,

(1.6)

we have

S1 =
{

(x, y) ∈ R2 : x > 1
}
, S2 =

{
(x, y) ∈ R2 : x < 1

}
.

The equilibria of the first system is (−9, 8) /∈ S1, then (−9, 8) is a virtual equilibrium
points of (1.6).
The equilibria of the second system is

(
1
2
,−1

2

)
∈ S2, then

(
1
2
,−1

2

)
is a real equilibrium

points of (1.6).

Regarding now the induced dynamical system ẋ = g(x), x ∈ Σs. As indicated in
Fig 1.1, at nonisolated sliding points x ∈ Σs we have

〈OH(x), g(x)〉 = 0,

i.e. g(x) is tangent to sliding segments of Σs. We set g(x) = 0 at isolated singular
sliding points. Thus,

ẋ = g(x), x ∈ Σs, (1.7)

defines a scalar differential equation on Σs, which is smooth on one-dimensional
sliding intervals of Σs. Solutions of this equation are called sliding solutions.

Remark 1.4.6 We note that apart from isolated singular sliding points, the sliding
vector field g can vanish in other points which behave like real equilibria for such
dynamical system if we restrict our attention to the set Σs. They also are, in some
sense, equilibria for system (1.3) and will be called pseudo-equilibrium points. For
instance, when both vectors fi are transversal to in a certain point of this surface
and furthermore they are anti-collinear, that is, there exist λ1, λ2 > 0, such that

λ1f1(x) + λ2f2(x) = 0.

Definition 1.4.5 The equilibria of (1.7), where the vectors fi(x) are transversal
to Σs and anti-collinear, are called pseudo-equilibria of (1.3) (or quasi-equilibria ).
This implies that a pseudo-equilibrium P is an internal point of a sliding segment.
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1.4. Solution of discontinuous piecewise linear differential system

Example 1.4.4 Consider the system{
ẋ = 3,
ẏ = 1,

, 2x− y < 0 ,

{
ẋ = −2,
ẏ = x− y, , 2x− y > 0 .

Using H(x, y) = 2x− y we obtain 〈OH(x), f1(x)〉 = 5 and 〈OH(x), f2(x)〉) = x− 4
(on y = 2x), and so y = 2x is an attracting sliding region for x < 4. By evaluating
(1.5) we find that on this region we have

g (x, 2x) =

(
2−3x
x−9
4−6x
x−9

)
,

thus

ẋ =
−3x+ 2

−x+ 9
, ẏ = 2ẋ.

Solving ẋ = 0 gives the pseudo-equilibrium (x, y) =
(
2
3
, 4
3

)
. This equilibrium is stable

because the sliding region is attracting and

d

dx
ẋ

∣∣∣∣
x= 2

3

= − 9

25
< 0.

Definition 1.4.6 An equilibrium X ∈ Σs of (1.7), where one of the vectors fi(X)
vanishes, is called a boundary equilibrium.

Example 1.4.5 For system

f1 (x, y) =

{
ẋ = −6x− 6y − 30,
ẏ = 6x+ 6y − 2,

if y > 0, (1.8)

f2 (x, y) =

{
ẋ = −x− y + 2,
ẏ = x− 2,

if y < 0,

we have : Σs =
{

(x, 0) ∈ Σ : 1
3
≤ x ≤ 2

}
and

g(x) =
〈OH(x), f1(x)〉)f2(x)− 〈OH(x), f2(x)〉 f1(x)

〈OH(x), f2(x)− f1(x)〉
=

(
32x−64
−5x
0

)
,

we have g(x) = 0 if x = 2, then (2, 0) ∈ Σs is an equilibrium of ẋ = g (x) . Moreover,
notice that f2 (2, 0) = 0, then (2, 0) is a boundary equilibrium of (1.8).

Definition 1.4.7 A sliding segment is delimited either by a boundary equilibrium
X, or by a point p (called tangent point) where the vectors fi(p) are nonzero but one
of them is tangent to Σ.

Example 1.4.6 For system

f1 (x, y) =

{
ẋ = −6x− 6y − 30,
ẏ = 6x+ 6y − 2,

if y > 0,

f2 (x, y) =

{
ẋ = −x− y + 2,
ẏ = x+ y + 1,

if y < 0,

15



1.5. Periodic orbit γ of the discontinuous piecewise linear differential system

we have Σs =
{

(x, 0) ∈ Σ : −1 ≤ x ≤ 1
3

}
.

Notice that f2 (−1, 0) =

(
3
0

)
is tangent to Σ, then (−1, 0) is a tangent point and

f1
(
1
3
, 0
)

=

(
−32

0

)
is tangent to Σ, then

(
1
3
, 0
)

is a tangent point.

1.5 Periodic orbit γ of the discontinuous piece-

wise linear differential system

Definition 1.5.1 A periodic orbit γ of the discontinuous piecewise linear differen-
tial system (1.3) is a smooth piecewise curve which is formed by pieces of orbits
of each linear differential system, γ = ∪i∈Iγi, contained in the regions Si, respec-
tively,such that ϕ(p, s + T ) = ϕ(p, s), for some T > 0, where T is called the period
of the orbit periodic γ.
If γi ∩ Σ = Σc for all i = 1, ..., n, then the periodic orbit γ is called the crossing
periodic orbit, otherwise is called sliding periodic orbit.

Definition 1.5.2 If a periodic orbit γ is isolated in the set of all periodic orbits
of discontinuous piecewise linear differential system, then it is called limit cycle of
piecewise linear differential system (1.3).

1.6 First integrals

The aim of this section is to introduce the terminology of the Darboux theory of
integrability for real planar polynomial differential systems. For a detailed discussion
of this theory see [4]. A real planar polynomial differential system or simply a
polynomial system will be a differential system of the form

dx

ds
= ẋ = P (x, y),

dy

ds
= ẏ = Q(x, y), (1.9)

where x and y are real variables, the independent one (the time) s is real, and P
and Q are polynomials in the variables x and y with real coefficients. The degree of
polynomial system (1.9) is defined as m = max {degP, degQ}. The vector field X
associated to system (1.9) is defined by

X =
∂

∂x
P +

∂

∂y
Q.

System (1.9) is integrable on an open subset U of R2 if there exists a non constant
analytic function H : U → C, called a first integral of (1.9) on U , which is constant
on all orbits of system (1.9) contained on U , i. e.

dH

dt
= P

∂H

∂x
+Q

∂H

∂y
∼= 0.
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1.7 Bezout Theorem

In this section we consider the intersection of two algebraic curves. Suppose the
curves are given by F (x, y) = 0 and G(x, y) = 0, then we shall be interested in their
common solutions.

Consider two algebraic curves C,D given by the equations F (x, y) = 0 and
G(x, y) = 0. We shall say that C,D have a common component if F,G have non-
constant common divisor H ∈ k[x, y]. The common component is then the curve
given by the equation H(x, y) = 0.

If F,G do not have a non-constant common factor we say that the curves do not
have a common component. Any point x0, y0 satisfying F (x0, y0) = G(x0, y0) = 0
can be seen as an intersection point of C and D. So we see that two algebraic curves
without common component intersect in finitely many points. We can say a bit
more though.

Theorem 1.7.1 (Bezout Theorem) Let C,D be two algebraic curves of degree m,n
respectively. Suppose that the curves have no common component. Then the number
of intersection points of C,D is at most mn.

For more details, see [21].
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2.1. Introduction

2.1 Introduction

The study to provide a sharp upper bound for the maximum number of crossing
limit cycles for discontinuous piecewise linear differential system separated by a
curve is a very difficult problem, even when this curve is a straight line. And there
are two reasons that make difficult the analysis of this problem. First, even one can
easily integrate the solution of every linear differential system Xi, it is difficult to
determine explicitly the time that an orbit expends in each region governed by each
linear differential system. And second, the number of parameters needed to analyze
all possible cases is in general not small.

In this chapter we study the maximum number of crossing limit cycles that
can have the planar Hamiltonian discontinuous planar piecewise differential systems
formed by two or three linear differential systems separated by one or two straight
line, such that both linear differential have no equilibria, neither real nor virtual.

In order to reduce the number of parameters on which the piecewise linear dif-
ferential system depends we use the canonical forms in the Lemma .

2.2 Canonical forms

Other normal form which is independent of the change of coordinates it is provide
in the following Lemmas.

Lemma 2.2.1 A Hamiltonian linear differential systems has no equilibrium points
can be written as

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c,

where a, b, c and d real constants such that ab 6= 0; Moreover, this systems has the
first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y.

