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INTRODUCTION

During the last decades, the interest for systems of differential equations depending on the
past history has been increasing. In fact, the introduction of the delay in the models allows
a better description of the real phenomena and a more reliable prediction of their behavior.
Such delay models, also called systems with memory or aftereffect, hereditary or time de-
lay systems, are mathematically descibed by Retarded Funnctional Differential Equations
(RFDEs). Their dynamics is significantly influenced by the presence of the delay terms and
oscillations, instability, chaos and loss of performance as well as improved stability can oc-
cur. The reason for this more complex dynamics is that, opposite to Ordinary Differential
Equations (ODEs), RFDEs are infinite dimensional dynamical systems, Krasovskii was the
first to emphasize the importance of considering the state of a system defined by a functional
differential equation as a function.

The scientific community is witnessing a considerable growth of interest in problems
involving time delays. This is due mainly to the widespread appearances of such phenom-
ena. Time delays are peculiar to the dependence of the rate of change on the past history
of the system. This is the case, for instance, whenever there is a displacement of material
or transmission of information. The class of differential equations treating delays is known
as functional differential equations (FDEs). Models that necessitate the incorporation of the
history of the (highest) derivative are commonly known as neutral delay differential equa-
tions (NDDEs).

NDDEs have been shown to be very useful in describing complicated phenomena in
many fields including control theory, mechanical systems, chemical processes, oscillation
theory, and biosciences.

It was established that differential equations are sensitive to the presence of delays. Many
researchers have demonstrated that even initially stable systems may be destabilized when
taking into account delays. This has forced scientists to find appropriate ways to fix this
matter. We note here that delays may play a positive role in many cases. It has been well
established that, in contrast to the sensitivity issue raised above, large neutral delays may
stabilize systems. As a matter of fact, for better achievements, engineers have been adding
neutral delays premeditatedly in the models.

The example model of neutrally retarded viscoelastic Timoshenko system{
ϕtt = (ϕx + ψ)x,[
ψt +

∫ t
0 K(t− s)ψt(s)ds

]′
= ψxx −

∫ t
0 (g(t)− s)ψxx(s)ds− (ϕx + ψ),
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for t > 0, 0 < x < 1 with initial and boundary conditions
ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, t ≥ 0
ϕ(x,0) = ϕ0(x), ϕt(x,0) = ϕ1(x), 0 < x < 1,
ψ(x,0) = ψ0(x),ψt(x,0) = ψ1(x), 0 < x < 1,

where ϕ0(x), ϕ1(x), ψ0(x), and ψ1(x) are given initial data. Here ϕ is the transversal dis-
placement of the beam from its equilibrium and ψ is the rotational displacement of the beam.

Second order NDDEs appear, in general, in the study of vibrating masses attached to an
elastic bar and also (as the Euler equation) in some variational problems.

The existence and uniqueness of a mild solution. The mild solution is strong or classical
when the initial data are regular. This is proved, in fact, for more general abstract problems.
The operator A (generalizing the Laplacian, with domain: the set of functions v such that
v, vt ∈ H2(Ω) are absolutely continuous with Dirichlet boundary conditions) is assumed
to be an infinitesimal generator of a strongly continuous cosine family of bounded linear
operators. The results there are obtained using fixed point theorems. Therefore, we shall
assume that the solution (and the initial data) is regular enough to justify our computation.

We brief the reader that there are many other results but for either ordinary differential
equations, or first order partial differential equations. The few treated second order prob-
lems are concerned with delays in the state function or its first derivative rather than in the
second derivative (which represents here the real challenge).

It is also worth noting that several investigations appeared dealing with the oscillation
phenomena for problems of exactly the same type.
We do not report here these references (although one can transform second order equations
into first order systems) because of the size of the paper (and to avoid being biased).
We establish a range of values for the coefficient ”p” for which solutions decay to zero expo-
nentially in time.

Another problem of neutral delay with a viscoelastic terme is
utt(t, x)− p

∫ x
0 utt(t− τ,y)dy = uxx(t, x)−

∫ t
0 g(t− s)uxx(s, x)ds

in (0,∞)× (0,1),
u(t, x) = 0, t ∈ (0,∞), x = 0,1, (1)
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0,1),

where the delay in the first integral in the equation is of neutral type and the second integral
is a viscoelastic term (or a memory term). The (relaxation) function g is a (nonincreasing)
continuously differentiable function and p is a real number. The functions u0(x) and u1(x)
are given initial data and τ > 0.

Here, A strang damped wave equation with neutral delay is considered
[u(t)− pu(t− τ)]” = ∆u + ∆ut in (0,∞)×Ω,
u(t, x) = 0, t ∈ (τ,∞), x ∈ ∂Ω, (2)
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈Ω,
u(t, x) = ϕ(t, x), t ∈ [−τ,0], x ∈Ω,

where Ω is a bounded regular domain of Rn, u0(x), u1(x) and ϕ(t, x) are given functions
and p, τ > 0. The primes, as well as the subscripts ”t”, denote time derivatives.
We will assume the compatibility condition ϕ(0, x) = u0(x) and ϕt(0, x) = u1(x), x ∈Ω.
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The first chapter contains an definitions and the mentary properties of Lp space, convo-
lution, functional differential equation and lyapunov stability .

In the last chapter, we studied the stability for the damped wave equation with neutral
delay.
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CHAPTER 1

PRELIMINARY

1.1 Definition and elementary properties of Lp Spaces

Definition 1.1.1 We denoted by L1(Ω,µ), or simply L1(Ω) ( or just L1), the space of integrable
functions from Ω into R.

‖ f ‖L1 = ‖ f ‖1 =
∫

Ω
| f |dµ =

∫
| f |.

Definition 1.1.2 we set [2]
Let p ∈R with 1 < p < ∞;

Lp(Ω) =

{
f : Ω→R | f is measurable and | f |p ∈ L1(Ω)

}
with

‖ f ‖Lp = ‖ f ‖p =

[∫
Ω
| f (x)|pdµ

]1/p

.

Definition 1.1.3 when p = 2, L2(Ω) equipped with the inner product

〈 f , g〉L2(Ω) =
∫

Ω
f (x)g(x)dx,

is a Hilbert space.

Definition 1.1.4 We set

L∞(Ω) =

{
f : Ω→R, f is measurable and there is a constant C such that | f (x)| ≤C a.e. on Ω

}
with

‖ f ‖L∞ = ‖ f ‖∞ = inf{C; | f (x)| ≤ C a.e. on Ω}.

1-Reflexivity
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Theorem 1 Lp is reflexive for any p, 2≤ p < ∞.

Step 1 : (Clarkson’s first inequality ). Let 1 < p < ∞. We claim that∥∥∥∥ f + g
2

∥∥∥∥p

p
+

∥∥∥∥ f − g
2

∥∥∥∥p

p
≤ 1

2
(‖ f ‖p

p + ‖g‖
p
p) ∀ f , g ∈ Lp.

Step 2 : Lp is uniformly convex, and thus reflexive for 2≤ p < ∞. Indeed, let ε > 0 and let
f , g ∈ Lp with ‖ f ‖p ≤ 1, ‖g‖p ≤ 1, and ‖ f − g‖p > ε. We deduce that∥∥∥∥ f + g

2

∥∥∥∥p

p
< 1−

(
ε

2

)2

and thus
∥∥∥∥ f+g

2

∥∥∥∥
p
< 1− δ with δ = 1− [1− ( ε

2)
p]1/p > 0. Therefore, Lp is uniformly convex and

thus reflexive.

Step 3 : Lp is reflexive for 1 < p ≤ 2.

2-Separability

Theorem 2 Assume that Ω is a separable measure space. Then Lp(Ω) is separable for any
p, 1≤ p < ∞.
We shall consider only the case Ω = RN, since the general case is somewhat tricky. Note that as a
consequence, Lp(Ω) is also separable for any measurable set Ω ⊂ RN. Indeed, there is a canonical
isometry from Lp(Ω) into Lp(RN) (the extension by 0 outside Ω); therefore Lp(Ω) may be identified
with a subspace of Lp(RN) and hence Lp(Ω) is separable.

