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Abstract 

In this thesis, we proposed a hybrid Ant Colony Optimization for Multi Depot Vehicle Routing 

Problem using the Nearest Distance Cluster Algorithm, 2-opt and mutation operation in order to 

Gain the distance and thus reduce the cost in general with the condition of the limited capacity of 

vehicles 

Key words:   HACO, ACO, VRP, hybrid Algorithm. 

Résumé 

Dans ce mémoire, nous avons proposé une optimisation hybride de colonies de fourmis pour 

le problème de routage dynamique de véhicules multi dépôts à l'aide de l'algorithme de cluster de 

distance la plus proche, Opération d'échange local (2-opt) et opération de mutation afin de Gagner 

de la distance et ainsi réduire le coût en général avec la condition de la capacité limitée des 

véhicules 

Mots clés : OCFH, OCF, PTV, Algorithme hybride. 

 

 ملخص

، اقترحنا تحسينًا هجينًا لمستعمرة النمل لمشكلة توجيه المركبات الديناميكية متعددة النقاط باستخدام خوارزمية هذه المذكرةفي 

( وعملية الطفرة من أجل كسب المسافة وبالتالي تقليل التكلفة بشكل عام opt-2أقرب مسافة للمجموعة ، عملية التبادل المحلي  )

 الاعتبار السعة المحدودة للمركباتمع اخذ بعين 

 الكلمات المفتاحية:  تحسين مستعمرة النمل الهجين ، تحسين مستعمرة النمل ، مشكلة توجيه المركبة  ، الخوارزمية الهجينة
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Dissertation  

Due to the rapid development of technology and in the purpose to improving service and 

bringing it closer to customers, many delivery companies use multi-depot, which leads to overall 

cost reduction (because now the distance between depots and the customer is small + delivery 

speed is better) 

Meanwhile, due to the actual constraints of service hours and service distances, and in the 

purpose to improve the delivery service, companies usually build multiple depots to serve a large 

number of customers. 

Hybrid ant colony optimization (HACO) is improved by the nearest distance clustering 

approach and local exchange, a nearest distance-based clustering approach is an optimization 

technique proposed to allocate all customers to their nearest depot, and the local interchange 

operation to minimize the distance to travel in the Vehicle Routing Problem (VRP). 

 Finally, a test is applied to evaluate the proposed algorithm; in the meantime, and the total 

cost of the solution. 
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General Introduction  

Recently, due to the widespread of delivery services in various commercial activities in our 

country, as well as transportation services in various economic companies, due to their great 

importance in increasing production efficiency and increasing habits, and in particular improving 

the quality of services 

So many production companies and delivery service companies impose many problems 

with delivery and vehicle routing and other likely problems Often this involves finding the 

maximum or minimum value of some function: the minimum time to make a certain journey, the 

minimum cost for doing a task, and the maximum power that can be generated by a device. 

  Many of these problems can be solved by finding the appropriate function and then using 

techniques of calculus to find the maximum or the minimum value required In order to develop 

the company's return as well as reduce spending on customers, and by mentioning the problems of 

improvement(combinatorial optimization problems), we mention the most famous of these  

problems: Cutting Stock problem, Packing Problems, Minimum spanning tree, vehicle routing 

problem, travelling salesman problem, back wallet problem …..and so on.  

In this graduation note we will mention some of these problems, their description and 

formulation also some model of these problems, some methods of resolving this kind of problems 

and also, we mention ACO ant colony optimization the algorithm used to resolve this kind of 

problems and address in particular the ACO for solving CMDVRP (ant colony optimization 

algorithm for solving multi depot vehicle routing problem). 
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Chapter 01: Combinatorial optimization   

1. 1. Introduction 

       Combinatorial optimization occupies a very important place in operations research, in 

discrete mathematics and in computer science. Its importance is justified on the one hand by 

the great difficulty of the optimization problems and on the other hand by the many practical 

applications that can be formulated in the form of an optimization problem. Although 

combinatorial optimization problems are often easy to define, they are usually difficult to 

solve. Indeed, most of these problems belong to the class of NP-hard problems and therefore 

do not currently have an effective algorithmic solution valid for all data. [2]    

Given the importance of these problems, many resolution methods have been developed in 

operations research (OR) and artificial intelligence (AI). These methods can be broadly 

classified into two main categories: exact methods (complete) which guarantee the 

completeness of the resolution and approximate methods (incomplete) which lose 

completeness to gain in efficiency, so in this chapter, we talk more detail about the techniques 

and optimization methods used to solve our problem 

1.2. Optimization: 

1.2.1. Definition of optimization 

 The art of understanding a real problem, of being able to transform it into a mathematical 

model that can be studied in order to extract its structural properties and characterize the 

solutions to the problem, it is the art of exploiting this characterization in order to determine 

the algorithms which calculate them but also to highlight the limits on the efficiency and the 

effectiveness of these algorithm [3]. 
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 1.2.2. Combinatorial optimization  

Combinatorial optimization is a mathematical technique, which consists in minimizing or 

maximizing an objective function (Cost, time, distance, etc.). Whose goal is to find and define 

an optimal solution most suitable for optimization from a set of possible solutions [3]. 

1.2.3. Examples of optimization problems: 

1.2.3.1. Backpack problem 

   The "Backpack problem" is a selection problem that consists in maximizing a quality 

criterion under a linear resource capacity constraint. It owes its name to the analogy that can 

be made with the problem that arises for the hiker when filling his backpack: he must choose 

the objects to carry so as to have the most "useful" bag. possible, while respecting its volume. 

   More formally, it can be described as follows. Given a set of n elements and a resource 

available in limited quantity, b. For j = 1 to n, we denote pj the profit associated with the 

selection of element j and we denote aj the quantity of resource that element j requires, if it is 

selected. The coefficients pj and aj take positive values for all j = 1 to n. The knapsack problem 

consists in choosing a subset of the n elements, which maximizes the total profit obtained, 

respecting the quantity of available resource. 

   Each element j is associated with a selection variable, 𝑥𝑗, binary, equal to 1 if j is selected, 

equal to 0 otherwise. the total profit obtained can then be written as the sum: 

  ∑ 𝑝𝑗  
 

𝑥𝑗
𝑛
𝑗=1  and the total amount of resource used as the sum:  ∑ 𝑎𝑗  

 
𝑥𝑗

𝑛
𝑗=1 The backpack 

problem is therefore modeled as: 

𝑀𝐴𝑋 ∑ 𝑝𝑗  
 

𝑥𝑗
𝑛
𝑗=1           1.(1) 

∑ 𝑎𝑗  
 

𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏                                  1.(2) 

 𝑥𝑗∈ {0,1} ∀j = 1..n                          1.(3) 
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The resource constraint is called the "backpack constraint"; it is found in optimization 

problems, from many fields of application, which involve resources with limited capacity. 

In the case where there are several constraints of this type (for example, the hiker can 

consider not only a maximum volume, but also a maximum weight, that his bag can support), 

we speak of a backpack problem. "multidimensional". 

The knapsack problem has been the subject of various works proposing exact methods of 

resolution. The proposed algorithms fall under three main types of methods. First, separation 

and evaluation 1 type algorithms were proposed in the 1970s, allowing to deal efficiently with 

small instances. These performances were subsequently improved by adding additional 

constraints to reinforce the bounds in the search tree. Secondly, algorithms based on the 

identification of a critical variable and an associated subset of variables, on which a truncated 

tree search is applied, have made it possible, from the 1980s, to increase the size of the 

instances that can be resolved (up to n=100000). Third, efficient dynamic programming 

algorithms, dynamic programming is combined with the identification of a critical variable and 

the use of bound strengthening techniques.  [ 5] 

1.2.3.2. Assignment problem 

The "assignment problem" consists in establishing links between the elements of two 

distinct sets, in such a way as to minimize a cost and while respecting link uniqueness 

constraints for each element. 

We consider m tasks and n agents, with n ≥ m. for any pair ( i ,j ) ( i = 1 to m, j = 1 to n), 

the assignment of task i to j entails a performance cost noted 𝑐𝑖.𝑗( 𝑐𝑖.𝑗≥ 0). each task must be 

performed exactly once and each agent can perform at most one task. the problem consists in 

assigning the tasks to the agents, to minimize the total cost of realization and respecting the 

constraints of realization of the tasks and availability of the agents.  

To any task/agent pair ( i , j ), we associate an assignment variable, 𝑥𝑖,𝑗, binary, which takes 

the value 1 if task i is assigned to agent j and 0 otherwise. The total cost of carrying out the 

tasks is then expressed by the sum: ∑  ∑ 𝑐𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗 . The number of agents performing task 
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i is given by:   ∑ 𝑥𝑖,𝑗
𝑛
𝑗=1  for all i = 1 to m and the number of tasks performed by agent j is given 

by:  ∑ 𝑥𝑖,𝑗
𝑚
𝑖=1 , for all j = 1 to n. We can therefore model the assignment problem in the form: 

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗                1.(4) 

      ∑ 𝑥𝑖,𝑗 = 1 (∀ i =  1 . . m)𝑛
𝑗=1                          1.(5) 

     ∑ 𝑥𝑖,𝑗 ≤ 1   (∀j =  1. . n)𝑚
𝑖=1                          1.(6) 

𝑥𝑖,𝑗 ∈  {0,1} ∀𝑖 =  1. . 𝑚 , ∀𝑗 =  1. . 𝑛              1.(7) 

The constraints of this problem are found in many applications involving resource 

allocation problems. They are generally called "assignment constraints". 

In graph theory, we can reduce ourselves to a coupling problem in a bipartite graph. A 

graph G is said to be bipartite if one can divide the vertices into two sets X1 and X2 such that 

all edges in the graph join a vertex of X1 to a vertex of X2. A "matching" in a bipartite graph 

is a set of edges which have, 2 by 2, no common vertex in G. 

By associating X1 to the set of tasks, of cardinality m and X2 to the set of agents, of 

cardinality n, an edge ( i ,j ) in the graph G (with i ∈ X1 and j ∈ X2) represents the possibility 

of assigning task i to agent j; the weight is associated 𝑐𝑖.𝑗with each edge (i,j) of G. The weight 

of a matching being defined as the sum of the weights of its edges, the assignment problem 

then amounts to finding a matching of cardinality m with minimal weight in the graph G. 

