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INTRODUCTION

Most of problems encountered can be modelled mathematically, but these models require

assumptions that are sometimes too restrictive, making application to the real world difficult.

Real-world problems must take into account imprecise, uncertain information. The concept

of fuzzy set was introduced in 1965 by A. Zadeh [3], many authors were interested by this

concept [1, 4, 13]. The main problem in fuzzy mathematics is how to carry out the ordinary

concepts to the fuzzy case.

The partially ordered algebraic systems play an important role in algebra. Some impor-

tant concepts in partially ordered systems are ordered groups and lattice ordered groups. These

concepts play a major role in many branches of Algebra.

In 1971, A. Rosenfeld applied the notion of fuzzy set theory on group theory in his book

[2], he introduced the concept of fuzzy subgroup and show that many theorem can be extended

to develop the fuzzy group theory. Next, many authors worked on fuzzy theory and introduced

the concept of fuzzy orders, fuzzy cosets and fuzzy lattice [7, 9, 15].

Convexity play an important role in the study of compatible orders, ordered groups and

especially in lattice-ordered groups. Our main aim in this work is to investigate some properties

and characterizations theorems of the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered

subgroup) of an ordered group (resp. lattice-ordered group). Some more results related to this

topic are also derived.

This memory is organized in three chapter as follows :

In the first chapter, we recall some definitions and well-known about the ordered sets, coset,

groups, and ordered groups. This chapter also focuses on lattice, lattice-ordered group and some

related concept which we will need in the sequel.

In the second chapter, we give some basic notions and generalities about the fuzzy sets, their

characteristic notion and level sets. Also, we define fuzzy subgroup and give some properties.
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In the last chapter, we specified our searches about convexity in fuzzy case more precisely

fuzzy convex subgroups and fuzzy convex lattice-ordered subgroups.



CHAPITRE

ONE

GENERALITIES ON ORDERED GROUPS AND

LATTICE-ORDERED SUBGROUP

The notion of a group play a fundamental role in mathematics,it is one of the main alge-

braic structures. So in this chapter we will recall the basic notions of the ordered sets, lattices,

subgroups and normal subgroups. Next, we investigate some basic properties of ordered groups

and lattice ordered groups.

1.1 Ordered sets, Lattices

The purpose of this section is to provide a basic introduction to the theory of ordered struc-

tures, and we mention the concept of ordered groups, lattices and lattice-ordered groups.

For more details on Ordered sets and Lattices, we refer to [5, 6, 7, 12].

Definition 1.1 [7]Let X be non-empty set, an order (or a partial order) is a binary relation 6

on X which is :

i) Reflexive, i.e., for all x ∈ X , x 6 x.

ii) Antisymmetric, i.e., for all x,y ∈ X, if x 6 y and y 6 x imply x = y.

iii) Transitive, i.e., for all x,y,z ∈ X, if x 6 y and y 6 z imply x 6 z.

Definition 1.2 [7] A set X equipped with an order relation 6 is called an ordered set (poset),

denoted (X ,6).

We note that if (X ,6)) is a poset and A ⊂ X , then Au and Al denote the set of all upper
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1.1. ORDERED SETS, LATTICES CHAPTER 1

bounds and the set of all lower bounds of A, respectively.

Au = {u ∈ X | x 6 u, ∀x ∈ A}, Al = {l ∈ X | l 6 x, ∀x ∈ A}.

Let A be a subset of a poset (X ,6). An element u0 ∈ Au is the least upper bound of A,

denoted by supA or ∨A, if u0 6 u, ∀u ∈ Au.

An element l0 ∈ Al is the greatest lower bound of A, denoted by in f A or ∧A, if l 6 l0,∀l ∈ Al .

Example 1.1 i) On every set the relation of equality is an order.

ii) On the set N of natural numbers the relation | of divisibility, defined by m|n if and only

if there exist k ∈N such that n = km is an order. Then (N, |) is a poset.

iii) The power set of a given set X is ordered by inclusion. Then (P(X),⊆) is a poset.

iv) Let E and F be two ordered sets. Then the set Map(E,F) of all mappings f : E → F

can be ordered by defining f 6 g⇔ (∀x ∈ E) f (x) 6 g(x).

Example 1.2 Consider X is the additive set R×R, we defined the relation 6 by

(x,y) 6 (z,w)⇔ x = z, y = w or x≤ z, y < w

It is easy to check that “ 6” is reflexive, transitive and antisymmetric, then R×R is aposet

Definition 1.3 We say that two elements x,y of an ordered set (X ,6) are comparable and we

write x ‖ y if either x 6 y or y 6 x. If all pairs of elements of X are comparable then we say that

X forms a chain, and that 6 is a total order.

Example 1.3 The sets N,Z,Q,R of natural numbers, integers, rationales, and real numbers

form chains under their usual orders ≤.

Example 1.4 Let X = {1,2,3,4,6,12} be the set of positive divisors of 12. If we order X in

the usual way, we obtain a chain. If we order X by divisibility, we obtain the Hasse diagram of

Figure1.1.

9



1.2. ORDERED GROUPS, LATTICE-ORDERED GROUPS CHAPTER 1

•
1

•3 •
2

•6 •4

•12

FIGURE 1.1 – Hasse diagram of a poset (D12, |).

Definition 1.4 [8] Let (X ,6) be an ordered set.

• For all x,y ∈ X with x 6 y, an interval in X is the subset denoted by,

[x,y] = {z ∈ X | x 6 z 6 y}.

• A non-empty subset A of X is convex if for all x,y ∈ A with x 6 y,

[x,y] ⊆ A.

We can also define a convex subset A by,

∀x,y ∈ A, i f x 6 z 6 y⇒ z ∈ A.

Definition 1.5 Let X be a non-empty ordered set (X ,6) is called a lattice if for all x,y ∈ X,

x∨ y and x∧ y exist.

Example 1.5 Let us consider Examples 1.1. Then

• (N∗, |) is a lattice such that for all x,y ∈N∗, x∨ y = lcm(x,y) and x∧ y = gcd(x,y).

• (P(X),⊆) is a lattice such that for all A,B ∈P(X), A∨B = A∪B and A∧B = A∩B.

1.2 Ordered groups, Lattice-ordered groups

1.2.1 Some reminders of the classical groups

In this subsection we recall some basic definitions and properties of the classical groups.

Definition 1.6 Let G be a non-empty set, A pair (G, ·) associated with the inner operation “ ·”
is called a group if is verifying this three proprieties :

i) Associativity :

∀ a,b ∈ G,a · (b · c) = (a ·b) · c,

10



1.2. ORDERED GROUPS, LATTICE-ORDERED GROUPS CHAPTER 1

ii) Have an identity element :

∃ e ∈ G,∀ a ∈ G,a · e = e ·a = a,

iii) All element of G have an inverse :

∀ a ∈ G,∃ b ∈ G,a ·b = b ·a = e.

Example 1.6 One of the most commons groups is (Z,+) which is constituted from the integer

set and the inner operation “addition”.

The following example is useful in the next of our work.

Example 1.7 The Klein 4-group G = {e,a,b,c} (the Klein four-group is a group with four

elements, in which each element is self-inverse (composing it with itself produces the identity)

and in which composing any two of the three non-identity elements produces the third one).

The Klein 1 4-group G is defined by the table of Figure 1.2.

. e a b c
e e a b c
a a e c b
b b c e a
c c b a e

FIGURE 1.2 – The Klein 4-group.

Notation 1.1 (Vocabulary note) :

• If the group is noted additively (R,+), (which we note a+ b for a ·b) :

◦ The identity element is zero noted by 0.

◦ The inverse element of a (called also the opposite) is -a.

• If the group is noted multiplically (R,×), (which we note ab for a ·b) :

◦ The identity element is 1.

◦ The inverse element of a is a−1.

Definition 1.7 Let (G, ·) be a group. We call a commutative group, or abelian group, all group

G in which the operation “ ·” satisfies also the the condition of commutativity :

∀a,b ∈ G, a ·b = b ·a
1. Felix Klein. 1849−1925 was a German mathematician and mathematics educator, known for his work with

group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group
theory
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Definition 1.8 Let (G, ·) be a group, and H ⊂ G non-empty subset. H is called a subgroup of

G if

i) for all a,b ∈ H⇒ a ·b ∈ H,

ii) a ∈ H⇒ a−1 ∈ H.

Remark 1.1 The two conditions (i) and (ii) can be combined into one equivalent condition is

∀a,b ∈ H⇒ a ·b−1 ∈ H.

Example 1.8 • Let (G, ·) be a group of identity element e, then G and {e} are subgroups

of G.

• (Z,+) is a subgroup of (Q,+) which is a subgroup of (R,+) which is a subgroup of

(C,+).

• (Q∗,×) is a subgroup of (R∗,×) which is a subgroup of (C∗,×).

• (N,+) is not a subgroup of any group because the opposite of an element in N is not

in N

1.2.2 Cosets and normal subgroups

The notion of a normal subgroup is one of the central concepts of classical group theory. It

plays an important role in the study of the general structure of groups. Just as a normal subgroup

plays an important role in the classical group theory, a normal fuzzy subgroup plays a similar

role in the theory of fuzzy subgroups.