3-Dual of LP

Theorem 3 (Riesz representation theorem).
Let φ ∈ (L1)?. Then there exists a unique function u ∈ L∞ such that

〈φ, f 〉 =
∫

u f , ∀ f ∈ L1.

Moreover,
‖u‖∞ = ‖φ‖(L1)? .

1.2 Some results about integration

Theorem 4 (monotone convergence theorem, Beppo Levi).
Let ( fn) be a sequence of functions in L1 that satisfy
(a) f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · a.e. on Ω,
(b) supn

∫
fn < ∞.

Then fn(x) converges a.e. on Ω to a finite limit, which we denote by f (x) ; the function
f belongs to L1 and ‖ fn − f ‖1→ 0.
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Theorem 5 (dominated convergence theorem, Lebesgue).
Let ( fn) be a sequence of functions in L1 that satisfy
(a) fn(x)→ f (x) a.e. on Ω,
(b) there is a function g ∈ L1 such that for all n, | fn(x)| ≤ g(x) a.e. on Ω.

Then f ∈ L1 and ‖ fn − f ‖1→ 0.

Lemma 1 (Fatou’s lemma). Let ( fn) be a sequence of functions in L1 that satisfy
(a) f or all n, fn ≥ 0 a.e.
(b) supn

∫
fn < ∞.

For almost all x ∈Ω we set f (x) = liminfn→∞ fn(x) ≤ +∞. Then f ∈ L1 and∫
f ≤ liminf

n→∞

∫
fn.

A basic example is the case in which Ω = RN, M consists of the Lebesgue measurable sets,
and µ is the Lebesgue measure on RN.
Notation. We denote by Cc(RN) the space of all continuous functions on RN) ; i.e. with
compact support, i.e,

Cc(R
N) = f ∈ C(RN); f (x) = 0 ∀x ∈RN K,where K is compact.

Theorem 6 (density).
The space Cc(RN) is dense in L1(RN); i.e.,

∀ f ∈ L1(RN) ∀ε > 0 ∃ f1 ∈ Cc(R
N)such that‖ f − f1‖1 ≤ ε.

Let (Ω1, M1,µ1) and (Ω2, M2,µ2) be two measure spaces that are δ− f inite. One can define in a
standard way the structure of measure space (Ω, M,µ) on the Cartesian product Ω = Ω1x Ω2.

Theorem 7 (Tonelli).
Let F(x,y) : Ω1 x Ω2→R be a measurable function satisfying

(a)
∫

Ω2

|F(x,y)|dµ2 < ∞ f or a.e. x ∈Ω1

and

(b)
∫

Ω1

dµ1

∫
Ω2

|F(x,y)|dµ2 < ∞

.

Then F ∈ L1(Ω1 x Ω2).

Theorem 8 (Fubini).
Assume that F ∈ L1(Ω1 x Ω2). Then for a.e. x ∈ Ω1, F(x,y) ∈ L1

y(Ω2) and
∫

Ω2
F(x,y)dµ2 ∈

L1
x(Ω1). Similarly, for a.e. y ∈Ω2, F(x,y) ∈ L1

x(Ω1) and
∫

Ω1
F(x,y)dµ1 ∈ L1

y(Ω2).
Moreover, one has∫

Ω1

dµ1

∫
Ω2

F(x,y)dµ2 =
∫

Ω2

dµ2

∫
Ω1

F(x,y)dµ1 =
∫ ∫

Ω1 x Ω2

F(x,y)dµ1dµ2.
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Theorem 9 (Hölder’s inequality).
Assume that f ∈ Lp and g ∈ Lp′ with 1≤ p ≤∞. Then f g ∈ L1 and

(1)
∫
| f g| ≤ ‖ f ‖p ‖g‖p′ .

Proof. The conclusion is obvious if p = 1 or p = ∞; therefore we assume that 1≤ p≤∞. We recall
Young’s inequality :

(2) ab≤ 1
p

ap +
1
p′

bp′ ∀a≥ 0, ∀b≥ 0.

Inequality (2) is a straightforward consequence of the concavity of the function log on (0,∞):

log
(

1
p

ap +
1
p′

bp′
)
≥ 1

p
log ap +

1
p′

logbp′ = log ab.

we have
| f (x)g(x)| ≤ 1

p
| f (x)|p + 1

p′
|g(x)|p′ a.e. x ∈Ω.

It follows that f g ∈ L1 and

(3)
∫
| f g| ≤ 1

p
‖ f ‖p

p +
1
p′
‖g‖p′

p′ .

Replacing f by λ f (λ > 0) in(3), yields

(4)
∫
| f g| ≤ λp−1

p
‖ f ‖p

p +
1

λp′
‖g‖p′

p′ .

Choosing λ = ‖ f ‖−1
p ‖g‖

p′/p
p (so as to minimize the right hand side in (4)). We obtain (1).[2]

1.3 Convolution

We first define the convolution product of a function f ∈ L1(RN) with a function g∈ Lp(RN).
•Young’s Inequality. Let f ∈ L1(RN) and g ∈ Lp(RN) with 1 ≤ p ≤ ∞. Then for x ∈ RN the
function y→ f (x− y)g(y) is integrable on RN and we define

( f ? g)(x) =
∫

RN
f (x− y)g(y)dy.

In addition f ? g ∈ Lp(RN and

‖ f ? g‖ ≤ ‖ f ‖1‖g‖p.

Proof. The conclusion is obvious when p = ∞. We consider two cases :
(i) p = 1,
(ii) 1 < p < ∞.

Case (i) : p = 1. Set F(x,y) = f (x− y)g(y).
For a.e. y ∈RN we have∫

RN
|F(x,y)|dx = |g(y)|

∫
RN
| f (x− y)|dx = |g(y)|‖ f ‖1 < ∞

9



and, moreover, ∫
RN

dy
∫

RN
|F(x,y)|dx = ‖g‖1‖ f ‖1 < ∞.

we deduce from Theorem (Tonelli). that F ∈ L1(RN x RN). Applying Theorem (Fubini), we
see that ∫

RN
|F(x,y)|dy < ∞ f or a.e. x ∈RN

and, moreover, ∫
RN

dx
∫

RN
|F(x,y)|dy =

∫
RN

dy
∫

RN
|F(x,y)|dx = ‖g‖1‖ f ‖1.

This is precisely the conclusion of (Young′s Inequality). when p = 1.

Case (ii) : 1 < p < ∞. By Case (i) we know that for a.e. fixed x ∈ RN the function
y→ | f (x− y)| |g(y)|p is integrable on RN, that is,

| f (x− y)|1/p |g(y)| ∈ Lp
y(R

N).

Since | f (x,y)|1/p′ ∈ Lp′
y (RN), we deduce from Theorem6(Holder′s inequality). that

| f (x− y)| |g(y)| = | f (x− y)|1/p′ | f (x− y)|1/p |g(y)| ∈ L1
y(R

N)

and ∫
RN
| f (x− y)| |g(y)|dy ≤ ‖ f ‖1/p′

1

(∫
RN
| f (x− y)| |g(y)|pdy

)1/p

.

that is,
|( f ? g)(x)|p ≤ ‖ f ‖1/p′

1 (| f | ? |g|p)(x).

We conclude, by Case (i), that f ? g ∈ Lp(RN) and

‖ f ? g‖p
p ≤ ‖ f ‖p/p′

1 ‖ f ‖1‖g‖
p
p,

that is,
‖ f ? g‖p ≤ ‖ f ‖1‖g‖1.

