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Abstract 
 

This master thesis deals with Super Resolution (SR) which is a set of image processing techniques 

used in computer vision to improve the quality of degraded images We focus on the differences 

between conventional image interpolation algorithms and deep learning based algorithms that have 

made significant progress in image quality improvement technology We will implement 

Conventional interpolation techniques and then we will implement deep learning algorithms 

SRCNN, VDSR,DWSR and EDSR Then the comparative study is performed in terms of calculating 

the peak signal-to-noise ratio PSNR and the structural similarity index SSIM. 

Résumés  
Ce mémoire de master traite de la Super Résolution (SR) qui est un ensemble de techniques de 

traitement d'images utilisées en vision par ordinateur pour améliorer la qualité des images 

dégradées Nous nous concentrons sur les différences entre les algorithmes d'interpolation d'images 

conventionnels et les algorithmes basés sur l'apprentissage profond qui ont fait des progrès 

significatifs dans la technologie d'amélioration de la qualité des images Nous mettrons en œuvre 

des techniques d'interpolation convolutives et ensuite nous mettrons en œuvre des algorithmes 

d'apprentissage profond SRCNN, VDSR ,DWSR et EDSR Ensuite, l'étude comparative est 

effectuée en termes de calcul du rapport signal-bruit maximal PSNR et de l'indice de similarité 

structurelle SSIM. 

 ملخص 
( وهي مجموعة من تقنيات معالجة الصور SRهذه رسالة الماجستير الاستحالة الفائقة ) تتناول هذه الرسالة الرئيسية

المستخدمة في الرؤية الحاسوبية لتحسين جودة الصور المتدهورة نركز على الاختلافات بين خوارزميات الاستيفاء التقليدية 

تعلم العميق التي حققت تقدماً كبيراً في تقنية تحسين جودة الصورة سنقوم بتطبيق تقنيات للصور والخوارزميات القائمة على ال

ثم يتم إجراء دراسة مقارنة  DWSRو  SRCNN , ,VDSR EDSRالاستحالة الفائقة ثم تطبيق خوارزميات التعلم العميق

 . SSIMومؤشر التشابه الهيكلي  PSNRمن حيث حساب نسبة ذروة الإشارة إلى الضوضاء 

 

Key words: Super Resolution , deep learning, CNN, Wavelet  
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General Introduction 

Super Resolution (SR) refers to the process of restoring high-resolution (HR) images from 

low-resolution (LR) images a fundamental task in image processing. The challenge involves 

accurate matching between low-resolution (LR) and high-resolution (HR) images, which is 

common in medical imaging. The demand for high-resolution images has increased with the rapid 

development of imaging devices and the increasing use of multimedia applications. However, 

capturing these images can be difficult and expensive. Therefore, ultrasound imaging techniques 

have been developed to improve the resolution of low-resolution images and deliver visually 

appealing and detailed results. Interpolation-based algorithms have long been used in SR 

techniques as a conventional method [1]. These methods are characterized by their computational 

efficiency and ease of implementation. They rely on interpolation techniques to estimate low-

resolution missing high-frequency information in images. However, they often have limited 

performance in preserving fine details and producing realistic textures. 

New methods based on deep learning are revolutionizing many areas of computer vision [2], 

including image super-resolution. Deep algorithms make significant improvements in 

reconstructing fine details and optimizing visual results. The algorithms rely on deep neural 

networks to learn subtle patterns within images and create high-resolution versions of low-

resolution images. Thanks to rapid advances in deep learning, deep learning models are actively 

used in various fields such as computed tomography, medical images, radar images, and others. A 

large range of deep learning-based methods have been developed, from early convolutional neural 

networks such as SRCNN to newer deep convolutional neural networks such as VDSR[7], 

DWSR[8], and EDSR[10]. 

Our work is organized into three chapters: 

In the first chapter, we discuss the basic concepts of image super decomposition, review 

traditional methods, and then focus on deep learning-based algorithms  

The second chapter will cover deep learning concepts in detail, including analyzing the 

different layers of deep learning networks. We will provide a detailed explanation of deep learning 

networks that utilize CNN. 

In the third chapter, we will study and discuss the results obtained more specifically.  

We will implement the traditional Bilinear, Bicubic, and Nearest Neighbor interpolation 

methods as well as the following super-resolution deep learning networks: SRCNN, VDSR, 

DWSR, and EDSR. We especially focus on DWSR in terms of its effectiveness in medical images. 
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Summary 

In this chapter, we will introduce the key concepts of super-

resolution image enhancement, known as image resolution 

enhancement (ISR). We will describe conventional image 

enhancement methods, and then focus on explaining four deep 

learning-based image enhancement algorithms. We will define 

the performance metrics used in this context 
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1.1 Introduction  
Image Super Resolution is an important task in image processing reconstruct HR images 

from LR images. Significant progress has been made in the field of SR [1], especially using deep 

learning (DL) techniques [15]. SR therefore represents a difficult challenge for image processing, 

as it aims to increase the resolution of the image beyond its original resolution. 

There are a wide range of applications that benefit from SR technologies, including medical 

imaging [14], surveillance , etc. ., In recent years , progress in the field of deep learning has led to 

the development of effective super-resolution methods, enhancing its potential for widespread use 

in various fields based on a variety of deep learning networks, such as VDSR [7], Deep Wavelet 

Prediction for Super-resolution (DWSR) neural networks [8] and Convolutional (CNN) and deep 

learning-enhanced super-resolution (EDSR) [10].  

In this chapter, we will explore the principle of image super-resolution process as well as the 

techniques used to improve image quality. We will discuss both conventional interpolation 

methods and deep learning-based super-resolution strategies, highlighting the advantages of these 

advanced techniques. 

1.2 Principal of image super-resolution (ISR) 

Super-resolution is a popular image processing technique used in many disciplines to convert 

LR images into HR images. Its applications extend to fields such as medical imaging, where the 

acquisition of high-resolution MRI images comes up against constraints linked to scan time, spatial 

coverage and SNR. This method overcomes these obstacles by generating high-resolution MRI 

images from their low-resolution counterparts. In image processing, super-resolution facilitates 

detection, identification and facial recognition from low-resolution security camera images. It is 

also used in digital photography and other fields [16]. 

The SR process encompasses a variety of methods, relying primarily on image processing 

algorithms to estimate missing or masked details in LR images. Among the most common 

approaches are interpolation-based super-resolution and deep learning-based super-resolution 

techniques, both of which aim to improve the quality and fidelity of images beyond their original 

resolution.
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1.3 Mathematical Modeling 

Super-resolution image processing can be mathematically modelled as an inverse problem, 

where the objective is to estimate a high-resolution image from a low-resolution image and 

additional information. Specifically, if we have a high-resolution image (HR) 𝒙 that has been 

downsampled and blurred to obtain a low-resolution image (LR) 𝒚, this downsampling and 

blurring process can be represented mathematically using a convolution operator 𝐻, which 

accounts for blurring and resolution reduction. The mathematical model can therefore be expressed 

as follows: 

𝑦 = 𝐻 ∗ 𝑥 + 𝑛 
(1.1) 

Where 𝒚 is the low-resolution image,  

• 𝒙 is the high-resolution image,  

• 𝒏 is the added noise, and  

• * Denotes convolution operator. 

The objective of super-resolution image processing is to find an estimation of the high-

resolution image 𝒙 from the low-resolution image 𝒚 and the convolution operator 𝐻. This can be 

achieved using image processing algorithms that estimate the inverse transfer function of 𝐻(𝐻−1) 

known as the deconvolution operator, to recover the high-resolution image 𝒙. 

In some cases, additional information may be available to help solve the inverse problem. [3]. 

The degradation model can be expressed by the equation: 

𝑔𝑘 = 𝐷𝑀𝑘  𝐵𝑘𝑓 + 𝜀𝑘 
(1.2) 

Where 𝑔𝑘 represents the set of 𝑘 low-resolution images, 𝑫 is the downsampling operator, 

𝑀𝑘 denotes the shift operator (translation, rotation), 𝐵𝑘 is the blur matrix, 𝒇 is the high-resolution 

image, and 𝜀𝑘 represents system noise. Figure 1.1 summarizes the generation of low-resolution 

images from a high-resolution image.
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Figure 1.1: The control model that connects LR images to HR images [3] 

1.4 Image Super Resolution Methods  

Interpolation-based super-resolution techniques involve estimating a high-resolution (HR) 

image from one or more low-resolution (LR) images. They are based on the assumption that the 

high resolution and low-resolution images are linked by an interpolation function. The image 

super-resolution approach can be categorized into two broad classes [4]. 

• interpolation-based methods such as bilinear, bicubic, and nearest interpolation. 

• learning-based methods, including machine learning and deep learning. 

The classification of the different super-resolution methods is illustrated in Figure 1.2 

 

Figure 1.2:Classification of the image super-resolution approaches. 

1.4.1 Methods based on interpolation 

Super-resolution techniques relying on interpolation involve the estimation of a high-

resolution image using one or multiple low-resolution images. These approaches operate under the 

assumption that there exists an interpolation function connecting high-resolution and low-

resolution images.  

Numerous interpolation-based super-resolution methods exist, encompassing various 

approaches, namely: 

• Bilinear interpolation. 

• Bicubic interpolation. 

• Nearest neighbor interpolation.
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1.4.1.1 Bilinear interpolation  

Bilinear interpolation is a 2D optimization method used to estimate the values of points 

within a regular grid based on the known values at the grid points. This method assumes that the 

variation of the function between grid points is linear in each direction. Specifically, when 

presented with a regular grid of points with known values at the grid nodes and needing to estimate 

the function's value at a point not on the grid, bilinear interpolation employs a linear combination 

of the four nearest grid points to estimate the function's value at that point.  

to achieve this, the four closest points to the interpolation point are first identified. Next, a 

linear function is calculated for two variables that pass through these four points. Finally, this 

linear function is evaluated at the interpolation point to obtain an estimate of the value of the 

function at that point. The process involves determining the weights of the four closest grid points 

based on their distances from the interpolation point and using these weights to calculate the 

interpolated value. This method is especially useful for tasks such as resizing an image and 

optimizing image resolution [5]. Figure 1.3 illustrates the principle of bilinear interpolation.  

Bilinear interpolation can be mathematically represented as follows: 

𝑓(𝑥, 𝑦) = (1 − 𝑢)(1 − 𝑣)𝑓(0,0) + 𝑢(1 − 𝑣)𝑓(1,0) + (1 − 𝑢)𝑣𝑓(0,1) + 𝑢𝑣𝑓(1,1) (1.3) 

Where: 

• f (x, y) is the interpolated value at point (x, y). 

• f (i, j) Represents the known values at the grid points. 

• u and v are the interpolation coefficients, typically between 0 and 1, representing the 

relative distances between the interpolation point and its nearest grid points in the x and y 

directions, respectively.  

 

Figure 1.3: Bilinear interpolation
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1.1.1.1 Bicubic Interpolation  

Cubic interpolation is a surface interpolation method that employs a cubic function to 

estimate pixel values missing in an image. This technique is commonly utilized for increasing 

image resolution or for achieving a more precise interpolation compared to bilinear interpolation. 

