

People’s Democratic Republic of Algeria

Ministery of Higher Education and Scientific Research

Mohamed El Bachir El Ibrahimi University of Borj Bou Arréridj

Faculty of Mathematics and Informatics

Informatics Department

DISSERTATION

Presented in fulfillment of the requirements of obtaining the degree

Master in Computer Science

Specialty: Networks and Multimedia

THEME

Anomaly Detection for Network Security

Presented by:

BELKAALOUL Abdelkoudous

SANAA El Hassen Abdeldjalil

Publicly defended on: dd/mm/yyyy

In front of the jury composed of:

President: …………………………………..

Examiner: ………………………………

Supervisor :………………………………

2023/2024

ii

Dedication

To my mother and father, for their endless love, support, and encouragement.

To my brother Abdeladhim, for always believing in me and inspiring me to strive

for greatness.

To my sister Nedjma, for her unwavering support and understanding.

To my niece Shahad, the daughter of my brother.

To the soul of my dear friend Aymen.

To Mr. Benaouda Nadjib, for his invaluable guidance and mentorship.

To Bellucci, for being a source of inspiration and motivation throughout this

journey.

And to all my friends, your friendship, laughter, and support have been invaluable.

I dedicate the fruits of these years of study.

Abdelkoudous

iii

Dedication

First and foremost, I thank our God who has given us patience and strength

throughout our project.

I dedicate this work to:

My dear mother, whose presence by my side has always been my source of

strength to face various obstacles.

My father, who taught me, supported me, and guided me.

My brothers and sister, for their constant encouragement and support.

My friends and the teachers of the Computer Science department, for their

invaluable assistance and guidance.

Abdeldjalil

iv

Acknowledgment

At the end of this work, we thank Allah who has given us the strength and patience to

overcome all the difficulties during these long years of study.

We would like to express our warmest thanks to our teacher and supervisor, Mrs. Djamila

MOHDEB, for her support and valuable dedicated advice, her constant encouragement, and

her assistance throughout the entire period of work. During our studies, we have benefited

from your clear and precise teaching.

Our thanks to all the members of the jury, who honored us by carefully studying our work.

We also thank all the professors of the Computer Science department at Mohamed El Bachir

El Ibrahimi University of Bordj Bou Arréridj.

Finally, we thank our parents, all our relatives, and friends for their support and

encouragement.

v

Abstract

Network security is increasingly challenged by sophisticated cyber threats, necessitating advanced

methods for anomaly detection. In this project, we developed an anomaly detection application

specifically designed for cybersecurity datasets.

Our contribution includes a Python-based application that integrates both supervised and

unsupervised anomaly detection techniques, leveraging statistical, clustering, and machine

learning approaches. The application is capable of analyzing both pre-existing and synthetic

datasets, providing comprehensive anomaly detection and actionable insights for enhancing cyber

defenses.

We evaluated the application through a detailed case study in network security, applying it to real-

world scenarios. The results demonstrate the effectiveness of our application in identifying

anomalies and potential threats within network traffic. The flexibility in selecting various anomaly

detection methods ensures adaptability to diverse cybersecurity datasets, underscoring the practical

relevance and robustness of our approach.

Keywords: anomaly detection, network security, cybersecurity, supervised learning, unsupervised

learning, machine learning, statistical methods, clustering, Python, synthetic datasets, cyber

threats, data analysis.

vi

Résumé

La sécurité des réseaux est de plus en plus confrontée à des menaces cybernétiques sophistiquées,

nécessitant des méthodes avancées de détection d'anomalies. Dans ce projet, nous avons développé

une application de détection d'anomalies spécifiquement conçue pour les ensembles de données

de cybersécurité.

Notre contribution comprend une application basée sur Python qui intègre à la fois des techniques

de détection d'anomalies supervisées et non supervisées, en utilisant des approches statistiques, de

clustering et d'apprentissage automatique. L'application est capable d'analyser à la fois des

ensembles de données existants et synthétiques, fournissant une détection complète des anomalies

et des informations exploitables pour renforcer les défenses cybernétiques.

Nous avons évalué l'application à travers une étude de cas détaillée en sécurité réseau, en

l'appliquant à des scénarios réels. Les résultats démontrent l'efficacité de notre application pour

identifier les anomalies et les menaces potentielles dans le trafic réseau. La flexibilité dans le choix

des différentes méthodes de détection d'anomalies garantit une adaptabilité aux divers ensembles

de données de cybersécurité, soulignant la pertinence pratique et la robustesse de notre approche.

Mots-clés: détection d'anomalies, sécurité réseau, cybersécurité, apprentissage supervisé,

apprentissage non supervisé, apprentissage automatique, méthodes statistiques, clustering, Python,

ensembles de données synthétiques, menaces cybernétiques, analyse de données.

vii

 ملخص

 لاكتشاف متقدمة أساليب وجود يستدعي مما المعقدة، السيبرانية التهديدات من لتحديات متزايد بشكل الشبكات أمن يتعرض

 .المعلومات بأمن الخاصة البيانات لمجموعات خصيصًا مصمم الشوائب لكشف تطبيق بتطوير قمنا المشروع، هذا في .الشوائب

 الموجهة، وغير توجيهها تم التي الشوائب عن الكشف تقنيات من كل يدمج بايثون البرمجة لغة على مبنيًا تطبيقًا مساهمتنا تشمل

 والمزيفة، الحالية البيانات مجموعات من كل تحليل التطبيق يستطيع .الآلة وتعلم التجميع وتقنيات الإحصائية الأساليب باستخدام

 .السيبرانية الدفاعات لتعزيز للتنفيذ قابلة ورؤى للشوائب شاملًً كشفًا يوفر مما

 النتائج تظهر .واقعية سيناريوهات على تطبيقه تم حيث الشبكات، أمنً في مفصلة حالة دراسة خلل من التطبيق بتقييم قمنا

 أساليب مختلف اختيار مرونة يضمن .الشبكة على المرور حركة داخل المحتملة والتهديدات الشوائبً تحديد في تطبيقناً فعالية

 .لنهجنا التحليلية والقوة العملية الأهمية على يؤكد مما المتنوعة، السيبرانية البيانات مجموعات مع التكيف قابلية الشوائب كشف

ال الآلي، التعلم الإشرافي، غير التعلم الإشرافي، التعلم السيبراني، الأمن الشبكات، أمن الشوائب، كشف :مفتاحيةالكلمات

 .البيانات تحليل السيبرانية، التهديدات مزيفة، بيانات مجموعات بايثون، التجميع، الإحصائية، الأساليب

viii

Table of contents

Abreviations list ... xi

List of figures ... xii

List of tables.. xiv

List of algorithms ... xiv

General Introduction .. 1

1. Context of the Study .. 1

2. Problem Statement .. 1

3. Objective of the Project .. 2

4. Methodology .. 2

5. Organization of the Thesis .. 2

Chapter 01: Anomaly Detection .. 3

1.1. Introduction .. 3

1.2. Definition of Anomaly ... 3

1.3. Anomaly Detection... 3

1.5. Importance of Anomaly Detection Task ... 4

1.6. Aspects of the Anomaly Detection Problem .. 5

1.6.1. Nature of the Data .. 5

1.6.2. Types of Anomalies ... 5

1.6.4. Output of Anomaly Detection Techniques ... 6

1.7. Challenges of anomaly detection ... 7

1.9. Conclusion ... 8

Chapter 02: Anomaly Detection and Network Security .. 9

2.1. Introduction .. 9

2.6. Approaches of Anomaly Detection .. 14

2.6.1. Statistical Approaches .. 14

2.6.2. Clustering Approaches ... 16

2.3. Conclusion ... 18

ix

Chapter 03: Methodology and System Design ... 19

3.1. Introduction .. 19

3.2. Project Description .. 19

3.4. System Components and Functionality ... 21

3.4.1. Data Loading .. 21

3.4.2. Data Cleaning and Preprocessing: .. 21

3.4.3 Data Visualization and Exploration ... 22

3.4.4 Anomaly Detection ... 24

3.4.4.1. Machine Learning Approach for Anomaly Detection 24

3.4.4.2. Integrated Anomaly Detection Techniques ... 25

3.4.5 Performance Evaluation... 28

❖ Confusion matrix... 28

3.5. Conclusion ... 30

Chapter 04: Implementing and Testing .. 31

4.1. Introduction .. 31

4.2. Programming Environment and Tools .. 31

4.2.1. Hardware ... 31

4.2.2. Programming Language .. 31

4.2.3. Programming Environment ... 32

4.2.4. Employed Python Packages ... 32

4.3. Anomaly Detection Application for Network Security ... 33

4.3.1. Home Window ... 34

4.3.2. Data Visualization Window ... 34

4.3.3. Anomaly Detection Window.. 37

4.3.4. About us window: .. 39

4.4. Case Study: Anomaly Detection for Network Security.. 40

4.4.1. Dataset Description ... 40

4.4.2. Data Visualization .. 42

4.4.3. Data Cleaning and Preprocessing .. 43

x

4.4.4. Implementing Anomaly Detection Techniques ... 43

4.4.5. Results .. 45

4.4.5.1 The performance of anomaly detection models measured by the confusion

matrix: ... 45

4.4.6 Discussion .. 47

4.5 Conclusion .. 49

General Conclusion ... 50

References .. 51

xi

Abbreviations list

HBOS: Histogram-based Outlier Score

LOF: Local Outlier Factor

OMSVM: One Class Support Vector Machine

CBLOF: Cluster based Local Outlier Factor

KNN: K-Nearest Neighbour

IForest : isolation forest

Spyder : Scientific Python Développent Environnement.