Lemma 1 (Poincaré Inequality)
For any w, continuously differentiable on [0,1],∫ 1

0
w2 dx ≤ 2w2(1) + 4

∫ 1

0
w2

x dx,∫ 1

0
w2 dx ≤ 2w2(0) + 4

∫ 1

0
w2

x dx. (1.1)

Proof of Lemma 1

∫ 1

0
w2dx = xw2|10 − 2

∫ 1

0
x w wx dx (integration by parts)

= w2(1)− 2
∫ 1

0
x w wx dx

≤ w2(1)− 1
2

∫ 1

0
w2 dx + 2

∫ 1

0
x2 w2

x dx.
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Subtracting the second term from both sides of the inequality, we get the first inequality in
(1.1) :

1
2

∫ 1

0
w2 dx ≤ w2(1) + 2

∫ 1

0
x2 w2

x dx

≤ w2(1) + 2
∫ 1

0
w2

x dx.

The second inequality in (1.1) is obtained in a similar fashion.

Using the Poincaré inequality along with boundary conditions, we get

V̇ = −
∫ 1

0
w2

x dx ≤ −1
4

∫ 1

0
w2 ≤ −1

2
V (1.2)

which, by the basic comparison principle for first order differential inequalities, implies that
the energy decay rate is bounded by

V(t) ≤ V(0) e−t/2 (1.3)

or by
‖w(t)‖ ≤ e−t/4‖w0‖, (1.4)

where
w0(x) = w(x,0)

is the initial condition and ‖.‖ denotes the L2 − norm of a function of x, namely,

‖w(t)‖ =
(∫ 1

0
w(x, t)2dx

)1/2

. (1.5)

Lemma 2 (Agmon’s Inequality)
[5]For a function w ∈ H1, the following inequalities hold :

max
x∈[0,1]

|w(x, t)|2 ≤ w(0)2 + 2‖w(t)‖‖wx(t)‖,

max
x∈[0,1]

|w(x, t)|2 ≤ w(1)2 + 2‖w(t)‖‖wx(t)‖. (1.6)

Proof. ∫ x

0
w wx dx =

∫ x

0
∂x

1
2

w2 dx

=
1
2

w2|10

=
1
2

w(1)2 − 1
2

w(0)2.

Taking the absolute value on both sides and using the triangle inequality gives

1
2
|w(x)2| ≤

∫ x

0
|w||wx|dx +

1
2

w(0)2. (1.7)

Using the fact that an integral of a positive function is an increasing function of its upper
limit, we can rewrite the last inequality as

|w(x)2| ≤ w(0)2 + 2
∫ 1

0
|w(x)||wx|dx. (1.8)
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The right hand side of this inequality does not depend on x, and therefore

max
x∈[0,1]

|w(x)|2 ≤ w(x)2 + 2
∫ 1

0
|w(x)||wx(x)|dx. (1.9)

Using the Cauchy Schwarz inequality we get the first inequality of (1.9). The second in-
equality is obtained in a similar fashion.[5]

The simplest way is to use the following Lyapunov function :

V1 =
1
2

∫ 1

0
w2 dx +

1
2

∫ 1

0
w2

x dx. (1.10)

The time derivative of (1.10) is given by

V̇1 ≤ −‖wx‖2 − ‖wxx‖2 ≤ −‖wx‖2

≤ −1
2
‖wx‖2 − 1

2
‖wx‖2

≤ −1
8
‖w‖2 − 1

2
‖wx‖2

≤ −1
4

V1.

Therefore,
‖w‖2 + ‖wx‖2 ≤ e−t/2(‖w0‖2 + ‖w0,x‖2). (1.11)

and using Young’s and Agmon’s inequalities, we get

max
x∈[0,1]

|w(x, t)|2 ≤ 2‖w‖‖wx‖

≤ ‖w‖2 + ‖wx‖2

≤ e−t/2(‖w0‖2 + ‖w0,x‖2).

We have thus showed that
w(x, t)→ 0 as t→∞

for all x ∈ [0,1].
• The Cauchy Schwartz inequality : Every inner product satisfies the Cauchy Schwarz
inequality

〈x1, x2〉 ≤ ‖x1‖‖x2‖.
The equality sign holds if and only if x1 and x2 are dependent.

• Gronwall’s inequality :
Lemma : Let T > 0, g∈ L1(0, T), g≥ 0 a.e and c1, c2 are positives constants. Let ϕ∈ L1(0, T) ϕ≥
0 a.e such that gϕ ∈ L1(0, T) and

ϕ(t) ≤ c1 + c2

∫ t

0
g(s)ϕ(s)ds a.e in (0, T).

then, we have

ϕ(t) ≤ c1exp
(

c2

∫ t

0
g(s)ds

)
a.e in (0, T).
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1.4 Functional differential equations (FDEs)

Some classes of FDES

We consider equations with an unknown scalar or vector function depending on a contin-
uous argument t, which may be treated as time. The equations may be scalar or vector
equations, and should have the same dimension as the unknown function. Unless stated
otherwise, all variables under consideration are real.
As it well known, an ordinary differential equation (ODE) is an equation connecting the
values of an unknown function and some of its derivatives for one and the same argument
value.[3]
For example, the equation

F(t, x,dx/dt,d2x/dt2) = 0

may be written as F(t, x(t), ẋ(t), ẍ(t)) = 0, where dots indicate derivatives:

ẋ(t) = dx(t)/dt
.

A functional equation FE is an equation involving an unknown function for different ar-
gument values.
The equations x(2t) + 2x(3t) = 1,x(t) = t2x(t + 1)− [x(t− 2)]2, x(x(t)) = x(t) + 1, are ex-
amples of FEs. The differences between the argument values of an unknown function and
t in a FE are called argument deviations. If all argument deviations are constant (as in the
second example above), then the FE is called a difference equation.

Above we gave some examples of FEs with discrete (or concentrated ) argument devia-
tions. By increasing in the equation the number of summands and simultaneously decreas-
ing the differences between neighbouring argument values, one naturally arrives at FEs with
continuous (or distributed) and mixed (both continuous and discrete) argument deviations.
These are called integral and integral functional equations (in particular, integraldifference
equations). However, it is meaningless to give these classes in detail, since they only serve
as orientation in investigations.

Combining the notions of differential and functional equations, we obtain the notion of
functional differential equation (FDE), or, equivalently, differential equation with deviat-
ing argument. Thus, this is an equation connecting the unknown function and some of its
derivatives for, in general, different argument values. Here also the argument values can
be discrete, continuous or mixed. Correspondingly one introduce the notions of differential
difference equation (DDE), integra differential equation (IDE), etc.

1.5 Cauchy problem for FDES

The Cauchy problem (also called initial problem or basic initial problem) for a first order FDE is to
find the solution of this equation subjected to a given initial function and initial value.[3]

1.6 Retarded differential difference equations

The simplest linear retarded differential difference equation has the form

ẋ(t) = Ax(t) + Bx(t− r) + f (t)

13



where A, B, and r are constants with r > 0, f is a given continuous function on R, and x is a
scalar.
The first question is the following : what is the initial value problem for this equation ? More
specifically, what is the minimum amount of initial data that must be specified in order for
this equation to define a function for t ≥ 0? A moment of reflection indicates that a function
must be specified on the entire interval [−r,0]. In fact, let us prove.

1.7 Neutral differential difference equations

In this section, we introduce another class of equations depending on past as well as present
values but which involve derivatives with delays as well as the function itself. Such equa-
tions historically have been referred to as neutral differential difference equations. The presen-
tation will not be as detailed as the one for the retarded equations of the previous section.
We concentrate only on those proofs which are significantly different from the ones for re-
tarded equations. We also point out some of the differences between neutral equations and
retarded equations.

The model nonhomogeneous equation is

ẋ(t)− Cẋ(t− r) = Ax(t) + Bx(t− r) + f (t)

where A, B, C, and r are constants with r > 0, C , 0 and f is a continuous function on R.
The corresponding homogeneous equation is

ẋ(t)− Cẋ(t− r) = Ax(t) + Bx(t− r).