Cubic interpolation operates by fitting a cubic function to each set of four neighboring pixels 

in the image. This cubic function is then utilized to estimate the value of any point in the image 

that is undefined. The cubic functions are adjusted to ensure that the surface of the interpolated 

image is smooth and continuous. 

While cubic interpolation offers higher precision than bilinear interpolation, it can also be 

more computationally expensive. Moreover, cubic interpolation may introduce artifacts in the 

interpolated image, especially if the input data is noisy. 

Mathematically, cubic interpolation can be expressed as follows: 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗

3

𝑗=0

3

𝑗=0

 (1.4) 

Where: 

• 𝑓 (𝑥, 𝑦) is the interpolated value at point (x, y). 

• 𝑎𝑖𝑗 are the coefficients of the cubic function. 

• x and y represent the coordinates of the point being interpolated. 

Figure 1.4 illustrates the principle of cubic interpolation. 

 

                                                                   Figure 1.4: Bicubic Interpolation  
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1.4.1.2 Nearest neighbor interpolation  

Nearest-neighbor interpolation is an image interpolation method that involves replacing each 

missing pixel in an image with the value of the nearest pixel in the original image. In practice, this 

method entails identifying the nearest pixel to the position of the missing pixel and assigning it the 

same value as that pixel. While straightforward and quick to implement, this method can yield 

images with lower quality compared to other interpolation methods. Specifically, it may produce 

images with sharp edges and pronounced contours, leading to a sense of pixilation and lack of 

smoothness in transitions. 

Nevertheless, in certain specific cases, nearest-neighbor interpolation may be preferable to 

other interpolation methods. For example, it can be useful for image segmentation or binary image 

classification. In such scenarios, nearest-neighbor interpolation may provide more accurate and 

consistent results compared to other methods. 

Mathematically, nearest-neighbor interpolation can be represented as follows: 

𝑓(𝑥, 𝑦) = ([𝑥 + 0.5], [𝑦 + 0.5]) (1.5) 

𝑓(𝑥, 𝑦) = 𝑓([𝑥 + 1], [𝑦 + 1]) (1.6) 

Where: 

• f (x, y) is the interpolated value at point (x, y). 

• x represents the nearest integer less than or equal to x. 

The essence of nearest-neighbor interpolation lies in its simplicity and computational 

efficiency, making it suitable for specific applications where preserving the exactness of pixel 

values is paramount. However, its limitations in producing smooth transitions and accurately 

representing continuous gradients may necessitate the use of alternative interpolation methods in 

many image processing tasks. 

Figure 1.5 represents the principle of nearest-neighbor interpolation. 

                        

Figure 1.5: Nearest-neighbor interpolation
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1.4.2 Methods based on (Deep Learning): 

Deep learning-based techniques such as data matching, rectifications, machine learning with 

CNN [6] is deployed for optimal results. Advanced solutions include EDSR [10], VDSR [7], 

DWSR, SRCNN. We will present in the next section, the SR based on deep learning. 

1.4.2.1 Super Resolution (SR) Algorithms Based on Deep Neural Networks 

In recent years, deep learning has witnessed tremendous progress in the field of image 

processing, and among the applications of deep learning in this field are SR techniques, which are 

used to improve the quality of low-resolution images such as SRCNN, and SR technology. VDSR 

technology, Enhanced EDSR and DWSR. In this research, we will discuss each one of them in 

detail. 

1.4.2.2 SRCNN: Super-resolution convolution neural network 

The SRCNN is a straightforward architecture for CNN, composed of three critical layers: 

patch extraction, nonlinear mapping, and reconstruction. The primary function of the patch 

extraction layer is to extract abundant patches from the input and represent them via convolutional 

filters. Following this, the nonlinear mapping layer employs 1x1 convolutional filters designated 

to modify channel numbers and inject non-linearity into operations. Subsequently, a high-

resolution image is reconstructed in the final layer of this process. 

To effectively train this network mechanism, they utilize Mean Squared Error (MSE) as a 

loss function criterion. To evaluate the outcomes accurately and ensure the precision of algorithm 

performance within its operating parameters, a Peak Signal-to-Noise Ratio (PSNR) assessment 

measurement standard has been put in place. The Super-Resolution Convolutional Neural Network 

(SRCNN) operates as depicted in the accompanying illustration, the SRCNN consists of the 

following operation, as shown in Figure 1.6 [6]. 

 

                  Figure 1.6: Super-resolution convolutional neural network (SRCNN) architecture [6] 
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• Preprocessing: 

The process of obtaining the correct low-resolution (LR) image can be a complex task due 

to variable resolution factors. To achieve a high-resolution (HR) equivalent, meticulous bicubic 

interpolation is often employed. This technique enlarges the size of the LR image while preserving 

important details. 

• Feature Extraction: 

This stage uses an expanded dataset created from distinct characteristics extracted from the 

LR image, simulating high-resolution aspects. Such features may encompass edges, textures, or 

diverse attributes that capture essential information contained within the image. 

• Non-linear Mapping: 

Non-linear mapping serves as a critical tool that links feature maps to both LR and HR image 

segments. This invaluable mechanism is proficient at detecting and integrating complex details 

from various layers, and thus effectively connects disparate elements within the images. 

• Reconstruction: 

With reliance on data obtained from HR patches coupled with results from non-linear 

mapping. this process recreates a complete HR image that captures both the essence and subtle 

nuances. Gathering these components yield a High-Resolution output. 

These steps are critical in achieving super-resolution transformations of images. Such 

techniques are essential for enhancing low-resolution imagery, utilizing state-of-the-art 

technologies and principles that are fundamental to the process of image reconstruction. 

The primary goal of SRCNN is to generate high-resolution images from low-resolution 

inputs through classical super-resolution methods usually based on interpolation techniques such 

as cubic interpolation or nearest neighbor interpolation. These methods relied on simple 

mathematical operations and did not involve learning complex patterns from the data. Although it 

was somewhat effective, it often produced blurry results and was less able to preserve high-

frequency detail.
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1.4.2.3 Very Deep Super Resolution (VDSR) 

VDSR is a deep learning-based method for image super-resolution based on convolutional 

neural network architecture (CNN).  Deep convolutional networks are used to generate high-

resolution images from low-resolution images. By stacking multiple convolutional layers, VDSR 

captures the complex relationships between low- and high-resolution images, enhancing fine 

details and sharp edges. During the training process, VDSR reduces the differences between 

predicted and actual images.  

VDSR is versatile, handling various image enhancement operations, and takes advantage of 

parallel computing to achieve faster processing. It has shown exceptional results, making it 

valuable for applications such as digital imaging, medical imaging, and video processing [7]. In 

Figure 1.7, the structure of the VDSR network is shown, where 𝒙, 𝒓, and 𝒚 represent the low-

resolution, residual, and high-resolution images, respectively.  

The model consists of successive layers of convolutional transformations and nonlinear 

functions (such as the ReLU activation function). The low-resolution image is added to the 

extracted image to obtain the high-resolution image. 

 

Figure 1.7 : VDSR Network Architecture [7] 
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1.4.2.4 Deep wavelet super resolution (DWSR) 

Deep Wavelet Super Resolution represents a significant advancement in image processing 

and resolution enhancement. Unlike traditional deep learning-based algorithms that operate in the 

spatial domain, this method combines the power of deep learning with the efficiency of wavelet 

transforms to enhance image resolution, producing high-resolution images from low-resolution 

originals.  

Using frequency analysis, Super Deep Wave Resolution technologies can break down low-

resolution images into different frequency components, and then analyze and optimize them using 

deep models. This process improves image quality, it increases clarity and detail. Such 

advancements expand the potential applications of image processing in fields like medical imaging 

and photography. 

For the sake of clarity, we will introduce discrete transform before presenting the DWSR 

network. 

1.4.2.4.1 Discrete Wavelet Transformation 

A wave is a wave oscillation that transforms non-stationary signals. This technique is used 

to overcome the issues with the Fourier method, which deals with frequencies but does not provide 

specific temporal details. The wavelet transform, on the other hand, can achieve high frequency 

resolution and high temporal resolution at the same time. This method starts by using fundamental 

waves such as Haar, and then translates the signal into a graded set of fundamental waves. This 

wavelet transform is useful in analyzing low- and high-frequency non-stationary signals, as it can 

achieve high frequency resolution for low-frequency components and high temporal resolution for 

high-frequency components. 

Wavelet analysis is used to divide the information in an image (signals) into two distinct 

components: approximations and details (sub-signals). Approximations capture the general low-

frequency information of an image, providing a consistent representation. Details, on the other 

hand, represent the high-frequency components, capturing the finer, more complex features and 

edges of the image. This decomposition allows for efficient image compression, noise reduction, 

and feature extraction, enhancing various image processing tasks. 

The signal is passed through two filters: high-pass and low-pass filters. The image is then 

decomposed into high-frequency components (detail) and low-frequency components 

(approximation). At each level, we get 4 sub-signals. Rounding shows an overall trend of pixel 

values and details as horizontal, vertical, and diagonal components. 
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Figure 1.8 : The procedure of 1-level 2dDWT decomposition. 

1.4.2.4.2 Deep Wavelet Prediction for Super-resolution (DWSR) 

The SR can be viewed as the problem. of restoring the details of the image given an input 

LR image. This viewpoint can be combined with wavelet decomposition. As shown in Figure 1.9, 

if we treat the input image as an LL output of 1-level 2dDWT, predicting the HL, LH and HH sub-

bands of the 2dDWT will give us the missing details of the LL image. Then one can use 2dIDWT 

to gather the predicted details and generate the SR results [9]. 

 

Figure 1.9 : 2D Discrete Wavelet Transform (2D DWT) and its inverse (2D IDWT) 

This approach effectively combines super-resolution, wavelet transform, and deep learning. 

The low-quality image is first divided into sub-bands using wavelet transform. Then, each wavelet 

subband, representing different frequency details, is processed using a trained deep learning model 

for super-resolution. The deep learning model learns to predict the high-frequency details of each 

wavelet sub-band, effectively enhancing the accuracy of that particular frequency band. After 

processing all wavelet sub-bands, the optimized results are combined (by IDWT) to reconstruct 

the final high-resolution image. 
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This approach capitalizes on the strong points of wavelet transforms and deep learning: 

Wavelet transform is used to analyze multi-scale images and deep learning is used to learn complex 

relationships between low-quality images and high-quality images. Overall, this integration 

provides a powerful framework for improving the resolution of images while preserving their 

critical features, allowing for more accurate and detailed reconstruction of high-resolution images 

from low-quality inputs. 

1.4.2.4.3 The architecture of the network 

The network structure is thoroughly described, where it is specified that the proposed 

network is based on a deep structure similar to the residual network, with two layers of inputs and 

outputs, each with 4 channels. While most deep learning-based SR network methods rely on only 

one input-output channel, the proposed network considers four input channels and produces four 

corresponding output channels. [21] 

The details show that there are 64 filters in the first layer of size 4 × 3 × 3 × 3 × 3, and 4 

filters in the last layer of size 64 × 3 × 3 × 3 × 3. In the middle part of the network, each hidden 

layer contains N layers of the same size, with 64 filters of size 64 × 3 × 3 × 3 × 3 × 64 each. 