The particular case where X1 and X2 have the same cardinality (corresponding to the case 

n = m for the assignment problem) is frequently studied; we are then interested in the search 

for a coupling of maximum cardinality. If we consider sets X1 and X2 of cardinality n and if 

there are n 2 edges in the graph G (the bipartite graph is complete), then the matching 

maximum is of cardinality n and it is called "perfect matching". We can extend this problem 

to that of the search for a maximal matching of minimal weight in G. 

  The assignment, or coupling, problem in a bipartite graph can be modeled as a 

minimum-cost maximum flow problem in which the capacities of the arcs are all equal to 1. 
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This is a classic problem in graph theory that amounts to seeking to pass a maximum 

throughput through a network, for a lower cost 2 . Simple and effective algorithms exist to 

solve this problem; in particular the algorithm of Busaker and Gowen which starts from a null 

flow and which increases it progressively by searching for " increasing chains " (ie, paths on 

the arcs of which one can systematically increase the flow), of minimal cost. 

The "Hungarian method", proposed by Kuhn in 1955, is a dual algorithm which is based 

on modeling the assignment problem in the form of a linear program, but which can be seen 

as a variant of Busaker 's algorithm and Gowen , specialized for the bipartite structure of the 

graph. Because of its great efficiency on this type of problem, it is the reference algorithm in 

Operations Research to solve the assignment problem. Its principle is based on the fact that the 

pairings of minimal weight in the graph of the primal problem are exactly the pairings of 

maximum cardinality in the graph of the dual. [5] 

1.2.3.3 Traveling salesman problem 

  The "traveling salesman problem", or TSP (for Traveling Salesman Problem ), is 

the following: a sales representative having (n) cities to visit wishes to establish a route which 

allows him to pass exactly once by each city and to return to his starting point for a lower cost, 

that is- that is, by covering the shortest possible distance. It is one of the oldest and most widely 

studied problems in combinatorial optimization. Its applications are numerous. For example, 

problems of manufacturing process sequencing or path optimization in robotics can be 

expressed directly in the form of a TSP and certain problems, such as transport problems, are 

more complex than the TSP but present a structure underlying type TSP. 

Let G = (X ,U ), a graph in which the set X of vertices represents the cities to be visited, as 

well as the starting city of the tour, and U, the set of arcs of G, represents the possible routes 

between cities. To any arc ( i ,j ) ∈ U, we associate the travel distance from 𝑑𝑖.𝑗city i to city j. 

The length of a path in G is the sum of the distances associated with the arcs of this path. The 

TSP is then reduced to finding a Hamiltonian circuit (ie, a closed path passing exactly once 

through each of the vertices of the graph) of minimal length in G. In the case where there exist 

certain arcs ( i ,j ) ∈ U for which 𝑑𝑖.𝑗 ≠ 𝑑𝑗,𝑖, we speak of asymmetric TSP.  
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We can formulate the TSP in an equivalent way by associating to each pair (i,j) of cities to 

visit (i = 1 to n, j = 1 to n and i ≠j) a distance 𝛿𝑖.𝑗equal to 𝑑𝑖.𝑗if there is a means of go directly 

from i to j (ie, (i,j) ∈ U in G) , fixed at ∞ otherwise and a succession variable, 𝑥𝑖,𝑗, binary, 

which takes the value 1 if the city j is visited immediately after the city i in the tour and which 

takes the value 0 otherwise. The TSP is then modeled by: 

𝑀𝑖𝑛 ∑ ∑ 𝛿𝑖.𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖,𝑗                          1.(8) 

                                         ∑ 𝑥𝑖,𝑗 = 1𝑛
𝑗=1  ∀ i =  1. . n                  1.(9)       

    ∑ 𝑥𝑖,𝑗 = 1     ∀j =  1. . n𝑚
𝑖=1              1.(10) 

                                        ∑ 𝑥𝑖,𝑗 ≥ 2𝑖𝜖𝑠,𝑗∉𝑠        ∀𝑠 ⊂ 𝑋, 𝑆 ≠ ∅    1.(11) 

                                          𝑥𝑖,𝑗∈ [0,1] ∀ i = 1..n , ∀j = 1..n     

The first two constraints reflect the fact that each city must be visited exactly once; the 

third constraint prohibits solutions composed of disjoint subtours, it is generally called 

constraint of elimination of subtours. 

Integer Linear Programming algorithms have been developed to solve the TSP exactly 

 In particular, separation and evaluation search methods are effectively reinforced by the 

addition of cuts ( branch and cut algorithms ) and constraint propagation techniques in the 

search tree. Dynamic programming algorithms for finding Hamiltonian circuits in a graph, as 

well as Constraint Programming (CPP) also provide good results for problems of up to a 

hundred nodes. In addition, efficient heuristic procedures and local optimization techniques 

are available (e.g. Lin and Kernighan 's algorithm , as well as lower bound calculations, based 

for example on a Lagrangian relaxation of the TSP, making it possible to provide a good 

framework of the optimum. 

 There are many variants of the TSP, obtained either by adding constraints – such as the 

TSP with time windows (TSPTW for Traveling Salesman Problem with Time Windows) in 

which each city must be visited within a given time interval – either by modification, such as 



 

 

9 

 

vehicle routing problems (VRP for Vehicle Routing Problem ) in which we no longer consider 

a single sales representative to visit the cities but a team (a fleet of vehicles) and which can be 

seen as flow problems. [ 5] 

 

1.2.3.4. Scheduling problem 

The "scheduling problem" consists in sequencing and placing in time a set of activities 

(elementary work entities), taking into account temporal constraints (deadlines, sequence 

constraints, etc.) and constraints relating to the use and availability of the resources required 

by the activities .Posed in this way, it is a problem of satisfaction of constraints which finds its 

applications in various fields (project management, production workshops, etc.) and which is 

the subject of research work from a point of view. view of decision support, in particular 

through constraint-based approaches .In an optimization context, we also seek to minimize (or 

maximize) a criterion, such as for example the total duration of the activities (minimization of 

Makespan ). 

The term "scheduling problem", unlike the three problems seen previously, does not refer 

to a totally defined problem for which there is a direct mathematical formulation, but rather to 

a family of problems. Indeed , a scheduling problem is defined by the data of the activities and 

the resources which constitute it and these elements can be of very varied natures. 

For example, a resource is "disjunctive" (or non-sharable) if it cannot perform more than 

one activity at a time (this is called a disjunctive scheduling problem), otherwise, the resource 

is said to be "cumulative" (and leads to a cumulative scheduling problem). A resource is 

"renewable" if, after having been used by one or more activities, it is again available in the 

same quantity (machine, processor ...); the amount of resource usable at any time is limited. If 

the performance of an activity reduces it by a certain quantity, the resource is on the contrary 

"consumable" (raw materials, budget, etc.) and in this case, the overall consumption over time 

is limited. A resource is "doubly constrained" if both its instantaneous use and its overall 

consumption are limited ( project funding is the most typical example). 
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Regarding the activities, we can consider that it is possible to interrupt them and then 

resume them later, or on the contrary that they must be carried out without interruption. One 

then speaks respectively of a "preemptive" and "non-preemptive" problem. different 

constraints may apply to activities; for example, execution "window" constraints, with "earliest 

start" and " latest end" dates, "precedence constraints" which impose that certain activities be 

fi nished before others can begin, or time constraints between two activities (limited waiting 

time or, on the contrary, preparation time required between two tasks). 

Several types of decision variables can be used to model a scheduling problem. For 

example, in the case of a one-machine, disjunctive and non-preemptive scheduling problem, 

presents a review of the different mathematical formulations proposed in the literature. There 

are four types of decision variables: real variables indicating the start or end of the execution 

of an activity on the machine (ti is the start date of execution of activity i), binary variables 

indicating an immediate succession relationship between two tasks ( 𝑓𝑖,𝑗 = 1if activity j is 

executed just after i on the machine,𝑓𝑖,𝑗 = 0 otherwise), binary variables indicating the position 

of an activity in the sequence ( 𝑠𝑖,𝑗 = 1if activity i is the 𝑗è𝑚𝑒activity executed by the machine, 

𝑠𝑖,𝑗 = 0otherwise), binary variables, indexed on the discretized time and indicating the start of 

an activity at a certain time step ( 𝑥𝑖,𝑡 = 1if activity i starts at the time step 𝑥𝑖,𝑡 = 0if otherwise). 

The various constraints are expressed more or less easily in the various formalisms. For 

example, a formulation based solely on the start dates of activities makes it possible to 

formulate precedence constraints of the type "activity i is carried out before activity j" ( 𝑡𝑗 −

𝑡𝑖 > 𝑝𝑖, where 𝑝𝑖is the duration of execution of activity i ), but does not make it possible to 

express certain relationships, such as the preparation times between two activities. In this case, 

it is necessary to introduce a variable indicating the succession of activities between them 

(variable of the "successor" or "position in the sequence" type). 

We thus obtain linear models for a large number of scheduling problems. The linear 

relaxation of these models provides bounds which can be used directly inside a tree search 

algorithm by separation and evaluation, or which can be refined by different procedures 

(Lagrangian relaxation, addition of cuts). In general, purely linear techniques do not give good 
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results on scheduling problems. The most efficient algorithms , whether for an exact resolution 

of the optimization problem or for the search for admissible solutions of good quality, are most 

often based on the use of advanced techniques of constraint propagation.[5 ]   

 

  

figure 1. 1Methods for solving combinatorial optimization problems.[2] 

    

1.3. Combinatorial optimization problems resolution methods 

  1.3.1. Exact methods 

Exact resolution methods are numerous and are characterized by the fact that they make 

it possible to obtain one or more solutions whose optimality is guaranteed.  

Among these methods, we can notice the simplex algorithm which makes it possible to 
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obtain the optimal solution of a problem by going through the convex closure of the search 

set (set of admissible solutions) and this by passing from vertex to vertex. Despite having 

a non-polynomial worst-case mathematical complexity, it solves most problems quickly. 

However, it can only be applied to problems having the property of convexity, i.e. to 

problems in continuous variables or to problems in integer variables having a unimodular 

constraint matrix T (because in this case, all the vertices of the search set are integers) such 

as transport or assignment problems.  

For other problems (ILP, MILP, 0-1ILP), there are several methods: 

1.3.1.1. Dynamic programming 

● Dynamic programming consisting in placing the problem in a family of 

problems of the same nature but of different difficulty then in finding a 

recurrence relation linking the optimal solutions of these problems. 

