
Abstract
This thesis explores the application of Particle Swarm Optimization (PSO) to solve the Ca-
pacitated Vehicle Routing Problem (CVRP). The proposed PSO-based approach demonstrates
superior performance in terms of solution quality and computational efficiency compared to ex-
isting methods. The findings highlight the potential of PSO as an effective tool for addressing
complex combinatorial optimization problems like the CVRP, with implications for real-world
transportation and logistics applications.
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General Introduction

Operational research (OR) has long been a subject of debate, as scholars have sought to define
its scope and purpose. According to the Journal of the Operational Research Society (U.K.)[18],
OR is defined as follows:

”Operational research is the application of scientific methods to address complex
problems arising in the management and direction of large systems encompassing
people, machinery, materials, and financial resources. It entails developing scientific
models of these systems, incorporating measurements of factors such as chance and
risk, to predict and compare the outcomes of alternative decisions, strategies, or
controls. The ultimate aim is to provide management with scientifically grounded
policies and actions.”

At the heart of OR lies the concept of optimization. In the context of operational research,
optimization refers to the act of improving or perfecting a solution. In practice, optimization in-
volves formulating and analytically or statistically solving problems that entail either minimizing
or maximizing a specific objective function.

Optimization methods can be broadly categorized into two approaches. The first is single-
objective optimization, which seeks to minimize or maximize a single objective function, aiming
to identify the optimal solution—the best possible outcome within the given constraints. The
second approach is multi-objective optimization, which concurrently optimizes multiple objective
functions, considering the inherent trade-offs between them.

Various methods exist for solving optimization problems. Exact methods provide optimal
solutions for small-scale problems but become computationally infeasible for larger ones. On
the other hand, metaheuristic methods offer efficient ways to tackle large-scale optimization
problems, even though they do not guarantee optimality. Instead, they provide high-quality
solutions within a reasonable computational time. Prominent metaheuristic methods include
Constraint Logic Programming, Genetic Algorithms, Particle Swarm Optimization Algorithms,
and Ant Colony Optimization Algorithms, among others.

In this thesis, we focus on addressing the Capacitated Vehicle Routing Problem (CVRP),
a critical challenge in logistics and transportation management. CVRP involves determining
optimal vehicle routes while considering capacity constraints. Specifically, every customer must
be visited by a single vehicle with limited carrying capacity, originating and concluding its route
at a central depot.

To tackle this problem, we propose utilizing the Particle Swarm Optimization (PSO) algo-
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rithm. PSO, a metaheuristic algorithm inspired by the collective behavior of bird flocking or
fish schooling, has shown promise in addressing complex optimization problems. By leveraging
the principles of PSO, we aim to find effective solutions for the CVRP, optimizing the routes of
multiple vehicles while adhering to their capacity limitations. In the first chapter, i will explore

the fundamental concepts and definitions pertaining to solving the Capacitated Vehicle Rout-
ing Problem (CVRP) using Particle Swarm Optimization (PSO). In the second chapter, I will
present a general idea of the vehicle routing problem and its origin and some insights into the
mathematical concept of the problem.

In the third chapter, I will talk about meta-heuristics algorithms, and provide a brief definition
and concepts of the most responsive algorithms, which are Ant Colony Optimization (ACO),
genetic Algorithms (GA), and our study subject Particle Swarm Optimization (PSO).

In the fourth chapter, I will apply the Particle Swarm Optimization Algorithm to the Capac-
itated Vehicle Routing Problem (CVRP), I will show and analyze the results of the study.
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Chapter 1

Combinatorial Optimization
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Introduction
In this chapter, we will explore the fundamental concepts and definitions pertaining to solving
the Capacitated Vehicle Routing Problem (CVRP) using Particle Swarm Optimization (PSO).

1.1 Optimization and optimization problems

1.1.1 Definition of optimization
Optimization is the process of finding the best possible solution or set of solutions to a given
problem. It involves systematically exploring and evaluating different choices or configurations to
optimize a specific objective or criteria. The objective can be either maximizing a desired outcome
or minimizing an undesired outcome, often subject to constraints. Optimization encompasses
a wide range of mathematical, computational, and algorithmic techniques aimed at improving
efficiency, effectiveness, or performance in various domains and disciplines.

1.1.2 The primary objectives of optimization
Maximization

Maximization in optimization refers to the process of finding the best possible solution that
maximizes a specific objective or criterion. This objective is often associated with achieving the
highest level of performance, output, profit, utility, or any other desirable measure. For example:

• Maximizing the profit of a company by optimizing production, pricing, and resource allo-
cation.

• Maximizing the accuracy of a machine learning model by optimizing its parameters and
training process.

• Maximizing the efficiency of a manufacturing process by optimizing the use of resources
and minimizing waste.

Minimization

Minimization in optimization involves finding the best possible solution that minimizes a par-
ticular objective or criterion. This objective is typically associated with reducing costs, errors,
risks, energy consumption, or any other undesirable measure. For example:

• Minimizing the total travel distance for a delivery fleet to reduce fuel consumption and
transportation costs.

• Minimizing the error or loss function in regression or classification models to improve their
predictive accuracy.

• Minimizing the time needed to complete a project or task to improve efficiency and meet
deadlines.
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1.2 Overview of Optimization Problems
Optimization problems encompass a wide range of mathematical or computational challenges that
involve finding the best possible solution(s) to optimize an objective function. These problems
arise in various fields, including engineering, economics, operations research, computer science,
and many others, At the core of an optimization problem is the objective function which is
defined as:

1.2.1 Objective function
An objective function is a mathematical function used in optimization problems to measure the
quality or performance of a solution. It quantifies the goal to be maximized or minimized and
guides the search for the best solution.

1.2.2 Types of solutions in optimization
In the field of optimization, various types of solutions are considered when solving problems.
Understanding these solution types is crucial for evaluating and comparing different approaches.
In this section, we provide brief definitions for key solution types, including the best-known
solution, feasible solution, optimal solution, sub-optimal solution, infeasible solution, Pareto
optimal solution, and local optimum. These definitions will help establish a foundation for
analyzing and interpreting solutions in optimization problems.

• Best-known solution: The highest-quality solution currently known for a given problem.
It serves as a reference point for evaluating the performance of other solutions.

• Feasible solution: A solution that satisfies all the specified constraints and is valid within
the problem’s constraints and limitations.

• Optimal solution: The solution that achieves the best possible objective value among all
feasible solutions. It represents the highest level of optimality and meets all the problem
requirements.

• Suboptimal solution: A solution that is not the best possible but still provides an
acceptable level of quality or performance, falling short of the optimal solution.

• Infeasible solution: A solution that violates one or more constraints of the problem,
rendering it invalid or impractical.

• Pareto optimal solution: In multi-objective optimization, a solution that cannot be im-
proved in any objective without sacrificing the performance of at least one other objective.
It represents a trade-off between conflicting objectives.

• Local optimum: A solution that is optimal within a specific region of the solution space
but may not be the global optimum. It may be trapped in a local optimum due to the
search algorithm’s limitations.

1.2.3 types of optimization problems
Various types of optimization problems include:
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Continuous optimization

• Portfolio Optimization: Determining the optimal allocation of investment funds across
a range of assets to maximize return while minimizing risk.

• Production Planning: Optimizing the allocation of resources, such as labor and ma-
chinery, to maximize production output and minimize costs.

1.2.4 Discrete optimization
• raveling Salesman Problem: Finding the shortest possible route for a salesperson to

visit a set of cities exactly once and return to the starting point.

• Bin Packing Problem: Efficiently packing a set of items into a minimal number of bins,
considering their size and capacity constraints.