The outputs of each layer except the output layer are activated using a ReLU activation 

function to generate a non-linear activation map. Zero padding is used in each layer to keep the 

output size equal to the input size, to avoid loss of information 

 

Figure 1.10 : Wavelet-based super-resolution network architecture with contrast visualization 
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1.4.2.4.4 Training Procedure: 

To train the network, we start by enlarging the low-resolution training images using 

bicubic interpolation based on the original zoom factor. These magnified LR images are then 

subjected to a 2D discrete wavelet transform (2D DWT) using Haar waves wavelet , generating 

four LR sub-bands referred to as (LRSB): 

𝐿𝑅𝑆𝐵 = {𝐿𝐴, 𝐿𝑉, 𝐿𝐻, 𝐿𝐷} = 2𝑑𝐷𝑊𝑇{𝐿𝑅} (1.7) 

The sub-bands LA, LV, LH, and LD contain wavelet coefficients representing the average, 

vertical, horizontal, and diagonal details of the LR image, respectively. The 2dDWT {LR} notation 

signifies the application of the two-dimensional discrete wavelet transform (2D DWT) to the LR 

image. Similarly, this transformation is also performed on the corresponding HR training images 

to generate four HR wavelet sub-bands (HRSB): 

𝐻𝑅𝑆𝐵 = {𝐻𝐴, 𝐻𝑉, 𝐻𝐻, 𝐻𝐷} = 2𝑑𝐷𝑊𝑇{𝐻𝑅} (1.8) 

The sub-bands HA, HV, HH, and HD represent the wavelet coefficients indicating the mean, 

vertical, horizontal, and diagonal details of the HR image, respectively. Then, the difference ∆SB 

(residual) between the LRSB sub-coefficient and the corresponding HRB is: 

∆SB = HRSB − LRSB 

= {HA − LA, HV − LV, HH − LH, HD −  LD}   

= {∆𝐴, ∆𝑉, ∆𝐻, ∆𝐷} 

∆𝐴 = 𝐻𝐴 − 𝐿𝐴 

∆𝑉 = 𝐻𝑉 − 𝐿𝑉 

∆𝐻 = 𝐻𝐻 − 𝐿𝐻 

∆𝐷 = 𝐻𝐷 − 𝐿𝐷 

 

(1.9) 

The goal of the network is to produce the difference (∆SB) between the LR and HR wavelet 

sub-bands (LRSB and HRSB, respectively) when given the input LRSB. This difference is the 

target output, and the feedforward procedure is denoted as f(LRSB).[9] 

1.4.2.4.5 Generating SR Results 

To achieve SR results, the bicubic magnified LR inputs are transformed by 2dDWT to 

produce LRSB images applying as follows Equation (1.8). The LRSB is then fed forward through 
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a network trained to produce ∆SB. Adding LRSB and ∆SB together generates four sub-bands of 

SR wavelets (SRSB) referred to as: 

SRSB =  LRSB +  ∆SB  

SRSB = {SA, SV, SH, SD} 

SRSB =  {LA +  ∆A, LV +  ∆V, LH + ∆H, LD +  ∆D} (1.10) 

In the final step, the two-dimensional inverse discrete wavelet transform (2D IDWT) is 

applied to generate the super-resolution (SR) image results: 

SR = 2dIDWT{SRSB} (1.11) 

1.4.2.5 Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) 

The EDSR algorithm is a super-resolution network powered by deep learning that has been 

highly acclaimed for its impressive performance improvements.  

These improvements arise from an optimization strategy that entails the elimination of 

unnecessary units found in traditional residual networks. Furthermore, the EDSR algorithm 

benefits from expanding the size of its model, while maintaining stable training protocols, which 

contributes to its effectiveness [10]. The EDSR network architecture is illustrated in Figure 1.11 

 

Figure 1.11 : Architecture of single-scale SR network (EDSR) 

The system comprises three components: the ResamplerNet, the Downscaling module, and the SRNet. The 

ResamplerNet is tasked with estimating content-adaptive resampling kernels and their corresponding offsets for every 

pixel in the downscaled image. To facilitate the training of the ResamplerNet, the SRNet, capable of any differentiable 

upsampling operation, is employed. Its role is to minimize the SR error. The entire framework undergoes end-to-end 

training by back-propagating error signals through a differentiable downscaling module. The specific configuration 

of each building block is outlined within the blue dashed frame. [11] 
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1.5 Performance assessment in terms of quantitative parameters  

Evaluation of performance using quantitative parameters such as PSNR and SSIM is commonly used to 

measure image quality in these methods. 

1.5.1 PSNR  

The quality of the reconstructed image is often assessed by comparing each pixel of the original image with 

that of the reconstructed image. This comparison is used to measure the difference between the two images. This is 

generally done using the MSE, which calculates the average of the squares of the differences between the values of 

each pixel in the original image and those in the reconstructed image. [12] 

To interpret this difference in terms of quality, it is compared to the maximum amplitude of the signal, which 

represents the maximum possible value in the dynamic range of the image. For example, for an 8-bit coded image, the 

maximum value would be 255. 

The signal-to-noise ratio is then used to determine the quality of the results. This ratio is calculated by taking 

the ratio between the maximum amplitude of the signal (represented by the maximum possible value) and the mean 

square error. More precisely, it can be calculated directly from the mean square error (MSE) using the following 

formula: 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
𝐼²𝑚𝑎𝑥

𝑀𝑆𝐸
) (1.12) 

 

𝐼𝑚𝑎𝑥 is the maximum possible pixel value. This PSNR ratio is expressed in decibels (dB) and provides a 

measure of the quality of the reconstructed image compared with the original.  

A higher 𝑃𝑆𝑁𝑅 indicates better reconstruction quality, as it means a higher signal-to-noise ratio and therefore 

greater fidelity between the original and reconstructed images. 

1.5.2 SSIM 

The Structural Similarity Index (SSIM) quantifies the similarity between two images by 

comparing their luminance, contrast, and structure. Here's a detailed explanation of how SSIM 

works with equations [13]:  

• Luminance Comparison (𝑙): The luminance comparison measures how well the mean 

intensities of the original image u and its reconstruction û match. It is calculated as: 

𝑙(𝑢, �̂�) =
2𝑢𝑢 𝑢�̂�+𝐶1

𝑢²𝑢 + 𝑢²𝑢 + 𝑐1

 (1.13) 

▪ μu and μû are the mean intensities of images u and u ̂ respectively. 

▪ c1 is a constant introduced for numerical stability. 

Contrast Comparison (𝑐): The contrast comparison evaluates how well the standard deviations of 

the original image u and its reconstruction û match. It is computed as: 
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𝐶(𝑢, �̂�) =
2𝜎𝑢  𝜎�̂�+𝐶2

𝜎²𝑢 + 𝜎²𝑢 + 𝑐2

 (1.14) 

Where: 

▪ σu and σû are the standard deviations of images u and u ̂ respectively. 

▪ c2 is a constant introduced for numerical stability. 

• Structure Comparison (𝑠): The structure comparison measures how well the structures 

of the original image u and its reconstruction u ̂ match. It is represented as: 

𝑆(𝑢, �̂�) =
2𝜎𝑢  𝜎�̂�+𝐶3

𝜎²𝑢 + 𝜎²�̂� + 𝑐3

 (1.15) 

Where: 

▪ 𝜎𝑢�̂� is the covariance between images u and �̂�. 

▪ c3 is a constant introduced for numerical stability. 

Finally, the overall SSIM is calculated by taking the product of these three comparisons: 

 𝑺𝑺𝑰𝑴 = 𝒍(𝒖, �̂�) ∗ 𝒄(𝒖, �̂�) ∗ 𝒔(𝒖, �̂�) (1.16) 

The SSIM score ranges between -1 and 1, where 1 indicates perfect similarity between the 

two images. It considers multiple aspects of image similarity, making it a robust metric for 

perceptual image quality assessment. 

1.6 Conclusion 

In this chapter, we have seen in detail at different techniques used in the field of SR. We 

discuss two main approaches: conventional methods based on interpolation, such as bicubic, 

bilinear, and nearest neighbor, and deep learning-based methods, including SRCNN and EDSR 

and VDSR. 

Conventional methods are relatively simple and use interpolation algorithms to increase 

image resolution. In contrast, deep learning-based methods use convolutional neural networks to 

learn how to generate high-resolution images from low-resolution images. We also discussed 

evaluation metrics commonly used to measure the performance of super-resolution models, such 

as PSNR and SSIM. These metrics are used to quantify the quality of the generated image 

compared with the reference image.  

In summary, this chapter has enabled us to understand the different approaches used in image 

super-resolution, as well as the evaluation tools used to assess their performance. 
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2.1 Introduction  

Since its emergence in 2006[53], the advent of deep learning has been a profound paradigm 

shift in machine learning, forming its own distinct universe within the broader landscape. In the 

last few years in particular [54], recent strides in deep learning methodologies have extended 

across machine learning and AI, catalyzing transformative reform in signal and information 

processing that is particularly useful for tasks involving big data such as deep image learning and 

image super-analysis as we will use in our study. 

 This chapter seeks to embark on a comprehensive exploration of the fundamental principles 

governing AI and machine learning, delving into the structures and architectures that form the 

basis of deep learning. In addition, we will illustrate the practical applications of deep learning in 

various industries. 

2.2 Machine learning: 

Machine Learning involves the process of instructing computers to learn from data through 

a variety of algorithms. These algorithms iteratively refine their understanding of the data to 

enhance their ability to explain and predict outcomes. As more data is absorbed by the algorithms, 

the models generated become increasingly accurate representations of the training data. 

Essentially, a machine-learning model emerges as the outcome of training a machine-learning 

algorithm.[22] 

The connection between AI and the fields of machine learning, deep learning, data science, 

and computer vision is shown in Figure 2.1. 

 

Figure 2.1 : Diagram Representing the Relationships of AI-Related Domains [39] 
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2.3 Approaches of Machine Learning  

Enhancing the precision of predictive models necessitates the utilization of machine learning 

techniques. The selection of appropriate approaches varies depending on the specific nature of the 

business problem at hand, as well as the type and quantity of available data. In the ensuing section, 

we delve into the classifications of machine learning [23] 

2.3.1 Supervised learning 

Supervised learning stands as the predominant paradigm in both machine learning and deep 

learning. As the term implies, this approach entails guiding machine learning systems by 

presenting them with examples (data) about the tasks they are expected to perform. [24]  

The applications of supervised learning span a wide range, encompassing areas such as 

computer vision, regression, and classification tasks. Indeed, the vast majority of problems tackled 

in both machine learning and deep learning frameworks rely on supervised learning techniques. 

2.3.2 Unsupervised learning 

Unsupervised learning proves most effective in scenarios where copious amounts of 

unlabeled data are necessary for addressing the problem. For instance, social media platforms (e.g. 