xii

List of figures

Figure 1: Anomaly detection process .. 7

Figure 2: Box Plot .. 22

Figure 3: Histogram ... 23

Figure 4: Density plot .. 23

Figure 5: Confusion matrix .. 29

Figure 6: Home window .. 34

Figure 7: Visualization window ... 34

Figure 8: Dataset display window .. 35

Figure 9: General information window .. 35

Figure 10: Data Visualization plots window.. 36

Figure 11: Box plot window .. 36

Figure 12: Histogram window ... 36

Figure 13: Density plot window... 36

Figure 14: Anomaly detection window .. 37

Figure 15: Settings window ... 38

Figure 16: Results window .. 38

Figure 17: Detected anomalies window ...39

Figure 18: Confusion matrix window .. 39

Figure 19: About Us window... 39

xiii

Figure 20: Box plot of SourceIP and DestinationIP .. 42

Figure 21: Histograms and density plots of SourceIP and DestinationIP 43

Figure 22: Confusion matrix for Iforest following unsupervised approach 45

Figure 23: Confusion matrix for Iforest following supervised approach 45

xiv

List of tables

Table 1: Hardware Specifications .. 31

Table 2: The characteristics of BETH dataset .. 41

Table 3: The chosen parameters for anomal detection methods .. 44

Table 4: Performance of anomaly detection models .. 47

xv

List of algorithms

Algorithm 1: Supervised approach .. 24

Algorithm 2: Unsupervised approach .. 25

Algorithm 3: HBOS ... 26

Algorithm 4: KNN ... 26

Algorithm 5: KMeans...26

Algorithm 6: LOF...27

Algorithm 7: DBSCAN..27

Algorithm 8: OneClass SVM..28

Algorithm 9: IForest...28

1

General Introduction

In today's digital age, network security is a critical concern for organizations worldwide. As

cyber threats become more sophisticated and pervasive, traditional security measures are often

insufficient to detect and mitigate these evolving threats. Anomaly detection has emerged as a vital

technique in the realm of cybersecurity, capable of identifying unusual patterns or behaviors that

may indicate malicious activities. This thesis focuses on the development and application of an

anomaly detection system tailored specifically for network security.

1. Context of the Study

The rapid expansion of the internet and the increasing complexity of network infrastructures

have made them prime targets for cyber-attacks. Organizations are constantly at risk of data

breaches, malware infections, and other forms of cyber threats that can compromise sensitive

information and disrupt operations. Traditional security systems, which rely on predefined rules

and signatures, struggle to keep up with the dynamic nature of modern cyber threats. Anomaly

detection offers a promising solution by identifying deviations from normal behavior, potentially

uncovering previously unknown threats.

2. Problem Statement

Despite the advancements in anomaly detection techniques, there remains a significant

challenge in effectively applying these methods to network security. Existing solutions often lack

the flexibility to adapt to the diverse and dynamic nature of network traffic. Additionally, the

integration of supervised and unsupervised learning methods within a single framework is rarely

achieved, limiting the robustness and effectiveness of current systems. This thesis addresses these

gaps by developing a comprehensive anomaly detection application that leverages a wide range of

techniques and is specifically designed for cybersecurity datasets.

2

3. Objective of the Study

The primary objective of this project is to create an anomaly detection application that

combines both supervised and unsupervised techniques, drawing from statistical, clustering, and

machine learning approaches. Our application aims to analyze both pre-existing and synthetic

cybersecurity datasets, providing a robust and flexible tool for identifying anomalies and potential

threats within network traffic. By offering comprehensive anomaly detection and actionable

insights, the application aims to enhance cyber defenses and facilitate proactive measures against

cyber threats.

4. Methodology

The development of our anomaly detection application follows a systematic approach that

incorporates loading and preparing data tasks for both historical and synthetic datasets, integrating

supervised and unsupervised anomaly detection methods, including statistical analysis, clustering

algorithms, and machine learning models, into a unified application, implementing and testing,

and finally conducting a detailed case study in network security to demonstrate the practical

application of the system.

5. Organization of the Thesis

The remainder of this thesis is organized into four chapters:

⚫ Chapter 1 provides an overview of the fundamental concepts in anomaly detection.

⚫ Chapter 2 focus on applications of anomaly detection techniques in network security.

⚫ Chapter 3 details the design and architecture of our anomaly detection application.

⚫ Chapter 4 presents the implementation details of our application, including the user interface

and functionality. We also focus on the case study conducted to evaluate our application then

provide a comprehensive analysis of the results, compare the performance of different

anomaly detection methods, and discuss the practical implications of our findings.

3

Chapter 01: Anomaly Detection

1.1. Introduction

Anomaly detection is an essential task for identifying atypical behaviors in data. This chapter

provides an overview of the fundamental concepts in anomaly detection. It covers the definitions,

types, and importance of anomaly detection in various domains. The aim is to gain an

understanding of the basic process of identifying deviations from normal behavior, laying the

groundwork for more advanced discussions.

1.2. Definition of Anomaly

An anomaly, in the context of data analysis and machine learning, refers to a data point or a

subset of data points that significantly deviates from the expected pattern or behavior of the

majority of the data [1]. Anomalies are often indicative of rare or unusual events, and they can

signal important insights such as system malfunctions, fraud, or changes in underlying patterns.

1.3. Anomaly Detection

Anomaly detection, also known as outlier detection, is a technique used in data analysis and

machine learning to identify data points or patterns that deviate significantly from the norm or

expected behavior [2]. These deviations are often referred to as anomalies or outliers and could

indicate unusual events, errors, or potential fraud in the data.

Anomaly detection has applications across various industries, including finance (for fraud

detection), manufacturing (to identify defects or equipment malfunctions), cybersecurity (to detect

unusual network activity), and healthcare (to identify abnormal patient conditions). It plays a

crucial role in improving data quality, enhancing decision-making, and optimizing machine

learning performance.

4

1.4. Key Characteristics of Anomalies

⚫ Deviation: Anomalies deviate from the normal behavior or distribution of the data.

⚫ Rarity: They occur infrequently within the dataset.

⚫ Unexpectedness: Anomalies are not anticipated based on the existing data trends.

1.5. Importance of Anomaly Detection Task

Anomaly detection plays a crucial role in data analysis and machine learning for several

reasons:

⚫ Detecting anomalies helps identify unusual patterns, outliers, or unexpected events within a

dataset.

⚫ Detecting anomalies helps improve data quality by addressing errors, noise, or inconsistencies

in the data.

⚫ Anomalies can impact decision-making processes. By identifying them, organizations can

make informed decisions.

⚫ Anomaly detection is vital for identifying suspicious or malicious behavior. It helps detect

network intrusions, unauthorized access, or unusual system activity. Cybersecurity systems

rely on anomaly detection to protect against threats.

⚫ Anomalies in financial data can signal potential risks. Detecting them helps manage risk

exposure, whether in stock market trading, credit scoring, or insurance underwriting.

⚫ In Natural Language Processing (NLP), detecting unusual language patterns can help identify

spam emails, fake reviews, or abnormal chatbot interactions.

5

1.6. Aspects of the Anomaly Detection Problem

In this section, we will explore various aspects of the anomaly detection problem. Each aspect

plays a crucial role in designing and implementing effective anomaly detection systems.

1.6.1. Nature of the Data

The nature of the data is a crucial aspect in anomaly detection. Data can be structured, semi-

structured, or unstructured, and their quality and quantity can influence the accuracy of anomaly

detection models. Data characteristics such as dimensionality and distribution also play an

important role [4].

1.6.2. Types of Anomalies

There are several types of anomalies: point anomalies, contextual anomalies, and collective

anomalies. Each of these anomalies requires specific detection techniques tailored to their unique

characteristics [2].

❖ Point Anomalies

Point anomalies, refer to individual data points that deviate significantly from the majority of

data points in a dataset. These anomalies are isolated and can be identified by their deviation in

value from the expected range or pattern of the data [2].

For example, consider a dataset that records the daily temperature of a city over a year. The

temperature usually ranges between -10°C to 35°C. If one day the recorded temperature is 100°C,

this data point would be considered a point anomaly because it significantly deviates from the

typical temperature range.