1.3.1.2. Branch & Bound 

● Branch & Bound consisting of making an implicit enumeration by separating 

the problem into sub-problems and evaluating these using relaxation (mainly 

continuous or Lagrangian) until you only have problems that are easy to solve 

or which we know with certainty that they cannot contain an optimal solution. 

1.3.1.3. Polyhedral methods 

● Polyhedral methods consisting of gradually adding additional constraints in 

order to reduce the domain of admissible solutions to a convex domain (without 

removing the optimal solution(s) of course). 

These methods are general and often require particularization vis-à-vis a specific 

problem. There are also generic applications (AMPL, CPLEX, LINDO, MPL, OMP, 

XPRESS...) allowing solving all the problems that can be written in the algebraic form of 

a problem in binary, integer  

Or mixed variables. 
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  It should also be noted that the method consisting in carrying out an explicit 

enumeration of all the solutions (i.e. testing them one by one, a method that can be 

envisaged for all the problems with variables with bounded values) very quickly shows 

its limits as soon as that the number of variables increases since its complexity is in kn 

where k represents the number of values that a variable can take and n the number of 

variables of the problem [4]. 

1.3.2. Approximate methods 

      In certain situations, it is necessary to have a good quality solution (that is to say quite 

close to the optimum) in a context of limited resources (computing time and/or memory). In 

this case the optimality of the solution will not be guaranteed, nor even the difference with the 

optimal value. However, the time necessary to obtain this solution will be much lower and 

could even be fixed (obviously in this case the quality of the solution obtained will strongly 

depend on the time left to the algorithm to obtain it).   

      Typically, this type of method, called heuristic is particularly useful for problems 

requiring a real-time (or very short) solution or for solving difficult problems on large 

numerical instances. They can also be used to initialize an exact method (Branch & Bound for 

example). 

  Among these methods, it is necessary to distinguish the heuristics targeted on a particular 

problem and the more powerful and adaptable metaheuristics to solve a large number of 

problems. However, a metaheuristic, to be sufficiently efficient on a given problem, will 

require a more or less fine adaptation. These approximate methods can be classified into 

different categories: 

● Constructive (greedy algorithms, Pilot method, GRASP) 

Local search (descent algorithms, multi-starts, simulated annealing, threshold algorithm, Tabu 

search, sound effect method) 

● Evolutionists (Genetic Algorithms, Evolution Algorithms, Scattered Search, Path 

Method, Ant Systems) 
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● Neural networks ( Hopfield - Tank model, Boltzmann machine, self-adaptive network, 

elastic network) 

● Bayesian heuristics (global optimization, discrete optimization) 

● Overlay (disturbance of data, disturbance of the parameters of a heuristic) [4]. 
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Chapter 02: Vehicle Routing problems and their 

variants 

2.1.  Introduction        

            Vehicle routing problem is a common problem in operational research, it is a combinatorial 

optimization problem where we have area service consisting of a set of depots and a randomly 

distributed set of customers, also we have a fleet of identical vehicles of homogeneous or 

heterogenous capacity that the vehicle can carries [6].  

  The vehicle routing problem is extended with constraints as examples: if we consider the 

quantities of goods requirements  then should we add the capacity constraints, if we consider the 

time assortment should we add the time window variant constraints,..... and so on [9].  

 

Figure 2. 1: model of an VRP with solution Single Depot VRP -with 3 vehicles [9]. 

 

2.2. Some vehicle routing problem variants 
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Table 2. 1: Vehicle routing problem variants 

Some vehicle routing problem variants 

 

             description  

Vehicle Routing Problem with Pickup 

and Delivery (VRPPD) 

is a VRP in which the possibility that customers 

return some commodities is contemplated. So in 

VRPPD it’s needed to take into account that the 

goods that customers return to the deliver vehicle 

must fit into it. 

Vehicle Routing Problem with Time 

Windows (VRPTW) 

 can be defined as choosing routes for limited 

number of vehicles to serve a group of customers 

in the time windows(time interval ). Each vehicle 

has a limited capacity. It starts from the depot and 

terminates at the depot. Each customer should be 

served exactly once. 

VRP with Backhauls 

in this variation, there are two subsets of 

customers: the first subset requires deliveries 

from the depot and the second subset requires 

goods to be picked up to be delivered to the 

depot.The total deliveries and the total pick-ups 

on each route must separately be less than the 

capacity of each vehicle 

 Dynamic VRP 

is when the service requests are not completely 

known before the start of service, but they arrive 

during the distribution process(arrive 

dynamically) the routes have to be replanned at 

run time in order to include them 

Capacitated Vehicle Routing Problem 

(CVRP) 

is a VRP in which vehicles with limited carrying 

capacity need to pick up or deliver commodity  at 

various locations. The commodity   have a 

quantity, such as weight or volume, and the 

vehicles have a maximum capacity that they can 

carry. The problem is to pick up or deliver the 

commodity  for the least cost, while never 

exceeding the capacity of the vehicles.  
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2.3 .  multi-depot vehicle routing problem MDVRP 

2.3.1 Description of MDVRP: 

 Multi-depot vehicle routing problem (MDVRP) is one of the classical vehicle 

routing     problems (VRP), where we  multi-depot and multi-initial known customers each 

depot with their nearest customers (area of service), the MDVRP can be described as 

following: each depot with their customers represent a single depot vehicle routing 

problem, the optimization problems in MDVRP is allocated each customer to their nearest 

depot 

The objective of the problem is to service all the customers of each depot and minimize 

travel distance.  

We mention that there is a fleet of vehicles, and there are two cases to consider if the fleet 

of the homogenous vehicle or the heterogeneous fleet of the vehicle in terms of capacity to 

carry it. 

also, we have two ways to solve the MDVRP: with a given number of vehicles or using 

enough vehicles. 

In MDVRP vehicles are required to start from the depots visit all corresponding 

customers and return to the depots. 

 The case that we consider the capacity the problem becomes CMDVRP  and we 

add the constraint formulation of capacity to the model  [7]. 

2.3.2 Formulation of MDVRP: 

       The MDVRP can be formalized as follows. An undirected graph G = (V, E) is 

established to describe the mathematical model. In this model, 𝑉 = {𝑉𝐶 , 𝑉𝐷} represents the 

vertex set and  𝐸 =  {(𝑣𝐼 , 𝑣𝐽)|𝑣𝐼 , 𝑣𝐽  ∈ 𝑉, 𝑖 <  𝑗}  is the edge set.    

 𝑉𝑐 = 𝑉1, 𝑉2, 𝑉3, 𝑉4 … . , 𝑉𝑛 is the set of customers and 𝑉𝐷 = {𝑉𝑛+1, 𝑉𝑛+2, … . . , 𝑉𝑛+𝑚 is 

the set of depots, in E, we get distance matrix 𝐶 = 𝐶𝑖,𝑗  by calculating the Euclidean 
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distance of customers 𝑉𝑖 and 𝑉𝑗every customer 𝑉𝑖 has a demand 𝑞𝑖 and needs to be visited 

once by only one vehicle.[8] 

there is also a fleet of  𝐾 identical vehicles, each with capacity 𝑄. In the mathematical 

formulation that follows, binary variable 𝑋𝑖𝑗𝑘 is equal to 1 when vehicle 𝑘 visits node 

𝑗 immediately after node 𝑖.[8] 

 

Minimizing the total cost by the formula:  

∑ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗𝑘𝐾
𝑘=1

𝑛+𝑚
𝑗=1

𝑛+𝑚
𝑖=1           2.(1) 

For each vehicle k from k=1 to K starting from node i (i=1..n+m) ending in node j (=1..n+m) 

,i≠j    

                Subject to :  

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 (𝑗 = 1,2, . . , 𝑛);𝐾
𝑘=1

𝑛+𝑚
𝑖=1           2.(2)     

          

(2) The first  constraint which means each vehicle should visit each node  one and only one 

time in each edge (path,cercle) in the complete solution of the problem    

∑ ∑ 𝑋𝑖𝑗𝑘 = 1       (𝑖 = 1,2, … . , 𝑛);𝐾
𝑘=1

𝑛+𝑚
𝑗=1    2.(3)     

      (3) Guarantee that each customer is served by exactly one vehicle 

Note that the value of  𝑘 replaced in the formula is equal 1 all the time let’s say it’s boolean 

variable, for each vehicle 𝑘 ,𝑋𝑖𝑗 which is also a boolean variable which can be 1 or 0, so 

the result of all the formula it should be 1(if the customer is server by the vehicle 𝑘𝑖 or 0 

(if not visited by the vehicle 𝑘𝑖 [8] .             

∑ ∑ 𝑞𝑖 ∗ 𝑋𝑖𝑗𝑘 ≤ 𝑄  (𝑘 = 1,2, … . , 𝑛);𝑛+𝑚
𝑗=1

𝑛+𝑚
𝑖=1    2.(4) 

 



 

 

19 

 

      Formula (4) it represents the constraint of vehicle capacity   

it ensures that the summation of capacity requirement of subtours of the solution of the 

model don’t exceed the vehicle capacity  

As example: if we found in a VRP model a path that exceed the vehicle capacity 

then the other nodes in the path we will handle it by another new vehicle that make a new 

path which make a new path who collect the remaining nodes from previous path, or we 

will change the solution definitively      

 

∑ ∑ 𝑋𝑖𝑗𝑘 ≤ 1 (𝑘 = 1,2, … . . , 𝐾)𝑛
𝑗=1

𝑛+𝑚
𝑖=𝑛+1               2. (5) 

(5) It guarantees that at more one vehicle it was come from node 𝑖 to node j 𝑖 ∈

[0, 𝑛 + 𝑚] , 𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑚 ∶ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑒𝑝𝑜𝑡𝑠   

 

∑ ∑ 𝑋𝑖𝑗 ≤ 1 (𝑘 = 1,2, … … , 𝐾)𝑛
𝑖=1

𝑛+𝑚
𝑗=𝑛+1               2.(6) 

 

(6) It guarantees that at more 1 vehicle it was leaved(visited) the node j  

2.4 . Conclusion 

In this chapter, we have seen the various variants of vehicle routing problem, CVRP, 

VRPD,  and MDVRP, Therefore, we conclude that  the VRP can impose various variants and 

restrictions as we see we can represent by new formulation we add it in the model, this 

formulation should be checked in each search or let say generation of feasible solution (tour)  

in VRP, also we conclude that the  objective  of  this problem or the main consideration 

problem  in VRPs it to optimize the distance or the capacity of requirements in the routes by 

setting what should be Cost 𝐶𝑖𝑗 

And we have seen CMDVRP- multi depot vehicle routing problem considering capacity 

Description and mathematical formulation. 