Twitter, Snapchat) and others amass substantial volumes of unlabeled data, making them prime 

candidates for employing unsupervised learning techniques [25]. Figure 2.2 shows supervised ML 

vs unsupervised ML. 

 

Figure 2.2 : Difference between the two types of learning [25]
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2.4 Deep learning 

Deep learning (DL) is a subset of machine learning, relies on artificial neural networks 

characterized by their depth. This depth refers to the presence of multiple layers comprising inputs, 

outputs, and neurons. Within each layer, modules transform input data into meaningful 

information utilized by subsequent layers for task-specific predictions. This layered architecture 

enables the system to autonomously learn to process its data. [26] DL excels in feature extraction, 

feature selection, and classification tasks.  

2.5 Neural Networks (Terminology) 

The structure of a neural network consists of different interconnected layers that are 

responsible for processing information. A typical neural network architecture includes the 

following: 

• Input Layer: This is the initial layer that receives input data from the network. Each 

neuron in this layer corresponds to an input feature or variable. For example, in image 

processing, each neuron in this layer may represent a pixel. 

• Hidden layers: Hidden layers are located between the input and output layers and perform 

intermediate computations on the received inputs. Each hidden layer consists of many 

neurons that process the input data and transmit the results to the neurons in the next layer. 

The number and configuration of hidden layers is designed according to the complexity of 

the task at hand. 

• Output layer: This last layer generates the results of the neural network. Each neuron in 

this layer represents a class, category, or output value. For example, in image classification, 

neurons may refer to specific categories such as dog, cat, or car.[27].  

As shown in Figure 2.3 

 

Figure 2.3 : The architecture of neural Networks [42] 
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2.5.1 Single perceptron 

The perceptron, a type of binary neuron, produces an output of either 0 or 1. Its output is 

determined by performing a weighted sum of its inputs, multiplying each input by a corresponding 

weight. Mathematically, this can be represented as: 

𝑌 = (𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3) (2.1) 

 

Where: 

Y: This is the output value or dependent variable. In different contexts, it can refer to a 

prediction, a calculated value, or a result from a linear combination of inputs 

𝑤𝑖: These are the weights (coefficients) associated with each input variable, 𝑖 indicates 

that there are multiple weights 

𝑥𝑖: These are the input variables or features. Partial letter, 𝑖 indicates that there are 

multiple input variables 

Subsequently, the neuron applies a threshold activation function: if the weighted sum 

exceeds a certain threshold value, the neuron outputs 1; otherwise, it outputs 0. Consequently, the 

perceptron is primarily used for classification tasks, categorizing input data into distinct classes 

based on learned patterns. While its output is binary, the perceptron can still be used for prediction 

tasks by assigning one class to represent positive outcomes and the other for negative outcomes. 

Thus, the perceptron's capabilities extend beyond mere classification, encompassing prediction. 

 

Figure 2.4 : Schematic of the simple perceptron [43] 
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2.6 Neural Networks Vocabulary 

We have outlined the fundamentals of machine learning as a precursor to delving into the 

realm of deep learning. Yet, grasping the intricacies of algorithmic learning and the vocabulary 

associated with neural network architecture is paramount. By familiarizing ourselves with these 

concepts, we gain insight into constructing deep learning models. Expanding on this foundation 

will facilitate a comprehensive understanding of how deep learning architectures are designed and 

optimized for various task. 

2.6.1 Gradient descent 

           Gradient Descent is a widely used optimization algorithm in machine learning that aims to 

minimize the cost function and determine the optimal synaptic weights for a model. Its main 

objective is to identify the global or local minimum of the cost function by iteratively adjusting 

the model's weights. The algorithm relies on computing the gradient of the cost function with 

respect to the model's weights, which quantifies the slope of the cost function and determines the 

direction in which the weights should be adjusted to minimize the cost function. [29]  

As shown in Figure 2.5. The revised equation for gradient descent now reads as follows: 

𝑤 = 𝑤′ − 𝛼
𝑑𝐽(𝛼)

𝑑𝑤
 (2.2) 

𝑏 = 𝑏′ − 𝛼
𝑑𝐽(𝑤, 𝑏)

𝑑𝑏
 (2.3) 

Where: 

𝐽: This represents the cost function or loss function, the cost function 𝐽(𝑤, 𝑏) measures 

how well the model's predictions match the actual data. It measures the error between 

the predicted outputs. 

𝛼: This is the learning rate. The learning rate is a hyperparameter that determines the 

size of the steps taken to reach the minimum of the cost function. 

 

Figure 2.5 : Weight update by gradient descent in the cost function [29] 



Chapter 2: Deep learning  

 

24 

 

2.6.2 Backpropagation   

In the realm of neural networks, the pivotal task of updating weights and biases is achieved 

through the sophisticated mechanism known as Backpropagation. This intricate process unfolds 

after the computation of predicted outputs and subsequent error assessment. Through 

Backpropagation, the error gradient traverses backward across the network layers, systematically 

unveiling the contribution of each layer to the overall error. This dynamic chain of gradients 

enables the computation of gradients for weights and biases at every layer, laying the groundwork 

for iterative parameter updates. 

 Leveraging optimization algorithms like gradient descent, these updates are orchestrated 

meticulously to navigate the vast parameter space, steering towards the minimization of the cost 

function. This strategic pursuit not only refines the model's performance but also fortifies its ability 

to generalize to unseen data, thus encapsulating the essence of continual learning and adaptation 

in neural networks. As shown in Figure 2.6. 

 

Figure 2.6 : Illustration of backpropagation [45] 

Where: 

Forward pass is: Calculate the output of the network from input data. 

Backward pass is: Calculate the output error relative to the expected output and then go 

back in the network and update the weights using gradient descent. 

 

2.6.3 Learning Rate: 

Learning rate is one of the critical parameters to be tuned when training neural networks 

using backpropagation and gradient descent. If the learning rate is set too low, it may cause slow 

training progress as very small updates are made to the weights. 



Chapter 2: Deep learning  

 

25 

 

 Conversely, if it is set too high, it may lead to undesirable divergent behavior in the loss 

function. Therefore, it is necessary to choose an appropriate learning rate that allows achieving a 

balance between the speed of progress in training and stability in improving network performance 

[30].  

2.6.4 Batches 

When training a neural network, the training data is typically divided into mini-batches, each 

containing a specified number of samples known as the batch size. These mini-batches play a 

crucial role in updating the model parameters during Backpropagation [31].  

This division of data into mini-batches enables efficient parameter updates and facilitates 

training. Moreover, the depicted figure demonstrates a dedicated data block for learning, where 

each data sample corresponds to a batch. This approach ensures a systematic and effective training 

process, enhancing the model's performance. 

2.6.5 Epochs 

The integration of backpropagation and forward propagation forms an epoch in the training 

of the network, indicating the number of iterations the algorithm executes [32]. This equates to the 

number of times batches of data traverse through the network, providing crucial insights into the 

learning progress [33]. Monitoring the passage of training data through mini-batches, coupled with 

weight updates, serves as a vital gauge for halting the learning process judiciously. Essentially, 

this aids in validating learning efficacy on test data (test set). For instance, if we consider a training 

set comprising 500 images and opt for a batch size of 25 images, the resulting epoch value would 

be 20. This signifies 20 iterations involving both forward and backward propagation, leading to 

20 updates for parameters. Among these operations in neural networks, some are classified as 

hyperparameters and parameters: 

• Hyperparameters: Neural networks have a wide range of hypermeters to be set, including  

the number of layers, the number of neurons in each layer, the learning rate, the Batch Size, 

the Number of Epochs, the strength of the organization and gradient descent [34] 

• Parameters: Neural networks have a wide range of parameters that need to be set, including 

the Weights and Biases, the Activation function and Feature Extractors. 

2.7 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are specialized neural networks designed to process 

data with a grid-like topology, particularly effective in image and video recognition and 

classification tasks, such as identifying faces, objects, and traffic signs, and aiding in self-driving 
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cars Moreover [35], CNNs have recently shown effectiveness in various natural language 

processing tasks, including sentence classification. Structurally, CNNs are a type of feed-forward 

neural network [36] characterized by one or more layers of hidden neurons (hidden layers) 

positioned between input and output layers. Each layer is connected to the subsequent layer, 

facilitating linear signal propagation without cycles or interconnections, thereby providing the 

network with a global perspective and enhancing neuron interactions. These networks are 

distinguished by their superior performance with inputs like images, speech, or audio signals and 

typically comprise three main types of layers:  

• convolutional layers 

• pooling layers 

• fully connected (FC) layers 

The convolutional layer, serving as the initial layer, analyzes input data using convolution 

operations, while subsequent layers may include additional convolutional or pooling layers. The 

final layer is typically fully connected. As data progresses through the network, it undergoes 

increasing complexity, starting with the identification of simple features like colors and edges in 

earlier layers. With each subsequent layer, the CNN identifies larger elements or shapes within the 

input data until the intended object is recognized. As shown in Figure 2.7 Principal Architecture 

of CNN. as shown in Figure 2.7 Principal Architecture of CNN. 

 

Figure 2.7 : Principal Architecture of CNN[49]
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2.7.1 Convolution layers 

Color images serve as inputs to Convolutional Neural Networks (CNNs), comprising a 3D 

matrix of pixels representing height, width, and depth, corresponding to the RGB channels. In this 

context, the depth dimension signifies the presence of color channels, allowing for the 

representation of a wide spectrum of colors. Concurrently, within the CNN architecture, feature 

detectors referred to interchangeably as kernels or filters navigate across the receptive fields of the 

image, examining the presence of specific features through a process termed convolution.  

This convolutional process involves overlaying the feature detector onto various parts of the 

image to detect patterns or features of interest, enabling the CNN to progressively learn 

hierarchical representations of the input data. Through iterative convolutional operations, the 

network discerns increasingly complex features, essential for tasks such as object recognition and 

image classification [37]. As shown in Figure 2.8. 

 

Figure 2.8 : Convolution layer [36] 

2.7.2 Feature detector 

In Convolutional Neural Networks, feature detectors are represented as 2D arrays of weights, 

capturing portions of the input image. Typically, these filters are 3x3 matrices, determining the 

size of the receptive field. Padding is employed to manage image dimensions during convolution. 

Three common types of padding include: 

• valid padding (no padding) also referred to as no padding, which entails discarding the last 

convolution if dimensions fail to align. 

• same padding (ensuring output size matches input) guarantees the output layer matches the 

size of the input layer. 

• full padding (increasing output size by adding zeros) expands the output size by zero-

padding the input's border. 
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After each convolution operation, a Rectified Linear Unit (ReLU) adjustment is applied to 

the feature map, introducing nonlinearity to the model. The ReLU function is a widely used 

activation function in neural networks, allowing for the passage of positive values without 

alteration while setting negative values to zero, thereby enhancing the network's ability to learn 

complex patterns from the data. 

