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Summary: 

        Deep Learning, within the field of Artificial Intelligence, has emerged as a prominent field 

renowned for its capacity to discern complex patterns and features directly from raw data. Our 

project is centered on exploring techniques for detecting lane lines in self-driving cars, 

leveraging deep learning methodologies, specifically through the application of FCN (Fully 

Convolutional Network). We aim to conduct a comparative analysis between deep learning 

approaches and traditional computer vision methods utilizing OpenCV, shedding light on the 

strengths and limitations of each approach in the context of lane line detection for autonomous 

vehicles. 

Sommaire : 

        Le Deep Learning, dans le domaine de l’intelligence artificielle, est devenu un domaine 

de premier plan réputé pour sa capacité à discerner des modèles et des caractéristiques 

complexes directement à partir de données brutes. Notre projet est centré sur l'exploration de 

techniques de détection de lignes de voie dans les voitures autonomes, en tirant parti des 

méthodologies d'apprentissage profond, notamment grâce à l'application du FCN (Fully 

Convolutional Network). Notre objectif est de mener une analyse comparative entre les 

approches d'apprentissage profond et les méthodes traditionnelles de vision par ordinateur 

utilisant OpenCV, mettant en lumière les forces et les limites de chaque approche dans le 

contexte de la détection de lignes de voie pour les véhicules autonomes. 

 ملخص:

لقد برز التعلم العميق، ضممممما  الذ ال الص ااعمممممجلل ، امالذ بل ز درممممتىر بقد  ا للا  مييم ااتمل   الميما          

ل  ف  السمميل ا  قرماسممتارمملن  قجيل  الارممط لا لم   ال المعقدة  بلشممرة  ا البيلتل  اا لي . دتمر    رممر لجل   ذ

)الربا  التلافيفي  بللال ل(. ترا تىدن  FCN ذا ي  القيلدة،  ااستفلدة  ا  جىايل  التعلم العميق،   رددداً  ا للاذ  مبيق

ستخدام س بي  التقليدد  بل سلليب التعلم العميق   رق الرؤد  الرل سليط الض ص OpenCV إلا إجراص  رليل  قل ن بيا أ    ،

 .للا تقل  الق ة  القي د ف  ال تىج ف  سيلق ااترلن لط المسل  للمرابل  ذا ي  القيلدة

 

 

 

 

 



 
 

 
 

TALE OF CONTENTS: 

GENERAL INTRODUCTION ................................................................................................................ I 

CHAPTER 01 

1.1. Introduction ................................................................................................................................. 1 

1.2. Artificial intelligence ................................................................................................................... 1 

1.3. Machine learning ......................................................................................................................... 1 

1.3.1. Supervised learning ............................................................................................................. 2 

1.3.2. Unsupervised learning ......................................................................................................... 2 

1.3.3. Supervised learning methods ............................................................................................... 3 

1.4. Deep learning .............................................................................................................................. 3 

1.4.1. Choosing between Machine Learning and Deep Learning ................................................. 4 

1.5. Neural networks .......................................................................................................................... 4 

1.5.1. Neuron from Biology to AI ................................................................................................. 4 

1.5.2. Neural network parameters and hyper-parameters .............................................................. 5 

1.5.2.1. Weights ............................................................................................................................ 5 

1.5.2.2. Biases............................................................................................................................... 6 

1.5.2.3. Learning Rate .................................................................................................................. 6 

1.5.2.4. Batch size ........................................................................................................................ 6 

1.5.2.5. Number of Layers and Neurons ...................................................................................... 6 

1.5.2.6. Activation Functions ....................................................................................................... 7 

1.5.2.7. Type of activation function ............................................................................................. 7 

1.5.2.7.1. ReLU Function ................................................................................................................ 7 

1.5.2.7.2. Sigmoid / Logistic ........................................................................................................... 8 

1.5.2.8. Loss Function .................................................................................................................. 9 

1.5.2.9. Types of Loss Function ................................................................................................... 9 