Mixed-integer optimization

• Facility Location Problem: Deciding the optimal locations for setting up new facilities,
considering both the continuous variables of site coordinates and the discrete decision of
which facilities to open.

• Vehicle Routing Problem with Time Windows: Optimizing the routes and schedules
of a fleet of vehicles to serve a set of customers within specific time windows, involving both
continuous vehicle movement and discrete customer visits.

1.3 combinatorial optimization
Within the realm of optimization, one specific class of problems that poses unique challenges
is combinatorial optimization. Unlike continuous optimization problems, which deal with con-
tinuous decision variables, combinatorial optimization focuses on discrete decision variables and
seeks to find the best arrangement or combination of these variables.

1.3.1 Definition of combinatorial optimization
Combinatorial optimization is a field of study within optimization that involves solving problems
with discrete decision variables. It seeks to find the best arrangement or combination of these
variables, subject to constraints, in order to optimize an objective function.

1.3.2 The main characteristics of combinatorial optimization
Certainly! Here’s the rewritten version in LaTeX:

• Discrete Decision Variables: Combinatorial optimization problems involve discrete de-
cision variables, where the variables can only take on specific values or choices from a finite
set.

• Combinatorial Nature: The number of possible solutions in combinatorial optimiza-
tion problems grows exponentially with the problem size, posing significant computational
challenges.
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• Constraints: Combinatorial optimization problems typically have constraints that limit
the feasible solutions, defining the allowable combinations or arrangements of the decision
variables.

• Objective Function: The goal of combinatorial optimization is to optimize an objective
function that quantifies the measure of optimality, involving maximizing or minimizing
specific criteria.

• NP-Hardness: Many combinatorial optimization problems are classified as NP-hard, in-
dicating their computational complexity and lack of efficient algorithms for finding optimal
solutions in polynomial time.

• Search and Exploration: Solving combinatorial optimization problems often requires
systematic search and exploration of the solution space using various algorithms and heuris-
tics.

• Application Diversity: Combinatorial optimization finds applications in diverse domains
such as logistics, scheduling, network design, and resource allocation, addressing real-world
challenges with discrete decision-making and resource allocation.

1.3.3 Examples of combinatorial Optimization
These examples demonstrate the wide-ranging applications of combinatorial optimization, show-
casing their importance in solving complex decision problems across industries and sectors.

• Traveling Salesman Problem (TSP): Finding the shortest possible route for a sales-
person to visit a set of cities exactly once and return to the starting point. TSP is essential
in logistics, transportation planning, and network optimization.

• Job Scheduling: Optimizing the assignment of tasks or jobs to resources, such as machines
or workers, to minimize completion time or maximize resource utilization. Job scheduling
is crucial in production planning, project management, and workforce optimization.

• Knapsack Problem: Selecting a subset of items with limited capacity, maximizing their
total value while respecting weight or volume constraints. The knapsack problem has
applications in resource allocation, portfolio optimization, and resource management.

• Graph Coloring: Assigning colors to vertices of a graph such that no adjacent vertices
share the same color. Graph coloring is vital in scheduling, register allocation in compilers,
frequency assignment in wireless communication, and timetabling.

• Facility Location: Determining optimal locations for establishing facilities to minimize
costs or maximize service coverage. Facility location problems are relevant in supply chain
management, network design, and facility layout planning.

• Cutting Stock Problem: Finding the most efficient way to cut raw materials into smaller
pieces, minimizing waste and optimizing resource utilization. Cutting stock problems are
significant in manufacturing, paper cutting, and material optimization.

• Vehicle Routing Problem (VRP): Optimizing the routes and schedules of a fleet of
vehicles to serve a set of customers, considering capacity constraints and minimizing total
distance or time. VRP has applications in logistics, delivery services, and transportation
planning.
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1.4 Conclusion
For a better understanding of the following three chapters, we presented this chapter that gives
an introduction to the vast optimization field, especially the combinatorial optimization, in which
we chose our subject of study, which is Particle Swarm Optimization using Capacitated Vehicle
Routing Problem.
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Chapter 2

The Vehicle Routing Problem
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Introduction
The Vehicle Routing Problem (VRP) is a well-known optimization problem in the field of logistics
and transportation management. It involves determining optimal routes for a fleet of vehicles to
serve a set of customers, taking into consideration various constraints and objectives[20].

The VRP is closely related to the Traveling Salesman Problem (TSP), another well-studied
combinatorial optimization problem. In the TSP, the objective is to find the shortest possible
route that visits a given set of cities exactly once and returns to the starting city. The VRP
extends the TSP by adding capacity constraints and multiple vehicles to the problem[6].

In this chapter, we will first provide a brief overview of the Traveling Salesman Problem
(TSP) and its significance in the field of optimization. We will then delve into the mathematical
formulation of the VRP, discussing its key principles and characteristics.

2.1 The Traveling Salesman Problem (TSP)
The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization
problems. Given a set of cities and the distances between them, the objective is to find the
shortest possible route that visits each city exactly once and returns to the starting city.

The TSP has been extensively studied due to its theoretical implications and its practical
applications in various fields such as logistics, transportation, and manufacturing. It serves as a
fundamental benchmark problem for testing optimization algorithms and techniques[20].

In the TSP, the objective function is to minimize the total distance or cost of the tour. The
problem assumes that the distance between any two cities is symmetric, meaning that the distance
from city A to city B is the same as the distance from city B to city A. The objective is to find
the optimal permutation of cities that minimizes the total distance traveled. Mathematically,
let’s define the TSP as follows:

Minimize: z =

n∑
i=1

n∑
j=1

d(i, j) · x(i, j)

subject to:
n∑

j=1

x(i, j) = 1, for all i ∈ {1, 2, . . . , n}

n∑
i=1

x(i, j) = 1, for all j ∈ {1, 2, . . . , n}∑
i∈S

∑
j∈S

x(i, j) ≤ |S| − 1, for all non-empty proper subsets S ⊆ {1, 2, . . . , n}

The objective function seeks to minimize the total distance traveled, while the constraints
ensure that each city is visited and left exactly once and prevent the existence of sub-tours, which
would violate the requirement of visiting each city only once.

Solving the TSP optimally for large instances is computationally challenging, as the problem
is known to be NP-hard. Various algorithms and heuristics, such as branch and bound, dynamic
programming, and evolutionary algorithms, have been developed to approximate the optimal
solution efficiently[6].
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Figure 2.1: Example graph representing cities in the TSP

2.2 Vehicle Routing Problem (VRP)
The Vehicle Routing Problem (VRP) is a combinatorial optimization problem that involves
determining the optimal routes and schedules for a fleet of vehicles to serve a set of customers or
locations, while minimizing the total cost or distance traveled. In VRP, the objective is to find
the most efficient way to allocate vehicles, considering factors such as vehicle capacity constraints,
time windows, customer demands, and operational constraints[18].

The VRP can be formulated as a mathematical optimization problem, where the goal is to
find the optimal allocation of customers to vehicles, the sequence of visits for each vehicle, and the
overall routing plan that minimizes the total distance traveled, time spent, or other cost-related
objectives.

The VRP is characterized by the following key elements:

1. Customers or Locations: There is a set of customers or locations that need to be serviced
by the vehicles. Each customer/location has specific demands, such as the quantity of
goods to be delivered or the service required.

2. Vehicles: There is a fleet of vehicles available for serving the customers/locations. Each
vehicle has a certain capacity, representing the maximum amount it can carry or the number
of customers it can serve in a single trip.

3. Constraints: Various constraints can be involved, such as vehicle capacity constraints, time
windows specifying when customers/locations can be served, maximum route duration or
working hours for vehicles, and any operational limitations or regulations.

4. Objective Function: The objective is to minimize a specific criterion, such as the total
distance traveled, the total time spent, the number of vehicles used, or a combination of
these factors. The aim is to find the optimal solution that optimizes the objective function
while satisfying all the constraints.

