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Abstract  
 In image super-resolution applications, generative adversarial networks (GANs) are often 

employed to convert low-resolution images into high-resolution ones, thus improving image 

quality. These networks are made up of a discriminator network that assesses the validity of 

the generated samples and a generator network that generates new samples based on the data. 

Image quality has been significantly improved using GANs, especially in situations where 

data samples are scarce. In this thesis, we are implemented and tested a several models of 

image super resolution based on GANs such as: SRGAN, ESRGAN and Real ESRGAN. We 

compared the obtained results of the deep learning methods with traditional methods like 

Bicubic interpolation using the PSNR and the SSIM metrics.   

Keywords: Super-resolution, GAN, SRGAN, ESRGAN, Real-ESRGAN 

Résume   

Dans les applications d'images à super-résolution, les réseaux antagonistes génératif 

(GAN) sont souvent utilisés pour convertir des images basse résolution en images à haute 

résolution, améliorant ainsi la qualité de l'image. Ces réseaux sont constitués d'un réseau 

discriminateur qui évalue la validité des échantillons générés et d'un réseau générateur qui 

génère de nouveaux échantillons à partir des données. La qualité des images a été 

considérablement améliorée grâce aux GAN, en particulier dans les situations où les 

échantillons de données sont rares. Dans cette thèse, nous implémentons et testons plusieurs 

modèles de super-résolution d'images basés sur des GAN, tels que : SRGAN, ESRGAN et Real 

ESRGAN. Nous avons comparé les résultats obtenus par les méthodes d'apprentissage profond 

avec les méthodes traditionnelles telles que l'interpolation bicubique en utilisant les métriques 

PSNR et SSIM.  

Mots-clés : la super-résolution, GAN, ESRGAN, Real-ESRGAN. 

 ملخص 

في تطبيقات الصور فائقة الدقة غالبا ما تستخدم شبكات الخصومة التوليدية لتحويل الصور ذات الدقة المنخفضة الى 

تحسين جودة الصور. تتكون هذه الشبكات من شبكة تمييزية تقوم بتقييم صحة العينات التي  الصور ذات دقة عالية و بالتالي

تم انشاؤها و شبكة مولدات تقوم بانشاء عينات جديدة بناءا على البيانات. يتم تحسين جودة الصور بشكل ملحوظ باستخدام 

لعديد في هذه الأطروحة، ننفذ ونختبر ا يانات نادرة.شبكات الخصومة التوليدية خاصة في الحالات التي تكون فيها عينات الب

. قمنا Real-ESRGANو ESRGANو SRGANمثل:  GANمن نماذج التحليل الفائق للصور القائمة على شبكة 

 بمقارنة 

 مقاييس  مالنتائج التي حصلنا عليها من طرق التعلم العميق مع الطرق التقليدية مثل الاستيفاء التكعيبي ثنائي التكعيب باستخدا

 .SSIMو PSNR 

GAN, ESRGAN, Real-ESRGAN    دقة فائقةكلمات مفتاحية :     
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Deep learning has seen significant advancements in recent years, largely due to the availability 

of large datasets, powerful computational resources, and improved algorithms. It has achieved 

remarkable success in various applications, including image and speech recognition, natural 

language processing, autonomous vehicles, healthcare, and many others.  

In this thesis, we will focus on the generative adversarial network, where generative adversarial 

networks (GANs) have become a cornerstone in the field of image super-resolution (SR), offering 

a sophisticated approach to generate high-resolution images (HR) from lowresolution (LR) inputs. 

The fundamental principle behind GANs involves a generator network learning to produce realistic 

HR images while being adversarial trained against a discriminator network that aims to differentiate 

between real and generated images. Through the interplay between these networks, GANs can 

effectively capture intricate details and textures, enhancing the visual quality of images beyond 

what traditional interpolation methods can achieve. Despite challenges such as mode collapse and 

training instability, advancements in GAN architectures and training strategies continue to push the 

boundaries of SR image, enabling applications in diverse domains such as surveillance, medical 

imaging, and multimedia content creation.  

The manuscript is organized into a general introduction and three chapters, in addition to a 

general conclusion.  

In the first chapter: We presented the basic concepts related to deep learning and high-resolution 

images.  

In the second chapter: we present the most commonly used terms in the field of deep learning 

and ultra-resolution networks.  

    In Chapter Three: We explain our implementation of three super-resolution image networks for 

deep learning, namely: SRGAN, ESRGAN and Real-ESRGAN, and traditional SR algorithms: 

bicubic, bilinear, and nearest neighbor. We give global observations in the general conclusion. 
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I.1 Introduction  

Artificial intelligence (AI) represents a significant stride in comprehending human cognition 

and problem-solving through machine demonstrations. Within AI, various subdomains encapsulate 

its multifaceted applications (Machine learning and Deep Learning).  

These applications span diverse fields such as cyber security, healthcare, commerce, and 

scientific research.  

Neural networks (NN) and deep learning (DL), integral components of AI, stand out as pivotal 

solutions across domains like image and audio processing, as well as natural language 

understanding. These methodologies offer state-of-the-art solutions by leveraging intricate network 

architectures and sophisticated algorithms.  

The on-going research and development in the field ensure that deep learning will play a pivotal 

role in shaping the future of intelligent systems [1].  

I.2 Neural Networks  

Neural networks (NN) are a type of machine learning algorithm inspired by the structure and 

functioning of the human brain. They are composed of interconnected nodes, called neurons, 

organized in layers. Each neuron receives input, performs a mathematical operation on that input, 

and then passes the result to the next layer of neurons through connections called weights.  

Neural networks are capable of learning complex patterns and relationships in data through a 

process called training. During training, the network adjusts the weights of connections between 

neurons based on example data, typically using an optimization algorithm such as gradient descent. 

This process allows neural networks to generalize from the training data and make predictions or 

decisions on new, unseen data.  

Neural networks have shown remarkable performance in various tasks, including image and 

speech recognition, natural language processing, and predictive mode ling. They are a fundamental 

building block of artificial intelligence and have become increasingly prevalent in a wide range of 

applications across industries [2].  

I.2.1 Neuron  

Neurons, also known as nerve cells, serve as the fundamental components of the brain and 

nervous system. They play a pivotal role in receiving sensory input from the external environment, 
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transmitting motor commands to our muscles, and facilitating the transformation and relay of 

electrical signals at various stages in this intricate process. Importantly, the interactions among 

neurons not only govern basic physiological functions but also define our individual identities.   

It's worth noting that the approximately 100 billion neurons in our nervous system engage 

closely with other cell types, broadly categorized as glia. Surprisingly, the number of glial cells 

may even surpass that of neurons, although this remains an area of on-going investigation.  

