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Abstract

Data mining is a critical process in the discovery of knowledge from data. Its primary ob-

jective is to extract interesting patterns that implicitly indicate significant relationships between

items. Different branches of data mining manipulate various types of data. Episode mining is

a subfield of data mining that aims to uncover valuable knowledge from temporal data in the

form of a single, long sequence of events. The sequence may not always certain data; it may

be noisy, sourced from multiple sources, or collected with errors. Consequently, there is a need

to develop and design algorithms to extract frequent episodes from uncertain data. This thesis

proposes novel algorithms for frequent episode and episode rule mining in the case of certain

data and addresses also the challenges associated with these tasks in the context of uncertain

data.

Key words Episode mining, episode rules, NONEPI, EMDO, UEMDO, prediction, uncer-

tain data
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Résumé

La fouille de données est un processus très important de la découverte de connaissances à

partir de données. Il sert à découvrir des motifs importants qui peuvent révéler des relations

significatives entre les données. Elle englobe des domaines différents d’où chaque domaine

utilise un type spécifique de bases de données. La fouille d’épisodes est un domaine de la fouille

de données qui sert à chercher des motifs appelés épisodes à partir des données temporelles sous

forme d’une longue séquence d’événements. La majorité des algorithmes existants suppose

que la séquence est toujours certaine. Cependant, la séquence n’est pas toujours certaine ;

elle peut être bruyante, collectée à partir de plusieurs sources ou bien elle a été collectée avec

des erreurs. Par conséquent, il est nécessaire de développer et de concevoir des algorithmes

capables d’extraire des épisodes fréquents à partir de données incertaines. Cette thèse propose

de nouveaux algorithmes pour la fouille d’épisodes fréquents et de règles d’épisode dans le

cas de données certaines et aborde également le défi associé à ces tâches dans le contextes de

données incertaines.

Mots clés Fouille d’épisodes, règles d’épisodes, NONEPI, EMDO, UEMDO, prédiction,

données incertaines.
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Chapter 1

General Introduction

The explosive growth of stored data has generated an emergent need for new techniques and

automated tools that can assist in transforming the vast amount of data into useful knowledge.

This led to the generation of a new frontier called dataminig and its subfields. Data mining is

the task of extracting patterns representing knowledge implicitly captured in large databases,

such as event logs, the web, or even data streams.

1.1 General context

Existing data mining methods use specific types of data. For itemset mining, the data com-

prises a set of transactions called the transaction database. Itemset mining is the first subdomain

of the data-mining field. Another collection of techniques uses another data format called the

sequence database. Sequence mining is an important field of datamining that focuses on ex-

tracting interesting patterns called frequent sequences with respect to the occurrence of items in

databases. If the analysis focuses on the temporal relationships between data items in a single

sequence, the task is called episode mining. Frequent episode mining uses a single long se-

quence of items, called textitevents, as input data and looks for episodes i.e., sub-sequences of

events that frequently appear in the sequence. This thesis is situated in this context and aims to

explore new algorithms for efficient episode mining from both certain and uncertain sequences

of events.
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1.2 Objectives

In general, the task of episode mining is to find important patterns, called frequent episodes,

from the event sequences. Additionally, many techniques use such algorithms to derive more

meaningful patterns called episode rules. Episode rules explain the correlations among events

in the sequence, to be used later in future actions prediction in a given system. However, the

majority of the proposed techniques assume that the data do not have any noise or imperfection

i.e: the events are captured with absolute certainty of existence in the sequence. Unfortunately,

in many scenarios, systems can record valuable data but faulty sensors, errors, or network trans-

mission problems. Hence, the obtained data may be uncertain. Our objective in this thesis is

twofold: First we propose new algorithms for mining frequent episodes and episode rules from

certain data. The proposed algorithms in this context explore new frequency definitions (non

overlapping and distinct) to propose new forms of episode rules that are suitable in practice for

prediction tasks. The second objective is to extend the previous algorithms, namely those based

on distinct occurrences frequency, to the case of uncertain data where uncertainty is expressed

in the probabilistic framework.

1.3 Contributions

Our contributions in this thesis can be summarized in the four following points :

• An up-to-date state-of-the-art that presents and discusses the main existing algorithms in

episode mining as well as their applications.

• A novel algorithm, called NonEpi, for mining frequent episode and episode rules from

certain simple sequences where episode frequency is based on their non-overlapping oc-

currences.

• A novel algorithm, called EMDO, for mining frequent episode and episode rules from cer-

tain complex sequences where episode frequency is based on their distinct occurrences.

• To address the problem of data uncertainty, we proposed an extension of EMDO algo-

rithm, called UEMDO, to discover frequent episodes and episode rules from complex

probabilistic sequences.
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1.4 Thesis structure

In addition to a general introduction and a general conclusion, this thesis is structured on

five chapters organized as follows:

In Chapter 2, we start by giving a brief recall about data Mining and the general process of

Knowledge Discovery from Data. Then we focus on pattern mining which is an important

and active field of data mining. The chapter contains a brief introduction to different kinds of

patterns to discover from different kinds of databases.

In Chapter 3, we discuss the latest state-of-the-art of frequent episode mining framework.

The chapter provides an introduction to the field of pattern discovery from temporal data. It

considers the definition of key concepts of episode mining technique as well as the variants

of existing algorithms and their limitations. Recent applications that use episode mining ap-

proaches as well as current research opportunities are also discussed.

Chapter 4 is devoted to the presentation of our first contribution which is a novel approach

for frequent episodes and episode rules mining based on non-overlapping occurrence-based

frequency definition. The new approach proposes an important algorithm (called NonEpi) for

prediction tasks owing to the new form of episode rules that has been proposed in that work.

In Chapter 5, we show the details of another novel method for episode rules discovery

under a new frequency called distinct occurrence-based frequency. This chapter describes new

algorithms called EMDO and EMDO-P for episode and episode rules discovery respectively.

Chapter 6 focuses on frequent episode and episode rule mining from uncertain data. We

propose in this chapter an extension of EMDO and EMPO-P algorithms to extract expected

frequent episode and adapted forms of episode rules from a sequence of probabilistic events.

Notice that for each of the three previous contributions, an extensive experimental study has

been conducted on several datasets to show the efficiency or the proposed algorithms and their

applicability in practical contexts.
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Chapter 2

Introduction to Pattern Mining

Data is the fuel of the last decades, due to various real-life applications that manage our data

either in our computer networks, the World Wide Web, or data stored every day from business

or other domains. However, owing to the explosive growth of data, analyzing and covering

useful information has become a challenging task. Consequently, there exists a collection of

techniques and concepts called data mining designed to simplify the task of the analysis and

understanding the relationships between items that constitute every piece of data. In this chapter,

we explain the process of knowledge discovery from databases or KDD. Next, we focus on

pattern mining, a subfield of data mining which aims at discovering relevant patterns and rules

from large databases of different kinds.

2.1 The process of Knowledge Discovery from Data (KDD)

The whole process that aims at discovering and revealing the implicit and potentially useful

knowledge embedded in databases is called Knowledge Discovery from Databases, or simply

KDD. KDD is an iterative process that aims for extracting useful insights from databases (from

simple databases to data warehouses). This process can be integrated into many fields, such as

medicine, business, and biology. The process consists of several steps organized as follows:

1. Data cleaning: By the end of this step, the data won’t contain any noise or inconsis-

tencies. For instance, ignoring tuples that contain missing data, filling the missing data

manually or using a global constant or a central tendency (such as the mean or the median)

are techniques used to perform the cleaning sub-process like Talend and Pentaho.
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2. Data integration: The aim of this step is to merge the data from multiple sources (spread-

sheets, raw data, web, . . . , etc.) into one structure to reduce and avoid redundancy.

3. Data Selection: In this step, we select a relevant partition which is only dedicated to the

specific wanted analysis.

4. Data transformation: In this preprocessing step, data is transformed to be suitable for

the mining task. For instance, aggregation is an operation that may be performed to

transform data, such as the Group By operation in the SQL language.

5. Data-mining: It is the heart of the KDD process in which efficient algorithms are applied

to mine interesting knowledge that describe the hidden relationships between different

attributes (items) from a large amount of data. According to the objective, different tasks

may be achieved in this step including prediction, regression, classification clustering

and pattern mining among others. In pattern mining context, the main task performed

in this step is to extract all patterns depending on the type of database. For instance, if

the database consists of transactions, the data-mining task here is to extract all itemsets

from those transactions. If we have multiple sequences (for example, the sequences of

customers’ purchased items), the process will extract the important sequences and extract

a special type of sequential pattern called episodes if we have only a single long sequence

of events with their occurrence timestamps. In the next sections, we describe each variant

in detail.

6. Evaluation: This is performed to identify truly interesting extracted knowledge. For

example in pattern mining, this may involve the evaluation of the used thresholds such as

support and/or confidence as measurement objectives.

7. Knowledge presentation: This is the final step of the KDD process where the extracted

patterns are presented in a way that is understandable by users or experts.

2.2 Pattern mining

Now we focus on pattern mining which represents an important particular task of data min-

ing where the objective is to extract relevant and useful patterns from large amount of data.

Patterns can be directly extracted from raw data, used to understand data, and support deci-
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sion making. Pattern mining algorithms have been designed to extract various types of patterns,

each provides different information to the user and extracts patterns from different types of data.

Popular patterns are sequential patterns and itemsets. The main task in FPM is to determine fre-

quent patterns with a frequency that is not less than the support threshold. FPM techniques can

be classified into several categories according to the database type. In this section, we present

the main extensions of the FPM. Also, we present most known algorithms in the literature for

each domain.

2.2.1 Frequent itemsets mining

Frequent Episode Mining (FIM)[1] is a popular framework designed in the aim of analyzing

transaction databases. The first FIM algorithm was proposed by Aggarwal called association-

rule [2]. It was first proposed for analyzing customer basket data and has recently been used in

several applications.

2.2.1.1 Discovering frequent itemsets

Generally, the purpose of an FIM algorithm is to find a set of itemsets where the support

exceeds a user-specified support threshold minsup. Let be a set of items I = {i1, i2, . . . , im}.

A set of transactions D = {T1,T2, . . . ,Tn} such that each Tj ⊆ I is a set of unique items. For

instance, Table 2.1 shows an example of a transaction database where I = {a,b,c,e, f} and

|D| = 2. As mentioned before, the database in Table 2.1 may represent a specific customer’s

purchases. Hence, the items are products purchased by the customer.

Table 2.1: An example of transaction database

TID Transaction
T1 {a,e,b}
T2 {a,c, f}

The Support (Sup) of an itemset is a measure of how often it occurs in the input database.

It is also used to evaluate the itemset interestingness. Let D be a transaction database and X be

an itemset, the support of X is formally defined as follows:

sup(X) =
|{T |X ⊆ T ∧T ∈ D}|

|D|
(2.1)
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For instance, let X = {a,e} be an itemset, and consider the example in Table 2.1. The

support of X is equal to 1
2 because it is only supported by transaction T1. Consider a sup-

port threshold minsup = 50%. the itemset X can be considered a frequent itemset because

sup({a,e})≥ minsup.

Many algorithms have been proposed to retrieve frequent itemsets, such as associationrule

[2] and Eclat[3]. Any algorithm may be designed to follow either a breadth-first or depth-first

strategy.

2.2.1.2 Association rules generation

Some FIM approaches extend the original framework to reveal more meaningful patterns,

called Association Rules. An Association Rule describes the relationship between two item-

sets. Let be Xi and X j two itemsets. An association rule is an implication Xi→ X j. It is used to

express the implicit relationship between any pair of itemsets (Xi,X j) such that every transaction

that contains Xi has a strong probability that X j also exists in the same transaction T .

In addition to support, the Confidence (conf) is a measure to evaluate the interestingness of

an association rule. The confidence of the rule Xi→ X j is the conditional probability P(X j|Xi).

Formally, this is defined as follows.

con f (Xi→ X j) =
sup(Xi∪X j)

sup(Xi)
=
|{T |(Xi∪X j)⊆ T ∧T ∈ D}|
|{T |Xi ⊆ T ∧T ∈ D}|

(2.2)

Given a support threshold minsup and confidence threshold mincon f . An association rule

X1 → X2 is said to be valid if and only if X1 and X2 are frequent according to minsup and

con f (X1→ X2)≥ mincon f .

2.2.2 Sequential pattern mining

Frequent itemset mining has become popular owing to its applications and community.

However, if such an itemset mining algorithm is applied to data with time sensitivity or with

a sequential order, the temporal or order information will be ignored; hence, it will fail to dis-

cover the strongest correlations in the data. Fortunately, sequential pattern mining has solved

the problems of time and order in data.
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2.2.2.1 Discovering frequent subsequences

Sequential Patterns Mining or SPM [4, 5, 6, 7, 8, 9], is another field of frequent pattern

mining. It consists of discovering interesting sub-sequences from a set of sequences, where

the interestigness of such a pattern can be evaluated using the occurrence frequency, length, or

profit of the pattern.

State-of-the-art of Sequential pattern mining has encountered a huge amount of methods.

Many algorithms have been proposed to enhance the existing algorithms or to propose new

solutions to new challenges. The most well-known algorithms include GSP [8], PrefixSpam

[9], CM-SPADE and CM-SPAM [7]..

The input data of any sequential pattern mining algorithm consist of sequences. A sequence

is an ordered list of nominal values. a Sequence database (SDB) is a set of sequences in which

each sequence has a unique identifier. Table 2.2 shows an example of an SDB. For example, it

may constitute the purchased product items of four customers. For example, the first sequence

represents the purchased items of the first customer, where he took in the first day two products

together a and e then he took only the product f then the product g, and finally took b and d

together.

Table 2.2: An example of sequence database

SID Sequences
S1 ⟨{a,e},{ f},{g},{b,d}⟩
S2 ⟨{b},{ f ,a}⟩
S3 ⟨{c},{e},{g,d},{b,e}⟩
S4 ⟨{a,b},{d,c},{ f ,e}⟩

Formally, given a set of items I = {i1, i2, . . . , in}. A sequence s = ⟨X1,X2, . . . ,Xm⟩ is a set of

itemsets such that Xi⊆ I for all 1≤ i≤m. We denote by k =∑
m
i=1 |Xi| the length of the sequence

s. A sequence database is a set of sequences SDB = ⟨s1,s2, . . . ,sn⟩ such that each sequence has

a unique identifier.

A sequence s1 = ⟨X1,X2, . . . ,Xn⟩ is said to be contained in another sequence s2 = ⟨Y1,Y2, . . . ,Ym⟩

if and only there exist integers 1≤ i1 < i2 < · · ·< in≤m such that X1⊆Yi1 , X2⊆Yi2 , ..., Xn⊆Yin .

If a sequence si is contained in another sequence s j, si is called subsequence of s j and is denoted

by si ⊑ s j.
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The goal of sequential pattern mining is to find the subsequences of interest among a set of

sequences in the SDB. To evaluate the interestigness of a pattern in sequential data, the support

measure is used. The support of a sequence s in sequential pattern mining is the number of se-

quences in the SDB that contain the sequence s. Some sequential pattern mining algorithms use

absolute support (see the definition in equation 2.3) to evaluate the interestigness of a pattern.

Other algorithms use the relative support (relSup) denoted by equation 2.4 [4]

sup(s) = |{si|si ∈ SDB∧ s⊑ si}| (2.3)

relSup(s) =
sup(s)
|SDB|

(2.4)

For example, consider the sequence database in Table 2.2. Let sα = ⟨{a}⟩ and sβ = ⟨{a}{d}⟩.

Sequence sα is included in sequences S1, S2 and S3; hence, the absolute support of sα is

sup(sα) = 3. The absolute support of sβ is 2 because sβ ⊑ S1 and sβ ⊑ S2. The relative

support of sα and sβ is 3
4 and 2

4 respectively. Note that the anti-monotonicity property holds for

the support count in sequence mining. This property states that the support of such a sequence

does not exceed that of its subsequence. To prove this, consider the sequence sγ = ⟨{d}⟩. It is

easy to see that sup(sβ ) < sup(sα) and sup(sβ ) ≤ sup(sγ) with sγ ⊑ sβ and sα ⊑ sβ . Given a

support threshold minsup. SPM aims to find all sequences with a support value not less minsup.

Many algorithms exist that aim to efficiently extract all the frequent sequences from a sequence

database. Each algorithm uses a proper database representation (vertical or horizontal) and

prunes the search space. It also uses a strategy for exploring the search space: breadth-first

algorithms that perform candidate generation or depth-first search algorithms.

2.2.2.2 Sequential rules mining

An important extension of sequential pattern mining is the extraction of relationships be-

tween subsequences from multiple sequences. This variant is known as sequential rule mining.

A sequential rule is an expression of the form X→Y indicating that if some items X appear in a

sequence, it will be followed by other items Y with a given confidence. This concept is similar

to that of the association rule, as mentioned previously, except that X must appear before Y . The

confidence of a sequential rule is an important measure for evaluating its strength. For example,

consider the sequence of Table 2.2. Let sα = ⟨{a}⟩ and sβ = ⟨{b}⟩. It is easy to see that every
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sequence that contains sα also contains sequence sβ which indicates that whenever a sequence

contains itemset {a}, there is a strong probability that it is followed by a sequence that contains

itemset {b}. The relationship between two sequences is called a sequential rule ⟨{a}⟩→ ⟨{b}⟩.

Given a sequence database, a support threshold minsup and a confidence threshold mincon f .

The problem of a sequential rule mining algorithm is to find all frequently valid sequential rules

such that the support is not less than minsup and the confidence is not less than mincon f . Many

algorithms have been proposed for mining sequential rules like RuleGrowth [10] and ERMinner

[11].

2.2.3 Frequent episode mining

Pattern mining also encounters another extension, called Frequent Episode Mining (FEM)

[12, 13, 14]. Episode mining is a type of sequential pattern mining. The main difference from

sequential pattern mining is that it aims to find subsequences called episodes from a single long

sequence of events, which was first introduced by Mannila et al. [12] in 1997. The first two

algorithms called WINdow-based EPIsode mining (WINEPI) and MINimal occurrence-based

frequent EPIsodes (MINEPI). Many recent works extend the original one to a huge number of

applications, such as cybersecurity and stock trading. All algorithms in the FEM focus on three

concepts, defined as follows:

Let ε = {e1,e2, . . . ,ek} be a set of event types. An event is a pair (e, t) where e ∈ ε is a

nominal value that represents the event type, such that e ∈ ε where ε is the set of all event types

and t ∈ N is the occurrence timestamp of the event in the sequence.

An event sequence is S = ⟨(e1, t1),(e2, t2), . . . , (en, tn)⟩ is an ordered set of events (ei, ti)

such that ei ∈ ε and ti ∈ N is its occurrence time in sequence S and for all i, j ∈ N if i < j we

have ti < t j. The third concept is called episode. An episode is a set of nodes, where each node

is associated with an event type in the episode. The task of such an episode mining algorithm is

to find all frequent episodes with respect to the support threshold, such that the support of the

episode exceeds the support threshold. Any algorithm in episode mining maintains its proper

support definition according to how an episode occurs in the sequence to be considered as a

valid episode’s occurrence. In the next chapters, we will show all concepts of episode mining

in detail, as well as our contributions to the field of frequent episode mining.
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2.3 Pattern mining with concise representations

The increasing accumulation of datamining has prompted the adoption of new, compact

patterns with efficient representations. These representations are employed to effectively extract

valuable insights from data at a minimal cost and without loss of information. There are three

primary categories of concise representation:

2.3.1 Closed frequent patterns

A closed pattern is defined as a pattern that is both frequent and does not have a super-set

with the same support count. More formally, the set of closed patterns, denoted as CP, can be

expressed as follows.

CP = {p | p ∈ FP∧∄p’ ∈ FP s.t. p⊂ p’∧ sup(p) = sup(p’)}

Closed frequent pattern recognition is utilized by a variety of datamining algorithms to mini-

mize redundant patterns and enhance the mining efficiency [15, 16, 17, 18, 19].

2.3.2 Maximal frequent patterns

Maximal patterns represent are frequent patterns characterized by their absence of frequent

super-sets. To provide a precise formal definition, the set of maximal frequent patterns is out-

lined as follows:

MP = {p | p ∈ FP∧∄p’ ∈ FP s.t. p⊂ p’}

Maximal patterns have been used to extract frequent maximal itemsets [20], frequent maximal

sequential patterns [21] and maximal frequent episodes [22]. The set of maximal patterns is

more compact than the set of closed patterns. In other words, the length of the set MP is less

than the number of CP which does not exceed the number of all frequent patterns FP.

2.3.3 Generator patterns

Another specific type of patterns is called generators [23, 24]. A pattern is said to be a

generator if it has no subset with the same support count. Formally, a set of generator patterns
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Figure 2.1: Relation between Frequent Patterns, Closed patterns and maximal patterns

is defined as follows:

GP = {p | p ∈ FP∧∄p’ ∈ FP s.t. p’⊂ p∧ sup(p’) = sup(p)}

2.4 Beyond frequent pattern mining

Frequent Pattern mining is based on the assumption that the frequent patterns are interest-

ing. However, this assumption does not hold in many applications. On the one hand, for some

applications, a pattern may be frequent but may be uninteresting, as it describes common be-

havior, and hence, it may yield a low weight. However, there may exist other patterns that are

infrequent but yield a higher weight. Fortunately, a recent study called high-utility pattern

mining [25] was proposed to address the limitation of the pattern weight. However, for some

applications, a pattern may be frequent, but its occurrence is irregular; hence, it is considered

an uninteresting pattern. Based on this hypothesis, an approach called periodic pattern mining

is proposed to extract patterns with regular occurrences, particularly for databases with time

information.

2.4.1 High Utility pattern mining

The goal of High-utility pattern mining (HUPM), is to find patterns with a greater profit.

HUPM has various pattern-based extensions. In general, finding patterns with utility over a

user-defined utility threshold is the goal of HUPM. A list of some high-utility pattern algo-
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rithms is shown in Table 2.3. The input of such a HUPM algorithm is the database (transaction

databases, sequence databases, or a single long event sequence) with an external utility table

that associates, for each item, a positive integer as an importance degree in the database, and a

user-defined utility threshold.

Table 2.3: High-utility pattern mining algorithms

High-utility itemsets
mining

High-utility sequential
pattern mining

High-utility episode
mining

IHUP[26],
HUP-Growth [27],

HUI-Miner [28]

UL,US [29],
UM-Span [30],

USpan [31], PHUS [32]

UP-Span [33],
TSpan [34],

HUE-Span [35]

2.4.2 Periodic pattern mining

Periodic-frequent pattern mining was first introduced by Tanbeer et al. [36]. It aims to

identify patterns that occur periodically in the databases. A frequent pattern is said to be periodic

if, and only if, it occurs frequently at regular time intervals. Formally, any periodic pattern

satisfies the following criteria: (i) it is frequent with respect to a user-defined support threshold

and (ii) its periodicity must not be greater than the maximal periodicity value. Periodic pattern

mining has not been studied extensively as traditional frameworks [37, 38, 39, 40]

2.5 Conclusion

In this chapter, we introduced the field of pattern mining. We started by briefly defining the

KDD process and then explained the domain of pattern mining and its variants and extensions

seen as a particular data mining task. In the next chapter, we will discuss in more detail the

state-of-art of one pattern mining sub-field called episode mining which is our research axis in

the present thesis.
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Chapter 3

Episode Mining: State-of-the-Art

Episode mining is a sub-domain of pattern mining, focusing on the discovery of interest-

ing episodes, which are essentially sub-sequences of events within a given event sequence. A

primary task in this context is that of FEM, wherein the goal is to identify episodes that occur

frequently in a sequence of events. This challenge has been extended in diverse ways to cater

to specific requirements. Research has demonstrated that episode mining can unveil valuable

patterns applicable to diverse areas such as web stream analysis, network fault management and

cybersecurity among others. Moreover, frequent episodes and episode rules prove beneficial for

predictive purposes.