❖ Contextual Anomalies

Contextual anomalies, also known as conditional anomalies, are data points that significantly

deviate from expected behavior only within a specific context or condition. Unlike point

6

anomalies, contextual anomalies may appear normal in a general context but become abnormal

when examined in relation to additional contextual attributes such as time or location [2].

For example, a temperature of 30°C might be normal in the summer but abnormal in the winter.

Detecting contextual anomalies is particularly useful in fields such as environmental

monitoring, fraud detection, and network management, where data behavior can vary depending

on the context [2].

❖ Collective Anomalies

Collective anomalies occur when a set of data points, considered together, significantly

deviates from the expected behavior, even if the individual data points might appear normal on

their own. These anomalies are identified by analyzing groups of data rather than isolated points,

allowing for the detection of abnormal behaviors at the dataset level.

For example, a series of small financial transactions made within a short period may seem

normal individually, but when taken together, they could indicate fraudulent behavior. Detecting

collective anomalies is particularly important in fields such as cybersecurity, fraud detection, and

industrial system monitoring, where abnormal patterns may only emerge when a group of data is

considered as a whole [2].

1.6.4. Output of Anomaly Detection Techniques

In anomaly detection, the manner in which anomalies are represented in the output is crucial.

Typically, anomalies are represented in one of two ways [8]:

❖ Scoring method : Scoring-based anomaly detection techniques allocate an anomaly score to

each data point. These scores are then ordered, enabling an analyst to identify anomalies either

by direct selection or by setting a threshold.

❖ Binary Classification: Binary classification techniques output results in a simple binary

format: either normal or anomalous.

7

1.6.5. Anomaly Detection Process

Figure 1 Anomaly detection process

1. Data Input: The raw data collected from various sources (e.g., sensor data, transaction logs,

user activity).

2. Preprocessing: The raw data is cleaned and transformed to remove noise and handle missing

values, making it suitable for analysis.

3. Feature Extraction: Relevant features are selected or extracted from the preprocessed data

to help the anomaly detection algorithms.

4. Anomaly Detection: Algorithms are applied to detect anomalies. This step can involve

scoring each data point or classifying them as normal or anomalous.

5. Output: The results of the anomaly detection are represented as either anomaly scores or

binary labels (normal or anomalous).

1.7. Challenges of Anomaly Detection

Anomaly detection encounters several challenges that can impede its effectiveness across

various applications. These challenges have been extensively discussed in academic literature and

include:

8

⚫ Scalability: Anomaly detection algorithms must be capable of handling large-scale

datasets efficiently to meet the demands of modern data-driven applications [9].

⚫ Imbalanced Data: Anomalies are often rare events compared to normal instances,

leading to imbalanced datasets. Dealing with imbalanced data requires specialized

techniques to prevent biased models and ensure accurate anomaly detection [10].

⚫ Complexity of Anomalies: Anomalies can exhibit intricate patterns and behaviors,

making them challenging to detect using conventional methods. Advanced anomaly

detection techniques capable of capturing complex anomalies have been proposed by

researchers such as Pang et al. (2016) in their work on detecting complex anomalies

in sensor data [11].

⚫ Interpretability: Understanding and interpreting detected anomalies are crucial for

taking appropriate actions. However, some anomaly detection algorithms may produce

complex or opaque results, making it challenging for users to interpret and trust the

outcomes [12].

1.9. Conclusion

By delving into fundamental anomaly detection principles, we've established a solid

foundation for understanding its applications across various domains. These concepts lay the

groundwork for more specialized discussions, preparing us to explore anomaly detection's role in

network security.

9

Chapter 02: Anomaly Detection and Network Security

2.1. Introduction

Focusing on the specific application of anomaly detection within network security, this chapter

explores the unique challenges and requirements of detecting anomalies in network traffic. It

discusses common threats, key detection techniques, and the significance of anomaly detection

methods in safeguarding network integrity and preventing cyber attacks.

2.2. Cybersecurity Fundamentals

2.2.1. Definition of Cybersecurity

Cybersecurity refers to any technology, measure, or practice aimed at preventing

cyberattacks or mitigating their impact. Its primary goal is to protect individuals’ and

organizations’ systems, applications, computing devices, sensitive data, and financial assets

against various threats [13].

Cybersecurity in the context of network security refers to the practice of protecting the

integrity, confidentiality, and availability of information as it is transmitted, processed, and stored

within and across computer networks. This involves implementing a range of technologies,

processes, and policies designed to defend against unauthorized access, misuse, disruption,

modification, or destruction of network resources, data, and services.

2.2.2. Cybersecurity Goals

⚫ Confidentiality: Confidentiality ensures that sensitive information is accessible only

to authorized individuals.

⚫ Integrity: Ensuring data integrity means that information remains accurate, unaltered,

and trustworthy unless modified by authorized individuals.

10

⚫ Availability: Cybersecurity aims to ensure that systems and services are available

when needed.

⚫ Traceability: Traceability involves tracking and auditing system activities to identify

any unauthorized or suspicious behavior. It helps in investigating incidents and

maintaining accountability.

2.2.3. Cyberattack

A cyberattack is a deliberate attempt by individuals or organizations to breach the information

system of another individual or organization. These attacks aim to steal, alter, or destroy data,

disrupt operations, or gain unauthorized access to computer systems and networks. Cyberattacks

can target a wide range of entities, including individuals, companies, governments, and critical

infrastructure.

2.2.4. Network Attacks

Network attacks are unauthorized actions on the digital assets within an organizational

network. Malicious parties execute these attacks to alter, destroy, or steal private data.

2.2.5. Types of Network Attacks

There are two main types of network attacks:

❖ Passive Network Attacks

In passive attacks, malicious actors gain unauthorized access to networks, monitor traffic, and

steal private data without altering it. Essentially, they eavesdrop on sensitive information.

Examples include eavesdropping on network communications or stealing data without leaving any

noticeable trace.

❖ Active Network Attacks

Active attacks involve modifying, encrypting, or damaging data within the network. Common

examples of active network attacks include:

11

⚫ DoS (Denial-of-Service) and DDoS (Distributed Denial-of-Service) Attacks:

Overwhelm system resources to the point where it cannot respond to legitimate service

requests.

⚫ Man-in-the-Middle (MITM) Attacks: Intercept data transmitted between two

parties, compromising privacy and integrity.

⚫ SQL Injection Attacks: Exploit unmoderated user data inputs to manipulate

databases.

⚫ Phishing Attacks: Deceptive emails or websites trick users into revealing sensitive

information.

⚫ Malware Attacks: Introduce malicious software (e.g., Trojan horses) into the

network.

⚫ URL Spoofing Attacks: Manipulate URLs to deceive users.

⚫ Web Application Vulnerability Attacks: Exploit weaknesses in web applications.

⚫ Drive-by Attacks: Automatically infect devices when users visit compromised

websites.

⚫ Eavesdropping Attacks: Intercept and monitor network traffic.

2.3. Role of Anomaly Detection in Network Security

Anomaly detection is a crucial component in network security for identifying unusual patterns or

behaviors that may indicate the presence of malicious activities, potential threats, or network

intrusions. Key roles include:

12

❖ Early Threat Detection

⚫ Proactive Defense: Anomaly detection systems can identify abnormal behaviors in

real-time, allowing for early detection of potential threats before they cause significant

damage.

⚫ Zero-Day Attack Mitigation: By detecting deviations from normal patterns, anomaly

detection can help identify zero-day attacks that exploit unknown vulnerabilities.

❖ Complementing Signature-Based Detection

⚫ Enhanced Security: While signature-based detection systems rely on known patterns

of malware or attack signatures, anomaly detection can identify novel or unknown

threats.

⚫ Comprehensive Coverage: Combining both anomaly and signature-based detection

provides a more robust security posture.

❖ Behavioral Analysis

⚫ User and Entity Behavior Analytics (UEBA): Anomaly detection systems can monitor

user behavior, identifying activities that deviate from established norms, such as

unusual login times or accessing atypical resources.

⚫ Network Traffic Analysis: Continuous monitoring of network traffic to identify

unusual patterns that may indicate data exfiltration, lateral movement, or

communication with malicious servers.

❖ Incident Response and Forensics

⚫ Rapid Response: Quick identification of anomalies enables faster incident response,

containment, and remediation of threats.

⚫ Investigative Insights: Anomaly detection provides valuable insights for forensic

analysis, helping to understand the nature and extent of an attack.

13

❖ Reducing False Positives

⚫ Adaptive Learning: Modern anomaly detection systems use machine learning

algorithms that adapt to evolving network conditions and user behaviors, reducing the

number of false positives and improving detection accuracy.

❖ Compliance and Auditing

⚫ Regulatory Requirements: Many regulations and standards (e.g., GDPR, HIPAA)

require continuous monitoring and anomaly detection to ensure the security and

privacy of sensitive data.

⚫ Audit Trails: Anomaly detection systems maintain logs of detected anomalies, which

are useful for compliance audits and reporting.

2.4. Types of Network Anomalies

⚫ Network Traffic Anomalies: Detect unusual spikes, drops, or patterns in network

traffic volume, protocols, or ports.