Proof. Consider a general linear differential system which has no equilibrium point

ẋ = d(ax+ βy + c) + b, ẏ = ax+ βy + c, (2.1)

with b 6= 0 and it has the first integral

H1(x, y) = γx+ εy + kxy +mx2 + ny2,

then

ẋ
∂H1

∂x
+ ẏ

∂H1

∂y
≡ 0,

thus

(ak + 2adm)x2 + (kβ + 2an+ 2dmβ + adk)xy + (aε+ 2m (b+ cd) + ck + adγ)x
+ (2nβ + dkβ) y2 + (βε+ k (b+ cd) + 2cn+ dβγ) y + (γ (b+ cd) + cε) = 0,
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2.3. Main result

is equivalent to

k + 2dm = 0,

kβ + 2an+ 2dmβ + adk = 0,

aε+ ck + 2bm+ adγ + 2cdm = 0,

2n+ dk = 0,

βε+ bk + 2cn+ dβγ + cdk = 0,

bγ + cε+ cdγ = 0.

The solution of this system is

k =
adε

b+ cd
,

m = −a ε

2b+ 2cd
,

n = −ad2 ε

2b+ 2cd
,

β = −ad,
γ = −c ε

b+ cd
.

If we take ε = −2(dc+ b) then, the system (2.1) become{
ẋ = d(ax− ady + c) + b,

ẏ = ax− ady + c,

with b 6= 0 and

H1(x, y) = 2cx− 2adxy + ax2 + ad2y2 − 2(dc+ b)y.

This will complete the proof of Lemma 2.2.1.

2.3 Main result

Theorem 2.3.1 A Hamiltonian discontinuous planar piecewise differential systems
formed by two linear differential systems separated by a straight line, such that both
linear differential have no equilibria, neither real nor virtual, have no limit cycles.

Proof. Assume that we have a discontinuous piecewise linear differential system
separated by one straight line and formed by two linear systems which has no equi-
librium points. we can suppose that the straight line of discontinuity is x = 0, and
that the linear system in the half-plane x > 0 is given by the system

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c,

while the linear system in the half-plane x < 0 is given by the system

ẋ = γ(αx− αγy + λ) + β, ẏ = αx− αγy + λ,
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where α, β, λ and γ real constants such that αβ 6= 0; Moreover, this systems has the
first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y,

H2(x, y) = αx2 − 2αγxy + αγ2y2 + 2λx− 2(λγ + β)y,

in half-plane x > 0 and x < 0 respectively.
Therefore if the piecewise linear differential system has a periodic orbit candidate to
be a limit cycle it must intersect the line x = 0 in exactly two points, namely (0, y1)
and(0, y2) with y1 < y2. Since H1 and H2 are two first integrals they must satisfy

H1(0, y1)−H1(0, y2) = 0,

H2(0, y1)−H2(0, y2) = 0,

that is {
ad2y21 − 2(cd+ b)y1 − ad2y22 + 2(cd+ b)y2 = 0,

αγ2y21 − 2(λγ + β)y1 − αγ2y22 + 2(λγ + β)y2 = 0.

is equivalent to the system{
(y1 − y2)(ad2(y1 + y2) + 2(cd+ b)) = 0,

(y1 − y2)(αγ2(y1 + y2) + 2(λγ + β)) = 0,

Since y1 < y2 the previous system is equivalent to the system{
ad2(y1 + y2) + 2(cd+ b) = 0,

αγ2(y1 + y2) + 2(λγ + β) = 0.
(2.2)

Since ad2 6= 0 from the first equation of (2.2) we isolated y1 then

y1 = −y2 −
2(cd+ b)

ad2
,

and substitute it in the second equation of (2.2) , and we get

−αγ22(cd+ b)

ad2
+ 2(λγ + β) = 0.

Then if −2αγ2(cd+ b) + 2ad2(λγ + β) = 0 we have

y1 = −y2 −
2(cd+ b)

ad2
,

but if −2αγ2(cd+ b) + 2ad2(λγ + β) 6= 0 there is no solution .

Finally, this system has either no solutions (y1, y2) satisfying the necessary con-
dition y1 < y2, or it has a continuum of solutions. So the continuous piecewise linear
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differential system either does not have periodic solutions, or it has a continuum of
periodic orbits, and consequently this differential system has no limit cycles.

Here we shall prove that Theorem 2.3.1 cannot be extended to discontinuous
piecewise linear differential system separated by two parallel straight lines formed
by three linear differentiel systems have no equilibria.
Thus our main result is:

Theorem 2.3.2 A Hamiltonian discontinuous planar piecewise differential systems
formed by three linear differential systems separated by two parallel straight lines,
such that the three linear differential have no equilibria, neither real nor virtual, can
have at most one crossing algebraic limit cycle. Moreover there are systems in this
class having one limit cycle.

Proof. Using the notations

Σ+ =
{

(x, y) ∈ R2 : x > 1
}
,

Σ0 =
{

(x, y) ∈ R2 : −1 < x < 1
}
,

Σ− =
{

(x, y) ∈ R2 : x < −1
}
.

Assume that we have a discontinuous piecewise linear differential system separated
by two parallel straight lines formed by three linear system which has no equilibrium
points .we can suppose without loss of generality that the two discontinuous parallel
straight lines are x = ±1, then the discontinuous piecewise linear differential system
becomes

ẋ = s(mx−msy + h) + n, ẏ = mx−msy + h in Σ+,
ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c in Σ0,
ẋ = γ(αx− αγy + λ) + β, ẏ = αx− αγy + λ in Σ−,

this systems has the first integrals

H3(x, y) = mx2 − 2msxy +ms2y2 + 2hx− 2(hs+ n)y,

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y,

H2(x, y) = αx2 − 2αγxy + αγ2y2 + 2λx− 2(λγ + β)y,

in Σ+ , Σ0 ,and Σ− respectively.

A possible limit cycle of this discontinuous piecewise linear differential system must
intersect each discontinuous straight line in two points, namely (1, y1), (1, y2), (−1, y3)
and (−1, y4) with y1 < y2 and y4 < y3, and the first integrals H1, H2 and H3 must
satisfy

H3(1, y1)−H3(1, y2) = 0,
H1(1, y2)−H1(−1, y3) = 0,
H2(−1, y3)−H2(−1, y4) = 0,
H1(−1, y4)−H1(1, y1) = 0.

(2.3)
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Or equivalently
(y1 − y2) (2n+ 2hs+ 2ms−ms2y1 −ms2y2) = 0,

4c+ (ad2 (y2 − y3)− 2ad) (y2 + y3)− 2 (b+ cd) (y2 − y3) = 0,

(y4 − y3) (2αγ − 2β − 2λγ + αγ2 (y3 + y4)) = 0,

ad (2− d (y1 − y4)) (y1 + y4) + 2 (y1 − y4) (b+ cd)− 4c = 0.

(2.4)

By hypothesis y1 < y2 and y3 > y4 and therefore this system is equivalently to the
system 

(2n+ 2hs+ 2ms−ms2 (y1 + y2)) = 0,

4c+ (ad2 (y2 − y3)− 2ad) (y2 + y3)− 2 (b+ cd) (y2 − y3) = 0,

(2αγ − 2β − 2λγ + αγ2 (y3 + y4)) = 0,

ad (−2 + d (y1 − y4)) (y1 + y4)− 2 (y1 − y4) (b+ cd) + 4c = 0.

This last system can be written as
γ (y1 + y2) + γ2 = 0,

4c+ l1 (y21 − y23)− l2 (y1 − y3)− l3 (y1 + y3) = 0,

δ1 − δ2 (y3 + y4) = 0,

4c+ l1 (y22 − y24)− l2 (y2 − y4)− l3 (y2 + y4) = 0,

(2.5)

where γ = −ms2, γ2 = 2n+2hs+2ms, δ1 = 2αγ−2β−2λγ, δ2 = αγ2, l1 = ad2, l2 =
2 (b+ cd) , l3 = 2ad. With γ 6= 0 and δ2 6= 0.
Looking at system (2.5) we remark that if (y1, y2, y3, y4) is a solution, then (y2, y1, y4, y3)
is also a solution, but due to the fact that y1 < y2 and y3 > y4, at most one of these
two solutions will be satisfactory.
Since γ 6= 0 and δ2 6= 0 from the first and third equations of (2.5) we can isolated
y1 and y4, respectively. Then, we obtain

y1 = −(γ2 + γy2)

γ
, y4 =

δ1 − δ2y3
δ2

.

Now replacing these expressions of y1 and y4 in the second and fourth equations of
(2.5), we have the system of two equations

l1y
2
2 +

(
l2 + l3 + 2

γ
γ2l1

)
y2 − l1y23 + (l2 − l3) y3 +

(
4c+ 1

γ
γ2l2 + 1

γ
γ2l3 + 1

γ2
γ22 l1

)
= 0,

l1y
2
2 − (l2 + l3) y2 − l1y23 +

(
l3 − l2 + 2 δ1

δ2
l1

)
y3 +

(
4c+ δ1

δ2
l2 − δ1

δ2
l3 − δ21

δ22
l1

)
= 0.