The on-going generation of new neurons in the brain is referred to as neurogenesis, and 

remarkably, this phenomenon persists into adulthood [3].  

 I.2.2 Perceptron  

A formal neuron, or perceptron, is a fundamental component of an artificial neural network. 

It operates as a mathematical function, receiving one or multiple inputs, applying weights to 

them, and generating a single output. The output is calculated by summing the weighted inputs, 

and then it passes through an activation function. This activation function introduces 

nonlinearity to the output, enabling the neural network to learn more complex functions [4].  

Weight The main function of weight is to emphasize characteristics that have a more 

significant impact on learning. This is achieved by performing a scalar multiplication between 

the input value and the weight matrix [4].  

Bias The bias is responsible for adjusting the output of the activation function. It plays a role 

analogous to a constant term in a linear equation (akin to a negative threshold) [4].  

As shown in the following figure1.1 

 
 Fig 1.1. The perceptron  artificial.  

  

  

  

  
    

Bais 

Inputs 
Outpu t ∑ 

X1 

X 2 

X3 

Xn 

w 

w 

w 

w 



CHAPTER I  

  

  

19  

  

I.2.3 Multilayer Perceptron  

     This neural network has more than three layers and is particularly suitable for classifying 

non-linear data. Each node in these networks is connected to all the others. They find their use 

primarily in applications such as speech recognition and other areas of machine learning [5]. 

As shown in the following figure 1.2   

 
Fig.1.2: Multilayer Perceptron. 

   

I.3 Activation functions  

It is used to determine the output of neural network like yes or no. It maps the resulting values 

in between 0 to 1 or -1 to 1 etc. (depending upon the function) [6] [ 7] [8] [9].  

      The Activation Functions can be basically divided into 2 types:  

 Linear Activation Function.  

 Non-linear Activation Function.  

I.3.1 Linear activation function  

      As evident in figure 1.3.a from the linear nature of the function, its output is not constrained 

within any specific range.   

    It doesn’t help with the complexity or various parameters of usual data that is fed to the 

neural networks.   

I.3.2 Non-linear activation function  

The Nonlinear Activation Functions are widely favoured in neural networks. Their inherent 

nonlinearity ensures that the graph exhibits curves rather than straight lines, resulting in a more 

flexible and expressive mode.   It makes it easy for the model to generalize or adapt with variety 

of data and to differentiate between the output.  

          

In put layer  Hidden layers Out put layer  
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A. Sigmoid Function  

The sigmoid function is widely used in neural networks because it outputs values between 0 

and 1, making it suitable for predicting probabilities. It is differentiable, allowing the calculation 

of slopes at any point, but its derivative is not monotonic. However, its application in neural 

networks can lead to training issues.  

 

B. Tanh or hyperbolic tangent Activation Function                                                      

    The tanh function offers the advantage of mapping negative inputs strongly negative and zero 

inputs near zero on its graph. It is differentiable and monotonic, though its derivative lacks 

monotonicity. Primarily utilized for classification between two classes, both tanh and logistic 

sigmoid activation functions find applications in feed-forward neural networks.  

C. ReLU (Rectified Linear Unit) Activation Function  

The ReLU is the most used activation function in the world right now. Since, it is used in 

almost all the convolutional neural networks or deep learning.   

It seems that the activation functions you're using (ReLU) is experiencing an issue with 

negative values. This leads to the loss of important information regarding negative values and 

affects the model's ability to learn properly. To address this issue, you can use another activation 

function such as Leaky ReLU, Parametric ReLU, or ELU that allows some negative values to 

pass through without converting them all to zero. This can help in better data representation and 

improve the model's ability to learn from the data.  

 

Fig.1.3. Types of activation function: (a). Linear Activation Function. (b). Non-linear Activation 

Function. (c). Tanh function. (d). Logistic Sigmoid. (e). ReLU [6] [7] [8] [9].  

( a ) ( b ) ( c ) 

( d ) ( e ) 
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I.4 Loss Function  

The loss function is a key element in many deep learning algorithms and is important for 

both training and optimizing models [10].  

I.4.1  L1 Loss function  

It is used to minimize the error which is the sum of all the absolute differences in between 

the true value and the predicted value.  

L1LossFunction=  𝑌̂ 𝑖 |                                           (1.1)  

  

L1 loss is also known as the absolute error and the cost is the Mean of these Absolute Errors 

(MAE).  

I.4.2  L2 Loss Function  

It is also used to minimize the error which is the sum of all the squared differences in between 

the true value and the predicted value [10].  

L2LossFunction ²                                               (1.2)  

  

I.4.3 Mean Absolute Error (MAE)  

 From a mathematical perspective, MAE is calculated by summing the absolute differences 

between predicted values (𝑦̂ ) and actual values (y) [10], and then dividing by the total number 

of samples (n):  

MAE= 𝑛 1 ∑𝑛 𝑖 =1 |𝑌̂ 𝑖  − 𝑌̂ 𝑖 |                                                     (1.3)               

I.4.4 Mean Square Error (MSE)  

Mean Square Error (MSE) is a widely used statistical metric to evaluate the quality of 

predictions or estimations by measuring the average squared difference between predicted 

values and actual value [10].  
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MSE= 𝑛 1 ∑𝑛 𝑖 =1(𝑌̂ 𝑖  − 𝑌̂ 𝑖 )²                                                 

(1.4)  

I.5 Optimization   

Within the realm of deep learning, an optimizer holds pivotal significance as it meticulously 

adjusts the parameters of a neural network throughout its training phase. Its fundamental 

objective revolves around the reduction of the model's error or loss function, thereby amplifying 

its overall performance. Diverse optimization algorithms, commonly referred to as optimizers, 

deploy unique methodologies to steadily approach optimal parameter values, thus facilitating 

enhanced predictive capabilities in an efficient manner  [11].  

I.5.1 Momentum  

In the realm of neural network optimization, momentum serves as a technique utilized to 

accelerate the training process by incorporating past parameter updates. This methodology 

helps mitigate some of the shortcomings observed in traditional gradient descent approaches, 

such as slow convergence and oscillations around local minima. Essentially, employing 

momentum provides the model with added strength to overcome obstacles and improve its 

trajectory towards optimal solutions more rapidly and with greater stability [11].  

I.5.2 Root Mean Squared Propagation (RMSProp)   

RMSProp, short for Root Mean Square Propagation, emerges as an adaptive optimization 

algorithm tailored to tackle challenges inherent in training deep neural networks, a domain 

where stochastic gradient descent (SGD) may fall short. Introduced by Geoffrey Hinton during 

his coursera neural networks course, RMSProp hasn't been formally published but has garnered 

widespread adoption owing to its efficacy across diverse applications [11].  