1.8 Cauchy problem for NDEs

Hale’s form of NDES

Consider NDEs in the form proposed by J. Hale

[x(t)− g(t, xt)]
• = f (t, xt) (1.12)

The former can be brought to the form (1.1), the latter-not. Nevertheless, many NDEs (in-
cluding those important for applications), and even whole classes of them can be brought
to the form (1.1). Moreover, such form of the equation should follow from the actual sense
of the problem. This and the simpler formulation of the thorems are responsible for the fact
that the form (1.1) has been widely used during recent years. In the theory of NDEs the
form (1.1) takes about the same place as does the divergent form (or the form with divergent
principal part) in the theory of partial differential equations.[3]

1.9 Lyapunov Stability and Basic Theorems

The stability of a system generally refers to its ability to return to its initial state when an
external disturbance ceases. Stability is the primary condition for the normal operation of a
control system.
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The Lyapunov stability theorem defines the stability of a system in terms of energy, the
biggest advantage of which is that the stability can be determined without the need to solve
the motion equation of the system.

Types of Stability

This subsection defines various types of stability for continuous time.

1- Continuous Time Systems
Consider the following continuous time system :

ẋ(t) = f (t, x(t)), x(t0) = x0, (1.13)

where x(t) ∈Rn is the state vector; f : R̄+ x Rn→Rn ; and t is a continuous time variable.

A point xe ∈Rn is called an equilibrium point of system (1.13) if f (t, xe) = 0 for all t ≥ 0.
The system remains at that point as long as there is no external action on it. The question
is, if there is an external action, will the system remain near the equilibrium point or will it
move farther and farther away?
The problem of stability at an equilibrium point is discussed below.

Shifting the origin of the system allows us to move the equilibrium point to xe = 0. If
there are multiple equilibrium points, the stability of each must be studied by an appropri-
ate shift of the origin.
Various types of stability are defined below for system (1.13) at the equilibrium point, xe = 0.

Definition 1.9.1

(1) If, for any t0 ≥ 0 and ε > 0, there exists a δ1 = δ(t0, ε) > 0 such that

‖x(t0)‖ < δ(t0, ε)⇒ ‖x(t)‖ < ε, ∀t ≥ t0, (1.14)

then the system is stable (in the Lyapunov sense) at the equilibrium point, xe = 0.

(2) If the system is stable at the equilibrium point xe = 0 and if there exists δ2 = δ(t0) > 0 such
that

‖x(t0)‖ < δ(t0)⇒ lim
t−→∞

x(t) = 0, (1.15)

then the system is asymptotically stable at the equilibrium point, xe = 0.

(3) If there exist constants δ3 > 0, α > 0, and β > 0 such that

‖x(t0)‖ < δ3⇒ ‖x(t)‖ ≤ β‖x(t0)‖e−α(t−t0), (1.16)

then the system is exponentially stable at the equilibrium point, xe = 0.

(4) If δ1 in (1) (or δ2 in (2)) can be chosen independently of t0, then the system is uniformly stable
(or uniformly asymptotically stable) at the equilibrium point, xe = 0.

(5) If δ2 in (2) (or δ3 in (3)) can be an arbitrarily large, finite number, then the system is globally
asymptotically stable (or globally exponentially stable) at the equilibrium point, xe = 0.
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Remark 1.9.1 The requirement of uniform asymptotic stability is stronger than that of
asymptotic stability. But for autonomous or periodic equations (1.2), a symptotic stability of
the trivial solution implies uniform as ymptotic stability of this solution.
A similar relation holds for stability and uniform stability.

Example 1.9.1 The solution of the scalar Cauchy problem

ẋ(t) = e−tx(t), x(t0) = x0,

is

x(t) = x0exp(e−t0 − e−t).

Therefore,for any x0 , 0 we find unimprovable estimate

|x(t)| < |x0|exp
(
e−t0

)
, t0 ≤ t < ∞,

and for any ε > 0 the unimprovable value of δ(ε, t0) is ε exp(−e−t0). We find that the trivial
solution is stable, but not uniformly stable because δ(ε, t0) −→ 0 as t0 −→−∞.

Theorem 1.9.1 (Lyapunov stability theorem for continuous time system)
Consider system (1.13). Let f (t,0) = 0, ∀t, which means that the equilibrium point of the
system is xe = 0.

• I f (1) there exists a positive de f inite f unction V(t, x(t)) and

(2) V̇(t, x(t)) =
d
dt

V(t, x(t)) is negative semi− de f inite, then the system is stable

at the equilibrium point, xe = 0.
• I f (1) there exists a positive de f inite f unction V(t, x(t)) and

(2) V̇(t, x(t)) =
d
dt

V(t, x(t)) is negative de f inite, then the system is asymptotically stable

at the equilibrium point, xe = 0.
• I f (1) the system is asymptotically stable at xe = 0 and

(2) V(t, x(t))→∞ as‖x‖ →∞,
then the system is globally asymptotically at the equilibrium point, xe = 0.

1.10 Stability of Neutral Systems

A neutral system is a system with a delay in both the state and the derivative of the state,
with the one in the derivative being called a neutral delay. That makes it more complicated
than a system with a delay in only the state. Neutral delays occur not only in physical
systems, but also in control systems, where they are sometimes artificially added to boost
the performance.
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CHAPTER 2

STABILITY FOR THE DAMPED WAVE
EQUATION WITHE NEUTRAL DELAY

We consider the problem
utt = uxx − ut −

∫ t
0 h(t− s)utt(s)ds, x ∈ (0,1), t > 0,

u(t,0) = u(t,1) = 0, t > 0, (2.1)
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0,1)

where h is a nonnegative nonincreasing differentiable function and u0, u1 are two given ini-
tial data.[6]

Second order NDDEs where the neutral delay is in the second derivative appear in many
applications. They arise, for instance, in the study of vibrating masses attached to an elastic
bar and (as the Euler equation) in some variational problems. They arise also in the study of
wave propagation in viscoelastic media

utt + K ∗ utt = v2∇2u + δ(t)δ(x).

We can find them also as poroacoustic models in noise control (acoustic waves propagation)

ρ ∗ utt =∇.[K ∗ ∇u]

The existence and uniqueness of a mild solution for this type of problems.

It is proved in a more general abstract problems for an operator A generalizing the Lapla-
cian, with domain : the set of functions v such that v, vt ∈ H2(Ω) are absolutely continuous
with Dirichlet boundary conditions. The operator A is assumed to be an infinitesimal gen-
erator of a strongly continuous cosine family of bounded linear operators. We shall assume
that the solution (and the initial data) is regular enough to justify our computation.
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2.1 Positive(negative) kernels

A- Case of a positive kernel

In this section we will treat the case when the kernel h(t) is positive. We may write (2.1) as

utt = uxx − ut −
∫ t

0
h(t− s)utt(s)ds

we use partial integration

utt = uxx − ut −
(
[h(t− s)ut(s)]t0 +

∫ t

0
h′(t− s)ut(s)ds

)
= uxx − ut −

(
h(0)ut(0)− h(t)ut(t) +

∫ t

0
h′(t− s)ut(s)ds

)
(2.2)

= uxx − ut − h(0)ut(0) + h(t)ut(0)−
∫ t

0
h′(t− s)ut(s)ds

= uxx − [1 + h(0)]ut − h(t)ut(0)−
∫ t

0
h′(t− s)ut(s)ds, t ≥ 0.

Theorem 2.1 Let u0 ∈H1(0,1),u1 ∈ L2(0,1),
∫ ∞

0 ev1sh(s)ds<∞ for some v1 > 0. Then, there exist
M > 0 and a > 0 such that

E(t) =
1
2
(‖ut‖2 + ‖ux‖2) ≤ Me−at, t ≥ 0.

Notice that if
∫ ∞

0 ev1sh(s)ds < ∞ and lim
t→∞

ev1th(t) < ∞ (in fact, lim
t→∞

ev1th(t) = 0 as h is differ-

entiable), then∫ ∞

0
ev1s|h′(s)|ds = −

∫ ∞

0
ev1sh′(s)ds = −ev1sh(s)|∞0 + v1

∫ ∞

0
ev1sh(s)ds < +∞

in case h′ ≤ 0.
Proof. We shall adopt the energy method with appropriate functionals. Let us multiply both
sides of (2.2) by ut and integrate over (0,1)

utt = uxx − ut −
∫ t

0
h(t− s)uttds x ∈ (0,1)

uttut = utuxx − utut − ut

∫ t

0
h(t− s)utt(s)ds∫ 1

0
uttutdx =

∫ 1

0
utuxxdx−

∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(t− s)utt(s)ds dx.