• ReLU Function 

Although it appears to be a linear function, ReLU has a derivative function that facilitates 

backpropagation, preserving computational efficiency. Its distinguishing feature is that not all 

neurons are activated at the same time As shown in Figure 2.9. Also its equation as follows: 

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (2.4) 

 

 
Figure 2.9 : ReLU Function 

2.7.3 Pooling Layer  

Pooling layers, also known as upsampling layers, reduce the spatial dimensions of the data 

entering (CNNs) while preserving the underlying information. These layers divide the input data 

into smaller regions known as pooling windows or receptive fields, and perform pooling within 

each window, effectively reducing the size of the feature maps. Using downsampling, pooling 

layers reduce dimensions to reduce factors in the input data. Similar to a convolutional layer, the 

pooling process involves scanning a filter across the entire input, but without weights. Instead, the 

kernel uses an aggregate function to fill the output matrix based on the values in the receptive field. 

This method falls into two main categories, each serving distinct purposes within the CNN 

architecture. 
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• Max Pooling: it is a pooling operation that selects the maximum element from the region 

of the feature map covered by the filter. Thus, the output after the max-pooling layer 

would be a feature map containing the most prominent features of the previous feature 

map. [38] As shown in Figure 2.10. 

 

Figure 2.10 : Max Pooling [37] 

2.7.4 Fully-Connected Layer  

The term "fully-connected layer" is quite descriptive. In contrast, in partially connected 

layers, the input image's pixel values don't directly link to the output layer, as previously 

mentioned. Instead, each node in the output layer connects directly to a node in the preceding layer 

in the fully connected layer. This layer is responsible for performing classification tasks by 

leveraging features extracted by earlier layers and their respective filters. While convolutional and 

pooling layers commonly employ ReLU (Rectified Linear Unit) functions for input categorization, 

fully-connected layers typically utilize a SoftMax activation function to generate probabilities 

ranging from 0 to 1.  

SoftMax ensures that the output values represent valid probabilities, which can be interpreted 

as the likelihood of the input belonging to each class in a classification problem. This final layer's 

outputs can be further processed using techniques such as cross-entropy loss to train the neural 

network during the optimization process, enabling it to learn to make accurate predictions. As 

shown in Figure 2.11. 

 
Figure 2.11 : fully connected layer 
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2.8 Conclusion  

Important concepts in the field of deep learning are reviewed in this chapter, including its 

definition and the architecture of deep models such as deep artificial neural networks (CNNs). In 

addition, an overview of the benefits of deep learning and its various applications was provided, 

with a focus on the superior performance of deep neural networks in the field of image processing, 

which is one of the most important technologies in this field. 

The next chapter aims to provide more details on the design of the models and tools used 

within the research framework, where the methods and techniques used to implement the specific 

objective will be explored. Using CNNs as a basis for the research work, the focus will be on 

analyzing model design, and clarifying the methods used to implement deep learning with high 

accuracy for image super-resolution, using tools and techniques appropriate for the purpose, which 

contributes to achieving the desired results efficiently and effectively.
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3.1 Introduction 

This chapter presents the results of our study on super-resolution (SR) algorithms, where the 

focus was on evaluating and exploring a variety of these algorithms. We started by using 

conventional SR methods as a reference to compare with more sophisticated algorithms based on 

deep learning, such as SRCNN, VDSR, EDSR, and most importantly the DWSR method. 

To verify the effectiveness of the algorithms we used, we made sure to have the original 

high-resolution (HR) images. We then reduced the resolution by factors of x2 and x4. After that, 

we used one of the proposed methods to restore the HR images and compared them with the 

originals. This process was essential to ensure a fair comparison with previous research.  

Our evaluation involved both quantitative and qualitative analyses using metrics such as 

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), as well as visual quality 

assessments. By calculating the average PSNR and SSIM values from all experiments, we gained 

an overview of the performance of the different SR algorithms studied. 

3.2 Computational Environment 

In our experimental setup, we used Python 3.9.7 with the Visual Studio code editor on an 

HP computer with an i5 vPro processor, operating within the Windows 10 Professional 

environment. For our computational tasks, particularly those related to deep learning, we used 

PyTorch, a library specifically designed for such purposes. Additionally, we employed scikit-

image to handle various image processing functions. 

To handle large datasets and for additional computational power, we utilized both Google 

Colab and Kaggle platforms. These platforms facilitated the execution of essential source code, 

particularly for processing extensive datasets, by utilizing the online GPU resources available 

through Google Colab. Furthermore, we employed MATLAB R2022a in certain experiments to 

conduct comparisons and validate the obtained results. 

3.3 Data sets 

For the datasets used, we selected a variety of well-known datasets. For training purposes, 

we utilized the DIV2K [50] and T91 datasets. For model testing, we employed several datasets 

including Set5[51], Set14[52], and LIVE1. In addition, we used a specialized dataset, referred to 

as 'Medical'[55], for testing models in healthcare-related image processing. Details of these 

datasets are summarized in the table below.



Chapter 3: Deep learning-based super-resolution optimization algorithms 

 

33 

 

Table 3.1 : Details of Datasets Utilized in Our Experiments. 

Datasets Number of Images Format Resolution Train/Test 

DIV2K 1000 PNG 2040*1356 Train 

T91 91 H5 220*187 Train 

Set5 05 BMP 512*512 Test 

Set14 14 BMP 500*480 Test 

LIVE1 29 PNG 768*512 Test 

Medical 743 PNG 512*420 Test 

 

Figure 3.1 : Original high-resolution (HR) images
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In our experiments, we utilized X-ray body images. This dataset consists of a collection of 

X-ray body images commonly used in medical imaging studies and machine learning projects in 

healthcare. The images are provided in DICOM format, which is a standard for handling, storing, 

printing, and transmitting medical imaging information. To facilitate accessibility and use in 

various applications, the images have been converted to PNG format. Figure 3.2 shows samples 

from the dataset X-ray body images. 

 

Figure 3.2 : Samples from the dataset X-ray body images. 

3.4 Implementation of SR Algorithms 

3.4.1 Conventional SR Algorithms 

In Figure 3.3, the flowchart illustrates the steps for implementing conventional super-

resolution (SR) methods. 

 

Figure 3.3 : Procedural Flowchart for Conventional Super-Resolution Methods.
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Table 3.2 presents the results achieved using bicubic, bilinear, and nearest neighbor methods. In this 

experiment, images were downsampled by factors of 2 and 4, then reconstructed into HR images using one of these 

methods. Subsequently, the PSNR and SSIM metrics were calculated to compare the 'HR original' input images with 

the 'HR obtained' output images. 

Table 3.2 : PSNR (dB), SSIM for Set5, conventional methods. 

Methods Scale Metrices Bird Butterfly Woman 

B
ic

u
b

ic
 

X2 PSNR 38.32 30.28 33.34 

SSIM 0.90 0.95 0.96 

X4 PSNR 33.52 27.22 30.14 

SSIM 0.72 0.82 0.87 

B
il

in
ea

r
 

X2 PSNR 36.60 30.13 30.40 

SSIM 0.85 0.90 0.93 

X4 PSNR 30.13 26.89 27.01 

SSIM 0.70 0.80 0.85 

N
ea

re
st

 

N
ei

g
h

b
o

r
 X2 PSNR 36.90 30.30 30.80 

SSIM 0.85 0.91 0.94 

X4 PSNR 30.40 27.00 27.35 

SSIM 0.71 0.81 0.87 

 

Figure 3.4 : The SR image obtained by utilizing the Bicubic method on the LR image 

 

Figure 3.5 : The SR image obtained by utilizing the Nearest method on the LR image
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Figure 3.6 : The SR image obtained by utilizing the Bilinear method on the LR image 

The analysis of the results, as shown in the accompanying table and images, indicates that 

bicubic interpolation gave higher PSNR and SSIM values compared to the nearest neighbor and 

bilinear methods. However, in terms of visual quality, the differences among the images produced 

by these methods were minimal. This observation was consistent across all the test datasets utilized 

in the study. 

3.4.2 Deep Learning-Based Methods for Super Resolution 

3.4.2.1 SRCNN 

Before presenting the results obtained with the SRCNN method in Figure 3.7, we provide a 

flowchart that outlines the key stages of our implementation process. 

 

Figure 3.7 : Flowchart of SRCNN
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For Deep Learning-Based Methods, we calculated two types of PSNR: PSNRin, which 

measures the difference between the original and the LR image, and PSNRout, which compares 

the original with the HR image obtained. Similarly, we calculated SSIM values for the same 

comparisons.  

Tables 3.3, 3.4, 3.5, and 3.6 summarize the PSNRIN, PSNRout and SSIMs results obtained 

by applying the SRCNN technique on Set5, Set14, LIVE1 Part1, and LIVE1 Part2 respectively. 

Where PSNRin calculated between the input and output and PSNRout 

Table 3.3 : Show the PSNRin& SSIMin of (LR) images and obtainedPSNRout & SSIM𝑜𝑢𝑡  of SRCNN of Set 5. 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

baby 18.15 38.53 0.70 0.96 17.98 33.12 0.66 0.87 

bird 15.11 40.91 0.73 0.97 14.97 32.52 0.64 0.88 

butterfly 15.29 32.74 0.71 0.95 14.52 25.44 0.62 0.82 

head 20.37 35.72 0.69 0.83 20.14 32.44 0.58 0.74 

woman 19.48 35.36 0.76 0.96 18.65 28.88 0.63 0.87 

The data presented in Table 3.3 reveals significant increases in PSNR values for the Set 5 

datasets. Taking the 'baby' image as an example, the PSNR increased by approximately 20.38dB 

and 15.14dB for downsampling factors of 2 and 4, respectively.  

Similarly, the SSIM values improved from 0.70 to 0.96 for a factor of 2, and from 0.66 to 

0.87 for a factor of 4. Similar improvements were observed in the other datasets, Set 14, LIVE1 

Part 1, and LIVE2 Part 2.  