(2.6)
Summing up the first equation and the second equation of (2.6), we get(

2l2 + 2l3 + 2
γ
γ2l1

)
y2 +

(
2l2 − 2l3 − 2 δ1

δ2
l1

)
y3

+
(

1
γ
γ2l2 + 1

γ
γ2l3 − δ1

δ2
l2 + δ1

δ2
l3 + 1

γ2
γ22 l1 +

δ21
δ22
l1

)
= 0,

(2.7)
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from (2.7) we isolated y2 we obtain

y2 = γ
δ1l1 − δ2l2 + δ2l3

δ2 (γl2 + γl3 + γ2l1)
y3−

γ2δ21l1 + γ22δ
2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3

2γδ22 (γl2 + γl3 + γ2l1)
.

(2.8)
Substituting (2.8) into the second equation of (2.6), we get

m0 +m1y3 +m2y
2
3 = 0,

where

m0 = 4c+
δ1
δ2

(l2 − l3)−
δ21
δ22
l1 (2.9)

+
(l2 + l3) (γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3)

2γδ22 (γl2 + γl3 + γ2l1)

+
l1 (γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3)

4γ2δ42 (γl2 + γl3 + γ2l1)
2

2

,

m1 =
−δ1l1 (γδ1l1 − 2γδ2l2 − γ2δ2l1) (γδ1l1 + 2γδ2l3 + γ2δ2l1)

δ32 (γl2 + γl3 + γ2l1)
2 ,

m2 =
γ2l1 (δ1l1 − δ2l2 + δ2l3)

2

δ22 (γl2 + γl3 + γ2l1)
2 − l1.

Now, solving (2.5) reduces to solve

m0 +m1y3 +m2y
2
3 = 0, (2.10)

k0 + k1y3 + k2y2 = 0,

where m0,m1, and m2 are defined in (2.9) and

k0 =
(
γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3

)
,

k1 = −2γ2δ2 (δ1l1 − δ2l2 + δ2l3) ,

k2 = 2γδ22 (γl2 + γl3 + γ2l1) .

Eventually system (2.10) could have a continuum of solutions (y2, y3) if some coeffi-
cients of the polynomials that there appear are zero, but then the possible periodic
solutions would not be limit cycles. So assume that system (2.10) has finitely many
solutions. We recall that Bezout Theorem states that if a polynomial differential
system of equations has finitely many solutions, then the number of its solutions is at
most the product of the degrees of the polynomials which appear in the system. Then
by Bezout Theorem system (2.10) has at most two solutions. Finally from these at
most two solutions (y2, y3) of system (2.10) we get two solutions (y2, y1, y4, y3) of
system (2.4), but from the previous remark at most one of these two solution would
satisfy y1 < y2 and y3 > y4. In summary, we have proved that at most we can have
one limit cycle. This will complete the proof of Theorem 2.3.2.
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Remark 2.3.1 Concerning Theorem 2.3.2, we stress that since the three linear dif-
ferentials systems have no equilibria then, the limit cycles, if they exists, are surround
a sliding set or the origin.

The next propositions shows that there are discontinuous piecewise linear differ-
ential systems separated by the set Σ with one, two or three (respectively) crossing
algebraic limit cycles intersecting in a unique point with each of the three branches
of Σ.

Proposition 2.3.1 The discontinuous piecewise linear differential system defined
by

ẋ = −y − x+
1

2
, ẏ = x+ y + 1 in Σ+,

ẋ = − (lx+ ky − k) , ẏ = 2x+ ly − f in Σ0,

ẋ = −2

(
x+ y +

√
2−
√

3

2
+ 1

)
, ẏ = 2x+ 2y − 1 in Σ−,

(2.11)

where k =
(
168
√

2 + 136
√

3 + 96
√

6 + 238
)
, f =

(
20
√

12 + 32
√

2 + 29
√

3 + 93
2

)
and

l =
(
4
√

6 + 8
√

2 + 6
√

3 + 12
)

has a unique crossing limit cycle surrounding the
sliding segment:

Σs =

{
(1, y) : −1

2
≤ y ≤ 4

√
2− 2

√
6 + 3

√
3− 5

}

∪

{
(−1, y) :

1

2

√
3−
√

18

3
≤ y ≤ 2

√
6− 4

√
2− 3

√
3 + 7

}
.

Moreover, this limit cycle is algebraic of degree (2, 2, 2) and writes as

Γ = {(x, y) ∈ Σ+ : H11(x, y)− 9 = 0}
∪ {(x, y) ∈ Σ0 : H21(x, y) + 102. 96 = 0}
∪ {(x, y) ∈ Σ0 : H21 (x, y)− 6776. 8 = 0}
∪ {(x, y) ∈ Σ− : H31 (x, y)− 13. 798 = 0} ,

with

H11 (x, y) = x2 + 2xy + y2 + 2x− y,

H21(x, y) = x2 + 2
(√

3 + 2
)(

2
√

2 + 3
)
xy + 2

(
−10
√

6− 16
√

2− 29

2

√
3− 93

4

)
x

+
(

4
√

3 + 7
)(

12
√

2 + 17
) (
y2 − 2y

)
,

H31 (x, y) = 2x2 + 4xy + 2y2 − 2x+ 2
(

2
√

2−
√

3 + 2
)
y.

and it is traveled in counterclockwise sense, see it in the figure
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Figure 2.1: The limit cycle of the discontinuous piecewise linear differential system
2.11

Proof. The discontinuous piecewise linear differential system defined in (2.11) have
no equilibrium point, neither real nor virtual.
The first integrals of the three linear differential systems (2.11) are

H11 (x, y) = x2 + 2xy + y2 + 2x− y, (2.12)

H21(x, y) = x2 + 2
(√

3 + 2
)(

2
√

2 + 3
)
xy + 2

(
−10
√

6− 16
√

2− 29

2

√
3− 93

4

)
x

+
(

4
√

3 + 7
)(

12
√

2 + 17
) (
y2 − 2y

)
,

H31 (x, y) = 2x2 + 4xy + 2y2 − 2x+ 2
(

2
√

2−
√

3 + 2
)
y.

Then, the solutions of (2.11) can be obtained gluing pieces of parabolas and pieces
of ellipses like curves defined by the level sets Hj1 = hj1 varying hj, j = 1, 2, 3 . The
piecewise algebraic curves are periodic orbits only if they are connex in the region
Σ+, Σ0 and Σ− where they are defined and they do not contain any real equilibrium
point.
Now we shall use the notation and the expressions of the proof of theorem 2.3.2.
System (2.3) can be written as the

(y1 + y2 + 1) (y1 − y2) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,

(y3 − y4)
(
y3 + y4 + 2

√
2−
√

3
)

= 0.

Since ad2 6= 0, αβ2 6= 0, y1 > y2 and y3 > y4 the previous system is equivalent to the
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system 
(y1 + y2 + 1) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,(
y3 + y4 + 2

√
2−
√

3
)

= 0.

The unique solution (y1, y2, y3, y4) of this last system satisfying the necessary condi-
tions y1 > y2 and y3 > y4 is

(
y1 = 2, y2 = −3, y3 =

√
3, y4 = −2

√
2
)
. Straightforward

computations show that :
The implicit form of the solution of the first linear differential system of (2.11)
passing through the crossing points (1, y1) and (1, y2) is

H11(x, y)− 9 = 0.

The implicit form of the solution of the second linear differential system of (2.11)
passing through the crossing points (1, y1) and (−1, y3) is

H21(x, y) + 102. 96 = 0.

The implicit form of the solution of the second linear differential system of (2.11)
passing through the crossing points (−1, y4) and (1, y2) is

H21 (x, y)− 6776. 8 = 0

and the implicit form of the solution of the third linear differential system of (2.11)
passing through the crossing points (−1, y3) and (−1, y4) is

H31 (x, y)−
(

4
√

6 + 4
)

= 0.

Then, the crossing periodic orbit Γ is algebraic of degree (2, 2, 2) and writes as

Γ = {(x, y) ∈ Σ+ : H11(x, y)− 9 = 0}
∪ {(x, y) ∈ Σ0 : H21(x, y) + 102. 96 = 0}
∪ {(x, y) ∈ Σ0 : H21 (x, y)− 6776. 8 = 0}
∪ {(x, y) ∈ Σ− : H31 (x, y)− 13. 798 = 0} .