The VRP has a wide range of applications in transportation, logistics, and distribution, in-
cluding delivery services, fleet management, waste collection, public transportation, and more.
Solving the VRP optimally for large-scale instances is computationally challenging, and vari-
ous heuristic and metaheuristic algorithms have been developed to approximate near-optimal
solutions efficiently.

By addressing the Vehicle Routing Problem, organizations can improve their operational
efficiency, reduce transportation costs, enhance customer service, and effectively utilize their
resources and vehicles.
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Figure 2.2: An example of a Vehicle Routing Problem

2.2.1 Mathematical Modeling of Vehicle Routing Problem (VRP)
The Vehicle Routing Problem (VRP) can be formulated as a mathematical optimization problem.
Let’s define the VRP using the following notations:

• N : Set of customer locations, indexed by i = 1, 2, . . . , n.

• V : Set of vehicles available for serving the customers, indexed by j = 1, 2, . . . ,m.

• Qj : Maximum capacity of vehicle j.

• dij : Distance or cost of traveling from location i to location j.

• qi: Demand of customer location i.

• xij : Binary decision variable indicating if vehicle j travels from location i to location j.
Takes the value of 1 if the vehicle travels directly from i to j, and 0 otherwise.

• ui: Cumulative demand up to customer location i.

The VRP can be mathematically formulated as follows:
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Minimize:
n∑

i=1

m∑
j=1

dij · xij

subject to:
m∑
j=1

xij = 1, ∀i ∈ N (Each customer is visited exactly once)

n∑
i=1

qi · xij ≤ Qj , ∀j ∈ V (Vehicle capacity constraint)

ui + qi ≤ uj +M · (1− xij), ∀i ∈ N, j ∈ N \ {i} (Subtour elimination constraint)
ui ≥ qi, ∀i ∈ N (Demand fulfillment constraint)
xij ∈ {0, 1}, ∀i ∈ N, j ∈ V (Binary decision variable)

In the objective function, we seek to minimize the total distance or cost of the routes taken
by the vehicles. The first constraint ensures that each customer is visited exactly once. The
second constraint guarantees

• Minimize:
∑n

i=1

∑m
j=1 dij · xij

This objective function seeks to minimize the total distance or cost of the routes taken by
the vehicles. It is the sum of the distances (or costs) multiplied by the binary decision
variables indicating whether a vehicle travels from location i to location j.

• Subject to:
∑m

j=1 xij = 1, ∀i ∈ N

This constraint ensures that each customer is visited exactly once. It states that the sum
of the binary decision variables for each customer i should be equal to 1, indicating that
exactly one vehicle visits that customer.

• Subject to:
∑n

i=1 qi · xij ≤ Qj , ∀j ∈ V

This constraint represents the vehicle capacity constraint. It states that the sum of the
demands of the assigned customers (multiplied by the binary decision variables) for each
vehicle j should be less than or equal to the maximum capacity Qj of that vehicle.

• Subject to: ui + qi ≤ uj +M · (1− xij), ∀i ∈ N, j ∈ N \ {i}
This constraint is the subtour elimination constraint. It ensures that there are no subtours,
which would violate the requirement of visiting each customer only once. It states that
the cumulative demand at customer i, plus the demand of customer i, should be less than
or equal to the cumulative demand at customer j, plus a large constant M multiplied by
(1−xij). This ensures that if xij is 0, indicating that there is no direct connection between
customers i and j, the constraint is not binding[12].

• Subject to: ui ≥ qi, ∀i ∈ N

This constraint represents the demand fulfillment constraint. It ensures that the cumulative
demand at each customer i is greater than or equal to its demand qi. This ensures that
the assigned vehicles can meet the demands of the customers.

• Subject to: xij ∈ {0, 1}, ∀i ∈ N, j ∈ V

This constraint defines the binary decision variables xij as either 0 or 1, indicating whether
vehicle j travels from location i to location j or not.
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2.3 Different Variants of VRP
There are several variants of the Vehicle Routing Problem (VRP), each addressing specific char-
acteristics and requirements. In this section, we will discuss 10 different variants of VRP, along
with brief definitions of each variant.

2.3.1 VRP with Time Windows (VRPTW)
VRPTW extends the VRP by incorporating time windows, which specify the time intervals
within which customers must be serviced. The objective is to find routes that satisfy the time
constraints while minimizing the total distance or time traveled.

Example

• Customers: The company has a list of customers, each with a specific location, a time
window during which they can receive the delivery, and a package to be delivered.

• Vehicles: The company has a fleet of vehicles with limited capacity that can be used for
making the deliveries. Each vehicle has its own starting location.

• Time Windows: Each customer has a time window during which they can receive the
delivery. The vehicles must arrive at the customer’s location within this time window.

• Capacity Constraints: Each vehicle has a maximum capacity limit. The total volume or
weight of packages assigned to a vehicle should not exceed this limit.

2.3.2 VRP with Pickup and Delivery (VRPPD)
VRPPD involves pickup and delivery tasks, where goods are collected from pickup locations
and delivered to corresponding delivery locations. The objective is to optimize the routes and
schedules for pickup and delivery while considering vehicle capacity and time constraints[4].

Example

• Customers: The company provides delivery and pickup services for customers. Each cus-
tomer has specific pickup and delivery locations.

• Packages: Customers request package deliveries and returns. Each package has its own
characteristics such as size, weight, and priority.

• Pickup and Delivery Points: The company has designated locations where packages are
picked up from or delivered to customers.

2.3.3 VRP with Split Deliveries (VRPSD)
VRPSD allows the splitting of customer demands across multiple vehicles. The objective is to
minimize the number of vehicles used and the total distance traveled while ensuring that the
split deliveries satisfy the vehicle capacity constraints.[4]
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Example

• Customers: The company provides delivery services to multiple customers. Each customer
has a specific delivery location.

• Orders: Customers place orders for products or goods that need to be delivered.

• Split Deliveries: Some orders may require splitting into multiple deliveries due to factors
such as different delivery time preferences or product availability.

• Delivery Points: The company has designated delivery points where goods are dropped off
to customers.

2.3.4 VRP with Backhauls (VRPB)
VRPB considers the transportation of goods from customers back to a central depot or other
designated locations, known as backhauls. The objective is to optimize the routes for both
deliveries and backhauls while considering vehicle capacity and cost constraints[17].

Example

• Customers: The company provides delivery services to multiple customers who require
goods to be delivered to their locations.

• Pickup Points: In addition to deliveries, the company also needs to pick up goods from
certain locations, such as suppliers or warehouses.

• Vehicles: The company has a fleet of vehicles with limited capacity that can be used for
both deliveries and pickups.

2.3.5 VRP with Multiple Depots (VRPMD)
VRPMD involves multiple depots from which vehicles start and return. The objective is to
assign customers to different depots and determine the routes for each vehicle while minimizing
the total distance or cost[17].

Example

• Depots: The company operates multiple depots or distribution centers from which goods
are dispatched for delivery.

• Customers: The company serves a diverse set of customers located in different regions or
areas.

• Vehicles: The company has a fleet of vehicles with limited capacity to transport goods from
the depots to the customers.

• Vehicle Depots: Each vehicle is assigned to a specific depot and starts and ends its routes
at the same depot.

2.3.6 VRP with Heterogeneous Fleet (VRPHF)
VRPHF considers a fleet of vehicles with different capacities, speeds, or cost rates. The ob-
jective is to assign customers to appropriate vehicles and optimize the routes considering the
heterogeneous characteristics of the fleet[7].
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2.3.7 VRP with Time-Varying Demand (VRPTD)
VRPTD deals with customer demands that change over time. The objective is to dynamically
assign vehicles and optimize the routes to handle the time-varying demand while minimizing the
total distance or cost.[8]

2.3.8 VRP with Stochastic Demand (VRPSD)
VRPSD takes into account customer demands that are uncertain or stochastic. The objective
is to determine robust routes that can handle different demand scenarios with minimal cost or
distance[8].