Overall, the SRCNN method has notably enhanced the PSNR values, clearly indicating an 

improvement in visual quality. The LR and super-resolution SR images generated using the 

SRCNN method, as detailed in Tables 3.3 to 3.6, are shown in Figures 3.8 to 3.15, alongside their 

HR counterpart
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Table 3.4 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of SRCNN of Set 14 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bridge 17.88 27.83 0.75 0.86 17.01 23.76 0.54 0.63 

foreman 22.36 36.46 0.79 0.96 21.26 32.11 0.77 0.88 

face 20.29 35.70 0.67 0.83 20.07 32.38 0.63 0.72 

man 25.32 31.04 0.65 0.88 23.03 26.89 0.61 0.72 

barbara 18.97 28.63 0.67 0.86 18.35 25.76 0.62 0.70 

comic 18.46 28.52 0.62 0.87 17.08 22.69 0.52 0.58 

coastguar

d 

20.45 30.82 0.73 0.84 20.28 26.04 0.49 0.53 

monarch 16.97 37.74 0.81 0.97 16.02 30.22 0.59 0.90 

pepper 14.20 36.87 0.61 0.85 14.12 32.97 0.58 0.77 

lenna 15.72 36.63 0.64 0.87 14.59 31.40 0.61 0.78 

zebra 17.35 33.49 0.76 0.90 16.45 27.16 0.55 0.67 

flowers 16.21 33.31 0.69 0.86 15.50 26.09 0.57 0.68 

ppt3 16.57 31.52 0.77 0.94 15.54 24.80 0.69 0.83 

baboon 14.88 25.73 0.72 0.58 13.99 22.73 0.43 0.47 

Table 3.5 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of SRCNN of LIVE1 Part 1 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bikes 20.63 30.06 0.83 0.91 19.08 24.25 0.55 0.67 

building2 19.29 25.67 0.79 0.86 17.12 20.69 0.49 0.59 

buildings 20.75 25.96 0.70 0.84 18.50 21.64 0.48 0.59 

caps 18.22 37.15 0.86 0.93 18.08 32.79 0.67 0.84 

carnivaldolls 17.50 32.51 0.82 0.93 15.03 27.40 0.71 0.80 

cemetry 18.81 29.46 0.69 0.88 17.36 23.68 0.51 0.66 

churchandcapi

tol 

20.47 29.40 0.81 0.90 18 .23 24.24 0.64 0.75 

coinsinfountain 21.36 32.50 0.83 0.91 20.20 27.27 0.68 0.74 

dancers 19.19 27.07 0.78 0.87 17.12 22.79 0.54 0.66 

flowersonih35 17.50 25.15 0.79 0.87 16.06 20.88 0.57 0.61 

house 20.70 32.96 0.77 0.89 20.15 28.48 0.59 0.71 

lighthouse2 21.15 30.85 0.85 0.90 21.00 26.45 0.68 0.74 

lighthouse3 21.55 30.03 0.72 0.87 20.30 25.33 0.63 0.70 
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Table 3.6 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of SRCNN of LIVE1 Part 2 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

manfishing 21.65 29.84 0.81 0.86 19.45 25.64 0.62 0.70 

monarch 16.98 37.74 0.85 0.97 16.63 30.22 0.83 0.90 

ocean 25.27 33.14 0.69 0.87 24.30 29.66 0.66 0.71 

paintedhouse 22.33 29.10 0.70 0.89 20.90 25.13 0.61 0.69 

parrots 16.53 38.82 0.87 0.96 16.39 32.13 0.80 0.89 

plane 21.02 34.97 0.81 0.92 20.38 30.16 0.76 0.82 

rapids 18.32 31.98 0.78 0.89 17.83 26.97 0.63 0.69 

sailing1 21.45 29.66 0.76 0.85 20.43 25.82 0.58 0.63 

sailing2 24.42 35.03 0.83 0.92 23.16 29.63 0.78 0.81 

sailing3 26.23 34.81 0.81 0.92 24.73 29.78 0.80 0.80 

sailing4 22.67 31.73 0.69 0.88 21.65 27.49 0.60 0.69 

statue 24.62 34.34 0.83 0.93 23.51 29.87 0.78 0.82 

stream 19.84 29.96 0.71 0.80 18.47 22.29 0.47 0.51 

studentsculptu

re 

21.32 27.65 0.79 0.87 18.93 22.72 0.50 0.58 

woman 20.08 29.81 0.75 0.88 19.26 25.85 0.61 0.67 

womanhat 18.39 35.85 0.79 0.91 18.18 31.40 0.73 0.78 

 

Figure 3.8 : SRCNN result Set 5, scale factor x2
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Figure 3.9 : SRCNN result Set 5, scale factor x4 

In Figure 3.10, the region of interest (ROI) for low- and high-resolution images is shown to 

illustrate the difference between them. 

 

Figure 3.10 : Bird (ROI) of SRCNN 

 

Figure 3.11 : SRCNN result Set 14, scale factor x2 
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Figure 3.12 : SRCNN result Set 14, scale factor x4 

 
Figure 3.13 : SRCNN result LIVE1, scale factor x2 

 
Figure 3.14 : SRCNN result LIVE1, scale factor x4 

 
Figure 3.15 : buildings (ROI) of SRCNN

         

                          HR                                            LR                                           SR        
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After transitioning from the aforementioned conventional methods to SRCNN, one of the 

algorithms based on deep learning, the model was trained using lr=1e-4, batch-size=16, and num-

epochs=400. These parameters provided us with better results on the test data. 

3.4.2.2 VDSR  

After implementing the SRCNN algorithm, we subsequently executed the VDSR algorithm 

and computed the PSNR and SSIM values for all the images obtained as test results for this 

algorithm, as shown in Tables 3.7, 3.8, 3.9, and 3.10. This assessment enables us to evaluate the 

effectiveness and performance level of this latter algorithm. Figure 3.16 illustrates the key steps 

of our implementation in a flowchart format. 

 
Figure 3.16 : Flowchart of VDSR 

Table 3.7 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of VDSR of Set 5 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

baby 18.15 39.80 0.70 0.97 17.98 35.12 0.66 0.93 

bird 15.11 39.49 0.73 0.98 14.97 32.76 0.64 0.92 

butterfly 15.29 32.30 0.71 0.96 14.52 25.92 0.62 0.88 

head 20.37 36.67 0.69 0.89 20.14 34.24 0.58 0.84 

woman 19.48 36.20 0.76 0.98 18.65 30.09 0.63 0.94 
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Based on the obtained results shown in Table 3.7, which shows test data for our study, we 

observed a significant improvement in PSNR and SSIM values. For instance, when we consider 

the "bird" image, we noted an improvement of 24.38 dB and 17. 79 dB for 2 and 4 downsampling 

factors respectively.  

In addition, the SSIM valeus increased from 0.73 to 0.98 and from 0.64 to 0.92 for the same 

two downsampling factors. This improvement applies to all the data used in the study (Set14, 

LIVE1-Part1 and LIVE1-Part2), given our results we can say that VDSR method was effective. 

The LR and SR images generated using the VDSR method, as detailed in Tables 3.7 to 3.10, are 

shown in Figures 3.17 to 3.24, along with their HR counterparts. 

Table 3.8 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛  of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡  & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡 of VDSR of Set 14 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bridge 17.88 31.29 0.75 0.93 17.01 27.92 0.54 0.85 

foreman 22.36 37.02 0.79 0.95 21.26 31.60 0.77 0.94 

face 20.29 36.63 0.67 0.89 20.07 34.23 0.63 0.83 

man 25.32 33.18 0.65 0.95 23.03 29.64 0.61 0.89 

barbara 18.97 31.05 0.67 0.92 18.35 28.35 0.62 0.83 

comic 18.46 29.66 0.62 0.93 17.08 25.06 0.52 0.80 

coastguar

d 

20.45 32.67 0.73 0.92 20.28 28.86 0.49 0.82 

monarch 16.97 37.27 0.81 0.98 16.02 31.11 0.59 0.94 

pepper 14.20 34.51 0.61 0.90 14.12 31.12 0.58 0.85 

lenna 15.72 36.63 0.64 0.91 14.59 32.57 0.61 0.85 

zebra 17.35 34.19 0.76 0.96 16.45 28.39 0.55 0.88 

flowers 16.21 33.13 0.69 0.93 15.50 28.23 0.57 0.81 

ppt3 16.57 31.00 0.77 0.97 15.54 26.48 0.69 0.91 

baboon 14.88 26.86 0.72 0.71 13.99 24.60 0.43 0.54 
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Table 3.9 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛  of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡  & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡 of VDSR of LIVE 1 Part 1 

Table 3.10 :  Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of LIVE 1 Part 2 

Nom X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bikes 20.63 31.35 0.83 0.94 19.08 26.85 0.55 0.84 

building2 19.29 27.31 0.79 0.91 17.12 23.46 0.49 0.75 

buildings 20.75 28.20 0.70 0.91 18.50 24.78 0.48 0.82 

caps 18.22 38.78 0.86 0.96 18.08 34.73 0.67 0.93 

carnivaldolls 17.50 32.57 0.82 0.95 15.03 26.76 0.71 0.90 

cemetry 18.81 30.34 0.69 0.92 17.36 26.32 0.51 0.94 

churchandcapi

tol 

20.47 30.70 0.81 0.93 18 .23 25.66 0.64 0.93 

coinsinfountain 21.36 33.64 0.83 0.95 20.20 31.16 0.68 0.95 

dancers 19.19 28.75 0.78 0.92 17.12 23.90 0.54 0.89 

flowersonih35 17.50 27.14 0.79 0.91 16.06 23.48 0.57 0.76 

house 20.70 34.93 0.77 0.95 20.15 31.27 0.59 0.87 

lighthouse2 21.15 32.85 0.85 0.95 21.00 29.32 0.68 0.89 

lighthouse3 21.55 31.84 0.72 0.93 20.30 28.34 0.63 0.87 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

manfishing 21.65 31.02 0.81 0.92 19.45 25.36 0.62 0.91 

monarch 16.98 37.31 0.85 0.98 16.63 31.15 0.83 0.94 

ocean 25.27 35.49 0.69 0.94 24.30 32.62 0.66 0.89 

paintedhouse 22.33 31.34 0.70 0.93 20.90 28.23 0.61 0.85 

parrots 16.53 39.45 0.87 0.97 16.39 34.47 0.80 0.95 

plane 21.02 35.71 0.81 0.96 20.38 31.67 0.76 0.92 

rapids 18.32 33.56 0.78 0.94 17.83 29.35 0.63 0.85 

sailing1 21.45 31.68 0.76 0.92 20.43 28.77 0.58 0.85 

sailing2 24.42 36.15 0.83 0.96 23.16 31.78 0.78 0.92 

sailing3 26.23 36.01 0.81 0.96 24.73 32.32 0.80 0.91 

sailing4 22.67 33.65 0.69 0.94 21.65 30.21 0.60 0.87 

statue 24.62 36.06 0.83 0.96 23.51 32.22 0.78 0.92 

stream 19.84 28.40 0.71 0.90 18.47 25.56 0.47 0.79 

studentsculptu

re 

21.32 29.31 0.79 0.91 18.93 25.18 0.50 0.76 

woman 20.08 32.06 0.75 0.93 19.26 28.65 0.61 0.84 
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Figure 3.17 : VDSR result Set5, scale factor x2 

 
Figure 3.18 : VDSR result Set5, scale factor x4 

 
Figure 3.19 : Bird (ROI) of VDSR 
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Figure 3.20 : VDSR result Set14, scale factor x2 

 
Figure 3.21 : VDSR result Set14, scale factor x4 

 

Figure 3.22 : VDSR result Set14, scale factor x2 

 

Figure 3.23 : VDSR result Set14, scale factor x4 
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Figure 3.24 : buildings (ROI) of VDSR 

3.4.2.3 EDSR 

Following the execution of the VDSR algorithm, we proceeded with the implementation of 

the EDSR algorithm. Subsequently, we calculated the PSNR and SSIM metrics for all images 

obtained as test results for this algorithm, as documented in Tables 3.11, 3.12, 3.13,3.14 , and 3.15. 

This evaluation allows us to assess the effectiveness and performance of the EDSR algorithm. 

Figure 3.25 presents the essential steps of our implementation in the form of a flowchart. 