As an actively evolving research field, episode mining has witnessed significant progress

over the past 25 years. This chapter serves as an introduction to episode mining, offering in-

sights into recent developments and highlighting research opportunities. Additionally, we will

explain the key concepts in this field.

3.1 Introduction

Data mining techniques are employed to identify and illustrate implicit relationships within

extensive datasets. These relationships can be clarified for users and effectively managed by

various agents within intelligent systems. Pattern mining algorithms can analyze various types

of data, including transactions, sequences, time series, and graphs. One common real-life data

type is event sequences, which represent an ordered list of events. In an event sequence, each
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event is associated with a time occurrence (referred to here as occurrence for simplicity). Ex-

amples of such sequences include a web click stream, a tourist’s sequence of points of interest

visited in a city or an event log from a complex system[41].

In specific scenarios, it is necessary to perform sequential analysis for the examination of

a sequence database, which mainly comprises a set of sequences. To address this need, the

domain of sequential pattern mining (SPM) has been introduced. SPM, a sub-field of pattern

mining, focuses on discovering sub-sequences in data that unveil significant relationships be-

tween elements [4]. The support of a sub-sequence is determined by the number of sequences

in which it is present. Detecting recurring sequential patterns can be beneficial, for instance

for uncovering common shopping patterns among multiple customers in a market dataset or

for recognizing word sequences that occur frequently across multiple sentences in a text. A

significant variation of SPM is sequential rule mining, where the objective is to discover rules

expressed as L→ R with high confidence (conditional probability) in a database of sequences

[5, 6].

Some applications necessitate the analysis of data characterized by long event sequence to

unveil patterns or construct models that aid in comprehending the past or predicting the future.

To address this requirement, the concept of episode mining was introduced, encompassing a

set of techniques tailored for this purpose. These techniques represent descriptive data min-

ing methods utilized to identify compelling relationships among events within event sequences.

Such relationships materialize as episodes, i.e., specific subsequences of events deemed inter-

esting based on criteria like their frequency of occurrence. Moreover, there are implication-style

rules referred to as episode rules that can reveal robust correlations between sub-sequences of

events. The field of episode mining has garnered significant attention from both researchers and

practitioners, in part due to the interpretability of the information offered by episodes.

For instance, An episode rule detected in alarms log of a telecommunication network sug-

gests that it is typical to activate an alarm A in one device following the occurrence of alarm B

in another device. These regulations provide insight into comprehending the interconnections

among alarms and can be utilized to refine network monitoring and maintenance. This infor-

mation permits for more efficient network management by prioritizing attention on the most

critical alarms [42].
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Episode mining [43] has been employed to derive patterns from sequential data in numerous

real-world applications, like analyzing telecommunication network data [12], discovering and

preventing attacks [44], examining financial occurrences and patterns in stock movements [45],

analyzing web logs, [41], detecting intrusions [46], identifying Internet worms [47], root-cause

analysis of machine faults [48] and detecting anomalies[49].

Algorithms of episode started in 1997 when Mannila et al. [12, 50] defined the principal task

of episode mining: identifying frequent episodes. In the context of FEM, when a long sequence

of events is presented, the objective is to discover sub-sequences that occur with sufficient

frequency, meaning that the number of occurrences in the input sequence exceeds a specified

threshold known as the minimum support (denoted minsup). These identified sub-sequences are

termed frequent episodes. To illustrate that, consider an event sequence obtained from the log

of a server database, frequent episodes disclose patterns of service queries that occur frequently,

providing opportunities for optimization to enhance overall performance.

Previous research extensively investigated three main types of episodes: serial episodes

when the events are totally ordered, parallel episodes when the events may appear in any order,

[14, 12, 50] and injective episodes with an unrestricted partial order [51]. In addition to the

aforementioned fundamental episode types, the domain of episode mining has witnessed the

proposition of several extensions. Notably, efforts have been made to address the challenge of

information overload for users by exploring subsets of episodes with remarkable characteris-

tics. Examples of such subsets include frequent closed episodes [22] and maximal episodes

[52]. These efforts aim to decrease the volume of presented episodes while retaining those

deemed significant based on specific properties. Furthermore, supplementary constraints were

introduced to refine the selection of episodes with enhanced significance, including constraints

pertaining to the temporal intervals between successive events. [52].

Several algorithms have been proposed for the extraction of episodes within dynamic se-

quences, with a specific focus on identifying the top-k most significant episodes [53], as op-

posed to episodes exceeding a predefined frequency threshold. Another area of research in-

volves the exploration of alternative frequency definitions for the identification of frequent

episodes. Examples include window-based frequency [12, 50], non-overlapped frequency [54,

51, 55, 56], minimal occurrence-based frequency [57, 58, 50, 59], head frequency [60], and

total frequency [13, 61] (for a comprehensive review of diverse functions assessing frequency,
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refer to [33]).

Moreover, some researches have delved into alternative criteria for the selection of inter-

esting episodes, like the consideration of their utility or importance. Additionally, evaluative

functions have been explored, taking into consideration factors such as uncertainty and/or im-

precise information.

Furthermore, numerous algorithms for episode rule mining have been disseminated, extend-

ing episode mining algorithms to deduce rules in the form of implications that clarify relation-

ships among episodes [12, 62, 63, 64]. The practical applicability of episode rules extends

to diverse tasks, including the prediction of future phenomena and the explication of specific

occurrences grounded in past events.

3.2 Frequent episode mining framework

FEM is a widely adopted framework for analyzing temporal data [43]. It is employed across

diverse domains that involve time-based information. The algorithms for frequent episode min-

ing are designed to identify all recurring episodes, either from a simple sequence of events

[50, 65, 66] or from a complex event sequence [67, 68]. In the former case, the sequence

prohibits the simultaneous occurrences of events, while the latter allows events to happen si-

multaneously.

3.2.1 Preliminaries of FEM

The standard input for an FEM [69] algorithm includes a sequence of events and a user-

defined frequency threshold known as minsup. This threshold specifies the required number of

occurrences for a frequent episode.

Consider a event types set denoted as E = {E1,E2, ...,En}. A sequence of events is repre-

sented as a triplet S = (s,Ts,Te), wherein s denotes an events list recorded within the temporal

interval from Ts to Te.

To provide more clear explanation, the sequence s forms an ordered set of events, expressed

as s = ⟨(I1,T1),(I2,T2), . . . ,(Im,Tm)⟩, where Ii ∈ E denotes an event type, and Ti corresponds to

the timestamp of occurrence of the event (1 ≤ i ≤ m). The event pairs within s are arranged in
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Figure 3.1: An example of event sequence

ascending order based on their timestamps, allowing for the potential occurrence of an event

type multiple times within the sequence.

For instance, Figure 3.1 illustrates a sequence of 13 events recorded between times Ts = 20

and Te = 36. This sequence might illustrate the event log of a database system, with event types

E = a,b,c,d,e, f representing disk operations like opening, closing, reading, or writing in a file.

In this sequence, the recorded events are listed as: s= ⟨(a,22),(b,24),(c,25),(d,26), ...,(d,36)⟩.

In the following subsections, we consider that the expressions event and event type are used mu-

tually, provided the context is clear.

An episode is characterized as an events collection that occur jointly within a sequence.

Formally, an episode is a triplet α = (V,≤, f ) is precisely delineated by a nodes set V , a (partial

or total) order ≤ imposed on V , and a mapping function f : V → E that establishes associations

between each node in V and a corresponding event type drawn from the set E.

Two distinct types of episodes are commonly studied based on the provided order ≤:

1. If order ≤ is total, we refer to the episode α as a serial episode. It can be represented as

α = A1→ A2→ ··· → Ak, where Ai ∈ E for 1 ≤ i ≤ k, and αi denotes the ith event type

in episode α .

2. If there are no constraints on the order between events, α is termed a parallel episode [70,

71], represented as α = A1A2 . . .Ak. Composite episodes, which are a serial combination

of parallel events, are also possible [52].

Moreover, the concept of episodes can be customized to match specific applications and

data characteristics, including scenarios involving time-sensitive and uncertain data [72, 73].

Further discussions on these extensions will follow in subsequent sections.

For a given episode α = (V,≤,g), its size, denoted as |α|, represents the count of events it

comprises, indicating the number of events it includes (|α|= |V |). An episode α that includes
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Figure 3.2: The three primary episode types

exactly k events is specifically referred to as a k-episode.

To illustrate, Figure 3.2 shows the primary three types of episodes. Each depicted episode

within the illustration comprises a set of nodes denoted V = {v1,v2,v3}. In this context, each

node vi is linked to an event type, that is: f (v1) = X , f (v2) = Y , and f (v3) = Z. Figure 3.2(a)

illustrates a serial episode such that the order is ≤= {(v1,v2),(v2,v3)}. The occurrences of

the illustrated episode in Figure 3.2(a) in a sequence are considered if an event of type X is

succeeded by an event of type Y , and then by an event of type Z. Figure 3.2 (b) depicts an

example of a parallel episode with no clear order (≤= /0). Finally, Figure 3.2(c) illustrates a

composite episode such that≤= {(v1,v3),(v2,v3)}. This episode implies that events of types X

and Y need to appear before the occurrence of event Z; however, no constraints are imposed on

the sequential arrangement of events of types X and Y relative to each other.

An episode is deemed frequent within an event sequence when it manifests with a notable

recurrence in the sequence. The quantification of an episode’s frequency necessitates the adop-

tion of a specific frequency definition, delineating the methodology for enumerating the occur-

rences of the episode within the event sequence. Given a sequence S with events set denoted

as s = ⟨(I1,T1),(I2,T2), . . .(Im,Tm)⟩ and an episode α = (Vα ,≤α , fα) . An occurrence of α

the sequence S is represented by a mapping h : Vα → {1,2, . . . ,m}. This mapping satisfies the

following condition: ∀v ∈Vα , fα(v) = Ih(v) ∧ ∀w ∈Vα ,v <α w we have Th(v) < Th(w) [13].

For an example of this, let us examine the sequence shown in Figure 3.1. Let α = a→ b be

a serial episode with Vα = {v1,v2} and fα(v1) = a, fα(v2) = b. α is present in the events (a,

22),(b, 24) because, for h(v1) = 22 and h(v2) = 24, fα(v1) = Ih(v1) = a and fα(v2) = Ih(v2) = b,

respectively. Additionally, the episode’s events maintain their chronological sequence, meaning

that because v1 <α v2, we get Th(v1) = 22 < Th(v2) = 24. It is clear that the occurrences of (b,29),
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(a,32) are not instances of α . As an additional example, consider a parallel episode β = bc.

There are two instances of β : (b,24),(c,25) and (b,29),(c,28).

The notions of sub-episode and super-episode play a fundamental role in the field of episode

mining, representing distinct types of dependencies among couples of episodes having common

events (nodes). Generally, consider two episodes γ and ∆, the consideration of γ as a sub-

episode of ∆ (and vice versa, ∆ as a super-episode of γ) depends upon the nodes of α forming

a subset of the nodes of ∆, with their respective order in γ being consistent with that in ∆. The

formal expression for this connection is γ ⊑ ∆. As an illustrative example, a serial episode

γ = a→ c is considered as a sub-episode of another episode β = a→ b→ c, thereby satisfying

α ⊑ ∆. In contrast, a parallel episode θ = bc serves as a sub-episode of ∆ but not of γ .

Note that numerous methods adapt the previously mentioned definitions to adapt the mining

of episodes to specific domains or to accommodate particular data types. As an example, the

suffix and prefix are specific kinds of a super-episode, and they are included into the NON-

overlapping frequent EPIsode (NONEPI) algorithm, which is described in [43]. Similarly, the

2PEM method (described in [15]) looks at three types of sub-episodes: forward, middle, and

backward extension (in the context of closed episode mining), which will be discussed later.

3.2.2 Definition of frequency in episode mining

As was previously established, an episode’s frequency, often referred to as support, mea-

sures how frequently an episode occurs within a sequence of events. Various definitions of

episode frequency exist, potentially resulting in different calculations. Broadly speaking, meth-

ods for calculating episode frequency can be classified into two categories depending on whether

a sliding window is used to count occurrences or not:

• Window-based frequency definitions. They use a window with fixed width Maximum

Window (Maxwin) to record occurrences of every given episode in the sequence. The

number of windows of size k that include at least one occurrence of the given episode

is considered to determine the frequency of that episode. Examples of window-based

frequency metrics include windows-based frequency as detailed in [12], head frequency

as discussed in [74], total frequency as presented in [74], and non-interleaved frequency

as elaborated in [75].
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• Occurrence-based frequency definitions. These definitions precisely monitor the episodes’

occurrences across the sequence, without initially subdividing the sequence into sub-

sequences, except in cases where the user specifies conditions on the occurrences’ size,

commonly referred to as the span or gap constraints [14]. This category of defini-

tions encompasses metrics such as minimal occurrence-based frequency as delineated

in [50], non-overlapped occurrence-based frequency as discussed in [43, 67], and distinct

occurrence-based frequency as detailed in [13].

Table 3.1 offers a comprehensive summary of widely used frequency definitions, catego-

rized into two groups, with additional details provided. Every definition is accompanied by its

type and specifies the representative episode mining algorithm(s) that utilize it. The table fur-

ther indicates whether a definition fulfills the anti-monotony property. This property is essential

for the design of efficient algorithms for frequent episode mining, as it ensures that an episode’s

frequency should not surpass that of its sub-episodes. This topic will be further explored in the

following subsection.

Table 3.1: Frequency definitions overview

Type Name Monotonic
Representative
algorithm(s)

Window-based window-based frequency Yes
WINEPI [12],
EpiBF [76],

WinMiner [62]
head frequency No EMMA [60]
total frequency Yes FEM-DFS [65]

non-interleaved frequency No NOE-WinMiner [75]

Occurrence-based minimal occurrence-based No
MINEPI [12],
MEELO [77],
PartiteCD[78]

non-overlapped occurrence-based Yes
NONEPI[43],
POERM [67]

distinct occurrence-based Yes ONCE+ [79]

The constraints associated with window-based frequencies encompass the possibility of

multiple enumerations of a given episode occurrence in the event of its appearance across

distinct windows. For example, Figure 3.1 shows a sequence with two window times, f1 =

(⟨(a,22),(b,24)⟩,21,25) (the dashed line) and f2 =(⟨(a,22),(b,24),(c,25)⟩,22,26) (the straight

line), where the windows times both include a succeeded by b. This could result in a double

count of the serial episode indicating that a is followed by b. Another limitation is that the fre-
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quency of an episode can vary depending on the width of the window. For instance, an episode

may be infrequent for one window width, but frequent for another. In order to discover the ideal

window width, the user may need to do several experiments, which might take significant time.

Alternatively, they can depend on other methods to determine the optimal width. Fortunately,

contemporary algorithms, exemplified by WinMiner, have overcame this issue [62].

Numerous FEM algorithms are formulated to identify episodes characterized by frequent

occurrences within a given sequence, employing either a window-based or occurrence-based

frequency definition. Yet, within an occurrence-based frequency framework, extended episodes

may exhibit high frequency despite containing events with substantial temporal separation. In

contrast, a window-based definition guarantees proximity of events but may overlook larger

episodes exceeding the stipulated window size. To address these limitations, alternative defini-

tions and algorithms have been proposed, such as the so-called DFS depth-first search algorithm[80]

proposed by Cule et al. They established two parameters, cohesion and coverage, to capture the

interest of a given episode, as follows:

• The "coverage" metric computes the frequency with which an event within an episode

appears in a sequence denoted as S, it is computed as follows:

P(X) =
|N(α)|
|S|

Here, α represents a specified episode, and N(α) signifies the collection of all instances

involving its constituent events. The term P(α) denotes the coverage of the episode |α|

within the sequence S.

Cohesion is an measurement of the proximity between events forming an episode when

manifested in a sequence. Its calculation is delineated as follows:

• The cohesion of an episode is determined by how close together its occurrences are when

they happen in a particular order. it is computed as follows:

C(α) =
|α|

W (α)

Here, W (α) represents the average length of the shortest intervals, denoted as W (α, t),
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that encompass the episode α . It is calculated as follows:

W (α) =
∑t∈N(α)W (α, t)
|N(α)|

where

W (α, t) = min{t2− t1 +1|t1 ≤ t ≤ t2 and ∀e ∈ α,∃(e, t ′) ∈ S s.t. t1 ≤ t ′ ≤ t2}

Finally, The algorithm computes the degree of interest associated with an episode through the

following procedure:

I(α) =C(α)×P(α)

As a result, with a designated threshold for interestingness denoted as minint , an episode α is

deemed interesting if and only if I(α) ≥ minint. Employing a Depth-First Search (DFS) ap-

proach, it has been asserted that the generated output encompasses cohesive episodes featuring

events in close temporal proximity [80]. Note that alternative definitions may be formulated to

address specific requirements.

In the next subsection, we will examine two strategies for exploring the search space in the

identification of frequent episodes: namely, breadth-first search and depth-first search. Next, we

will provide a summary of the principal methods employed by the widely recognized frequent

episode mining (FEM) algorithms.

3.3 Search strategies for FEM

Since Mannila introduced the problem of frequent episode mining [12], several algorithms

have been developed to improve the FEM process. FEM algorithms utilize distinct data struc-

tures and are crafted to accommodate multiple frequency definitions. In general, FEM algo-

rithms can be categorized with respect to their search strategy, which is either a breadth-first

search or a depth-first search:

1. Breadth-first algorithms: Commonly referred to as level-wise algorithms. They pro-

cess in the exploration of episodes through a cyclic progression between two fundamental

stages: (1) candidate generation and (2) frequency validation. In the first phase, candi-
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date episodes are derived from smaller episodes, and in the second phase, the frequency

of these candidate episodes is assessed to ascertain their status as frequent occurrences.

Breadth-first search methodologies, guided by the anti-monotonicity property, prioritize

the enumeration of lengthier episodes while disregarding numerous infrequent episodes.

Illustratively, the CloEpi algorithm [75] initiates by comprehensively scanning the en-

tire event sequence to identify frequent 1-episodes. Subsequently, CloEpi conducts a re-

examination of the sequence, systematically identifying frequent 2-episodes, 3-episodes,

and so on, up to m-episodes, such that m indicates the width of the episode. There ex-

ists several other level-wise algorithms, namely WINEPI, MINEPI [12], and FEM-BFS

[14, 75].

2. Depth-first search algorithms: Methods like MANEPI [55] and FCEMinner [17] con-

duct a single pass over the event sequence to extract all 1-episodes. Subsequently, these

algorithms endeavor to iteratively expand each episode by augmenting it with a frequent

event, leveraging the anti-monotonicity property for the purpose of search space reduc-

tion. The adoption of a depth-first strategy typically results in decreased time and memory

requirements during the process of frequent episode mining.

In the aim of formulating an efficient algorithm for FEM, a critical imperative involves

circumventing the exhaustive exploration of the complete search space of episodes within the

input sequence to identify frequent episodes. This is particularly pivotal because of the potential

enormity of the search space for comparatively extensive sequences, which leads to protracted

runtimes and heightened memory requirements. Using the frequency measure’s anti-monotony

quality is a key method for overcoming this challenge. Let sup(γ) represent the frequency of

an episode γ . This property states that for every couple of episodes γ and δ where γ ⊑ δ (γ

is a sub-episode of δ ), the relationship sup(γ) ≥ sup(δ ) holds. Consequently, if an episode α

infrequency, all its super-episodes are inherently infrequent, obviating the need for exploration

and effectively reducing the amount of time and memory required. For instance, we outline the

principal procedures of two widely adopted and exemplary FEM algorithms, namely, WINEPI

and FEM-DFS, which employ breadth-first and depth-first search strategies, respectively.
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3.3.1 WINEPI : Window-based episode mining method

WINEPI is the first Frequent Episode Mining method designed for discovering interesting

(frequent) episodes [12]. It has been employed in various studies, including the identification

and prevention of attack episodes [44] and the analysis of logs of mobile payment [81]. The

input of WINEPI algorithm consists of a single long events sequence, denoted as S with respect

to the format discussed in the previous section. The algorithm also takes an event types set,

denoted by E, a specified sliding window size denoted as Maxwin and a minimum support

threshold defined by the user referred to as minsup (equivalently recognized as the minimum

frequency threshold). The set of frequent episodes inside the event sequence S, with regard to

the sliding window size maxwin and the threshold values of minsup, is the output that WINEPI

produces. This algorithms operates in two primary stages: (1) "candidate generation" and (2)

"frequency check":

/0

⟨b⟩ ⟨c⟩⟨a⟩ ⟨d⟩

⟨a,d⟩ ⟨b,c⟩ ⟨b,d⟩⟨a,c⟩⟨a,b⟩ ⟨c,d⟩

⟨a,b,d⟩ ⟨a,c,d⟩⟨a,b,c⟩ ⟨b,c,d⟩

⟨a,b,c,d⟩

level 1
1-episodes

level 2
2-episodes

level 3
3-episodes

level 4
4-episodes

Figure 3.3: WINEPI’s Breadth-First Search Process lattice representation

• Candidate generation. It involves generating candidate episodes, either parallel or serial,

that might occur frequently. Figure 3.3 provides a visual representation of the enumer-

ation process through a tree structure. The algorithm first establishes a list to record

episodes of size l = 1, or 1-episodes, in which every event type is considered as an in-

dividual episode. Subsequently, a frequency check is conducted (discussed in the next
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subsection) to performed to determine the set F1 comprising frequent episodes of size

l = 1 (i.e., 1-episodes). The set of candidate 2-episodes, C2, is obtained by combining

each pair of frequent episodes. It is represented by the set C2 = {< a,b >,< a,c >,<

a,d >,< b,c >,< b,d >,< c,d >}. The next set of iterations consists of exploring of

3-episodes and, subsequently, the identification of the 4-episode < a,b,c,d >(the biggest

candidate episode that can be obtained from these event types).

• Frequency check. This stage involves quantifying the frequency of candidate episodes

through the utilization of a sliding window mechanism applied to the sequence. In

WINEPI, the frequency of a given episode α , is determined as the proportion between

the windows count, denoted as w, of duration win containing more than or one occur-

rence of α , and the total windows number (represented as |W |).

Note that there is a difference in tracking occurrences between serial and parallel episodes.

For the tracking of serial episodes, WINEPI and analogous algorithms focusing on serial

episodes, such as "DiscoveryNonOver" and "DiscoveryTotal" [14], "UVSEM" [13](Unified

View for Serial Episodes Mining), and WINEPI [12], maintain a Finite state automaton

(FSA). The FSA designed for monitoring all instances of an episode α = A1 → A2 →

·· · → Ak encompasses (k+1) states. The initial k states are denoted in the form (i,Ai+1),

0,astart 1,c 2,b 3, /0

ε \{a} ε \{c} ε \{b} ε

a c b

Figure 3.4: Automaton that tracks all occurrences of α = a→ c→ b

meaning that the automaton has traversed the initial i events and anticipates the subse-

quent event Ai+1. The final state (k, /0) serves as the accepting state, which indicates that

the episode α occurs completely inside a certain window f , and hence, the frequency of α

will be increased one. Subsequently, WINEPI assesses the frequency of the episode and

determines its status as frequent or non-frequent by comparing it to the predetermined

threshold min_sup.

To illustrate, Figure 3.4 provides a visual representation of an automaton designed to

identify all occurrences of α = a→ c→ b. In this context, ε comprises the event types

set within the event sequence S. Regarding parallel episodes, as mentioned previously,
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there are no constraints imposed on the relative order of events within the episode. The

only one requirement is that all events constituting such an episode must occur within a

given window to contribute to the increment of the support of the episode.

Several following algorithms have been influenced by the anti-monotonicity property of the

episode’s support (frequency), which is the foundation of WINEPI. However, the support defi-

nition based on windows introduces various challenges. A primary concern revolves around the

issue of duplicate support counting, wherein, for a given episode α , the algorithm may consider

multiple windows for a single occurrence. As showed in the sequence illustrated in Figure 3.1

with a window width win = 4, the serial episode α = a→ b supported 4 windows, even though

it is evident that the occurrence of a followed by b transpires only twice. Consequently, the

resultant frequency fails to accurately capture the events throughout the entire sequence. To

rectify this concern, an alternative approach to WINEPI has been proposed, taking into account

the minimal occurrences [12] of episodes. This alternative is designated as MINEPI (MINimal

occurrence-based EPIsode mining).