1.5.2.9.1. Regression Loss Function................................................................................................ 9 

1.5.2.9.2. Classification loss function.............................................................................................. 9 

1.5.3. Training the neural network .............................................................................................. 10 

1.5.3.1. Gradient Descent (GD) .................................................................................................. 10 

1.5.3.2. Stochastic Gradient Descent (SGD) .............................................................................. 11 

1.5.3.3. Backpropagation ............................................................................................................ 11 

1.5.4. Convolutional Neural Network (ConvNet/CNN) .............................................................. 11 

1.5.4.1. Convolution layers ........................................................................................................ 12 

1.5.4.2. Hyper-parameters .......................................................................................................... 13 

1.5.4.2.1. Kernel Size (Filter Size) ................................................................................................ 13 

1.5.4.2.2 Number of Filters (Channels) ........................................................................................ 13 

1.5.4.2.3. Stride ............................................................................................................................. 13 



 
 

 
 

1.5.4.2.4. Padding .......................................................................................................................... 13 

1.5.4.3. Pooling layer .................................................................................................................. 13 

1.5.4.4. Flattening ....................................................................................................................... 14 

1.5.4.5. Fully connected layers (FC) .......................................................................................... 15 

1.6. Conclusion ................................................................................................................................. 16 

 

CHAPTER 02 

2.1 Introduction ............................................................................................................................... 17 

2.2 Lane Line Detection .................................................................................................................. 17 

2.3 Lane line detection algorithms .................................................................................................. 18 

2.3.1 Classic Computer Vision method .......................................................................................... 18 

2.3.1.1 Canny Edge Detection ........................................................................................................... 18 

2.3.1.1.1 Gaussian Smoothing .......................................................................................................... 18 

2.3.1.1.2 Gradient Calculation .......................................................................................................... 18 

2.3.1.1.3 Non-Maximum Suppression .............................................................................................. 18 

2.3.1.1.4 Double Thresholding ......................................................................................................... 18 

2.3.1.1.5 Edge Tracking by Hysteresis ............................................................................................. 19 

2.3.1.2 Region of interest .................................................................................................................. 19 

2.3.1.3 Hough Transform .................................................................................................................. 19 

 ................................................................................................................................................................... 

 ............................................................................................................................................................... 20 

2.3.1.4 Steering angle ........................................................................................................................ 20 

2.3.2 Deep learning-based methods ............................................................................................... 21 

2.3.2.1 Encoder-decoder CNN architecture: ..................................................................................... 21 

2.3.2.2 Fully Convolutional Networks (FCNs) ................................................................................. 22 

2.3.2.3 Recurrent Neural Networks (RNNs) ..................................................................................... 23 

2.4 Conclusion ................................................................................................................................. 24 

 

CHAPTER 03 

3.1. Introduction ............................................................................................................................... 25 

3.2. Software and Libraries for Implementation .............................................................................. 25 

3.2.1. Software Overview ................................................................................................................ 25 

3.3. Dataset ....................................................................................................................................... 27 

3.4. Baseline Model Selection .......................................................................................................... 28 

3.5. Results, and Discussion ............................................................................................................. 29 

3.5.1. Evaluation Metrics ................................................................................................................ 29 

3.5.2. Specific Observations ............................................................................................................ 30 



 
 

 
 

3.5.3. Our model results progression ............................................................................................... 31 

3.5.3.1 Straight and clear lane lines ....................................................................................................... 32 

3.5.3.2 Curvy Lane Lines ...................................................................................................................... 32 

3.5.3.3 Hard shadows ............................................................................................................................ 33 

3.5.3.4 Hard sunlight ............................................................................................................................. 34 

3.5.3.5 Blurry footage............................................................................................................................ 34 

3.5.4. Comparison between the baseline model and Our model results .......................................... 35 

3.5.4.1 Straight and clear lane lines ....................................................................................................... 35 

3.5.4.2 Curvy Lane Lines ...................................................................................................................... 35 

3.5.4.3 Hard shadows ............................................................................................................................ 36 