We use the following law

∫ 1

0
f (x) f ′(x)dx =

1
2

∫ 1

0

d
dt

f 2dx =
1
2

d
dt

∫ 1

0
f (x)2dx =

1
2

d
dt
‖ f ‖2

2∫ 1

0

1
2

d
dt

u2
t dx =

∫ 1

0
utuxxdx−

∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(t− s)utt(s)ds dx
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we use partial integration of
∫ 1

0 utuxxdx

∫ 1

0

1
2

d
dt

u2
t dx = [utux]

1
0 −

∫ 1

0
uxutxdx−

∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(t− s)utt(s)ds dx

1
2

d
dt
‖ut‖2

2 = ut(1)ux(1)− ut(0)ux(0)−
∫ 1

0
uxutxdx−

∫ 1

0
ut

∫ t

0
h(t− s)utt(s)ds dx

we use the initial conditions

u(t,1) = 0 u(t,0) = 0
ut(1)ux(1) = 0 ut(0)ux(0) = 0

1
2

d
dt
‖ut‖2

2 = −
∫ 1

0
uxutxdx−

∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(t− s)utt(s)ds dx

1
2

d
dt
‖ut‖2

2 +
1
2

d
dt

∫ 1

0
u2

x = −
∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(s)utt(t− s)ds dx

1
2

d
dt

(
‖ut‖2

2 + ‖ux‖2
2

)
= −

∫ 1

0
u2

t dx−
∫ 1

0
ut

∫ t

0
h(s)utt(t− s)ds dx

we use integral by part∫ t

0
h(s)utt(t− s)ds = [h(s)ut(t− s)] +

∫ t

0
h′(s)utt(t− s)ds

1
2

d
dt
(
‖ut‖2

2 + ‖ux‖2
2
)
= −

∫ 1

0
u2

t dx−
∫ 1

0
ut

(
[h(s)ut(t− s)]t0 +

∫ t

0
h′(s)ut(t− s)ds

)
ds

= −
∫ 1

0
u2

t dx +
∫ 1

0
uth(t)ut(0)dx−

∫ 1

0
h(0)u2

t dx−
∫ 1

0
ut

∫ t

0
h′(s)u(t− s)ds dx

= −
∫ 1

0
u2

t dx + h(t)
∫ 1

0
utut(0)dx− h(0)

∫ 1

0
u2

t dx−
∫ 1

0
u
∫ t

0
h′(s)u(t− s)ds dx

= −[1 + h(0)]
∫ 1

0
u2

t dx + h(t)
∫ 1

0
utut(0)dx−

∫ 1

0
ut

∫ t

0
h′(s)u(t− s)ds dx

applining Yong’s inquality

h(t)
∫ 1

0
utut(0)dx ≤ h(t)δ1

∫ 1

0
u2

t dx +
h(t)
4δ1

∫ 1

0
u2

1(0)dx

1
2

d
dt
(
‖ut‖2 + ‖ux‖2) ≤ −[1 + h(0)]‖ut‖2 + h(t)δ1

∫ 1

0
u2

t dx +
h(t)
4δ1

∫ 1

0
u2

t (0)dx

−
∫ 1

0
ut

∫ t

0
h′(s)u(t− s)ds dx

≤ −[1 + h(0)]‖ut‖2 + h(t)δ1‖ut‖2 +
h(t)
4δ1
‖ut(0)‖2

2

−
∫ 1

0
ut

∫ t

0
h′(s)u(t− s)ds dx
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we use Cauchy chwartz inequality

−
∫ 1

0
ut

∫ t

0
h′(s)u(t− s)ds dx ≤ −

(∫ 1

0
u2

t dx
)1/2(∫ t

0
(h′(s)u(t− s))2ds

)1/2

1
2

d
dt
(
‖ut‖2 + ‖ux‖2) ≤ −[1 + h(0)]‖ut‖2

2 + h(t)δ1‖ut‖2 +
h(t)
4δ1
‖ut(0)‖2

−
(∫ 1

0
ut dx

)1/2(∫ t

0
(h′(s)u(t− s))2ds

)1/2

utilising Yong’s inequality(∫ 1

0
utdx

)1/2(∫ t

0
(h′(s)u(t− s)2ds

)1/2

≤ δ2

∫ 1

0
u2

t dx +
1

4δ2

∫ 1

0
ut

∫ t

0

(
h′(s)u(t− s)

)2ds dx

1
2

d
dt
(
‖ut‖2 + ‖ux‖2) ≤ −[1 + h(0)]‖ut‖2

2 + h(t)δ1‖ut‖2
2 +

h(t)
4δ1
‖ut(0)‖2

+δ2

∫ 1

0
u2

t dx +
1

4δ2

∫ 1

0
ut

∫ t

0

(
h′(s)u(t− s)

)2ds

≤ −[1 + h(0)]‖ut‖2 + h(t)δ1‖ut‖2
2 +

h(t)
4δ1
‖ut(0)‖2

2 + δ2‖ut‖2
2

+
1

4δ2

∫ 1

0
ut

∫ t

0

(
h′(s)u(t− s)

)2 ds dx

≤ −[1 + h(0)]‖ut‖2
2 + h(t)δ1‖ut‖2

2 +
h(t)
4δ1
‖ut(0)‖2

2

+δ2‖ut‖2
2 +

1
4δ2

(∫ 1

0
h(t− s)1/2ds

)(∫ t

0
(h(t− s))1/2ut(s)2ds dx

)
≤ [−1− h(0) + h(t)δ1 + δ2]‖ut‖2 +

h(t)
4δ1
‖u1)‖2

+
1

4δ2

(∫ t

0
(h′(s))ds

)∫ 1

0

∫ t

0

(
h′(t− s)ut(s)

)2 ds dx. (2.3)

Next, we introduce

φ1(t) =
∫ 1

0
ut u dx, t ≥ 0,

and

ψ1(t) = e−γt
∫ 1

0

∫ t

0
eγsH̃(t− s)|ut(s)|2ds dx, t ≥ 0,

where

H̃(t) =
∫ ∞

t
eγs|h′(s)|ds, t ≥ 0,γ > 0.

Note that H̃(t) is well defined for small values of γ(γ < v1) by our assumption on h(t).

The derivative of φ1(t), along solutions of (2.2), is given by
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φ′1(t) = ‖ut‖2 +
∫ 1

0 u{uxx − [1 + h(0)]ut + h(t)ut(0)−
∫ t

0 h′(t− s)ut(s)ds}dx
= ‖ut‖2 − ‖ux‖2 − [1 + h(0)]

∫ 1
0 ut u dx + h(t)

∫ 1
0 ut(0)u dx

−
∫ 1

0 u
∫ t

0 h′(t− s)ut(s)ds dx, t ≥ 0.

we use Young’s inequality

−[1 + h(0)]
∫ 1

0
ut u dx ≤ [1 + h(0)](δ3‖ut‖2 +

1
4δ3
‖ux‖2.

h(t)
∫ 1

0
ut(0) u dx ≤ δ4h(t)‖ux‖2 +

h(t)
4δ4
‖u1‖2.

−
∫ 1

0
u
∫ t

0
h′(t− s)ut(s)ds dx ≤ δ5‖ux‖2 +

1
4δ5

(∫ 1

0
|h′(s)|ds

∫ 1

0

∫ t

0
|h′|(t− s)ut(s)

)
ds dx.