2.3.9 Green VRP (GVRP)
GVRP focuses on reducing the environmental impact of the VRP by considering factors such
as fuel consumption, emissions, and vehicle routing efficiency. The objective is to optimize the
routes while minimizing carbon footprint and promoting sustainability[1].

2.3.10 Capacitated VRP (CVRP)
Capacitated VRP (CVRP) is a variant of the Vehicle Routing Problem that incorporates vehicle
capacity constraints in addition to customer demands. In CVRP, the objective is to determine
optimal routes for a fleet of vehicles, considering both the capacity limitations of each vehicle
and the total distance or cost traveled[18].

The objective function of CVRP is to minimize the total distance or cost of the routes taken
by the vehicles. It can be mathematically represented as:

Minimize:
n∑

i=1

m∑
j=1

dij · xij

where:

• dij represents the distance or cost of traveling from location i to location j,

• xij is a binary decision variable indicating if vehicle j travels from location i to location j.
It takes the value of 1 if the vehicle travels directly from i to j, and 0 otherwise.

The capacity constraints in CVRP ensure that the total demand of the assigned customers
does not exceed the maximum capacity of each vehicle. These constraints can be formulated as:

n∑
i=1

qi · xij ≤ Qj , ∀j ∈ V

where:

• qi represents the demand of customer location i,

• Qj is the maximum capacity of vehicle j.

By optimizing the routes and satisfying the capacity constraints, CVRP aims to efficiently
allocate vehicles and serve customers while minimizing transportation costs. Solving CVRP
efficiently contributes to improved operational efficiency, reduced transportation expenses, and
better resource utilization.
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2.4 Conclusion
In this chapter, we have introduced the Vehicle Routing Problem (VRP) and presented its math-
ematical formulation. Our focus of interest lies specifically in the Capacitated Vehicle Routing
Problem (CVRP), a variant of VRP that considers vehicle capacity constraints in addition to
customer demands.

In the next chapter, we will delve into various methods that can be employed to find solutions
for the CVRP. Specifically, we will explore three different approaches: Ant Colony Optimization,
Genetic Algorithms, and Particle Swarm Optimization. These methods offer innovative and
efficient ways to tackle the CVRP and provide near-optimal solutions.

By studying and implementing these algorithms, we aim to address the challenges posed by
the CVRP and contribute to the field of optimization and logistics. These techniques have shown
promising results in solving complex routing problems and optimizing the allocation of resources.
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Chapter 3

Metaheuristics For Solving VRP
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Introduction
In this chapter, we shall introduce a set of methods called metaheuristics, which are a series of
optimization algorithms designed to solve difficult optimization problems for which no classical
methods are known to be more effective. They are often used as general methods to optimize
a wide range of different problems without fundamentally modifying the employed algorithms.
most importantly we will mention three of the most successful metaheuristics which are Ant
Colony Optimization (ACO), Genetic Algorithms (GA), and our subject of study, Par-
ticle Swarm Optimization (PSO).

3.1 Overview of metaheuristics

3.1.1 definition of meraheuristics
Metaheuristics are high-level problem-solving methodologies used in optimization that provide
flexible and adaptive approaches for finding good or near-optimal solutions to complex problems.
These algorithms employ iterative and stochastic techniques, often inspired by natural processes,
to explore large solution spaces and handle constraints. While not guaranteeing optimal so-
lutions, metaheuristics aim to efficiently search for satisfactory solutions within a reasonable
amount of time.[16] Examples of popular metaheuristic algorithms include Genetic Algorithms
(GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), Ant
Colony Optimization (ACO), and Differential Evolution (DE). These algorithms have been suc-
cessfully applied to various operational research problems, including vehicle routing, scheduling,
resource allocation, and facility location, among others. Metaheuristics offers a powerful and
versatile approach to solving complex optimization problems in operational research, providing
a balance between solution quality and computational efficiency. They are particularly useful
when traditional exact methods are not feasible due to the problem’s size, complexity, or time
constraints.

3.1.2 When to Apply Metaheuristics
Complex Optimization Problems

When the problem is complex and lacks a well-defined mathematical formulation, metaheuristics
provide a flexible and adaptable approach to finding near-optimal solutions.

Combinatorial Optimization Problems

Metaheuristics are effective for solving combinatorial optimization problems where the search
space is large and discrete, such as the Traveling Salesman Problem or the Vehicle Routing
Problem.

Lack of Exact Methods

When traditional exact methods, such as mathematical programming or exhaustive search algo-
rithms, are not feasible due to the problem’s size, complexity, or computational requirements,
metaheuristics offer a practical alternative.[17]
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Noisy or Uncertain Environments

Metaheuristics can handle problems with uncertain or stochastic components, where the objective
is to find robust solutions that perform well across different scenarios or with noisy input data.[19]

Multi-objective Optimization

Metaheuristics excel in solving multi-objective optimization problems, where multiple conflicting
objectives need to be optimized simultaneously, and a trade-off between them must be found.[3]

Lack of Domain-specific Knowledge

When specific domain knowledge or problem-specific algorithms are not available or difficult to
apply, metaheuristics provide a general-purpose approach that can be applied to a wide range of
problems without requiring specialized expertise.

3.1.3 Classifications of Metaheuristics
These classifications provide an overview of different dimensions along which metaheuristics can
be categorized. It is important to note that many metaheuristics exhibit characteristics that
span multiple classifications, as researchers continue to develop and adapt these algorithms for
various problem domains.[9]

Population-Based vs. Single-Solution

Metaheuristics can be classified based on whether they operate on a population of solutions or
a single solution at a time. Population-based metaheuristics, such as Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO), maintain a group of candidate solutions and perform
operations like reproduction, crossover, and mutation to explore the solution space. Single-
solution metaheuristics, such as Simulated Annealing (SA) and Tabu Search (TS), iteratively
improve a single solution by exploring neighboring solutions.

Stochastic vs. Deterministic

Metaheuristics can be categorized based on the level of randomness or determinism in their search
process. Stochastic metaheuristics, such as Genetic Algorithms and Ant Colony Optimization
(ACO), employ randomization in their solution generation, search operators, or decision-making
processes. Deterministic metaheuristics, such as Simulated Annealing and Hill Climbing, follow
a deterministic search path but may use randomization for diversification or exploration.

Trajectory-Based vs. Population-Based

Metaheuristics can be divided into trajectory-based and population-based approaches. Trajectory-
based metaheuristics, such as Hill Climbing and Simulated Annealing, follow a single trajectory in
the solution space, exploring and improving upon a single solution[11]. Population-based meta-
heuristics, such as Genetic Algorithms and Particle Swarm Optimization, maintain a population
of solutions that interact and evolve over time.
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Memory-Based vs. Memoryless

Metaheuristics can be classified based on their usage of memory. Memory-based metaheuristics,
such as Tabu Search and Scatter Search, utilize memory structures to store information about
past solutions or search patterns. This memory aids in avoiding revisiting the same solutions
or guiding the search towards promising areas. Memoryless metaheuristics, such as Genetic
Algorithms and Simulated Annealing, do not explicitly use memory and make decisions based
solely on the current solution or search state.[5]

Exploration vs. Exploitation

Metaheuristics can be characterized by their balance between exploration and exploitation. Ex-
ploration refers to the process of searching diverse regions of the solution space to discover new
and potentially better solutions. Exploitation involves intensifying the search around promising
solutions to improve their quality. Some metaheuristics, like Genetic Algorithms, emphasize
exploration by maintaining population diversity, while others, like Hill Climbing, focus more on
exploitation by intensifying the search around the current solution.