⚫ User Behavior Anomalies: Identify abnormal login times, access requests, or data

transfers.

⚫ System Resource Anomalies: Monitor CPU, memory, and disk usage for unexpected

spikes.

⚫ Application-Level Anomalies: Detect irregularities in application logs or

transactions.

⚫ Protocol Violations: Identify non-compliant or suspicious network protocol behavior.

2.5. Anomaly Detection for Network Security: Use Cases

⚫ Intrusion Detection: Anomaly detection helps identify unauthorized access attempts,

port scans, or brute-force attacks.

⚫ Insider Threat Detection: Detects abnormal behavior by employees or contractors.

14

⚫ Malware Detection: Identifies unusual patterns associated with malware activity.

⚫ Fraud Detection: In financial systems, it detects fraudulent transactions.

⚫ Industrial Control Systems (ICS) Security: Monitors deviations in critical

infrastructure networks.

2.6. Approaches of Anomaly Detection

Anomaly detection in network security employs a variety of techniques to identify unusual

patterns or behaviors that may indicate security threats. These techniques can be broadly

categorized into statistical methods, machine learning approaches, rule-based systems, and hybrid

models.

2.6.1. Statistical Approaches

Statistical techniques look for anomalies by applying the concepts of probability and statistical

reasoning (i.e. comparing data points to the overall distribution). They offer measurable metrics of

normalcy and deviation and are particularly effective at objectively identifying outliers in a variety

of data sets. Some of the key statistical techniques used are [8]:

⚫ Descriptive Statistics: In descriptive statistics, normal behavior is defined and outliers

are identified by using summary statistics such as mean, median, standard deviation,

and interquartile range.

⚫ Hypothesis Testing: Creating and evaluating hypotheses in order to ascertain whether

an observed data point substantially deviates from the expected distribution is known

as hypothesis testing. Methods include the Grubbs test and Z-scores.

⚫ Box Plots: A box plot (see Figure 1), sometimes called a box-and-whisker plot, is a

visual depiction of a dataset's distribution. Essential summary statistics including the

median, quartiles, and outliers are shown. The interquartile range (IQR) of the data is

represented by a box in the plot, and the median is shown by a line inside the box. The

15

range of the data outside the IQR is represented by whiskers that extend from the box;

optional points or dots are used to indicate outliers [18].

⚫ HBOS : HBOS (Histogram-based Outlier Score) is an anomaly detection method used

to find outliers in a dataset. Every feature in the dataset is given a histogram, and the

probability density of the data inside these histograms is used to determine the outlier

scores. When compared to normal data points, HBOS assumes that outliers have lower

probability densities [19].

⚫ Principal Component Analysis (PCA): By highlighting anomalies and identifying

important patterns based on departures from the principal components, PCA reduces

dimensionality to identify key patterns and highlight anomalies based on deviations

from the principal components.

⚫ Density Estimation: Determines areas of low probability, which point to anomalies,

by estimating the probability density function of the data. Among the methods is kernel

density estimation.

⚫ Time Series Analysis: Time series analysis examines patterns in temporal data and

looks for anomalies when these patterns deviate. approach variations from the

anticipated time-series behavior, such as the ARIMA model.

Figure 2: Box plot

16

2.6.2. Clustering Approaches

A clustering-based anomaly detection method makes use of the idea of assembling related data

points into clusters. Anomalies are found by comparing the data points to the normal patterns found

within their clusters after they have been grouped.

Clustering approach for anomaly detection encompasses several models. The most frequently

employed methods are:

⚫ K-Means: K-Means is a clustering algorithm used to partition a dataset into K clusters.

The algorithm iteratively assigns each data point to the nearest cluster centroid and

then recalculates the centroid of each cluster based on the data points assigned to it.

This process continues until the centroids no longer change significantly or until a

maximum number of iterations is reached. K-Means aims to minimize the sum of

squared distances between data points and their respective cluster centroids. Points far

from their assigned cluster centroid are considered anomalies.

⚫ DBSCAN: DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

identifies clusters based on dense regions of data points and labels points in sparse

regions as noise (outliers). Outliers are explicitly identified as points not belonging to

any dense cluster.

⚫ Local Outlier Factor (LOF): LOF measures the local deviation of a data point’s

density compared to its neighbors. It compares the Local Reachability Density (LRD)

of a point to that of its neighbors. A LOF score close to 1 indicates that the LRD around

the point is similar to its neighbors, suggesting it’s not an outlier.

2.6.3 Rule-Based Systems

Rule-based approaches for anomaly detection rely on predefined rules or heuristics derived

from expert knowledge or historical data to identify unusual or suspicious behavior. These systems

rely on Boolean logic, thresholds, and pattern matching to detect anomalies based on specified

criteria.

17

Examples

✓ Alert if more than five failed login attempts occur within 10 minutes. (Predefined

Rules)

✓ If a user accesses the system from multiple geographically distant locations within a

short period, mark it as suspicious. (Heuristics)

✓ Alert if an IP address attempts to access more than three distinct servers AND the

access occurs outside business hours. (Boolean Logic)

✓ Raise an alert if CPU usage exceeds 90% for more than 10 minutes. (Threshold)

✓ Identify traffic patterns resembling known DDoS attack signatures. (Pattern

Matching)

 While rule-based systems are simple, transparent, and computationally efficient, they require

regular updates to handle evolving threats and can suffer from high false positive and negative

rates. Despite these challenges, rule-based methods remain a fundamental tool in the anomaly

detection toolkit.

2.6.4. Other Techniques

Additional famous methods for detecting anomalies include Isolation Forests, Neural

Networks, Support Vector Machines (SVM).

❖ Isolation Forests

Isolation Forests, or IForests, utilize a group of binary trees known as isolation trees (iTrees)

to isolate instances within a dataset. This method recursively partitions the data through random

feature selection and random split values. IForests are particularly efficient because they focus on

isolating data points rather than relying on similarity or distance measures. The underlying

principle is that anomalies are few and different, making them easier to isolate. This method

encodes variable-length sequences into a single, fixed-size vector, facilitating anomaly detection

[21].

18

❖ Support Vector Machines (SVM)

Support Vector Machines (SVM) are a set of supervised learning methods used for

classification, regression, and outlier detection. For anomaly detection, SVM is typically used in

its one-class form, known as One-Class SVM (OCSVM) [25].

One-Class Support Vector Machine (One-Class SVM) operates by learning a decision

boundary that encapsulates the normal data points within a high-dimensional feature space. During

training, the One-Class SVM aims to separate the normal data from the origin with maximum

margin, assuming that the majority of the training data represents normal behavior. Points that lie

outside this learned boundary during inference are considered anomalies. This method is effective

for identifying outliers in scenarios where the training data primarily consists of normal instances.

❖ Autoencoders

Autoencoders are neural networks used for anomaly detection, consisting of an encoder and a

decoder. The encoder compresses input data into a lower-dimensional latent space, while the

decoder reconstructs the original data from this representation. During training, the autoencoder

learns to minimize the reconstruction error using normal data. The key assumption is that the model

will effectively reconstruct normal data but struggle with anomalies, resulting in higher

reconstruction errors. Anomalies are identified based on these elevated reconstruction errors,

distinguishing them from normal data points.

2.3. Conclusion

Through an exploration of network security challenges and anomaly detection techniques,

we've underscored the critical importance of robust detection methods in safeguarding networks.

This understanding sets the stage for further examination of practical implementations in our

developed system.s based on different approaches

19

Chapter 03: Methodology and System Design

3.1. Introduction

This chapter introduces our methodology for developing an anomaly detection application for

network security. It details the system's functionalities, including data manipulation, visualization,

and the integration of various detection techniques. Additionally, it outlines the performance

evaluation metrics implemented to assess the effectiveness of the system in identifying network

anomalies.

3.2. Project Description

In our project, we’ve developed an innovative anomaly detection application tailored

specifically for cybersecurity datasets. Our Python-based application incorporates both supervised

and unsupervised anomaly detection techniques, drawing from statistical, clustering, and machine

learning approaches. It is designed to analyze pre-existing security datasets as well as generate

synthetic datasets for experimentation and evaluation purposes.

The primary objectives of our application are as follows:

✓ Comprehensive Anomaly Detection: Our application thoroughly analyzes

cybersecurity datasets to identify deviations from normal patterns, regardless of

whether the data is historical or synthetic, employing a spectrum of anomaly

detection methods.

✓ Insightful Analysis for Proactive Defense: Providing security analysts with

actionable insights derived from anomaly detection algorithms, our application

facilitates proactive measures to strengthen cyberdefenses and mitigate potential

threats.

The core components of our system, encapsulated in Figure 3, outline the systematic approach

we employ to achieve these objectives. Notably, our application offers flexibility in selecting from

20

a diverse array of anomaly detection methods, ensuring adaptability to the nuances of

cybersecurity datasets, particularly those pertaining to network security.