φ′1 it is estimated as follows

φ′1(t) ≤ ‖ut‖2 − ‖ux‖2 + [1 + h(0)](δ3‖ut‖2 +
1

4δ3
‖ux‖2) + δ4h(t)‖ux‖2

+
h(t)
4δ4
‖u1‖2 + δ5‖ux‖2 +

1
4δ5

(∫ t

0
|h′(s)|ds

)∫ 1

0

∫ t

0
|h′|(t− s)|ut|2(s)ds dx (2.4)

≤
{

1 + δ3[1 + h(0)]
}
‖ut‖2 +

[1 + h(0)
4δ3

+ h(t)δ4 + δ5 − 1
]
‖ux‖2 +

h(t)
4δ4
‖u1‖2

+
1

4δ5

(∫ t

0
|h′(s)|ds

)∫ 1

0

∫ t

0
|h′|(t− s)|ut(s)|2ds dx, t ≥ 0.

For ψ1(t), we obtain

ψ′1(t) = −γe−γt
∫ 1

0

∫ t

0
eγsH̃(t− s)|ut(s)|2ds dx

+

[∫ 1

0
eγtH̃(0)|ut(t)|2 +

∫ 1

0

∫ t

0
eγsH̃′(t− s)|ut(s)|2ds dx

]
e−γt. (2.5)

= −γψ(t) + H̃(0)‖ut‖2 + e−γt
∫ 1

0

∫ t

0
eγsH′(t− s)|ut(s)|2ds dx

H̃′(t) = −eγt|h′(t)|

H̃′(t− s) = −eγ(t−s)|h′(t− s)| = −eγte−γs|h′(t− s)|

ψ′1(t) = −γψ(t) + H̃(0)‖ut‖2 − e−γt
∫ 1

0

∫ t

0
eγseγte−γs|h′(t− s)||ut(s)|2ds dx

ψ′1(t) = −γψ(t) + H̃(0)‖ut‖2 −
∫ 1

0

∫ t

0
|h′(t− s)||ut(s)|2ds dx, t ≥ 0.

Therefore, if

V(t) = E(t) + λφ1(t) + µψ1(t), t ≥ 0

for some λ, µ > 0, we find, in view of (2.4)-(2.5),

V′(t) ≤
{
− 1− h(0) + h(t)δ1 + δ2 + λ[1 + (1 + h(0))δ3] + µH̃(0)

}
‖ut‖2 (2.6)

21



+λ

[
1 + h(0)

4δ3
+ h(t)δ4 + δ5 − 1

]
‖ux‖2 +

h(t)
4

(
1
δ1

+
λ

δ4
)‖u1‖2

+

[
1
4
(

1
δ2

+
λ

δ5
)
∫ t

0
|h′(s)|ds− µ

]∫ 1

0

∫ t

0
|h′(t− s)||ut(s)|2dsdx− λµψ(t), t ≥ 0.

We need the first two coefficients (in the right hand side of (2.6)) to be negative, and the
fourth one to be nonpositive. Let us first pick δ1 = δ4 = 1 and forget about h(t). We need

δ2 + λ[1 + (1 + h(0))δ3] + µH̃(0) < 1 + h(0),
1+h(0)

4δ3
+ δ5 < 1, (2.7)

1
4(

1
δ2
+ λ

δ5
)
∫ ∞

0 |h
′(s)|ds < µ.

We choose δ2 = h(0), δ3 = 1 + h(0) and δ5 =
1
2 . Then, we select µ = 1

2(1 + 2λh(0)). Next,
we choose λ and γ small enough so that the first relation in (2.7) is fulfilled. Finally, we pick
t∗ so large that h(t) becomes small enough and the first two coefficients are negative. We
end up with

V′(t) ≤ −C1E(t)− λµψ1(t) +
h(t)

2
‖u1‖2, t ≥ t∗ f or some C1 > 0.

As E(t) + λφ1(t) is equivalent to E(t), we may write

V′(t) ≤ −C2V(t) + C3h(t), t ≥ t∗, C3 =
‖u1‖2

2
. (2.8)

An integration of this inequality (2.7) leads to

V(t) ≤ (V(t∗) + C3

∫ t

t∗
ec2sh(s)ds)e−C2(t−t∗), t ≥ t∗.

To be able to use our assumption, we choose C2 so small that C2 ≤ v1. Observe also that for
t∗ large enough

V(t) ≤ (V(t∗) + C3

∫ ∞

0
eC2sh(s)ds)eC2t∗e−C2t, t ≥ t∗

and a similar estimation holds on [0, t∗]. Thus

V(t) ≤ C4e−at, a, C4 > 0, t ≥ 0.

Remark 2.1 Observe that we do not really need eC2th(t) to be summable. All we need is∫ t

0
eC2sh(s)ds ≤ Ceαt with C > 0 and α < C2.

Remark 2.2 Notice that, in the present situation, we do not need the frictional damping
as −h(0)ut(t) (with h(0) > 0) is enough.

Remark 2.3 For a similar problem to (2.2), although the situation there is a little different
and the conditions on h are related to some operator (in addition to the presence of a vis-
coelastic damping there).
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Remark 2.4 In line with Remark 2.2 above, if h(t) is rather negative then we need some
kind of damping (like the frictional one). We need also to impose some extra ’smallness’
condition on h(t). Namely, we assume that |h(0)| < 1.

B- Case of a negative kernel

Let us consider the problem

utt = uxx − ut −
∫ t

0
h(t− s)utt(s)ds, t ≥ 0, 0 < x < 1. (2.9)

with h(t) ≤ 0. We may rewrite (2.9) as

utt = uxx − (1 + h(0))ut + h(t)ut(0)−
∫ t

0
h′(t− s)ut(s)ds. (2.10)

The proof of Theorem (2.1) carries out almost verbatim

Theorem 2.2 Let u0 ∈ H1(0,1), u1 ∈ L2(0,1), ev1th(t) ∈ L1(0,1) for some v1 > 0 and
|h(0)| < 1.
Then, there exist M > 0 and a > 0 such that

E(t) ≤ Me−at, t ≥ 0.

2.2 Case of non-regularity

If h is not differentiable then we cannot rewrite (2.1) in the form (2.2). However, as∫ t

0
h(t− s)utt(s)ds =

∫ t

0
h(s)utt(t− s)ds = −h(t)ut(0) + [

∫ t

0
h(s)ut(t− s)ds]′

we can rewrite (2.2) as

utt − h(t)ut(0) + [
∫ t

0
h(t− s)ut(s)ds]′ = uxx − ut.

The idea here is to work with the ’difference operator’ in the left hand side of

[ut +
∫ t

0
h(t− s)ut(s)ds]′ = uxx − ut + h(t)u(0), t ≥ 0, 0 < x < 1. (2.11)

Remark 2.5 Notice that, setting (2.11) as our reference equation, it is not equivalent to
(2.1). In (2.11), we do not require ut to be differentiable but rather the whole expression in
square brackets. These facts justify the importance of studying this kind of equation. In the
next result, however, we will assume the differentiability of the kernel on (0,+∞).