Let (G, ·) be group with identity element e, and H a subgroup of G.

Definition 1.9 [10] Let A and B be subsets of a group G. The product AB of the sets A and B

is defined by

AB = {xy | x ∈ A and y ∈ B}.

For all elements x of G, we denote the product {x}A and A{x} by xA and Ax, respectively.

Definition 1.10 [10] For all element x of G and subgroup H, we note the left coset of H in G

by the set xH defined by

xH = {xh | h ∈ H},

Similarly, we note the right coset of H in G by the set Hx defined by

Hx = {hx | h ∈ H}.

12
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Example 1.9 Consider H = 3Z the subgroup of the group (Z,+). Then the right cosets of H

are the only three sets 3Z,3Z+ 1,3Z+ 2, where for all a ∈ {0,1,2},

3Z+ a = {· · · ,−6+ a,−3+ a,0,3+ a,6+ a, · · ·}.

Due the commutativity of addition, it holds that every left coset of (3Z,+) is also a right coset.

Definition 1.11 Let (G, ·) be a group, and H subgroup of G. H is called a normal subgroup of

G if

∀h ∈ H,∀x ∈ G | xhx−1 ∈ H.

Note that every subgroup H of an Abelian group G is a normal subgroup. Indeed, for all

x ∈ G and y ∈ H, xyx−1 = (xy)x−1 = x−1(xy) = (x−1x)y = ey = y ∈ H

Proposition 1.1 H is a normal subgroup of G if and only if ∀x ∈ G,

xHx−1 = H.

Proof.

⇒) Suppose that H is a normal subgroup of G. Let x ∈ G.

x ∈ G ⇒ xhx−1 ∈ H, ∀ h ∈ H

⇒ xHx−1 ⊂ H

We see also that x−1Hx⊂ H (by replacing x with x−1), thus

H = x(x−1Hx)x−1 ⊂ xHx−1.

⇒ H ⊂ xHx−1

and therefore, each of the sets N and xHx−1 is contained in the other. Then, xHx−1 = H.

⇐) Conversely, it’s clear that a subgroup H of G which satisfies the property xHx−1 = H

for all x from G is a normal subgroup of G.

�

Corollary 1.1 A subgroup H of a group G is a normal subgroup of G if and only if xH = Hx

for all x ∈ G.

13
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Proof.

Let x ∈ G, if H = xHx−1 we have

H = xHx−1 ⇒ Hx = (xHx−1)x = xH

conversely, if xH = Hx

xH = Hx ⇒ H = x−1Hx

Thus,

H = x−1Hx ⇔ xH = Hx

And therefore, from Proposition 1.1 the subgroup H of G is normal if and only if xH = Hx for

all x ∈ G. �

Lemma 1.1 Let H be a normal subgroup of G, and let x and y be elements of G. Then

(xH)(yH) = (xy)H.

Proof.

Let G be a group, we know that if H is a normal subgroup of G then Hy = yH.

(xH)(yH) = x(Hy)H

= x(yH)H

= (xy)HH

= (xy)H (Since H is a subgroup o f G (HH = H))

Then (xH)(yH) = (xy)H. �

Proposition 1.2 Let H be a normal subgroup of G. Then the set of all cosets of H in G is a

group under the operation of multiplication.

Remark 1.2 The identity element of the set of all cosets of H in G is H itself, and the inverse

of a coset xH is the coset x−1H for all element x of G.

Proof.

Let x and y be an elements of G. According to Lemma 1.1, we have (xH)(yH) = (xy)H, and

The subgroup H is itself a coset of H in G, since H = eH. So we will prove that The set of all

cosets of H in G is a group. Moreover

14
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1) Let x ∈ G,

(xH)H = (xH)(eH) = (xe)H = xH

H(xH) = (He)(xH) = (ex)H = xH

2) Let x ∈ G and x−1 the inverse of x in G,

(xH)(x−1H) = (xx−1)H = H

(x−1H)(xH) = (x−1x)H = H

3) Let x,y,z ∈ G,

(xH yH) zH = (xy)H zH = (xy) zH = x(yz)H = xH (yz)H = xH (yH zH).

Then, for all elements x of G, the group axioms are satisfied. �

Definition 1.12 Let H be a normal subgroup of a group G. The group of cosets of H in G under

the operation of multiplication is called the quotient group, denoted by G/H.

1.2.3 Ordered groups

Definition 1.13 [8] Let (G, ·) be a group. We say that a partial order 6 on G is compatible if,

∀x,y z,z′ ∈ G, x 6 y ⇒ z · x · z′ 6 z · y · z′

We say also that the operation “ ·” is compatible with the order “ 6”.

Definition 1.14 [9] An ordered group is the triple (G, ·,6) which is verifying the following

three axioms :

i) (G, ·)is a group,

ii) “ 6” is an order,

iii) “ ·” is compatible with the order “ 6”.

Example 1.10 (Z,+,≤), (Q,+,≤), (R,+,≤) are all ordered groups.

Remark 1.3 Every group can be made into an ordered group only by placing the trivial orde-

ring on the set.

15
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Proposition 1.3 Let (G, ·,6) be an ordered group, then,

x 6 y⇔ x−1 > y−1.

Proof.

Let x,y ∈ G such thatx 6 y. Then, we have

x 6 y ⇔ x−1 · x 6 x−1 · y

⇔ e 6 x−1 · y

⇔ y−1 · e 6 x−1 · yy−1

⇔ y−1 6 x−1 · e

⇔ x−1 > y−1.

�

Definition 1.15 [12] Let (E,6) be an ordered group.

• D is called a down-set if x ∈ D and y 6 x imply y ∈ D.

A down-set D is called a principal down-set, denoted by x↓, if ∃ x ∈ D such that,

x↓= {y ∈ E | y 6 x}.

• U is called an upper-set if x ∈U and x 6 y imply y ∈U.

An upper-set U is called a principal upper-set, denoted by x↑, if ∃ x ∈U such that,

x↑= {y ∈ E | x 6 y}.

Definition 1.16 [12] Let (G,6) and (H,6) two ordered sets. We say that a mapping A : G→H

is isotone (or order-preserving) if ∀ x,y ∈ G, x 6 y⇒ A(x) 6 A(y),

And is antitone (or order-reversing) if ∀ x,y ∈ G, x 6 y⇒ A(x) > A(y).

Definition 1.17 [8] An element x of a group G is called positive element if e 6 x,then the set

P = {x ∈ G | x > e} is called the positive cone of G.

x is called negative element if e > x, then the set N = {x ∈ G | e > x} is called the negative

cone of G.

We often denoted with G+ and G− for P and N, respectively.

If A is a subset of an ordered group then we will use the notation

A−1 = {x−1 ∈ A | x ∈ A} and A2 = {xy | x,y ∈ A}.

16
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The following theorem provides the necessary and the sufficient conditions for a subset P

of a group G to be a positive cone relative to some compatible order on G.

Theorem 1.1 [12] A subset P of a group G is the positive cone relative to some compatible

order on G if and only if

(1) P∩P−1 = {e} ;

(2) P2 = P;

(3) ∀x ∈ G, xPx−1 = P.

Moreover, this order is a total order if, in addition, P∪P−1 = G.

1.2.4 Lattice-ordered groups

Definition 1.18 [8] A lattice-ordered group written `-group is an ordered group (G, ·,6) such

that (G,6) is a lattice.

Example 1.11 Let (C,+) be the additive group of complex numbers. We define on (C,+) the

partial order : x+ iy≤ u+ iv if x≤ u and y≤ v. Then, (C,+,≤) is an `-group.

Note that (x+ iy)∨(u+ iv) = (x∨u)+ i(y∨v) and (x+ iy)∧(u+ iv) = (x∧u)+ i(y∧v).

The following three propositions will be helpful in the proofs of the next results especially in

the last chapter .

Proposition 1.4 Let (G, ·,6) be an ordered group.It holds that

i) If (G,6) is a ∨-semilattice. Then for all x,y,z ∈ G, it holds that

x(y∨ z) = xy∨ xz and (y∨ z)x = yx∨ zx.

ii) If (G,6) is a ∧-semilattice. Then for all x,y,z ∈ G, it holds that

x(y∧ z) = xy∧ xz and (y∧ z)x = yx∧ zx.

Proof.

We will prove that x(y∨z)= xy∨xz (the other cases where (y∨z)x= yx∨zx, x(y∧z)= xy∧xz

and (y∧ z)x = yx∧ zx. are similarly proved ).

As y 6 y∨ z, z 6 y∨ z and 6 is a compatible order on G, it follows that ay 6 a(y∨ z) and

az 6 a(y∨ z). This implies that a(y∨ z) ∈ {ay,az}u, i.e., a(y∨ z) is an upper bound of ay and

az. Let us know consider c ∈ {ay,az}u, it follows that ay 6 c and az 6 c. This implies that

17
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y 6 a−1c and z 6 a−1c, it follows that y∨ z 6 a−1c implies a(y∨ z) 6 c. Hence a(y∨ z) is the

least upper bound of ay and az. We conclude that x(y∨ z) = xy∨ xz �

Proposition 1.5 Let (G, ·,6) be an ordered group. if (G,6) is a semilattice, then (G,6) is a

lattice.