For further details on WINEPI, MINEPI, and other frequency definitions, interested readers

can refer to [14, 13, 12, 50, 65, 44]. The pseudo code of WINEPI is provided in Algorithm 1.

Algorithm 1: The pseudo-code of WINEPI algorithm
Input: E - Event types set,
min_sup - Support threshold,
win - A window width,
S - Sequence of events over E.
Output: F - Frequent episodes set.

22 Scan the database to obtain the support of each event in the sequence S;
44 F ← /0;
66 F1←{e|e ∈ E ∧ sup(< e >)≥ min_sup};
88 l← 2;

1010 while Fl ̸= /0 do
1212 Cl ←CandidateGeneration(Fl−1);
1414 Fl ← /0;
1616 for each α ∈Cl do
1818 if FrequencyCheck(S,α,win)≥ min_sup then
2020 Fl ← Fl ∪α ;
2222 l← l +1;
2424 insert Fl into F ;
2626 return F

The WINEPI method is constrained by the inability to identify episodes comprising events
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exceeding the window size. In response to this limitation, Casas-Garriga introduced a novel

algorithm named EpiBF [76]. EpiBF is designed to unveil unbounded episodes by adaptively

augmenting the length of the window contingent on the size of the episode, employing a param-

eter termed as tus (time-unit separation).

For every episode γ , the algorithm computes the support with respect to the window length,

denoted as win, as determined by the formula: win = (|γ| − 1)× tus. Considering a window

width win, the support (frequency) of a given episode in a sequence S is expressed as follows:

f r(γ,S,maxwin) =
|{w ∈W (S,maxwin)|γ occurs in w}|

|W (S,maxwin)|

Here, the set of all windows of size maxwin is denoted by W (S,maxwin).

3.3.2 FEM-DFS: A general depth-first search algorithm.

Depth-first search methods like FEMDFS [65], Extractor [82], MANEPI [55], WinMiner

[62], and POLYFREQDMD [66] initiate their procedure by scanning the event sequence to

identify all frequent 1-episodes. To gain insight into the functionality of these algorithms, it is

beneficial to show the search space in the form of an episode tree, depicted in Fig. 3.3, wherein

each node signifies an episode. The empty set is the tree’s root, while episodes of size one are

represented by the root’s child nodes.

DFS algorithms are characterized by their utilization of a depth-first search strategy to nav-

igate the tree. To enumerate episodes of greater size, Any DFS method, following lexicograph-

ical order [14, 13, 17, 83] (i.e., A ≺ B ≺ C ≺ ·· · ≺ Z), creates a novel episode or extension

by joining a frequent episode (originally a 1-episode) with one of its siblings. This recursive

process is iteratively employed to construct larger episodes, progressing down a specific branch

of the tree, until further extension becomes impracticable. Following this, the algorithm back-

tracks to explore the generation of larger episodes from alternative nodes, employing the same

iterative procedure.

The depiction of the depth-first search exploration process is provided in Fig. 3.3 (bold

arrows). The initialization of the DFS search involves the computation of frequent episodes of

size 1 set, denoted as F = {< a >,< b >,< c >,< d >}.The DFS approach then creates larger
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episodes by extending each episode with 1-episodes (episodes of size 1). For example, < a,b >

is produced when episode < a > and < b > are combined. The method creates a new episode

< a,b,c > by merging the created episode with the single-event episode < c >, if the episode

< a,b > is frequent. If this episode proves to be frequent, it undergoes further extension with

< d >, resulting in < a,b,c,d >. In instances where this episode is identified as infrequent,

the algorithm retraces its steps along the same prefix and attempts to merge it with an alternate

1-episode. For instance, considering α =< a,b > and the and β =< c >, if the resultant γ =<

a,b,c > is identified as infrequent, the process preserves α =< a,b > and extends it with the

β =< d >. This iterative process is systematically pursued to comprehensively explore the

entire search space. Notice that each newly identified frequent episode is promptly incorporated

into the result set.

Such a DFS approach generally keeps a significantly smaller number of episodes in memory

at any given moment compared to breadth-first search algorithms, thereby reducing memory

consumption. Additionally, the episode generation process can be more time-efficient.

While many algorithms yield satisfactory results under a specific support definition, it’s

crucial to acknowledge that altering the support definition may necessitate adaptations in the

mining process. Consequently, these adjustments could lead to the generation of different num-

ber of interesting patterns. For example, a method that relies on head frequency produces a

different set of frequent episodes if the support definition is switched to window frequency or

any alternative frequency definition.

To offer a versatile approach accommodating various frequencies, Zhu et al. introduced a

comprehensive approach named FEMDFS [65]. This algorithm is specifically designed for effi-

ciently tracking the occurrences of frequent serial episodes, employing a definition of frequency

based on episode’s occurrences known as "earliest-transiting" occurrences[13]. Consider an oc-

currence h (as defined in paragraph 3.2.1) of a serial episode α = α1→ α2 · · · → αk. Let h be an

occurrence of α , this occurrence is said to be an earliest-transiting occurrence of α if the initial

occurrence time th(αi) for each event αi (where 2 ≤ i ≤ k) follows the occurrence time th(αi−1)

for the preceding event αi−1. The earliest-transiting occurrences set of β is denoted by eto(β )

. For instance, consider β = c→ d. The events (c,25)(d,26) form an earliest-transiting occur-

rence of the episode β . The other two earliest-transiting occurrences of β are (c,28),(d,30)

and (c,35),(d,36).
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FEMDFS receives a sequence, a specified minimal support threshold, and a chosen fre-

quency definition (referred to as defsup) as input parameters for the computation of episode

support (e.g., total frequency, minimal occurrence-based frequency). The algorithm starts by

extracting the earliest-transiting occurrences set, employing them to assess the episodes’ fre-

quency in accordance with the selected frequency definition. FEMDFS then engages in the

search process by exploring the space using a depth-first strategy to uncover larger episodes.

Following the concatenation of a pair of k-episodes, the set eto that represents the occurrences

of the resultant (k+1)-episode is computed via FEMDFS. Next, it determines the subset of

occurrences in accordance with the chosen frequency definition, denoted as defsup. A compa-

rable approach is adopted by the FEM-BFS approach (as discussed in [65]), which employs a

breadth-first search strategy and uses the earliest-transiting occurrences set to have a compre-

hensive overview of the event sequence for each ordered collection of events. The pseudocode

of FEMDFS is depicted in Algorithm 2. Like other depth-first search algorithms, FEMDFS has

demonstrated strong performance in experimental evaluations [65].

Algorithm 2: General Algorithm of FEM-DFS
Input: E - The event types
minsup - Support threshold,
S - Event sequence,
de f sup : Support definitions.
Output: F-set of all frequent episodes

22 Scan the sequence to obtain P the set of frequent episodes of size 1.
44 F ← P
66 for each frequent episode α ∈ F do
88 for each frequent 1-episode β ∈ P do

1010 if de f _sup ̸=′ to′ then
11 // Grow the episode α with episode β

1313 γ ← concat(α,β )

14 else
15 // Grow the episode β with episode α

1717 γ ← concat(β ,α)

18 // The earliest transiting occurrences of concat(α,β )
2020 eto(γ)←ComputeETO(eto(α),eto(β ),de f sup)
2222 sup(γ)←ComputeSup(eto(γ),de f sup)
2424 if sup(γ)≥ minsup then
2626 F ← F ∪{γ}
2828 return F

Frequent Episode Mining (FEM) algorithms vary in several aspects: (1) the adopted search

strategy, either a depth-first or breadth-first search; (2) the approach to counting support for
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determining episode frequency; specifically, the choice of a frequency definition; (3) the types

of episodes considered for calculation; and (4) the method that helps in reducing the search

space to optimize time and memory usage. Additionally, researchers have explored the design

of FEM algorithms adapted for specific practical contexts, such as cloud environments [84,

22]. Furthermore, an important aspect is that many algorithms primarily focus on discovering

sequential episodes, while real-world scenarios often involve numerous simultaneous events.

Recent studies have initiated exploration into such cases, especially in applications like medical

contexts [59]. This area of research needs to be further investigated. Additionally, most existing

algorithms for episode mining have been developed for centralized systems. Thus, there is a

growing challenge in designing algorithms suitable for distributed systems or creating parallel

algorithms to enhance the flexibility and performance of the process of episode mining.

3.4 Extensions of the traditional FEM framework

While FEM finds diverse usages, its assumptions come with inherent limitations. This sec-

tion initially examines the principal limitations of FEM and subsequently explores extensions

designed to mitigate these constraints. These limitations are cited below:

• An enormous quantity of generated patterns. The size of frequent episodes found in the

sequence is strongly influenced by the frequency threshold. With low support values, any

FEM algorithm may explore a huge set of episodes, reaching into the millions. In such

scenarios, algorithms not only exhibit prolonged runtime and high memory usage but also

render the analysis of output challenging humans capabilities of understanding generated

knowledge. Moreover, the collection of recurrent episodes can exhibit redundancy, as the

frequency of an episode implies the frequency of its sub-episodes for several frequency

definitions. Fortunately, there are algorithms dedicated to mining "concise representa-

tions of episodes" (refer to subsection 3.4.1). Reducing duplication within the collection

of often occurring events while maintaining the vital information is the aim of these rep-

resentations. Therefore, concise representations are considered as a condensed summary

of the complete set of frequent episodes, and algorithms tailored for this purpose typically

exhibit greater efficiency compared to traditional approaches.

• Setting a threshold for minimim support difficulty Another challenge with traditional FEM
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algorithms is the difficulty in determining a suitable threshold value that yields an appro-

priate balance, neither too many episodes nor too few, but just enough. In the absence

of background knowledge, users must resort to trial and error to identify an optimal

threshold, and even a slight adjustment can lead to significantly different results. This

fine-tuning process can be extremely time-consuming. In response to this challenge, an

alternative approach involves mining the top-k frequent episodes (refer to section 3.4.2),

where users specify the value of k, which take place of the frequency threshold.

• The requirement for additional constraints. It is often necessary to impose additional

limitations on the frequency of episodes in time-sensitive settings. These limitations may

have to do with things like the time interval between occurrence or the length of time

occurrences themselves. A constraint-based episode mining method is an algorithm

that can include these limitations (see sub-section 3.4.3).

• Frequency is not always the most important criterion to select patterns. In certain appli-

cations like market basket analysis, additional importance measures, such as utility, have

been developed. Utility facilitates the evaluation of aspects like the profit generated by

episodes rather than just their frequency. Sub-section 3.4.5 provides an overview of high

utility episode mining.

• Unsuitable to mine episodes in a dynamic environment. In certain situations, the need

arises to explore interesting episodes in a continuously updated event stream rather than

a static sequence. Traditional FEM algorithms lack the capability to incrementally up-

date episodes. Numerous algorithms have been introduced to address the extraction of

frequent episodes from dynamic sequences (refer to sub-section 3.4.4).

• All events are regarded as equally significant. Traditional FEM assumes equal importance

for all event types. But in real-world situations, this presumption is frequently untrue.

Several techniques for weighted episode mining have been presented as a solution to this

issue, allowing the assignment of weights to individual event types (refer to sub-section

3.4.6).

• Lack of ability to deal with imperfect sequences. Real-life event sequences frequently

encounter imperfections, particularly in cases where event occurrences are uncertain

(refer to sub-section 3.4.7) or imprecise (refer to sub-section 3.4.8).
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3.4.1 Episodes with concise representations

Numerous studies have investigated the extraction of concise representations for episodes

with the aim of minimizing the volume of identified episodes. These studies indicate that such

representations can enhance accuracy across diverse prediction tasks [84, 22, 15, 82, 17, 85, 79,

62, 86, 87, 16, 52].

Table 3.2 presents the characteristics of key algorithms utilizing concise representations,

focusing on the definition of frequency and the particular episode types that each algorithm

targets.

Table 3.2: Summary of concise representations episode mining methods

Algorithm Definition of fre-
quency

Episode
type

Concise representation

LA-FEMH+[22] minimal occurrence-
based

Serial Maximal Episodes

MaxFEM[88] head frequency Serial and
Parallel

Maximal Episodes

Extractor[82] minimal and
non-overlapped
occurrence-based

Serial Generator Episodes

FCEMinner[17] minimal and
non-overlapped
occurrence-based

Serial Closed Episodes

2PEM[15] minimal and
non-overlapped
occurrence-based

Serial Closed Episodes

WFECM window-based fre-
quency

Serial Closed Episodes

MineEpisode[87] minimal and
non-overlapping
occurrence-based

Serial and
Parallel

Closed Episodes

CloEpi[16] minimal occurrence-
based

Serial Closed Episodes

PPT/EPS[52] minimal occurrence-
based

Serial Maximal Episodes

Widely employed representations for episodes comprise maximal episodes [22], closed

episodes [84, 15, 17, 85, 86, 87, 16], and generator episodes. Certain representations, like

generator episodes, have been utilized for extracting representative episode rules [82]. The

subsequent definitions formalize each of these episode types. For clarity, the notation FE will

denote the complete set of frequent episodes derived from an input event sequences.
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3.4.1.1 Closed episodes

Closed episodes (CE) are often occurring episodes without an appropriate super-episode

with the same number of supports, i.e:

CE = {α|α ∈ FE ∧∄α
′ ∈ FE,α ⊏ α

′∧ sup(α) = sup(α ′)}

By analyzing the forward, backward, or middle extensions of each common episode, algorithms

like CloEpi determine the collection of often occurring closed episodes [16]. In simple terms,

this is determining if an event may be added to such an episode before, within, or after it,

implies creating a bigger episode with the same frequency. The episode is considered closed if

this need is satisfied; if not, it is not. Investigating closed patterns instead of every frequent one

can greatly reduce the output set while keeping all of the data. Without repeatedly scanning the

sequence, all of the frequently occurring episodes may be reconstructed from the collection of

closed episodes. Closed episodes can be used in situations where the definitions of frequency

are anti-monotonic because of this characteristic. Newer algorithms designed for the extraction

of frequent closed episodes comprise FCEMinner [17], CloEpi [16], MineEpisode [87], and

2PEM [15].

3.4.1.2 Maximal episodes

Maximal episodes (ME) [22, 88, 52] constitute the collection of episodes that lack any

recurring super episode, expressed as:

ME = {θ |θ ∈ FE ∧∄β ∈ FE s.t. θ ⊏ β}

An important feature of maximal episodes is that ME ⊆CE ⊆ FE. As such, maximal episodes

provide a more concise view than closed episodes. MaxFEM [88] and LA-FEMH+ [22] are

two approaches designed in the aim of retrieving maximal episodes. These algorithms’ main

goal is to produce a more condensed collection of episodes. Given this background, an episode

is considered redundant if it is a proper sub-episode of another frequent episode and is not

included in the output. While the LA-FEMH+ algorithm focuses on discovering serial episodes,

MaxFEM can identify both parallel and serial episodes.
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3.4.1.3 Generator Episodes

Generator episodes (GE) are frequent episodes that exhibit unique support counts for their

sub-episodes, and their super-episodes with equivalent support counts are closed [82]. Formally,

this can be expressed as:

GE = {γ|γ ∈ FE ∧∀γ ′ ⊏ γ : sup(γ) ̸= sup(γ ′)∧∃δ ∈CE : γ ⊏ δ ∧ sup(γ) = sup(δ )}

Generator episodes do not offer a representation without loss of information about frequent

episodes, in contrast to closed episodes. Extractor is a depth-first approach presented by Zhu

et al. dedicated for prediction task in event streams [82]. This algorithm mines generator

episodes using a depth-first search strategy, then derives a collection of representative episode

rules. The process involves calculating the frequent episodes set based on a threshold for the

frequency using a definition of frequency based on minimal and non-overlapping occurrences.

Then, it verifies the closure of the retrieved episodes (refer to Sub-section 3.4.1.1). Afterward,

the algorithm computes the generator episodes. Lastly, it creates a set of representative episode

rules by using both the generator and closed episodes. This phase takes the sets of generator

and closed episodes as inputs, together with the threshold value of confidence. In general,

the task a representative episode rule is defined as follows: "For a given episode rule γ , γ

is considered representative if there is no other episode rule γ ′ with the same support count

and confidence, where the antecedent of γ ′ is a subepisode of the antecedent of γ , and the

consequent of γ ′ is a super-episode of the consequent of γ"[82]. In order to provide meaningful

predictions, these rules try to predict, given rules with the same support and confidence, the

greatest amount of information (biggest consequents) from the smallest amount of information

(smallest consequents).

Avinash et al. introduced another concept called injective episodes, defining an episode α

as injective if it does not contain any repeated event types. Avinash et al.’s algorithm [51] is the

exclusive method for discovering injective episodes. This algorithm mines injective episodes

without order restrictions, employing a frequency based on non-overlapped occurrences. Fur-

thermore, Avinash et al. introduced a novel episodes class called chain episodes, comprising

both serial and parallel episodes, whether injective or non-injective. They also presented an

effective approach for mining chain episodes [54]. While there are limited studies address-

ing advanced patterns in temporal data mining, like closed, maximal, or generator episodes,
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this provides an great chance to move forward the state-of-the-art in episode mining as a field,

particularly with concise representations.

To enhance the precision of the explored episodes, Tatti proposed an extra metric known

as episode significance [89]. The calculation of an episode’s significance serves as a post-

processing step to evaluate the real interest of the identified frequent episodes. Significance

computation is based on minimal windows, classifying a recurring episode as "significant" if its

minimum windows’ average durations are longer than what the independence model predicts.

3.4.2 Mining of the top-k frequent episodes

An additional aspect within the domain of episode mining is the mining of top-k episodes

[90, 53, 91]. In this task, users have the ability to explicitly specify the number of episodes

they need to identify. This extension arose from the recognition that determining an appropriate

minimum threshold value can be a challenging task for users. When the threshold of frequency

is established too low,the process of discovery yields an excessive number of frequent episodes,

demanding substantial memory or leading to prolonged runtime. Contrarily, if the threshold is

set too high, the process risks overlooking many episodes of significance. The iterative execu-

tion of the algorithm with varying threshold values to pinpoint the optimal number of episodes

can be a time-intensive process.

The challenge posed by determining an appropriate number of episodes is addressed by top-

k episode mining algorithms, allowing users to directly specify a parameter k, representing the

desired episodes number to be identified. Consequently, the top k most recurring episodes are

provided to the user via a top-k algorithm. This approach offers the advantage that users are

spared the need to run the algorithm multiple times while adjusting the minimal limit to achieve

a specific episodes number.

However, the main issue of episode discovery using top-k approaches arises when attempt-

ing to generate the same number of episodes as traditional FEM with equivalent settings (k

and the minimum threshold) [90]. The complexity comes from the fact that, in top-k episode

mining, in order reduce the search space, there is no presumption regarding the support of the

top-k episodes. Consequently, top-k algorithms usually begin the episode search with an inter-

nal minimal value of threshold for the frequency of 0. Upon finding k episodes, the approaches
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increment the internal threshold and carry on searching. The top-k episodes are given output to

the user when no further episodes are found. Top-k episode mining has to search a wider area

in order to find the same amount of episodes as a regular FEM algorithm because of this search

procedure [90].

3.4.3 Episode mining with constraints

Numerous techniques have been developed for mining episode with more constraints, a

process that incorporates more than one constraints into Frequent Episode Mining (FEM) to

eliminate uninteresting episodes. Constraints, specific criteria set by the user, define the con-

ditions that frequent episodes must meet. Numerous criteria have been put out in the research

field, and they are often used to either find frequent episodes or as a post-processing step on the

output of a FEM method (removing episodes that don’t fit the criteria).

For maximum efficiency, it is preferable to incorporate constraints into the search process

for episode mining. This strategy has the potential to diminish the search space, rendering

constraint-based algorithms potentially faster and more memory-efficient in comparison to tra-

ditional Frequent Episode Mining (FEM) algorithms. The extent of efficiency gains is contin-

gent on the specific constraints selected.

One prominent algorithm in the field of constraint-based episode mining is DiscoveryTotal

[14]. This algorithm introduces two types of constraints. The first constraint, termed the span

constraint or expiry-time constraint, takes into account the maximum allowable time between

the first and last events of an episode’s occurrence. By introducing the span constraint, the

algorithm diminishes the frequency of episodes by eliminating occurrences with events spaced

too far apart in time. The second constraint pertains to the maximum allowable time between

two consecutive events, referred to as the gap or inter-event constraint. Several algorithms,

including WinMiner [62], EPS, and PPT [52], have taken into account such time constraints.

Furthermore, scholars have investigated constraints associated with the minimum and maxi-

mum number of events per episode, known as the length constraint, in the context of analyzing

heterochrony in developmental biology [92]..
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3.4.4 Mining episodes from dynamic sequences

Traditional episode mining techniques face a limitation in handling dynamic sequences as

they assume a static input. These algorithms are typically designed to process a single, lengthy

event sequence in one go, yielding relevant episodes. However, in the case of newly logged

events or revisions to information about previous events, such a traditional algorithm must be

rerun entirely to capture the latest frequent episodes. In such scenarios, traditional frequent

episode mining (FEM) tasks prove inefficient. Fortunately, several algorithms have been devel-

oped for online and stream episode mining [93, 82, 94, 59, 79, 95, 40, 96, 97, 98, 99, 100]. Zhu

et al. developed the Extractor algorithm with a focus on mining episodes within event streams

and generating prediction rules [82]. The algorithm includes identifying closed episodes and

their generators within a log of events and subsequently creating non-redundant rules (repre-

sentative rules) applicable to the stream of events. To overcome the difficulty of extracting

episodes from event streams, Xing et al. developed the MESELO approach ("Mining frEquent

Serial Episodes via Last Occurrence") [97]. This algorithm identifies episodes within a stream

of events by grouping events within small groups, capturing and storing only the latest incoming

batch at any time. The input parameters for MESELO include an event-growing sequence S, a

support threshold minsup, a maximum window size δ , and a window size δ for the current valid

sequence. The purpose of "Online Frequent Episode Mining" (OFEM) is to extract all frequent

episodes from S with the latest timestamps within δ , ensuring that the size of each episode’s

occurrence is no greater than δ , and that the frequency of the episodes is at least minsup. Addi-

tionally, approaches like ONCE and ONCE+ [79] have been developed specifically for mining

serial episodes with temporal constraints in streaming data by focusing on the last occurrence

of each episode.

Besides, Xing et al.[97] defined the problem of online episode mining and proposed the

MESELO algorithm (Mining frEquent Serial Episodes via Last Occurrence). The input for

this algorithm includes an event-growing sequence S, a support threshold minsup, and max-

imum window sizes δ and ∆ for the current valid sequence. The novel challenge in Online

Frequent Episode Mining (OFEM) involves extracting all frequent episodes from S, ensuring

that it contains the latest timestamps within ∆. Additionally, the size of each episode’s occur-

rence should not exceed δ , and the frequency of the episodes should be at least minsup.

Various extensions of episode mining delve into more intricate event sequence represen-
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tations, going beyond of traditional approaches. In the subsequent sections, we present an

overview of the most prevalent extensions in this domain.

3.4.5 Mining high utility episodes

One of the limitations of traditional FEM is that it only takes into account the number of

occurrences, not their relative importance. In reality, not all event types hold the same level of

significance. High utility episode mining (HUEM) extends traditional FEM by incorporating

the utility or importance of events to identify significant episodes [33]. Algorithms designed

for High Utility Episode Mining take a complex event sequence as input, allowing events to

occur simultaneously. Additionally, information about both events’ external and internal utility

is considered. "External utility" signifies an event type’s proportional relevance throughout the

sequence, while internal utility indicates the event’s importance at the time of occurrence. Every

utility value is represented by a positive integer. The objective is to identify episodes with utility

that exceeds a specified minimum value, referred to as "high utility episodes".