In the next chapter we see the algorithm Ant Colony Optimization solving vehicle routing 

problems and we detail in the Hybrid Ant Colony Optimization algorithm for MDVRP which 

is the main subject in this graduation project .    
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Chapter 03: Ant Colony Optimization Algorithm 

 3.1. Introduction  

      Ant colony optimization (ACO) is one of the most recent techniques for approximate 

optimization. The inspiring source of ACO algorithms are real ant colonies. More specifically, 

ACO is inspired by the ants’ foraging behavior. At the core of this behavior is the indirect 

communication between the ants by means of chemical pheromone trails, which enables them to 

find short paths between their nest and food sources. This characteristic of real ant colonies is 

exploited in ACO algorithms in order to solve, for example, discrete optimization problems. 

 Depending on the point of view, ACO algorithms may belong to different classes of 

approximate algorithms. Seen from the artificial intelligence (AI) perspective, ACO algorithms 

are one of the most successful strands of swarm intelligence. The goal of swarm intelligence is the 

design of intelligent multi-agent systems by taking inspiration from the collective behavior of 

social insects such as ants, termites, bees, wasps, and other animal societies such as flocks of birds 

or fish schools. Examples of “swarm intelligent” algorithms other than ACO are those for 

clustering and data mining inspired by ants’ cemetery building behavior, those for dynamic task 

allocation inspired by the behavior of wasp colonies, and particle swarm optimization. 

Seen from the operations research (OR) perspective, ACO algorithms belong to the class of 

metaheuristics. The term metaheuristic, first introduced in, derives from the composition of two 

Greek words. Heuristic derives from the verb heuriskein (ǫυρισκǫιν) which means “to find”, while 

the suffix meta means “beyond, in an upper level”. Before this term was widely adopted, 

metaheuristics were often called modern heuristics. In addition to ACO, other algorithms such as 

evolutionary computation, iterated local search, simulated annealing, and tabu search, are often 

regarded as metaheuristics. For books and surveys on metaheuristics see [11] 

  



 

 

22 

 

 3.2 The origins of ant colony optimization 

 Marco Dorigo and colleagues introduced the first ACO algorithms in the early 1990’s . The 

development of these algorithms was inspired by the observation of ant colonies. Ants are social 

insects. They live in colonies and their behavior is governed by the goal of colony survival rather 

than being focused on the survival of individuals. The behavior that provided the inspiration for 

ACO is the ants’ foraging behavior, and in particular, how ants can find shortest paths between 

food sources and their nest. when searching for food, ants initially explore the area surrounding 

their nest in a random manner. While moving, ants leave a chemical pheromone trail on the ground. 

Ants can smell pheromone. When choosing their way, they tend to choose, in probability, paths 

marked by strong pheromone concentrations. As soon as an ant finds a food source, it evaluates 

the quantity and the quality of the food and carries some of it back to the nest. During the return 

trip, the quantity of pheromone that an ant leaves on the ground may depend on the quantity and 

quality of the food. The pheromone trails will guide other ants to the food source. It has been 

shown in that the indirect communication between the ants via pheromone trails—known as 

stigmergy —enables them to find shortest paths between their nest and food sources.  

As a first step towards an algorithm for discrete optimization we present in the following a 

discretized and simplified model of the phenomenon, after presenting the model we will outline 

the differences between the model and the behavior of real ants. Our model consists of a graph G 

= (V,E), where V consists of two nodes, namely vs (representing the nest of the ants), and vd 

(representing the food source). Furthermore, E consists of two links, namely e1 and e2, between 

vs and vd . To e1 we assign a length of l1, and to e2 a length of l2 such that l2 > l1. In other words, 

e1 represents the short path between vs and vd , and e2 represents the long path. Real ants deposit 

pheromone on the paths on which they move. Thus, the chemical pheromone trails are modeled as 

follows. We introduce an artificial pheromone value τi for each of the two links ei , i = 1, 2. Such 

a value indicates the strength of the pheromone trail on the corresponding path. Finally, we 

introduce na artificial ants. Each ant behaves as follows: Starting from vs (i.e., the nest), an ant 

chooses with probability. 

𝑝𝑖 =  𝜏𝑖/ 𝜏1 +  𝜏2   ( 𝑖 =  1, 2 … … 𝑛)                                2.(1) 
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 between path e1 and path e2 for reaching the food source vd . Obviously, if τ1 > τ2, the 

probability of choosing e1 is higher, and vice versa. For returning from vd to vs , an ant uses the 

same path as it chose to reach vd , and it changes the artificial pheromone value associated to the 

used edge. More in detail, having chosen edge ei an ant changes the artificial pheromone value τi 

as follows: 

    𝜏𝑖 ←  𝜏𝑖 +   𝑄 /𝑙𝑖                                2.(2) 

 

 , where the positive constant Q is a parameter of the model. In other words, the amount of 

artificial pheromone that is added depends on the length of the chosen path: the shorter the path, 

the higher the amount of added pheromone. The foraging of an ant colony is in this model 

iteratively simulated as follows: At each step (or iteration) all the ants are initially placed in node 

vs . Then, each ant moves from vs to vd as outlined above. As mentioned in the caption of Fig. 

1(d), in nature the deposited pheromone is subject to an evaporation over time. We simulate this 

pheromone evaporation in the artificial model as follows:  

  𝜏𝑖 ←  (1 −  𝜌)  ·  𝜏𝑖, 𝑖 =  1, 2.                 2.(3)  

(3) The parameter ρ ∈ (0, 1] is a parameter that regulates the pheromone evaporation. Finally, 

all ants conduct their return trip and reinforce their chosen path as outlined above. We implemented 

this system and conducted simulations with the following settings: l1 = 1, l2 = 2, Q = 1. The two 

pheromone values were initialized to 0.5 each. Note that in our artificial system we cannot start 

with artificial pheromone values of 0. This would lead to a division by 0 in Eq. (1). The results of 

our simulations are shown in Fig. 2. They clearly show that over time the artificial colony of ants 

converges to the short path, i.e., after some time all ants use the short path. In the case of 10 ants 

the random fluctuations are bigger than in the case of 100 ants ,this indicates that the shortest path 

finding capability of ant colonies results from a cooperation between the ants.[11] 

3.3.1 A real ant 

An ant is an insect that lives and works in a large colony of ants. Most ants don't 

have wings, and some of them have stingers. 
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Ants are related to both bees and wasps, and like them are social insects. Ant 

colonies can include anywhere from a few dozen to millions of ants, divided into jobs or 

castes. There isn't a continent in the world that  

doesn't have ants living there. The Middle English word for ant was ampte, from the 

Old English æmette and a Germanic root. [14] 

3.3.2Artificial ant: 

An artificial ant simulates a real ant and a set of artificial ants develops mechanisms of 

cooperation and learning. Ant Colony Optimization (ACO) was developed by Dorigo et. al. in 

1996 [1] and it was first used to solve combinatorial agents that imitate the behavior of real 

ants [11]. 

However, it should be noted that an artificial ant system has some differences in 

comparison with real ants which are as follows: 

 a) Artificial ants have memory. 

 b) They are not completely blind.  

c) They follow a discrete time system.  

The main idea is that when an ant has to select a path among several available paths, 

the ant chooses the one which is chosen more frequently by other ants in the past. Thus path 

with larger amount of pheromones is the shorter path and chosen by most of the ants. The Ant 

System works in two major steps:  

a) Construction of the solution to the problem under consideration.  

b) Updating the pheromone trails which may increase or decrease the amount of pheromone 

on certain paths. 
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3.3From Real to Artificial ant:   

Ant colonies, and more generally social insect societies, are distributed systems that, in 

spite of the simplicity of their individuals, present a highly structured social organization. As a 

result of this organization, ant colonies can accomplish complex tasks that in some cases far exceed 

the individual capabilities of a single ant. The field of ‘‘ant algorithms’’ study models derived from 

the observation of real ants’ behavior, and uses these models as a source of inspiration for the 

design of novel algorithms for the solution of optimization and distributed control problems. The 

main idea is that the self-organizing principles which allow the highly coordinated behavior of real 

ants can be exploited to coordinate populations of artificial agents that collaborate to solve 

computational problems. Several different aspects of the behavior of ant colonies have inspired 

different kinds of ant algorithms. Examples are foraging, division of labor, brood sorting, and 

cooperative transport. In all these examples, ants coordinate their activities via incentives, a form 

of indirect communication mediated by modifications of the environment. For example, a foraging 

ant deposits a chemical on the ground which increases the probability that other ants will follow 

the same path. Biologists have shown that many colony-level behaviors observed in social insects 

can be explained via rather simple models in which only stigmergy communication is present. In 

other words, biologists have shown that it is often sufficient to consider stigmergic, indirect 

communication to explain how social insects can achieve self-organization. The idea behind ant 

algorithms is then to use a form of artificial stigmergy to coordinate societies of artificial agents. 

One of the most successful examples of ant algorithms is known as ‘‘ant colony optimization,’’ or 

ACO, and is the subject of this book. ACO is inspired by the foraging behavior of ant colonies, 

and targets discrete optimization problems. This introductory chapter describes how real ants have 

inspired the definition of artificial ants that can solve discrete optimization problems.[12] 

3.4 Differences between real ants and artificial ants: 

The main differences between the behavior of the real ants and the behavior of the artificial 

ants in our model are as follow: 
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 (1) While real ants move in their environment in an asynchronous way, the artificial ants 

are synchronized, i.e., at each iteration of the simulated system, each of the artificial ants moves 

from the nest to the food source and follows the same path back. 

 (2) While real ants leave pheromone on the ground whenever they move, artificial ants 

only deposit artificial pheromone on their way back to the nest.  