I.5.3 Adaptive Moment Estimation (ADAM) optimizer  

In our architecture, we used Adam as an optimization algorithm. Adam is a widely used 

optimization algorithm that combines the advantages of both adaptive learning rate methods 

and momentum-based methods [11].  
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I.6 Deep Learning   

Deep learning is a subset of machine learning that use a learning algorithm on multiple levels 

of distributed representations to allow us extract the useful patterns from data automatically 

with less and less as possible of human intervention.  

Deep learning has emerged as a dominant paradigm in artificial intelligence due to its 

unparalleled ability to automatically learn hierarchical representations of data. Unlike 

traditional machine learning approaches that rely on manual feature engineering, deep learning 

algorithms can extract relevant features directly from raw data, enabling them to capture 

complex patterns and relationships. This flexibility, coupled with scalability and state-of-theart 

performance, has made deep learning indispensable across diverse domains such as computer 

vision, natural language processing, and speech recognition. By enabling end-to-end learning 

and adaptation to different datasets, deep learning offers a powerful and versatile approach to 

solving complex real-world problems efficiently and effectively [12].  

Connectionist architectures boast a rich history spanning over seven decades, yet their recent 

resurgence at the forefront of artificial intelligence owes much to the advent of innovative 

architectural designs and the harnessing of graphical processing units (GPUs). Deep learning 

isn't confined to a single methodology; rather, it embodies a diverse range of algorithms and 

network structures adaptable to a myriad of problems.  

Although deep learning isn't a novel concept, its current meteoric rise can be credited to the 

convergence of deeply layered neural networks and the exploitation of GPU acceleration. 

Moreover, the proliferation of vast datasets, often referred to as big data, has been instrumental 

in driving this growth. Deep learning heavily relies on training neural networks with extensive 

example data, thus rewarding them based on their performance. Consequently, the availability 

of more data equips us better to construct resilient deep learning architectures.  

The landscape of deep learning is characterized by a plethora of architectures and algorithms 

developed over the past two decades. Notably, long short-term memory (LSTM) networks and 

convolutional neural networks (CNNs) emerge as stalwarts among the earliest approaches in 

this repertoire, yet they continue to enjoy widespread adoption across diverse applications.  

This article classifies deep learning architectures into supervised and unsupervised learning and 

introduces several deep learning architectures [13].    

As shown in the following figure 
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Fig.1.4. Types of deep learning.  

  

 I.7 Convolutional Neural Network   

The Convolutional Neural Network (CNN) is a powerful deep learning architecture 

primarily employed for tasks related to image and video processing. It's characterized by its 

distinct composition of convolutional layers, pooling layers, and fully connected layers, as 

illustrated in Figure 1.5 These components work collaboratively to extract features from input 

data, enabling CNNs to achieve remarkable performance in tasks like object detection, image 

classification, and semantic segmentation [14].  

  

Fig1.5: Convolutional Neural Network [14].  
I.7.1 Convolution layer  

Convolutional layers play a crucial role as fundamental building blocks within CNNs. These 

layers are pivotal for feature extraction, employing a set of trainable filters known as 

convolutional filters or kernels. These filters are applied to input images using convolution 

operations, which differ from simple matrix multiplications. In convolution, each pixel value is 

multiplied by the corresponding weight in the filter, and the resulting products are summed to 

Deep Learning Architecture (NN) 

Supervised  L earning  Un s upervised  L earning  

Convolutional 
Neural Network  

Recurrent Neural 
Network  

Self Organizing 
Maps  

Autoencoders 

Rerstricted Boltzmann Machines 
Long Short - term Memory Gated Recurrent Unit  
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generate a feature map output matrix. This matrix, representing extracted features, undergoes 

further processing, typically passing through an activation function layer to introduce 

nonlinearity into the network [14]. As shown in the following figure .1.6  

  

 

   Fig1.6:  Convolution layer [14].  

I.7.2 Pooling layers:  

Pooling layers serve the purpose of dimensionality reduction within convolutional neural 

networks. As shown in the following figure 1.7 

 By diminishing the spatial dimensions of feature maps, they contribute to a more efficient 

processing of data, which is particularly advantageous in terms of computational  

  

Fig1.7: Pooling layers [15].  

resources. The two primary types of pooling, namely Max Pooling and Average Pooling, offer 

distinct methods of aggregating information while retaining the most salient features for   
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I.7.3 VGG 19   

VGG19 is a convolutional neural network introduced by Simonyan et al [16], is a 

convolutional neural network of 19 layers, 16 convolution layers, and 3 fully connected layers. 

VGG19 was trained using the ImageNet collection, which consists of a million images divided 

into 1000 categories. Using several 3x3 filters in every convolutional layer is a common method 

for classifying images.  

 The next three convolutional layers are utilized to classify the features that were extracted 

using the first sixteen convolutional layers. The five groups of feature extraction layers are 

followed by a max-pooling layer. This model creates the item's label in the photos after 

receiving a 224 by 224pixel image. While many machine learning techniques are employed for 

classification, the study extracts features using a pre-trained VGG19 model [15]. As shown in 

the following figure1.8 

 

   Fig1.8: VGG19 Architecture [16].  

I.8 Generative Models   

I.8.1 variational autoencoder  

  

Strong deep generative models called variational autoencoders (VAEs) are frequently used 

to represent high-dimensional complicated data using a low-dimensional latent space that is 

trained supervised. The input data vectors are handled separately in the original VAE model. 

Many extensions of the VAE to process sequential data have recently been presented in a 

number of papers. These extensions rely on recurrent neural networks or state-space models 

and model both the latent space and the temporal dependencies within a sequence of data 

vectors and corresponding latent vectors. We provide a review of the literature on these models 
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in this study. A broad subset of these temporal VAE extensions is referred to as dynamical 

variational autoencoders (DVAEs) [16] [17]. As shown in the following figure1.9 

  

 
Fig.1.9. variational autoencoder [16].  

  

  

I.8.2 Generative Adversarial Network  

A GAN, or Generative Adversarial Network, is a type of deep learning system where two 

neural networks are trained to generate new data from an existing dataset. They work in 

competition: one network generates new data samples while the other tries to distinguish 

between the generated and real data. This adversarial process leads to the generation of 

increasingly authentic data until it becomes difficult to differentiate between the generated and 

original data.  

Represent a cutting-edge advancement in deep learning. These networks are designed to 

generate data, such as images, with remarkable efficiency, often surpassing the capabilities of 

traditional detectors. Once trained, a GAN can produce synthetic data, like realistic human 

faces, with impressive fidelity.  

The significance of GANs in scientific research and fields like medical image analysis is 

growing rapidly due to their ability to create lifelike images. This is why we incorporated GAN  

technology into our study [18].  