High-utility episode mining (HUEM) presents a challenge due to the non-anti-monotonic

nature of utility calculation functions, making them unsuitable for direct use in search space

reduction. The pioneering algorithm, UP-Span [33], was introduced to discover all high utility

episodes along with their minimal occurrences. It employs an anti-monotonic upper bound

on utility to mitigate the search space. Some algorithms, namely TSpan [34] and HUE-Span

[35], have been proposed as improved solutions to further reduce the search space and enhance

performance, particularly when dealing with extensive databases.

An application of High Utility Episode Mining (HUEM) explored in previous studies is its

use in stock investment prediction. A methodology was introduced that combined HUEM with

a genetic algorithm, yielding superior results compared to a method based on frequent episodes

[101].

3.4.6 Mining weighted episodes

Mining episodes based on weights is an extension of FEM, focusing on extracting episodes

from multiple sequences. The introduction of weight in this extension serves the purpose of

quantifying the relative significance of each sequence. The framework of weighted episode
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mining can be considered as a variant of utility-based episode mining, with the distinction that,

in the utility model, each event is assigned a weight. The only existing study of weighted

episode mining was proposed by Liao et al. [85]. The problem is defined as follows: Given D

a collection of sequences, a maximal window width maxwin specified by the user, minsup and

a parameter minsup_wa. The objective is to discover all frequent closed episodes with weights

in D, where each episode P =< e1,e2, . . . ,ek > must fulfill the following conditions: :

i) tk - t1 ≤ max_win,

ii) There is at least a sequence Si ∈ D, such that supi(P) ≥ min− sup, and there is no any

P′ ∈ Si, such that P⊆ P′ and supi(P′) = supi(P),

iii) sup_wa(P)≥ minsup_wa.

Here, supi(P) is the support of the episode P in the ith event sequence from D under window-

based frequency and sup_wa(P) is the weighted support of P such that sup_wa(P) = NI
N ×

∑i∈I(Ωi× supi(P)) where:

1. I is the set of sequences where P is a frequent closed episode.

2. NI represents the number of sequences that contain the episode P.

3. N is the total number of sequences.

4. Ωi represents the weight of the ith event sequence of D.

For example, consider the set of three sequences (S1, S2, and S3 with weights 1, 2, and

3, respectively) depicted in Fig. 3.5 (N=3). Consider the episode P =< CDE >. It occurs

in S1, S2, and S3 a respective 3, 3, and 4 times (NI = 3). For minsup_wa = 10, minsup = 3,

and maxwin = 5, episode P is a frequent closed episode in all the sequences, adhering to the

support definition outlined in [85]. Thus, its weighted support is computed as sup_wa(P) =
3
3 × (1× 3+ 2× 3+ 3× 4) = 21. Consequently, P is a weighted frequent closed episode, as

sup_wa(P)≥ minsup_wa.

Generally, weights in weighted episode mining can be assigned through diverse methods,

contingent on the application, and exploring the design of such methods presents an avenue for

further investigation. Potential approaches may involve manual assignment based on statistics,

external data, or past experience.
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Figure 3.5: A collection of event sequences

Assume that P only appears in S1 10 times (NI = 1). Hence, the weighted support will

be sup_wa(P) = 1
3 × (1× 10) = 3.3. As a result, episode P would not qualify as a weighted

frequent closed episode.

3.4.7 Uncertain episode mining

Mining uncertain episodes extends the scope of episode mining, designed to handle uncer-

tain data. In various applications, events collected from sensors may be noisy, or the events

themselves may be inaccurate, rendering traditional episode mining less effective for analysis.

This extension introduces a probabilistic episode mining model as the main uncertainty model.

In this model, users define two thresholds: a minimum probability threshold, indicating confi-

dence in the frequency of episodes, and a support threshold to verify if generated episodes are

likely frequent. Specifically, A specific episode’s frequentness probability needs to be at least

as high as the probability threshold.

In the discovery of uncertain episode context, events undergo a redefinition, and each event

is assigned a probability value denoted as p within the interval [0,1], representing the likelihood

of the event’s presence in the sequence. The resulting sequence is called "uncertain sequence",

where events are called "probabilistic events", and Li et al. have formally defined these con-

cepts. They introduced methods for identifying probabilistic frequent serial episodes (P-FSE)

[73], comprising: (1) an "exact approach" determining the precise support value of a speci-

fied episode, (2) an "approximate approach" estimating the support through a distribution of

probabilities, and (3) an "optimized approach" offering a maximal limit on the support with
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no accounting for every occurrence of an episode.

P-DFSE [72] is another algorithm tailored for uncertain episode mining, specifically de-

signed to discover probabilistic frequent serial episodes by taking into account the relationship

among occurrences of a specific episode. Both algorithms employ the "possible world seman-

tics" theory, treating each occurrence of an episode as a possible world. An episode is con-

sidered as a "probabilistic frequent episode" only when the probability computed in a possible

world, as described in both [72] and [73], exceeds the specified probability threshold.

3.4.8 Fuzzy episode mining

It is a task that extends traditional episode mining by incorporating fuzzy sets theory to

handle imprecise events. In this task, event sequences are denoted as S = {E1,E2, . . . ,En}

with associated attributes A = {a1,a2, . . . ,am}. The representation of every event E is E =

{E.a1,E.a2, . . . ,E.am}, where m values are contained and an integer T indicates the event’s po-

sition in the sequence S. There is only one algorithm available for mining fuzzy episodes was

introduced by Luo et al. [57]. In this research, each episode is defined as P(e1,e2, . . . ,ek) as a

set of event variables, with eq{attr1 = v1, . . . ,attrq = vq} representing an event variable with q

attributes. Since attributes can be quantitative (fuzzy) or categorical, each attribute value has its

membership degree based on a fuzzy set or category. The product of the event variables in any

event determines the occurrence of the episode E. Luo et al.’s algorithm utilizes the episode

mining algorithm of Mannila et Toivonen, which focuses on minimal occurrences [50]. The

task of Luo’s algorithm is: given a sequence of events and a minimum occurrence threshold

min_occ, fuzzy episode mining aims to identify all episodes with an occurrence frequency ex-

ceeds min_occ. This study demonstrated the effectiveness and the practicality of fuzzy episode

rules in instant identification of intrusions.

3.5 Further problems related to episode mining

We have discussed the episode mining problem and a few of its extensions in the previously

stated subsections. This subsection explains some more pattern mining challenges that have a

close relationship to the episode mining problem.

Episode Rule Mining or (ERM). It is a very interesting extension of episode mining. An
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implication γ → δ is known as a episode rule. where γ and δ are two common episodes.

This means that upon observing an episode γ , it is probable that δ will follow. The precise

definitions of γ , δ , and the relationship between them can vary among algorithms, influencing

their interpretation and practical applications. The discovery of episode rules is valuable for

predicting future events, understanding the data, and making informed decisions.

The concept of episode rules shares similarities with association rules in traditional pattern

mining [2], where the goal is to discover association rules itemsets in a table that is binary.

Nevertheless, one important difference between episode rules and association rules is that the

former are formed from temporal data, namely an event sequence, whereas the latter do not take

time into account. Consequently, episode rules are useful in identifying relationships across

time.

The task of obtaining all episode rules is referred to as episode rule mining. Mannila et

al. [12] offered the WINEPI and MINEPI algorithms in their work, which proposed the first

approach for mining episode rules. It identifies recurring episodes and then pairs them to create

episode rules. The confidence of a rule is a measurement that describes its interestingness, it is

computed and evaluated with respect to a threshold for the confidence. If the confidence of the

generated episode rule is not less than a threshold min_con f , The user can use the given rule to

forecast future occurrences because it is regarded as valid. Numerous episode rule mining have

been proposed[102, 58, 82, 103, 104, 62, 49, 63, 64].

For episode rule discovery, the first method, MINEPI (discussed before), uses a breadth-first

search strategy. WinMiner [62], on the other hand, efficiently mines rules under a window con-

straint by using a depth-first search strategy. Additionally, many algorithms, like DEER [103],

perform episode rule discovery with no need for generating candidates. Several algorithms have

been developed to evaluate event streams [102, 82] and uncovering episode rules from event se-

quences based on its utility [64]. The extraction of episode rules finds applications in diverse

areas, including telecommunication alarm analysis [12], detection of intrusions [46], and the

detection of internet anomalies [49].

However, a challenge in episode rule mining arises from the need for a strict ordering be-

tween events. Consequently, an algorithm may generate numerous rules that are subtly dif-

ferent but essentially describe the same real-world situation. To address this issue, another
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type of episodes, known as partially-ordered episode rules, is employed to capture relationships

between events. A recent algorithm, POERM [67], has been introduced for mining partially-

ordered episode rules to unveil relationships in complex sequence of events. POERM efficiently

identifies rules of the form A→ B, where A and B are event sets. The problem addressed by

POERM is as follows: Given a complex event sequence S, three integer values ASpan, BSpan,

and ABSpan ∈ Z+, along with minimum thresholds for support and confidence minsup and

mincon f , a rule A→ B is considered valid if: (1) every occurrence of A and B has a maximum

duration that doesn’t go beyond ASpan and BSpan, respectively; (2) the time interval that exists

between any pair of occurrences of A and B do not exceed ABSpan; and (3) sup(A) ≥ minsup

and sup(B)≥ minsup×mincon f .

Several studies have explored alternative approaches to calculate the episode rule’s con-

fidence value. One notable contribution is the MARBLES framework [105]. The study in-

troduces a set of episode rule mining algorithms. MARBLES aims to extract all rules by

using three new frequencies by employing fixed windows, minimal windows, and weighted

minimal windows-based frequencies. Furthermore, in order to find compelling episode rules,

MARBLES adds minimal-extensibility and weighted-extensibility for minimal window-based

frequency and weighted frequency, respectively. This framework introduces a new definition

of confidence adapted for such frequencies, aimed at capturing episode rules that maximize

confidence.

While many existing studies focus on identifying interesting episodes in simple or complex

sequences, the primary objective of discovering interesting knowledge is to leverage this knowl-

edge for detecting patterns that depend on one another, helping in understanding the past of

predicting the future actions. Consequently, episode rules are the best patterns that encapsulate

these relationships. Research in this field is ongoing with the goal of creating new algorithms

for the extraction of these rules in various settings and their interpretation for use in real-world

scenarios.

Periodic episode mining. It is an alternative to episode mining [40]. The objective is to

identify episodes that exhibit both frequent occurrence and periodicity in an event sequence or

stream. To detect periodic patterns, the period length of each potential episode is computed as

the time interval between successive episode’s occurrences. If the period of an episode is less

than a certain threshold, it is deemed periodic.
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3.6 Recent applications of episode mining in various domains

As per previous subsections, it is evident that FEM framework is an effective method for

analyzing sequential data. It is widely used and has been employed in recent studies to improve

the functionality of several frameworks. Despite this, most recent research focuses on devel-

oping new algorithms based only on theoretical considerations, and the creation of interactive

episode mining tools is still an active area that needs more investigation. Fortunately, the in-

teractive tool SNIPER [106] is available for analyzing and understanding the performance of a

recommendation system through episode mining. This tool empowers users to engage with the

system and provide feedback on the quality of recommendations. Multiple systems have been

created using episode mining principles along with corresponding interactive tools.

Frequent episode mining approaches have extended their applications to novel domains, in-

cluding cyber-physical systems in intelligent cars [107] and In-Situ Decommissioning sensor

network monitoring [108, 109]. They use a clear model of mechanisms of predicting and ex-

ploring frequent episodes, respectively. Every system incorporates a dedicated frequent episode

mining (FEM) algorithm, explicitly applied to examine all gathered data and express the se-

quential links actions one to another in every platform. Nevertheless, the sequence creation

step of the framework is where the two frameworks diverge. In the subsequent subsections, We

outline the processes of these two common episode mining applications and provide examples

of how episode mining was used to accomplish the stated goals.

3.6.1 Predicting events in cyber-physical networks

The goal of the Cyber-Physical System (CPS) is to enable intelligent user interactions by

tightly integrating cyberspace and physical components. Examples of common cyber-physical

systems (CPS) are autonomous vehicles, smart cities, and intelligent houses.A vast amount of

data from these frameworks may be used for developing reliable tools, either to improve system

performance or for predictive purposes.

Hence, an effective framework was introduced for predicting the future action in a Cyber-

Physical System (CPS), such as vehicle use, as demonstrated in [107]. The approach consists

of analyzing sequential events to predict future events through the utilization of a graph data

structure that facilitates the construction of event chains (episodes). The framework consists
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of three primary layers, with the fourth layer comprising the implementation of the model of

prediction.It is feasible to integrate applications like intelligent control, system monitoring, and

decision aids at the fourth layer. The three stated levels are explained in more detail below:

• Extracting event instances. It is the framework’s first layer. It involves extracting in-

stances of events (for simplicity, we’ll called them events) from incoming data that come

from various physical components. Every device links each event with its proper occur-

rence time. An event is constructed of a number of features, and Linked Data is used

to represent it. This is formed in the following manner: event =< URI,source,Attr >

where Attr is a tuple (A,S,O,D,T,P) (A:action, S:subject, O: Object, D:Device, T :Time,

P: place), source is a link to a collection of data from which the event is retrieved, and

URI is a unique number that identifies the event.

• Extracting event graph. The relationships between events can be derived sequentially

after extracting the event instances themselves. In the preceding layer, we demonstrated

the association of each event instance with its corresponding occurrence time. The start

and end times are included in the time field. Consequently, all events can be arranged into

a single long sequence of events, enabling the application of a Frequent Episode Mining

(FEM) framework to retrieve various relationships between the events within the built

sequence.

Therefore, a sequence ES from a set of events IS = [ei1, . . . ,ein ] is expressed as follows:

ES = ⟨(e1,e1.str), . . . ,(en,en.str)⟩, where ei denotes the ith event in the sequence, and

ei.str denotes the starting time of ei. After that, the sequence ES is analyzed to identify

interesting episodes using an effective FEM technique called MANEPI [55]. In short,

MANEPI is an efficient algorithm for mining frequent episodes within a long sequence,

using a depth-first strategy method for calculating the frequencies based on minimal

and non-overlapping occurrences. In addition, the discussed application seeks to apply

MANEPI for mining frequent episodes while adhering to a time gap constraint, with the

intention of reducing redundancy in the set of frequent episodes. This method is catego-

rized as a constraint-based algorithm for episode mining since it uses a gap constraint. At

last, this system constructs the event graphs for every serial episode using sequential re-

lations and the associated transition probability among any consecutive actions (events),
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given by:

P(eki+1|eki) =
count(eki,eki+1)

count(eki)

where the conditional probability P(eki+1|eki) denotes the occurrence of eki+1 given that

ei1 already has occurred, count(eki,eki+1) is the total number of occurrences of (eki,eki+1)

in all serial episodes.

• Event prediction on the event graph: In this stage, a prediction model is constructed

using the event stream and the event graphs that were recovered from the preceding layer.

To accomplish this objective, at first, candidate events and event contexts are recognized

by the system. The events that have happened are referred to as a event context. An

event context that could replace this one is represented by a candidate event. In this

layer, predicting the events that will follow is the focus of the second step. Therefore, a

three-stage structured model called SGNN is built in order to complete this step.

The three previously mentioned layers form the integral components of the framework. An-

other layer constitutes the potential application. Consequently, the application of the framework

is applied to car usage, serving as an application layer. Additionally, it can integrate into Internet

of Things (IoT) systems, including applications in smart cities. The prediction mechanism is

useful in many areas, including early warning systems, intelligent control, behavior monitoring,

and decision support.

3.6.2 In-Situ decommissioning sensor network monitoring using FEM

A collection of sensors installed at a nuclear facility known as In-Situ Decommissioning

(ISD) is the subject of a recent application using episode extracting as an analytical tool. Tech-

niques for mining episodes are used to examine the vast amount of data produced by In-Situ

Decommissioning or (ISD) sensors [108, 109] since the collected data are time-specific, in-

cludes a timestamp attached to every event to indicate when it happened. ISD sensors are used

to monitor the nuclear facility.

As previously stated, the information gathered from the sensors at the nuclear site may be

thought of as a unified, continuous stream. These information comprises large records of (1)
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details about the voltage of the battery, (2) localized strain gauge pressure data, (3) 4 thermocou-

ples’ worth of temperature data, and (4) information obtained from the tiltmeter (including tilt

degrees and local temperature). There are two event types for each sensor in the network: High

(H) or Low (L). For instance, taking into account a thermocouple among these four ones (t1),

where the recorded temperature exceeds the adjacent data point, it is categorized as an event of

type t1H (high temperature). If the recorded value is less than the data point, it is labeled as an

event of type t1L (low temperature). As a result, the events from the four thermocouples form

the set [t1H, t1L, t2H, t2L, t3H, t3L, t4H, t4L]. Likewise, The remaining sensors are treated with

the same idea, like for strain data [SH,SL], for biaxial tiltmeter[BH,BL], and for the informa-

tion of the battery (voltage) [V H,V L]. The sensors record the time at which every event occurs

in addition to the timestamps.

Moreover, the proposed method makes use of the FEM algorithm described in [83]. This ap-

proach uses the frequency definition based on non-overlapping occurrences. In order to shorten

the time taken by the analysis process to look for frequent episodes and improve the min-

ing program’s performance, non-overlapping occurrences are specifically adapted for temporal

analysis in the ISD sensor network. The resultant outcome of this application showcases of the

FEM platform in timed data analysis effectiveness.

3.6.3 Intelligent coordination platform for wheel manufacturing

In recent decades, the Internet of Things (IoT) has found growing applications in numerous

complex systems, comprising a vast network of interconnected devices that collect extensive

data. Various complex systems collaborate to execute a common task, increase a process’s

effectiveness, or create novel features by collaborating with existing services from multiple

systems. Implementing services within IoT settings presents a range of obstacles that must

be resolved in order to achieve the desired outcomes. Three significant challenges in service

collaboration are heterogeneity, variable invocation logic, and spatiotemporal restrictions. Zhu

et al. presented a thorough architecture for collaborative services in the wheel manufacturing

process in order to overcome these issues [110].

The presented framework shares similarities with the one proposed for Cyber-Physical Sys-

tems in [107]. Typically, the framework consists of the subsequent tasks:
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• Event instance extraction from multi-source IoT data. During this stage, the Event

Logic Graph (ELG) is represented by the framework as linked data, with each ELG having

the following characteristics: ELG← (relations,events,url). Here, the event set and its

relationships are indicated by the variables events and relations, respectively, while url

serves as a unique identifier to identify the ELG. This framework proceeds to create event

instances through a dispatcher, which supplies detectors capable of recognizing such

events. For instance, the dispatcher might provide a detector specialized in detecting the

activation of a particular machine and another detector designed to identify temperature

increases. Notice that the detector could be a machine learning model or a rule engine.

• During the second phase, the platform organizes all event instances into a sequence based

on their chronological order, constructing the event logic graph. After that, an effec-

tive framework for episode mining is applied to retrieve all significant episodes from the

consecutive data. The framework uses an approach based on the well-known MANEPI

algorithm [55] to achieve this goal. This algorithm has also been applied in the field of

Cyber-Physical Systems, as was previously mentioned [107]. The novel method imposes

both a time gap and a duration criteria to identify occurrences with a finite time interval

between them and events that are not too long. Consequently, event chains collection

(serial episodes) is devoid of redundancy.

• The last two tasks pertain to the practical application aspect, focusing on predicting future

events. These tasks aim to use the prediction model in several real-world contexts, such

as dynamic service composition, service suggestion (recommendation), and orchestration

optimization.

The three application fields above highlight the effectiveness of Frequent Episode Mining

(FEM) as a tool for temporal data analysis. Current approaches may find use in a number

of different fields. As an illustration, NonEpi [43] proved to be an interesting algorithm for

predicting diseases based on the observed symptoms. In order to accomplish this, the episode

rules of the form γ → δ (where γ is the predecessor of δ )must be unearthed. The advantage of

extracting patterns in the form of rules is their human interpretability.
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3.6.4 Mining train delays

A country’s essential infrastructure includes a railway network, and any delays can lead to

significant disruptions in railway transportation, including shutdowns. To develop an intelligent

solution for predicting train delays, the CloEpi episode mining algorithm was employed to

uncover hidden patterns in sequential train data obtained from Infrabel [111].

Before applying episode mining, the data undergoes preprocessing to generate a single,

continuous sequence of events. The output of this step consists of a series of event sequences

that specify the delays encountered by the train at each characteristic point. Every event in these

sequences is represented by (Train_id, timestamp), including a unique integer value Train_id

that serves as representation of the delayed train, and timestamp which signifies the specific

point in time at which the train experienced the delay. Finally, in order the mines train delays

episodes, the well known CloEpi algorithm [75] is applied to analyze these sequences, which

discovers closed episodes to minimize the size of the output without sacrificing any information.

3.7 Conclusion

We have presented in this chapter an overview of the frequent episode mining framework

and its main concepts. Then we presented a classification of existing algorithms into different

categories according the search strategy and the frequency definition. We have also presented

the limitations of the traditional episode mining algorithms face to some problems to overcome.

Then we have presented the different extensions presented for traditional algorithms in order to

deal with these limitations.

In subsequent chapters, we will elucidate our contributions that have been advanced to ad-

dress research prospects and remedy some deficiencies within this domain.
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Chapter 4

Episode rules discovery under

non-overlapped occurrences of frequent

episodes

The previous chapter presented the state-of-the-art in terms of frequent episode mining

(FEM) framework and its extensions, which involves various algorithms aiming at extract-

ing useful knowledge from sequences. We also highlighted the various definitions of frequent

episodes that depend on the occurrence of these sequences. The state-of-the-art of FEM in-

cludes numerous extensions that enable the extraction of episode rules, but the interpretation of

these rules can be challenging when the occurrences overlap. Therefore, we proposed a new

contribution called NonEpi, which is based on non-overlapping occurrences and mines frequent

episodes and episode rules from simple event sequences. This chapter explains the new contri-

bution by detailing the relevant concepts, taking into account those previously introduced such

as event, event sequence and episode (as discussed in Section 3.2.1).

4.1 Introduction

FEM methods have been developed to derive interested episodes using several frequency

definitions to track their occurrences. Mainly, we can categorize them into dependent or inde-

pendent frequency. When episode’s events overlap (the occurrences have some shared events)

like total frequency, head frequency minimal occurrence-based frequency, the definitions are
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categorized as dependent frequency definitions. The concept of the independent frequency

definition prohibits overlapping occurrences, in contrast to the frequency definition based on

non-overlapped occurrences and distinct occurrences (see table 3.1).

Previous research has focused on identifying strong episode rules in complex event se-

quences using various algorithms. Frequent Episode Mining (FEM) has been expanded to ex-

tract episode rules that satisfy a minimum confidence criterion. Other approaches have been

developed to determine episode rules by first identifying interesting episodes using a proper

frequency definition. In this chapter, we will explain the design of an efficient approach that

mines episode rules based on a definition of frequency which tracks all non-overlapping occur-

rences. We will give thorough explanations of both the method and the underlying ideas in the

sections that follow.

4.2 Basic definitions

The following subsection provides definitions of terms related to episode rule mining and

episode mining based on non-overlapping events. As covered in the chapter before, the purpose

of this approach is to extract injective serial episodes. As a result, in the parts that follow, a

serial episode made up of injective nodes is just called an episode. An episode consists of three

events (α = A→ N→ B) that occur in the sequence shown in Fig. 4.1. Event A is followed by

event N and then by B.

The above stated concept of a sub-episode applies to any type of FEM algorithm. But, in

order to fulfill the features of a given algorithm, the mapping function between the episode and

its sub-episodes is defined. As a result, we use the next definition of sub-episodes:

Definition 1 (Sub-episode). Consider two episodes α =α1→···→αn and β = β1→···→ βm.