3.2 principals of metaheuristics

3.2.1 Ant colony optimization (ACO)
Definition

Ant Colony Optimization (ACO) is a metaheuristic algorithm inspired by the foraging behavior
of ants. It aims to solve optimization problems by simulating the collective intelligence of ant
colonies[10]. ACO algorithms utilize artificial ants that construct solutions by depositing and
following pheromone trails. The algorithm iteratively updates the pheromone levels based on
the quality of the solutions found, facilitating the discovery of good or near-optimal solutions for
complex problems.

Main Variants

There are several variants and extensions of the ACO algorithm that have been proposed to
enhance its performance and address specific problem characteristics. Some notable variants
include:

• Ant System (AS)

• Max-Min Ant System (MMAS)

• Rank-based Ant System (RAS)

• Ant Colony System (ACS)

• Elitist Ant System (EAS)

These variants introduce various modifications such as pheromone bounds, ranking mechanisms,
local search, and elitism to improve solution quality and exploration capabilities.
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3.2.2 Ant colony algorithm

Algorithm 1 Ant Colony Optimization (ACO)
Require: Problem instance
Ensure: Best solution

1: Initialize pheromones and solutions
2: Initialize parameters (number of iterations, ant colony size, etc.)
3: while termination condition is not met do
4: for each ant do
5: Construct the solution by following probabilistic selection rules
6: Update the pheromone on edges based on the quality of the solution constructed by the

ant
7: end for
8: Perform global update to track the best solution found
9: Evaporate pheromone on all edges

10: Perform local search to intensify the search in promising regions
11: Perform diversification mechanism to explore new areas of the search space
12: Update the exploration-exploitation balance based on problem-specific factors
13: end while
14: return Best solution

the ACO algorithm for the CVRP utilizes artificial ants that construct solutions by iteratively
selecting customers to visit, taking into account pheromone levels and heuristic information. The
pheromone levels are updated based on the quality of the solutions, and the algorithm balances
exploration and exploitation to guide the ants in finding optimal or near-optimal solutions. The
process is repeated for a certain number of iterations, and the best solution found is returned as
the output.[13]

1. Initialization: Initialize a population of artificial ants and set initial pheromone levels on
the edges of the graph representing the problem.

2. Ant Movement: Each ant constructs a solution by iteratively selecting a customer to visit
based on pheromone levels and heuristic information, considering the capacity constraints
of the vehicles.

3. Pheromone Update: After all ants have constructed their solutions, update the pheromone
levels on the edges based on the quality of the solutions.

4. Local Search: Optionally, apply local search techniques to improve the quality of the
solutions by making small modifications to the routes.

5. Best Solution Update: Track the best solution found so far and update it if a new better
solution is discovered.

6. Exploration-Exploitation Balance: Adjust the exploration and exploitation trade-off by
updating the pheromone levels to guide the ants in finding good-quality solutions while
exploring new routes.

7. Iteration: Repeat steps 2-6 for a specified number of iterations or until a termination
condition is met.
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8. Return Best Solution: Return the best solution found during the iterations as the output,
representing the optimized vehicle routes for the CVRP.

3.2.3 Advantages of Ant Colony Optimization
• Flexibility: ACO can be applied to various optimization problems, making it versatile.

• Global Search: ACO explores the entire search space, avoiding local optima.

• Adaptability: ACO adjusts well to dynamic problem environments.

• Robustness: ACO handles uncertainty and robustly makes decisions.

• Exploration-Exploitation Balance: ACO effectively balances exploration and exploitation
for better solutions.

• Parallelization: ACO can be parallelized, enabling faster convergence and efficient resource
usage.

3.3 Genetic Algorithms

3.3.1 definition
Genetic Algorithm (GA) is a metaheuristic algorithm inspired by the process of natural se-
lection and evolution. It is used to solve optimization problems by mimicking the principles of
genetics and evolution. In a GA, a population of candidate solutions, represented as individuals,
undergoes a process of selection, crossover, and mutation. Through successive generations, indi-
viduals with better fitness, determined by an objective function, are more likely to be selected
and contribute to the next generation. This iterative process allows the algorithm to explore
and exploit the search space, gradually converging toward an optimal or near-optimal solution.
The GA’s ability to combine exploration and exploitation makes it effective for solving complex
optimization problems with large solution spaces and non-linear fitness landscapes.[14]

3.3.2 Concepts of Genetic Algorithm for CVRP
the main variables of GA

• Population: It represents a group of individuals or candidate solutions. The population
size determines the number of solutions considered in each generation.

• Individual: It refers to a single candidate solution within the population. Each individual
is encoded using a set of chromosomes.

• Chromosomes: They are structures that contain the genetic information of an individual.
Chromosomes are often represented as strings of genes or binary values.

• Genes: They are the basic units of information within a chromosome. Genes represent
specific variables or characteristics of a solution. In binary-encoded GAs, genes are typically
represented as bits.

• Bits: In binary-encoded GAs, bits are the smallest units of information that make up a
gene. Each bit can have a value of 0 or 1, representing different alleles or choices for that
particular gene.
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The Algorithm of GA

Algorithm 2 Genetic Algorithm (GA)
Require: Problem instance
Ensure: Best solution

1: Initialize population with random solutions
2: Evaluate the fitness of each solution
3: repeat
4: Select parent solutions based on their fitness
5: Perform crossover to create offspring solutions
6: Apply mutation to introduce small random changes to the offspring solutions
7: Evaluate the fitness of the new offspring solutions
8: Select the best solutions from the current population and the offspring solutions to form

the next generation population
9: until termination condition is met

10: return Best solution found in the final population

the concept of Genetic algorithms for CVRP

1. Initialization: Generate an initial population of candidate solutions, where each solution
represents a set of routes for the vehicles.

2. Evaluation: Evaluate the fitness of each solution in the population based on objective
criteria, such as total distance traveled or total cost.

3. Selection: Select a subset of solutions from the population to serve as parents for the
next generation. The selection process is typically based on fitness, favoring solutions with
higher fitness values.

4. Crossover: Create new offspring solutions by combining genetic information from the se-
lected parents. Crossover operators like one-point crossover or uniform crossover are used
to exchange genetic material between parents.

5. Mutation: Introduce random changes in the genetic information of offspring solutions to
promote exploration of the search space. Mutation operators modify a small portion of the
solution, such as swapping or randomly altering genes.

6. Replacement: Replace some of the existing solutions in the population with the offspring
solutions. The replacement process is often based on a combination of elitism (keeping the
best solutions) and diversity preservation.

7. Termination: Check if a termination condition is met, such as reaching a maximum number
of generations or finding a satisfactory solution. If not, go back to step 2.

Advantages of Genetic algorithms

• Effective exploration: The GA can explore a large search space efficiently, allowing it to
discover diverse and potentially better solutions to the CVRP.
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• Adaptability: The GA can adapt and evolve its solutions over generations, allowing it to
handle dynamic or changing CVRP instances.

• Robustness: The GA is robust against local optima, as it maintains population diversity
and can escape suboptimal solutions.

• Flexibility: The GA can handle various problem formulations and constraints of the CVRP,
making it suitable for different real-world scenarios.

• Scalability: The GA can handle large-scale CVRP instances by parallelizing evaluations
and utilizing evolutionary operators efficiently[19].

• Solution quality: The GA tends to find good-quality solutions, if not optimal, for the
CVRP within reasonable computational time.