Proof.

We suppose that (G,6) is a ∨-semilattice (the proof is similar if (G,6) is a ∧-semilattice)

We will prove that G is a lattice in which for all a,b ∈ G,

a∧b = a(a∨b)−1b = b(a∨b)−1)a.

We have a 6 a∨ b gives (a∨ b)−1 6 a−1 and therefore a(a∨ b)−1b 6 b, and similarly b 6

a∨b gives a(a∨b)−1b 6 a. Thus a(a∨b)−1b ∈ {a,b}l . Suppose now that c ∈ G is any lower

bound of {a,b} (c ∈ {a,b}l). Then c 6 a and c 6 b give a−1 ∨ b−1 6 c−1, and therefore by

Proposition 1.4, b−1(a∨ b)a−1 = a−1 ∨ b−1 6 c−1 hence, c 6 [b−1(a∨ b)a−1]−1 = a(a∨
b)−1b. Hence, a∧ b exists and is a∧ b = a(a∨ b)−1b. a∧ b = b∧ a, it follows that a∧ b =

b(a∨b)−1a.

By the same way if (G,6) is a ∧-semilattice, we proof that G is a lattice in which for all

a,b ∈ G,

a∨b = a(a∧b)−1b = b(a∧b)−1a.

�

Proposition 1.6 Let G be a `-group, and a,b,x ∈ G, then,

i) (a∨ b)x = ax∨ bx, x(a∨ b) = xa∨ xb, (a∧ b)x = ax∧ bx, x(a∧ b) and x(a∧ b) =

xa∧ xb.

ii) (a∨b)−1 = a−1∧b−1 and (a∧b)−1 = a−1∨b−1,

iii) a∧b = b(a∨b)−1a and a∨b = b(a∧b)−1a

Proof.

i) It follows directly from Proposition1.4.

ii) From (i) and the proof of Proposition 1.5, it follows that, (a∨b)−1 = [a(a∧b)−1b]−1 =

b−1(a∧b)a−1 = a−1∧b−1. The other part (a∧b)−1 = a−1∨b−1 is proved similarly.

iii) It follows directly from Proposition 1.5.

�
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Definition 1.19 [8] Let G be a group, for every x ∈ G, the positive part of x and dually, the

negative part of x is defined by x+ = x∨ e ∈ G+ and x−= x∧ e ∈ G−, respectively.

Theorem 1.2 Let (G, ·,6) be an `-group, then for all x,y ∈ G, the following hold :

i) (x+)−1 = (x−1)− and (x−)−1 = (x−1)+,

ii) x∨ y = (yx−1)+x and x∧ y = x(x−1y)−.

Proof.

i) Let x ∈ G, then we have x+ = x∨ e and x−= x∧ e.

(x+)−1 = (x∨ e)−1

= x−1∧ e

= (x−1)−.

Similarly (x−)−1 = (x−1)+.

ii) Let x,y ∈ G, then we have

(yx−1)+x = (yx−1∨ e)x

= (yx−1x∨ x)

= y∨ x.

Then x∨ y = (yx−1)+x.

Similarly x∧ y = x(x−1y)−.

�

Lemma 1.2 Let (G, ·,6) be a `-group, then for any positive integer n and z ∈ G,

i) (z∧ e)n = zn∧ zn−1∧·· ·∧ z∧ e,

ii) (z∨ e)n = zn∨ zn−1∨·· ·∨ z∨ e.

Proof.

Let G be a group. We see that the statements are obviously true if n = 1, we assume that they

are true for n−1, and we will prove that are true for n.

19
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Then, for n−1 we get, (z∧ e)n−1 = zn−1∧ zn−2∧·· ·∧ z∧ e.

(z∧ e)n = (z∧ e)n−1(z∧ e).

= (z∧ e)n−1z∧ (z∧ e)n−1e ( see Proposition 1.6)

= (zn−1∧ zn−2∧·· ·∧ z∧ e)z∧ (zn−1∧ zn−2∧·· ·∧ z∧ e)

= (zn∧ zn−1∧·· ·∧ z)∧ (zn−1∧ zn−2∧·· ·∧ z∧ e)

= zn∧ zn−1∧·· ·∧ z∧ zn−1∧ zn−2∧·· ·∧ z∧ e

= zn∧ zn−1∧ zn−2∧·· ·∧ z∧ e.

The statement is true for n.

Then (z∧ e)n = zn∧ zn−1∧·· ·∧ z∧ e.

Similarly (z∨ e)n = zn∨ zn−1∨·· ·∨ z∨ e. �
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CHAPITRE

TWO

PROPERTIES OF FUZZY SUBSETS AND FUZZY

SUBGROUPS

The purpose of this second chapter is to provide a basic introduction to the fuzzy set , its

characteristic notions, some operations on fuzzy sets and the basic properties of α−cuts of a

fuzzy set paying particular attention to characterize a fuzzy set by means of its α−cuts. Next,

we investigate the notion of fuzzy subgroups and normal fuzzy subgroups.

2.1 Fuzzy Subsets

2.1.1 Definition and Examples

In this subsection, we present the concepts of fuzzy set theory with illustrative examples.

Definition 2.1 [1] Let X be a reference set. A fuzzy subset A is a function defined from X to the

interval [0,1].

• It is customary in the fuzzy literature to have two notations for fuzzy sets, the letter A and the

notation µA.

• We can describe a fuzzy subset A by the pair {(x, µA(x)) | x ∈ X}.

• The function µA : X → [0,1] is called the membership function, and the value µA(x) is the

degree of membership of x to the fuzzy set A.

Remark 2.1 Those function whose images are contained in the set {0,1} correspond to the

classic set for which µA is the indicator function χA. So the classic subsets are special cases of

fuzzy subsets.
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Example 2.1 (Finite case) :

Let X = {a,b,c,d,e} and A = {(a,0.6),(b,0.9),(c,0.2),(d,0),(e,0.5)}. A is a fuzzy subset

of X.

Example 2.2 (Infinite case) :

Suppose that we want to model the fuzzy concept “young”, let the set X be the positive real

numbers representing the possible ages of people. People with age less than 25 take the degree

1, between 25 and 40 their degree is included in the interval ]0,1[, and people with age more

than 40 take the 0. We can represent this subset with the following membership function :

µA(x) =


1 i f x≤ 25,

40−x
15 i f 25 < x < 40,

0 i f 40≤ x.

FIGURE 2.1 – The fuzzy subset “young”.

Notation 2.1 The set of all fuzzy subsets of X is called the fuzzy power set of X and is denoted

by FP(X).

2.1.2 Characteristic notions

The characteristics of a fuzzy subset A of non empty X which describe it, are the ones that

show how much it makes it different than a classic subset.

Definition 2.2 [4] Let A ∈FP(X), and µA its membership function.

i) The height of A, denoted by H(A) correspond to the upper bound of the codomain of its

membership function, and we write :

H(A) = sup{µA(x) | x ∈ X}.
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ii) The support of A, denoted by supp(A)( it is also denoted by A∗ in some references) is

the subset whose elements are included at least a little in A, and we write :

supp(A) = {x ∈ X | µA(x) > 0}.

iii) The core of A, denoted by core(A) is the subset whose elements are included totally in

A, and we write :

core(A) = {x ∈ X | µA(x) = 1}.

Remark 2.2 Let A a fuzzy subset of X.

i) A is called normalized if and only if H(A) = 1, in practice it is extremely rare to work

on non normalized fuzzy subset.

ii) A is called a finite fuzzy set if A∗ is a finite subset, and an infinite fuzzy subset otherwise.

From the above remark, it is clear that if X is finite, then every fuzzy subset A of X is finite.

Example 2.3 Let us consider the fuzzy subset A of Example 2.1. It obviously holds that :

H(A) = 0.9, supp(A) = {a,b,c,e}, core(A) = /0.

Example 2.4 Consider the fuzzy subset “young” of Example 2.2. It obviously holds that :

H(A) = 1, supp(A) = [0,40[, core(A) = [0,25].

2.1.3 Operations on fuzzy sets

We define on fuzzy sets the same operations of the classic sets which are for each two fuzzy

subsets A and B of X given by the following rules.

Definition 2.3 [3]

i) A fuzzy set A is empty, we note A = ∅ if and only if

∀ x ∈ X : µA(x) = 0.

ii) Two fuzzy sets A and B are equal, we note A = B if and only if

∀ x ∈ X : µA(x) = µB(x)
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iii) A fuzzy set A is contained in a fuzzy set B, we note A⊆ B if and only if

∀ x ∈ X : µA(x) ≤ µB(x).

Let A,B⊂P(X) two subset of X . As we know, there are the familiar operations of union,

intersection, and complement. These are given by the rules

A∪B = {x | x ∈ A or x ∈ B},

A∩B = {x | x ∈ A and x ∈ B},

Ac = {x | x < A}.