On the other hand, the orbit arc in Σ+ starting from (1, y2) satisfies ẋ|(1,y2) > 0
and ẏ|(1,y2) < 0, so it runs in counterclockwise. The orbit arc in Σ0 starting from
(1, y1) satisfies ẋ|(1,y1) < 0 and ẏ|(1,y1) < 0, and so it runs in counterclockwise. The
orbit arc in Σ− starting from (−1, y3) satisfies ẋ|(−1,y3) < 0 and ẏ|(−1,y3) > 0, and
so it runs in counterclockwise. The orbit arc in Σ0 starting from (−1, y4) satisfies
ẋ|(−1,y4) > 0 and ẏ|(−1,y4) < 0, and so it runs in counterclockwise. Furthermore,
notice that system (2.11) has a sliding segment, namely
Σs =

{
(1, y) : −1

2
≤ y ≤ 4

√
2− 2

√
6 + 3

√
3− 5

}
∪
{

(−1, y) : 1
2

√
3−

√
18
3
≤ y ≤ 2

√
6− 4

√
2− 3

√
3 + 7

}
,

that it is inside the periodic orbit. Drawing the orbit Γ we obtain the limit cycle of
figure 2.1, which is traveled in counterclockwise sense.
This completes the proof of proposition 2.3.1.
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2.4. Discussions and conclusions

2.4 Discussions and conclusions

In this chapter we studied the number of crossing limit cycles of the discontin-
uous planar piecewise differential systems formed by two or three linear differential
systems separated by one or two parallel straight lines, such that the two or three
linear differential have no equilibria, neither real nor virtual. We prove that if the
discontinuous planar piecewise differential systems separated by one straight line
they have no limit cycles. But when the piecewise differential systems are discon-
tinuous separated by two parallel straight lines, we show that they can have at most
one crossing algebraic limit cycle, and that there exist such systems with one limit
cycle.
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Chapter3
Limit cycles of a class of piecewise
linear differential system with only
one equilibria which is a center
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3.1. Introduction

3.1 Introduction

In this chapter we study the maximum number of crossing limit cycles that
can have the planar Hamiltonian continuous and discontinuous planar piecewise
differential systems formed by two or three linear differential systems separated by
one or two straight line, such that one of these differential systems is linear centre
while other systems have no equilibria, neither real nor virtual.

3.2 Discontinuous piecewise linear differential sys-

tem

Lemma 3.2.1 A linear differential system having a center can be written as

ẋ = −Bx− (4B2 + w2)

4A
y + δ, ẏ = Ax+By +D, (3.1)

with A > 0 and w > 0. Moreover, this system has the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2 (3.2)

Proof. Consider a general linear differential system in the R2

ẋ = ax+ by + δ, ẏ = Ax+By +D, (3.3)

and assume that it has a center.
The eigenvalues of this system are

a+B ±
√

(a+B)2 − 4(aB − Ab)
2

.

Then this system has a center if a + B = 0 and (a + B)2 − 4(aB − Ab) = −w2 for

some w > 0 and Ab < 0, i.e. if a = −B, b = −w
2 + 4B2

4A
and A > 0.

The system (3.3) has the first integral

H2(x, y) = αx+ ηy + Lxy + px2 + qy2, (3.4)

then

ẋ
∂H2

∂x
+ ẏ

∂H2

∂y
= 0,

thus

(−BL− 4B2 + w2

4A
α + δL+Bη + 2Dq)y + (−Bα + 2δp+ Aη +DL)x+ (−2Bp+ AL)x2

+(2Aq − 2p
4B2 + w2

4A
)xy + (−4B2 + w2

4A
L+ 2Bq)y2 + δα +Dη = 0,
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3.2. Discontinuous piecewise linear differential system

is equivalent to 

−BL− 4B2 + w2

4A
α + δL+Bη + 2Dq = 0,

−Bα + 2δp+ Aη +DL = 0,

−2p
4B2 + w2

4A
+ 2Aq = 0,

−2Bp+ AL = 0,

−4B2 + w2

4A
L+ 2Bq = 0,

δα +Dη = 0.

As we solve this equations, we get

L =
2B

A
p, q =

4B2 + w2

4A2
p, η =

−2δ

A
p, α =

2D

A
p,

if we take p = 4A2 we get

α = 8AD, η = −8δA, q = 4B2 + w2, L = 8AB,

then (3.4) become

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2.

This completes the proof of the Lamma.

Theorem 3.2.1 . A discontinuous piecewise linear differential system separated by
one straight line with two linear systems, one of them is linear center the second
have no equilibria, neither real nor virtual; has no algebraic limit cycles.

Proof. Assume that we have a discontinuous piecewise linear differential system
separated by one straight line with two linear systems, one of them is linear center
the second have no equilibria, neither real nor virtual. Without loss of generality
we can assume that the straight line is x = 0. We can assume that the linear center
in the half-plane x < 0 can be given by the system

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ = Ax+By +D,

has the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2.

and finally from lemma 2.2.1 that the linear differential system which has no equi-
librium points, and all its solutions are algebraic and given by parabolas in the
half-plane x > 0 has a general expression as

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c,
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3.2. Discontinuous piecewise linear differential system

this systems has the first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y.

Therefore if the piecewise linear differential system has a periodic orbit candidate
to be a limit cycle it must intersect the line x = 0 in exactly two points, namely
(0, y1) and (0, y2) with y1 > y2. Since H1 and H2 are two first integrals they must
satisfy the closing equations given by

H1(0, y1)−H1(0, y2) = 0,
H2(0, y1)−H2(0, y2) = 0,

or equivalently {
(y1 − y2) (2b+ 2cd− ad2y1 − ad2y2) = 0,

(y1 − y2) (−8Aδ + (4B2 + w2) (y1 + y2)) = 0.

since y1 > y2 the previous system is equivalent to this system{
(2b+ 2cd− ad2y1 − ad2y2) = 0,

(−8Aδ + (4B2 + w2) (y1 + y2)) = 0,

then if −8B2b− 2bw2 − 8B2cd− 2cdw2 + 8Aad2δ = 0 we have

y1 =
1

ad2
(
2b+ 2cd− ad2y2

)
,

but if −8B2b− 2bw2 − 8B2cd− 2cdw2 + 8Aad2δ 6= 0, this system has no solutions .

This system has either no solutions (y1, y2) satisfying the necessary condition
y1 > y2, or it has a continuum of solutions. So the discontinuous piecewise linear
differential system either does not have periodic solutions, or it has a continuum of
periodic orbits, and consequently this differential system has no limit cycles. This
completes the proof of the theorem 3.2.1.

Here we shall prove that Theorem 3.2.1 cannot be extended to discontinuous
piecewise linear differential system separated by two parallel straight lines formed
by one linear center.
Thus our main result is:

Theorem 3.2.2 A discontinuous piecewise linear differential system separated by
two parallel straight lines with three linear systems, two of them have no equilibria,
neither real nor virtual and the third is a linear center, can have at most one crossing
algebraic limit cycle. Moreover there are systems in this class having one limit cycle.
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3.2. Discontinuous piecewise linear differential system

Proof. Using the notations

Σ+ =
{

(x, y) ∈ R2 : x > 1
}
,

Σ0 =
{

(x, y) ∈ R2 : −1 < x < 1
}
,

Σ− =
{

(x, y) ∈ R2 : x < −1
}
.

Assume that we have a discontinuous piecewise linear differential system separated
by two parallel straight lines with three linear systems, two of them have no equi-
libria, neither real nor virtual and the third is a linear center.
There are two possible cases as follows.

Case 1: the centre is located in the zone Σ0.
Case 2: the centre is located in the zone Σ− or Σ+.

Case 1: We consider that the only center is defined in the region Σ0. Doing a linear
change of coordinates we can write the matrix of the linear center in Σ0 in its real
Jordan normal form, so the system in Σ0 becomes

ẋ = −y − ω, ẏ = x− ξ,

and it has the first integral

H3(x, y) = (y + ω)2 + (x− ξ)2.

In the region Σ+ we consider the arbitrary linear differential system

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c,

this system has the first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y.

In the region Σ− we consider the arbitrary linear differential system which have no
equilibria

ẋ = β (αx− αβy + λ) + γ, ẏ = αx− αβy + λ,

and having the first integral

H4 (x, y) = αx2 − 2αβxy + αβ2y2 + 2λx− 2 (λβ + γ) y,

In order that the discontinuous piecewise linear differential system separated by
two parallel straight lines formed by one linear center has a crossing limit cy-
cle Γ, it must intersect each straight line x = ±1 in exactly two points, namely
(1, y1), (1, y2), (−1, y3) and (−1, y4) with y1 > y2 and y3 > y4. Hence the first inte-
grals H1, H3 and H4 must satisfy

H1(1, y1)−H1(1, y2) = 0,
H3(1, y1)−H3(−1, y3) = 0,
H3(1, y2)−H3(−1, y4) = 0,
H4(−1, y4)−H4(−1, y3) = 0,

(3.5)
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3.2. Discontinuous piecewise linear differential system

or equivalently
(y1 − y2) (2b+ 2ad+ 2cd− ad2y1 − ad2y2) = 0,

(y1 − y3) (2ω + y1 + y3)− 4ξ = 0,

(y2 − y4) (2ω + y2 + y4)− 4ξ = 0,

(y3 − y4) (2γ − 2αβ + 2λβ − αβ2y3 − αβ2y4) = 0.