(3) The foraging behavior of real ants is based on an implicit evaluation of a solution (i.e., 

a path from the nest to the food source). By implicit solution evaluation we mean the fact that 

shorter paths will be completed earlier than longer ones, and therefore they will receive pheromone 

reinforcement more quickly. In contrast, the artificial ants evaluate a solution with respect to some 

quality measure which is used to determine the strength of the pheromone reinforcement that the 

ants perform during their return trip to the nest.[11][13]      

  

Natural Ant colony Artificial Ant colony  

Ant 

Ant colony 

Pheromone 

Path 

Evaporation  

Agent  

Sites of Ants/Iterations 

Diversity mechanism  

Solution 

Pheromone update 

 

Table3.1 Analogy between Natural and Artificial Ants [15] 

3.5 ACO (ant colony optimization)  

 3.5.1 Description:  

Ant colony optimization is a search technique used in computing to find near optimal 

solutions to discrete optimization problems. 
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ACO is swarm intelligence inspired from the way that ants indirectly communicate 

directions to each other.[16] 

The most interesting aspect of the collaborative behavior of ant species is their ability to find 

the shortest paths between the ant’s nest and food sources. 

Finding the shortest path between their nest and a food source by chase pheromone 

trails exposed by other ants, more instance trails the higher probability that an ant will follow 

it and thus enrich the trail with its own pheromone. 

One of the properties of pheromone is that it evaporates over time, and the ant sense 

the pheromone trail for travelling over the nest or searching the food. 

the pheromone trail of the longest paths evaporates and that it because it takes more 

time from the shortest path, so logically the shortest path will اhave a higher density of 

pheromone trail, also because the pheromone update for each ant took the path (deposited & 

evaporated pheromone). [17] 

3.5.2 Biological ACO ant colony optimization:   

Let’s see an example of this. let consider there are two paths to reach the food from the 

colony. At first, there is no pheromone on the ground. So, the probability of choosing these 

two paths is equal that means 50%.50% Let consider two ants choose two different paths to 

reach the food as the probability of choosing these paths is fifty-fifty. 

 

 
figure3. 1Step 1 in biological ACO [8] 

 

The distances of these two paths are different. ant following the shorter path will reach 

the food earlier than the other. 

https://www.sciencedirect.com/topics/engineering/ant-colony-optimization
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/qtc2.12023
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figure3. 2 Step2 in biological ACO [8] 

After finding food, it carries some food with itself and returns to the colony. when it 

tracking the returning path it deposits pheromone on the ground. The ant following the 

shorter path will reach the colony earlier. 

 
figure3. 3: Step3 in biological ACO [8] 

 

When the third ant wants to go out for searching food it will follow the path having 

shorter distance based on the pheromone level on the ground. As a shorter path has more 

pheromones than the longer, the third ant will follow the path having more pheromones. 

 
figure3. 4: Step4 in biological ACO [8] 

 

By the time the ant following the longer path returned to the colony, Then when 

another ant tries to reach the destination(food) from the colony if it find that each path has 

the same pheromone level it can not differentiate between the densities of paths, it 

randomly chooses one of them. Let consider it choose the above one(in the picture 

located below) 
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figure3. 5: Step5 in biological ACO [8] 

 

Repeating this process again and again, after some time, the shorter path has a more 

pheromone level than others and has a higher probability to follow the path, and all ants 

next time will follow the shorter path. 

 
figure3. 6: Step6 in biological ACO [8] 

 

For solving different problems with ACO, there are three different proposed version of 

Ant-System AS: 

Ant Density & Ant Quantity: Pheromone is updated in each movement of an ant from 

one location to another. 

Ant Cycle: Pheromone is updated after all ants completed their tour. 

Pheromone Update .  [8]  

https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f,%20consultation
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3.5.3 metaheuristic ACO algorithm and formulation: 

An artificial ant is made for finding the optimal solution. In the first step of solving a 

problem, each ant generates a solution. In the second step, paths found by different ants are 

compared. And in the third step, the paths value or pheromone is updated. 

 

 

 

 

 

 

 

3.5.3.1Basic ACO formulation  

    Each ant needs to construct a solution to move through the graph. To select the 

next edge in its tour, an ant will consider the length of each edge available from its current 

position, as well as the corresponding pheromone level. At each step of the algorithm, each 

ant moves from a state 𝑥 to state, corresponding to a more complete intermediate solution. 

Thus, each ant computes a set 𝐴𝑘(𝑥) 𝐴of feasible expansions to its current state in each 

iteration, and moves to one of these in probability. For ant 𝑲𝒕𝒉, the probability 𝑷𝒙𝒚
𝒌  of 

moving from state  𝒙  to state  𝒚   depends on the combination of two values, 

the attractiveness 𝜼𝒙𝒚of the move, as computed by some heuristic indicating the a 

priori desirability of that move and the trail level 𝝉𝒙𝒚 of the move, indicating how proficient 

it has been in the past to make that particular move, the trail level represents a posteriori 

indication of the desirability of that move [19] 

In general, the  𝑘th ant moves from state 𝑥 to state 𝑦   with probability: 

Pseudo Code: ACO metaheuristic algorithm 

in pseudo code [19] 

procedure ACO_MetaHeuristic  

while not_termination do 

generateSolutions() 

daemonActions() 

pheromoneUpdate() 

repeat() 

end procedure 

 

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
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𝑃𝑥𝑦
𝑘 =

(𝜏𝑥𝑦)𝛼(𝜂𝑥𝑦)
𝛽

 

∑ (𝜏𝑥𝑧)𝛼
𝑧∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑  𝑥 (𝜂𝑥𝑧)𝛽 

         2.(4) 

 

 

where 𝜏𝑥𝑦 is the amount of pheromone deposited for transition from state 𝑥 to 

𝑦 , 0 ≤  𝛼 is a parameter to control the influence of 𝜏𝑥𝑦,  𝜂𝑥𝑦 is the desirability of 

state transition 𝑥𝑦 (a priori knowledge, typically 
1

𝑑𝑥𝑦
, where 𝑑 is the distance 

(between state x and y), and 𝛽 ≥ 1 is a parameter to control the influence of 𝜂𝑥𝑦. 

𝜏𝑥𝑧 and 𝜂𝑥𝑧represent the trail level and attractiveness for other possible state 

transitions. 

        3.5.3.1.1) Pheromone update: 

Trails are usually updated when all ants have completed their solution, 

increasing or decreasing the level of trails corresponding to moves that were part of 

"good" or "bad" solutions, respectively. 

 An example of a global pheromone updating rule is: 

 

𝜏𝑥𝑦𝑛𝑒𝑤
⟵ (1 − 𝜌)𝜏𝑥𝑦𝑜𝑙𝑑

+ ∑ 𝛥𝜏𝑥𝑦
𝑘𝑚

𝑘     2.(5) 

Where 𝜏𝑥𝑦 is amount of pheromone deposited for a state transition 𝑥𝑦, 𝜌 is 

the pheromone evaporation coefficient, 𝑚 is the number of ants and 𝛥𝜏𝑥𝑦
𝑘 is the 

amount of pheromone deposited by 𝑘th ant, typically given for TSP problem (with 

moves corresponding to arcs of the graph) by: 

 

𝛥𝜏𝑥𝑦
𝑘 = {

𝑄

𝐿𝑘 
 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑐𝑢𝑟𝑣𝑒 𝑥𝑦 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟 

0                                               𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 
          2.(6) 
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Where 𝑳𝒌 the cost of 𝑘th ant’s tour (typically length) and 𝑸 is a constant  

3.5.4 Some problems resolved with ant colony optimization ACO 

The ACO meta-heuristic has been applied to various different combinatorial 

optimization problems with a large number of successful implementations. 

Applications to static combinatorial optimization issues include the following: 

●  travelling salesman Problem, where a salesman must find the shortest route by 

which he can visit a given number of cities, each city exactìy once. 

●  Quadratic Assignment Problem, the problem of assigning n facilities to n 

locations so that the costs of the assignment are minimized.  

●  Job-Shop Scheduling Problem, In order to avoid having two jobs processed 

simultaneously on the same machine and to reduce the total time required to 

complete all operations, a given set of machines and a given set of job operations 

must be assigned to time intervals. 

●  Vehicle Routing Problem, the objective is to find minimum cost vehicle Routes 

such thât:  

❖ Every customer is visited exactly once by exactly one vehicle; 

❖  For every vehicle the total demand does not exceed the vehicle capacity;  

❖ The total tour length of each ræhicle does not exceed a given limit; 

❖  Every vehicle starts and ends its tour at the same position.[27] 

3.6 Conclusion: 

Ant algorithms are inspired by the self-regulating search behavior of natural ants, which 

show amazing resilience, adaptability and scalability despite being based on a set of simple 

mechanisms. 

The ant colony optimization algorithm is a metaheuristic algorithm used in many 

different types of harmonic optimization problems, difficult NP problems, ........., such as 

subsets, vehicle routing, scheduling... 

The ACO algorithm adapts to different problems based on datasets and some 

modifications in the ant system, as well as adding and modifying the limitations and limitations 
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of the algorithms, but the main idea of the algorithm remains the same for multiple extensions 

of the ACO algorithm.  
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Chapter 04: Hybrid Ant Colony Optimization for Multi 

depot Vehicle Routing  

4.1 A Hybrid Ant Colony Algorithm for MDVRP [1] 

4.1.1 Hybrid Ant Colony Optimization 

In this study we applied the nearest distance clustering approach to multi depot vehicle routing 

problem to allocate each customer to their nearest depot, after the clustering process we give the 

results of clustering to the ACO algorithm solving multi depot vehicle routing problem after ACO 

find the solution for each submodel (VRP)we move to the optimization process and  we apply  the 

local interchange technique (2-opt algorithm) to obtain better approximative solutions from the ant 

colony algorithm for MDVRP.   

4.1.2. The Nearest Distance Cluster Algorithm. 

The nearest distance clustering approach is a technique used to divide the whole area of 

delivery service which contain multi-depot and multi-knowed customer into multi-area service 

each depot with their nearest customers.[23] 

 

figure 4. 1: An example of the nearest distance cluster algorithm. [23] 
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4.1.3 Generate Initial Solutions. In ACO 

After generating all the feasible solutions to the problem, we give it to the ACO algorithm 

to search for the best solution tours and costs, each ant visits all the vertexes (customers) of all 

the feasible solutions once at more. The complete routes that ants have passed are initial 

solutions. The ants will decide to select the next customer in the feasible solutions by formula 

4. (1). 