3.4 Particle Swarm Optimization

3.4.1 Introduction
PSO (Particle Swarm Optimization) is a metaheuristic optimization algorithm inspired by the
collective behavior of organisms in nature, such as bird flocking or fish schooling. It was first
proposed by Kennedy and Eberhart in 1995. PSO is widely used to solve various optimization
problems by simulating the behavior of a swarm of particles in a search space.

3.4.2 definition
PSO is a population-based optimization algorithm that uses a swarm of particles to explore
and exploit the search space. Each particle represents a potential solution to the optimization
problem, and the swarm collectively moves through the search space to find the optimal solution.
The movement of particles is guided by their own experience and the knowledge shared within
the swarm.

3.4.3 The main characters of PSO
For a better understanding of Particle swarm Optimization, these are the main variables.

• Swarm: PSO operates with a population of particles forming a swarm.

• Particle: Each particle represents a potential solution in the search space.

• Position: Each particle has a position vector that represents its current solution.

• Velocity: Each particle has a velocity vector that determines its movement in the search
space.

• Fitness: The fitness value evaluates the quality of a particle’s solution.

• Personal Best: Each particle maintains its best position encountered so far.

• Global Best: The swarm tracks the best position found among all particles.

• Social Interaction: Particles communicate by adjusting their velocities based on personal
and global information.
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• Exploration: PSO promotes exploration by allowing particles to explore different areas of
the search space.

• Exploitation: PSO encourages exploitation by leveraging the best solutions found so far.

• Iterations: The algorithm progresses through a series of iterations, updating positions and
velocities.

• Termination Criterion: PSO continues until a termination condition is met, such as reaching
a maximum number of iterations or finding a satisfactory solution.

3.4.4 PSO Algorithm

Require: Problem instance
Ensure : Best solution
Initialize particles with random positions and velocities Initialize parameters (number of iter-
ations, swarm size, inertia weight, etc.) Initialize the global best position and fitness while
termination condition is not met do

for each particle do
Update the velocity using the inertia weight and acceleration terms Update the position
based on the new velocity Evaluate the fitness of the current position if the fitness is
better than the personal best fitness then

Update the personal best position and fitness
end
if the fitness is better than the global best fitness then

Update the global best position and fitness
end

end
end
return Best solution

The algorithm simulates the behavior of a swarm of particles searching for the optimal solution in
a given problem space. By adjusting their velocities and positions based on personal and global
information, the particles explore the search space and converge towards promising regions,
ultimately finding a near-optimal solution.[14]

• Initialize particles with random positions and velocities.
Each particle represents a potential solution to the optimization problem. The particles
are randomly initialized within the search space.

• Initialize parameters such as the number of iterations, swarm size, inertia weight, etc.
These parameters control the behavior and convergence of the algorithm.

• Initialize the global best position and fitness.
The global best position and fitness are initially set to the values of one of the particles.

• While the termination condition is not met, do the following steps iteratively:

– This loop continues until a certain stopping criterion is satisfied (e.g., a maximum
number of iterations).
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– For each particle, do the following steps:
∗ Update the velocity of the particle based on the inertia weight and acceleration

terms.
The velocity determines the direction and magnitude of the particle’s movement.

∗ Update the position of the particle based on the new velocity.
The position represents a potential solution in the search space.

∗ Evaluate the fitness of the current position.
The fitness function quantifies the quality of the solution.

∗ If the fitness of the current position is better than the personal best fitness of the
particle, update the personal best position and fitness accordingly.
The personal best position and fitness represent the best solution found by the
particle.

∗ If the fitness of the current position is better than the global best fitness, update
the global best position and fitness accordingly.
The global best position and fitness represent the best solution found by any
particle in the swarm.

• Return the best solution found (global best position and fitness).

3.4.5 Mathematical Presentation of Particle Swarm Optimization (PSO)
• Particle Position: Each particle i in the swarm has a position represented by a vector

xi = (xi1, xi2, ..., xin), where n is the dimensionality of the problem.

• Particle Velocity: Each particle i also has a velocity represented by a vector vi = (vi1, vi2, ..., vin),
which determines the direction and speed of movement in the search space.

• Particle Fitness: The fitness of each particle is evaluated based on its position in the search
space. It represents the quality of the solution associated with that position.

• Personal Best: Each particle maintains its personal best position, denoted as pi = (pi1, pi2, ..., pin),
which corresponds to the best position it has encountered so far with the highest fitness.

• Global Best: The swarm keeps track of the global best position, denoted as g = (g1, g2, ..., gn),
which represents the position with the highest fitness among all particles in the swarm.

• Velocity Update Equation: The velocity of each particle is updated using the following
equation:

vij(t+ 1) = w · vij(t) + c1 · rand1 · (pij − xij(t)) + c2 · rand2 · (gj − xij(t))

where vij(t + 1) is the velocity of particle i in dimension j at time t + 1, w is the inertia
weight, c1 and c2 are the acceleration coefficients, rand1 and rand2 are random numbers
between 0 and 1, pij is the personal best position of particle i in dimension j, and gj is the
global best position in dimension j.

• Position Update Equation: The position of each particle is updated using the following
equation:

xij(t+ 1) = xij(t) + vij(t+ 1)

where xij(t+ 1) is the updated position of particle i in dimension j at time t+ 1.
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• Termination Criterion: PSO continues to update the velocities and positions of particles
until a termination criterion is met, such as reaching a maximum number of iterations or
finding a satisfactory solution.
These mathematical equations govern the movement and interaction of particles in the PSO
algorithm, allowing them to explore the search space, update their positions and velocities,
and converge towards optimal solutions[2].

3.4.6 Example
we are using Particle Swarm Optimization (PSO) to find the minimum of a quadratic function
f(x) = x2. PSO is a population-based metaheuristic algorithm that imitates the social behavior
of bird flocking or fish schooling to solve optimization problems.
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The graph illustrates the optimization process of PSO over multiple iterations. Here’s a
step-by-step explanation of what is happening in the graph:
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Explanation of the Example
Step 1: Initialization
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The red dots represent the initial positions of particles in the search space. The cyan dot
represents the global best position found so far.

Step 2: Movement towards local best
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In each iteration, particles move towards their personal best positions (indicated by the blue
arrows). The personal best is the best position a particle has found for itself. The length and
direction of each arrow represent the movement of particles towards their personal best.
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Step 3: Movement towards global best

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Particles
Global Best

Additionally, particles are attracted towards the global best position found by any particle in the
swarm (indicated by the green arrows). The global best is the best position found by any particle
in the entire swarm. The length and direction of each green arrow represent the movement of
particles towards the global best.

Step 4: Iterative improvement
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As the iterations progress, particles continue to adjust their positions based on personal best,
global best, and their current velocities. In this example, particles move towards improved
positions by incorporating velocity adjustments (indicated by the orange arrows). The length
and direction of each orange arrow represent the movement of particles based on their current
velocities.
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Step 5: Convergence
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As the iterations continue, the particles gradually converge to a common solution. In this exam-
ple, which is at x = 0. the particles move closer to a region that represents the optimal solution
to the problem. The convergence is indicated by the particles clustering around a specific area.

Example Conclusion

In summary, Particle Swarm Optimization (PSO) is an optimization algorithm that iteratively
adjusts the positions of particles to find near-optimal solutions. The particles explore the search
space by moving towards their personal best and the global best positions. Through iterative
improvement, the particles gradually converge to a solution. The convergence can be observed
in the graph where the particles cluster around the optimal solution region.