3.5.4.4 Hard Sunlight ............................................................................................................................ 36 

3.5.4.5 Blurry footage............................................................................................................................ 36 

3.5.5. Comparison between Computer vision and Deep learning ................................................... 37 

3.5.5.1 Straight and clear lane lines: ..................................................................................................... 37 

3.5.5.2 Curvy Lane lines ....................................................................................................................... 37 

3.5.5.3 Hard shadows ............................................................................................................................ 38 

3.5.5.4 Hard Sunlight ............................................................................................................................ 38 

3.5.5.5 Blurry Footage ........................................................................................................................... 38 

3.6. Conclusion ................................................................................................................................. 39 

 

LIST OF FIGURES 

Figure 1. Supervised Learning process................................................................................................... 2 

Figure 2. Unsupervised Learning process. ............................................................................................. 2 

Figure 3. Hierarchy Machine Learning algorithms. ............................................................................... 3 

Figure 4. Relationship between AI, ML and DL .................................................................................... 4 

Figure 5. Bio neural network vs Ai neural network. .............................................................................. 5 

Figure 6. Comparison between linear and non-linear activation function. ............................................. 7 

Figure 7. ReLU activation function. ....................................................................................................... 7 

Figure 8. Sigmoid/ Logistic activation function. .................................................................................... 8 

Figure 9. Architecture of the CNNs applied to digit recognition. ........................................................ 12 

Figure 10.  An illustration of the convolution of a 2 x 2 kernel moving over a 4 x 4 image, resulting in 

a 3 x 3. ................................................................................................................................................... 13 

Figure 11. Application of max and average pooling with a stride of 2 using 2x2 filter ....................... 14 

Figure 12. Illustration of the flattening step. ........................................................................................ 14 

Figure 13. Illustration of features extraction process for typical CNN model. .................................... 15 

Figure 14.Fully connected layer. .......................................................................................................... 15 

Figure 15. Canny edge detection algorithme ........................................................................................ 19 

Figure 15. Canny edge detection algorithm. ......................................................................................... 19 

Figure 16. Detecting straight lines using Hough transform .................................................................. 20 

Figure 21. Baseline model fully convolutional network architecture. .................................................. 28 

Figure 22.Final fully convolutional network architecture. ................................................................... 29 



 
 

 
 

Figure 24. Training and Validation Accuracy ...................................................................................... 31 

Figure 23. Training and Validation Loss .............................................................................................. 31 

Figure 25. Training and Validation F1 Score ....................................................................................... 31 

Figure 26. Training and Validation Recall ......................................................................................... 231 

Figure 27. Training and Validation Precision ...................................................................................... 31 

Figure 28: Model results from Straight and clear lane lines. ............................................................... 32 

Figure 29: Model results in Curvy lane lines. ...................................................................................... 32 

Figure 31 : Model results in  Hard shadows. ........................................................................................ 34 

Figure 32:  Model results in  Blurry footage. ....................................................................................... 34 

Figure 33: Comparison of our model and the baseline model in straight and clear lane lines. ............ 35 

Figure 34 : Comparison of our model and the baseline model in Curvy lane line. .............................. 35 

Figure 35 : Comparison of our model and the baseline model in Hard shadows. ................................ 36 

Figure 36: Comparison of our model and the baseline model in Hard Sunlight. ................................. 36 

Figure 38: Comparison between CV and DL in Straight and clear lane lines...................................... 37 

Figure 39 : Comparison between CV and DL in Curvy lane lines. ...................................................... 37 

Figure 40: Comparison between CV and DL in Hard shadows. .......................................................... 38 

Figure 41: Comparison between CV and DL in Hard Sunlight. .......................................................... 38 

Figure 42: Comparison between CV and DL in Blurry footage. ......................................................... 38 

 

LIST OF TABLES 

Table 1. Percentage of data according to weather & time .................................................................... 27 

Table 2. Percentage of data according to curvature .............................................................................. 27 

Table 3. Dataset Scenarios .................................................................................................................... 28 