As we have noted that a classic set A of X can be represented by a function χA : X → {0,1}
writing these rules in terms of indicator functions, we get :

χA∪B(x) = max{χA(x), χB(x)},

χA∩B(x) = min{χA(x), χB(x)},

χAc(x) = 1−χA(x).

A natural way to extend these operations to the fuzzy subsets of X is by the membership func-

tions. Let A,B be two fuzzy subset of X .

i) Union : A∪B is defined by the membership function

µA∪B(x) = max{µA(x), µB(x)}.

ii) Intersection : A∩B is defined by by the membership function

µA∩B(x) = min{µA(x), µB(x)}.

iii) Complement of the fuzzy subset A, is noted by Ac and is defined by the membership

function

µAc(x) = 1−µA(x).

Remark 2.3 For any collection {Ai | i ∈ I} of fuzzy subsets of X, where I is a non-empty in-

dex set and µAi its membership functions, the union and intersection of Ai are defined by the
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following membership functions :

µ∪
i∈I

Ai(x) = sup
i∈I
{µAi(x)}= ∨

i∈I
Ai(x),

µ∩
i∈I

Ai(x) = in f
i∈I
{µAi(x)}= ∧

i∈I
Ai(x).

Example 2.5 (Finite case) :

Let X = {a,b,c,d,e,r,s, t} the set which represent a menu of restaurant, the patron want to

classify it according to two description, tasty and cheap. Let A and B two fuzzy subset of X, such

that A represent “tasty” and B “cheap”. We get

A = {(a,0.6),(b,1),(c,0.1),(e,0.4),(r,0.8),(s,0.5)};

B = {(b,0.3),(c,0.6),(d,0.5),(e,0.9),(s,1),(t,0.7)}.

Which we give

A∪B = {(a,0.6),(b,1),(c,0.6),(d,0.5),(e,0.9),(r,0.8),(s,1)} ; a fuzzy subset represent the

description “tasty or cheap”.

A∩B = {(b,0.3),(c,0.1),(e,0.4),(s,0.5)} ; a fuzzy subset represent the description “tasty

and cheap”.

Ac = {(a,0.4),(c,0.9),(d,1),(e,0.6),(r,0.2),(s,0.5),(t,1)} ; a fuzzy subset represent the

description “not tasty”.

Bc = {(a,1),(b,0.7),(c,0.4),(d,0.5),(e,0.1),(r,1),(t,0.3)} ; a fuzzy subset represent the

description “not cheap”.

Example 2.6 (Infinite case) :

We consider the example (2.2). the set X be the positive real numbers representing the possible

ages of people, the function µA define the fuzzy subset “young” and µB the fuzzy subset “have

thirty old”, such that :

µA(x) =


1 i f x≤ 25

40−x
15 i f 25 < x < 40

0 i f 40≤ x

, µB(x) =



0 i f x≤ 25
x−25

3 i f 25 < x < 28

1 i f 28 < x < 32
35−x

3 i f 32 < x < 35

0 i f 40≤ x

.
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FIGURE 2.2 – Membership function of A and B.

The following plots are the plots of union, intersection and the complement of the fuzzy

subset A and B.

(a) A∪B. (b) A∩B.

(c) Ac. (d) Bc.

FIGURE 2.3 – Membership functions.
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2.1.4 Alpha-cuts

One of the characteristics of a fuzzy subset A of X is the alpha-cuts or also known as the level

set. In this subsection and after given the definition of the alpha-cut, we will investigate its basic

properties, paying particular attention to characterize a fuzzy set by means of its alpha-cuts.

Definition 2.4 [4] For all α ∈ [0,1], we construct the ordinary subset Aα of X associates to

A ∈FP(X), by selecting all element of X belonging to A with a degree at least equal to α ,

we write :

Aα = {x ∈ X | µA(x) ≥ α}.

The characteristic function of Aα is χAα
such that χAα

(x) = 1 if and only if µA(x) ≥ α .

Example 2.7 (Finite case) :Let X = {a,b,c,d,e} and A a fuzzy subset of X such that A =

{(a,0.6),(b,0.1),(c,0.8),(d,0.4),(e,0.3)}. We have :

A0.2 = X , A0.4 = {a,c,d}, A0.7 = {c} and A0.9 = /0.

Example 2.8 Consider the fuzzy subset A“young” of X of Example 2.2. It is easy to verify that :

A0.4 = [0,34], and A0.7 = [0, 295
10 ].

FIGURE 2.4 – The α-cuts of A

Proposition 2.1 [2] Let A,B be two fuzzy subset of X and α ,β ∈ [0,1]. The α-cuts satisfy the

following statements :

i) (A∪B)α = Aα ∪Bα ,

ii) A⊂ B⇒ Aα ⊂ Bα ,

iii) α < β ⇒ Aβ ⊂ Aα .
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Proof.

i) Let x ∈ (A∪B)α . We have, (A∪B)α = {x ∈ X | µ(A∪B)(x) ≥ α}.

x ∈ (A∪B)α ⇔ µ(A∪B)(x) ≥ α

⇔ max{µA(x), µB(x)} ≥ α

⇔ µA(x) ≥ α or µB(x) ≥ α

⇔ x ∈ Aα or x ∈ Bα

⇔ x ∈ (Aα ∪Bα).

Then, (A∪B)α = Aα ∪Bα .

ii) Let x ∈ Aα .

x ∈ Aα ⇒ µA(x) ≥ α

⇒ µB(x) ≥ α

⇒ x ∈ Bα .

Then Aα ⊂ Bα .

iii) Let x ∈ Aβ ,

x ∈ Aβ ⇒ µA(x) ≥ β

⇒ µA(x) ≥ α

⇒ x ∈ Aα .

Then Aβ ⊂ Aα .

�

The following two theorems state some basic properties of the α− cuts of a given fuzzy set.

Theorem 2.1 [2] Suppose that {Ai | i ∈ I} is a collection of fuzzy subsets of X. Then for any

α ∈ [0,1] it holds that

i) ∪
i∈I
(Ai)α ⊆ (∪

i∈I
Ai)α ,

ii) ∩
i∈I
(Ai)α = (∩

i∈I
Ai)α .

Moreover, if I is finite, then we have equality in (i).
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Proof.

i) Let x ∈ ∪
i∈I
(Ai)α ,

x ∈ ∪
i∈I
(Ai)α ⇒ ∃ i ∈ I, x ∈ (Ai)α

⇒ ∃ i ∈ I, µAi(x) ≥ α

⇒ sup
i∈I
{µAi(x)} ≥ α

⇒ µ∪
i∈I

Ai(x) ≥ α

⇒ x ∈ (∪
i∈I

Ai)α .

Then ∪
i∈I
(Ai)α ⊆ (∪

i∈I
Ai)α .

ii) Let x ∈ ∩
i∈I
(Ai)α ,

x ∈ ∩
i∈I
(Ai)α ⇔ ∀ i ∈ I, x ∈ (Ai)α

⇔ ∀ i ∈ I, µAi(x) ≥ α

⇔ in f
i∈I
{µAi(x)} ≥ α

⇔ µ∩
i∈I

Ai(x) ≥ α

⇔ x ∈ (∩
i∈I

Ai)α .

Then ∩
i∈I
(Ai)α = (∩

i∈I
Ai)α .

�

Theorem 2.2 [2] Let A ∈FP(X), and αi ∈ [0,1] (i ∈ I). Then it holds that

i) ∪
i∈I

Aαi ⊆ A∧
i∈I

αi ,

ii) ∩
i∈I

Aαi = A∨
i∈I

αi .

Proof.

i) Let x ∈ ∪
i∈I

Aαi ,

x ∈ ∪
i∈I

Aαi ⇒ ∃ i ∈ I, x ∈ Aαi

⇒ ∃ i ∈ I, µA(x) ≥ αi

⇒ µA(x) ≥ in f
i∈I
{αi}

⇒ µA(x) ≥ ∧
i∈I

αi

⇒ x ∈ A∧
i∈I

αi .
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Then ∪
i∈I

Aαi ⊆ A∧
i∈I

αi .

ii) Let x ∈ ∩
i∈I

Aαi ,

x ∈ ∩
i∈I

Aαi ⇔ ∀ i ∈ I, x ∈ Aαi

⇔ ∀ i ∈ I, µA(x) ≥ αi

⇔ µA(x) ≥ sup
i∈I
{αi}

⇔ µA(x) ≥ ∨
i∈I

αi

⇔ x ∈ A∨
i∈I

αi .

Then ∩
i∈I

Aαi = A∨
i∈I

αi .

�

The following theorem characterize any fuzzy subset A of X by means of their α-cuts.

Theorem 2.3 Let A ∈FP(X), µA its membership function and α ∈ [0,1]. Then for all x ∈ X

it holds that

µA(x) = sup
α∈[0,1]

(α ·χAα
(x)).

Proof.

Let x ∈ X , suppose that µA(x) = β (β ∈ [0,1]).

µA(x) = β ⇒ µA(x) ≥ β

⇒ x ∈ Aβ

⇒ χAβ
(x) = 1.