Since y1 > y2 and y3 > y4 the previous system is equivalent to the system
F − L (y1 + y2) = 0,

(y1 − y3) (2ω + y1 + y3)− 4ξ = 0,

(y2 − y4) (2ω + y2 + y4)− 4ξ = 0,

G−N(y3 + y4) = 0,

(3.6)

where F = 2b + 2ad + 2cd, L = ad2, N = αβ2 and G = 2γ − 2αβ + 2λβ. Using
maple the solutions (y1, y2, y3, y4) of this last system when

G2L2 − F 2N2 + 16L2N2ξ − 4FLN2ω + 4GL2Nω

(GL− FN)3 (GL+ FN + 4LNω)
> 0

are (y∗1, y
∗
2, y
∗
3, y
∗
4) and (y∗2, y

∗
1, y
∗
4, y
∗
3) where

y∗1 = F
2L

+ (G+2Nω)(GL−FN)
2N

√
G2L2−F 2N2+16L2N2ξ−4FLN2ω+4GL2Nω

(GL−FN)3(GL+FN+4LNω)
,

y∗2 = F
2L
− (G+2Nω)(GL−FN)

2N

√
G2L2−F 2N2+16L2N2ξ−4FLN2ω+4GL2Nω

(GL−FN)3(GL+FN+4LNω)
,

y∗3 = G
2N

+ (F+2Lω)(GL−FN)
2L

√
G2L2−F 2N2+16L2N2ξ−4FLN2ω+4GL2Nω

(GL−FN)3(GL+FN+4LNω)
,

y∗4 = G
2N
− (F+2Lω)(GL−FN)

2L

√
G2L2−F 2N2+16L2N2ξ−4FLN2ω+4GL2Nω

(GL−FN)3(GL+FN+4LNω)
.

But due to the fact that y1 > y2 and y3 > y4, at most one of these two solutions will
be satisfactory. So, the discontinuous piecewise linear differential system separated
by two parallel straight lines formed by one linear center. can have at most one
limit cycle.

Case 2: We consider a planar discontinuous piecewise linear differential system
separated by two parallel straight lines and formed by three linear systems , two
of them have no equilibria, neither real nor virtual and the third is a linear center
defined in Σ+, we have that these linear systems can be as follows

ẋ = −Bx− 4B2+w2

4A
y + δ, ẏ = Ax+By +D, Σ+,

ẋ = β (αx− αβy + λ) + γ, ẏ = αx− αβy + λ Σ0,
ẋ = d (ax− ady + c) + b, ẏ = ax− ady + c, Σ−.

(3.7)

These linear systems have the first integrals

H1(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2,

H2 (x, y) = αx2 − 2αβxy + αβ2y2 + 2λx− 2 (λβ + γ) y,

H3 (x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2 (cd+ b) y.
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3.2. Discontinuous piecewise linear differential system

respectively.
We are going to analyze if the discontinuous piecewise linear differential system
(3.7) has crossing periodic solutions. Since the orbits in each region Σ0, and Σ−, are
pieces of one parabola and the orbit in region Σ+ is pieces of one ellipse, we have
that if there is a crossing limit cycle this must intersect each straight line x = ±1
in exactly two points namely (1, y1), (1, y2), (−1, y3) and (−1, y4) with y1 > y2 and
y3 > y4. Therefore we must study the solutions of the closing equations

H1(1, y1)−H1(1, y2) = 0,
H2(1, y1)−H2(−1, y3) = 0,
H2(1, y2)−H2(−1, y4) = 0,
H3(−1, y4)−H3(−1, y3) = 0,

(3.8)

or equivalently, we have the system
(y1 − y2) (−8Aδ + 4B2y1 + 4B2y2 + w2y1 + w2y2 + 8AB) = 0,

4λ+ αβ2 (y21 − y23)− 2 (γ + βλ) (y1 − y3)− 2αβ (y1 + y3) = 0,

4λ+ αβ2 (y22 − y24)− 2 (γ + βλ) (y2 − y4)− 2αβ (y2 + y4) = 0,

(y3 − y4) (2b− 2ad+ 2cd− ad2y3 − ad2y4) = 0,

(3.9)

By hypothesis y1 > y2 and y3 > y4 and therefore system (3.9) is equivalently to the
system 

(4B2 + w2) (y1 + y2) + 8A (B − δ) = 0,

4λ+ αβ2 (y21 − y23)− 2 (γ + βλ) (y1 − y3)− 2αβ (y1 + y3) = 0,

4λ+ αβ2 (y22 − y24)− 2 (γ + βλ) (y2 − y4)− 2αβ (y2 + y4) = 0,

ad2 (y3 + y4) + 2 (−b+ ad− cd) = 0,

thus 
γ (y1 + y2) + γ2 = 0,

4λ+ l1 (y21 − y23)− l2 (y1 − y3)− l3 (y1 + y3) = 0,

4λ+ l1 (y22 − y24)− l2 (y2 − y4)− l3 (y2 + y4) = 0,

δ1 − δ2 (y3 + y4) = 0,

(3.10)

where γ = (4B2 + w2) , γ2 = 8A (B − δ) , δ1 = 2b−2ad+2cd, δ2 = ad2, l1 = αβ2, l2 =
2 (γ + βλ) , l3 = 2αβ. As γ 6= 0 and δ2 6= 0,
Looking at system (3.10) we remark that if (y1, y2, y3, y4) is a solution, then (y2, y1, y4, y3)
is also a solution, but due to the fact that y1 > y2 and y3 > y4, at most one of these
two solutions will be satisfactory.
Since γ 6= 0 and δ2 6= 0 from the first and fourth equations of (3.10) we can isolated
y1 and y4, respectively. Then, we obtain

y1 = −(γ2 + γy2)

γ
, y4 =

δ1 − δ2y3
δ2

.
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3.2. Discontinuous piecewise linear differential system

Now replacing these expressions of y1 and y4 in the second and third equations of
(3.10), we have the system of two equations

l1y
2
2 +

(
l2 + l3 + 2

γ
γ2l1

)
y2 − l1y23 + (l2 − l3) y3 +

(
4λ+ 1

γ
γ2l2 + 1

γ
γ2l3 + 1

γ2
γ22 l1

)
= 0,

l1y
2
2 − (l2 + l3) y2 − l1y23 +

(
l3 − l2 + 2 δ1

δ2
l1

)
y3 +

(
4λ+ δ1

δ2
l2 − δ1

δ2
l3 − δ21

δ22
l1

)
= 0.

(3.11)
Summing up the first equation and the second equation of (3.11), we get(

2l2 + 2l3 + 2
γ
γ2l1

)
y2 +

(
2l2 − 2l3 − 2 δ1

δ2
l1

)
y3

+
(

1
γ
γ2l2 + 1

γ
γ2l3 − δ1

δ2
l2 + δ1

δ2
l3 + 1

γ2
γ22 l1 +

δ21
δ22
l1

)
= 0,

(3.12)

from (3.12) we isolated y2 we obtain

y2 = γ
δ1l1 − δ2l2 + δ2l3

δ2 (γl2 + γl3 + γ2l1)
y3−

γ2δ21l1 + γ22δ
2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3

2γδ22 (γl2 + γl3 + γ2l1)
.

(3.13)
Substituting (3.13) into the second equation of (3.11), we get

m0 +m1y3 +m2y
2
3 = 0,

where

m0 = 4λ+
δ1
δ2

(l2 − l3)−
δ21
δ22
l1 (3.14)

+
(l2 + l3) (γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3)

2γδ22 (γl2 + γl3 + γ2l1)

+
l1 (γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3)

4γ2δ42 (γl2 + γl3 + γ2l1)
2

2

,

m1 =
−δ1l1 (γδ1l1 − 2γδ2l2 − γ2δ2l1) (γδ1l1 + 2γδ2l3 + γ2δ2l1)

δ32 (γl2 + γl3 + γ2l1)
2 ,

m2 =
γ2l1 (δ1l1 − δ2l2 + δ2l3)

2

δ22 (γl2 + γl3 + γ2l1)
2 − l1.