A GAN consists of two models working in tandem to achieve its objectives.  
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The initial component, known as the generator, is tasked with generating new data that 

closely resembles the expected data. It operates much like a human art forger, crafting 

counterfeit works of art.  

On the other hand, the second model is referred to as the Discriminator. Its objective is to 

differentiate whether input data is authentic – belonging to the original dataset – or counterfeit 

– fabricated by the forger. In this context, the discriminator functions akin to an art expert, 

striving to discern truthful artworks from fraudulent ones. As shown in the following figure1.10 

 

The procedural steps of a GAN are as follows:  

1. The generator receives random numbers and produces an image.  

2. This newly generated image is presented to the discriminator, alongside a continuous stream of 

images drawn from the genuine dataset.  

3. The discriminator assesses both genuine and counterfeit images, delivering probabilities 

ranging from 0 to 1, where a value of 1 signifies an authenticity prediction and 0 denotes a 

fraudulent one.  

  

I.8.3 Diffusion models  

Diffusion models are mathematical frameworks used to describe the spread or dissemination 

of various phenomena, such as innovations, ideas, behaviors, diseases, or information, through 

a population, network, or spatial domain. These models aim to capture the underlying 

mechanisms governing the process of how these phenomena propagate over time, often 

characterized by an initial slow uptake, followed by rapid adoption, and eventually reaching  

Fig.1. 10 .   Architecture of GAN.    
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saturation [18]. As shown in the following figure1.11 

  

 
  

Fig.1.11. Diffusion models [20].  

  

I.9 Conclusion  

Deep learning represents a powerful paradigm in the field of artificial intelligence, inspired 

by the complex structure and functioning of the human brain. Through neural networks and 

architectures like GANs, deep learning models have demonstrated remarkable capabilities in 

tasks such as image recognition, natural language processing, and generative modeling. With 

ongoing advancements in algorithms, hardware, and data availability, deep learning continues 

to push the boundaries of what is possible in machine learning and AI, promising further 

breakthroughs and innovations in various domains and industries.  
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 II.1 Introduction  

In this chapter, we will talk about the generative adversarial network and its three applications 

(Super-Resolution Generative Adversarial Networks, Enhanced Super-Resolution Generative 

Adversarial Network and Real-ESRGAN).  

Where super-resolution techniques have become increasingly indispensable in various fields 

where high-quality image data is paramount. In medical imaging, for instance, SR enables the 

enhancement of diagnostic images, allowing healthcare professionals to discern finer details 

crucial for accurate diagnosis and treatment planning. Similarly, in surveillance systems, super 

resolution can sharpen images captured by security cameras, aiding in the identification of 

objects or individuals even in challenging conditions such as low light or long distances. 

Moreover, in satellite imagery, SR facilitates the extraction of precise geographical information 

and monitoring of environmental changes with enhanced clarity and detail. Digital photography 

also benefits significantly from SR, enabling photographers to produce sharper, more detailed 

images even in situations where the available hardware imposes limitations on resolution. 

Through sophisticated computational algorithms, SR techniques bridge the gap between low 

resolution input data and the high-quality visual output demanded by various applications, 

thereby unlocking a myriad of possibilities across industries.  

II.2 Super-resolution  

Super-resolution refers to a collection of imaging techniques designed to improve the 

resolution of low-resolution images or videos, resulting in higher-resolution outputs. Although 

initially mentioned in the mid-1980s, the term "super-resolution" gained traction around 1990 

and has since become increasingly valuable [18]. Despite the diverse range of approaches, they 

generally involve reconstructing missing pixels in low-resolution images using specific 

algorithms.  

The primary objective of super-resolution (SR) is to generate higher-resolution images from 

lower-resolution inputs. These higher-resolution images boast increased pixel density, thereby 

capturing finer details of the original scene. Computer vision applications, which seek improved 

performance in tasks like pattern recognition and image analysis, consistently demand high 

resolution. Additionally, high resolution is crucial in medical imaging for accurate diagnosis. 
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Many practical applications necessitate zooming into specific areas of interest within an image, 

making high resolution indispensable in fields such as surveillance, forensics, and satellite 

imaging [19].  

II.3 Convolutional algorithms for super-resolution  

Image interpolation, also known as image upscaling, serves as a prevalent technique in 

numerous image-related applications. This task frequently employs traditional interpolation 

methods such as nearest neighbor interpolation, linear interpolation, and cubic interpolation. 

Among these, bicubic interpolation stands out as a form of cubic interpolation that considers a 

4×4-pixel grid on both axes. This approach yields smoother outcomes with reduced artifacts 

compared to bilinear interpolation. Nevertheless, entails higher computational complexity, 

resulting in slower processing speeds [20].  

Various techniques have developed in the classical methods of SR to enhance the resolution 

of images without resorting to deep learning approaches. These methods typically involve image 

processing and mathematical algorithms to reconstruct HR details from LR images. Here are 

some of the classical methods commonly used in SR: 

II.3.1 Bilinear interpolation  

Bilinear interpolation is a simple and fast method that uses a weighted average of the four 

nearest pixel values to estimate the value of a new pixel. It is a linear interpolation in two 

dimensions and is commonly used for resizing images. The algorithm consists of three steps: 

first, it calculates the influence of the two nearest pixels in each direction; next, it calculates the 

influence of the four nearest pixels; and finally, it calculates the value of the new pixel as the 

weighted average of the influences of the four nearest pixels [23]. As shown in the following 

figure2.1 

 

Fig 2.1: Example of bilinear interpolation [23].  
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II.3.2 Bicubic interpolation  

Bicubic interpolation is a widely used method in image processing for estimating the value 

of a new pixel. It improves upon bilinear interpolation by considering a larger 4x4 

neighborhood of known pixels, totaling 16 pixels. This expanded neighborhood allows for a 

more accurate estimation of the new pixel value.  

In bicubic interpolation, each of the 16 neighboring pixels contributes to the calculation of 

the new pixel value. We give higher weights to pixels closest to the estimated pixel, and less 

influence to those further away. This weighted approach ensures that nearby pixels have a 

greater impact on the interpolated result, leading to smoother transitions and more accurate 

details in the output image.  

Due to its ability to consider a larger number of known pixel values during the estimation 

process, bicubic interpolation produces superior results compared to simpler interpolation 

methods like nearest neighbor or bilinear interpolation. It is widely regarded as one of the most 

effective interpolation techniques in image processing, frequently employed for tasks like image 

resizing, rotation, and enhancement [21]. As shown in the following figure2.2 

 

Fig.2.2. Example of bicubic interpolation [24].  
    