On the one hand, as µA(x) = β .1 = β χAβ
(x), it follows that µA(x) ≤ sup

α∈[0,1]
(α .χAα

(x)).

On the other hand, we have χAβ
(x) =

 1 i f µA(x) ≥ β

0 i f µA(x) ≤ β

, it follows that, β .χAβ
(x) = β i f µA(x) ≥ β

0 i f µA(x) ≤ β

. This implies that, β .χAβ
(x) ≤ β and β = µA(x), thus, β .χAβ

(x) ≤

µA(x). Then, sup
α∈[0,1]

(α .χAα
(x)) ≤ µA(x).

Therefore, it holds that ∀x ∈ X , µA(x) = sup
α∈[0,1]

(α .χAα
(x)). �

Example 2.9 Let X = {a,b,c,d,e} be a reference set, we will describe the fuzzy subset A of X

from the following α-cuts,

A0.1 = {a,b,c,d,e}, A0.3 = {b,c,d,e}, A0.8 = {c,d}, A1 = {c}.
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We find, µA(a) = sup {0.1χA0.1(a), ...,1χA1(a)},
µA(a) = sup {0.1×1,0.3×0,0.8×0,1×0}= 0.1,

µA(b) = sup {0.1×1,0.3×1,0.8×0,1×0}= 0.3,

µA(c) = sup {0.1×1,0.3×1,0.8×1,1×1}= 1,

µA(d) = sup {0.1×1,0.3×1,0.8×1,1×0}= 0.8,

µA(e) = sup {0.1×1,0.3×1,0.8×0,1×0}= 0.3.

Then, we get A = {(a,0.1),(b,0.3),(c,1),(d,0.8),(e,0.3)}.

2.2 Fuzzy subgroups, Normal Fuzzy subgroups

In this section, we will present the definition of fuzzy subgroup, fuzzy normal subgroup and

investigate their basic properties which we need in the next chapter.

In what follows, we will note the product of two element of (G, ·) by xy, instead of x · y.

2.2.1 Fuzzy subgroups

Definition 2.5 [2] Let H ∈FP(G). H is called a fuzzy subgroup of G if

i) µH(xy) ≥min{µH(x), µH(y)},

ii) µH(x−1) ≥ µH(x).

Remark 2.4 It is easy to show that, the conditions (i) and (ii) of Definition 2.5 are equivalents

to the unique following condition :

µH(xy−1) ≥min{µH(x), µH(y)}, ∀x,y ∈ G.

Notation 2.2 We denote by F (G) the set of all fuzzy subgroups of G.

In what follows, G denotes a group and e its identity element.

Proposition 2.2 Let H be fuzzy subgroup of G. Then for all x,y ∈ G, it hold that

i) µH(x) ≤ µH(e),

ii) µH(xy−1) = µH(e)⇒ µH(x) = µH(y),

iii) µH(x) ≤ µH(xn),

iv) µH(x) = µH(x−1).

31



2.2. FUZZY SUBGROUPS, NORMAL FUZZY SUBGROUPS CHAPTER 2

Proof.

i) Let x ∈ G. We have µH(e) = µH(xx−1) ≥ min(µH(x) , µH(x−1)) = µH(x). Thus,

µH(x) ≤ µH(e), for all x ∈ G.

ii) Let x,y ∈ G and suppose that µH(xy−1) = µH(e). We have

µH(x) = µH(xy−1y) ≥ min(µH(xy−1) , µH(y))

≥ min(µH(e) , µH(y))

≥ µH(y).

In similar way, we show that µH(y) ≥ µH(x). We conclude that µH(x) = µH(y).

iii) By recurrence. For n = 1, P(1) : µH(x) ≤ µH(x) is true.

For n > 1, we suppose that µH(x) ≤ µH(xn) and prove that µH(x) ≤ µH(xn+1).

For all x ∈ G, µH(xn+1) = µH(xn.x) ≥min(µH(xn), µH(x)) ≥ µH(x).

Hence, µH(x) ≤ µH(xn), for all n ∈N.

iv) By definition, we have µH(x) ≤ µH(x−1). It remains to show that µH(x) ≥ µH(x−1).

We put y= x−1, it follows by definition that µH(y−1)≥ µH(y), this implies that µH(x)≥
µH(x−1). Hence, µH(x) = µH(x−1).

�

Proposition 2.3 The intersection of two fuzzy subgroups of a group G is a fuzzy subgroup of G.

Proof.

Let H,K ∈F (G) and x,y ∈ G. We have, µH∩K(xy) = min(µH(xy), µK(xy)), it follows that

µH∩K(xy) ≥ min(min(µH(x), µH(y)),min(µK(x), µK(y)))

≥ min(min(µH(x), µK(x)),min(µH(y), µK(y)))

≥ min(µH∩K(x), µH∩K(y)).

And we have, µH∩K(x−1) = min(µH(x−1), µK(x−1)). Since H,K both are fuzzy subgroup, it

follows that µH∩K(x−1) ≥ min(µH(x), µK(x)) = µH∩K(x). Consequently, H ∩K is a fuzzy

subgroup of G. �

Note that the union of two fuzzy subgroups of a group G does not necessarily need to be a fuzzy

subgroup of G as can be seen in the following example.

Let us consider the group of integers Z under addition. We define the fuzzy subgroups A
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and B by,

µA(x) =

 1 i f x ∈ 2Z,
1
4 otherwise.

and µB(x) =

 1 i f x ∈ 3Z,
1
5 otherwise.

We can easily find the subgroup A∪B defined by,

µA∪B(x) =

 1 i f x ∈ 2Z∪3Z,
1
4 otherwise.

Let x = 2 and y = 3, then µA∪B(2) = µA∪B(3) = 1, and

µA∪B(x+ y) = µA∪B(5) = 1
4 ,

this implies that, µA∪B(2+ 3) = 1
4 < min{µA∪B(2), µA∪B(3)}= 1 which shows that A∪B is

not a subgroup of Z.

We can extend the above proposition as following

Proposition 2.4 The intersection of family of subgroups of a group G is a fuzzy subgroup of G.

Proof.

Let (Ai)i∈I be a family of subgroups of G and x,y ∈G. We have, µ∩
i∈I

Ai(xy) = in f
i∈I

Ai(xy). Since

Ai is a subgroup for all i ∈ I, it follows that

µ∩
i∈I

Ai(xy) ≥ in f
i∈I

min(µAi(x), µAi(y))

≥ min(in f
i∈I

µµAi(x) , in f
i∈I

µAi(y))

= min(∩
i∈I

Ai(x) , ∩
i∈I

Ai(y)).

And we have, µ∩
i∈I

Ai(x−1) = in f
i∈I

Ai(x−1). Since for all i ∈ I, Ai is a fuzzy subgroup, it follows

that µ∩
i∈I

Ai(x−1) ≥ in f
i∈I

Ai(x−1) = µ∩
i∈I

Ai(x). Consequently, ∩
i∈I

Ai is a fuzzy subgroup of G. �

2.2.2 Normal fuzzy subgroup

Definition 2.6 [2] Let N ∈F (G). N is called a normal fuzzy subgroup of G if ∀x,y ∈ G,

µN(xy) = µN(yx).

The following proposition identifies the basic properties of a fuzzy subgroup, which will be

helpful in the rest of our work .

Proposition 2.5 Let N be a fuzzy subgroup of the group G. Then the following statements are

equivalent for all x,y ∈ G,
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(1) µN(xy) = µN(yx). (N is called an Abelian fuzzy subset of G).

(2) µN(xyx−1) = µN(y),

(3) µN(xy) ≥ µN(yx),

(4) µN(xy) ≤ µN(yx).

Proof.

Let x,y ∈ G.

(1)⇒ (2) We have µN(xyx−1) = µN((xy)x−1) = µN(x−1(xy)) = µN((x−1x)y) = µN(y).

(2)⇒ (3) We have µN(xy) = µN(x(yx)x−1) = µN(xy). Hence, µN(xy) ≥ µN(yx).

(3)⇒ (4) According to (3), µN(xy)≥ µN(yx)≥ µN(xy). This implies that µN(xy)≤ µN(yx).

(4)⇒ (1) Similar to the previous implication. �

The following corollary is a direct result of the previous proposition.

Corollary 2.1 Let G be a group. A fuzzy subgroup N of G is a fuzzy normal subgroup if it

satisfies the following equivalent conditions.

(1) ∀x,y ∈ G, µN(xy) = µN(yx).

(2) ∀x,y ∈ G, µN(xyx−1) = µN(y),

(3) ∀x,y ∈ G, µN(xy) ≥ µN(yx),

(4) ∀x,y ∈ G, µN(xy) ≤ µN(yx).
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CHAPITRE

THREE

FUZZY LATTICE-ORDERED SUBGROUPS

After we introduced the general notions of fuzzy sets of reference set X, we will put a

condition on X to be once a lattice, an ordered subgroup or an `-subgroup in order to be able to

apply the notion of convexity in fuzzy case.

In this section we will note the degree of membership of an element x to the fuzzy set A by

A(x) instead of µA(x).