Table 4. Evaluation Metrics Results for Different Epoch Values. ....................................................... 29 

 

Acronyms And Abbreviations  

AI : Artificial  Intelligence  

CNN : Artificial Neural Network  

RNN: Recurrent Neural Networks 

FCN : Convolutional Networks  

DL : Deep Learning  

ML : Machin Learning  

FC : Fully Connected  

GPU : Graphic Processor Unit 

MSE: Mean Squared Error  



 
 

 
 

NN : Neural Network 

GAN : Generative Adversarial Network
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GENERAL INTRODUCTION 

 

In the fast-changing world of transportation technology, the combination of Artificial 

Intelligence (AI) and Deep Learning is becoming very important, reshaping the future of 

mobility. As we delve into the complexities of lane line detection, it becomes apparent that 

harnessing the capabilities of AI is crucial for navigating the intricacies of modern roadways. 

Deep Learning, a subset of AI, is at the forefront of this change. It offers sophisticated methods 

for machines to perceive, interpret, and respond to visual cues with remarkable accuracy and 

efficiency. 

Deep Learning has attracted significant attention for its capacity to identify complex 

patterns and features directly from raw data. Leveraging the complex architecture of neural 

networks NN, Deep Learning algorithms can discern subtle nuances within visual inputs, 

outperforming conventional techniques in both performance and adaptability. In the context of 

lane line detection, this paradigm shift has opened doors to unprecedented levels of precision 

and reliability, fueling the quest for safer and more efficient transportation systems. 

As we embark on the journey of exploring lane line detection using Deep Learning, it is 

paramount to understand the nuances of various methodologies and architectures. In this thesis, 

We conduct a detailed implementation and comparative analysis of a traditional technique using 

OpenCV alongside a Fully Convolutional Networks model. Through meticulous 

experimentation and evaluation, we aim to uncover the detailed characteristics of each method, 

highlighting their respective strengths and limitations. By deepening our understanding of Deep 

Learning techniques, this work aims to demonstrate how Deep Learning models for lane line 

detection can surpass conventional methods. 

To achieve this goal, we have structured our thesis into three chapters: 

Chapter 1: In this chapter, we will discuss the Deep Learning field and focus on the CNN 

architecture. 

Chapter 2: In this chapter, we aim to conduct a comparative analysis between deep learning 

approaches and traditional computer vision methods utilizing OpenCV, shedding light on the 

strengths and limitations of each approach in the context of lane line detection for autonomous 

vehicles. 



 
 

II 
 

Chapter 3: This chapter contains the comparative result’s implementation of our CNN 

architecture, using the FCN (fully convolutional network) model.
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1.1. Introduction 

        Deep learning, a subset of Artificial Intelligence (AI), has gained prominence for its ability 

to utilize deep neural networks in tasks like image recognition and speech processing, 

revolutionizing the capabilities of computers in various domains. We further break down ML 

into its different types, including supervised learning, where algorithms are trained on labeled 

data to make predictions, and unsupervised learning, which involves finding hidden patterns in 

unlabeled data. The chapter also provides a brief overview of neural networks NN that simulate 

the learning mechanisms of biological organisms and covers specifically Convolutional Neural 

Networks (CNNs), which are designed to process grid-like data structures such as images. 

1.2. Artificial intelligence 

      Artificial Intelligence, often abbreviated as AI, refers to the simulation of human 

intelligence processes by machines, typically computer systems. This field encompasses 

various technologies that enable machines to perform tasks that typically require human 

intelligence, such as visual perception, speech recognition, decision-making, and language 

translation. AI systems are designed to learn from data, adapt to new inputs, and perform tasks 

with minimal human intervention. The goal of AI is to create machines that can mimic human 

cognitive functions and perform tasks more efficiently and accurately. AI has applications in a 

wide range of industries, including healthcare, finance, transportation, and entertainment, and 

continues to advance rapidly with ongoing research and development efforts.[1] 