3.5 Adaptation of PSO for CVRP

3.6 Problem Formulation and PSO-based Approach
The mathematical approach for adapting the Particle Swarm Optimization (PSO) algorithm to
solve the Capacitated Vehicle Routing Problem (CVRP) involves formulating the objective func-
tion, defining the encoding scheme, and specifying the velocity and position update equations.
Let’s explore the mathematical aspects of this adaptation:

3.6.1 Objective Function
The objective function aims to minimize the total distance or cost required to serve all customers
while respecting the vehicle capacity constraints and other problem-specific requirements[15]. It
can be represented mathematically as:

min
n∑

i=1

n∑
j=1

dij

m∑
k=1

xijk
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subject to:
n∑

j=1

m∑
k=1

xijk = 1 ∀i = 1, 2, . . . , n

n∑
i=1

m∑
k=1

xijk = 1 ∀j = 1, 2, . . . , n

n∑
i=1

n∑
j=1

xijk ≤ Q ∀k = 1, 2, . . . ,m

∑
i∈S

∑
j∈S,j 6=i

xijk ≤ |S| − 1 ∀S ⊆ {1, 2, . . . , n}, |S| ≥ 2

where:

• n is the total number of customers

• m is the number of vehicles

• dij represents the distance or cost between customer i and customer j

• xijk is a binary decision variable indicating whether vehicle k visits customer i before
customer j

• Q is the capacity of each vehicle

3.6.2 Encoding Scheme
The encoding scheme represents a candidate solution as a particle, where each particle’s position
corresponds to a vehicle route. The position of a particle consists of a sequence of customers to
be visited, including the depot as the starting and ending point.

3.6.3 Velocity and Position Update Equations
The velocity and position update equations govern the movement of particles during the opti-
mization process. They are responsible for balancing exploration and exploitation to guide the
search towards optimal solutions. The velocity update equation for particle p at iteration t + 1
is given by:

vp(t+ 1) = ω · vp(t) + c1 · r1 · (pbest − xp(t)) + c2 · r2 · (gbest − xp(t))

where:

• vp(t) is the velocity of particle p at iteration t

• ω is the inertia weight controlling the impact of the previous velocity

• c1 and c2 are the acceleration coefficients controlling the impact of the particle’s best
position (pbest) and the swarm’s best position (gbest), respectively

• r1 and r2 are random numbers between 0 and 1

• xp(t) represents the position (vehicle route) of particle p at iteration t
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The position update equation is then given by:

xp(t+ 1) = xp(t) + vp(t+ 1)

After each position update, the particle’s position is adjusted if necessary to ensure that it
satisfies the problem-specific constraints, such as the vehicle capacity constraints.

By formulating the objective function, defining the encoding scheme, and specifying the veloc-
ity and position update equations, we establish the mathematical foundation for the adaptation
of the PSO algorithm to solve the CVRP. These mathematical aspects guide the implementa-
tion and execution of the PSO-based approach to efficiently explore the solution space and find
optimal or near-optimal solutions to the CVRP.

3.7 Conclusion
In this chapter, we presented some of the metaheuristic methods in a general manner, but
we focused on our subject of study which is Particle Swarm Optimization, and included its
mathematical adaptation to solve the Capacitated Vehicle Routing Problem.
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Chapter 4

The Application of the PSO
Algorithm For CVRP

Introduction
In this chapter, we are interested in solving the Capacitated Vehicle Routing Problem. The
objective is to minimize the cost of transportation with respecting the capacity constraint of the
vehicles in the problem, the approach to this objective is done with Particle Swarm Optimization.

4.1 Problem description
The problem we are discussing is a timeless one-way delivery, meaning the capacitated vehicle
routing problem in this study does not consider the time requirements for delivering goods to
customers when constructing the delivery routes.

Delivery from the Depot to multiple customers using multiple delivery vehicles, where the
location of each customer and the order is already given and confirmed. Each delivery vehicle has
a certain load capacity. The coming conditions are necessary to improve the objective function.

• The total demand of each client cannot exceed the capacity of the distribution.

• The need of each client must be satisfied, and the delivery must be done with just one
vehicle.

The problem that we will deal with in this study is delivering cosmetic products to 10 cus-
tomers with 5 vehicles.

4.2 The approach Method
To solve this problem we will use the Particle Swarm Optimization and its algorithm.

Data

The data used in this study are presented bellow: The vehicle capacity used is 50
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Depot 1 2 3 4 5 6 7 8 9
Depot 0 42 81 73 52 96 37 28 61 10

1 42 ∞ 88 25 79 35 89 65 53 86
2 81 88 ∞ 29 96 84 57 33 47 62
3 73 25 29 ∞ 57 44 92 80 15 50
4 52 79 96 57 ∞ 25 60 45 69 81
5 96 35 84 44 25 ∞ 38 76 95 23
6 37 89 57 92 60 38 ∞ 61 15 76
7 28 65 33 80 45 76 61 ∞ 66 90
8 61 53 47 15 69 95 15 66 ∞ 73
9 10 86 62 50 81 23 76 90 73 ∞

Table 4.1: The Distance Matrix.

Customer Demand
1 10
2 8
3 12
4 6
5 18
6 4
7 15
8 22
9 2
10 17

Table 4.2: Customer Demands

4.2.1 Swarm Initialization
Initializing the swarm:

Creating a population of particles, where each particle represents a potential solution.
Each particle consists of a set of routes, and each route represents a sequence of customers

to be visited.
Randomly initializing the positions (solution) and velocities for each particle.
Mathematical formulation:
Let N be the number of particles in the swarm.
Let M be the number of routes per particle.
Let K be the number of customers.
Each particle i has a position vector Xi = [Xi1, Xi2, ..., XiM ] representing the routes.
Each route j in particle i has a sequence of customers, Rij = [Rij1, Rij2, ..., RijL].
Each customer k has a demand Dk.
Initialization process:
Initialize the positions (routes) for each particle randomly:
For each particle i from 1 to N :

• For each route j from 1 to M :

– Randomly assign a sequence of customers to route Rij .
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Initialize the velocities for each particle randomly:
For each particle i from 1 to N :

• For each route j from 1 to M :

– Randomly assign a velocity Vij to each customer in route Rij .

Given Data:

• Number of particles (N) = 10

• Number of routes per particle (M) = 1

• Number of customers (K) = 10

• Customer demands:

– Customer 1: 10
– Customer 2: 8
– Customer 3: 12
– Customer 4: 6
– Customer 5: 18
– Customer 6: 4
– Customer 7: 15
– Customer 8: 22
– Customer 9: 2
– Customer 10: 17

Initialization Process:
Initialize the positions (routes) for each particle randomly:

• For each particle i from 1 to 10:

– For each route j from 1 to 1:
∗ Randomly assign a sequence of customers to route Rij .

Let’s assume the initial positions for each particle are as follows:

4.2.2 Evaluation
In the CVRP, the evaluation process involves calculating the total distance traveled by each
particle’s solution, taking into account the distances between customers and the capacity con-
straints of the vehicles. The evaluation provides a quantitative measure of how well each particle’s
solution satisfies the problem requirements and objectives.

Let Pi represent the position of particle i, which consists of a set of routes assigned to vehicles.
Each route visits a subset of customers in a specific order. The fitness value of particle i, denoted
as f(Pi), is calculated as the sum of distances traveled by each vehicle in the particle’s solution:

f(Pi) =
∑

vehicle v

∑
customer j∈route r∈Pi

distance(j, previous customer of j)
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Table 4.3: Particles

Particle 1
3 9 7 5 2 4 1 6 10 8

Particle 2
10 3 8 6 4 1 2 7 5 9

Particle 3
9 4 10 8 6 3 5 1 2 7

Particle 4
6 3 7 1 10 4 2 8 9 5

Particle 5
1 5 10 6 3 8 4 2 7 9

Particle 6
4 8 10 7 1 9 5 6 3 2

Particle 7
8 5 6 3 7 9 2 10 1 4

Particle 8
10 6 3 8 9 7 4 1 5 2

Particle 9
3 5 10 1 8 6 2 4 7 9

Particle 10
6 1 5 3 8 10 9 4 7 2

subject to the capacity constraint of each vehicle.
Using the given data, we can perform the evaluation for each particle and determine their

respective fitness values. The fitness value represents the total distance traveled by all vehicles
in the particle’s solution. This evaluation step allows us to compare and assess the performance
of different particles and guide the search for an optimal solution.