Theorem 2.3 Let u0 ∈ H1(0,1), u1 ∈ L2(0,1), h ≥ 0,
∫ ∞

0 h(s)ds = h̄ < 1
2 , h′(t) ≤ −ξh(t),

t > 0 for some ξ > 0 and 2h̄
∫ ∞

0 eθsh(s)ds < 1 for some θ > 0 Then, there exists A, c > 0 such that

E(t) ≤ Ae−ct, t ≥ 0.
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Proof. Multiplying both sides of (2.11) by the expression ut +
∫ t

0 h(t− s)ut(s) ds and
integrating over (0,1), gives

∫ 1

0
[ut +

∫ t

0
h(t− s)ut(s)ds][ut +

∫ t

0
h(t− s)ut(s)ds]dx =∫ 1

0
[uxx − ut + h(t)ut(0)][ut +

∫ t

0
h(t− s)ut(s)ds]dx

1
2

d
dt

∫ 1

0
[ut +

∫ t

0
h(t− s)ut(s)ds]2dx =∫ 1

0
uxxutdx +

∫ 1

0
uxx

∫ t

0
h(t− s)ut(s)ds dx−

∫ 1

0
u2

t dx

−
∫ 1

0
ut

∫ t

0
h(t− s)ut(s)ds dx + h(t)

∫ 1

0
ut ut(0)dx +

∫ 1

0
h(t)ut(0)

∫ t

0
h(t− s)ut(s)ds dx

we use the integral by parts

∫ 1

0
uxx ut dx = [ut ux]

1
0 −

∫ 1

0
ux utx dx∫ 1

0
uxx

∫ t

0
h(t− s)ut(s)ds dx =

[∫ 1

0
h(t− s)ut(s)ds]10 −

∫ 1

0

∫ t

0
h(t− s)utx(s)ds dx

1
2

d
dt

∫ 1

0
[ut +

∫ t

0
h(t− s)ut(s)ds]2dx =

∫ 1

0
uxx[ut +

∫ t

0
h(t− s)ut(s)ds]dx

−
∫ 1

0
ut[ut +

∫ t

0
h(t− s)ut(s)ds]dx + h(t)

∫ 1

0
ut(0)[ut +

∫ t

0
h(t− s)ut(s)ds]dx

we use young’s inequality

1
2

d
dt

∫ 1

0
[ut +

∫ t

0
h(t− s)ut(s)ds]2dx ≤ −

∫ 1

0
uxuxtdx−

∫ 1

0
ux

∫ t

0
h(t− s)uxt(s)dsdx− ‖ut‖2

−
∫ 1

0
ut

∫ t

0
h(t− s)ut(s)ds dx+

h(t)
4δ1
‖u1‖2 + δ1h(t)‖ut +

∫ t

0
h(t− s)ut(s)ds‖2, δ1 > 0, t≥ 0. (2.11)

In view of the identity

d
dt

∫ t

0
h(t− s)ux(s)ds =

d
dt

∫ t

0
h(s)ux(t− s)dx = h(t)ux(0) +

∫ t

0
h(s)uxx(t− s)ds,

for t ≥ 0, we may write (2.11) as

1
2

d
dt

{
‖ut +

∫ t

0
h(t− s)ut(s)ds‖2 + ‖ux‖2

}
≤ −‖ut‖2 −

∫ 1

0
ux

d
dt

(∫ t

0
h(t− s)ux(s)ds

)
dx + h(t)

∫ 1

0
ux(0)uxdx

−
∫ 1

0
ut

∫ t

0
h(t− s)ut(s)dsdx + 2δ1h(t)‖ut‖2 +

h(t)
4δ1
‖u1‖2
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+2δ1h(t)
(∫ t

0
h(s)ds

)∫ t

0
h(t− s)‖ut(s)‖2ds, t ≥ 0.

In fact, we can go a little further

1
2

d
dt

{
‖ut +

∫ t

0
h(t− s)ut(s)ds‖2 + ‖ux‖2

}
≤ −‖ut‖2 −

∫ 1

0
ux

d
dt

(∫ t

0
h(t− s)ux(s)ds

)
dx + δ2h(t)‖ux‖2 +

h(t)
4δ2
‖u0x‖2

+δ3‖ut‖2 +
1

4δ3

(∫ t

0
h(s)ds

)∫ t

0
h(t− s)‖ut(s)‖2ds +

h(t)
4δ1
‖u1‖2

+2δ1‖ut‖2 + 2δ1h(t)(
∫ t

0
h(s)ds)

∫ t

0
h(t− s)‖ut(s)‖2ds

or

1
2

d
dt

{
‖ut +

∫ t

0
h(t− s)ut(s)ds‖2 + ‖ux‖2

}
(2.13)

≤ −
∫ 1

0
ux

d
dt

(∫ t

0
h(t− s)ux(s)ds

)
dx + [−1 + δ3 + 2δ1h(t)]‖ut‖2

+
( 1

4δ3
+ 2δ1h(t)

)(∫ t

0
h(s)ds

)∫ t

0
h(t− s)‖ut(s)‖2ds

+δ2h(t)‖ux‖2 +
h(t)

4

(
‖u1‖2

δ1
+
‖u0x‖2

δ2

)
, t ≥ 0.

Now, we need to take care of two terms:
the first term and the third term in the right hand side of (2.13). The third term will be treated
with the help of

φ2(t) = e−βt
∫ 1

0

∫ t

0
eβsH(t− s)|ut|2(s)ds dx, ξ > β > 0, t ≥ 0

where

H(t) =
∫ +∞

t
eβsh(s) ds, t ≥ 0.

Its derivative is equal to

φ′2(t) = −β e−βt
∫ 1

0

∫ t

0
eβtH(t− s)|ut|2(s)ds dx

+e−βt
[∫ 1

0
eβtH(0)|ut|2(s)ds +

∫ 1

0

∫ t

0
eβtH′(t− s)|ut|2(s)ds dx

]
H′(t) = −eβth(t), H′(t− s) = −eβ(t−s)h(t− s)

φ′2(t) = −βφ2(t) + H(0)‖ut‖2 −
∫ t

0
h(t− s)‖ut(s)‖2ds, t ≥ 0. (2.14)
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Regarding the first term in the right hand side, we introduce the functional

ψ2(t) =
∫ 1

0
ux

∫ t

0
h(t− s)ux(s)ds dx, t ≥ 0.

When differentiating it, we get

ψ′2(t) =
∫ 1

0
uxt

∫ t

0
h(t− s)ux(s) ds dx +

∫ 1

0
ux

d
dt

∫ t

0
h(t− s)ux(s) ds dx, t ≥ 0. (2.15)

In turn, the first term in the right hand side of (2.15), is treated in the following manner∫ 1

0
uxt

∫ t

0
h(t− s)ux(s) ds dx =

1
2

∫ 1

0
(h′ ◦ ux) dx− 1

2
h(t)‖ux‖2

−1
2

d
dt

∫ 1

0
(h ◦ ux) dx− (

∫ t

0
h(s)ds)‖ux‖2, t ≥ 0. (2.16)

where ∫ 1

0
(h ◦ ux)dx =

∫ 1

0

∫ t

0
h(t− s)|ux(t)− ux(s)|2ds dx, t ≥ 0.

Gathering these functionals in

W(t) = ε(t) + ηφ2(t) + ψ2(t), t ≥ 0. (2.17)

where

ε(t) =
1
2

{
‖ut +

∫ t

0
h(t− s)ut(s)ds‖2 + (1−

∫ t

0
h(s) ds)‖ux‖2 +

∫ 1

0
(h ◦ ux)dx

}
and taking into account (2.13)-(2.17), we infer

W ′(t) ≤ 1
2

∫ 1

0
(h′ ◦ ux)dx− 1

2
h(t)‖ux‖2 + [−1 + δ3 + 2δ1h(t)]‖ut‖2 + (

∫ t

0
h(s)ds)

×( 1
4δ3

+ 2δ1h(t))
∫ t

0
h(t− s)‖ut(s)‖2ds + δ2h(t)‖ux‖2 +

h(t)
4

(
‖u1‖2

δ1
+
‖u0x‖2

δ2
)

−βηφ2(t) + ηH(0)‖ut‖2 − η
∫ t

0
h(t− s)‖ut(s)‖2ds, t ≥ 0

or

W ′(t) ≤ −ξ

2

∫ 1

0
(h ◦ ux)dx + [−1 + δ3 + 2δ1h(t) + ηH(0)]‖ut‖2

−h(t)(
1
2
− δ2)‖ux‖2 +

h(t)
4

(
‖u1‖2

δ1
+
‖u0x‖2

δ2
)− βηφ2(t)

−
[

η− (
1

4δ3
+ 2δ1h(t))

∫ t

0
h(s)ds

]∫ t

0
h(t− s)‖ut(s)‖2ds, t≥ 0. (2.18)

Our objective is to get −CW(t) is the right hand side of φ2(t).
Clearly, the term

−h(t)(
1
2
− δ2)‖ux‖2

does not help fulfilling our objective as h(t) goes to zero as time goes to infinity. Therefore,
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we need to add another functional

Λ(t) =
∫ 1

0
u[ut +

∫ t

0
h(t− s)ut(s)ds]dx, t ≥ 0.