II.3.3 Nearest Neighbour    

   This is the simplest and requires the least processing time of all the interpolation algorithms. 

The nearest neighbor selects the value of the nearest pixel by rounding the coordinates of the 

desired interpolation point. Using this method, one finds the closest corresponding pixel in the 

source image for each pixel in the destination image. We create new pixels identical to those 

nearby. The pixels, or dots of color, are duplicated to create new pixels as the image grows. It 

creates pixilation or edges that break up curves into steps or jagged edges. This form of 
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interpolation suffers from normally unacceptable effects for both enlarging and reducing images 

[22]. As shown in the following figure2.3 

  

 Fig.2.3. Nearest Neighbour [22]. 

  

II.4 Deep learning for super-resolution  

II.4.1 Convolutional Neural Networks for super-resolution  

SRCNNs, which stand for SR convolutional neural networks, are a type of deep 

convolutional neural network that is capable of converting low-resolution images into high 

resolution images in an end-to-end manner. Training the network to immediately learn the 

mapping between HR and LR images is done in order to achieve rapid speed and strong 

restoration quality for real-world online application. This is done in order to get the desired 

results [23] .As shown in the following figure  2.4  

 

  Fig.2.4. Super-Resolution Convolutional Neural Networks [23].  

II.4.2 Super-Resolution Generative Adversarial Networks (SRGAN)  

      The essential concept of GANs is preserved by SRGANs, specifically the min-max function. 

This function compels the discriminator and generator to learn together by competing with one 

another [24].  

  



CHAPTER Ⅱ  

  

  

35  

  

  

A. Generator architecture  

A number of residual blocks, which were model ed after ResNet, are incorporated into the 

architecture of the generator. It is essential to have these blocks in order to provide efficient 

training and to enable the network to acquire higher depth, which will ultimately result in 

superior outcomes. The presence of skip connections inside the residual blocks contributes to 

an even greater improvement in the effectiveness of training.  

The residual blocks are composed of two convolutional layers, each of which utilizes 3×3 

kernels and generates 64 feature maps. Following the incorporation of each convolutional layer, 

batch normalization layers are added, and the parametric ReLU activation function is utilized.  

Additionally, the resolution of the input image is enhanced by making use of two sub-pixel 

convolution layers that have been trained. An improvement in the image's total resolution can 

be achieved through the use of this augmentation procedure.  

Within the framework of this architecture, the activation function is fulfilled by the 

Parametric ReLU. In contrast to Leaky ReLU, which uses a fixed parameter (alpha) for the 

rectifier, parametric ReLU learns the rectifier parameters in an adaptive manner. This feature of 

adaptive learning improves accuracy while requiring only a little amount of additional 

processing effort [27].  

An initial down-sampling of a high-resolution image (HR) is performed during the training 

process in order to create a low-resolution image (LR). The generator then makes an effort to 

create a super-resolution version of the LR image by up-sampling it. The discriminator then 

receives the image that was generated and uses it to differentiate between high-resolution and 

super-resolution images, which ultimately results in an adversarial loss. This loss is then 

backpropagated by the generator design, which enables the super-resolution process to be 

refined even more [27]. As shown in the following figure2.5 

 

  Fig.2.5. Generator architecture [27].  
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B. Discriminator Architecture  

It is the responsibility of the discriminator to discriminate between high-resolution (HR) 

images that are actually captured and those that are created using super-resolution (SR). Similar 

to the DC-GAN (Deep Convolutional Generative Adversarial Network) architecture, which is 

characterized by Leaky ReLU activation functions, this article makes use of a discriminator 

architecture.  

In the discriminator network, there are eight convolutional layers that utilize 3×3 filter 

kernels. The number of kernels increases by a factor of two, from 64 to 512 with each additional 

layer.  

Every time the number of feature maps is increased by a factor of two, the picture resolution 

is down sampled using wavelet convolutions. For the purpose of gradually collecting and 

consolidating visual features, this down-sampling procedure is quite beneficial. Next, the 512 

feature maps that were generated are subjected to two intensive layers of processing. With the 

purpose of introducing non-linearity and improving the network's ability to discriminate, leaky 

ReLU activation functions are implemented between these layers.  

Last but not least, in order to acquire a probability score for sample categorization, a sigmoid 

activation function is utilized at the output layer. That the input image is a genuine HR image 

rather than a produced SR image is represented by this probability score, which indicates the 

likelihood that the image is the former [27]. 

  

  
Fig.2.6. Discriminator Architecture [27]  
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II.4.3 Enhanced Super-Resolution Generative Adversarial Network  

A cutting-edge deep convolutional neural network architecture that was built specifically for 

the challenging task of picture super-resolution is referred to as ESRGAN, which is an 

abbreviation for Enhanced Super-Resolution Generative Adversarial Network. Xintao Wang and 

his colleagues in the field of adversarial networks proposed this design in their foundational 

publication titled "ESRGAN: Enhanced Super-Resolution Generative Adversarial 

Networks"[25]. This architecture represents a significant leap in the field. ESRGAN adds 

residual-in-residual blocks in order to further improve its performance. This is accomplished by 

building upon the foundation of SRResNet [26], which is a well-established super-resolution 

network.   

   Through the utilization of these specialized blocks, the network is able to record intricate 

features during the process of upscaling, which ultimately results in a significant improvement 

in the output quality. ESRGAN makes use of a wide variety of loss functions, such as context, 

perceptual, and adversarial losses, to guarantee that the images that are generated are spatially 

consistent, that significant perceptual elements are preserved, and that they closely match 

genuine high-resolution images. As a consequence of this, ESRGAN has shown that it is 

superior to other approaches, such as SRGAN, in terms of performance, notably in terms of 

sharpness and the preservation of details.  

ESRGAN has shown practical utility in real-world picture restoration tasks, such as the 

removal of JPEG compression artifacts, demonstrating its versatility and robustness in tackling 

a variety of image improvement issues. Its efficacy extends beyond academic benchmarks, as 

seen by the fact that it has found practical application in these tasks.  As shown in the following 

figure2.7 

  

 

Fig.2.7. ESRGAN Architecture [28]  

  



CHAPTER Ⅱ  

  

  

38  

  

  

II.4.4 Real-ESRGAN  

The components that make up a real-ESRGAN are a generator and a discriminator network, 

also known as a GAN [27]. A low-quality image is used as input by the generator network, 

which then produces a high-quality image. Meanwhile, the discriminator network makes an 

effort to distinguish between the fake images generated by the generator and the actual 

photographs.  

In its most basic form, the discriminator that is being utilized is a U-net [28] that integrates 

skip connections. Additionally, spectral normalization is utilized in order to improve stability 

while training. As an alternative to employing a global realness score, the U-net makes 

predictions on the authenticity of each individual pixel in the input image. Pixel-level 

discrimination is improved as a result of this, which in turn improves the suppression of artifacts 

and the improvement of local detail.   