    𝑝𝑖,𝑗(𝑘) = {
 𝜏(𝑖,𝑗)𝛼×𝜂(𝑖,𝑗)𝛽

∑𝐼∉𝑡𝑎𝑏𝑢  𝜏(𝑖,𝑗)𝛼×𝜂(𝑖,𝑗)𝛽
 𝑗 ∉ 𝑡𝑎𝑏𝑢 𝑘 

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 4. (1) 

 

The formula 4.1 represents the probability that the ant (k) select the node j as the next 

customer to visit it, the probability is equal to  𝜏(𝑖, 𝑗)𝛼  which is the density of pheromone in 

the edge(i,j) to the power of constant (𝛼) which is the relative influence of density of 

pheromone multiple 𝜂(𝑖, 𝑗)𝛽 which is the visibility of edge(I,j) to the power of 𝛽: the relative 

influence of visibility of the edge [23]. 

4.2 Optimization process [1] 

4.2.1. Local Interchange Operation 2-opt  

 It’s local optimization heuristic technique and most common of its algorithm it’s 2-opt 

algorithm, it consists in breaking all possible pair of adjacent edges in tour and reconnecting 

them differently in the purpose of obtain minimal distance of the tour, if the cost of the new 

tour is minimal than the recent then it update it to new form, otherwise it hold the same tour 

[23].  
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figure 4. 2: The demo of 2-Opt-operation [23] 

4.3. Update of Pheromone Information. 

 pheromone updating is the most important thing that assumes the quality of the solutions

 of ACO algorithm, there are two kinds of systems of pheromone updating  

Ant Cycle: Pheromone is updated after all ants completed their tour.then  

Ant Density & Ant Quantity: Pheromone is updated in each movement of an ant from one 

location to another 

𝜏𝑖,𝑗
𝑛𝑒𝑤 = 𝜌 × 𝜏𝑖,𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏𝑖,𝑗
𝑘𝐾

𝑘     𝜌 ∈ (0.1)    4.(4) 

       In formula (4),  𝜏𝑖,𝑗new : is the value of new(updated) density of pheromone  

𝜌 × 𝜏𝑖,𝑗
𝑜𝑙𝑑  it represent the evaporation process,+∑ ∆𝜏𝑖,𝑗

𝑘𝐾
𝑘 : represent the 

recompense process, so the pheromone updating consists on this two primary 

process[1] . 

4.6. Conclusions  

In this chapter we presented some of the big points of our work in the theoretical part, 

which also represents what we have achieved in the practical aspect of the graduation project 
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first of all we have seen the nearest distance clustering approach which consists of the 

allocation and division of the area service into submodel of VRP problems, also we have seen 

and how the ACO algorithm generate the initial solution. 

secondly, we see the optimization process and we have explained the 2-opt algorithm, 

thirdly and finally,  the update pheromone which is the most important process in the ACO 

algorithm for the quality of the solution 
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Chapter 05: Implementation and results  

5.1. Introduction 

This chapter is dedicated to the contribution of our final graduation project, which consists of 

Hybrid Ant Colony Optimization for  multi depot vehicle routing problem  

The general plan in this chapter is as follows:  

1- Create a model (Algeria problem) that contains the coordinates of warehouses and customers 

using these coordinates.  

2-apply the nearest specific distance algorithm in order to allocate each customer to his nearest 

warehouse with the quantity of his goods.  

3- ACO modification for VRPTW solution to deal with CMDVRP problem  

4- Apply 2opt to improve results       

  During this study, we used the MATLAB R2016a version to perform the experiments.  

5.2.MATLAB Programming language and Environment   

           Uses for MATLAB include matrix calculations, developing and running algorithms, 

creating user interfaces (UI) and data visualization. The multi-Paradigm numerical computing 

environment allows developers to interface with programs developed in different languages, which 

makes it possible to harness the unique strengths of each language for various purposes. 

                MATLAB is used by engineers and scientists in many fields such as image and signal 

processing, communications, control systems for industry, smart grid design, robotics as well as 

computational finance. 

         Cleve Moler, a professor of Computer Science at the University of New Mexico, created 

MATLAB in the 1970s to help his students. MATLAB's commercial potential was identified by 

visiting engineer Jack little in 1983. Moler, Little and Steve Bangart founded MathWorks and 

rewrote MATLAB in C under the auspices of their new company in 1984. [24]   
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MATLAB is an abbreviation of Matrix Laboratory. The current version; written in C by 

MathWorks Inc; exists in the professional version and student version, its availability is ensured 

on several platforms. 

  MATLAB is a powerful, comprehensive, and easy-to-use environment for scientific 

computing. It allows to perform numerical simulations based on numerical analysis algorithms or 

generic algorithms. 

  MATLAB is considered one of the best programming languages (C or Fortran), it has the 

following particularities compared to these languages: 

  – Easy programming; 

  – Continuity among real and complex integer values; 

  – Extended range of numbers and their precision; 

  – Very comprehensive mathematical library; 

  – GUI tool that includes GUI functions and utilities; 

  – Possibility of linking with other classic programming languages (C or Fortran).  [25]   

 

figure 5. 1: MATLAB R2016a  
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5.3 Execution & Results: 

In this section we test the implemented algorithm Hybrid ant colony optimization, through 

multiple series of executions, through it we change the values of different parameters 

(variables) and see the influence of each parameter on the results, also the best values of 

parameters for the algorithm to obtain the better-optimized solutions.    

5.3.1. The effect of changing the relative influence of the pheromone trails 𝛼 

on the results  

We went to take 3 different values of 𝛼 from 3 different fields, note that 𝛼 ranges o from [0,1] 

divide the range into three fields to evaluate the algorithm with these fields. [0,0.33], [0.33, 

0.66], [0.66, 0.99] 

5.3.1.a)1st  first set of  𝛼:  

fix the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q = 1, 

tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and  put   

𝛼 = 0.1 ∈[0,0.33] 

Table 5. 1: statistics on the executions of 1st value 𝛼=0.1 

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 23.7898 
2 1010.1565 23.2401 
3 1010.1565 24.6054 
4 1010.1565 25.947 
5 1010.1565 24.704 
6 1010.1565 24.4916 
7 1010.1565 22.058 
8 1010.1565 26.0759 
9 1010.1565 23.4926 

10 1010.1565 24.9774 
Mean Sol 1010.1565 24.33818 
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5.3.1.b)2nd second  set of  𝛼:  

We fix the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, 

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put 

𝛼 = 0.5 ∈ [0.33,0.66] . 

Table 5. 2: statistics on the executions of the 2nd  value 𝛼=0.5  

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 17.8113 
2 1010.1565 18.3991 
3 1010.1565 18.5159 
4 1010.1565 18.1879 
5 1010.1565 17.0385 
6 1010.1565 19.0805 
7 1010.1565 16.8803 
8 1010.1565 16.4054 
9 1010.1565 17.7371 

10 1010.1565 16.8966 
Mean Sol 1010.1565 17.69526 

 

5.3.1.c)3rd third set value of 𝛼:  

fixing the values of the variables, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, 

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change  

𝛼 = 0.9 ∈ [0.33,0.66] 
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Table 5. 3: statistics on the executions of the 3rd value  =0.9 

Executios  Total cost of the overall solution  Total Time of Execution 

1 1010.1565 16.6367 
2 1010.1565 17.3166 
3 1010.1565 16.7008 
4 1010.1565 16.137 
5 1010.1565 20.1036 
6 1010.1565 18.7094 
7 1010.1565 16.9421 
8 1010.1565 19.3519 
9 1010.1565 18.2672 

10 1010.1565 18.264 
Mean Sol 1010.1565 17.84293 

 

Comment: the results stay the same in the 3 series of experiment . 

Result: the variation of 𝛼 (relative influence of the pheromone trail) doesn’t affect on the 

obtained solution from this algorithm , the solution is the same as is shown in the following 

screenshots : 

 

Figure 5.2:  Depot 1 paths, the best solution obtained from the execution’s series of 𝛼   
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Figure 5.3: cost paths of depot 1 of the best solution obtained from the execution’s series 

of 𝛼 

 

Figure 5.4: Depot 2 paths ,the best solution obtained from the execution’s series of 𝛼   
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Figure 5.5: Depot 2 path costs of the best solution obtained from the execution’s series of 

𝛼 

 

Figure 5.6: Depot 3 paths of  the best solution obtained from the execution’s series of 𝛼   
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figure 5.7: Depot 3 costs paths of the best solution obtained from the execution’s series of 

𝛼 

 

figure 5.8: Depot 4 paths of the best solution obtained from the execution’s series of 𝛼   
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figure 5.9: Depot 4 costs paths of the best solution obtained from the execution’s series of 

𝛼 

5.3.2. The effect of changing the visibility of edges 𝛽 on the results  

we gone take 3 different values of 𝛽 from 3 different fields, note that 𝛼 it ranges [0,1] 

divide the range into three fields to evaluate it [0,0.33], [0.33, 0.66], [0.66, 0.99] 

5.3.1.a)1st  first set of 𝛽  :  

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, 

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change  

𝛽 = 0.1 ∈[0,0.33] 
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Table 5. 4: statistics on the executions of the 1st value  =0.1  

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 15.2697 
2 1010.1565 16.1216 
3 1010.1565 16.7182 
4 1010.1565 16.7332 
5 1010.1565 17.6527 
6 1010.1565 18.366 
7 1010.1565 19.3974 
8 1010.1565 15.5569 
9 1010.1565 18.3908 

10 1010.1565 17.8099 
Mean 1010.1565 17.20164 

 

5.3.1.b)2nd second  set of  𝛽:  

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, 

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change  

𝛽 = 0.5 ∈ [0.33,0.66] 

Table 5. 5: statistics on the executions of the 2nd  value 𝛽 =0.5  

Executions  Total cost of the overall solution  Total Time of Execution 

1 1010.1565 15.5975 
2 1010.1565 17.0728 
3 1010.1565 15.1839 
4 1010.1565 23.5654 
5 1010.1565 17.4862 
6 1010.1565 16.2271 
7 1010.1565 19.4945 
8 1010.1565 19.6949 
9 1010.1565 14.9137 