The episode β is considered as a sub-episode of α (expressed as β ⊑ α) if and only if there

exists an index k (1≤ k ≤ n−m+1) such that for all j (1≤ j ≤ m), β j = αk+ j−1.

a

72

m

73

n

74

b

75

a

76

n

79

m

80

b

81

a

82

c

83

d

84

n

86

b

87

Figure 4.1: A sequence of 13 events
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If β is a sub-episode of α then, each occurrence of α contains an occurrence of β [12]. We

further refer to α as a super-episode of β .

There are two distinct situations identified: β is called a prefix of α when k = 1, i.e., when

it is positioned at the beginning of α . In contrast, β is placed at the end of α and is referred to

as a suffix of α if k = n−m+1.

The episode β = a→ n in the running example (see Fig. 4.1) is a sub-episode of the episode

α = a→ n→ b, which may be represented as β ⊑ α . In addition, β here is a prefix of α .

Definition 2 (Occurrence of an episode). In the sequence S, an occurrence of an episode α is

represented by the vector h = [t1t2...tn]]. such that each ti is an integer representing a time at

which the ith node of episode γ occurred (timestamp). Consider two occurrences h = [t1t2...tn]

and h′ = [t ′1 t ′2 . . . t ′n], if tn < t ′1 or t ′n < t1, then h and h′ are regarded as non-overlapped

occurrences of episode α .

For a particular episode, several sets of non-overlapping occurrences may generally be de-

termined. Maximal sets, or sets with the greatest number of non-overlapping occurrences, are

of special importance to us:

Definition 3 (Maximal set of non-overlapped occurrences of an episode). Let γ be an episode

and H be its non-overlapping occurrences set, H is considered as non-overlapping occurrences

maximal set if, for every other set H ′ of non-overlapping occurrences of γ , the condition |H| ≥

|H ′| holds. As a result, the maximal set of non-overlapping occurrences of the episode α is

denoted by no(γ).

Consider the sequence S shown in Fig. 4.1 as an example, as well as the episode γ = a→

n→ b. Because no(γ) = H, the maximal set of non-overlapping occurrences of α in S is set H

= {[72 74 75],[76 79 81],[82 86 87]}.

Definition 4 (Support of an episode). The support of an episode γ (denoted as support(γ)) is

the size of the maximal set of non-overlapping occurrences, expressed as support(γ) = |noγ |.

An episode γ is considered frequent based on non-overlapping occurrences if support(γ)≥

minsup, where minsup represents a user-defined support threshold. The support of the episode

γ = a→ n→ b is 3, as we can see in the previous case.
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Episode rules, as previously stated, capture binary associations between pairs of often oc-

curring episodes. Recall that an expression of the type β → α , in which both α and β reflect

frequent episodes, constitutes an episode rule. The so-called confidence of a rule is defined by

its conditional probability. It is expressed as follows: con f (β ⇒ α) = support(β⊔α)
support(β ) . The types

of rules and how often they are used determine the exact meaning of the ⊔ operator. In our

study, we have β ⊔α = α since β is a sub-episode of α (see Section 4.3). If the rule’s confi-

dence is not less than the user-specified minimum confidence threshold, mincon f , it is deemed

legitimate.

Depending on the application area, many types of rules can be constructed, each encapsu-

lating unique relationships between an antecedent and consequent. This chapter focuses on a

particular class of episode rules that are useful in making predictions.

4.3 Definition of the problem

To calculate a rule’s frequency, the NONEPI technique uses a frequency definition based on

non-overlapping occurrence. In this context, an episode rule is defined as follows:

Definition 5 (Episode rule). An episode rule takes the form γ ⇒ δ , with both δ and γ repre-

senting frequent episodes under the non-overlapping frequency condition, and γ being a prefix

of δ .

An episode rule is significant because it implies that the presence of the prefix β in the

sequence has a significant impact on the occurrence of every subsequent event that forms an

instance of α . This knowledge can be useful for predicting the future course of a series of

ordered occurrences or identifying the fundamental cause of a specific phenomenon.

Therefore, the ratio between the support of δ and the support of γ is used to determine the

confidence of an episode rule γ ⇒ δ :

con f (γ ⇒ δ ) =
support(δ )
support(γ)

(4.1)

Finding all valid episode rules quickly and with the least amount of memory and time con-

sumption is the main goal of an episode rule mining method. Consequently, the following is
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how this algorithm defines the problem it addresses: "The objective is to extract a set of valid

episode rules (rules in the form of β ⇒ α such that con f (β ⇒ α) ≥ mincon f ) given an event

sequence S, support threshold minsup, and confidence threshold mincon f ."

4.4 The proposed approach for mining episode rules

We in troduce in this section the NONEPI approach, which uses non-overlapping occur-

rences to extract the collection of frequent episodes and episode rules. The overal approach is

is divided into two stages: The first stage aims at finding frequent episodes and the second stage

focuses on finding the set of valid episode rules.

4.4.1 Extracting frequent episodes

The first stage is to identify frequent episodes based on their non-overlapping occurrences

as defined by Wan et al. in [72], where the input is the minimum frequency threshold minsup,

which serves as a blueprint for this function. The production of frequent episodes under non-

overlapping occurrence-based frequency depends on the following anti-monotony characteris-

tic, which avoids the requirement to scan the whole search space.

Proposition 5.1. Consider two episodes, α and β , with the condition that β ⊑ α . If the episode

α is frequent, then the episode β is also frequent. Conversely, if the episode β is infrequent,

then the episode α is also infrequent.

Proof. Considering that β ⊑α , every occurrence of α in sequence S must include an occurrence

of β in S. The opposite, however, could not always be true as an occurrence of β might have a

continuation that doesn’t always result in an occurrence of α .

As a result, support(α) ≤ support(β ), meaning that the number of occurrences of α is at

most equal to the number of occurrences of β . Thus, it follows that support(α) ≥ minsup if

α is frequent. That being said, support(β ) ≥ minsup since support(α) ≤ support(β ). In the

same way, we show that α is uncommon if β is.

Now, let us describe how Algorithm 3 is carried out. It first scans at the event sequence S to

identify the frequently occurring episodes of a size 1. The time interval [tk, tk] is included in the
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set noe of occurrences of e for each event e that takes place at time tk in S (lines 4-6). The fre-

quent episodes collection is formed by first evaluating the support of these single-event episodes

(lines 7-9). Subsequently, the function repeatedly executes the occurrence recognition function

to discover more frequent episodes using a depth-first search strategy. This function adds β to

the end of α (lines 11–16) to search for occurrences of α ⊔β given an arbitrary episode α and

a one-size episode β . Proposition 5.1 implies that depth-first search continues only for nodes

associated with frequent episodes (line 14). In other words, if an episode is infrequent, then no

super-episodes will be frequent, which eliminates the related search subspace.

Algorithm 3: Mining Frequent Episodes
Input: minsup - minimum support threshold

Output: F - the set of all frequent serial episodes

22 P= {}, F = {}, α = /0

44 for each individual event e ∈ E do

66 noe = {}

88 for k = 1 to n do

9 % scan the sequence S

1111 e = the event found at time tk

1313 noe = noe∪{[tk, tk]}

1515 for each individual event e ∈ E do

1717 if |noe| ≥ minsup then

1919 P = P∪{(e)}

2121 F = P

2323 for each individual episode α ∈ F do

2525 for each individual episode β ∈ P do

2727 noα⊔β = Occurrence_Recognition(α,β )

2929 if |noα⊔β | ≥ minsup then

3131 F = F ∪{α ⊔β}

3333 α = α ⊔β

3535 return F
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Algorithm 4: Occurrence Recognition
Input: episode α - an episode to grow

episode β - a single event episode to grow α by.

Output: noα⊔β - set of non-overlapped occurrences of new episode α ⊔β

22 for each Oi ∈ noα do

44 for each O j ∈ noβ do

66 if O j.start > Oi.end then

88 update Oi.end = O j.start

1010 Oi.timestamps = Oi.timestamps∪O j.start

1212 for each Ok in noα s.t. i < k ≤ m∧Ok.start < Oi.end do

1414 remove Ok from noα

1616 noα⊔β = noα⊔β ∪Oi

1818 return noα⊔β

The details of the occurrence recognition function are presented in Algorithm 4. This

algorithm is inspired from [72] was used. Nevertheless, the suggested technique eliminates the

requirement for several sequence scans to obtain a set of occurrences for new episodes because

of the peculiarities of the environment. An episode to grow, α , and a single-event episode, β ,

which is utilized to grow α , constitute the input. The results include occurrences of the recently

created episode α ⊔β . The algorithm finds an occurrence O j in noβ that starts after the end of

Oi for each occurrence Oi of α in set noα . Specifically, O j.start > Oi.end, where O j.start is

the start time of the jth β occurrence, and Oi.end is the end time of the ith α occurrence. Then,

for every α ⊔β (lines 1–5), we create a new instance [Oi.start,O j.end]. The function removes

any instances of α that coincide with the new occurrence of the new episode (lines 6-7) in order

to handle the problem of overlapping occurrences.

4.4.2 Extracting episode rules

The process then proceeds to finding all important episode rules in the form β ⇒ α , where

β is the prefix for α and α,β are two common episodes with non-overlapping frequencies.

Recall that rules with a confidence level of at least the minimal confidence threshold mincon f

are considered legitimate. Equation 4.1 provides the formula used to calculate the confidence

level of a rule. An enormous search space is produced when all the possible combinations of
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α and β are explored to generate an episode rule. Two methods are used to reduce this search

space: (1) only the prefixes of a given episode α are considered as possible antecedents of that

rule when that episode is the consequent of that rule. The definition of an episode rule includes

this case. (2) It is shown that for a rule consequent α , some prefixes should not be considered

as possible antecedents of this rule, as they would inevitably lead to incorrect rules. This is

guaranteed by applying the following anti-monotony property (see Proposition 5.2):

Proposition 5.2. Suppose α and β are two frequent episodes with β as a prefix of α . If the rule

β ⇒ α is invalid, then (1) the rule β ′⇒ α is invalid for every episode β ′ that is a prefix of β

(β ′ ⊑ β ), and (2) β ⇒ α ′ is invalid for every episode α ′ where α is a prefix of α ′ (α ⊑ α ′).

Proof. Let’s start with the first part of the proposition. Assume that the rule β ⇒ α is false

for two frequent episodes α and β , where β ⊑ α . Now, let β ′ ⊑ β . We obtain support(β ′) ≥

support(β ) from Proposition 5.1. Thus, it follows that: support(β ′)≥ support(β ). It follows

that: con f (β ′⇒α)= support(α)
support(β ′) ≤ con f (β⇒α)= support(α)

support(β ) . However, while β→α is invalid

we have: support(α)
support(β ) ≤mincon f . As a result, support(α)

support(β ′) ≤mincon f , indicating that β ′⇒ α is not

true.In a similar manner, the proposition’s second element may be shown.Algorithm 5, which

is based on Proposition 5.2, takes an input sequence S and produces all of the acceptable episode

rules.

The input for the algorithm includes an event sequence S over a set of event types E, along

with user-defined frequency thresholds minsup and confidence threshold mincon f . The result

is the complete collection of valid episode rules in the form of β → α . Hereafter, for an episode

α with a length of l, we use pred(α) to represent its predecessor, which is the longest prefix of

α , specifically the prefix of length l−1.

Using minsup as the minimal support threshold, the algorithm first extracts all frequent

episodes ( Algorithm 3). The program then produces all the valid rules for every frequent

episode α , where α is the consequent. This technique computes the confidence of β ⇒ α ,

starting with β = pred(α) as a possible antecedent. The algorithm moves on to the next shorter

prefix if this rule is valid and is added to the collection of output rules. When the program

finds a prefix β for which β ⇒ α is invalid, it stops searching for other prefixes contained in α .

According to Proposition 5.2, any additional prefix β ′ would also result in an invalid rule.
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Algorithm 5: Extracting Episode rules
Input: S: sequence of events on E (event types set), minsup: support threshold,

mincon f : confidence threshold

Output: R: complete set of episode rules.

22 F = FrequentE pisodes(minsup)

44 R = /0

66 for each episode α ∈ F do

88 stop = false

1010 β = pred(α)/* returns the predecessor of episode α*/

1212 while not stop and β ̸= NULL do

1414 if |noα |
|noβ |
≥ mincon f then

1616 R = R∪{β ⇒ α}

1818 β = pred(β )

19 else

2121 stop = true

2323 return R

4.5 Experimental results

As the form of episode rules proposed in this paper is novel, there are no existing works em-

ploying the same form for comparison with the performance of our algorithm. Consequently,

the objective of this section is to gain insights into various aspects of our algorithm’s behavior.

The experimental results presented in this section are derived from two experiments conducted

on synthetically generated sequences. The datasets are available on GitHub [112]. To create

these sequences randomly, we specify: (1) the length of the sequence, indicating the number of

events it contains, (2) the number of event types, and (3) the maximum duration between two

consecutive events. We categorize the sequences into three types: large, medium, and small.

Further details about the utilized sequences are provided in Table 4.1. All experiments are per-

formed on a PC with 1.7GHZ Intel i5-4210U CPU, 8 GB memory running Linux environment.
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Table 4.1: Details on the sequences that are used

Large Medium Short

1st sequence 40 event types 50 events types 20 event types
500000 events 100000 events 29000 events

2nd sequence 80 event types 20 event types 100 event types
600000 events 130000 events 350000 events

3d sequence 100 event types 100 event types 50 event types
700000 events 160000 events 390000 events

4.5.1 Phase I: Mining frequent episodes

In this study, we conducted a comparison between the NONEPI algorithm proposed in this

research and three established frequent episode mining algorithms. These algorithms are im-

plemented in Java and are accessible in the SPMF library1. The algorithms under consideration

include MINEPI, which employs a breadth-first approach with minimal occurrence-based fre-

quency, as well as MINEPI+ and EMMA, both of which are depth-first algorithms utilizing

head frequency.

The comparison involves examining the number of discovered frequent episodes, the maxi-

mum size of identified frequent episodes, and the execution time variation based on the support

threshold. The average values for each type of sequence are computed from three different

sequences (refer to Fig. 4.2).

For large, medium and short-sized sequences, respectively, Figures 4.2(a), (d) and (g) show

how the number of recognized frequent episodes varies according to the varyiation of minsup.

We find that, in comparison to the other algorithms, the number of often generated episodes

in NONEPI responds more quickly to shifts in the support criterion. In the latter case, over

a number of successive values of minsup, the number of created frequent episodes tends to

stabilize. It is also noteworthy that NONEPI produces fewer frequent episodes for medium and

large sequences than other algorithms. This can be explained by the fact that episodes with no

overlap are less common than those with an overlap when a sequence becomes larger.

The effects of support threshold minsup on the maximal size of frequent episodes in se-

quences of large, medium, and short sizes are shown in Figures 4.2(b), (e) and (h), respectively.

1SPMF Homepage, http://www.philippe-fournier-viger.com/spmf/
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Figure 4.2: The effect of minsup on the amount of frequent episodes, the largest episode size,
and the time of execution for large, medium, and short sequences.

Note that the maximum number of episodes found using NONEPI diminishes as minsup in-

creases. However, regardless of the support threshold, the maximal size of episodes detected

by MINEPI and MINEPI+ remains comparatively constant. This implies that in contrast to

the other algorithms, the maximum size of frequent episodes in NONEPI is more sensitive to

shifts in the support threshold. NONEPI’s evaluation of independent events is the cause. More

specifically, than overlapping occurrences or occurrences of shorter episodes, larger episodes

naturally produce vast and non-overlapping occurrences, which occur less often. Large episodes

that occur often at lower support thresholds may thus become less common as the threshold for

support rises.

The runtime comparison of the methods for various support thresholds in sequences of large,

medium, and short sizes is shown in Figures 4.2(c), (f) and (i), respectively. It is evident that

NONEPI and EMMA have significantly shorter runtimes than the other two techniques. Among

all the examined algorithms, MINEPI+ performs the worst for all types of sequences. Figures
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Figure 4.3: Influence of mincon f on (a) execution time and (b) number of episode rules

(a), (b) and (c) of the large sequences do not show MINEPI+ because they fail to end before 800

s for large sequences. The reason for NONEPI’s superior performance is that, unlike MINEPI

and MINEPI+, which repeatedly scan the event sequence to identify the occurrences of the most

recent episodes using the window width, NONEPI only scans the sequence once to extract the

timestamps of individual event episodes and then joins them to obtain larger episode occur-

rences. This further demonstrates the effectiveness of the NONEPI pruning method, which is

based on the anti-monotony property stated in Proposition 5.2.

4.5.2 Phase II: Mining episode rules

The proposed NONEPI for episode rule generation is demonstrated in this experiment. In

accordance with the minimal confidence level, it displays changes in the execution time and

the quantity of made rules. In order to concentrate on the confidence impact, we have set the

support threshold to minsup = 100 and shown the average values of the number of created rules

and execution time that were found in the nine tested sequences.

Figure 3(a) illustrates the impact of the confidence threshold (mincon f ) on the execution

time, while Figure 3(b) shows its influence on the number of mined episode rules. With an

increase in the confidence threshold, there is a gradual reduction in the number of rules, in-

dicating that valid episode rules generated by NONEPI typically have high confidence values.

Conversely, as the confidence threshold rises, the runtime experiences a rapid decrease. This

suggests that obtaining the primary valid episode rules is achievable even with a relatively high

confidence threshold, ensuring a shorter runtime.
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4.6 Conclusion

This chapter introduced an effective method known as NONEPI and suggested a new class

of episode rules based on the non-overlapped occurrence-based support. We have demonstrated

that our episode rules enjoy the anti-monotonic property, which enables us to suggest a pruning

strategy: Once we identify the largest prefix of α , let’s say β , such that β ⇒ α is invalid, we

cease generating episode rules with that episode α as a consequence. Future work on NONEPI

might take numerous directions including: (1) increasing its use to mining episode rules with

partially ordered events or to analyze uncertain data using a probabilistic model. (2) Consider

event sequences that are more intricate, such as streams, and (3) develop a sequence prediction

model based on our algorithm.
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Chapter 5

A new approach for extracting episode

rules in complex sequences under distinct

frequency

There are several real-world applications where multiple events might happen at the same

time, leading to the so-called complex sequence of events. Fortunately, many studies have

proposed new algorithms for treating complex sequences. Within this chapter, we introduce

a novel algorithm named Episode Mining based on Distinct Occurrences (EMDO) to find fre-

quent episodes in a complex event sequence by using a definition of frequency that uses distinct

occurrences. Additionally, we present an effective algorithm, called Episode rules mining under

distinct occurrences with pruning (EMDO-P), for extracting episode rules from complex event

sequences based on the distinct frequency definition.

5.1 Introduction

This chapter introduces a novel approach for discovering frequent episodes and episode

rules using a another definition of occurrences called distinct occurrences. There are two main

stages in this approach: the first stage focuses on identifying frequent episodes, while the second

stage identifies valid episode rules in accordance with the proposed guidelines mentioned pre-

viously. Notice that, in this chapter, the definitions of "event", "event sequence" and "episode"

introduced in Chapter 2.5 still hold. However, the definition of frequency is here determined by
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episode’s "distinct occurrences". The new proposed format of episode rules and the confidence

of such rules will be thoroughly examined.

5.2 Preliminaries and problem definition

Before presenting the details of our novel method for episode and episode rules mining, we

start by defining all necessary concepts used by the method. Next, we define the problem that

we address in this chapter: mining frequent episodes as well as the interesting episode rules

from a sequence by counting the distinct occurrences of episodes to measure their frequency.

Definition 6 (Complex Sequence of Events). Let E be as event types set, a complex sequence

S = ⟨(X1,y1),(X2,y2), ...,(Xn,yn)⟩ is an ordered set of couples (Xi,yi), where Xi ⊆ E is a subset

of event types and yi the occurrence time of the events of Xi in the sequence S.

The approach that we present in this work uses complex sequences as input. For the sake of

simplicity, we use throughout he chapter the word sequence to refer to any complex sequence.

Fig. 5.1 is an illustration of a complex sequence of 7 event sets on 5 distinct event types of

the set E = {l,m,n,o, p}. The time interval begins at y1 = 8 and ends at y7 = 14. The example

might be a representation of a server’s logs where events are logged concurrently. It is evident

to us that the server records various events, such as requests to open a link connecting a client

to the host on certain port, for every timestamp that indicates an activity. Here, many computers

may be aiming for the same port. In order to clearly build a complex event sequence, the system

ought to track any new requests on any particular channel at a time.

l,m

8

n,o

9

l,o, p

10

m, l,n

11

l

12

n, p

13

m,o

14

Figure 5.1: A complex sequence of events

Definition 7 (Episode occurrences, Distinct occurrences). Let S be a sequence S and γ =

A1A2 . . .An be an episode.

• In the sequence S, an episode occurrence of α is represented by an integers array O =

[y1 y2 . . . yn], in which every yi represents the timestamp of occurrence of the ith event of

γ , i.e., Ai arises at yi in the sequence.
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• Let O= [y1 y2 . . . yn] and O′= [y′1 y′2 . . . y′n] be two occurrences. O and O′ are considered

distinct i f f , ∀ j, i≤ |γ| , yi ̸= y′j in which yi ∈ O and y′j ∈ O′

We can now define the different occurrences maximal set of an episode (with respect to set

inclusion) as follows:

Definition 8 (Distinct occurrences maximum set). Let γ be an episode and consider D as its

distinct occurrences set. For D to be a distinct occurrences maximum set of γ , it must satisfy

that, for every other distinct occurrences set D′, |D| ≥ |D′|. We use the notation do(gamma) to

express that set.

Consider the example sequence in Fig. 5.1 and an episode γ = l m n . do(γ) = {[8 8 9],[10

11 11],[12 14 13]} is the distinct occurrences maximum set of γ .

Now, let us turn to the notion of support of an episode under the distinct frequency. Consider

a sequence, the aim is to find every episode whose support, i.e. frequency is exceeds a mini-

mum threshold minsup. The literature contains several frequency definitions, each of which

conveys some concept of how frequently this episode happens in the sequence. Under distinct

occurrence-based frequency, the support of an episode simply corresponds to the greatest num-

ber of its separate occurrences in the sequence. Therefore, an episode is considered as distinct

occurrences frequent episode is its support exceeds the given threshold.

Definition 9 (Frequent episode, Episode support ). Let S be a sequence and γ be an episode:

• Using a definition that bases on distinct occurrences, γ’s support (expressed by sup(γ))

is the number of its distinct occurrences: sup(γ) = |do(γ)| where do(γ) is the distinct

occurrences maximum set.

• If sup(γ)≥ minsup, then γ is deemed as a "distinct occurrence frequent episode".

Let us consider the example of the sequence depicted in Figure 5.1 and take minsup = 3.

With respect to minsup, we derive the distinct occurrence-based frequent episodes. As a starting

point, we seek for episodes of size 1. Consider the episode γ = l, its timestamps resultant set

is simply do(γ) = {[8], [10], [11], [12], [14}; thus, its support is sup(γ) = 4 .Then, we can find

the maximum set of distinct occurrences for the rest of episodes of size 1, i.e, for event types

E = {m, n, o}. Then, Definition 7 is used to join the occurrences of every pair of episodes
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which leads to larger episodes. Table 5.1 shows the distinct occurrence-based frequent episodes

with minsup = 3.

Table 5.1: Episodes deemed frequent with "minsup = 3"

γ Times arrays Sup(γ)
l {[8], [10], [11], [12], [14]} 4

m {[8], [11], [14]} 3

n {[9], [11], [13]} 3

o {[9], [10], [14]} 3

l m {[8 8], [10 11], [12 14]} 3

l m n {[8 8 9], [10 11 11], [12 14 13]} 3

l m n o {[8 8 9 9], [10 11 11 10], [12 14 13 14]} 3

l n {[8 9], [10 11], [12 13]} 3

l n o {[8 9 9], [10 10 10], [11 14 14]} 3

l o {[8 9], [10 10], [11 14]} 3

m n {[8 9], [11 11], [14 13]} 3

m n o {[8 9 9], [11 11 10], [14 13 14]} 3

m o {[8 9], [11 10], [14 14]} 3

n o {[9 9], [11 10], [13 14]} 3

We extend our methodology to extract important episode rules . As discussed in previous

sections, there are many works to mine interesting rules. We propose a new set of rules in

the format γ → δ so that γ and δ are distinct occurrence-based frequent episodes. The precise

definition of a rule’s confidence varies based on the specific method employed and the structure

of the rule itself.