Figure 3: Architecture of our anomaly detection application

21

3.4. System Components and Functionality

Our application is equipped with a range of features designed to enhance network security

through various anomaly detection techniques. This section outlines the key components and

functionalities that enable effective analysis, dataset generation, and anomaly detection within the

network security domain.

3.4.1. Data Loading

Cybersecurity datasets encompasses diverse types of data crucial for detecting and mitigating

security threats in digital environments. These datasets include network traffic data, system logs,

user behavior records, security alerts, malware samples, web server logs, DNS activities,

authentication details, and threat intelligence feeds [28].

Our application allows the use of existing datasets from network logs and also provides the

functionality to generate custom datasets. These custom datasets can be specifically tailored to

meet the needs of the network security domain.

3.4.2. Data Cleaning and Preprocessing

Data in databases can contain various types of errors such as typographical errors, missing

information, noisy data, or inconsistent data. The erroneous part of the processed data can be

replaced, modified, or deleted. The cleaning process identifies erroneous data and either

automatically corrects them using a computer program or presents them to a human for manual

modifications.

Figure 4: Data Processing Workflow

22

3.4.3 Data Visualization and Exploration

Data Visualization is defined as the visual and interactive exploration of data. For anomaly

detection, visualizations help to quickly and easily detect outlier points that deviate from normal

behavior even when dealing with large volumes of data.

Our application allows users to manipulate data using traditional methods such as adding,

deleting, updating, searching, and editing. Additionally, it provides charting capabilities to

visualize data and detect anomalies. The following visualization charts are present in the

application:

❖ Box Plot

A box plot (box and whiskers plot) is a simple chart composed of a rectangle with two lines

extending from it to represent certain elements of the data [18].

• The central value of the chart is the median

• The edges of the rectangle represent the quartiles

• The ends of the "whiskers" are calculated using 1.5 times the interquartile range (the

distance between the 1st and 3rd quartiles).

Therefore, the inside of the box contains 50% of the observations. Values outside the whiskers

are represented by points. If an observation is outside the whiskers, then it is considered an outlier

(anomaly) [18].

Figure 2: Box Plot

23

❖ Histogram

Histograms are a visual tool used to check for normality. They group data into bins and provide

a count of the number of observations in each bin. By examining the shape of the bins, one can

quickly determine if an attribute follows a Gaussian (normal), skewed, or even exponential

distribution. This can also help in detecting possible outliers or extreme values [29].

Figure 3: Histogram

❖ Density Plot

Density plots are used to observe the distribution of a variable within a dataset. They plot the

values of a selected column as evenly distributed distributions. Peaks in a density plot indicate

where values are concentrated within the range [30].

Figure 4: Density plot

24

3.4.4 Anomaly Detection

Our application offers a versatile platform for anomaly detection, accommodating both

supervised and unsupervised approaches. Leveraging supervised methods, it harnesses labeled

data to train models and detect anomalies with precision. Simultaneously, it empowers users with

unsupervised techniques, allowing for anomaly detection in unlabeled datasets, offering flexibility

and adaptability in cybersecurity analysis.

3.4.4.1. Machine Learning Approach for Anomaly Detection

❖ Supervised Approach

Supervised learning uses labeled data to train a model to predict outcomes based on input

features. The model learns patterns by minimizing the error between its predictions and the known

target values during training. The steps of this approach for our study are illustrated in the

following algorithm:

Algorithm 1: Supervised Approach

 Input: « Cybersecurity datasets »

 Output: Detected anomalies

 Begin

1 Load cybersecurity dataset.

2 Split the dataset onto training set

and test set.

3 Train the model on the training set.

4 Test the model to the test data.

5 Evaluate the model.

 End

❖ Unsupervised Approach

25

Unsupervised learning involves learning without a supervisor. It involves extracting classes or

groups of individuals with common characteristics. The steps of this approach for our study are

illustrated in the following algorithm:

Algorithm 2: Unsupervised Approach

 Input: Cybersecurity dataset
 Output : Detected Anomalies
 Begin

1 Import the cybersecurity dataset.

2 Apply an unsupervised anomaly detection model to

the dataset.

3 Evaluate the model.

 End

3.4.4.2. Integrated Anomaly Detection Techniques

Our application incorporates a diverse array of advanced anomaly detection techniques from

diverse anomaly detection approaches, offering users multiple options for analyzing cybersecurity

data. The integrated methods include:

✓ Histogram-based Outlier Score (HBOS)

✓ K-Nearest Neighbors (KNN)

✓ K-Means Clustering (Kmeans)

✓ Local Outlier Factor (LOF)

✓ Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

✓ One-Class Support Vector Machine (One Class SVM)

✓ Isolation Forest (IForest)

Each technique provides unique strengths and capabilities for identifying anomalies in

complex datasets and can be implemented in a supervised or unsupervised setting.

26

The pseudocode for statistical method HBOS is illustrated in Algorithm 3 [31].

Algorithm 3: HBOS(data)

 Input: data - dataset
 Output: scores - anomaly scores for each data point

 Initialize histograms for each feature

 For each feature in data:

 Create a histogram

 Calculate the density for each bin

 For each data point in data:

 Initialize score = 1

 For each feature value in the data point:

 Find the corresponding bin in the histogram

 Multiply score by the density of the bin

 Return scores

Pseudocodes for classification method KNN and clustering method KMeans are illustrated in

Algorithm 4 and Algorithm 5 respectively:

Algorithm 4: KNN(data, k)

Input: data - dataset, k - number of
neighbors

Output: scores - anomaly scores for

each data point

Initialize distance matrix

For each data point i in data:

 For each data point j in data:

Calculate distance between i and j

 Store distance in distance matrix

For each data point i in data:

Sort distances to all other points

Select k nearest distances

Calculate score as the average

distance to k nearest neighbors

 Return scores

Algorithm 5: KMeans(data, k)

Input: data - dataset, k - number of

clusters

Output: scores - anomaly scores for each
data point

Initialize k centroids randomly

Repeat until convergence:

Assign each data point to the nearest

centroid

Update centroids as the mean of

assigned points

For each data point in data:

Find the distance to the nearest

centroid

Set score as the distance

Return scores

27

Pseudocodes for clustering methods LOF and DBSCAN are illustrated in Algorithm 6 and

Algorithm 7 respectively:

Algorithm 6: LOF(data, k)

Input: data - dataset, k - number of

neighbors

Output: scores - anomaly scores for each
data point

Initialize distance matrix and

reachability distances

For each data point i in data:

For each data point j in data:

Calculate distance between i and j

Store distance in distance matrix

For each data point i in data:

Sort distances to all other points

Select k nearest distances

Calculate reachability distance for k

nearest neighbors

For each data point i in data:

Calculate local reachability density

Calculate LOF score as the average

ratio of local reachability densities

Return scores

Algorithm 7: DBSCAN(data, eps, minPts)

Input: data - dataset, eps - radius for
neighborhood, minPts - minimum number of

points to form a cluster

Output: labels - cluster labels for each
data point

Initialize cluster label = 0

Initialize labels for each point as

unvisited

For each data point i in data:

If i is not visited:

Mark i as visited

Retrieve neighbors within eps radius

If neighbors < minPts:

Label i as noise

Else:

Increment cluster label

Expand cluster from i with

neighbors

Return labels

Pseudocodes for One-Class SVM and IForests are illustrated in Algorithm 8 and Algorithm 9

respectively:

28

Algorithm 8: OneClassSVM(data, nu)

Input: data - dataset, nu -

parameter for outlier fraction

Output: labels - anomaly labels

for each data point

Train One-Class SVM model with

data and nu

For each data point in data:

Predict label using the trained

model

Return labels

Algorithm 9: IForest(data, nTrees, sampleSize)

Input: data - dataset, nTrees - number of trees,
sampleSize - subsample size for each tree

Output: scores - anomaly scores for each data
point

Initialize forest of isolation trees

For each tree in nTrees:

Sample data points without replacement

(sampleSize)

Build isolation tree with sampled data

For each data point in data:

Calculate average path length from all trees

Convert average path length to anomaly score

Return scores

3.4.5 Performance Evaluation

Our application includes a comprehensive suite of performance evaluation metrics to assess

the effectiveness of anomaly detection techniques. These metrics provide detailed insights into the

accuracy and reliability of the models. The implemented metrics include the confusion matrix,

accuracy, recall, precision, and F1 score, allowing for a thorough evaluation of anomaly detection

performance.

❖ Confusion matrix

A confusion matrix is a specific table layout that allows visualization of the performance of an

algorithm, typically a supervised learning algorithm. Each row of the matrix represents the

instances in a predicted class, while each column represents the instances in an actual class (or

vice versa) [34]. The confusion matrix is made of the following values:

✓ TP (True Positive): The number of correctly predicted positive instances. These are

the cases where the model correctly identifies an anomaly.

✓ TN (True Negative): The number of correctly predicted negative instances. These are

the cases where the model correctly identifies normal instances (non-anomalies).