1.3. Machine learning 

       Machine learning is a branch of artificial intelligence that focuses on developing algorithms 

and statistical models to enable computers to learn from and make predictions or decisions 

based on data without being explicitly programmed. It involves the use of algorithms that 

iteratively learn from data, allowing computers to find hidden insights without being explicitly 

programmed where to look. Machine learning is widely used in various applications such as 

image and speech recognition, medical diagnosis, financial forecasting, and recommendation 

systems. It encompasses different types of learning, including supervised learning, 

unsupervised learning, and reinforcement learning, each serving different purposes in training 

models. Overall, machine learning plays a crucial role in automating tasks and making data-

driven decisions in various fields.[2] 
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1.3.1. Supervised learning 

        Supervised learning is indeed a machine learning paradigm where algorithms are trained 

on labeled datasets. These labels guide the algorithm in learning the relationship between the 

input features and the target outcome. For instance, in weather prediction, a supervised learning 

model would analyze historical data labeled with whether it rained or not, alongside input 

features like temperature, time, season, and atmospheric pressure. The model discerns patterns 

in this data to predict future rainfall. The process is often depicted in diagrams, such as the one 

mentioned (Figure 1).[3] 

1.3.2. Unsupervised learning 

           Unlike supervised learning which relies on labeled data, unsupervised learning deals 

with unlabeled data. This means the data points don't have predefined categories or 

classifications. The most common use case for unsupervised learning algorithms is in clustering 

analysis, where the algorithm learns hidden patterns and groups in data that are not explicitly 

labeled.[4] 

Figure 1. Supervised Learning process. 

Figure 2. Unsupervised Learning process. 
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1.3.3. Supervised learning methods 

     Supervised learning methods are typically divided into two main categories, each suited for 

different types of prediction tasks: 

₋ Classification: This method is used when the output variable is categorical. The goal is to 

predict which category or class the new observation belongs to. Examples of classification 

problems include determining whether an email is spam or not spam, or diagnosing whether 

a patient is sick or healthy based on medical test results. 

₋ Regression: This method is applied when the output variable is a real or continuous value.It 

aims to predict a quantity, such as the price of a house based on its features, the amount of 

rainfall from weather data, or a person’s height based on genetic and dietary information. 

Both methods rely on labeled datasets to learn the mapping from input variables to the target 

variable, enabling the algorithm to make accurate predictions on new, unseen data. 

 

1.4. Deep learning 

        Deep Learning refers to a subset of machine learning methods that are based on artificial 

neural networks. Its algorithms are designed to model and represent complex patterns in data 

through multiple layers of interconnected nodes. These networks are capable of learning and 

making decisions in a way that mimics the human brain's functioning. Deep learning has been 

particularly successful in tasks such as image and speech recognition, natural language 

processing, and autonomous driving. It requires large amounts of data for training and is known 

for its ability to automatically discover intricate patterns within the data. Deep learning has 

revolutionized various industries by enabling advancements in areas like healthcare, finance, 

and technology. [5]. 

Figure 3. Hierarchy Machine Learning algorithms. 
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1.4.1. Choosing between Machine Learning and Deep Learning 

     When deciding between Machine Learning (ML) and Deep Learning (DL), it is essential to 

consider their capabilities and applications. ML is a broader category of algorithms that identify 

patterns and make decisions based on data, while DL, a subset of ML, uses deep neural networks 

to extract features from complex data. Both ML and DL have been successfully applied in 

various fields, such as cybersecurity for threat event detection [6] and healthcare for brain tumor 

identification using MRI scans. DL, with its deep neural networks, has shown remarkable 

success in tasks like image recognition and natural language processing. Ultimately, the choice 

between ML and DL depends on the complexity of the data and the specific requirements of 

the task at hand, with DL being more suitable for intricate data structures and tasks requiring 

high levels of abstraction. 

1.5. Neural networks 

1.5.1. Neuron from Biology to AI 

The transition from biological neurons to artificial neural networks marks a significant 

milestone in the development of artificial intelligence. Modeled after the intricate network of 

neurons in the human brain, artificial neurons, or perceptron, serve as the building blocks of 

these systems. 