Definition 10 (Episode Rule). An episode rule is a statement that asserts the relationship be-

tween two frequent episodes, α and β , under the condition of distinct occurrence-based fre-

quency.

Previously, it was noted that an episode rule unveils crucial connections between frequent

episodes. Specifically, the significance of this rule under the final definition lies in the fact that

if episode γ happens within a given sequence, another frequent episode δ will be triggered.

Given that the approach is employing episodes with empty order, every event’s occurrence

of γ may initiate δ . In order to convey that δ is somehow influenced by γ , it is necessary

that the beginning (resp. ending) of δ must occur subsequent to the beginning (or ending) of
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α . Our latest episode rules take into account various other works, such as those that mine

partially ordered episodes and rules based on a frequency based on non-overlapped occurrence,

as demonstrated in [67] [68] as well as serial episodes and episodes rules as shown in [43].

Definition 11 (Occurrence of Episode Rule). Given a rule γ ⇒ δ . Let γi be an occurrence

of episode γ and δ j be an occurrence of episode δ (γi ∈ do(γ) and δi ∈ do(δ )). The vector

O = [tγ1 . . . tγntδ1 . . . tδm] is an occurrence of the rule γ ⇒ δ . The rule’s occurrence O validity is

determined by two conditions being met: the starting time of the episode, Ts(γi), is less than the

starting time of the episode, Ts(δ j), and the ending time of the episode, Te(γi), is less than the

ending time of the episode, Te(δ j). The functions T _s and Te take the episode’s occurrence as

input and return its starting and ending times, respectively. occER(γ⇒ δ ) represents the set of

all valid occurrences of the episode rule γ ⇒ δ .

The calculation of the support for an episode rule, represented by α ⇒ β , involves tallying

the total number of valid occurrences in the sequence, while simultaneously considering the

occurrence of episode rules.

Definition 12. (Support of a Rule) Given a rule γ⇒ δ . Its support is represented by supER(γ⇒

δ ) and it is defined as the number of its valid occurrences with respect to Definition 11, i.e:

supER(γ ⇒ δ ) = |occER(γ ⇒ δ )|

We typically measure the confidence of an episode rule as the proportion of times the rule

is supported by the data, relative to the support of its predicating event (antecedent).

Definition 13. (Confidence of a Rule) the confidence of a rule γ⇒ δ , is expressed by con f (γ⇒

δ ), which is the ratio of the occurrences’ number of the rule γ ⇒ δ to the support of γ . This

formula is expressed as:

con f (γ ⇒ δ ) =
|occER(γ ⇒ δ )|

support(γ)

In spite of the set of frequent episodes previously presented ( see Table 5.1), it is possible to

derive a set of rules in a straightforward way. Taking a threshold for the confidence mincon f =

50% as an example, let γ = l and β = o be frequent episodes, every pattern is recognized by

the distinct occurrences. As per Definition 11, it is easy to derive the occurrences of the rule
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ER = l⇒ o as occER(l⇒ o) = {[8,9], [10,14]}, and thus, the number of its valid occurrences

is suppER(a⇒ d) = ∥occER(a⇒ d)∥ = 2. Consequently, the rule’s confidence is computed

according to Definition 13 as con f (l ⇒ o) = ∥occER(l⇒o)∥
sup(γ) = 2

4 = 0.5. The following list (see

Table 5.2) shows the set of rules extracted from the sequence of Fig. 5.1 based on a confidence

threshold of mincon f = 0.5.

Table 5.2: Valid episode rules with mincon f = 0.5

Rule γ ⇒ δ Times vector conf(γ ⇒ δ )

l⇒ o {[8 9], [10 14]} 0.5

l ⇒ o n {[8 9 9], [10 13 14]} 0.5

l ⇒ o n m {[8 10 11 11], [10 14 13 14]} 0.5

l ⇒ o n m l {[8 10 11 11 10], [10 14 13 14 12]} 0.5

l⇒ n {[8 9], [10 11], [11 13]} 0.75

l⇒ n m {[8 11 11], [10 13 14]} 0.50

l⇒ n m l {[8 11 11 10], [10 13 14 12]} 0.50

l⇒ m {[8 11], [10 14]} 0.50

l⇒ m l {[8 11 10], [10 14 12]} 0.50

l⇒ l {[8 10], [10 11], [11 12]} 0.75

o l⇒ o {[9 8 10], [10 10 14]} 0.67

o l⇒ o n {[9 8 10 11], [10 10 14 13]} 0.67

o l⇒ o n m {[9 8 10 11 11], [10 10 14 13 14]} 0.67

o l⇒ o n m l {[9 8 10 11 11 10], [10 10 14 13 14 12]} 0.67

The chapter aims to tackle the issue of frequent episodes and episode rule mining using dis-

tinct occurrence-based frequency. In other words, for a given sequence, a threshold of support

minsup, and threshold of confidence mincon f , the suggested method involves two main tasks:

1. Identifying all frequent episodes, i.e., having a support value which is equal to or greater

than minsup.

2. Extracting every rule γ ⇒ δ where both γ and δ are frequent episodes, such that its

confidence at least equals mincon f (con f (γ ⇒ δ )≥ mincon f ).
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5.3 The proposed approach

The subsequent subsections introduce our novel method for discovering frequent episodes

and episode rules based on distinct occurrences frequency. As stated above, the proposed al-

gorithm proceeds in two main stages: the first stage identifies frequent episodes and involves

the recognizing of distinct occurrences, while the second stage extracts all valid episode rules

based on the specifications that we have previously presented.

5.3.1 Phase I: Distinct occurrence-based frequent episode discovery

The process begins by identifying distinct occurrences of episodes. The function named

"Mine_ f requent_episodes", outlined in Algorithm 6, first examines the sequence passed as

input to identify single-event episodes. For every type e ∈ E that occurs at timestamp tk, tk is

inserted to the set doe, which saves the occurrences of e. Afterward, the function eliminates

single-event episodes that do not occur frequently (lines 1-9). The algorithm identifies big-

ger episodes by combining single-event with n-node episodes repeatedly using a backtracking

search strategy. "Distinct_Occurrence_Recognition" (Algorithm 7) is utilized to determine the

maximum set of distinct occurrences for each generated episode. To expedite the search pro-

cess, the function responsible for generating distinct occurrence-based frequent episodes takes

advantage of the anti-monotonicity property, thereby avoiding the need to explore the entire

space.

Proposition 13.1. Let θ and γ be two episodes that satisfy θ ⊑ γ . If γ is a frequent episode,

then θ is frequent as well. Similarly, if episode θ is infrequent, episode γ is infrequent too.

Proof. As θ ⊑ γ , every occurrence of γ in the sequence S must also contain an occurrence

of θ . Therefore, sup(θ) ≥ sup(γ), meaning that the number of occurrences of episode γ do

not exceed to the number of occurrences of episode θ . Hence, since episode γ is frequent, i.e.,

sup(γ) ≤ sup(θ), then episode θ is frequent, too. Thus, the distinct occurrence-based support

exhibits anti-monotonicity.

The function "Distinct_Occurrence_Recognition" takes two episodes as inputs: an episode

α to grow using a size 1 episode β . Its purpose is to find the maximum set of distinct occur-

rences (denoted: doα⊔β ) which is its output (Algorithm 7). The suggested algorithm efficiently

detects the timestamps of new episodes of size n+1 by analyzing the occurrences of episodes
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of size n and a single-event episode, without the need for multiple scans of the input sequence

that are often required by other FEM algorithms, which can be time and resource consuming.

The algorithm processes each Oi ∈ doα by identifying a distinct occurrence of β and con-

structing an occurrence of bigger episodes formed as the union of them with a timestamps’

vector that combines the timestamps of Oi from doα and the timestamps of the identified oc-

currence of β from doβ .

After identifying the new occurrence, the algorithm compares it with all occurrences in set

doα ⊔ β to determine whether there is overlap. An occurrence from doα or doβ is removed if

there is an overlap. O j will be removed from doβ if the time stamp of the event in β exists in

vector newocc.timestamps. In such a case, Oi will be removed from doα since one timestamp

from Oi.timestamps exists in newocc.timestamps. The function exists(tk,Oi) outputs true if the

value tk appears in the vector Oi.timestamps; otherwise, it returns f alse. For every Oi ∈ doα ,

our approach obtains O j ∈ doβ from doβ and constructs an occurrence of α⊔β with timestamps

from Oi (i.e., Oi.timestamps from doα ) and O j (i.e., O j.timestamps from doβ ).

5.3.1.1 An illustrative example

Let minsup = 3 and consider the sequence depicted in Figure 5.1. For Algorithm 6, each

E event type is considered as an individual episode (i.e., an episode with only one event). By

scanning the complex event sequence, the method determines, for each episode, the number of

its occurrences, along with its support according to definition 9 (see lines 1-14). Based on the

support threshold, the method then removes infrequent single-event episodes (see lines 15-19).

Based on the execution of lines 1-19, a set of frequent episodes P is shown in Table 5.3.

The use of a depth-first strategy involves creating a copy of frequently occurring episodes

and then searching for larger ones. In order to determine whether an episode is frequent, the

method counts its "distinct occurrences", expressed by doα⊔β . This process will be illustrated

in the following example. In the next step, the algorithm checks that the episode’s support

matches the requirements. As soon as the episode matches the criteria, it is added to the frequent

episodes set F , and the algorithm continues its search (lines 21-28). The execution of Algorithm

6 invokes Algorithm 7 to carry out the step of "distinct occurrences recognition".

Take two episodes α = l and β =m where doα = [[8], [10], [11], [14] ] and doβ = [[8], [11], [14] ].
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Algorithm 6: Mine_Frequent_episodes
Input: minsup - a minimum support threshold.
Output: F - the set of all frequent parallel episodes

22 P⇐ {};
44 F ⇐ {};
66 α ⇐ /0;
7 for (each individual event e ∈ E) do
99 doe⇐{};

10 end
1212 {% scan the sequence S }
13 for (k⇐ 1 to n) do
1515 {% scan the event set found at time tk %}
16 for ( j⇐ 1 to m) do
1818 e j⇐ the event found at time tk;
2020 doe j ⇐ doe j ∪{tk};
21 end
22 end
23 for (each individual event e ∈ E) do
24 if (∥doe∥ ≥ minsup) then
2626 P⇐ P∪{(e)};
27 end
28 end
3030 F ⇐ P;
31 for (each individual episode α ∈ F) do
32 for (each individual episode β ∈ P) do
3434 doα⊔β ⇐ Distinct_Occurrence_Recognition(α,β ); if (∥doα⊔β∥ ≥ minsup)

then
3636 γ ⇐ α ⊔β ;
3838 doγ ⇐ doα⊔β ;
4040 F ⇐ F ∪{γ};
4242 α ⇐ γ;
43 end
44 end
45 end
46 return F ;
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Table 5.3: Size 1 frequent episodes for minsup = 3

Episode Occurrences Support
l {[8], [10], [11], [14]} 4

m {[8], [11], [14]} 3

n {[9], [11], [13]} 3

o {[9], [10], [14]} 3

During each iteration in Algorithm 7, a new occurrence is created and its timestamps are initial-

ized as the union of α and β occurrences. As previously stated, the occurrence of α ⊔ β will

arise from the first timestamps Oα = [8] and Oβ = [8], such that newoccα ⊔ β .timestamps =

[8 10]. For the next occurrence of α ⊔ β , the algorithm is repeated for subsequent occur-

rences of Oα = [10] and Oβ = [11]. The set doα ⊔ β is where each occurrence of timestamps

[10]∪ [11] = [10 11] is stored. However, there is a rare instance in which an α ⊔ β occurrence

fails to satisfy the requirements of definition 7 (line 11).

In such a situation, the function chooses which occurrence to overstep using a different

method.

Thus, for the same values of αi (αi ∈ doα), the method selects the next value of β j (β j ∈

doβ ) iteratively in which the timestamp of the single event episode β is already present in any

previous occurrence of α ⊔ β or not. If not, it retains β j (β j ∈ doβ ) and evaluates its join with

the next αi because it surely does not meet the condition of Definition 7 for such an occurrence

of α ⊔β .

Take two episodes, as an example, α = l and β = m. The first occurrence of α ⊔β is

[10 11] because the method joins the first vectors Oα = [10] and Oβ = [11] which meet the

requirement of a valid occurrence of al pha⊔ β . In the next iteration, the timestamp t = 11

already exists in [10 11], thus the subsequent combination of Oα = [11] and Oβ = [14]

will not be valid.Therefore, the technique merely maintains the time stamp Oβ = [14] and goes

to the following vector Oα = [12] and gives a valid occurrence of α ⊔ β which outputs:

doα ⊔ β = {[8 8], [10 11], [12 14]}.

All frequent episodes are located when the algorithm ends. Table 5.1 showcases the con-

cluding set of frequent episodes that were produced by Algorithm 6 for the given complex event

sequence.
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Algorithm 7: Distinct Occurrence Recognition
Input: episode α - an episode to grow

episode β - a single event episode to be used to grow α .

Output: doα⊔β - the set of distinct occurrences of the new episode α ⊔β

22 j← 0;

44 i← 0;

66 for (each Oi ∈ doα ) do

88 f ound← f alse;

1010 for (each O j ∈ doβ and f ound = f alse) do

1212 newocc.timestamps← Oi.timestamps∪O j.timestamps;

1414 stop← false;

1616 k← 1;

1818 while (not stop and k ≤ |doα⊔β |) do

2020 if (newocc.timestamps∩Ok.timestamps ̸= /0) then

2222 if (exists(O j.timestamps[1],Ok.timestamps) = true) then

2424 remove O j from doβ ;

25 else

2727 remove Oi from doα ;

28 end

3030 stop← true;

31 end

3333 Ok← Ok+1;

34 end

3636 if (stop) then

3838 f ound← true;

39 end

4141 doα⊔β ← doα⊔β ∪newocc;

42 end

43 end

4545 return doα⊔β ;
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5.3.2 Phase II: Episode rules generation

The subsequent sections offer an expansion of the algorithm introduced in Section 5.3.1 to

obtain every rule of the format γ→ δ in which both γ and δ are distinct occurrences of frequent

episodes.

According to Algorithm 9, "Extract_Episode_Rules" defines the episode rule mining pro-

cedure. This method returns R the set of valid episode rules after receiving as inputs a complex

sequence of events S as well as the thresholds for the support and confidence denoted by minsup

and mincon f respectively.

As starting point, The Mine_Frequent_Episodes function (Algorithm 6) is called by the al-

gorithm to calculate the set of frequent episodes and subsequently, the set of frequent episodes

is used to derive valid episode rules based on Definition 12. Indeed, using Definition 12, the

"Episode_Rule_Support"’s function computes the rule’s support in this process (see Algo-

rithm 8).

Algorithm 8: "Episode Rule Support"
Input: Two Episodes α and β

Output: ruleSupport: The support of the rule α ⇒ β

22 {% Inialization %}
44 ruleSupport← 0;
66 i← 1;
88 j← 1;

1010 while (i≤ |doα |) do
1212 stop← false;
1414 while ( j ≤ |doβ | and not stop) do
1616 for (each Ok in doβ s.t: j < k ≤ |doβ |) do
1818 if (start(Oi)< start(O j) and end(Oi)< end(O j)) then
2020 i← i+1;
2222 ruleSupport← ruleSupport +1;
2424 stop← true;
25 end
26 end
2828 j← k;
29 end
30 end
3232 return ruleSupport;
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5.3.3 Discovering episode rules with pruning

Because all potential combinations of γ and δ are considered, the space for search of episode

rules is large. A pruning strategy is used to reduce this issue. To be more precise, only the

super-episodes of a specific single-event episode that arise from an episode rule are considered

possible consequences of legitimate episode rules. The function "Extract_Episode_Rules",

which accepts a sequence of event sets S, threshold for support and confidence, minsup and

mincon f respectively, as inputs, facilitates the episode rule mining process. All valid episode

rules set (denoted as R) is the output of the function. As indicated by Proposition 13.2, this is

produced in the rule generation stage by employing the anti-monotony property.

Proposition 13.2. Let γ and δ be two distinct occurrences of frequent episodes. For every δ ′

that satisfies δ ⊑ δ ′, if γ → δ is not valid, then γ → δ ′ is not valid too.

Proof. To demonstrate that the confidence of a rule γ → θ derived from a single event episode

δ such that δ ⊑ θ will be invalid, one needs to utilize only the anti-monotonicity of the distinct

occurrences-based support. Suppose that there are two episodes, δ ⊑ θ , and that rule γ→ δ does

not have support. Based on Proposition 13.1 (anti-monotonicity property), sup(δ ) ≥ sup(θ).

Hence,

con f (γ → δ ) =
∥occER(γ,δ )∥

sup(γ)
≥ con f (γ → θ) =

∥occER(γ,θ)∥
sup(γ)

. Although the rule γ → δ is not valid, it follows that con f (γ → δ )< mincon f . Consequently,

the rule γ → θ is also deemed invalid.

■

From the input complex event sequence, Algorithm 9 incorporates a pruning technique

based on Proposition 13.2 to create all valid episode rules.

The algorithm initializes a variable R as the rules set to be generated as well as another

one, named P that represents the size 1 frequent episodes, after the algorithm first establishes

the frequent episodes set with respect to the threshold of support minsup. The method then

combines large episodes with single-event episodes to determine the valid consequents set that

form such rules in which the confidence exceeds threshold mincon f for every frequent episode

α acting as the antecedent of rule α → β . The jth single-event is used by the algorithm first
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Algorithm 9: Extracting Episode rules with pruning
Input: S: complex event sequence on E (event types set)
minsup: support threshold
mincon f : confidence threshold
Output: R: complete set of episode rules

22 F ← FrequentEpisodes(minsup);
44 R← /0;
66 P←{γ|γ ∈ F ∧∥γ∥= 1};
88 for (each α in F) do

1010 j← 0;
1212 while ( j < |P|) do
1414 β ← P[ j];
1616 root← β ;
1818 k← j;
2020 stop← false;
2222 while (not stop) do
2424 if (β ∈ F) then
2626 ruleSupport← EpisodeRuleSupport(α,β );
2828 con f ← ruleSupport

|al pha.occ| ;
3030 if (con f >= mincon f ) then
3232 R← R∪{α → β};
3434 root← β ;
35 else
3737 β ← root;
38 end
39 else
4141 β ← root;
42 end
4444 if (k > |P|) then
4646 stop← true;
47 else
4949 β = β ⊔P[k];
5151 k← k+1;
52 end
53 end
5555 j← j+1;
56 end
57 end
5959 return R;
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as a rule consequent. This method utilizes the episode root in line 8 to return and reverse it if

no other possible super-episode of β develops as a consequent. For each episode β , the tech-

nique computes the support of the rule and its confidence using the "Episode_Rule_Support"

algorithm. The method inserts episode rule α ⇒ β into the set of all valid rules and updates

the root episode for the succeeding combination of consequents (lines 11–19) if the confidence

exceeds the confidence threshold. If there are no more candidates for single-event episodes, the

algorithm terminates; otherwise, it modifies episode β to increase the subsequent jth episode

from P (lines 20–23).

5.3.3.1 An illustrative example

The following paragraphs present a scenario to show how to utilize the technique. Algorithm

9 is used to find the set of all episode rules in the sequence S, as seen in Fig. 5.1 for minsup = 3

and mincon f = 50%. As previously said, the algorithm first determines the list of frequent

episodes (see Table 5.1). Next, it takes the sequence S and builds a size 1 frequent episodes set

(line 3), thus P = {l, m, n, o}. The technique then looks up for rules.

Consider the episode α = m. The method identifies every rule for which α = l (α ∈ F)

is the antecedent. Next, it treats β = m (β ∈ P) as the root of prospective consequents and the

first consequent (lines 4–10), where doα = {[8], [10], [11], [12], [14]} doβ = {[8], [11], [14]}. The

rule’s support of ER=α→ β (line 13) is then determined by the algorithm using the definitions

11 and 12.

The support is computed in this case as follows: Knowing that doβ = {[8], [11], [14]} and

doα = {[8], [10], [11], [14]}, for every occurrence Oi ∈ doα , Algorithm 8 is used to identify the

occurrence O j ∈β such that start(Oi) < start(O j) and end(Oi) < end(O j). The episode rule

ER = α⇒ β has [8 11] as its first occurrence and cannot have [8 8] since Oα = [8] and Oβ = [8]

do not satisfy the prior requirements. As a result, the technique advances to the 2nd occurrence

of β (Oβ = [11]), confirming that the rule has occurred.

The technique then advances to subsequent time stamps of Oβ = [12] and Oα = [10] of β

and α , respectively, producing vector [10 12], which deemed valid rule occurrence. The support

of the rule α→ β is supER(α→ β ) = ∥occER(α→ β )∥= 2, and the set of occurrences of the

rule is ER−occ(α → β ) = {[8 11], [10 14]}.
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Subsequently, Algorithm 9 proceeds with its computation of the confidence on line 14. The

present episode β represents the root of prospective consequences if the confidence is higher

than the mincon f threshold. In this case, the procedure is repeated and the current rule is

deemed legitimate. It follows by being linked to the following episode γ = n in the collection

P. Notice that the root replaces the size 1 episode to join if the consequent is infrequent. The

rule l⇒ β is valid for mincon f = 0.5. Since β = m is the root for subsequent consequents, it is

paired with episode γ = n. Thus, l→m n is the rule for the following episode. Proposition 13.2

states that β = m will be joined with δ = o and so on if the rule l→ m n is invalid with regard

to mincon f . The technique derives the final valid rules set, which are presented in Table 5.2.

5.4 Experimental Results

Numerous tests were carried out on both generated and real datasets to demonstrate the ef-

fectiveness of our novel method for mining frequent episodes. The datasets are available of

course on GitHub [113] Since no previous work has been done on frequent episode extraction

from complex event sequences under distinct occurrence-based frequency definition, the results

exclusively address the performance of our technique. The experiments were performed on an

AMD Ryzen 5 PRO 4650G with Radeon Graphics 3.70 GHz PC with 16 Gb of main mem-

ory and 256 Gb of SSD storage, running the Microsoft Windows 10 operating system. All

algorithms were coded in Java.

5.4.1 Data generation

As previously stated we made use of many synthetic datasets. Three primary factors were

used to produce these datasets at random: (i) the events number in the complex sequence

(length), (ii) the number of different types of events, and (iii) The maximum number of event

sets in a sequence per time stamp. Three categories of synthetic sequences were identified:

short, medium, and long sequences. Real datasets are sourced from the SPMF datasets collec-

tion 1, and are essentially extensions of transaction databases. Since every item is seen as an

event for this purpose, every transaction (itemset) is regarded as an event set in the intricate

sequence. In addition, a transaction number is assigned to every event set in order to reflect

the timestamp. The datasets are named "OnlineRetail" in the first instance, which has 541880

1SPMF Homepage, http://www.philippe-fournier-viger.com/spmf/
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events and 2603 event types; "FruitHut" in the second, which contains 181970 events and 9390

event types; and "Mushrooms" in the third, which is a series of 8416 events.

5.4.2 Discovery of frequent episodes

The initial step of the proposed algorithm is to use Algorithm 6 to create a list of frequent

episodes. The impact of the threshold of support on the number of frequent episodes and largest

episode size on synthetic and real datasets is shown in Figures 5.2 and 5.3.

Using the suggested technique on synthetic and real datasets, it is evident from the extent to

which the number of frequent episodes varies based on the support threshold values is crucial in

determining the anti-monotony property of distinct occurrence-based frequency, which is highly

effective at minimizing the space of search. Furthermore, when the minimum support value is

increased, the size of the biggest frequent episode is remarkably reduced. For synthetic or real

datasets, the more often big episodes occur, the lower the minsup values that indicate how often

big episodes occur.