29

✓ FP (False Positive): The number of incorrect positive predictions. These occur when

the model incorrectly identifies a normal instance as an anomaly (also known as a Type

I error).

✓ FN (False Negative): The number of incorrect negative predictions. These occur when

the model fails to identify an actual anomaly and incorrectly classifies it as normal

(also known as a Type II error).

Figure 5: Confusion matrix

These values form the basis for calculating various performance metrics, such as accuracy,

precision, recall, and F1 score. These metrics are defined as follows:

❖ Precision

Precision is defined as the ratio of true positive results to the total number of positive results

predicted by the model. In other words, precision measures the accuracy of the positive predictions

[35]. It is given by the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

High precision indicates that the model produces a large number of correct positive predictions

compared to the number of incorrect positive predictions.

30

❖ Recall

Recall is defined as the ratio of true positive results to the total number of actual positive

instances. In other words, recall measures the ability of a model to identify all relevant instances

within a dataset [35]. Mathematically, recall is given by the formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

High recall indicates that the model correctly identifies a large proportion of the actual positive

cases.

❖ F1 Score

The F1 Score is the harmonic mean of precision and recall. It provides a single measure that

balances both the precision and the recall of the model. The F1 score is particularly useful when

the distribution of classes is imbalanced [35]. Mathematically, it is given by the formula:

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The F1 score ranges from 0 to 1, with 1 indicating perfect precision and recall, and 0 indicating

the worst performance.

3.5. Conclusion

The detailed exploration of our anomaly detection application reveals its potential to enhance

network security through advanced detection techniques and performance evaluation metrics. This

practical demonstration exemplifies the real-world application of anomaly detection

methodologies, offering a valuable tool for cybersecurity professionals.

31

Chapter 04: Implementing and Testing

4.1. Introduction

In this chapter, we provide a detailed account of the implementation of our developed anomaly

detection application for network security. We explore the programming environments utilized,

showcase the user interfaces of the application, and provide a comprehensive demonstration of its

functionalities. Additionally, we present a case study in network security, applying our developed

application to real-world scenarios. Through this case study, we aim to evaluate and compare the

performance of the anomaly detection techniques implemented in the application.

4.2. Programming Environment and Tools

4.2.1. Hardware

The hardware environment in which our anomaly detection system was implemented is

characterized by:

Table 1: Hardware Specifications

Workstation Characteristics

PC Laptop

Operating System Windows 11

RAM 8.00 GO

Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz 2.50 GHz

System type 64-bit operating system, x64 processor

4.2.2. Programming Language

For the implementation of the anomaly detection application for network security, we have

chosen the Python language version 3.11.5.

32

Python is a general-purpose, high-level, interpreted programming language that is simple to

learn. It is used for web development, artificial intelligence, machine learning, operating systems,

mobile application development, video games, and much more. It has an ordered structure and

straightforward grammar. Because of this, it's a great option for a variety of projects, from

straightforward online apps to full operating systems [36].

4.2.3. Programming Environment

The code editor Spyder (Scientific Python Development Environment) was used to create this

project.

Spyder is a cross-platform, open-source Python development environment that works with

GNU/Linux, Mac OS, and Windows. It incorporates a number of libraries, including IPython,

Matplotlib, and NumPy. Though Spyder is focused on scientific computing, it may be used as an

environment for developing any kind of application [37].

4.2.4. Employed Python Packages

⚫ Pandas: a Python data manipulation library. Another wordplay on the phrase "Python Data

Analysis" appears in its name [38].

⚫ NumPy: A Python numerical computing toolkit that supports huge, multi-dimensional arrays

and matrices and offers a number of mathematical operations that may be performed on them

[39].

⚫ Matplotlib: a Python package for making animated, interactive, and static visualizations. It

has an interface similar to MATLAB and is frequently used to create charts and plots [40].

⚫ Sklearn: A robust Python machine learning framework that offers easy-to-use capabilities for

data mining and analysis. Numerous techniques for clustering, regression, classification,

dimensionality reduction, and other tasks are included [42].

33

⚫ PyOD: A comprehensive and scalable Python framework for identifying outliers in

multivariate data is the Python Outlier Detection (PyOD) toolbox. It has around forty

algorithms for detecting anomalies [44].

⚫ CustomTkinter: CustomTkinter is a personalized or enhanced version of the Tkinter library

in Python, offering additional functionalities or optimizations tailored to specific requirements

or preferences [45].

⚫ PandasTable: PandasTable is a Python library that offers a graphical interface for interacting

with Pandas DataFrames, facilitating data exploration and manipulation tasks within a visual

environment [46].

These packages together provide a robust foundation for implementing anomaly detection

algorithms and analyzing data in Python.

4.3. Anomaly Detection Application for Network Security

Our application is designed to facilitate the detection of anomalies within network security

datasets. It leverages advanced anomaly detection algorithms to identify irregular patterns that may

indicate errors, fraud, or other significant events. The user-friendly interface ensures a smooth

experience, allowing users to easily load data, configure settings, and visualize results.

In the following, we will illustrate the application with figures and explain in detail each of its

functionalities.

34

4.3.1. Home Window

Figure 6: Home window

The Home window defines a GUI using Tkinter for the anomaly detection application. It allows

users to load existing databases, generate new ones, visualize loaded databases, and perform

anomaly detection. Users can specify parameters for database generation and initiate actions like

loading databases, generating databases, visualizing them, and detecting anomalies and about us

button.

4.3.2. Data Visualization Window

Figure 7: Visualization window

This window serves as a comprehensive tool for exploring datasets and visually identifying

anomalies. It offers three main functionalities:

35

✓ DataFrame Display Button (Dispaly): This button allows users to view the dataset

in a tabular format, providing a detailed look at the individual data points and their

corresponding features. Users can scroll through the data to examine specific entries

and gain insights into the dataset's structure.

Figure 8: Dataset display window

✓ Dataset Information Button (General Information): Clicking on this button

provides users with general information about the dataset.

Figure 9: General information window

✓ Data Visualization Button (Visualization): This button opens up a suite of

visualization tools for exploring the data graphically. Users can choose from various

visualization types, including box plots, histograms, and density plots. Additionally,

36

they have the option to select a specific feature (column) from the dataset to

visualize. This feature is particularly useful for identifying anomalies visually.

Users can spot unusual patterns, outliers, or distributions that deviate from the norm,

indicating potential anomalies within the dataset.

Figure 10: Data Visualization plots window

Figure 11: Box plot window

Figure 12: Histogram window

Figure 13: Density plot window

37

4.3.3. Anomaly Detection Window

Figure 14: Anomaly detection window

This window serves as a central hub for configuring the approach and method for anomaly

detection. It comprises two selection groups along with a "Next" button for advancing to the

parameter configuration window. Here's a breakdown of its components:

✓ Approach Selection Group: This group allows users to choose the approach or

methodology for anomaly detection (supervised or unsupervised).

✓ Method Selection Group: Within the chosen approach, users can further refine their

selection by specifying the method or algorithm to be used for anomaly detection.

✓ Next Button: Clicking the "Next" button submits the selected approach and method

configurations. It serves as a trigger to proceed to the next stage of the anomaly

detection process, opening the parameter window (see Figure 18) specific to the

chosen method. This window allows users to fine-tune the parameters associated with

the selected algorithm, ensuring optimal performance for anomaly detection.

38

Figure 15: Settings window

After selecting the approach and method, and configuring the parameters, users proceed to the

results window (see Figure 19) upon clicking "Apply" This window provides a summary of the

anomaly detection outcomes and options for detailed analysis. It includes:

Figure 16: Results window

✓ Number of Detected Anomalies: Displays the total count of identified anomalies.

✓ Evaluation Report: Shows key metrics like F1 score and recall support for assessing

method performance.

The results window include also two other action buttons:

✓ Show Anomalies (Show DataFrame in Pandas Table): Opens a window displaying

the detected anomalies in a DataFrame format (see Figure 20).

✓ Show Confusion Matrix (Show Confusion Matrix): Opens a window showing the

confusion matrix for detailed performance analysis (see Figure 21).

39

Figure 17: Detected anomalies window Figure 18: Confusion matrix window

4.3.4. «About Us» Window

Figure 19: About Us window

About Us page. Here, we introduce team members who have developed the application.

40

4.4. Case Study: Anomaly Detection for Network Security

In this section, we present a case study using our anomaly detection application, focusing on

identifying anomalies within the BETH network security dataset. This case study specifically

targets malicious activities and potential threats within network traffic. This practical example

demonstrates the effectiveness and relevance of our application in a real-world network security

context.

4.4.1. Dataset Description

BETH is a public cybersecurity dataset for anomaly detection and out-of-distribution analysis.

Featuring real "anomalies" collected using a novel tracking system, the dataset comprises over

eight million data points tracking 23 hosts. Each host's activity includes benign behavior and, at

most, a single attack, allowing for cleaner behavioral analysis. In addition to being one of the most

modern and extensive cybersecurity datasets available, BETH facilitates the development of

anomaly detection algorithms on heterogeneously structured real-world data, with clear

downstream applications. This dataset contains several attributes [28] .