  

II.5 Metric evaluation     

elucidate metrics and their importance in evaluating models and algorithms.  

II.5.1 Peak Signal-to-Noise Ratio (PSNR)  

    Peak Signal-to-The ratio, expressed in decibels, between the reference signal and the 

distortion signal in a picture is called the noise ratio [26]. The distorted image is more similar to 

the original the higher the PSNR. Stated differently, it can be expressed as the reciprocal of the 

MSE decibel scale.  

Thus, we may state that given a greater image quality, the PSNR of the image will approach 

infinity if the MSE approaches 0. Tests have revealed that this isn't always the case, despite the 

expectation that a higher PSNR number would translate into a higher quality image.  

   Let us assume that X = {xi|i = 1, 2…N} and Y = {yi|i = 1, 2 …N} are two infinite length, 

discrete signals (this discrete signal is considered as a visual signal), where N is the number of 

pixels in digital image and xi and yi are the values of ith pixel of the digital image X and digital 

image Y respectively. Mathematically, the PSNR for the full reference Image quality metrics is 

given by:   
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PSNR= 10 log10(255² 𝑀 𝑆 𝐸 )                                     (2.1)   

Where, MPP is Maximum Possible Pixel in an image, i.e. if the image of 8 bits, then the 

MPP= 255 pixels. MSE (X, Y) is the Mean Square error of the image X and Image Y.  

 II.5.2 Structural Similarity Index (SSIM)  

The average of the SSIM values across the image (also called mean SSIM or MSSIM) gives 

the final quality measure. The key idea behind the SSIM index is to acknowledge the fact that 

natural images are highly structured, and that the measure of structural correlation (between the 

reference and the distorted image) is very important in deciding the overall visual quality. and 

This statistic measures the structural similarity between the reference and distorted image. Given 

that it takes into account the brightness, contrast, and structural elements of the image, it is 

believed to be a more accurate indication of image quality than MSE [26].                                            

𝑆𝑆𝐼𝑀 =
(2µxµy +c1) (2δxy+c2)

(µ²x+µ²y +c1) (δ²x+δ²y+c2)
                (2.2) 

With :   

• 𝝁 𝒙  the pixel sample mean of 𝑥     

• 𝝁 𝒚  the pixel sample mean of 𝑦̂    

• 𝜹 ²𝒙   the variance of 𝑥     

• 𝜹 ²𝒚   the variance of 𝑦̂     

• 𝜹 𝒙 𝒚   the covariance of   𝑥  and 𝑦̂     

• 𝑪 𝟏  , 𝑪 2:  Constant Correlation coefficient   
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II.6 Conclusion  

     The sources suggest that the conclusion of Super-Resolution technology underscores the 

notable progress achieved in image enhancement via deep learning methods such as Generative 

Adversarial Networks (GANs). These technologies have significantly transformed the 

procedure of converting low-resolution images to high-resolution, resulting in visual outputs 

that are more distinct and intricate. Super-Resolution has demonstrated its indispensability 

across diverse domains, including scientific research, medical imaging, and satellite remote 

sensing, by providing images of exceptional quality that were hitherto unattainable through 

conventional means. Ongoing research is dedicated to enhancing the quality of reconstructed 

images and decreasing the reliance on high-resolution ground truth images for neural network 

training, which bodes well for the future of Super-Resolution.  
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III.1 Introduction  

In this chapter, we primarily focus on providing all of the simulation findings we were able 

to obtain for this study. A variety of super-resolution (SR) techniques, including bicubic, 

bilinear, and nearest neighbour conventional SR techniques, were employed in our study. 

SRGAN, ESRGAN, and Real-ESRGAN were also examined. In addition to evaluating the 

visual quality of the recovered images, the quantitative comparative study compares the 

outcomes using PSNR and SSIM, two commonly used measures. Note that these two metrics 

are computed using each gathered test image. The mean PSNR and SSIM values are computed 

at the end of each simulation experiment. To enable an unbiased comparison, we use the same 

datasets for each SR technique that is being considered.  

III.2 Used material  

      On a HP PC with an Intel® Core™ i5 processor running Windows 10 Professional, the code 

sources were generated and run in Python 3.9.13 using Spyder Navigator in the Anaconda 

environment. Python primary programming package was PyTorch, was made especially for 

deep learning applications. The main code sources were executed using MATLAB R2022a and 

Google Colab. The utilization of GPU online in Google Colab allows for the processing of large 

datasets.  

III.2.1 Used datasets   

      The developed SR algorithms are tested on the datasets used in the recent literature; namely: 

Set5 and Set14 as summarized in Table 3.1   

  
Table 3.1: datasets for testing and training  

Dataset  Quantity (number of 

images)  

Format  Used in   

Set5[29]  5  png  Testing   

Set14[30]  14  png  Testing   

Div2k [31]  800  png  Training   
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A. Dataset5: The five images in the Set5 dataset—"baby," "bird," "butterfly," "head," and 

"woman"—are frequently used to assess how well Image Super-Resolution models 

perform [29].  

B. Dataset14: The 14 images that make up the Set14 dataset are frequently used to assess 

how well Image Super-Resolution models function [30].  

C. Div2K: A well-known single-image super-resolution dataset called DIV2K has 1,000 

photos in total, divided into 800 training, 100 validation, and 100 testing images. The 

images depict a variety of situations. To promote research on image super-resolution 

with more realistic deterioration, it was gathered for the NTIRE2017 and NTIRE2018 

Super-Resolution Challenges. This collection includes many sorts of degradations in 

low resolution photos. When creating low resolution photos for various tasks, various 

degradations are taken into account in addition to the conventional bicubic down 

sampling. NTIRE 2017's Track 2 features low-resolution photos that haven't been 

downscaled by x4. NTIRE 2018's tracks 2 and 4 correspond to realistically harsh ×4 

moderate and realistically harsh ×4 wild circumstances, respectively. When realistically 

mild x4 settings are used, low-resolution photos suffer from motion blur, pixel shifting, 

and Poisson noise. Degradations in a true wild x4 scene are expanded to vary in intensity 

between images [31].  

III.2.2 Original Images  

      In our study, the original images are considered as High resolution (HR). In Figure 3.1, the 

relevant original photos are displayed. Numerous simulation studies have been carried out. 

However, we can only display a small portion of the results owing to space constraints.  

  

   
  

Set5 

 
  

Set14 

          

  
Fig.3.1. Original HR images of the used datasets  
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III.3 The classical methods of super resolution  

III.3.1 Results of classical methods   

    The obtained PSNR and SSIM are displayed in Table 3.2. The test photos are from data set5 and 

data set14.  