Now, solving (3.11) reduces to solve

m0 +m1y3 +m2y
2
3 = 0, (3.15)

k0 + k1y3 + k2y2 = 0,

where m0,m1, and m2 are defined in (3.14) and

k0 =
(
γ2δ21l1 + γ22δ

2
2l1 + γγ2δ

2
2l2 − γ2δ1δ2l2 + γγ2δ

2
2l3 + γ2δ1δ2l3

)
,

k1 = −2γ2δ2 (δ1l1 − δ2l2 + δ2l3) ,

k2 = 2γδ22 (γl2 + γl3 + γ2l1) .
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3.2. Discontinuous piecewise linear differential system

Eventually system (3.15) could have a continuum of solutions (y2, y3) if some coeffi-
cients of the polynomials that there appear are zero, but then the possible periodic
solutions would not be limit cycles. So assume that system (3.15) has finitely many
solutions. We recall that Bezout Theorem states that if a polynomial differential
system of equations has finitely many solutions, then the number of its solutions is at
most the product of the degrees of the polynomials which appear in the system. Then
by Bezout Theorem system (3.15) has at most two solutions. Finally from these at
most two solutions (y2, y3) of system (3.15) we get two solutions (y1, y2, y3, y4) of
system (3.9), but from the previous remark at most one of these two solution would
satisfy y1 > y2 and y3 > y4. In summary, we have proved that at most we can have
one limit cycle. This will complete the proof of Theorem 3.2.2.

The next proposition shows that there are discontinuous piecewise linear differential
system separated by two parallel straight lines formed by one linear center with one
crossing algebraic limit cycle:

Proposition 3.2.1 (case 1) The discontinuous piecewise linear differential system
defined by

ẋ = −x− y +
1

2
, ẏ = x+ y + 1 in Σ+,

ẋ = −y, ẏ = x− 1

4
in Σ0,

ẋ = 2

(
x− y −

√
2 +

√
3

2
+ 1

)
, ẏ = 2x− 2y − 1 in Σ−,

(3.16)

where a, d, c, α, β and λ real constants, has a unique crossing limit cycle surrounding
the Σs =

{
(1, y) : −1

2
≤ y ≤ 0

}
∪
{

(−1, y) : −
√

2 + 1
2

√
3 ≤ y ≤ 0

}
and the center(

1
4
, 0
)

when d 6= 0, β 6= 0, αλ < 0, ac > 0. Moreover, this limit cycle is algebraic of
degree (2, 2, 2) and writes as

Γ1 = {(x, y) ∈ Σ+ : H11(x, y)− 9 = 0}

∪
{

(x, y) ∈ Σ0 : H21(x, y)− 73

16
= 0

}
∪
{

(x, y) ∈ Σ0 : H21 (x, y)− 153

16
= 0

}
∪{(x, y) ∈ Σ− : H31 (x, y)− 13. 798 = 0} ,

with

H11 (x, y) = x2 + 2xy + y2 + 2x− y,

H21(x, y) = y2 +

(
x− 1

4

)2

,

H31 (x, y) = 2x2 − 4xy + 2y2 − 2x+ 2
((

2
√

2−
√

3
)
− 2
)
y.

and it is traveled in counterclockwise sense, see it in the figure
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3.2. Discontinuous piecewise linear differential system

Figure 3.1: The limit cycle of the discontinuous piecewise linear differential system
3.16

Proof. The discontinuous piecewise linear differential system defined in (3.16) have
one equilibrium point

(
1
4
, 0
)

Since ±i are the eigenvalues of the matrix of the second
linear differential systems of (3.16), this system have its equilibria as center.

The first integrals of the three linear differential systems (3.16) are

H11 (x, y) = x2 + 2xy + y2 + 2x− y,

H21(x, y) = y2 +

(
x− 1

4

)2

,

H31 (x, y) = 2x2 − 4xy + 2y2 − 2x+ 2
((

2
√

2−
√

3
)
− 2
)
y.

Then, the solutions of (3.16) can be obtained gluing pieces of parabolas and pieces of
ellipses like curves defined by the level sets Hj1 = hj1 varying hj, j = 1, 2, 3 , . The
piecewise algebraic curves are periodic orbits only if they are connex in the region
Σ+, Σ0 and Σ− where they are defined and they do not contain any real equilibrium
point.

Now we shall use the notation and the expressions of the proof of theorem 3.2.2.
System (3.5) can be written as the


(y1 + y2 + 1) (y1 − y2) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,

(y3 − y4)
(
y3 + y4 + 2

√
2−
√

3
)

= 0.

Since ad2 6= 0, αβ2 6= 0, y1 > y2 and y3 > y4 the previous system is equivalent to the
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3.2. Discontinuous piecewise linear differential system

system 
(y1 + y2 + 1) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,(
y3 + y4 + 2

√
2−
√

3
)

= 0.

The unique solution (y1, y2, y3, y4) of this last system satisfying the necessary condi-
tions y1 > y2 and y3 > y4 is

(
y1 = 2, y2 = −3, y3 =

√
3, y4 = −2

√
2
)
. Straightforward

computations show that :
The implicit form of the solution of the first linear differential system of (3.16)
passing through the crossing points (1, y1) and (1, y2) is

H11(x, y)− 9 = 0.

The implicit form of the solution of the second linear differential system of (3.16)
passing through the crossing points (1, y1) and (−1, y3) is

H21(x, y)− 73

16
= 0.

The implicit form of the solution of the second linear differential system of (3.16)
passing through the crossing points (−1, y4) and (1, y2) is

H21 (x, y)− 153

16
= 0

and the implicit form of the solution of the third linear differential system of (3.16)
passing through the crossing points (−1, y3) and (−1, y4) is

H31 (x, y)−
(

4
√

6 + 4
)

= 0.

Then, the crossing periodic orbit Γ is algebraic of degree (2, 2, 2) and writes as

Γ1 = {(x, y) ∈ Σ+ : H11(x, y)− 9 = 0}

∪
{

(x, y) ∈ Σ0 : H21(x, y)− 73

16
= 0

}
∪
{

(x, y) ∈ Σ0 : H21 (x, y)− 153

16
= 0

}
∪{(x, y) ∈ Σ− : H31 (x, y)− 13. 798 = 0} ,

On the other hand, the orbit arc in Σ+ starting from (1, y2)satisfies ẋ|(1,y2) > 0
and ẏ|(1,y2) < 0, so it runs in counterclockwise. The orbit arc in Σ0 starting from
(1, y1) satisfies ẋ|(1,y1) < 0 and ẏ|(1,y1) > 0, and so it runs in counterclockwise. The
orbit arc in Σ− starting from (−1, y3) satisfies ẋ|(−1,y3) < 0 and ẏ|(−1,y3) < 0, and
so it runs in counterclockwise. The orbit arc in Σ0 starting from (−1, y4) satisfies
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3.2. Discontinuous piecewise linear differential system

ẋ|(−1,y4) > 0 and ẏ|(−1,y4) < 0, and so it runs in counterclockwise. Furthermore, notice
that system (3.16) has a sliding segment, namely Σs =

{
(1, y) : −1

2
≤ y ≤ 0

}
∪{

(−1, y) : −
√

2 + 1
2

√
3 ≤ y ≤ 0

}
, that it is inside the periodic orbit Drawing the

orbit Γ we obtain the limit cycle of figure3.1, which is traveled in counterclockwise
sense.
This completes the proof of proposition 3.2.1

Proposition 3.2.2 (case 2)The discontinuous piecewise linear differential system
defined by

ẋ = −y − 1
2
, ẏ = x− 1 in Σ+,

ẋ = − (lx+ ky − k) , ẏ = 2x+ ly + f in Σ0,

ẋ = −2

(
x+ y +

√
2−
√

3

2
+ 1

)
, ẏ = 2x+ 2y − 1 in Σ−,

(3.17)

where k =
(
168
√

2 + 136
√

3 + 96
√

6 + 238
)
, f =

(
20
√

6 + 32
√

2 + 29
√

3 + 93
2

)
and l =

(
4
√

6 + 8
√

2 + 6
√

3 + 12
)

has a unique crossing limit cycle surrounding the
sliding set

Σs =

{
(1, y) : −1

2
≤ y ≤ 4

√
2− 2

√
2
√

3 + 3
√

3− 5

}

∪

{
(−1, y) :

1

2

√
3−
√

18

3
≤ y ≤ 4

√
2− 2

√
2
√

3 + 3
√

3− 5

}
,

and the center
(
1,−1

2

)
. Moreover, this limit cycle is algebraic of degree (2, 2, 2) and

writes as

Γ1 =

{
(x, y) ∈ Σ+ : H11(x, y)− 25

4
= 0

}
∪{(x, y) ∈ Σ0 : H21(x, y) + 102. 96 = 0}
∪ {(x, y) ∈ Σ0 : H21 (x, y)− 6776. 8 = 0}

∪
{

(x, y) ∈ Σ− : H31 (x, y)−
(

4
√

6 + 4
)

= 0
}
,

with

H11 (x, y) = x2 − 2x+ y2 + y +
5

4
,

H21(x, y) = x2 +
(

2
√

3 + 4
)(

2
√

2 + 3
)
xy +

(
−20
√

6− 32
√

2− 29
√

3− 93

2

)
x

+
(

4
√

3 + 7
)(

12
√

2 + 17
)
y2 − 2

(
4
√

3 + 7
)(

12
√

2 + 17
)
y,

H31 (x, y) = 2x2 + 4xy + 2y2 − 2x+ 2
(

2
√

2−
√

3 + 2
)
y,

and it is traveled in counterclockwise sense, see it in the figure
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3.2. Discontinuous piecewise linear differential system

Figure 3.2: The limit cycle of the discontinuous piecewise linear differential system
3.17

Proof. The discontinuous piecewise linear differential system defined in (3.17) have
one equilibrium point

(
1,−1

2

)
Since ±i are the eigenvalues of the matrix of the first

linear differential systems of (3.17), this system have its equilibria as center.