The results of the proposed EMDO algorithm applied to various minsup threshold values for

generated data (short, medium, and large size) and real sequences (memory usage in megabytes)

are shown in Figures 5.4 and 5.5, respectively.

In figures 5.4 and 5.5, the frequency of frequent episodes with regard to the minsup threshold

decreased as the support increased. Moreover, with higher support values, the memory cost

likewise drops down quickly decreases. This demonstrates, in particular, how well the anti-

monotonicity propery works when applied to different occurrences-based frequency. According

to this property, no episode’s support is higher than that of any of its subepisodes. Consequently,

the runtime and memory costs decrease with increasing support thresholds. Consequently, the

outcomes demonstrated the effectiveness of the suggested strategy in terms of duration, memory

use, frequency of episodes, and episode sizes.

5.4.3 Generation of episode rules

Formulating valid associations using the generated frequent episodes constitutes the 2nd

stage in EMDO. We compare the basic form of the developed EMDO algorithm with the mod-

ified version, EMDO-P, that uses the technique outlined in Sec. 5.3.3 to prune the space of
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Figure 5.2: Effect of minsup on the biggest episode size and the frequent episodes count on
synthetic datasets

86



55
00

70
00

80
00

85
00

02040

m
in

su
p

Numberoffreq.Episodes

M
us

hr
oo

m
s

36
00

0
40

00
0

55
00

0

0102030

m
in

su
p

O
nl

in
eR

et
ai

l

85
00

90
00

10
00

0
15

00
0

0

10
0

20
0

30
0

m
in

su
p

Fr
ui

tH
ut

55
00

70
00

80
00

85
00

024

m
in

su
p

Maximumepisodesize

36
00

0
40

00
0

55
00

0

024

m
in

su
p

85
00

90
00

10
00

0
15

00
0

246

m
in

su
p

E
M

D
O

Figure 5.3: Effect of minsup on the biggest episode size and the size od the set of frequent
episodes in real datasets
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Table 5.4: The values of support utilized in the rule generating process

Dataset type Data labels Value of threshold for the support

Synthetic
datasets

Short dataset 1000
Medium dataset 1750
Large dataset 3000

Real datasets
Mushrooms 1050
FruitHut 5000
OnlineRetail 10000

search process, because no other algorithms use a support based on distinct occurrences to de-

rive frequent parallel episodes and/or the rules set in complex sequences of events. The primary

purpose of this experiment was to evaluate how effectively the proposed approach creates in-

teresting rules. It is noticeable that although both versions of the algorithm provide identical

results, meaning they produce the same episode rules, their respective performances vary, as

explained in more detail below. Table 5.4 lists the minimum support values. Figures 5.6 and

5.7 illustrate the impact of the mincon f threshold on execution time (in seconds) and the con-

sumption of memory (in megabytes) for the base technique EMDO and the version that uses the

showed pruning strategy EMDO_P on generated and real datasets, respectively.

As predicted, the naive approach takes few memory space to construct pertinent rules for

various confidence thresholds mincon f than the pruning algorithm. This insight is applicable

to both synthetic and actual datasets. However, this difference in memory consumption is not

cause for alarm because the higher memory cost is modest and will not affect the updated

algorithm’s performance.

The upgraded EMDO_P approach surpasses the basic EMDO version in with regard to the

processing time for both generated and real datasets, especially when the confidence limit is

raised. EMDO_P’s pruning approach eliminates large episodes that do not follow legitimate

regulations. This benefit stems from our algorithm’s new episode rule pruning method, which

prevents the combination of several common episodes as opposed to the basic search technique.

5.4.4 A discussion of several identified episodes and rules

The EMDO_P method can extract relevant associations from sequential data and discover

unexpected correlations between events. This was proved by applying it to the FruitHut dataset,

which resulted in a set of episode rules that were extremely significant. Table 5.5 presents an
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Table 5.5: Patterns detected in the FruitHut dataset example.

Rule con f (α → β )

Cucumber Lebanese, Banana Cavendish→ Lettuce Iceberg 85.63%

Cucumber Lebanese, Banana Cavendish→ Beans green, Lettuce Iceberg 68.63%

Lettuce Iceberg→ Zucchini green, Apples Pink Lady 86.14%

Onion Spring, Beans green→Water melon seedless 96.44%

Onion Spring, Beans green, Capsicum red→ Field Tomatoes 99.98%

Pear Packham→ Zucchini green, Apples Pink Lady, Mandarin Imperial 83.44%
Field Tomatoes→ Banana Cavendish, Field Tomatoes 57.08%

example of the retrieved rules.

These criteria indicate strong customer-purchase connections. It is worth noting that the

NONEPI [43] algorithm cannot produce those rules since it only generates rules in which

the antecedent is a subepisode (predecessor) of the consequent. Fortunately, our technique

may integrate all episodes to produce rules, not only those in which an antecedent is a sub-

episode of a consequent. Furthermore, the NONEPI algorithm’s associations form may be

created with the EMDO_P algorithm. For example, both NONEPI and EMDO_P created

the rule "Field Tomatoes→ Field Tomatoes, Banana Cavendish" with a confidence level of

mincon f = 50%. NONEPI can not create any of the rules provided in Table 5.5, save for the

previously described one.

The significance of those rules lies in their ability to demonstrate the connections between

goods that exist over time. For example, if a consumer purchases certain items in a certain

sequence, they will also purchase other items of the antecedent of the rule, indicating their

preferences or demands. Consequently, marketing plans based on promotions or suggestions

can be created using these guidelines.

Table 5.6: Example of discovered episodes by different algorithms from FruitHut dataset

Episode MINEPI+ EMDO NONEPI MINEPI
Lettuce Iceberg , Banana Cavendish 23736 8972 7138 7582

Field Tomatoes, Banana Cavendish 35890 20220 13323 14862

Cucumber Lebanese, Banana Cavendish 27034 10489 8261 8886

Field Tomatoes, Cucumber Lebanese,
Banana Cavendish 16316 10483 / /
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Table 5.7: Information on several methods using the FruitHut dataset

MINEPI+ EMDO NONEPI MINEPI
Candidate episodes number 26642 9959 1942 3993

frequent episodes number 992 3243 35 1244

Size of the biggest frequent episode size 8 6 2 13

We also compared the patterns discovered by "EMDO" and other discovering episodes

methods, including the "MINEPI+", "NONEPI", and "MINEPI" techniques, on the real FruitHut

dataset.

In order to determine the support of episodes, MINEPI+ employs a frequency definition

known as the head frequency, whereas NONEPI mines non-overlapped occurrences frequent

episodes and MINEPI uses the minimum occurrence-based frequency.

Table 5.6 compares the support values of frequent episodes found by all techniques are

compared in Table 5.6. The table shows that the support determined by the proposed method

is smaller than that determined by "MINEPI+", and larger than that determined by "NONEPI"

and "MINEPI". Based on the fact that "EMDO" identifies a greater number of occurrences than

"NONEPI" and "MINEPI", it is suggested that it may offer a more accurate representation and

locate the frequently occurring episodes by exploring a smaller search area than "MINEPI+".

Because of the count of duplicate events with their timestamps in multiple windows of

length k, the head frequency is larger than that of any other frequency specification. Con-

sequently, for a given episode, the head frequency rises with the width of the window. The

temporal frame that encompasses an episode’s occurrence but lacks a suitable sub-window con-

taining an alpha occurrence is known as the minimum occurrence of an episode. This constraint

excludes non-minimal occurrences, because it states that any pair of occurrences can be distinct

as long as they are minimal. Since there is no restriction on the existence of occurrences in such

time intervals other than the fact that they do not share common events (timestamps), the distinct

occurrence-based frequency is thus bigger than the minimal occurrence-based frequency. Fi-

nally, because it removes the majority of occurrences of each episode owing to the requirement

that occurrences do not overlap, the lowest frequency for episodes is based on non-overlapping

occurrences.

Additionally, Table 5.7 compares the count of candidate episodes, frequent episodes count,
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and size of the biggest frequent episodes for every method. It is clear that EMDO has a higher

ratio of frequent episodes to candidate episodes, demonstrating the effectiveness of our innova-

tive strategy compared to existing algorithms. That is, on average, the EMDO has to investigate

fewer possibilities to identify every valid pattern.

Overall, the tests demonstrate that EMDO is capable of identifying important occurrences

in actual data. If other algorithms are used instead of EMDO, particularly those that employ

occurrence definitions that share similar events, EMDO could offer a more accurate perspective

because of its frequency function.

5.5 Conclusion

We discussed in this chapter episode rule mining from complex event sequences under the

distinct occurrence-based frequency. We provided both the valid episode rules EMDO and

its modified variant EMDO_P, as well as an effective depth-first technique to find common

episodes. We have outlined every aspect of our strategy. To the best of our knowledge, this

is the first effort that counts the frequency of parallel episodes from a complex event sequence

using distinct occurrences.
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Chapter 6

Mining frequent episodes and episode

rules from uncertain complex sequences

In practical applications, it is often the case that data is not perfect due to a variety of

reasons, including noisy sensors and multiple sources of information. As a result, one must

be able to deal with such situations and extract useful knowledge from uncertain data. The

traditional framework in episode mining aims to find significant subsequences among a set of

candidates using an absolute frequency definition based on the occurrences of episodes in a

simple sequence. However, this traditional approach is no longer valid for uncertain sequences

and must be adapted. In this contribution, we focus on uncertain complex sequences, which

are modeled using probability theory. We propose a new efficient algorithm called Uncertain

Episode Mining based on Distinct Occurrences (UEMDO) based on the concept of expected

support of an episode to discover "probabilistically" frequent parallel episodes and episode

rules under distinct frequency from a complex uncertain sequence of events. We proposed also

its extension to generate valid episode rules with pruning called Uncertain episode rules mining

under distinct occurrences with pruning (UEMDO-P).
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6.1 Episodes and Episode rules mining from uncertain com-

plex sequences

For several reasons, real-life applications often produce noisy or uncertain data. Despite

this uncertainty, data contains a significant amount of knowledge that can help us understand

past or predict future events. Consequently, the uncertainty of data has also been studied in the

context of frequent episode mining. Currently, there are only two existing techniques, PFSE

and D-PFSE, which are designed to mine serial episodes from simple sequences under non-

overlapping and distinct occurrence-based frequencies, respectively. However, to the best of

our knowledge, there is no prior work that mines parallel episodes from complex uncertain se-

quences based on their expected support under a distinct occurrence-based frequency definition.

This chapter presents two algorithms for mining frequent episodes and episode rules in

uncertain complex sequences, which are the main contributions of this research. Prior to de-

scribing these algorithms, we first provide an overview of the probabilistic context in which

they operate. In the following subsection, we define the concepts of probabilistic event, un-

certain sequence, and probabilistic occurrence, which are extensions of the concepts used in

deterministic context for the probabilistic setting.

6.1.1 Preliminaries of probabilistic data and problem definition

Definition 14. (Probabilistic Event) A probabilistic event is a triple ev= (e, p, t) such that e∈E

is the event type and p ∈ [0,1] is the existential probability of the event e at the timestamp t in

the sequence S.

Definition 15. (Uncertain Event Sequence) Given a set E of event types. A complex probabilis-

tic sequence is a collection of event sets εi where 1≤ i≤ |S| and each εi is a set of probabilistic

events denoted as: εi = {(e1
i , p1

i , ti),(e
2
i , p2

i , ti), ...(e
k
i , pk

i , ti)} where k = |εi|.

For example, Figure 6.1 shows a complex probabilistic sequence of seven timestamps and

five event types. Each event is associated with its existential probability at each timestamp.

Here, ε2 = {(c,0.5,2),(d,0.5,2)} is the 2nd event set of probabilistic complex sequence S. Note

that, in the probabilistic setting, the definitions of notions of episodes, sub-episodes, occurrence

of episodes, distinct occurrences, and maximal sets of distinct occurrences remain the same by
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considering only events associated with non-zero existential probabilities.
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Figure 6.1: An example of an uncertain sequence

However, since the events in the sequence are uncertain, the occurrences of episodes are

uncertain too. Hence, each occurrence of an episode α is associated with a probability value as

follows:

Definition 16. (Probabilistic Occurrence) Let α =A1A2 . . .An be an episode and O= [t1t2 . . . tn]

be an occurrence of α in the sequence S. We denote by Pr(Ai, ti) the probability that event type

Ai occurred at timestamp ti in the sequence S, i.e, (Ai,Pr(Ai, ti), ti) is a probabilistic event which

occurs in S at timestamp ti. Then, the probability of the occurrence O is given by

p(O) = ∏
1≤i≤n

Pr(Ai, ti) (6.1)

In the previous section about to episode mining from certain data, the events occur abso-

lutely in the sequence. Consequently, in order to calculate the frequency at which an episode

occurs within this sequence, we simply counted its occurrences (in that case, distinct occur-

rences). In the case of uncertain data, the occurrences of an episode are probabilistic; therefore,

the support becomes dependent on the probability of its distinct occurrences. For this purpose,

we introduce the notion of expected support of an episode α in a complex uncertain sequence

S which is the sum of the probabilities of all distinct occurrences of α in S. Formally:

Definition 17. (Expected-Support of an episode) Let S be complex uncertain sequence, α be an

episode and doα = {O1,O2, . . . ,Ok} be the set of probabilistic distinct occurrences of α . The

expected-support of α in S is defined by:

expsup(α) = ∑
O∈doα

p(O) (6.2)

97



Given a support threshold minsup, an uncertain sequence S. The task is to mine all frequent

episodes such that expsup(α)≥ minsup.

The proposed UEMDO and UEMDO-P also capture episode rules in the probabilistic set-

ting. Of course, since the occurrences of episodes are associated with probability values, the

notion of support and confidence of an episode rule should be adapted to the probabilistic set-

ting.

Definition 18. (Episode Rule) let be α and β two episodes, an episode rule is an implication

of the form: α⇒ β such that α and β are two expected support-based frequent episodes under

distinct occurrence frequency definition.

Next, we introduce the notion of episode rule occurrence as follows:

Definition 19. (Episode Rule Occurrence) Given an episode rule α ⇒ β . A probabilistic oc-

currence of α ⇒ β is a vector h = [t1
α , . . . , t

k
α , t

1
β
, . . . , tm

β
] such that:

• [t1
α , . . . , t

k
α ] is an occurrence of α .

• [t1
β
, . . . , tm

β
] is an occurrence of β .

• t1
α < t1

β
and tk

α < tm
β

(i.e, the occurrence of α should strictly precede that of β ).

The set of all probabilistic occurrences of an episode rule α⇒ β is denoted by ER-do(α⇒ β )

Definition 20. (Expected-Support of Episode Rule) Given an episode rule α⇒ β . the expected-

support of α ⇒ β is denoted by expsup(α ⇒ β ) and it is defined as follows:

expsup(α ⇒ β ) = ∑
O∈ER−do(α⇒β )

p(O) (6.3)

Now, we can introduce how to measure the confidence of such an episode rule.

Definition 21. (Confidence of an episode rule) Given an episode rule α ⇒ β , The confidence

of α ⇒ β is formulated as follows:

con f (α ⇒ β ) =
expsup(α ⇒ β )

expsup(α)
(6.4)
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Then, the proposed problem is defined as follows: Consider (i) a complex sequence of

probabilistic events S, (ii) a user-defined minimum support threshold minsup and (iii) a user-

defined minimum confidence threshold mincon f .

• The first research problem of UEMDO is the discovery of expected support-based fre-

quent episodes from the sequence S i.e, episodes with an expected-support not less than

minsup (expsup(α)≥ minsup) based on the set of distinct occurrences.

• The second problem is to extract the set of valid expected support-based frequent episode

rules α → β , i.e., rules α ⇒ β with a confidence which at least equals the threshold

mincon f (con f (α → β )≥ mincon f ).

For instance, consider a support threshold minsup = 0.5 and the event sequence given in

Fig. 6.1. Given episode α = a, by definition 16, the set of distinct occurrences of α is doα =

{[1], [3], [4], [7]}. Hence, the expected-support of α is expsup(α) = p(O1)+ p(O2)+ p(O3)+

p(O4), which gives 1.9. All the frequent episodes and their expected-support values are listed

in Table 6.1.

Episode Occurrences Expected-support
a {[1], [3], [4], [7]} 1.9
b {[1], [4], [5]} 1.5
c {[2], [4], [6]} 2.1
d {[2], [3], [7]} 2
e {[3], [6]} 1.2

ab {[1 1], [3 4], [5 7]} 0.62
ac {[1 2], [3 4], [6 7]} 0.78
ad {[1 2], [3 3], [4 7]} 0.98
ae {[1 3], [4 6]} 0.79
bc {[1 2], [4 4], [5 6]} 1.08
bd {[1 2], [3 4], [5 7]} 0.97
ce {[2 3], [4 6]} 0.81
cd {[2 2], [3 4], [6 7]} 1.39

acd {[1 2 2], [3 3 4], [6 7 7]} 0.514
bcd {[1 2 2], [3 4 4], [5 6 7]} 0.692

Table 6.1: Frequent episodes for minsup = 0.5

Besides the frequent episodes set already demonstrated, the valid rules set can be computed.

For instance, consider the previous frequent episodes set and that the confidence threshold is

mincon f = 0.1. Table 6.2 shows the set of valid episode rules that can be obtained based on

definition 18 and definition 19, with their confidence values. Take the episode rule ER = edc→
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db as example. First of all, we must calculate the set of valid occurrences of that rule denoted

by ER−occ(edc→ db) according to definition 19. To calculate this set, we first start by the set

of distinct occurrences of α = edc since it is the left hand side of the rule (the antecedent). For

each Oi ∈ doα , we search for an occurrence O j ∈ β (β = db) such that they meet the condition

mentioned in definition 19. Hence, we obtain the set of all valid occurrences of ER where

ER−occ(α → β ) = {[3 2 2 4 3]}. Then, we calculate the confidence con f (α → β ) according

to the equation 6.4 which results in con f (α → β ) = 0.34.

Episode rule Episode rule occurrences Confidence
e→ e {[3 6]} 0.41

e→ ed {[3 6 7]} 0.41
e→ edc {[3 6 7 4]} 0.41
e→ d {[3 7]} 0.41
e→ db {[3 5 7]} 0.41
e→ c {[3 4]} 0.41
e→ b {[3 4]} 0.41
e→ a {[3 4], [6 7]} 1
ed→ e {[3 2 6]} 0.45

ed→ ed {[3 2 6 7]} 0.45
ed→ edc {[3 2 6 7 4]} 0.45
ed→ d {[3 2 7]} 0.45

ed→ db {[3 2 4 3]} 0.45
ed→ c {[3 2 4]} 0.45
ed→ b {[3 2 4]} 0.45
ed→ a {[3 2 4]} 0.45
edc→ e {[3 2 2 6]} 0.34

edc→ ed {[3 2 2 6 7]} 0.34
edc→ edc {[3 2 2 6 7 4]} 0.34
edc→ d {[3 2 2 7]} 0.34

edc→ db {[3 2 2 4 3]} 0.34
edc→ c {[3 2 2 4]} 0.34
edc→ b {[3 2 2 4]} 0.34
edc→ a {[3 2 2 4]} 0.34

Table 6.2: Valid episode rules for mincon f = 0.1

6.1.2 The proposed UEMDO algorithm for frequent episode discovery

In this section, we present the new approach that we propose for mining expected-support

frequent episodes from complex probabilistic sequences under distinct-occurrence frequency.

This process is divided into two main functions: probabilistic distinct occurrence recognition

and frequent episodes.
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Function Frequent episodes, given in Algorithm 10, computes the set of frequent episodes.

The function takes as input a complex sequence of probabilistic events S and a support threshold

minsup. Initially, the function extracts frequent episodes of size one. Here, the algorithm

initializes, for each single-event episode, the set of probabilistic occurrences doe, and then

scans the sequence S to calculate each occurrence time tk. Finally, the algorithm computes the

expected-support according to Equation 6.2 given in Definition 17 (see line 1-9).

The function then applies a depth-first strategy to mine larger episodes and calculate the

expected-support of each new episode using equation 6.2. If the expected-support exceeds the

support threshold, the algorithm adds it to set F (see line 10-25).

In order to avoid considering all the search space, frequent episode generation using expected-

support under distinct occurrence-based support utilizes the following anti-monotony property:

Proposition 21.1. "Let α and β two episodes such that α ⊑ β , if episode β is frequent then the

episode α is also frequent . Equivalently, if the episode α is infrequent then the episode β is

also infrequent."

Proof. Given that α ⊑ β , it can be inferred that every occurrence of β in S must contain an

occurrence of α . Thus, the maximum number of occurrences of episode β is equal to the num-

ber of occurrences of episode α . This can be formally expressed as expsup(α) ≥ expsup(β ).

If episode β is frequent, i.e., if expsup(β ) ≥ minsup, then since expsup(β ) ≤ expsup(α), it

follows that expsup(α) ≥ minsup. Hence, episode α is also frequent. As a result, the anti-

monotony property holds for distinct occurrences-based support.

The function that determines the maximal set of probabilistic distinct occurrences is illus-

trated in Algorithm 11. This function takes as inputs an n-node episode and a single event

episode, where the output is constituted of probabilistic occurrences, each of which is associ-

ated with a probability denoted by Oi.prob where Oi ∈ doα⊔β . For each occurrence Oi ∈ doα ,

the function constructs a new occurrence of the new episode α ⊔ β . Initially, the expected-

support of the new episode is equal to Oi.prob (Oi ∈ doα ). Then, the function determines the

occurrence of the single event episode O j and updates the probability of the new occurrence of

α ⊔β by O j.prob.
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Algorithm 10: Frequent episodes
Input: minsup - minimum support threshold.
Output: F - the set of all frequent parallel episodes

22 P= {}, F = {}, α = /0
44 for each individual event e ∈ E do
66 doe←{}
7 end
8 % scan the sequence S

1010 for k← 1 to n do
1212 % scan the event set found at time tk
1414 for j = 1 to m do
1616 e j = the event found at time tk
1818 doe j = doe j ∪{tk}
2020 e j.sup = e j.sup+Pk

j
21 end
22 end
2424 for each individual event e ∈ E do
2626 if e.sup≥ minsup then
2828 P = P∪{(e)}
29 end
30 end
3232 F = P
3434 for each individual episode α ∈ F do
3636 for each individual episode β ∈ P do
3838 doα⊔β = ProbabilisticDistinctOccurrenceRecognition(α,β )

4040 expsup = 0
4242 for Ok in doα⊔β do
4444 expsup = expsup+Ok.prob
45 end
4747 if expsup≥ minsup then
4949 γ = α ⊔β

5151 doγ = doα⊔β

5353 γ.sup = expsup
5555 F = F ∪{γ}
5757 α = γ

58 end
59 end
60 end
6262 return F
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Algorithm 11: Probabilistic Distinct Occurrence Recognition
Input: episode α - an episode to grow
episode β - a single event episode to grow α by.
Output: doα⊔β - set of distinct occurrences of new episode α ⊔β

22 j = 0, i = 0
44 for each Oi ∈ doα do
66 f ound← f alse
88 for each O j ∈ doβ and f ound == f alse do

1010 newocc.timestamps← Oi.timestamps∪O j.timestamps
1212 newocc.prob← Oi.prob
1414 newocc.prob← newocc.prob×O j.prob
1616 stop← false
1818 k← 1
2020 while not stop and k ≤ |doα⊔β | do
2222 if newocc.timestamps∩Ok.timestamps ̸= /0 then
2424 if exists(O j.timestamps[1],Ok.timestamps) == true then
2626 remove O j from doβ

27 else
2929 remove Oi from doα

30 end
3232 stop← true
33 end
3535 Ok← Ok+1
36 end
3838 if stop then
4040 f ound← true
41 end
4343 doα⊔β ← doα⊔β ∪newocc
44 end
45 end
4747 return doα⊔β

6.1.2.1 Time complexity

The time complexity of UEDMO is next briefly analyzed. The algorithm has two func-

tions. To compute the frequent episodes (see Algorithm 10), the algorithm scans the complex

sequence and initializes the set of frequent episodes F with frequent episodes of size 1 (see line

4-12). Then, using only episodes of size = 1 (single events), the algorithm builds larger frequent

episodes by repeatedly appending a single episode. Then, the algorithm finds their probabilistic

episodes (see line 14-25) by calling the function for probabilistic distinct occurrences recog-

nition function with two episodes. Given two episodes α (|α| > 1) and β (|β | = 1), for each

occurrence of α , the algorithm 11 tries to find an occurrence of β such that the two occurrences
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meet Definition16. Hence, the algorithm stops the search when it finds a valid occurrence of

β and repeats the process with other occurrences. Therefore, the complexity of the probabilis-

tic occurrences search is equal to O(|doα |.|doβ |.L) where L is the maximum size of doα⊔β

during the execution of the algorithm. Consequently, the complexity of algorithm 10 becomes

O(|E|) + O(n.m)+ O(|F |.|P|.M) where E is the set of all event types, M is time complexity of

Algorithm 11, n and m are the size of the sequence (i.e., the number of event sets in S) and the

number of events per timestamp(i.e., the size of such an event set) and P is the set of frequent

episodes of size 1 (single events).