The role of this functional is to provide −‖ux‖2 through its derivative

Λ′(t) = ‖ut‖2 +
∫ 1

0
ut

∫ t

0
h(t− s)ut(s) ds dx +

∫ 1

0
u[uxx − ut + h(t)ut(0)]dx

= ‖ut‖2 +
∫ 1

0
ut

∫ t

0
h(t− s)ut(s) ds dx− ‖ux‖2 −

∫ 1

0
ut u dx + h(t)

∫ 1

0
ut(0) u dx

≤‖ut‖2−‖ux‖2 + δ4‖ut‖2 +
1

4δ4
(
∫ t

0
h(s)ds)

∫ t

0
h(t− s)‖ut(s)‖2ds (2.19)

+δ5‖ut‖2 +
1

4δ5
‖ux‖2 + δ6h(t)‖ux‖2 +

h(t)
4δ6
‖u1‖2

That is

Λ′(t) ≤ (1 + δ4 + δ5)‖ut‖2 + (
1

4δ5
+ δ6h(t)− 1)‖ux‖2 +

h(t)
4δ6
‖u1‖2

+
1

4δ4
(
∫ t

0
h(s)ds)

∫ t

0
h(t− s)‖ut(s)‖2ds, t ≥ 0.

Let

L(t) = W(t) + ρΛ(t), t ≥ 0. (2.20)

for some ρ > 0. In view of (2.18)-(2.20), we entail

L′(t) ≤ −ξ

2

∫ 1

0
(h ◦ ux)dx +

[
− 1 + δ3 + 2δ1h(t) + ηH(0)

]
‖ut‖2

−h(t)(
1
2
− δ2)‖ux‖2 +

h(t)
4

(
‖u1‖2

δ1
+
‖u0x‖2

δ2
)− βηφ2(t)

−
[

η − (
1

4δ3
+ 2δ1h(t))

∫ t

0
h(s)ds

]∫ t

0
h(t− s)‖ut(s)‖2ds + ρ(1 + δ4 + δ5)‖ut‖2

+ρ(
1

4δ5
+ δ6h(t)− 1)‖ux‖2 +

ρ

4δ4
(
∫ t

0
h(s)ds)

∫ t

0
h(t− s)‖ut − s)‖2ds

or

L′(t) ≤ −ξ

2

∫ 1

0
(h ◦ ux)dx +

[
− 1 + δ3 + 2δ1h(t) + ηH(0) + ρ(1 + δ4 + δ5)

]
‖ut‖2

+

[
− h(t)(

1
2
− δ2) + ρ(

1
4δ5

+ δ6h(t)− 1)
]
‖ux‖2 +

h(t)
4

(
‖u1‖2

δ1
+
‖u0x‖2

δ2
+

ρ‖u1‖2

δ6
)

−
[

η −
(

1
4δ3

+ 2δ1h(t) +
ρ

4δ4

)(∫ t

0
h(s)ds

)]∫ t

0
h(t− s)‖ut(s)‖2ds− βηφ2(t), t ≥ 0.

Let us take δ1 = δ6 = 1, δ2 = δ5 =
1
2 . The second and fifth coefficients in the right hand side
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are negative provided that {
δ3 + ηH(0) + ρ(3

2 + δ4) < 1,
( 1

δ3
+ ρ

δ4
)h̄ < 4η.

Notice that we have ignored h(t) as we can make t∗ large enough.

We pick δ3 = δ4 =

√
hH(0)
2 and ρ < (1− h̄)/(h̄ + 3

2). Then, these two inequalities hold for
some η provided that β is small enough. We end up with

L′(t) ≤ −C1

{
‖ut‖2 + ‖ux‖2 + φ2(t) +

∫ 1

0
(h ◦ ux)dx +

∫ t

0
h(t− s)‖ut(s)‖2ds

}
+ C2h(t)

for some C1, C2 > 0 and t ≥ t∗. It is not difficult to see that L(t) is equivalent to

‖ut‖2 + ‖ux‖2 + φ2(t) +
∫ 1

0
(h ◦ ux)dx +

∫ t

0
h(t− s)‖ut(s)‖2ds.

Consequently,

L′(t) ≤ −C3L(t) + C2h(t), t ≥ 0

for some C3 > 0. Then, we proceed as in the proof of Theorem 2.1 to show that there exist
N,b > 0 such that

L(t) ≤ Ne−bt, t ≥ 0.

Now we have to pass to the classical energy. To this end we notice that

‖ut‖ ≤ ‖ut +
∫ t

0
h(t− s)ut(s)ds‖+ ‖

∫ t

0
h(t− s)ut(s)ds‖

≤
√

2Ne−bt/2 +
√

h
(∫ t

0
h(t− s)‖ut(s)‖2ds

)1/2

or

‖ut‖2 ≤ 4Ne−bt + 2h̄
∫ t

0
h(t− s)‖ut(s)‖2ds, t ≥ 0

Therefore

ebt‖ut‖2 ≤ 4N + 2h̄
∫ t

0
eb(t−s)h(t− s)ebs‖ut(s)‖2ds

≤ 4N + 2h̄
∫ ∞

0
ebsh(s)ds) sup

0≤s≤t
ebs‖ut(s)‖2, t ≥ 0.

Notice that, we may assume that b < min{ξ,θ} and

[ebth(t)]′ = bebth(t) + ebth′(t) = ebt[bh(t) + h′(t)] < 0

as

h′(t) ≤ −ξh(t) ≤ −bh(t), t ≥ 0.

We select b smaller that ξ/2 so that∫ ∞

0
ebsh(s)ds ≤ h(0)

∫ ∞

0
e−(ξ−b)sds < ∞.
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Passing to the sup in both sides of (2.20) (change t into s and then take the sup), we find

sup
0≤s≤t

ebs‖ut(s)‖2 ≤ 4N + 2h̄
(∫ ∞

0
ebsh(s)ds

)
sup

0≤s≤t
ebs‖ut(s)‖2, t ≥ 0

By our assumptions it appears that

‖ut‖2 ≤ C4e−bt, t ≥ 0

for some C4 > 0. The proof is complete.[6]

Remark 2.6 The condition on h : h′(t) ≤ −ξh(t), t > 0 for some ξ > 0, may be relaxed.

Remark 2.7 The condition 2h̄
∫ ∞

0 eθsh(s)ds < 1 is satisfied if ξ > 1. The argument holds
also under the stronger but simpler condition h(0) < ξ/2.

Remark 2.8 Observe that, by Gronwall inequality

ebt‖ut‖2 ≤ 4Ne
∫ t

0 2h̄ds, t ≥ 0

and, if 2h̄ < b < ξ, then

‖ut‖2 ≤ 4Ne−(b−2h̄)t, t ≥ 0.

The result stated in Theorem 2.3 looks much weaker than the one in Theorem 2.1. This is
supported by the facts that the first condition on h(t) in Theorem 2.1 is satisfied through our
condition h′(t)≤−ξh(t). This later condition also implies the condition on h′(t) in Theorem
2.1 (because h′(t) ≤ 0). However, the argument in the proof of Theorem 2.3 allows us to
treat problems which cannot be transformed into the form (2.2). Namely, situations where
we cannot write the derivative of

∫ t
0 h(t − s)ut(s)ds in terms of

∫ t
0 h′(t − s)ut(s)ds because

of lack of regularity of the state u (not twice differentiable). The problem is worth studying
also in case of non-regularity (non-differentiability) of the kernel h.
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CONCLUSION

We study of the memory a wave equation with a distributed neutral delay. We prove that,
despite the destructive nature of delays in general, solutions may go back to the equilibriun
state in an exponential manner as time goes to infinity. Reasonable conditions on the dis-
tributed neutral delay are established. This type of problems appear in the study of wave
propagation in viscoelatic media and in acoustic wave propagation. It is not well studied so
far.
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