The first integrals of the three linear differential systems (3.17) are

H11 (x, y) = x2 − 2x+ y2 + y +
5

4
,

H21(x, y) = x2 +
(

2
√

3 + 4
)(

2
√

2 + 3
)
xy +

(
−20
√

6− 32
√

2− 29
√

3− 93

2

)
x

+
(

4
√

3 + 7
)(

12
√

2 + 17
)
y2 − 2

(
4
√

3 + 7
)(

12
√

2 + 17
)
y,

H31 (x, y) = 2x2 + 4xy + 2y2 − 2x+ 2
(

2
√

2−
√

3 + 2
)
y.

The piecewise algebraic curves are periodic orbits only if they are connex in the
region Σ+, Σ0 and Σ− where they are defined and they do not contain any real
equilibrium point.

Now we shall use the notation and the expressions of the proof of theorem 3.2.2.
System (3.8) can be written as the


(y1 + y2 + 1) (y1 − y2) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,

(y3 − y4)
(
y4 + y4 + 2

√
2−
√

3
)

= 0.
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3.2. Discontinuous piecewise linear differential system

Since y1 > y2 and y3 > y4 the previous system is equivalent to the system
(y1 + y2 + 1) = 0,

(y1 − y3) (y1 + y3)− 1 = 0,

(y2 − y4) (y2 + y4)− 1 = 0,(
y3 + y4 + 2

√
2−
√

3
)

= 0.

The unique solution (y1, y2, y3, y4) of this last system satisfying the necessary condi-
tions y1 > y2 and y3 > y4 is

(
y1 = 2, y2 = −3, y3 =

√
3, y4 = −2

√
2
)
. Straightforward

computations show that :
The implicit form of the solution of the first linear differential system of (3.17)
passing through the crossing points (1, y1) and (1, y2) is

H11(x, y)− 25

4
= 0.

The implicit form of the solution of the second linear differential system of (3.17)
passing through the crossing points (1, y1) and (−1, y3) is

H21(x, y) + 102. 96 = 0.

The implicit form of the solution of the second linear differential system of (3.17)
passing through the crossing points (−1, y4) and (1, y2) is

H21 (x, y)− 6776. 8 = 0

and the implicit form of the solution of the third linear differential system of (3.17)
passing through the crossing points (−1, y3) and (−1, y4) is

H31 (x, y)−
(

4
√

6 + 4
)

= 0.

Then, the crossing periodic orbit Γ is algebraic of degree (2, 2, 2) and writes as

Γ1 =

{
(x, y) ∈ Σ+ : H11(x, y)− 25

4
= 0

}
∪{(x, y) ∈ Σ0 : H21(x, y) + 102. 96 = 0}
∪ {(x, y) ∈ Σ0 : H21 (x, y)− 6776. 8 = 0}

∪
{

(x, y) ∈ Σ− : H31 (x, y)−
(

4
√

6 + 4
)

= 0
}
.

On the other hand, the orbit arc in Σ+ starting from (1, y2) satisfies ẋ|(1,y2) > 0
and ẏ|(1,y2) = 0, so it runs in counterclockwise. The orbit arc in Σ0 starting from
(1, y1) satisfies ẋ|(1,y1) < 0 and ẏ|(1,y1) < 0, and so it runs in counterclockwise. The
orbit arc in Σ− starting from (−1, y3) satisfies ẋ|(−1,y3) < 0 and ẏ|(−1,y3) > 0, and
so it runs in counterclockwise. The orbit arc in Σ0 starting from (−1, y4) satisfies
ẋ|(−1,y4) > 0 and ẏ|(−1,y4) < 0, and so it runs in counterclockwise. Furthermore,

42



3.3. Continuous piecewise linear differential system

notice that system (3.16) has a sliding segment, namely
Σs =

{
(1, y) : −1

2
≤ y ≤ 4

√
2− 2

√
6 + 3

√
3− 5

}
∪
{

(−1, y) : 1
6
−
√
18
3
≤ y ≤ 4

√
2− 2

√
6 + 3

√
3− 5

}
,

that it is inside the periodic orbit. Drawing the orbit Γ we obtain the limit cycle of
figure 3.2, which is traveled in counterclockwise sense.
This completes the proof of proposition 3.2.2

3.3 Continuous piecewise linear differential sys-

tem

The easiest continuous piecewise linear differential systems are formed by two
linear differential systems separated by a straight line. It is known that such systems
have at most one limit cycle. But it is also known that if one linear differential
systems are linear center then the continuous piecewise linear differential system
has no limit cycles.

Lemma 3.3.1 A continuous piecewise linear differential system separated by one
straight line formed by one linear center can be written as

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ =

4AB2

4B2 + w2
x+By +D, in x < 0,

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ = Ax+By +D, in x > 0,

with −4B2D−w2D− 4ABδ 6= 0, A > 0 and w > 0. Moreover, this systems has the
first integral

H1(x, y) = 4A
B2

4B2 + w2
x2 + 2Bxy + 2Dx+

1

4A
(4B2 + w2)y2 − 2δy, (3.18)

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2, (3.19)

in x < 0 and x > 0 respectively.

Proof. Assume that we have a continuous piecewise linear differential system sep-
arated by one straight line with two linear systems, one of them is linear center the
second have no equilibria, neither real nor virtual. Without loss of generality, we
can assume that the straight line of continuity is x = 0 ,and that the linear center
in the half-plane x > 0 is given by the system

ẋ = −Bx− (4B2 + w2)

4A
y + δ, ẏ = Ax+By +D, (3.20)

which has the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2, (3.21)
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3.3. Continuous piecewise linear differential system

while the linear system in the half-plane x < 0 is given by the system

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c, (3.22)

this systems has the first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y.

Since we must have a continuous piecewise linear differential system , both systems,
the (3.20) and the (3.22) must coincide on x = 0, therefore−ad2y + cd+ b = −4B2 + w2

4A
y + δ,

−ady + c = By +D,

then

ad2 =
4B2 + w2

4A
, cd+ b = δ, ad = −B, c = D,

thus

d = −4B2 + w2

4BA
, a = 4A

B2

4B2 + w2
,

b = δ −D4B2 + w2

−4BA
, c = D,

then the system (3.20) and (3.22) can be written as

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ =

4AB2

4B2 + w2
x+By +D x < 0,

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ = Ax+By +D, x > 0,

with −4B2D − w2D − 4ABδ 6= 0, A > 0 and w > 0 and we get the first integral of
this systems

H1(x, y) =
4AB2

4B2 + w2
x2 + 2Bxy + 2Dx+

1

4A
(4B2 + w2)y2 − 2δy,

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2,

in x < 0 and x > 0 respectively.

Theorem 3.3.1 A continuous piecewise linear differential system separated by one
straight line with two linear systems, one of them is linear center the second have
no equilibria, neither real nor virtual, has no limit cycles.

Proof. Assume that we have a continuous piecewise linear differential system sep-
arated by one straight line with two linear systems, one of them is linear center the
second have no equilibria, neither real nor virtual. Without loss of generality we
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3.3. Continuous piecewise linear differential system

can assume that the straight line of continuity is x = 0, and that the linear center
in the half-plane x > 0 is given by

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ = Ax+By +D, x > 0,

and the linear system in the half-plane x < 0 is given by

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ =

4AB2

4B2 + w2
x+By +D x < 0,

with the first integrals

H1(x, y) =
4AB2

4B2 + w2
x2 + 2Bxy + 2Dx+

1

4A
(4B2 + w2)y2 − 2δy

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2,

in x < 0 and x > 0 respectively.
Therefore if the piecewise linear differential system has a periodic orbit candidate

to be a limit cycle it must intersect the line x = 0 in exactly two points, namely
(0, y1) and (0, y2) with y1 < y2. Since H1 and H2 are two first integrals they must
satisfy

H1(0, y1)−H1(0, y2) = 0,

H2(0, y1)−H2(0, y2) = 0,

or equivalently {
(y1 − y2)((y1 + y2)(

2
4A

(4B2 + w2))− 4δ) = 0,

(y1 − y2)((y1 + y2)2(4B2 + w2)− 2(8Aδ)) = 0,

since y1 < y2 the previous system is equivalent to the system{
((y1 + y2)(

2
4A

(4B2 + w2))− 4δ) = 0,

((y1 + y2)2(4B2 + w2)− 2(8Aδ)) = 0.