6.1.2.2 An illustrative example

Consider the complex sequence depicted in Fig 6.1 as an illustration, and consider the value

of minsup to be 0.5. In the initial stage of Algorithm 10, each event type in E is treated as

a standalone event episode (i.e., an episode comprising a single event). Subsequently, the al-

gorithm evaluates, for every episode, the set of its occurrences in each event set by scanning

the complex event sequence and the expected-support as per definition 17 (refer to lines 2-9).

The algorithm subsequently eliminates infrequent single-event episodes based on the support

threshold. Table 6.3 lists the set P of frequent episodes obtained by executing lines 1-13.

Table 6.3: Frequent episodes of size 1 for minsup = 0.5

Episode Occurrences Expected-support
a {[1], [3], [4], [7]} 1.9
b {[1], [4], [5]} 1.5
c {[2], [4], [6]} 2.1
d {[2], [3], [7]} 2
e {[3], [6]} 1.2

The algorithm develops a replica of the frequent episodes that have already been obtained

and then initiates the search for larger episodes using a depth-first approach. Before deciding

whether a new episode α ⊔β is frequent, the algorithm determines the probabilistic distinct oc-

currences of the episode, denoted by doα⊔β . This process is illustrated in the example provided,

and the algorithm verifies whether the episode meets the required support. If it does, the episode

is incorporated into the set F of frequent episodes, and the search continues (lines 21-25).

To carry out the probabilistic distinct occurrences recognition step, Algorithm 10 calls Al-

gorithm 11.
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Consider two episodes, α = a and β = b, with doα = {[1], [3], [4], [7]} and doβ = {[1], [4], [5]}.

The first step of each iteration in Algorithm 11 involves creating a new occurrence by combin-

ing the timestamps of occurrences of α and β and calculating its probability as the product of

their individual probabilities. This is done in the loop from lines 2 to 7.

It is important to note that if the set of distinct occurrences of doα⊔β is empty, Algorithm 11

proceeds to store the occurrences without performing the loop from lines 10 to 16. As explained

previously, the first occurrences Oα = [1] and Oβ = [1] will result in the occurrence of α ⊔ β

such that newoccα ⊔ β .timestamps= [1 1] and newocc.prob= p(Oα) × p(Oβ ) = 0.6 × 0.4=

0.24. The algorithm continues for the next occurrences Oα = [3] and Oβ = [4] such that

newoccα ⊔ β .timestamps = [3]∪ [4] = [3 4] and newoccα ⊔ β .prob = p(Oα) × p(Oβ ) =

0.2 × 0.3 = 0.06 and stores each occurrence in doα ⊔ β . The occurrence of α ⊔ β does not,

however, meet the requirements of definition 16 (line 12) in an extreme situation.

As a result, the procedure chooses the instance to overstep in a different way. Thus, the

algorithm repeats with the same occurrence of α and chooses the next occurrence of β if the

timestamp of the single-event episode β already exists in any previous occurrence of α ⊔ β . In

the absence of this, the algorithm keeps track of the β occurrence and evaluates the combination

using the subsequent α occurrence since it intersects with every other instance of α ⊔ β .

Take two episodes, for example, α = d and β = e. doα⊔β = [2 3] if the algorithm has the

occurrences Oα = [2] and Oβ = [3]. Oβ = [6] and Oα = [3], however, cannot be combined

further since [2 3] already contains the timestamp t = 3. In order to provide a valid instance of

α ⊔ β such that doα ⊔ β = {[2 3], [6 7]}, the algorithm simply keeps the occurrence Oβ = [6]

and advances to the next occurrence, Oα = [7]. All frequent episodes are located when the

algorithm ends. The final set of frequent episodes for the sequence in Figure 6.1, produced by

Algorithm 10, is listed in Table 6.1.

6.1.3 Episode rules extraction

The next step in our method is to identify episode rules from an uncertain sequence. A

collection of valid episode rules R is the result of the function shown in Algorithm 12, which

accepts an uncertain sequence S, support threshold minsup, and confidence threshold minconf

as inputs.
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A broad search space is produced when every potential combination of α and β is consid-

ered for building an episode rule. In order to narrow down this search space, the following

pruning method was used: Only an episode’s super-episodes are potential candidates to be the

consequence of valid episode regulations for a particular single-event episode. In the rule gen-

eration process, this is obtained by employing the anti-monotony property. Alignment 21.2.

Proposition 21.2. "Let α and β be two frequent episodes under distinct occurrence-based

frequency. If the rule α ⇒ β is invalid, the episode rule α ⇒ β ′ is invalid too for all β ′ such

that β ⊑ β ′"

Proof. Start from a single event episode β such that β ⊑ β ′, and it is easy to see that the

proof of correctness of that proposition simply depends on the anti-monotony of the distinct

occurrence-based support. This makes it easy to demonstrate the confidence of rule α ⇒ β ′.

Assume β ⊑ β ′ and argue against the validity of rule α ⇒ β . expsup(β ) ≥ expsup(β ′) is

the anti-monotonicity property derived from Proposition 21.1. con f (α ⇒ β ) = |occER(α,β )|
expsup(α) ≥

con f (α ⇒ β ′) = |occER(α,β ′)|
expsup(α) , is the logical conclusion. Nevertheless, because con f (α ⇒) <

mincon f , rule α ⇒ β ′ is incorrect owing to the invalidity of α ⇒ β .

A function called Extract_Episode_Rules_With_Pruning, which is described in approach

12, implements the suggested approach for finding the episode rules. From the input complex

event sequence, this method incorporates a pruning technique based on Proposition 21.2 to

provide all the acceptable episode rules.

First, the method initializes the set R of valid rules to be determined, the set P of frequent

single episodes (lines 1-3), and the set of all frequent episodes with regard to the support thresh-

old minsup. The method then combines bigger and larger episodes with single event episodes

to generate the set of valid consequents with regard to the confidence threshold mincon f for

each frequent episode α as antecedent of the rule α⇒ β . The jth single event is used by the al-

gorithm as the first result of an episode rule. Here, if there isn’t another potential super-episode

of β as a consequence, the episode root at line 8 is utilized to retrace the steps. The function

E pisode_Rule_Support(α,β ), provided by Algorithm 13, is called by the algorithm to deter-

mine the episode rule support for each episode β . It also computes the rule’s confidence based

on definition 21: The method inserts the episode α ⇒ β into R and updates the root episode

for the later combination of the consequents (lines 11–19) if the confidence exceeds or is equal
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to the confidence threshold. If there are no more candidates for single event episodes, the al-

gorithm ends; if not, it uses the subsequent jth episode from P to update β and make it larger

(lines 20–23).

From the input complex event sequence, it is evident that Algorithm 12 creates all acceptable

episode rules because it systematically searches the rule space and only ignores rules that violate

Proposition 21.2. In other words, only unsound rules are disregarded.

6.1.3.1 Time complexity

The extraction of episode rules with pruning is the final step of the proposed approach,

consisting of UEMDO and UEMDO-P. The overall approach consists of first calling Algorithm

10 to find all the frequent episodes with time complexity denoted as N. Then, the algorithm

13 is called to generate all valid rules with respect to a confidence threshold mincon f . This

search continue as long as there exists a valid combination that respect definition 11 with time

complexity O(|doα |.|doβ |2). Otherwise, the algorithm stops when it finds episodes that do not

meet that definition. Based on this observation and the previous discussion of the complexity of

Algorithm 10 with respect to the complexity of Algorithm 13 expected-support, the overall time

complexity is: O(|F |.|P|2.|doα |.|doβ |2)+N) where F is the set of all frequent episodes under

distinct occurrences and N the time complexity of Algorithm 10 called in line 1 (see Algorithm

12).

6.1.3.2 An illustrative example

An example is provided to show how to use Algorithm 12 to find the set of all episode rules

in the sequence S showed in Fig. 6.1 for minsup = 0.5 and mincon f = 0.1. As previously

said, the algorithm first determines the collection of frequent episodes (see Table 6.1). Next,

it takes the sequence S and builds the set P of frequent episodes of size 1 (line 3), that is,

P = {a,b,c,d,e}. Subsequently, the system will look for episode rules. In the case of episode

α = a, the algorithm identifies all rules in which the antecedent is α = a (α ∈ F). It then treats

β = b (β ∈ P) as the first consequent and the root of potential consequent (line 4–10), where

doα = {[1], [3], [4], [7]}{[1], [4], [5]} is the value of doβ . Next, using the definitions of 19 and 20,

the algorithm determines the expected-support of the episode rule ER = α → β (line 13). The

expected-support is computed in this way: for each occurrence Oi ∈ doα , the occurrence O j ∈β
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is found by applying Algorithm 13, where doβ = {[1], [4], [5]} and doα = {[1], [3], [4], [7]} such

that end(Oi) < end(O j) and start(Oi) < start(O j). The first occurrence of the episode rule

ER = α → β is therefore [1 4]; it cannot be [1 1] because Oα = [1] and Oβ = [1] do not satisfy

prior requirements. Consequently, the algorithm advances to β (Oβ = [4]), which occurs twice

and results in the occurrence of an episode rule that is valid. The algorithm then advances to

the subsequent instances of Oβ = [5] and Oα = [3] of β and α , respectively, resulting in vector

[3 5] being a legitimate instance of the episode rule.

For each given rule α → β , the set of occurrences is ER− occ(α → β ) = {[1 4], [3 5]}.

Ultimately, for each Ok ∈ ER− occ(α → β ), the expected-support is computed as follows:

expsup(α → β ) = p(O1)+ p(O2) = 0.34. Subsequently, Algorithm 12 proceeds with its com-

putation by determining the confidence on line 14. The current consequent β becomes the root

of probable consequents if the confidence is higher than the mincon f threshold. In this case,

the procedure is repeated and the current rule is deemed legitimate. Next, it is connected with

the next single event episode γ = c from the set P. Observe that the root replaces the legitimate

consequent to join if the consequent is not common.

The rule a→ β is valid for mincon f = 0.1, and since β = b is the root for subsequent

consequents, it is linked with episode γ = c. Thus, a → bc is the next episode rule to be

examined. According to the assertion 21.2, β = b will be connected with δ = d if the previous

rule is invalid with regard to mincon f .

The full list of valid episode rules that the algorithm found is displayed in Table 6.2.

6.2 Experimental study

In order to show the efficiency of our approach, several experiments have been executed

on both synthetic and real datasets [114]. The results compares only the performances of our

approach since there exist no prior work of frequent episodes mining from uncertain complex

event sequences. The experiments were performed on an AMD Ryzen 5 PRO 4650G with

Radeon Graphics 3.70 GHz PC with 16 Gb of main memory and 256 Gb of SSD storage,

running the Microsoft Windows 10 operating system. All algorithms were coded in Java.
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Algorithm 12: Extracting Episode rules with pruning
Input: S: complex event sequence on E (event types set), minsup: support threshold,

mincon f : confidence threshold
Output: R: complete set of episode rules.

22 F ← FrequentEpisodes(minsup)
44 R← /0
66 P←{γ|γ ∈ F ∧∥γ∥= 1}
88 for each α in F do

1010 j← 0
1212 while j < |P| do
1414 β ← P[ j]
1616 root← β

1818 k← j
2020 stop← false
2222 while not stop do
2424 if β ∈ F then
2626 ruleExpectedSupport← EpisodeRuleExpectedSupport(α,β )

2828 con f ← ruleExpectedSupport
α.sup

3030 if con f ≥ mincon f then
3232 R← R∪{α → β}
3434 root← β

35 else
3737 β ← root
38 end
39 else
4141 β ← root
42 end
4444 if k > |P| then
4646 stop← true
47 else
4949 β ← β ⊔P[k]
5151 k← k+1
52 end
53 end
5555 j← j+1
56 end
57 end
5959 return R
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Algorithm 13: Episode Rule Expected-Support
Input: Two Episodes α and β

Output: ruleExpectedSupport: The expected support of the rule α ⇒ β .
22 {% Initialization %}
44 ruleSupport← 0
66 i← 1, j← 1
88 while i≤ |doα | do

1010 stop← false
1212 while j ≤ |doβ | and not stop do
1414 for each Ok in doβ s.t: j < k ≤ |doβ | do
1616 if start(Oi)< start(O j) and end(Oi)< end(O j) then
1818 i← i+1
2020 ruleExpectedSupport← ruleExpectedSupport +(Oi.prob×O j.prob)
2222 stop← true
23 end
24 end
2626 j← k
27 end
28 end
3030 return ruleExpectedSupport

6.2.1 Uncertain datasets used for the test

As mentioned before, we used many synthetic uncertain datasets. Three primary factors are

used to produce these datasets at random:

• The number of events and the duration of the complex sequence,

• the event types count and

• the event sets maximal size in the sequence.

The real datasets were acquired by extending pre-existing transaction databases into intricate

event sequences from the SPMF datasets collection [115]. To be more specific, every item is

seen as an event, every transaction (itemset) as an event set, and every transaction database as

a complicated series. Additionally, a number is assigned to each event set in order to represent

its timestamp.

The first dataset, named "OnlineRetail", has 2,603 different event kinds and 541,880 event

sets. The fourth dataset, titled "Mushrooms", has 8,416 event sets and 119 event types; the fifth

and final dataset, titled "FruitHut", has 181970 event sets and 9390 event types. The second
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dataset, "Retail"s, is a complex sequence with 88,162 event sets and 16,470 event types. A

probability ranging from 0 to 1 was assigned to every event. The datasets were chosen because

they offer a variety of features and are well-liked benchmark datasets for assessing pattern min-

ing methods. These datasets together with the synthetic datasets can provide a comprehensive

picture of the algorithms’ performance under various conditions.

6.2.2 Discussion of results

The two processes that are being evaluated in this part are the mining of frequent episodes

(part 6.2.2.1) and the generation of valid episode rules (Section 6.2.2.2).

When it comes to frequent episode mining, the performance analysis takes into account the

variance based on the support threshold of both synthetic and actual datasets of:

• The memory consumed throughout the procedure,

• the number of frequent episodes,

• the size of the biggest frequent episode, and

• the run-time (in seconds).

For episode rules mining, we compare, for both synthetic and real datasets, between the

baseline algorithm (UEMDO) and that using the pruning strategy (UEMDO-P) proposed in this

paper, in terms of runtime and memory cost.

6.2.2.1 Frequent episodes mining

Figures 6.2 and 6.3 show the results in terms of runtime and memory usage in megabits

of the frequent episode generation step described by Algorithm 10 of UEMDO for different

values of the support threshold minsup for both synthetic and real datasets. It is easy to see that

the runtime and memory usage are sensitive to different values of minsup where they decrease

when the support threshold increases for the three sequences. This phenomenon is caused by

the strong application of the anti-monotony of the distinct occurrence-based support property

because the support of super-episodes is at most the support of one of its sub-episodes; hence,

when minsup value increases, the algorithm consumes less time and memory to proceed with

larger episodes.
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Figure 6.2: Influence of minsup on execution time and memory usage for frequent episode
generation on synthetic data sets
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Figure 6.3: Influence of minsup on the execution time and memory usage for frequent episode
generation on real data sets
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Figure 6.4: Influence of minsup on the number of generated frequent episodes and the size of
the largest frequent episode on synthetic datasets

The figures depicted in 6.4 and 6.5 offer a comparative analysis of the number of frequent

episodes and the size of the largest frequent episode generated by the frequent episode gener-

ation step described in Algorithm 10, on both synthetic and real datasets, respectively. These

graphs exhibit an inverse proportion between the two values. This observation is consistent with

the findings related to runtime and memory usage, indicating that the anti-monotony property

performs exceptionally well in our algorithm. This phenomenon suggests that for lower support

values, UEMDO generates episodes with larger sizes, thereby incorporating more information

and relationships between events in the sequence, despite the data’s uncertain nature.

6.2.2.2 Generation of episode rules

The next step of our approach, after generating the frequent episodes set, is the generation

of episode rules relating pairs of frequent episodes with respect to the minimum confidence

threshold. Because of the absence of other techniques for discovering parallel episodes and/or

generating episode rules from complex uncertain sequences, we focus our evaluation on the

113



5000 7000 15000 25000

0

50

100

150

N
um

be
r

of
fr

eq
.E

pi
so

de
s OnlineRetail

250 750 1500 3000

0

2,000

4,000

6,000

Mushrooms

500 4000 9000

0

100

200

Retail

5000 7000 15000 25000

1

2

3

minsup

M
ax

.E
pi

so
de

si
ze

250 750 1500 3000

1

2

3

4

minsup
500 7000 10000

1

2

3

4

minsup

UEMDO

Figure 6.5: Influence of minsup on the number of generated frequent episodes and the size of
the largest frequent episode on real datasets

comparison between our baseline algorithm (UEMDO) and the modified version (UEMDO-

P) described in Algorithm 12 which performs episode rule search by incorporating a pruning

strategy based on Property 21.2. Note that these two versions generate the same set of episode

rules, and hence, the same number of episode rules.

Figures 6.6 and 6.7 show the variations in runtime and memory usage of the two variants,

UEMDO and UEMDO-P, of our algorithm according to different confidence threshold values

on both real and synthetic datasets. The obtained results confirm the effectiveness of our prun-

ing strategy in reducing runtime considerably. Our pruning strategy enables the algorithm to

discontinue the search for a particular antecedent when it locates the most significant invalid

episode rules associated with it. Subsequently, it backtracks with other consequents until it pro-

cesses all frequent episode sets. Contriraly, the baseline approach examines every element in

the sequence for each potential antecedent, leading to an extended search process that consumes

excessive time to complete.
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6.2.2.3 Discussion of some discovered patterns

Using the UEMDO-P algorithm, several interesting rules were discovered in real data. For

instance, some rules found in the FruitHut dataset are shown in Table 6.4. These rules represent

temporal relationships between items that ha ve been purchased by customers in transactions

from a fruit store.

Table 6.4: Example rules from FruitHut

Rule con f (α → β )

Tomatoes Truss→ Crimson Grapes 41.46%
Beans green→ Onion spring 50.14%

Mushroom cup→ Lettuce Iceberg, Beans green 21.23%
Onion Brown, Lettuce Iceberg→ Eggplant 50.66%
Lettuce Iceberg, Beans green→ Broccoli 50.52%

Potato Brushed, Lettuce Iceberg→ Potato sweet gold 50.89%

These episode rules are interesting as they show that some items are often bought in a

specific order, which can reveal customer preferences, habits or needs. For example, the rule

Tomatoes Truss→ Crimson Grapes indicates that customers who buy tomatoes truss are likely

to buy crimson grapes within a given time interval afterwards, with a confidence of 41.46% that

is relatively high. A reason could be that customers are preparing salads or sandwiches that

require both ingredients, or that they enjoy the taste of both products. Similarly, another rule,

Beans green → Onion spring, indicates that customers buying onion spring are likely to buy

beans green afterward. Generally, discovering such episode rules provide insights on customer

behaviro and with further analysis could lead to develop improved marketing strategies such as

using cross-selling, recommendation, or promotion.

6.3 Conclusion

In this chapter, we addressed the problem of mining frequent parallel episodes from complex

uncertain sequences of events using the expected-support approach under distinct occurrence-

based frequency. We have presented an efficient depth-first strategy called UEMDO. This al-

gorithm was then extended to also mine episode rules. The results show the effectiveness of

our novel algorithm in reducing runtime and memory cost. Our novel algorithm can be used,

for instance, in recommendation systems for predicting the future actions of some attacks in
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communication networks.
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Chapter 7

General Conclusion

Data-mining is a large field that aims to discover interesting insights from a large volume

of data. This thesis brings new contributions to an important sub-field of data mining that aims

at extracting important patterns from data. We have focused particularly on extracting frequent

episodes from large sequences of events.

Frequent episode mining framework was designed to analyze a large sequence of events.

It is an active area of research in recent decades, as evidenced by numerous published studies.

It helps to analyze temporal data, understand the behavior of systems, detect abnormalities,

and predict the future. In this thesis, we have presented an up-to-date state-of-the-art of this

framework and its variants, as well as novel approaches for certain and uncertain data that are

summarized in what follows:

• We proposed a novel approach for episode and episode rule mining from certain se-

quences of events. It includes two algorithms: The first one mines frequent serial episodes

under non-overlapping occurrence based frequency from an event sequence. The second

algorithm uses the first one to mine episode rules based on a depth-first search strategy.

The algorithm yielded good results compared to existing methods. The previous contri-

bution is applicable for prediction tasks in several domains, such as medicine and stock

market buy/sell actions, because of its rules form that can describe the prefix extensibility

of sub-sequences.

• Because multiple frequency definitions exist in episode mining, we have proposed novel
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algorithms for frequent episode and episode rule discovery under the distinct occurrence-

based frequency called EMDO and EMDO-P, respectively. This frequency definition may

detect episodes that may overlap without sharing common timestamps. This approach

captures episodes when the order of a given episode is not considered. The proposed

rules are very useful for analyzing the relationships between a wide range of pairs of

episodes and include the rules proposed in the first contribution. For example, it can be

applied to analyze the click logs of any website to obtain a set of rules that help users

recommend the next pages to visit in order to enhance the performance of such a website.

• To address data uncertainty, some proposed methods calculate the existential probability

of episodes in an event sequence. However, few studies deal with event probabilities. As

a novel contribution, we proposed an extension of EMDO and EMDO-P to existential

probability episodes in sequence with uncertain events. The new extension calculates the

expected support for an episode based on the probability of its distinct occurrences.

Research opportunities

There are several opportunities for research on episode mining. Some of the studies men-

tioned in this thesis include:

• Enhancing the performance of existing episode mining algorithms, Many algorithms are

still resource-intensive, especially when dealing with long or intricate event sequences.

Furthermore, most algorithms developed for episode mining have only been applied in

centralized systems. Therefore, creating algorithms that operate effectively on distributed

systems or developing parallel mining algorithms to improve speed and scalability is a

significant challenge in the field of episode mining.

• Extending the existing algorithms to consider more complex types of episodes and episode

rules, Many existing algorithms primarily focus on identifying a single type of episodes

and/or episode rules. However, numerous applications involve numerous simultaneous

events. Recent research has begun to address this issue, such as in medical applications

[59]. Nevertheless, this area of study requires further investigation. Furthermore, there

exist a few work that consider episodes with partial order, which really correspond to the

reality of many systems.
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• Finding more applications that depend on episode mining approach, Most current re-

search focuses on developing algorithms based on theoretical concepts rather than prac-

tical application. As a result, the process of analyzing data using temporal analysis with

episodes and episode rule discovery is an understudied topic. To address this gap, it is

recommended to use episode mining to analyze any recorded data, particularly in fields

such as cybersecurity, medicine, economics, and finance, where the order of elements is

critical.

• Another very important future research area is the find extensions of existing state-of-the-

art methods to incorporate techniques of deep learning which is is today a powerful and

trending field in Artificial Intelligence.
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