Figure 4. Relationship between AI, ML and DL 
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While biological neurons communicate through electrochemical signals, artificial 

neurons use mathematical functions to process and transmit information. This transformation 

involves abstracting the principles of neural computation, such as synaptic connections and 

signal propagation, into computational algorithms and architectures. Despite simplifications 

and abstractions, artificial neural networks emulate the essential features of their biological 

counterparts, enabling them to perform complex cognitive tasks and learn from data.[7] 

 Artificial neural networks typically consist of an input layer, one or more hidden layers, 

and an output layer, with each layer comprising interconnected neurons. During training, the 

network adjusts its internal parameters, such as weights and biases, to minimize the difference 

between predicted and actual outputs. This process of learning enables neural networks to 

generalize patterns from training data and make accurate predictions on unseen examples, 

making them powerful tools for tasks such as image recognition, speech recognition, and natural 

language processing. 

1.5.2.  Neural network parameters and hyper-parameters 

     Neural networks are characterized by two types of parameters weights and biases. These 

parameters are essential for the network to learn and make predictions effectively. 

1.5.2.1.Weights 

  Weights represent the strength of connections between neurons in adjacent layers. Each 

connection between neurons is associated with a weight, which determines the impact of the 

input on the output of a neuron. During the training process, these weights are adjusted 

Figure 5. Bio neural network vs Ai neural network. 
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iteratively to minimize the difference between predicted and actual outputs. The values of 

weights determine the network's ability to capture patterns and relationships in the data.[8] 

1.5.2.2.Biases 

 Biases are additional parameters added to each neuron in a layer, independent of input. 

They allow neural networks to capture patterns that might not be directly related to the input 

data. Biases essentially provide flexibility to the model, enabling it to fit more complex 

functions. Like weights, biases are also adjusted during training to optimize the network's 

performance. [9] 

    In addition to parameters, neural networks also have hyperparameters, which are settings that 

govern the architecture and behavior of the network. These hyperparameters are set before 

training and are not adjusted during the learning process. Some common hyperparameters 

include: 

1.5.2.3.Learning Rate 

The learning rate controls the step size of parameter updates during training. It determines 

how much the parameters are adjusted in each iteration based on the gradient of the loss 

function. A higher learning rate may lead to faster convergence but risks overshooting the 

optimal solution, while a lower learning rate may result in slower convergence but better 

stability. 

1.5.2.4.Batch size  

Batch size refers to the number of input samples processed in one forward and backward 

pass. Different batch sizes can impact training accuracy, runtime, and model performance [10]. 

While larger batches are traditionally thought to enhance model performance, recent studies 

suggest that smaller batch sizes can be more beneficial, especially when dealing with data 

exhibiting global similarities and local differences, like electronic health records and medical 

imaging. Research indicates that smaller batches can improve loss performance, capture more 

meaningful information in latent spaces, and lead to better classification and regression 

results[11]. Additionally, experiments show that increasing batch size does not always 

guarantee higher accuracy in image classification tasks. Therefore, selecting an optimal batch 

size is crucial in training CNNs to achieve the desired balance between accuracy and efficiency. 

1.5.2.5.Number of Layers and Neurons  

The architecture of the neural network, including the number of layers and neurons in each 

layer, is a crucial hyperparameter. Deeper networks with more layers can capture complex 
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relationships in the data, but they also require more computational resources and are prone to 

overfitting. Finding the right balance between the depth and width of the network is essential 

for optimal performance. 

1.5.2.6.Activation Functions 

Activation functions introduce non-linearity to the network, enabling it to learn complex 

mappings between inputs and outputs. Common activation functions include ReLU (Rectified 

Linear Unit), sigmoid, and tanh. Choosing the appropriate activation function can significantly 

impact the network's ability to model complex data distributions.[12] 

 

1.5.2.7.Type of activation function 

1.5.2.7.1. ReLU Function 

       ReLU stands for (Rectified Linear Unit). Although it gives the impression of a linear 

function, ReLU has a derivative function and allows for backpropagation while simultaneously 

making it computationally efficient[13]. The main catch here is that the ReLU function does 

not activate all the neurons at the same time. The neurons will only be deactivated if the output 

of the linear transformation is less than 0. 