  
Tables 3.2: PSNR & SSIM of the classical method   

   The classical method  

  

Data  

  

Scale  

Bilinear  

Interpolation  

  

Nearest   

Neighbor  

  

Bicubic  

Interpolation  

  

PSNR  SSIM  PSNR  SSIM  PSNR  SSIM  

Set5  2  30.342  0.8028  29.214  0.6609  34.502  0.9191  

4  25.695  0.6088  24.066  0.6088  32.078  0.7952  

Set14  2  28.974  0.7533  27.736  0.6303  32.704  0.8682  

4  24.530  0.5878  22.462  0.5918  31.044  0.6047  

  

Through the results obtained after calculation in Table 3.2, which represent the PSNR and 

SSIM values from the classical methods through which dataset5 and dataset14 were tested for 

scales 2 and 4, we notice the presence of high values in dataset5 and low values in dataset14 

and from these results obtained, it is correct to say after comparison that Data Set5 contains 

complex images, which contain many details or complex structures that require high accuracy 

to distinguish between them.  

The results were as shown in Figure 3.2-3.3:  
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Fig . 3.2 .   dataset5 scale 2   of   the   classical method .   
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Fig . 3.3 .   PSNR   ( abo ve )   and SSIM   ( bott om )   for dataset5 scale 4   of  the   classical method .   
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III.3.2 Comparison of classical method  

Nearest neighbor, bilinear, and bicubic interpolation are three common methods used for 

resizing images. Nearest neighbor interpolation, the simplest among them, duplicates each pixel 

from the original image to fill in the new, larger image. While it's fast, it tends to produce 

lowerquality results, especially for significant upscaling. Bilinear interpolation, on the other 

hand, calculates the weighted average of the four nearest pixels surrounding each target point, 

resulting in smoother transitions between pixels and better overall quality compared to nearest 

neighbor interpolation. Bicubic interpolation takes this a step further by considering sixteen 

surrounding pixels and applying a more sophisticated weighted average calculation. This 

method yields even smoother results and is particularly effective for preserving fine details and 

sharp edges, albeit at the expense of increased computational complexity. Overall, while nearest 

neighbor is the fastest but least accurate, bicubic interpolation stands out for its ability to 

produce high-quality results, making it a preferred choice for applications where image quality 

is paramount.  

 
  Nearest  

GT Neighbor Bilinear Bicubic     

Fig.3.4. Results of the classical method.  
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III.4 Implementation of deep learning super resolution  

III.4.1 Super resolution of generative adversarial networks (SRGAN)  

III.4.1.1 Explanation of training conditions  

This explanation aims to clarify the set of conditions used in the training program for the neural 

network model, as shown in Table 3.3  

  
Table 3.3: parameters and hyper-parameters of training the SRGAN model.  

  

Number  
of   

epochs  

  

Batch 

size  

  

Adam  
optimization  

  

Learning 

rate  
  

  

Decay 

epoch  

  

Number 

of  CPU  

  

Hrwidth  
and 

Hrheight  

  

Sample 

interval  

b1  b2  

  

200  

  

4  

  

0.5  

  

0.999  

  

0.0001  

  

  

100  

  

3  

  

256  

  

100  

    

These conditions are used to control several different aspects of the training process. We select 

settings such as start of epoch 0 and total number of epochs 200 for training.  

The optimization parameters of the adam optimizer are also configured, such as learning rate 

0.0001, b1=0.5, and b2=0.999. Other settings include batch size 4, number of CPU threads to 

process data 3, time intervals for saving image samples and sample checkpoints. These 

parameters collectively control different aspects of the training process and can be modified to 

improve model performance.  

III.4.1.2 Training process  

Training a super-resolution generative adversarial network (SRGAN) is a complex process 

that involves several key steps. Initially, a dataset of HR images is collected and preprocessed, 

which typically involves resizing and normalization. The model architecture consists of a 

generator network, responsible for upscaling LR images, and a discriminator network, which 

distinguishes between real and generated high-resolution images. Loss functions play a crucial 

role in training, with adversarial loss driving the generator to produce realistic images and 

perceptual loss ensuring visual similarity to real images. Training involves simultaneous 

optimization of the generator and discriminator through adversarial learning, often using 

optimization techniques like mini-batch stochastic gradient descent (SGD). Evaluation metrics 
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such as PSNR and SSIM are used to assess the model's performance, along with qualitative 

assessment on a separate validation set. Fine-tuning and hyperparameter tuning are conducted 

to optimize the model further, followed by deployment for real-world SR tasks. Throughout the 

process, careful monitoring and adjustment are essential for successful training.  

III.4.1.3 Algorithm of SRGAN  

This algorithm trains a GAN for image super-resolution using adversarial and content losses.  

Additionally, it saves intermediate results and logs the training progress.  

 
  

Fig.3.5. Schemes of SRGAN training  

  

III.4.2 Results of SRGAN   

III.4.2.1 Learning evolution  

We notice in Figure 3.5 the learning stage for both the generator and the discriminator, where 

this figure contains four images, each image having a meaning. Image (a) represents for us the 

beginning of learning because a low-resolution image was entered. The result was unclear or 

distorted and had a blur that we can only see with the galactic eye. It is correct to say that He 

has not yet learned, and the second picture (b), we see that it has some blurring, but compared 

to the first picture, he is on the path to learning, and picture (c)confirms that he has begun to 

learn. As for the last picture, here we can be confident that learning has been completed, because 
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the picture that was produced is a high-resolution picture. The figure shows the validity of the 

statement and analysis.  

     

 

 a b c d 

  
     

Fig.3.6. evolution of SRGAN training, (a) after 1 epoch, (b) after 10 epochs, (c) after 100 epochs, (d) 200 epochs  

After the end of training, we notice the appearance of curves as shown in Figure 3.6:  

 
   (a) (b) 

  

Fig.3.7.  the loss of training for 200 epochs:(a) generative Loss, (b) discriminator Loss  

  

It is shown in curve A that as the number epoch increases, the value of the generating loss 

decreases by approaching approximately 0. This is evidence that the generator is trying to learn 

and practice so that it can deceive the discerner. This optimization is done to achieve the goal 

of fooling the discriminator. As for the discrimination loss, it tries to improve in order to detect 
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the generator, and the loss value fluctuates between increasing and decreasing until it reaches 

0.5, which is the lowest value that discrimination can reach. When he reaches this result, he is 

unable to distinguish between the correct image and the incorrect image, and it is correct to say 

that it is a game of deception between the criminal. And the criminal. policeman. One wants to 

hide the evidence and the other wants to reveal it. Both the born and the privileged want to 

develop by not giving in to revelation and deception.  