✓ Timestamp: The specific date and time when the data point was recorded, indicating

when the network activity occurred.

✓ SourceIP: The IP address of the source host that initiated the network communication

or DNS query.

✓ DestinationIP: The IP address of the destination host or server that received the

network communication or DNS query.

✓ DnsQuery: The domain name or address that was queried in the DNS request.

✓ DnsAnswer: The response provided by the DNS server to the query, which may

include the IP address or other resource records.

✓ DnsAnswerTTL: The Time-To-Live (TTL) value for the DNS answer, specifying

how long the response should be cached before it expires.

41

✓ DnsQueryNames: A list of domain names involved in the DNS query, often including

aliases or canonical names.

✓ DnsQueryClass: The class of the DNS query, typically specifying the protocol family

(e.g., IN for Internet).

✓ DnsQueryType: The type of DNS query, indicating the type of resource record being

requested (e.g., A for address, MX for mail exchange).

✓ NumberOfAnswers: The number of answers returned in the DNS response,

indicating how many resource records were included.

✓ DnsResponseCode: The code returned by the DNS server indicating the result of the

query (e.g., NOERROR for successful queries, NXDOMAIN for non-existent

domains).

✓ DnsOpCode: The operational code of the DNS query, indicating the type of query

(e.g., QUERY for standard queries, UPDATE for updates to DNS records).

✓ SensorId: An identifier for the sensor or device that collected the data point, useful

for tracing the source of the data.

✓ sus: A binary indicator of whether the data point is suspicious (1 for anomaly, 0 for

normal), based on heuristic rules or initial analysis.

✓ evil: A binary indicator of whether the data point is confirmed malicious (1 for

anomaly, 0 for normal), based on more stringent validation or external threat

intelligence.

The other characteristics of the dataset are presented in the table below :

Table 2: The characteristics of BETH dataset

Dataset BETH Cybersecurity Dataset

Number of rows 8004918

42

Number of columns 15

Type of data Float, int, String

DataFrame size 81.1GB

4.4.2. Data Visualization

❖ Box Plot

The box plot in our application serves to visually detect outliers. Data points outside the

minimum and maximum values are considered anomalies. For instance, Figure 22 displays box

plots for two of our dataset features: "SourceIP" and "DestinationIP". These plots clearly indicate

the presence of anomalies in both columns.

Figure 20: Box plot of SourceIP and DestinationIP

❖ Histogram and density plot

Histograms and density plots serve the same purpose. Figure 23 displays the histograms and

density plots for the same two columns in our database: "SourceIP" and "DestinationIP". The

abnormal data in these columns is highlighted by their separation from the normal data.

43

Figure 21: Histograms and density plots of SourceIP and DestinationIP

4.4.3. Data Cleaning and Preprocessing

For the anomaly detection task, the "BETH" database does not require many modifications.

The two preprocessing steps we applied are replacing «Null» values with numerical values, which

has no effect on anomaly detection, and converting non-numeric data into numeric data.

4.4.4. Implementing Anomaly Detection Techniques

The table below represents the parameters of the different methods we implemented for

anomaly detection:

44

Table 3: The chosen parameters for anomal detection methods

Algorithm Parameters Description Default Values

IFOREST Contamination The proportion of outliers in the

dataset.

In our study, we have set

the contamination to be

0.078

HBOS Random_state Used to set the seed value for

the random number generator

Random_state = ‘NONE’

DBSCAN Eps This parameter specifies the

maximum distance between

two samples for them to be

considered as part of the same

neighborhood

Eps = 0.5

min_samples This parameter determines the

minimum number of samples

required to form a dense region

min_samples = 5

K-MEANS n_clusters This parameter specifies the

number of clusters to form

n_clusters = 8

KNN

LOF

SVM

Contamination The proportion of outliers in the

dataset.

In our study, we have set

the contamination to be

0.078

LOF n_neighbors This parameter specifies the

number of neighbors to

consider for each sample when

calculating its local density

n_neighbors = 20

45

4.4.5. Results

❖ Displaying performance using the application : Example of the confusion matrix

of IFOREST model

Figure 22 Confusion matrix for IFOREST following unsupervised approach

Figure 23 Confusion matrix for IFOREST following supervised approach

Taking the confusion matrix of the IFOREST model following unsupervised approach as an

example. This metric clearly shows that:

• Total records: 269

• KNN model predictions:

o Normal Class: 250 detected

o Anomaly Class: 19 detected

46

• Correct predictions:

o True Positives (Normal Class): 237

o True Negatives (Anomaly Class): 8

• Classification errors:

o False Positives: 11 (Anomaly Class predicted as Normal Class)

o False Negatives: 13 (Normal Class predicted as Anomaly Class)

To further clarify, here are the terms used in the confusion matrix:

o True Positives (TP): The model correctly predicted the positive class.

o False Positives (FP): The model incorrectly predicted the positive class when it is

actually a negative class.

o True Negatives (TN): The model correctly predicted the negative class.

o False Negatives (FN): The model incorrectly predicted the negative class when it

is actually a positive class.

Taking the confusion matrix of the IFOREST model following supervised approach as an

example. This metric clearly shows that:

• Total records: 206

• KNN model predictions:

o Normal Class: 201 detected

o Anomaly Class: 15 detected

• Correct predictions:

o True Positives (Normal Class): 191

o True Negatives (Anomaly Class): 6

• Classification errors:

o False Positives: 9 (Anomaly Class predicted as Normal Class)

o False Negatives: 10 (Normal Class predicted as Anomaly Class)

47

❖ Summary of the results of all anomaly detection models

To specify which algorithm is the most performant for outlier detection, we employed the

following evaluation metrics: Precision, Recall, and F1 Score.

The table below summarizes all the results obtained using both supervised and unsupervised

learning approaches.

Table 4: Performance of anomaly detection models

Method
Supervised Unsupervised

Precision Recall F1-Score Precision Recall F1-Score

IFOREST 0.95 0.95 0.95 0.95 0.96 0.95

HBOS 0.10 0.38 0.16 0.95 0.96 0.95

KNN 0.40 0.38 0.39 0.95 0.96 0.95

K-MEANS 0.75 0.19 0.30 0.93 0.73 0.82

LOF 0.95 0.95 0.95 0.95 0.96 0.95

SVM 0.94 0.96 0.95 1.00 0.25 0.39

DBSCAN 0.91 0.79 0.84 0.95 0.96 0.95

4.4.6 Discussion

Isolation Forest achieves high precision, recall, and F1-Score in both supervised and

unsupervised settings, indicating its robustness and effectiveness in anomaly detection. It

consistently outperforms other models across all metrics, making it a promising choice for

anomaly detection tasks. This can be justified for several reasons. First, its intuitive concept

leverages the idea that anomalies are “few and different” from normal data points, allowing it to

isolate them quickly. Second, randomized partitioning of features and thresholds helps uncover

diverse outliers. Third, IForest is scalable, handling large datasets efficiently. Fourth, its robustness

48

ensures good performance across various contexts. Finally, its simplicity contributes to its

effectiveness, making it a reliable choice for anomaly detection tasks.

HBOS performs poorly in supervised settings but shows competitive performance in

unsupervised settings, particularly in terms of F1-Score. Its limited effectiveness in supervised

mode may be due to its reliance on histogram-based modeling, which might not capture the

complexities of labeled data well.

KNN exhibits moderate performance in unsupervised settings and low performance in

supervised settings, with precision, recall, and F1-Score values in the mid-range. It is notable for

its simplicity and ease of implementation, but may not excel in scenarios with highly complex or

non-linear data distributions.

K-MEANS demonstrates relatively weaker performance compared to other models,

particularly in terms of recall and F1-Score. As expected, K-MEANS, designed primarily for

clustering, struggles with anomaly detection tasks where anomalies may not form distinct clusters.

LOF shows consistently high performance across all metrics in both supervised and

unsupervised settings, indicating its effectiveness in identifying anomalies. It utilizes the local

density deviation of data points, making it robust and versatile for various datasets and anomaly

types.

SVM performs well in terms of precision, recall, and F1-Score in both settings, but exhibits a

higher error rate compared to IForest and LOF. SVM's effectiveness may vary depending on the

dataset and kernel selection, but it generally provides competitive performance for anomaly

detection tasks.

Lastly, DBSCAN achieves good performance in unsupervised settings but shows a slight

decrease in supervised mode, particularly in precision and F1-Score. DBSCAN's ability to identify

global outliers makes it effective, but its performance may vary depending on the dataset's

characteristics.

In general, Isolation Forest, Local Outlier Factor, and Support Vector Machine stand out as

effective options for both supervised and unsupervised anomaly detection tasks. They demonstrate

49

strong performance in various scenarios. On the other hand, K-means and Histogram-based Outlier

Score show relatively weaker performance in comparison. When selecting an algorithm, it’s

crucial to take into account the specific attributes of the dataset and the desired balance between

precision, recall, and computational efficiency.