3.1 Fuzzy Cosets and Fuzzy Normal Subgroups

Definition 3.1 [15] Let H ∈F (G), for any x ∈ G we define a map Hx : G→ [0,1] by,

Hx(y) = H(yx−1), ∀y ∈ G.

Hx is called the fuzzy coset of G determined by x and H.

Denote the set of all fuzzy cosets of H by G/H (i.e., G/H = {Hx | x ∈ G}.)
From the above definition it follows that He = H. Indeed, for all y ∈ G, we have

He(y) = H(ye−1) = H(y). Hence, He = H.

Example 3.1 Consider the Klein 4-group 1 G = {e,a,b,c} of Example 1.7 (see table of Fi-

gure 1.2.

Let us consider the fuzzy set H of G defined by H(e) = H(c) = t0 and H(a) = H(b) = t1,

where t0 > t1. It is easy to see that H is a fuzzy group of G.

For instance if we take x = a, then Ha is defined as following :

1. The Klein four-group is a group with four elements, in which each element is self-inverse and in which
composing any two of the three non-identity elements produces the third one.
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Ha(e) = H(ea−1) = H(a−1) = H(a) = t1, Ha(a) = H(aa−1) = H(e) = t0,

Ha(b)=H(ba−1)=H(ba)=H(c)= t0, Ha(c)=H(ca−1)=H(ca)=H(b)= t1. Hence,

Ha = {(e, t1),(a, t0),(b, t0),(c, t1)}.

By the same way we find, Hb = {(e, t1),(a, t0),(b, t0),(c, t1)},Hc = {(e, t0),(a, t1),(b, t1),(c, t0)}
and He = H = {(e, t0),(a, t1),(b, t1),(c, t0)}.
Finally, we conclude that G/H = {Ha,H}.

Properties 3.1 If H is a fuzzy normal subgroup of a group G, then the set of all fuzzy cosets of

H form a group under the inner operation ◦ defined, for all Hx,Hy ∈ G/H, Hx ◦Hy = Hxy.

Proof.

i) The identity element is H itself. Indeed, for all x ∈ G,

Hx ◦H = Hx ◦He = Hxe = Hx and H ◦Hx = He ◦Hx = Hex = Hx.

ii) “◦” is associative. Indeed ∀x,y,z ∈ G we have,

Hx ◦ (Hy ◦Hz) = Hx ◦Hyz = Hx(yz) = H(xy)z = Hxy ◦Hz = (Hx ◦Hy) ◦Hz.

ii) For all x ∈ G, the inverse of the coset Hx is Hx−1 . Indeed, we have

Hx ◦Hx−1 = Hxx−1 = He = H.

We, conclude that (G/H,◦) the set of all fuzzy cosets of H is a group. �

Theorem 3.1 Let G be a group and N a fuzzy normal subgroup of G. Then the two following

statements hold

1) NN(e) is a normal subgroup of G. (for illustrate we can put N(e) = α , we get NN(e) =

Nα it is a classic subset of G).

2) Nx = Ny if and only if N(x) = N(y).

Proof.

1) Let x ∈ G and y ∈ NN(e). We need to show that xyx−1 ∈ NN(e).

As N is a fuzzy normal subgroup and y ∈ NN(e), it follows that N(xyx−1) = N(y) ≥
N(e). Hence, xyx−1 ∈ NN(e). Therefore, NN(e) is a normal subgroup
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2) Let x,y ∈ G. We have

Nx = Ny⇔∀z ∈ G, Nx(z) = Ny(z)

⇔∀z ∈ G, N(x−1z) = N(y−1z)

⇒ N(x−1e) = N(y−1e)( we take z = e)

⇒ N(x−1) = N(y−1)

⇒ N(x) = N(y).

�

Proposition 3.1 Let H be a fuzzy normal subgroup of a group G. Then it holds that

Hx(xy) = Hx(yx) = H(y),∀x,y ∈ G.

Proof.

Let x,y∈G. Since H is a fuzzy normal subgroup, it follows that H(xyx−1)= H(x), this implies

that Hx(xy) = H((xy)x−1) = H(xyx−1) = H(y) = H((yx)x−1) = Hx(yx). �

The following theorem extends Theorem1.1 to the fuzzy case.

Theorem 3.2 [8] Let N be a fuzzy normal subgroup of G. A subset P of the quotient group G/N

is the positive cone of a compatible order on G/N if and only if :

(1) P∩P−1 = {N};

(2) P2 = P;

(3) ∀x ∈ G, Nx ◦P◦Nx−1 = P.

Moreover, P∪P−1 = G/N if and only if this order is total.

Proof.

We must indicate that in the quotient groups the associated operation is “ ◦”, and its identity

element is N. Then, its positive cone is determined by P(G/N) = {Nx ≥ N | Nx ∈ G/N}, and

P2(G/N) = {Nx ◦Ny | Nx,Ny ∈ P(G/N)}.

⇒) Suppose that “ ≤” is a compatible order on G/N, and P(G/N) is the associated positive

cone.
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(1)

Nx ∈ P∩P−1 ⇒ Nx ∈ P and Nx ∈ P−1

⇒ Nx ≥ N and N ≥ Nx

⇒ Nx = N

⇒ P∩P−1 = {N}.

(2) • Let Nx ◦Ny ∈ P2 such that Nx,Ny ∈ P. Recall that Nx ◦Ny = Nxy.

Nx,Ny ∈ P(G/N) ⇒ Nx ≥ N and Ny ≥ N

⇒ Nx ◦Ny ≥ N ◦Ny and N ◦Ny ≥ N ◦N = N

⇒ Nxy > Ny > N

⇒ Nxy ∈ P.

Then P2(G/N) ⊆ P(G/N).

• Conversly, let Nx ∈ P(G/N). We know that,

Nx = Nxe = Nx ◦Ne ∈ P2(G/N).

Then, P(G/N) ⊆ P2(G/N).

Thus, P2 = P.

(3) • Let for all x ∈ G, Nx ∈ G/N and Ny ∈ P(G/N), then

Ny > N ⇒ Nx ◦Ny ◦Nx−1 > Nx ◦N ◦Nx−1

⇒ Nx ◦Ny ◦Nx−1 > N

⇒ Nx ◦Ny ◦Nx−1 ∈ P(G/N), ∀ Ny ∈ P

⇒ Nx ◦P◦Nx−1 ⊆ P(G/N).

• Conversly, let Ny ∈ P(G/N). We know that Ny = Ne ◦Ny ◦Ne−1 ∈ Nx ◦P◦Nx−1 .

Then P(G/N) ⊆ Nx ◦P◦Nx−1 .

Thus, Nx ◦P◦Nx−1 = P(G/N).

⇐) Now, suppose that P is a subset of G/N that satisfies the conditions (1),(2) and (3).

We define a relation “ 6” on G/N by

Nx 6 Ny ⇔ Nyx−1 ∈ P.
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i) First, we prove that “ 6” is an order.

• It is clear that “ 6” is reflexive cause, ∀ Nx ∈G/N, Nx 6 Nx since Nxx−1 = N ∈ P

(From (1), then N ∈ P and N ∈ P−1).

• Let Nx,Ny ∈ P/N such that, Nx 6 Ny and Ny 6 Nx ⇒ Nyx−1 ∈ P and Nxy−1 ∈ P.

We have, (Nyx−1)−1 = Nxy−1 ∈ P. Hence, Nyx−1 ∈ P∩P−1 = {N} then,

Nyx−1 = N ⇒ Ny = Nx which shows that “ 6” is antisymmetric.

• Let Nx,Ny ∈ P/N such that, Nx 6 Ny and Ny 6 Nz ⇒ Nyx−1 ∈ P and Nzy−1 ∈ P.

Nzx−1 = Nzy−1yx−1

= Nzy−1 ◦Nyx−1 ∈ P2(G/N)

From (2), then Nzx−1 ∈ P ⇒ Nx 6 Nz. Thus, “ 6” is transitive.

ii) Now for compatibility, let Nx 6 Ny ⇒ Nyx−1 ∈ P. From the condition (3), we find

∀a,b ∈ G and Nyx−1 ∈ P

Nyx−1 = Nab ◦Nyx−1 ◦N
(ab)−1 ∈ P

⇒ Nabyx−1a−1b−1 ∈ P

⇒ N(ayb)(a−1x−1b−1) ∈ P

⇒ N(ayb)(axb)−1 ∈ P

⇒ N(axb) 6 Nayb

Then , “ 6” is a compatible order on G/N.

iii) For all Nx ∈ P, to be P the positive cone of G/N it must be N 6Nx ⇒ Nx ∈ P which

is verified.

Assume that P∪P−1 = G/N, let Nx,Ny ∈G/N, then Nxy−1 ∈G/N this implies that Nxy−1 ∈ P

or Nxy−1 ∈ P−1

Nxy−1 ∈ G/N ⇒ Nxy−1 ∈ P or Nxy−1 ∈ P−1,

⇒ Nxy−1 > N or Nxy−1 6 N,

⇒ Nxy−1 ◦Ny > N ◦Ny or Nxy−1 ◦Ny 6 N ◦Ny,

⇒ Nx > Ny or Nx 6 Ny.