10 1010.1565 16.7355 
Mean 1010.1565 17.59715 

5.3.1.c)3rd  third set value of  𝛽:   

fixing the values of the variables, 𝛼 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q = 1, 

tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and change  
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𝛽 = 0.9 ∈[0.33,0.66] 

Table 5. 6: statistics on the executions of 3rd value 𝛽 =0.9  

Executions  Total cost of the overall solution  Total Time of Execution 

1 1010.1565 16.8437 
2 1010.1565 16.5081 
3 1010.1565 17.8804 
4 1010.1565 16.5376 
5 1010.1565 17.2613 
6 1010.1565 18.3058 
7 1010.1565 18.4801 
8 1010.1565 19.0081 
9 1010.1565 17.2116 

10 1010.1565 15.4064 
Mean 1010.1565 17.34431 

5.3.3. The effect of changing the evaporation rate   value on the results:  

we will test the algorithm through series of execution in 3 fields of 𝜌 , rho range from [0,1]  

3 fields :[0,0.33], [0,0.66], [0,1] and see the effect of the evaporation rate on the solutions  

5.3.1.a)1st  first set of  𝜌:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change  𝜌=0.33∈[0,0.33]  

Table 5. 7: statistics of the executions1st value 𝜌=0.33  

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 18.0996 
2 1010.1565 14.7027 
3 1010.1565 15.2463 
4 1010.1565 15.9064 
5 1010.1565 14.9029 
6 1010.1565 15.0762 
7 1010.1565 16.1177 
8 1010.1565 14.9721 
9 1010.1565 13.8988 

10 1010.1565 15.0216 
Mean 1010.1565 15.39443 

5.3.1.b) Second 2nd set of 𝜌:  
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fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, 

tau0=10*Q/(n_vertices*mean(model(idd).D(:))) 

capacity= 100, Q = 1 ,and change 𝜌=0.66∈[0.33,0.66]: 

Table 5. 8: statistics on the executions of the  2nd  value  𝜌=0.66  

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 15.0909 
2 1010.1565 15.2307 
3 1010.1565 14.6856 
4 1010.1565 16.0694 
5 1010.1565 15.2471 
6 1010.1565 14.8648 
7 1010.1565 14.7766 
8 1010.1565 14.86 
9 1010.1565 14.336 

10 1010.1565 14.0195 
Mean 1010.1565 14.8122 

5.3.1.c) Third  3rd  set of  𝜌:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:))) 

and change Q = 1 ,𝜌=0.99∈[0.66,1] 

Table 5. 9: statistics on the executions of the 3rd value  =0.99   

Executions  Total cost of the overall solution  Total Time of Execution 

1 1010.1565 15.6629s 
2 1010.1565 14.6609s 
3 1010.1565 14.0819s 
4 1010.1565 14.4726s 
5 1010.1565 14.7744s 
6 1010.1565 23.804s 
7 1010.1565 14.4657s 
8 1010.1565 16.882s 
9 1010.1565 16.8814s 

10 1010.1565 15.2762s 
Mean 1010.157 16.0962s 

The Comment: the results stays the same in the three sets of evaporation rate 𝜌 ∈[0,0.33] ||  

[0,0.66] || [0,1] , as it shown in the following  screenshots : 
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5.3.4. The effect of changing the control variable pf pheromone generation 

Q value on the results  

we will test 5 fields of Q 

[0,0.33], [0,0.66], [0,1], [1,1,5], [1.5,2] 

5.4.1.a)1st value of Q:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:)))and change Q=0.33∈[0,0.33] 

Table 5. 10: statistics of the executions of 1st value of Q =0.33  

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 21.2079s 
2 1010.1565 18.1624s 
3 1010.1565 25.8393s 
4 1010.1565 15.3289s 
5 1010.1565 14.4834s 
6 1010.1565 15.0083s 
7 1010.1565 17.4731s 
8 1010.1565 15.9019s 
9 1010.1565 14.455s 

10 1010.1565 12.8908s 
Mean 1010.1565 17.0751s 

 

5.4.1.b) 2nd value of Q:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change Q = 0.66∈ [0.33,0.66] 
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Table 5. 11: statistics on the executions the 2nd value of Q =0.66 

Executions  Total cost of the overall solution  Total Time of 
Esxecution 

1 1010.1565 15.5812s 
2 1010.1565 14.2151s 
3 1010.1565 14.9843s 
4 1010.1565 12.8879s 
5 1010.1565 14.4614s 
6 1010.1565 16.8765s 
7 1010.1565 15.3022s 
8 1010.1565 15.4453s 
9 1010.1565 16.2801s 

10 1010.1565 15.2497s 
Mean 1010.157 15.12837s 

 

5.3.1.c)3rd third value of Q:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change Q = 0.99∈ [0.66,1] 

Table 5. 12: statistics on the executions 3rd set of Q =0.99 

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 16.7151s 
2 1010.1565 15.0589s 
3 1010.1565 13.5972s 
4 1010.1565 13.9565s 
5 1010.1565 19.988s 
6 1010.1565 15.5746s 
7 1010.1565 16.2334s 
8 1010.1565 15.0293s 
9 1010.1565 13.9991s 

10 1010.1565 13.6982s 
Mean  1010.157 15.38503s 

 

5.3.1.4)4th fourth value of Q:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, 

capacity = 100, and change Q=1.5∈[1,1.5] 
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Table 5. 13: statistics on the executions of the 4th value Q =1.5 

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 34.8313 
2 1010.1565 28.9737 
3 1010.1565 24.8756 
4 1010.1565 15.7036 
5 1010.1565 19.4109 
6 1010.1565 19.3153 
7 1010.1565 14.1405 
8 1010.1565 16.3556 
9 1010.1565 17.2548 

10 1010.1565 16.0877 
Mean 1010.157 20.6949 

 

5.3.1.5)5th fifth value of Q:  

fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, 

capacity = 100, and change Q=1.99∈[1,2] 

Table 5. 14: statistics on the executions 5th value  Q =1.99 

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 15.5704 
2 1010.1565 17.6127 
3 1010.1565 15.1352 
4 1010.1565 14.1629 
5 1010.1565 15.355 
6 1010.1565 16.1742 
7 1010.1565 15.1297 
8 1010.1565 14.6963 
9 1010.1565 15.7565 

10 1010.1565 14.5887 
Mean 1010.157 15.41816 

 

The comment: the results stay the same when we change the value of generation pheromone  

In the five fields   [0,0.33], [0,0.66], [0,1], [1,1,5], [1.5,2] ,as shown in bellow screen shoots 

of 𝛼 series figure:5.20 , 5.21 , 5.22, ……………..,5.27. 
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5.3.5. The effect of changing the initial pheromone 𝝉𝟎 on the results:  

we will 3 test  values of  Initial pheromone 𝜏0 0.1, 0.5 , 1  

 5.3.6.a)1st  first  value of  𝜏0: 

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity 

= 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))), and change 𝜏0=0.1 

Table 5. 15: statistics on the executions of the 1st value 𝜏0=0.1 

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 16.7782 
2 1010.1565 16.5702 
3 1010.1565 16.5426 
4 1010.1565 14.3073 
5 1010.1565 15.5371 
6 1010.1565 16.7037 
7 1010.1565 14.5649 
8 1010.1565 14.2499 
9 1010.1565 14.7153 

10 1010.1565 14.1418 
Mean 1010.157 15.4111 

 

5.3.6.b)2nd value of  𝜏0: 

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,  

capacity = 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change 𝜏0=0.5 
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Table 5. 16: statistics on the executions of the 2nd value of 𝜏0=0.5 

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 15.3326 
2 1010.1565 15.4832 
3 1010.1565 15.8016 
4 1010.1565 15.6283 
5 1010.1565 15.0656 
6 1010.1565 14.7712 
7 1010.1565 16.1916 
8 1010.1565 16.2755 
9 1010.1565 15.1233 

10 1010.1565 17.3567 
Mean 1010.157 15.70296 

 

5.3.6.c)3rd value of  𝜏0: 

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity 

= 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))) and change 𝜏0=0.9 

Table 5. 17: statistics on the executions of the 3rd set of 𝜏0=0.9  

Executions  Total cost of the overall solution  Total Time of Execution 
1 1010.1565 14.7282 
2 1010.1565 16.2033 
3 1010.1565 18.3834 
4 1010.1565 14.9507 
5 1010.1565 15.1325 
6 1010.1565 17.1709 
7 1010.1565 16.8718 
8 1010.1565 22.8703 
9 1010.1565 18.3755 

10 1010.1565 15.2013 
Mean 1010.157 16.98879 

 

The comment: the results stay the same for the model, when we change the In   

the initial pheromone doesn’t affect in the solution of this model  
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5.3.6. The effect of changing the capacity of vehicle on the results:  

In this section we will test the algorithm with  3 different  of capacity 50,100,150  

Note that the requirements demands quantity range from 0-72  

5.3.6.a)1st  value of capacity <= maxdemand(72): 

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,  

capacity = 100, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to 

capacity=50  

 

Figure 5.10:  the error of the execution of the algorithm with capacity =50   

The comment: Error in the code, note: that the used value of capacity of vehicle is 50 and  

the quantity demands range from 0 to 72 . 

5.4.6.b)2nd value of capacity=150 > maxdemand=72: 

 fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,  

, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to capacity=150  
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Table 5.18: statistics on the executions of the 2nd value of capacity =150  

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 849.4119 14.363 
2 849.4119 14.6398 
3 849.4119 17.4118 
4 849.4119 14.973 
5 849.4119 14.9699 
6 849.4119 14.6453 
7 849.4119 14.8868 
8 849.4119 15.0072 
9 849.4119 15.7647 

10 849.4119 16.0156 
Mean 849.4119 15.26771 

comment: we notice change in routes of solution of the model, it optimized from the fixed 

value of capacity which is 100, here we get solution with Total cost =849.4119 

Which is optimized with 15 %, where we add about 50 % of the capacity of vehicle to 

capacity of the vehicle capacity=150. 