4.5 Conclusion

In conclusion, the detailed implementation of our anomaly detection application highlights its

effectiveness in addressing network security anomaly detection problem. Through the presented

case study, we have demonstrated the application's capability to detect potential threats in real-

world scenarios. The comparison of performance metrics underscores the importance of selecting

appropriate anomaly detection techniques tailored to specific network security needs. Overall, our

application stands as a valuable tool for enhancing cybersecurity defenses and protecting against

evolving threats.

50

General Conclusion

In this thesis, we addressed the critical challenge of enhancing network security in the face of

increasingly sophisticated cyber threats. Recognizing the limitations of traditional security

measures, we focused on the development and application of an anomaly detection system tailored

specifically for network security.

The primary objective of our project was to develop a robust anomaly detection application

that combines supervised and unsupervised techniques, drawing from statistical, clustering, and

machine learning approaches. Through systematic methodology, we meticulously designed,

implemented, and tested our application, ensuring its effectiveness and versatility in analyzing

both historical and synthetic cybersecurity datasets.

The case study conducted in network security served as a crucial validation of our application's

capabilities. We demonstrated its effectiveness in identifying anomalies and potential threats

within network traffic, highlighting its practical relevance and significance in real-world scenarios.

Looking ahead, our findings underscore the importance of continued research and innovation

in anomaly detection for network security. As cyber threats continue to evolve, it is imperative to

develop adaptive and robust solutions that can effectively safeguard network infrastructures.

In conclusion, this thesis makes a significant contribution to the field of cybersecurity by

presenting a comprehensive anomaly detection system specifically tailored for network security.

The application provides actionable insights and proactive defense mechanisms, aiming to

strengthen cyber defenses and mitigate potential threats in an ever-changing digital landscape.

51

References

[1] Foorthuis, R. (2021). On the nature and types of anomalies: a review of deviations in

data. International journal of data science and analytics, 12(4), 297-331.

[2] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3), 1-58.

[3] Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty

detection. Signal processing, 99, 215-249.

[4] Aggarwal, C. C. (2016). Outlier analysis second edition.

[5] Blanchard, G., Lee, G., & Scott, C. (2010). Semi-supervised novelty detection. The

Journal of Machine Learning Research, 11, 2973-3009. Ahmed, M., Mahmood, A. N., & Hu,

J. (2016). A survey of network anomaly detection techniques. Journal of Network and

Computer Applications, 60, 19-31.

[6] Blanchard, G., Lee, G., & Scott, C. (2010). Semi-supervised novelty detection. The

Journal of Machine Learning Research, 11, 2973-3009.

[7] Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional

and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern

Recognition, 58, 121-134.

[8] Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial

intelligence review, 22, 85-126.

[9] Agrawal, D., Aggarwal, C. C., & Prasad, V. (2013). A framework for scalable and

efficient anomaly detection. Proceedings of the VLDB Endowment, 6(3), 197-208.

[10] Liu, X. Y., Wu, J., & Zhou, Z. H. (2008). Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 39(2), 539-550.

52

[11] Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016). Learning deep representation for

imbalanced classification. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 5375-5384).

[12] Liao, Y., Vemuri, V. R., & Chun, S. A. (2019). Interpretability in deep learning models:

A survey of methods, application, and opportunities. Artificial Intelligence Review, 52(1),

87-113.

[13] Cornish, Paul (ed.) (2021).The Oxford Handbook of Cyber Security, Oxford Handbooks

(2021; online edn, Oxford Academic, 8 Dec. 2021),

https://doi.org/10.1093/oxfordhb/9780198800682.001.0001, accessed 2 June 2024.

[13] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI magazine, 17(3), 37-37.

[14] Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical

Science, 17(3), 235-255.

[15] Khan, S. S. (2014). A review of anomaly detection techniques in network intrusion

detection system. International Journal of Computer Applications, 96(9), 13-18.

[16] Kejariwal, A., & Saltzman, J. (2015). Fast and memory efficient unsupervised anomaly

detection in streaming environmental data. Environmental Modelling & Software, 72, 1-10.

[17] Xiong, B., Tao, B., & Li, G. (2019, August). Research status and trend of fault diagnosis

based on deep belief network. In Journal of Physics: Conference Series (Vol. 1302, No. 2, p.

022082). IOP Publishing.

[18] Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160). Reading, MA:

Addison-wesley.

[19] Goldstein, M., & Dengel, A. (2012). Histogram-based outlier score (hbos): A fast

unsupervised anomaly detection algorithm. KI-2012: poster and demo track, 1, 59-63.

[20] Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May). LOF: identifying

53

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international

conference on Management of data (pp. 93-104).

[21] Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. In 2008 Eighth

IEEE International Conference on Data Mining (pp. 413-422). IEEE.

[22] Bierbrauer, D. A., Chang, A., Kritzer, W., & Bastian, N. D. (2021). Cybersecurity

anomaly detection in adversarial environments. arXiv preprint arXiv:2105.06742.

[23] Jadidi, Z., Pal, S., Nayak, N., Selvakkumar, A., Chang, C. C., Beheshti, M., & Jolfaei,

A. (2022, July). Security of machine learning-based anomaly detection in cyber physical

systems. In 2022 International Conference on Computer Communications and Networks

(ICCCN) (pp. 1-7). IEEE.

[24] Hdaib, M., Rajasegarar, S., & Pan, L. (2024). Quantum deep learning-based anomaly

detection for enhanced network security. Quantum Machine Intelligence, 6(1), 26.

[25] Ma, Q., Sun, C., & Cui, B. (2021). A novel model for anomaly detection in network

traffic based on support vector machine and clustering. Security and Communication

Networks, 2021, 1-11.

[26] Zhao, M., Chen, J., & Li, Y. (2018, April). A review of anomaly detection techniques

based on nearest neighbor. In 2018 International Conference on Computer Modeling,

Simulation and Algorithm (CMSA 2018) (pp. 290-292). Atlantis Press.

[27] Saeedi Emadi, H., & Mazinani, S. M. (2018). A novel anomaly detection algorithm

using DBSCAN and SVM in wireless sensor networks. Wireless Personal Communications,

98, 2025-2035.

[28] Highnam, K., Arulkumaran, K., Hanif, Z., & Jennings, N. R. (2021). BETH Dataset:

Real Cybersecurity Data for Unsupervised Anomaly Detection Research. In CEUR

Workshop Proc (Vol. 3095, pp. 1-12).

[29] Gebski, M., & Wong, R. K. (2007). An efficient histogram method for outlier detection.

54

In Advances in Databases: Concepts, Systems and Applications: 12th International

Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok,

Thailand, April 9-12, 2007. Proceedings 12 (pp. 176-187). Springer Berlin Heidelberg.

[30] Nachman, B., & Shih, D. (2020). Anomaly detection with density estimation. Physical

Review D, 101(7), 075042.

[31] Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In 2008 eighth

ieee international conference on data mining (pp. 413-422). IEEE.

[32] Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of

Science and Research (IJSR).[Internet], 9(1), 381-386.

[33] Xu, Z., Kakde, D., & Chaudhuri, A. (2019, December). Automatic hyperparameter

tuning method for local outlier factor, with applications to anomaly detection. In 2019 IEEE

International Conference on Big Data (Big Data) (pp. 4201-4207). IEEE.

[34] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8),

861-874.

[35] Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures

for classification tasks. Information processing & management, 45(4), 427-437.

[36] python documentation Our Documentation | Python.org visited at 26/04/2024

[37] Spyder documentation Home — Spyder IDE (spyder-ide.org) visited at 26/04/2024

[38] pandas documentation pandas documentation — pandas 2.2.2 documentation

(pydata.org) visited at 26/04/2024

[39] NumPy documentation NumPy – visited at 26/04/2024

[40] matplotlib documentation Matplotlib — Visualization with Python visited at

26/04/2024

https://www.python.org/doc/
https://www.spyder-ide.org/
https://numpy.org/
https://matplotlib.org/

55

[41] Seaborn documentation seaborn: statistical data visualization — seaborn 0.13.2

documentation (pydata.org) visited at 26/04/2024

[42] Sklearn documentation scikit-learn: machine learning in Python — scikit-learn 1.5.0rc1

documentation visited at 26/04/2024

[43] tkinter — Python interface to Tcl/Tk — Python 3.12.3 documentation visited at

26/04/2024

[44] PyOD documentation pyod 1.1.4 documentation visited at 26/04/2024

[45] customTikinter Official Documentation And Tutorial | CustomTkinter

(tomschimansky.com) visited at 26/04/2024

[46] pandastable documentation Introduction — pandastable documentation visited at

26/04/2024

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://docs.python.org/3/library/tkinter.html
https://pyod.readthedocs.io/en/latest/
https://customtkinter.tomschimansky.com/
https://customtkinter.tomschimansky.com/
https://pandastable.readthedocs.io/en/latest/description.html