The solutions (y1, y2) of this last system satisfying the necessary condition y1 < y2
are

y1 = −−8Aδ + 4B2y2 + w2y2
4B2 + w2

,

with y2 arbitrary. So the periodic orbits of the continuous piecewise linear differen-
tial system are in a continuum of periodic orbits, and consequently this differential
system has no limit cycles.

Here we shall prove that Theorem 3.3.1 can be extended to continuous piecewise
linear differential system separated by two parallel straight lines formed by one linear
center.
Thus our main result is:
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3.3. Continuous piecewise linear differential system

Theorem 3.3.2 A continuous piecewise linear differential system separated by two
parallel straight lines with three linear systems, two of them have no equilibria, nei-
ther real nor virtual and the third is a linear center, has no limit cycles.

Proof. Suppose that we have a continuous piecewise linear differential system
separated by two parallel straight lines with three linear systems, two of them have
no equilibria, neither real nor virtual and the third is a linear center. we can assume
without loss of generality that the two parallel straight lines of continuity are x = ±1.
we can assume that the linear center in the strip −1 < x < 1 is given by the system

ẋ = −Bx− 4B2 + w2

4A
y + δ, ẏ = Ax+By +D, (3.23)

with the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Dx− δy) + w2y2,

while the linear system in the half-plane x < −1 is given by the system

ẋ = d(ax− ady + c) + b, ẏ = ax− ady + c, (3.24)

with the first integral

H1(x, y) = ax2 − 2adxy + ad2y2 + 2cx− 2(cd+ b)y,

and finally the linear system in the half-plane x > 1 is given by the system

ẋ = γ (αx− αγy + λ) + β, ẏ = αx− αγy + λ, (3.25)

with the first integral

H4 (x, y) = αx2 − 2αγxy + αγ2y2 + 2λx− 2 (λγ + β) y,

Since we have a continuous piecewise linear differential system it follows that system
(3.23) and (3.25) must coincide on the straight line x = 1, and system (3.24) and
(3.23) must coincide on the straight line x = −1. so we obtain that

−B − (4B2 + w2)

4A
y + δ = γ(α− αγy + λ) + β,

A+By +D = α− αγy + λ,

d(−a− ady + c) + b = B − (4B2 + w2)

4A
y + δ,

−a− ady + c = −A+By +D,

then
4B2 + w2

4A
= αγ2 , −B + δ = γ(α + λ) + β ,B = −αγ,

A+D = α + λ,
4B2 + w2

4A
= ad2, B + δ = d(c− a) + b,
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3.3. Continuous piecewise linear differential system

B = −ad, c− a = D − A,
thus

d = γ = −(4B2 + w2)

4AB
,

c = D − A+
4AB2

4B2 + w2
,

b = B + δ +
1

4AB
(4B2D − Aw2 − 4AB2 + w2D),

β = δ −B +
1

4AB
(4AB2 + Aw2 + 4B2D + w2D),

a = α =
4AB2

4B2 + w2
,

λ = A+D − 4AB2

4B2 + w2
.

If this continuous piecewise linear differential system has a limit cycle this must
intersect the three open regions Σ−,Σ0 and Σ+. Since the orbits in each one of these
three regions are ellipses or a piece of one ellipse, a possible limit cycle must intersect
each straight line x = ±1 in exactly two points,namely (1, y1), (1, y2), (−1, y3) and
(−1, y4) with y1 < y2 and y4 < y3. Hence the first integrals H1, H2 and H4 must
satisfy the four equations

H4(1, y1)−H4(1, y2) = 0,
H2(1, y2)−H2(−1, y3) = 0,
H1(−1, y3)−H3(−1, y4) = 0,
H2(−1, y4)−H2(1, y1) = 0,

which now for our continuous piecewise linear differential system are equal to
−2 (αγ + (λγ + β)) (y1 − y2) + αγ2(y21 − y22) = 0,

(4B2 + w2)(y22 − y23) + 8AB(y2 + y3)− 8Aδ(y2 − y3) + 16AD = 0,

ad2(y23 − y24) + 2(ad− (cd+ b))(y3 − y4) = 0,

(4B2 + w2) (y24 − y21)− 8AB(y4 + y1)− 8Aδ(y4 − y1)− 16AD = 0

this system is equal to
(y1 − y2)(8AB − 8Aδ + (4B2 + w2)(y1 + y2)) = 0,

(y2 − y3)((4B2 + w2)(y2 + y3)− 8Aδ) + 8AB(y2 + y3) + 16AD = 0,

(y3 − y4)(−8AB − 8Aδ + (4B2 + w2)(y3 + y4)) = 0,

(y4 − y1)((4B2 + w2)(y4 + y1)− 8Aδ)− 8AB(y4 + y1)− 16AD = 0.

Since y1 < y2 and y4 < y3 the previous system is equivalent to the system
L−K + F (y1 + y2)) = 0,

(y2 − y3)(F (y2 + y3)−K) + L(y2 + y3) + Γ = 0,

−L−K + F (y3 + y4) = 0,

(y4 − y1)(F (y4 + y1)−K)− L(y4 + y1)− Γ = 0,

(3.26)
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3.3. Continuous piecewise linear differential system

where
F = 4B2 + w2, Γ = 16AD, L = 8AB, K = 8Aδ.

Since F 6= 0 from the third equation of (3.26) we isolated y3 then

y3 =
K + L− Fy4

F
,

and substitute it in the second equation of (3.26), and we get

(y2 −
K + L− Fy4

F
)(F (y2 +

K + L− Fy4
F

)−K) + L(y2 +
K + L− Fy4

F
) + Γ = 0,

is equivalent to

F (y22 − y24) + L(y2 + y4)−K(y2 − y4) + Γ = 0. (3.27)

In a similar from the first equation of (3.26) we isolated y1 then

y1 =
K − L− Fy2

F
,

and substitute it in the fourth equation of (3.26), and we obtain

(y4 −
K − L− Fy2

F
)(F (y4 +

K − L− Fy2
F

)−K)− L(y4 +
K − L− Fy2

F
)− Γ = 0,

is equivalent to

F (y22 − y24) + L(y4 + y2)−K(y2 − y4) + Γ = 0, (3.28)

we combine equations (3.27)and (3.28) and we get

2F (y22 − y24) + 2L(y4 + y2)− 2K(y2 − y4) + 2Γ = 0, (3.29)

from (3.29) we isolated y2 we obtain

y
(1)
2 =

1

F

(
1

2
K − 1

2
L− 1

2

√
K2 − 2KL− 4FKy4 − 4FLy4 − 4FΓ + L2 + 4F 2y24

)
.

or

y
(2)
2 =

1

F

(
1

2
K − 1

2
L+

1

2

√
K2 − 2KL− 4FKy4 − 4FLy4 − 4FΓ + L2 + 4F 2y24

)
.

Finally, the solutions of the system (3.26) are (y
(1)
1 , y

(1)
2 , y3, y4) and (y

(2)
1 , y

(2)
2 , y3, y4)

where

y
(1)
1 = − 1

F
(L−K)− y(1)2 ,

y
(2)
1 = − 1

F
(L−K)− y(2)2 ,
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3.3. Continuous piecewise linear differential system

y
(1)
2 =

1

F

(
1

2
K − 1

2
L+

1

2

√
K2 − 2KL− 4FKy4 − 4FLy4 − 4FΓ + L2 + 4F 2y24

)
,

y
(2)
2 =

1

F

(
1

2
K − 1

2
L− 1

2

√
K2 − 2KL− 4FKy4 − 4FLy4 − 4FΓ + L2 + 4F 2y24

)
,

y3 = − 1

F
(Fy4 − L−K) ,

and y4 arbitrary. But due to the fact that y1 > y2 and y3 > y4 , at most one of these
two solutions will be satisfactory. So, the periodic orbits of the continuous piecewise
linear differential system are in a continuum of periodic orbits, and consequently
this differential system has no limit cycles.
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3.4 Discussions and conclusions

In this chapter we studied the number of crossing limit cycles of the continuous
and discontinuous planar piecewise differential systems formed only by one linear
center separated by one or two parallel straight lines. we prove that when these
piecewise differential systems are continuous or discontinuous separated by a unique
straight line they have no limit cycles. But when the piecewise differential systems
are discontinuous separated by two parallel straight lines, we show that they can have
at most one crossing algebraic limit cycle, and that there exist such systems with
one limit cycle,and when the piecewise differential systems are continuous separated
by two parallel straight lines, we show that they have no limit cycles .
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