Then “ 6” is total.

Conversely, suppose that “ 6” is total. Let Nx ∈ G/N, then Nx 6 N or Nx > N, this implies

that Nx ∈ P or Nx ∈ P−1. Hence, G/N = P∪P−1. �
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3.2 Fuzzy Convex Subgroups

We can define on fuzzy group theory the concept of convexity that we will give it in what

follows with some of its properties. First, we will give in the following subsection some remin-

ders of convex subgroup and basic properties which we will need in the sequel.

3.2.1 Convex subgroups

Definition 3.2 A sublattice E of a lattice L is a subset that is both a ∧-subsemilattice and a

∨-subsemilattice, i.e., if x,y ∈ E then x∧ y ∈ E and x∨ y ∈ E.

Example 3.2 For every ordered set E the lattice O(E) of down-sets of E is a sublattice of the

lattice P(E).

Definition 3.3 [12] Let G be an ordered group. A convex subgroup of G is a subgroup which,

under the order of G, is a convex subset.

Example 3.3 Let us consider the ordered set (R2,6) defined in Example (1.2), and A =

{(x,0) | x ∈ R}. It is clear that A is a subgroup of the group (R2,+) (recall that in R2,

(x,y)+(x′,y′) = (x+ x′,y+ y′). It reminds to show that A is convex.

Let (x,0), (z,0) ∈ A such that (x,0) 6 (y,0), and (α ,β) ∈R2 with, (x,0) 6 (α ,β) 6 (y,0).

• If α = y, β = 0, then (α ,0) ∈ A.

• If α ≤ y, β < 0 then,

◦ Either x = α and β = 0, then (α ,β) ∈ A.

◦ Or, x≤ α and 0 < β (contradiction).

As (α ,β) ∈ A, then [(x,0),(z,0)] ⊆ A implies that A is convex subgroup.

Example 3.4 In the additive group Z, 3Z is a subgroup of Z but it is not convex.

Proposition 3.2 [12] Let G be an ordered group. The intersection of any family of convex

subgroups of G is a convex subgroup of G.

Proof.

Let {Ai, i ∈ I} be a family of convex subgroup of G, we know that ∩
i∈I

Ai is subgroup, it reminds

to prove that ∩
i∈I

Ai is convex.

Let a,b ∈ ∩
i∈I

Ai, such that a≤ b, as Ai are convex, it follows that [a,b] ⊆ Ai, ∀i ∈ I.

This implies that [a,b] ⊆ ∩
i∈I

Ai.

Hence ∩
i∈I

Ai is a convex subgroup of G. �
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Theorem 3.3 [12] If H is a subgroup of an ordered group G then PH = H ∩PG.

Moreover, the following two statements are equivalent :

(1) H is convex ;

(2) PH is a down-set of PG.

Proof.

We know that eG = eH , let y ∈ PH ,

y ∈ PH ⇒ y ∈ {x ∈ H | x > eH},

⇒ y > eH , y ∈ H

⇒ y > eG, y ∈ H

⇒ y ∈ PG

It is clear that y ∈ H ∩PG, and so PH = H ∩PG.

(1) ⇒(2) Suppose that H is convex.

Let x,y ∈ PG with eH 6 y 6 x such that eH ,x ∈ PH , then eH ,x ∈ H and since H is convex

then y ∈H and y ∈ PG this implies that y ∈H∩PG = PH . And so PH is a down set of PG.

(2) ⇒ (1) Now we suppose that PH is a down set of PG.

Let x6 y6 z such that x,z ∈H, then eH 6 x−1y6 x−1z, we easily remark that x−1z ∈ PH

and as it is down set then x−1y ∈ PH ⊂ H.

Whence y ∈ xH = H,then H is convex.

�

Theorem 3.4 [12] Let G be an ordered group and H be a normal subgroup of G. Then Q =

{pH/p ∈ PG} is the positive cone of a compatible order on the quotient group G/H if and only

if H is convex.

3.2.2 Fuzzy Convex Subgroups

Definition 3.4 [8] A fuzzy subset A of a lattice (L,6) is said to be a fuzzy sublattice if, ∀x,y in

L,

i) A(x∨ y) ≥ A(x)∧A(y),

ii) A(x∧ y) ≥ A(x)∧A(y).
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Example 3.5 Consider the Hass digram of Figure 3.1 of the poset L = {1,2,3,6,12} under

division.

It is easy to see that L is a lattice. Let us consider the fuzzy set A on L given by

A(x) =


1
3 si x , 12,

1
2 si x = 12.

If we take x = 1 and y = 2, we find,

x∨ y = lcm(1,2) = 2⇒ A(2) = 1
3 , and A(1) = A(2) = 1

3 ⇒ A(1)∧A(2) = 1
3

Then A(1∨2) ≥ A(1)∧A(2)

x∧ y = lcd(1,2) = 1⇒ A(1) = 1
3 , and A(1)∧A(2) = 1

3 , then A(1∧2) ≥ A(1)∧A(2).

The same for all element of L.

•
1

•2 •3

•6

•12

FIGURE 3.1 – Hasse diagram of a poset (L, |).

The following proposition characterize any fuzzy sublattice of a lattice L by means of the

crisp α-cut sublattices.

Proposition 3.3 Let A be a fuzzy subset of a lattice (L,6). Then, A is a fuzzy sublattice in L if

and only if every nonempty α-cut Aα with α ∈ [0,1] of A is a sublattice of L.

Proof.

⇒) Suppose that A is a fuzzy sublattice of L. Let Aα be a nonempty α-cut of A, and let x,y

∈ Aα .

x,y ∈ Aα ⇒ A(x) ≥ α and A(y) ≥ α

⇒ min{A(x),A(y)} ≥ α

Since A is a fuzzy sublattice, it follows that
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A(x∨ y) ≥ A(x)∧A(y) ≥ α and A(x∧ y) ≥ A(x)∧A(y) ≥ α . This implies that

x∨ y ∈ Aα and x∧ y ∈ Aα .

Hence, Aα is a sublattice of L.

⇐) Suppose that each non-empty Aα , is a sublattice of L. In order to show that A is a fuzzy

sublattice of L let us consider x,y ∈ L. We put A(x) = α1, and A(y) = α2, and assume

that α2 ≤ α1, it follows from Proposition 2.1 that Aα1 ⊂ Aα2 . As x ∈ Aα1 and y ∈ Aα2 , it

follows that x,y ∈ Aα2 . Since Aα2 is a sublattice of L, it obviously holds that x∨ y ∈ Aα2

and x∧ y ∈ Aα2 . This implies that

A(x∨ y) ≥ α2 and A(x∧ y) ≥ α2.

On the other hand as α2 = min{A(x),A(y)}, it follows that

A(x∨ y) ≥min{A(x),A(y)} and A(x∧ y) ≥min{A(x),A(y)}.

Therefore, A is a fuzzy sublattice of L.

�

Example 3.6 By considering the fuzzy set A of L given in Example 3.5. We can prove that A is

a fuzzy sublattice according to their α-cuts.

• If α ∈ [0, 1
3 [, Aα = {1,2,3,6,12}= L is a sublattice.

• If α ∈]1
3 , 1

2 ], Aα = {12} is a sublattice.

• If α ∈]1
2 ,1], Aα = /0.

by Proposition 3.3, then A is a fuzzy sublattice.

Definition 3.5 [8]Let G be an ordered group and A is a fuzzy subgroup of G. A is called a fuzzy

convex subgroup if for all x,y,z from G, with x≤ z≤ y

A(z) ≥ A(x)∧A(y).

The following proposition characterize the fuzzy convex subgroup of a given group by

means of its α-cut.

Proposition 3.4 [8] Let A be a fuzzy subset of G. A is a fuzzy convex subgroup if and only if

every nonempty α-cut Aα with α ∈ [0,1] is a convex subgroup of G.
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Proof.

⇒) Suppose that A ∈F (G) such that is a fuzzy convex subgroup. Let x,y ∈ Aα such that

x≤ y.

x,y ∈ Aα ⇒ A(x) ≥ α , A(y) ≥ α

⇒ A(x)∧A(y) ≥ α

From A is fuzzy convex subgroup then, ∀x,y,z ∈ A,

x≤ z≤ y ⇒ A(z) ≥ A(x)∧A(y)

⇒ A(z) ≥ α

⇒ z ∈ Aα

⇒ [x,y] ⊆ Aα .

Then Aα is convex.

⇐) Conversely, we suppose that Aα is a convex subgroup. Let a,b,c∈G, such that a≤ c≤ b.

Since

A(a) ≥ A(a)∧A(b) and A(b) ≥ A(a)∧A(b)

It follows that a,b ∈ AA(a)∧A(b). ( with α = A(a)∧A(b) )

As Aα is convex, a,b ∈ Aα and a≤ c≤ b, it follows that c ∈ Aα .

This implies that

A(c) ≥ α

A(c) ≥ A(a)∧A(b)

Then, A is fuzzy convex subgroup of G.