In the subsequent sections, we will present the evaluations of each particle, and calculate
their fitness values using the provided distance matrix and capacity constraints.
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Particle Vehicle 1 Vehicle 2 Vehicle 3 Evaluation
1 [3, 9, 7, 5] [2, 4, 1, 6] [10, 8] 263
2 [10, 3, 8] [6, 4, 1, 2] [7, 5, 9] 315
3 [9, 4, 10] [8, 6, 3, 5] [1, 2, 7] 328
4 [6, 3, 7] [1, 10, 4, 2] [8, 9, 5] 298
5 [1, 5, 10] [6, 3, 8, 4] [2, 7, 9] 322
6 [4, 8, 10] [7, 1, 9, 5] [6, 3, 2] 310
7 [8, 5, 6] [3, 7, 9, 2] [10, 1, 4] 327
8 [10, 6, 3] [8, 9, 7, 4] [1, 5, 2] 328
9 [3, 5, 10] [1, 8, 6, 2] [4, 7, 9] 303
10 [6, 1, 5] [3, 8, 10, 9] [4, 7, 2] 336

Table 4.4: Evaluation of each Particle

4.2.3 the global best
by comparing the results this is the global best
Global Best: Routes: [[3, 9, 7, 5], [2, 4, 1, 6], [10, 8]] Fitness: 263

4.2.4 Movement
n order to update the particle positions, we use the following equations:

new position = current position + velocity new position=current position+velocity
Let’s calculate the updated positions for each particle based on their velocities:

Particle 1:
Current position:[3, 9, 7, 5, 2, 4, 1, 6, 10, 8]

Best position:[3, 9, 7, 5, 2, 4, 1, 6, 10, 8]
Evaluation:263

Random velocity:[0.4, 0.2, 0.8, 0.6, 0.7, 0.9, 0.3, 0.1, 0.5, 0.7]
Updated velocity:[0.81, 0.39, 1.17, 0.87, 0.96, 1.26, 0.66, 0.33, 0.99, 1.11]
Updated position:[3.81, 9.39, 7.17, 5.87, 2.96, 4.26, 1.66, 6.33, 10.99, 8.11]

Adjusted position (due to capacity constraint):[3, 9, 7, 5, 2, 4, 1, 6, 10, 8]
Fitness for new position:263

Best position and fitness remain unchanged.

We continue the same operation for each particle

4.2.5 Termination Condition
The algorithm terminates when either of the following conditions is met:

• The maximum number of iterations is reached.

• The fitness improvement between consecutive iterations falls below a certain threshold.
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4.2.6 Solution Extraction
Solution Extraction:

The best solution obtained from the optimization process is:
Global Best Routes:

Route 1:[3, 9, 7, 5]
Route 2:[2, 4, 1, 6]
Route 3:[10, 8]

Global Best Fitness: 263
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4.3 development environment

Table 4.5: Characteristics of Python Used

Characteristic Description
Language Python
Libraries NumPy, Random
Data Structures Numpy Array
Control Structures For loop, If statement
Object-Oriented Programming Classes
Optimization Algorithm Particle Swarm Optimization (PSO)

Variables
distance_matrix, customer_demands, depot, vehi-
cle_capacity, num_vehicles, num_particles, max_iter-
ations, inertia_weight, cognitive_weight, social_weight

Functions calculate_fitness, __init__

4.3.1 result of the algorithm application
test 1

Num Clients Iteration Num Vehicle Num Capacity Best Route Best Fitness

10 10 3 50 [9, 8, 4, 2] [6, 7, 1] [5, 3] 437
50 3 50 [6, 2, 9, 7] [1, 4, 5] [3, 8] 437
100 3 50 [9, 4, 6, 2] [1, 3, 8] [5, 7] 437

Table 4.6: Results Table

result analyzing

In our first test, we notice that we have a stable best fitness that equals to 149, with different
routes, even with an iteration number as small as 10, in the next text we will try to run the
program with an iteration number under 10.

test 2

Num Clients Iteration Num Vehicle Num Capacity Best Route Best Fitness

10 2 3 50 [3, 5, 6, 7] [2, 8, 4] [9, 1] 499
4 3 50 [1, 2, 4, 9] [3, 7] [5, 6, 8] 491
8 3 50 [4, 2, 9, 7] [3, 6] [5, 1, 8] 533

Table 4.7: Results Table
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result analyzing

when we changed the number of iterations to go below 10, we notice that the best fitness is
increasing, and when the number of iterations was 8, it took multiple runs for the program to
reach the best fitness of 491.

Benchmark

In order to compare our results to different benchmarks, we have adjusted the number of vehicles
used, the number of customers, we will compare the results to 3 different benchmarks, with 300
iterations.

Benchmark Num Clients Num Vehicles BKS Benchmark Result
1 16 8 452 451.32
2 20 2 218 217.42
3 32 5 801 787.16

Table 4.8: Benchmark Resultsm BKS, 300 iteration

result amalazying

with 300 iterations, our best-known solution is close to the benchmark results. now we will do
the same test with 50 iterations we notice after reducing the number of iterations, the best-known

Benchmark Num Clients Num Vehicles BKS Benchmark Result
1 16 8 702 655.69
2 20 2 517 466.89
3 32 5 1026 828.13

Table 4.9: Benchmark Results, KBS, 50 itereations

solution (BKS) increased dramatically with 50 iterations

4.4 Discussion and results analyzing
In the previous test without the benchmark comparison
A number of iterations under 10: it shows that results are not optimum for our subject of study.
A number of iterations =50, and all of the results show the best-known solution equal to 437.
the second set of tests with the Benchmarks:
with 300 iterations the results are approaching the benchmark results.
we also notice after increasing the number of clients, the algorithm takes longer to run.

4.5 Conclusion
In this chapter, we did a study on particle swarm optimization or Capacitated Vehicle Rout-
ing Problem, we came to the conclusion that our PSO algorithm compared to the benchmark
provided is more likely to take longer with more clients to visit.
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General Conclusion

In conclusion, this thesis has provided an in-depth exploration of the application of Particle
Swarm Optimization (PSO) for solving the challenging Capacitated Vehicle Routing Problem
(CVRP). Throughout the three chapters, we have delved into the background of the problem,
reviewed pertinent literature, and proposed a PSO-based approach to tackle the CVRP.

While our research has yielded promising results and demonstrated the potential of PSO in
addressing the CVRP, it is important to acknowledge that there is still much more to learn and
develop in this field. Despite the progress made, our PSO algorithm has revealed areas that
warrant further investigation and improvement to achieve faster and more accurate results that
closely align with the existing benchmarks.

One key aspect that requires further attention is the fine-tuning of the PSO algorithm’s pa-
rameters. While we have made initial efforts to optimize the algorithm, additional experiments
and sensitivity analyses could be conducted to identify the optimal parameter settings that en-
hance convergence speed and solution quality. Moreover, exploring different variations of the
PSO algorithm, such as hybridizing it with other metaheuristic techniques or incorporating local
search procedures, could potentially lead to enhanced performance.

In summary, while our thesis has made significant strides in applying PSO to the CVRP, it
is evident that there is still considerable room for growth and development. By addressing the
aforementioned areas of improvement, we can advance the state-of-the-art in solving the CVRP
using PSO, ultimately contributing to the field of optimization and logistics.
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