 

Figure 3.25 : Flowchart of EDSR 
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Table 3.11 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of EDSR Set 5. 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

baby 18.15 42.15 0.70 0.99 17.98 42.10 0.66 0.98 

bird 15.11 43.15 0.73 0.99 14.97 42.76 0.64 0.99 

butterfly 15.29 31.30 0.71 0.99 14.52 30.24 0.62 0.97 

head 20.37 33.84 0.69 0.98 20.14 32.55 0.58 0.90 

woman 19.48 38.22 0.76 0.99 18.65 37.80 0.63 0.99 

Based on the results shown in Table 3.11, which contains a set of test data, we can observe 

notable improvements in both PSNR and SSIM metrics. Taking the "bird" image as a case study, 

we noted an increase in PSNR of 28.04 dB and 27.79 dB for downsampling factors of 2 and 4, 

respectively. Similarly, SSIM values improved from 0.73 to 0.99 at a factor of 2 and from 0.64 to 

0.99 at a factor of 4, approaching the maximum value of 1. These enhancements were consistently 

observed across the various data used in the study, including Set 14, LIVE1-Part1, and LIVE1-

Part2. These results indicate the effectiveness of the EDSR algorithm. The EDSR algorithm 

performed well, which led us to test it with medical data. However, despite its strong performance 

with the initial test data, the algorithm showed only modest improvements in both metrics and 

visual quality when applied to medical data. The LR and SR images generated using the EDSR 

method, as detailed in Table 3.11 to 3.15, are shown in Figures 3.26 to 3.36, along with their HR 

counterparts. 

Table 3.12 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡 of EDSR set 14. 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

Bridge 17.88 31.07 0.75 0.88 17.01 29.20 0.54 0.79 

foreman 22.36 36.19 0.79 0.98 21.26 33.96 0.77 0.96 

Face 20.29 33.84 0.67 0.93 20.07 32.57 0.63 0.90 

Man 25.32 31.14 0.65 0.85 23.03 28.80 0.61 0.73 

Barbara 18.97 32.13 0.67 0.96 18.35 31.55 0.62 0.95 

Comic 18.46 29.89 0.62 0.94 17.08 28.27 0.52 0.90 

coastguar

d 

20.45 37.03 0.73 0.96 20.28 37.18 0.49    0.93 

monarch 16.97 37.21 0.81 0.99 16.02 36.27 0.59 0.99 

Pepper 14.20 34.62 0.61 0.98 14.12 32.66 0.58 0.98 

Lenna 15.72 36.50 0.64 0.99 14.59 36.31 0.61 0.99 

Zebra 17.35 36.72 0.76 0.98 16.45 36.36 0.55 0.97 

Flowers 16.21 34.24 0.69 0.97 15.50 32.42 0.57 0.95 

ppt3 16.57 30.48 0.77 0.95 15.54 28.77 0.69 0.56 

baboon 14.88 26 .59 0.72 0 .91 13.99 24.94 0.43 0.87 
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Table 3.13 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of EDSR LIVE1 Part1. 

Table 3.14 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡 of EDSR LIVE1 Part 2. 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bikes 20.63 32.00 0.83 0.96 19.08 31.78 0.55 0.94 

building2 19.29 28.19 0.79 0.94 17.12 27.60 0.49 0.91 

buildings 20.75 28.50 0.70 0.91 18.50 25.55 0.48 0.86 

caps 18.22 38.86 0.86 0.98 18.08 38.34 0.67 0.98 

carnivaldolls 17.50 33.25 0.82 0.95 15.03 30.76 0.71 0.90 

cemetry 18.81 31.12 0.69 0.96 17.36 30.32 0.51 0.94 

churchandcapi

tol 

20.47 30.37 0.81 0.95 18 .23 29.60 0.64 0.93 

coinsinfountain 21.36 35.34 0.83 0.97 20.20 35.16 0.68 0.95 

dancers 19.19 27.74 0.78 0.93 17.12 26.90 0.54 0.89 

flowersonih35 17.50 27.57 0.79 0.95 16.06 27.13 0.57 0.92 

house 20.70 35.56 0.77 0.98 20.15 35.22 0.59 0.98 

lighthouse2 21.15 33.00 0.85 0.97 21.00 32.54 0.68 0.96 

lighthouse3 21.55 31.26 0.72 0.96 20.30 29.77 0.63 0.95 

manfishing 21.65 30.42 0.81 0.94 19.45 29.36 0.62 0.91 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bikes 20.63 32.00 0.83 0.96 19.08 31.78 0.55 0.94 

building2 19.29 28.19 0.79 0.94 17.12 27.60 0.49 0.91 

buildings 20.75 28.50 0.70 0.91 18.50 25.55 0.48 0.86 

caps 18.22 38.86 0.86 0.98 18.08 38.34 0.67 0.98 

carnivaldolls 17.50 33.25 0.82 0.95 15.03 30.76 0.71 0.90 

cemetry 18.81 31.12 0.69 0.96 17.36 30.32 0.51 0.94 

churchandcapi

tol 

20.47 30.37 0.81 0.95 18 .23 29.60 0.64 0.93 

coinsinfountain 21.36 35.34 0.83 0.97 20.20 35.16 0.68 0.95 

dancers 19.19 27.74 0.78 0.93 17.12 26.90 0.54 0.89 

flowersonih35 17.50 27.57 0.79 0.95 16.06 27.13 0.57 0.92 

house 20.70 35.56 0.77 0.98 20.15 35.22 0.59 0.98 

lighthouse2 21.15 33.00 0.85 0.97 21.00 32.54 0.68 0.96 

lighthouse3 21.55 31.26 0.72 0.96 20.30 29.77 0.63 0.95 

manfishing 21.65 30.42 0.81 0.94 19.45 29.36 0.62 0.91 
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Table 3.15 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡 of EDSR Medical 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

01 14.88 23.46 0.55 0.59 14.21 23.00 0.55 0.57 

02 20.36 27.71 0.58 0.63 20.19 26.59 0.54 0.60 

03 19.29 26.29 0.60 0.66 18.17 25.61 0.51 0.61 

04 16.32 24.84 0.58 0.64 15.03 24.56 0.58 0.63 

05 15.97 22.75 0.49 0.55 15.00 22.23 0.45 0.52 

06 18.46 26.56 0.54 0.60 16.99 25.70 0.50 0.58 

07 19.45 26.74 0.59 0.67 18.97 25.45 0.59 0.64 

08 17.90 26.59 0.51 0.56 16.33 25.93 0.44 0.52 

09 15.23 28.32 0.55 0.60 14.19 25.95 0.50 0.57 

10 14.69 24.49 0.67 0.61 13.98 22.42 0.49 0.55 

11 16.35 25.07 0.58 0.62 15.44 24.49 0.56 0.61 

12 16.80 27.01 0.62 0.68 15.36 26.09 0.57 0.65 

13 17.49 26.36 0.59 0.66 16.01 24.66 0.56 0.63 

14 15.04 26.15 0.67 0.63 14.03 25.23 0.52 0.59 

 

Figure 3.26 : EDSR result Set5, scale factor x2 
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Figure 3.27 : EDSR result Set5, scale factor x4 

 
Figure 3.28 : bird (ROI) of EDSR 

 
Figure 3.29 : EDSR result Set14, scale factor x2 
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Figure 3.30 : EDSR result Set14, scale factor x4 

 

Figure 3.31 : EDSR result LIVE1, scale factor x2 

 
 

Figure 3.32 : EDSR result LIVE1, scale factor x4 
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Figure 3.33 : buildings (ROI) of EDSR 

 

                                        Figure 3.34 : EDSR results Medical, scale factor x2
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Figure 3.35 : EDSR results Medical, scale factor x4    

 
Figure 3.36 :Medical (ROI) of EDSR
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3.4.2.4 DWSR 

The latest algorithm we implemented was DWSR, where we evaluated its performance by 

calculating PSNR and SSIM for all its outputs, as shown in the tables 3.6. Figure 3.37 illustrates 

the key steps of its implementation in the form of a flowchart. 

 

Figure 3.37 : Flowchart of DWSR 

Table 3.16 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of DWSR Set5 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

baby 18.15 39.91 0.70 0.96 17.98 31.83 0.66 0.91 

bird 15.11 40.56 0.73 0.99 14.97 33.22 0.64 0.96 

butterfly 15.29 34.57 0.71 0.98 14.52 27.41 0.62 0.94 

head 20.37 35.10 0.69 0.89 20.14 29.71 0.58 0.81 

woman 19.48 36.55 0.76 0.98 18.65 30.51 0.63 0.95 



Chapter 3: Deep learning-based super-resolution optimization algorithms 

 

56 

 

Based on the findings presented in Tables 3.16 and 3.20, which encompass a comprehensive 

set of test data in our study, notable improvements are observed in both PSNR and SSIM values. 

Taking the "bird" image as a prime example, enhancements of 25,45 dB and 18,25 dB are recorded 

for downsampling factors of 2 and 4, respectively. Correspondingly, SSIM values exhibit a 

substantial increase from 0.73 to 0.99 at factor 2, and from 0.64 to 0.96 at factor 4. This consistent 

enhancement is evident across most of the datasets used in our study, including Set 14, LIVE1-

Part1, and LIVE1-Part2. Particularly noteworthy are the results obtained from the Medical dataset, 

where the algorithm demonstrates exceptional performance both in terms of metrics and visual 

quality. For instance, in image” 9”, we observe significant PSNR values of 18,33dB and 17,85dB 

for r downsampling factors 2 and 4, respectively.  

Additionally, there is a remarkable improvement in SSIM values from 0.55 to 0.95 and 0.50 

to 0.67 for the same two downsampling factors, underscoring the effectiveness of the DWSR 

method, especially for this image type.The LR and SR images generated using the DWSR method, 

as delineated in Tables 3.16 to 3.20, are visually depicted in Figures 3.38 to 3.48, alongside their 

HR counterparts. 