5.4.6.c)3rd   value of capacity=250 : 

 Fixing the values of the variables 𝛼 = 1, 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65,  

, Q=1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),and change to capacity=250  

Table 5.19: statistics of the executions of the 3rd value of capacity =250 

Executions  Total cost of the overall solution  Total Time of Execution 
1 680.6695 13.2609 
2 680.6695 14.4422 
3 680.6695 13.8766 
4 680.6695 14.172 
5 680.6695 15.5273 
6 680.6695 13.79 
7 680.6695 18.6699 
8 680.6695 17.1602 
9 680.6695 15.3675 

10 680.6695 13.6753 
Mean 680.6695 14.99419 
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The comment: we notice change in routes of solution of the model, it optimized from the 

fixed value of capacity which is 100, here we get solution with Total cost =849.4119 

Which is optimized with 32 %, where where we add about 150 % of the capacity of vehicle 

to capacity of the vehicle. 

Result: we conclude that the capacity of the vehicle effect on the solutions, When we have 

more capacity, we have improved solutions and better short routes, but the rule stops when the 

capacity of the vehicle exceeds the quantity of the total quantity of goods for warehouse 

customers. 

The best solution gated from this variable is the following screenshots while that the 

capacity is greater than the total quantity of demands of all customer of depot, capacity >=700: 

 

figure 5.11: the best solution obtained from the execution’s series of capacity 

,capacity>=700 ,Depot 1 paths 
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Figure 5.12: the best solution obtained from the execution’s series of capacity >=700 

,depot 1 paths costs 

 

Figure 5.13: the best solution obtained from the execution’s series of capacity>=700 ,depot 2 

paths 
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Figure 5.14:the best solution obtained from the execution’s series of capacity paths 

costs 

 

Figure 5.15: the best solution obtained from the execution’s series of capacity >=700, depot 

3 paths  
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Figure 5.16: the best solution obtained from the execution’s series of capacity 

 

Figure 5.17: the best solution obtained from the execution’s series of capacity>=700,depot 4 

paths 
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Figure 5.18: the best solution obtained from the execution’s series of capacity>=700, depot 4 

paths costs 

5.4.7. The effect of iteration number on the results  

We went to take 3 different number of iterations 100 200 300, and see what it gone happen 

to the results  

5.4.1.a)1st  first set of  iteration number 100:  

fix the values of the variables 𝛼 = 1 , 𝛽 = 1, maxIt = 50, nAnt = 40, 𝜌 = 0.65, capacity = 

100, Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and  put MaxIt=100. 

table 5.20: statistics on the executions the 1st value of MaxIt=100 

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 57.1758 
2 1010.1565 57.6817 
3 1010.1565 60.023 
4 1010.1565 61.4096 
5 1010.1565 60.3484 
6 1010.1565 60.4094 
7 1010.1565 67.8658 
8 1010.1565 60.2213 
9 1010.1565 61.1555 
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10 1010.1565 58.9335 
Mean Sol 1010.1565 60.5224 

5.4.1.b)2nd second set of iteration number=200:  

We fix the values of the variables 𝛼 = 1, 𝛽 = 1, nAnt = 40, 𝜌 = 0.65, capacity = 100, Q = 

1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put  MaxIt = 200 

table 5. 21: statistics on the executions of the 2nd  value of MaxIt =200 

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 114.9441 
2 1010.1565 116.0685 
3 1010.1565 115.544 
4 1010.1565 115.9665 
5 1010.1565 118.7432 
6 1010.1565 116.8357 
7 1010.1565 118.1859 
8 1010.1565 118.3734 
9 1010.1565 125.2581 

10 1010.1565 115.3633 
Mean Sol 1010.1565 117.5283 

5.4.1.c)3rd  third set value of  𝛼:  

We fix the values of the variables   = 1, 𝛽 = 1, , nAnt = 40, 𝜌 = 0.65, capacity = 100,  

Q = 1, tau0=10*Q/(n_vertices*mean(model(idd).D(:))),𝜌=0.65, and put  MaxIt = 300 

table 5.22: statistics on the executions of  the 3rd value of MaxIt=300   

Execution
s  

Total cost of the overall solution  Total Time of Execution 

1 1010.1565 172.0173 
2 1010.1565 168.5768 
3 1010.1565 157.943 
4 1010.1565 155.9208 
5 1010.1565 162.7767 
6 1010.1565 154.3833 
7 1010.1565 166.4022 
8 1010.1565 165.3653 
9 1010.1565 160.5645 

10 1010.1565 164.5689 
Mean Sol 1010.1565 162.8519 
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Comment: the results stay the same in the 3 series of experiment . 

Result: the number of iteration MaxIt  doesn’t affect on the obtained solution from this 

model with this implementation  , the solution is the same as is shown in the following 

screenshots :  

5.5 conclusion 

We conclude from the results that hybrid Ant Colony optimization algorithm can 

effectively deal with  multi depot vehicle routing problem and 2opt algorithm can improve the 

time of search of the algorithm for the best solution tours and optimize it.  

 With the recent used model of 4 depot we see that the capacity of vehicle can improve the 

obtained solution by increasing the capacity of the vehicle we can solution with lower cost, but 

for the other parameters we don’t see any difference in the total cost of the solution except for 

iteration number can reduce the time of simulation (execution) , more the number of the 

iteration is great more the execution time  is longer , but it can make deference in other huge 

model in the cost of solution , the same thing for the other setting it can obtain more accurate 

solution . 
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General conclusion & Perspectives 

In this report we have seen generalities in optimization, the methods of solving an optimization 

problem, and some of the most common problems in optimization. 

 and we explain the ant colony optimization algorithm, and we mention some of the  

optimization techniques, nearest distance clustering, and local interchange operation.  

    Hybrid Ant colony algorithms are one of the metaheuristic algorithms used to deal with vehicle 

routing problems and their variants, it’s an algorithm inspired by the behaviour of ants forming a 

super organism and which constitutes a family of optimization metaheuristics. 

This algorithm is based on the Ant System algorithm, which is  originally created for solving 

the travelling salesman problem.  

 MDVRP has wide application scenarios, In order to adapt  the ACO, we implement  a 

hybrid ant colony optimization algorithm (HACO) to solve MDVRP. The HACO is based on ACO 

solving VRP and the nearest distance cluster for dealing with a multi depot, meanwhile 2-Opt to 

optimize routes          

 

limits the implementation it doesn't obtain better cost after the 2-opt in the used  models of 

MDVRP created by the implementation and it needs powerful hardware 

finally, we test the implemented algorithm through multiple series of executions, and we try to 

determine the effect of changing the values of parameters of ACO, in order to obtain better 

solutions and better values of parameters. 

In the future and as a perspective, it will be interesting to the Dynamic aspect of this work  

because the VRP problem in the real is dynamic and variable and the services of delivery it  

obligate    to considering the service hour and time constraints required by customers.   
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Appendix A 

implementation of Hybrid Ant Colony optimization 

for CMDVRP 

A.1. Definition of the used map: 

A.1.1 Definition of the used map: 

 

Figure A.1: Definition of the map Algeria provinces 

 This script represents the definition of the Algeria model the first column 1 represents the 

indices  

Column 2: represents the X coordinates, Column 3: represent the Y coordinates of provinces  

used the map. , the 4th Column represents the required quantity of goods for each customer .  



 

 

69 

 

A.2.Creation of the model used by H-ACO for CMDVRP: 

 

 

Figure A.2:part1 of creation model script 

In this part we define the structure of the model ,which will give to aco algorithm . 

 

Figure A.3:part2 of creation model script 

In this part we read the X and  Y coordinates of depot f customers and their demand 

obtained from clustering function ,and we initialize some matrix to handle with the model .(see 

the comments in the figures  for more detail) 
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Figure A.4:part3 of creation model script 

Part 3 creation model : define some variable to return it in with the model struct ,to know  

the served customers  

 

 

Figure A.5:part4 of creation model script 
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This part of the script generates initial routes after checking the possibility of generating these 

routes according to the capacity and disponibility constraints of the vehicle, it also checks if each 

customer is served in these routes. 

 

Figure A.6:part5 of creation model script 

In the end of each iteration for each submodel (depot + their customers) we return the results 

(initial routes) in defended struct model.  

figure 5.  SEQ figure_5. \* ARABIC 6:part4 of creation model script 
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A.3.Nearest Distance Clustering function: 

 

Figure A.7:part1 of Clustering function script 

this part 1 of clustering algorithm define the struct of depot, which contain  x and y 

coordinates  matrixes of the customers and the depots it self in the first columns the name of 

clustered provinces in willaya matrix also their demands for each depot ,each depot with their 

results of clustering is in the struct depots  represent a row in these struct . 

Also, we define the distance matrix between the selected warehouses and customers for the 

collection process. 
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Figure A.8:part2 of Clustering function script 

Part 2 clustering function: first of all calculate the vector M_min wich contain the minimum 

column of each column of the matrix of distance between depots and customers  to use it later 

,also it initializes the depots struct , also it affect the depot to x and y customer coordinate to 

handle with it like a final customer to visit it. 

 

Figure A.9:part3 of Clustering function script 

Part 3 clustering function : define matrice_indice matrix to permit each clustered customer 

to depots matrix ,also it do the clustering process by using the M_min vector wich contain the 

minimum value between each customer and the depots ,these values allow to get the nearest 

depot by searching in the matrix distance of (depot_customer) of the indice the this value which 

is the indice of the nearest depot (see it in the next part ). 
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Figure A.10:part4 of Clustering function script 

Part 4 clustering function: in this part we get the names of provinces and their demand from 

the big model, by selecting the indices of the same X and Y coordinates of the clustered 

customers in the big model by find function. 

In the end of this clustering function, we give the results to create model function which 

generate initial routes with these results. 

A.3. HACO for MDVRP: 

This implementation is modified from VRPTW script  and adapted to be useful to the multi 

depot vehicle routing problem by clustering function , fusing with 2 opt function to get more 

optimized  results ,2-opt can be effective for the big datasets in term of iteration and execution 

time . 
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Figure A.11:H_ACO for  MDVRP part1 

 

Figure A.12:H_ACO for  MDVRP part2 
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Figure A.13:H_ACO for  MDVRP part3 

 

Figure A.14:H_ACO for  MDVRP part4 
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Figure A.15:H_ACO for MDVRP part5 

 

 Figure A.16:H_ACO for MDVRP part6  
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A.4. 2exchange fonction (2-opt): 

 

Figure A.17:2-opt script part1 

 

Figure A.18:2-opt script part2 
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After finding each best solution tour in the end of all iteration, we try to optimize this tour 

by 2 opt, which exchange all possible pairwise of edges until the tour be optimized, if the tour 

is not optimizable the function lets the same tour.   

 

 