�

Example 3.7 Consider the additive abelian group R×R equipped with the relation defined in

Example 1.2. We define the fuzzy subgroup H of R2 by, H(x,y) =

 b i f y = 0,

0 otherwise.
such that

b ∈ [0,1]. Let α ∈ [0,1].

• If α = 0, then we find Hα = R×R.

• If α ∈]0,b], then we find Hα = {(x,0) | x ∈R}.

• If α ∈]b,1], then we find Hα = /0.
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We find that the non-empty α-cuts of H are R×R (which is convex) and the subset A defined

in Example 3.3 which we have already proved that is convex subgroups of R×R. Then from

Proposition 3.4, H is a fuzzy convex subgroup of R×R.

Proposition 3.5 Let G be an ordered group, any fuzzy convex subgroup satisfies : ∀x,y ∈ G,

i) if e≤ x≤ y then A(x) ≥ A(y),

ii) if y≤ x≤ e then A(x) ≥ A(y).

Proof.

Let A be a fuzzy convex subgroup of G. From Proposition 2.2, it follows that A(y) ≤ A(e), for

all y ∈ G. This implies that, A(e)∧A(y) = A(y)

i) Suppose that e≤ x≤ y. From Definition 3.5, it holds that A(x) ≥ A(e)∧A(y≥ A(y).

ii) Suppose that y≤ x≤ e. Again from Definition 3.5, it holds s that A(x)≥ A(y)∧A(e)≥
A(y).

�

Definition 3.6 [8] Let A be a fuzzy subset of G. A is called a fuzzy down-set if every nonempty

α-cuts Aα is down-set of G.

Example 3.8 By considering the poset given in Example 3.5.

We define the fuzzy set A by A = {(1, 1
3),(2, 1

3),(3, 1
3),(6, 1

3),(12, 1
2)} then,

• ∀α ∈ [0, 1
3 [, Aα = {1,2,3,6,12}= L is a down set.

• ∀α ∈]1
3 , 1

2 ], Aα = {12} is a down set.

• ∀α ∈]1
2 ,1], Aα = /0 is a down set.

Then A is a fuzzy down set.

Properties 3.2 Let A ∈F (G). A is a fuzzy down-set of G if and only if it is order-reversing.

Proof.

⇒) Suppose that A is fuzzy down-set of G, then ∀α ∈ [0,1], Aα is a down-set of G.

Let x,y ∈ G, such that x 6 y. We have y ∈ AA(y) ( Since A(y) ∈ [0,1] we put α = Ay ).

As AA(y) is a down-set, then

x≤ y and y ∈ AA(y) ⇒ x ∈ AA(y)

⇒ A(x) ≥ A(y)

⇒ A is an order− reversing
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⇐) Let A is a fuzzy set of G, such that A is an order-reversing.

We have, ∀α ∈ [0,1] y ∈ Aα ⇒ A(y) ≥ α .

x≤ y and y ∈ Aα ⇒ A(x) ≥ A(y)

⇒ A(x) ≥ α

⇒ x ∈ Aα

⇒ Aα is a down− set.

Then A is a fuzzy down-set of G.

�

3.3 Fuzzy convex `-subgroups

In this section, we describe some properties of a fuzzy lattice-ordered subgroup by extending

the ones of the previous subsection. In this subsection G will denote Lattice-ordered group.

Definition 3.7 [12] A lattice-ordered subgroup (`-subgroup, for short) of a lattice-ordered

group G is a subgroup H of G that is also a sublattice of G.

Not that in general, a subgroup of a lattice-ordered group need not be a sublattice. For

example, in the lattice-ordered additive abelian group G = R×R the subset H = {(n,−n),n∈
Z} is a subgroup but is not a sublattice since (0,0)∨ (1,−1) = (1,0) < H.

Theorem 3.5 [12] A subgroup H of a lattice-ordered group G is an `-subgroup of G if and only

if x∨ e ∈ H for every x ∈ H.

Proof.

The condition is clearly necessary. Conversely, if it holds then for all x,y ∈ H we have x∨ y =

(xy−1∨ e)y ∈ H. We have also from Proposition1.6 that x∧ y = x(x∨ y)−1y ∈ H and so H is a

sublattice of G. �

Definition 3.8 An `-subgroup of G which is convex is said to be a convex `-subgroup.

Definition 3.9 [8] A fuzzy subset A of the lattice-ordered group G is said to be a fuzzy lattice-

ordered subgroup (fuzzy `-subgroup, for short) if, for all x,y in G,

i) A(xy−1) ≥ A(x)∧A(y),

ii) A(x∨ y)∧A(x∧ y) ≥ A(x)∧A(y.)
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The flowing proposition characterize the fuzzy `-subgroup.

Properties 3.3 [8] A fuzzy subgroup A of G is a fuzzy `-subgroup if and only if,

A(x∨ e) ≥ A(x),∀x ∈ G.

Proof.

⇒) Suppose that A(x∨ y)∧A(x∧ y) ≥min(A(x),A(y)), then we have,

A(x∨ y) ≥min(A(x),A(y)) and A(x∧ y) ≥min(A(x),A(y))

We put y = e, then A(x∨ e) ≥min(A(x),A(e)). Since A(e) ≥ A(x)), it follows that

A(x∨ e) ≥ A(x).

⇐) Now let us consider that A(x∨ e) ≥ A(x). From Proposition 1.6, it holds that

A(x∨ y) = A((xy−1∨ e)y). This implies that

A(x∨ y) ≥ min(A(xy−1∨ e),A(y))

≥ min(A(xy−1),A(y))

≥ min(min(A(x),A(y)),A(y))

≥ min(A(x),A(y)).

By the same way we find A(x∧ y) ≥ min(A(x),A(y)), then A is a fuzzy sublattice of

G. Hence, A is a fuzzy `-subgroup.

�

Example 3.9 Let us consider the fuzzy subgroup H given in Example 3.7. Let (x,y) ∈R×R,

and (0,0) the identity element of R×R.

• If y = 0, H((x,0)∨ (0,0)) = b≥ H(x,0) = b,

• If y , 0,

◦ Either, H((x,y)∨ (0,0)) = H(x,y) ≥ H((x,y),

◦ Or, H((x,y)∨ (0,0)) = H(0,0) = b≥ H((x,y) = 0.

Then ∀X ,e ∈R×R, H(X ∨ e) ≥ H(X). Hence, by Proposition 3.3 H is fuzzy `-subgroup.
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Definition 3.10 Let A be a fuzzy `-subgroup of G which is convex is said to be a fuzzy convex

`-subgroup, i.e., a fuzzy subgroup A of G is said to be a fuzzy convex `-subgroup if,

i) For all x ∈ G, A(x∨ e) ≤ A(x),

ii) For all a,b,c ∈ G with a≤ c≤ b we have

A(c) ≥ A(a)∧A(b).

• The set of all fuzzy convex `-subgroups of G is noted by FC L (G).

Properties 3.4 Let {Ai : i ∈ I} be a family of fuzzy convex `-subgroups of G and A = ∩
i∈I

Ai.

Then, A is a fuzzy convex `-subgroup of G.

Proof.

From Proposition 2.4, ∩
i∈I

Ai is a fuzzy subgroup. It reminds to prove that ∩
i∈I

Ai is a fuzzy `-

subgroup and is a fuzzy convex.

Since ∀i ∈ I,Ai is an `-subgroup, it follows that Ai(x∨ e) ≥ Ai(x),∀x ∈ G,∀i ∈ I. This implies

that in f
i∈I

Ai(x∨ e) ≥ in f
i∈I

Ai(x),∀x ∈ G, it follows from Proposition 3.3 that ,∩
i∈I

Ai is a fuzzy `-

subgroup of G.

Now suppose that a,b,c ∈ G with a ≤ c ≤ b. We need to show that ∩
i∈I

Ai(c) ≥ ∩
i∈I

Ai(a) ∧
∩
i∈I

Ai(b)). As for all i ∈ I, Ai is a fuzzy convex, it follows that

a≤ c≤ b ⇒ Ai(c) ≥ Ai(a)∧Ai(b),∀i ∈ I,

⇒ in f
i∈I

Ai(c) ≥ in f
i∈I

(Ai(a)∧Ai(b)),

⇒ in f
i∈I

Ai(c) ≥ (in f
i∈I

Ai(a)∧ in f
i∈I

Ai(b)),

⇒ ∩
i∈I

Ai(c) ≥ ∩
i∈I

Ai(a)∧ ∩
i∈I

Ai(b).

Then A = ∩
i∈I

Ai is fuzzy convex.

We conclude that the intersection of a family of fuzzy convex `-subgroups is fuzzy convex

`-subgroup. �
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CONCLUSION

In this work, we have introduced the concept of fuzzy sets, fuzzy subgroups and normal

subgroup of a given reference set, and we used them to introduce the notion of fuzzy lat-

tices and fuzzy lattice-ordered subgroups and we have discussed various related properties

and theorems. We have also investigated some properties and characterizations theorems of

the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group

(resp. lattice-ordered group).
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