III.4.3 Results PSNR and SSIM of deep learning super resolution  

The PSNR and SSIM obtained are shown in Tables 3.4-3.5-3.6 For SRGAN, ESRGAN, and 

Real-ESRGAN and Bicubic, the test images are from Dataset 5 and Dataset 14.  

Tables 3.4: PSNR & SSIM of SRGAN and Bicubic Interpolation  

  

  Dataset  Scale  
SRGAN  

  

Bicubic  

Interpolation  

  

PSNR  SSIM  PSNR  SSIM  

  

Set5  
4  33.920  0.8942  32.078  0.7952  

  
Set14  4  30.554  0.8409  31.044  0.6047  

  

SRGAN tends to outperform bicubic interpolation in terms of both PSNR and SSIM. 

SRGAN generates more visually pleasing HR images by capturing finer details and textures, 

whereas bicubic interpolation often produces blurry results, especially when upscaling factors 

are high.   

   Table 3.5: PSNR & SSIM of ESRGAN and Bicubic Interpolation  

  

  Dataset  Scale  
ESRGAN  

  

Bicubic  

Interpolation  

  

PSNR  SSIM  PSNR  SSIM  

  

Set5  
4  31.879  0.8656  

32.078  0.7952  

  Set14  4  23.298  0.6438  
31.044  0.6047  

  



CHAPTER III  

  

  

52  

  

ESRGAN produces sharper and more realistic HR images compared to the blurry results often 

obtained with bicubic interpolation.   

  

Table 3.6: PSNR & SSIM of Real-ESRGAN and Bicubic Interpolation  

Dataset  Scale  
Real-ESRGAN   

  

Bicubic  

Interpolation  

  

PSNR  SSIM  PSNR  SSIM  

Set5  
2  28.201  0.8973  34.502  0.9191  

4  23.730  0.7756  32.078  0.7952  

Set14  
2  26.460  0.8947  32.704  0.8682  

4  24.087  0.7785  31.044  0.6047  

  

Real ESRGAN typically demonstrates superior performance. Real ESRGAN generates 

high-resolution images with finer details and textures, resulting in higher PSNR and SSIM 

scores compared to bicubic interpolation.  

We tested SRGAN and ESRGAN, Real-ESGAN. The sample data used was Dataset 5 and 

Dataset 14, and the results were as shown in Figure 3.7:  
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 GT SRGAN ESRGAN Real-ESRGAN 

 

  PSNRSSIM 32,7800,8960 32,6590,8010 25,38040,7257 

 

  PSNR 34,909 30,999 23,2678 

 SSIM 0,8247 0,8900 0,8283 

 
 PSNR 32,800 32,700 26,4443 

 SSIM 0,8753 0,8810 0,6558 

    

 

 PSNR 33,903 31,650 19,7132 

 
  

SSIM 0,8998 0,8790 0,8250 

 

 PSNR 34,801 32,552 23,8475 

  
SSIM 0,8797 0,8550 0,8436 

Fig.3.8. PSNR and SSIM for dataset5 scale 4 of deep learning super resolution. 
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III.5 Comparison for Deep learning for super-resolution and Bicubic   

We notice from the results obtained in each of Tables 3.4, 3.5 and 3.6 which carry the values 

of PSNR and SSIM that this value, according to mathematical observations, was high for 

bicubic, SRGAN, and ESRGAN, while its decrease was observed in Real-ESRGAN. Figure 

3.7 reflects all of these. The results are because the images are blurry, except for Real ESRGAN, 

which is a very precise image and free of blur in general. It can be said that it provides amazing 

results in improving image quality, although the measurements of this quality show a decline, 

but the difference is clear when seeing the images with the eye.  

III.6 Conclusion   

Three deep learning-based super-resolution (SR) image algorithms—SRGAN, ESRGAN, 

and Real-ESRGAN—were investigated in this work. Additionally, we used bicubic, bilinear, 

and nearest-neighbor interpolation—traditional interpolation algorithms. We have made 

advantage of Set5 and Set14, two well-known datasets in the SR issue space. In addition to the 

visual quality of the reconstructed SR pictures, we evaluated two metrics: PSNR and SSIM.  

We initially converted the original photos into low-resolution (LR) images before carrying 

out each experiment. The photos produced by this stage were X2 or X4 in size. It is evident 

from the results that the Real-ESRGAN method performs better in terms of computed metrics 

and visual quality than other SR techniques. It should be mentioned, nevertheless, that SR deep 

learning methods enable processing massive amounts of data a large number of photos in a 

brief period of time, made possible by network architecture and GPU usage. Ultimately, we 

were able to accomplish our objectives.  



 

  

  

  

General conclusion  

  

  

  

  

  

  

  

  

  

  

 

  

  

    

General conclusion  

  

  

  

  

  

  

  

  

  

  

General  

Conclusion  

  



 

  

56  

  

General conclusion  

The thesis titled "Application of generative adversarial networks for image super resolution" 

focuses on comparing two approaches for enhancing the resolution of images: conventional 

interpolation algorithms and deep learning-based interpolation algorithms. After conducting a 

comprehensive study, several key conclusions can be drawn from this thesis.   

Firstly, the thesis highlights that conventional interpolation algorithms, such as bicubic 

interpolation, have been widely used for image super resolution tasks. These algorithms are 

based on mathematical principles and are relatively straightforward to implement. However, 

the results obtained from conventional interpolation algorithms may lack fine details and fail 

to produce high-quality super-resolved images.   

Secondly, the thesis emphasizes the emergence of deep learning-based interpolation 

algorithms, which utilize neural networks to learn complex mappings between low-resolution 

and high-resolution image pairs. These algorithms have shown remarkable performance in 

generating visually appealing and highly detailed super-resolved images. They can capture 

intricate patterns and textures that conventional algorithms struggle to reproduce.   

Furthermore, the thesis concludes that deep learning-based interpolation algorithms 

generally outperform conventional interpolation algorithms in terms of perceptual quality and 

objective metrics. The ability of deep learning models to learn from large-scale datasets enables 

them to capture intricate image features, leading to superior super-resolution results.   

However, the thesis also acknowledges that deep learning-based approaches may have some 

limitations. They often require significant computational resources and extensive training data 

to achieve optimal performance. Additionally, the selection of appropriate network 

architectures, loss functions, and training strategies significantly affects the final results. In 

conclusion, the thesis provides valuable insights into the comparative study of conventional 

and deep learning interpolation image super-resolution algorithms. It highlights the advantages 

of deep learning approaches in generating high-quality super-resolved images, while 

acknowledging the challenges and considerations involved in their implementation.  
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