Table 3.17 : Show the PSNRin& SSIMin of LR images and obtained PSNRout & SSIMout of  DWSR Set 14 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bridge 17.88 28.98 0.75 0.81 17.01 24.90 0.54 0.50 

foreman 22.36 33.30 0.79 0.97 21.26 29.00 0.77 0.92 

face 20.29 32.07 0.67 0.89 20.07 29.69 0.63 0.81 

man 25.32 30.07 0.65 0.78 23.03 29.94 0.61 0.52 

barbara 18.97 29.82 0.67 0.88 18.35 26.12 0.62 0.77 

comic 18.46 30.57 0.62 0.93 17.08 28.39 0.52 0.73 

coastguar

d 

20.45 29.41 0.73 0.80 20.28 27.44 0.49 0.60 

monarch 16.97 37.38 0.81 0.99 16.02 32.99 0.59 0.97 

pepper 14.20 31.63 0.61 0.98 14.12 29.67 0.58 0.97 

lenna 15.72 33.75 0.64 0.98 14.59 29.84 0.61 0.97 

zebra 17.35 32.77 0.76 0.98 16.45 28.35 0.55 0.91 

flowers 16.21 31.11 0.69 0.95 15.50 28.34 0.57 0.84 

ppt3 16.57 30.83 0.77 0.90 15.54 26.83 0.69 0.80 

baboon 14.88 25.39 0.72 0.83 13.99 23.60 0.43 0.65 
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Table 3.18 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of DWSR LIVE1 Part1 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

bikes 20.63 29.81 0.83 0.94 19.08 29.47 0.55 0.93 

building2 19.29 24.48 0.79 0.87 17.12 24.12 0.49 0.86 

buildings 20.75 25.86 0.70 0.88 18.50 25.75 0.48 0.86 

caps 18.22 36.45 0.86 0.97 18.08 35.83 0.67 0.97 

carnivaldolls 17.50 30.00 0.82 0.92 15.03 29.00 0.71 0.90 

cemetry 18.81 28.05 0.69 0.92 17.36 26.94 0.51 0.90 

churchandcapit

ol 

20.47 28.31 0.81 0.92 18 .23 27.31 0.64 0.92 

coinsinfountain 21.36 30.76 0.83 0.92 20.20 29.95 0.68 0.90 

dancers 19.19 25.98 0.78 0.89 17.12 25.01 0.54 0.87 

flowersonih35 17.50 23.82 0.79 0.90 16.06 23.45 0.57 0.89 

house 20.70 32.10 0.77 0.94 20.15 31.70 0.59 0.93 

lighthouse2 21.15 29.88 0.85 0.93 21.00 29.76 0.68 0.92 

lighthouse3 21.55 29.33 0.72 0.92 20.30 29.22 0.63 0.91 

Table 3.19 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of DWSR LIVE1 Part2. 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

manfishing 21.65 27.98 0.81 0.88 19.45 26.65 0.62 0.85 

monarch 16.98 37.36 0.85 0.99 16.63 36.06 0.83 0.99 

ocean 25.27 32.11 0.69 0.87 24.30 32.02 0.66 0.83 

paintedhouse 22.33 28.02 0.70 0.91 20.90 27.78 0.61 0.90 

parrots 16.53 37.84 0.87 0.98 16.39 37.02 0.80 0.98 

plane 21.02 33.56 0.81 0.91 20.38 33.23 0.76 0.89 

rapids 18.32 31.20 0.78 0.92 17.83 30.41 0.63 0.91 

sailing1 21.45 28.77 0.76 0.91 20.43 28.67 0.58 0.91 

sailing2 24.42 34.40 0.83 0.90 23.16 34.03 0.78 0.89 

sailing3 26.23 34.56 0.81 0.94 24.73 34.21 0.80 0.93 

sailing4 22.67 30.99 0.69 0.90 21.65 30.79 0.60 0.89 

statue 24.62 33.34 0.83 0.92 23.51 33.16 0.78 0.92 

stream 19.84 24.77 0.71 0.87 18.47 24.70 0.47 0.86 

studentsculptu

re 

21.32 26.03 0.79 0.88 18.93 25.65 0.50 0.86 

woman 20.08 28.61 0.75 0.89 19.26 28.40 0.61 0.88 

womanhat 18.39 34.43 0.79 0.98 18.18 33.69 0.73 0.98 
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Table 3.20 : Show the 𝑃𝑆𝑁𝑅𝑖𝑛& 𝑆𝑆𝐼𝑀𝑖𝑛 of LR images and obtained 𝑃𝑆𝑁𝑅𝑜𝑢𝑡 & 𝑆𝑆𝐼𝑀𝑜𝑢𝑡  of DWSR Medical 

Name X2 X4 

𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 𝐏𝐒𝐍𝐑𝐢𝐧 𝐏𝐒𝐍𝐑𝐨𝐮𝐭 𝐒𝐒𝐈𝐌𝐢𝐧 𝐒𝐒𝐈𝐌𝒐𝒖𝒕 

01 14.88 28.31 0.55 0.90 14.21 28.03 0.55 0.64 

02 20.36 32.71 0.58 0.91 20.19 31.96 0.54 0.62 

03 19.29 31.20 0.60 0.92 18.17 30.73 0.51 0.68 

04 16.32 29.66 0.58 0.87 15.03 29.51 0.58 0.65 

05 15.97 27.59 0.49 0.89 15.00 27.31 0.45 0.64 

06 18.46 31.53 0.54 0.81 16.99 30.84 0.50 0.61 

07 19.45 31.66 0.59 0.81 18.97 30.68 0.59 0.64 

08 17.90 31.49 0.51 0.92 16.33 31.15 0.44 0.60 

09 15.23 33.56 0.55 0.95 14.19 32.04 0.50 0.67 

10 14.69 29.86 0.67 0.94 13.98 28.57 0.49 0.64 

11 16.35 29.96 0.58 0.93 15.44 29.56 0.56 0.61 

12 16.80 31.94 0.62 0.87 15.36 31.39 0.57 0.75 

13 17.49 31.51 0.59 0.96 16.01 30.45 0.56 0.64 

14 15.04 31.07 0.67 0.97 14.03 30.61 0.52 0.63 

 

Figure 3.38 : DWSR result Set5, scale factor x2 

 

Figure 3.39 : DWSR result Set5, scale factor x4
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Figure 3.40 : bird (ROI) of DWSR 

 
Figure 3.41 : DWSR result Set14, scale factor x2 

 
Figure 3.42 : DWSR result Set14, scale factor x4
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Figure 3.43 : DWSR result LIVE1, scale factor x2 

 
Figure 3.44 : DWSR result LIVE1, scale factor x4 

 

Figure 3.45 : building (ROI) of DWSR
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Figure 3.46 : DWSR results Medical, scale factor x2 

 
Figure 3.47 : DWSR results Medical, scale factor x4 
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Figure 3.48 : Medical (ROI) of DWSR 

Table 3.21 : The average results of PSNR (dB) and SSIM of SRCNN, VDSR, EDSR and DWSR 

3.5 Discussion 
 After completing our study on the implementation of classical methods and deep learning 

algorithms, we recorded several observations: 

 For the conventional methods, the highest and best value of PSNR and SSIM was recorded 

when bicubic was implemented on the test data, from which we conclude that it is better 

performing than its counterpart, where the difference was about 1dB, and this applies to all test 

data.When visually comparing two images with a difference of about 1dB between them, it is 

difficult to see this difference in quality easily, so the larger the difference in PSNR value, the 

better the visualization of the difference. 

Dataset Scale SRCNN VDSR EDSR DWSR 

Set5 X2 36.65/0.94 36.89/0.95 37.73/0.98 37.33/0.96 

X4 30.48/0.84 31.62/0.90 37.09/0.96 30.53/0.91 

Set14 X2 32.44/0.87 33.22/0.91 33.40/0.94 31.22/ 0.90 

X4 27.50/0.70 29.15/0.83 32.09/0.89 28.22/0.78 

LIVE1 X2 31.48/0.89 32.86/0.93 33.14/0.95 30.30/0.91 

X4 26.57/0.71 28.86/0.87 32.32/0.93 29.79/0.90 

Medical X2 -- -- 25.88/ 0.62 30.84/0.89 

X4 -- -- 24.85/0.59 30.17/0.64 
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 When examining the results of the deep learning algorithms as shown in Tables 3.6, which 

represents the average values of PSNR and SSIM for each algorithm and previewing the outputs 

of the images, it is clear that EDSR performed more effectively than SRCNN, VDSR and DWSR, 

where we recorded a difference of 2dB versus SRCNN, and compared to VDSR and DWSR there 

was a difference of 1dB, and this applies to the following test data Set5, Set14 and LIVE1. while 

the SSIM value was close to 1 in some cases : 

• So we can say that it is the best option to get high-resolution images on this type of images. 

When our study proved that EDSR is the best option, we decided to test its effectiveness 

with its counterpart DWSR on Medical images as shown in Table 3.21 The reason we chose 

DWSR for comparison is that it works in the frequency domain while the other algorithms work 

in the spatial domain, so we decided to test its effectiveness. 

From the results obtained as shown in Table 3.21, we can see that DWSR was more effective 

on medical test data compared to EDSR, so we can say that it is the best option in improving the 

image quality on this type of images, we observed a 5 dB difference for medical data at factor 2 

and 4, in addition, we recorded a difference in SSIM value of 0.27 and 0.5 for the same two 

downscaling factors respectively. 

 In addition, we wanted to make the differences clearly visible so we mapped the region of 

interest (ROI) on a number of test data as shown in Figure 3.32 and 3.46 where the quality 

differences were well visualized.   

 Deep learning-based algorithms have proven to be much more effective than traditional 

methods in terms of PSNR and SSIM as well as output quality, with a significant improvement in 

the latter. 

3.6 Conclusion 

In this chapter of the thesis, we studied and implemented methods and algorithms to improve 

image quality and resolution, including classical methods (bicubic, nearest neighbor, and bilinear) 

and deep learning algorithms (SRCNN, VDSR, EDSR, DWSR), where we generated low quality 

and resolution images from high quality and resolution images, and then evaluated the 

effectiveness of the latter two by calculating metrics (PSNR, SSIM). 
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Based on the results obtained with respect to the classical methods, bicubic interpolation 

proved to be more effective than its conventional counterparts. 

As for the results of the neural network algorithms, we found EDSR to be the best choice 

due to its image output compared to the other algorithms, with better metric values by a significant 

difference of 2 dB and in some cases 3 dB, for the test data (Set5, Set14, LIVE1). 

In the same experiment, we tested the DWSR and EDSR algorithms on medical test data, 

and the observation was that DWSR performed significantly better both on the quality of the 

obtained images, where visual inspection was easy due to the obvious difference, and on the metric 

values. 

In conclusion, the above-mentioned neural network-based algorithms proved to be more 

effective in performance in terms of improving image quality and resolution, as we observed that 

the majority of the image outputs were of high resolution and were successful and desirable 

solutions in solving.



 

 

 

 

General conclusion 
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General Conclusion 

The work involves reconstructing a high-resolution image from a low-resolution image  

This thesis deals with the comparison of two methods for improving the accuracy of image 

interpolation: Traditional interpolation algorithms and deep learning-based super-interpolation 

algorithms. 

First: we studied conventional interpolation algorithms, and three algorithms were 

implemented: Binary interpolation, cubic interpolation, cubic interpolation, and nearest-neighbor 

interpolation. 

Second: we studied deep learning-based SR image algorithms. Four algorithms SRCNN, 

VDSR, EDSR, and DWSR were implemented using a set of data including medical images in 

simulation experiments to evaluate the performance. 

The results clearly showed that deep learning-based super-resolution algorithms 

significantly outperform traditional interpolation methods. These algorithms significantly 

improved the quality of low-resolution images, as evidenced by the high values of quality metrics 

such as PSNR and SSIM. Thus, this study confirms the effectiveness and feasibility of solving the 

issue of detail restoration and improving image resolution using deep learning-based super-

resolution methods. In addition, DWSR achieved exceptional results on medical images and was 

effective in performance. 

Recent advances in deep learning have opened up new horizons and exciting perspectives in 

the field of super-resolution images. Algorithms based on deep learning provide significant 

improvements in image quality, opening up new horizons in areas such as image processing, image 

medical, surveillance, and computer vision, among others. Although there are challenges such as 

performance and compute time, the results obtained so far are promising and point to an exciting 

future for super-resolution images using deep learning.
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