            

Figure 6. Comparison between linear and non-linear activation function. 

Figure 7. ReLU activation function. 
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𝑹𝒆𝑳𝒖(𝒙) =  𝒎𝒂𝒙(𝒙, 𝟎)                                                                                                                                         (1) 

The advantages of using ReLU as an activation function are as follows: 

- Since only a certain number of neurons are activated, the ReLU function is far more 

computationally efficient when compared to the sigmoid and tanh functions. 

- ReLU accelerates the convergence of gradient descent towards the global minimum of the 

loss function due to its linear, non-saturating property.[13] 

1.5.2.7.2. Sigmoid / Logistic  

Sigmoid / Logistic Activation Function This function takes any real value as input and 

outputs values in the range of 0 to 1. The larger the input (more positive), the closer the output 

value will be to 1.0, whereas the smaller the input (more negative), the closer the output will be 

to 0.0, as shown below. 

𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒙) =  
𝟏

𝟏+𝒆−𝒙                                                                                                                             (2) 

Here’s why the sigmoid/logistic activation function is one of the most widely used functions: 

✓ It is commonly used for models where we have to predict the probability as an output. 

Since the probability of anything exists only between the range of 0 and 1, sigmoid is 

the right choice because of its range. 

✓ The function is differentiable and provides a smooth gradient, i.e., preventing jumps in 

output values. This is represented by an S-shape of the sigmoid activation function. 

 

Figure 8. Sigmoid/ Logistic activation function. 
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1.5.2.8.Loss Function 

Remember, our network's behavior is determined by all its weights and biases. The 

weights represent the strength of connections between each neuron in one layer and each neuron 

in the next, while each bias indicates whether its neuron tends to be active or inactive. 

To start things off, initialize all the weights and biases with random numbers. This 

network will perform horribly on the given training example since it’s just doing something 

random. Anyway, it will give a prediction. A terrible one, as the model has no idea yet if the 

prediction is good, or how to measure how good it is. 

To assess the performance of a neural network model and enhance its accuracy, we use 

a loss function. This function measures the disparity between the predicted values and the actual 

values, offering a way to gauge the quality of the predictions. By minimizing the loss function, 

we can steer the model toward making more precise predictions as it evolves.[14] 

𝑳𝒐𝒔𝒔(𝒚(𝒙), 𝒂𝑳(𝒙))                                                                                                                                  (3) 

1.5.2.9.Types of Loss Function 

    Two main types of loss functions correlate to the two major types of neural networks, 

regression, and classification loss functions: 

1.5.2.9.1. Regression Loss Function 

      Regression models deal with predicting a continuous value. For example, given data such 

as floor area, number of rooms, and size of rooms, a regression model can predict the price of 

a house. One of the most commonly used loss functions in regression problems is called "Mean 

Squared Error" (MSE), also known as "Quadratic Cost". 

       Mean Squared Error measures the average squared difference between the predicted values 

and the actual values. It is defined by the formula: 

𝑴𝑺𝑬 =  
𝟏

𝒏
 ∑  (𝒚𝒊

𝒏
𝒊=𝟏  − ŷ𝒊) 𝟐                                                                                                                  (4) 

Where 𝑦𝑖 represents the actual value and ŷ𝑖 represents the predicted value, and n is the number 

of data points. MSE penalizes larger errors more than smaller ones, making it a useful measure 

for regression models to minimize during training. 

1.5.2.9.2. Classification loss function 

    Classification problems involve predicting a discrete class output. This involves dividing the 

dataset into distinct and unique classes based on different parameters so that a new and unseen 
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record can be categorized into one of these classes. The most widely used loss function for this 

type of learning method is the "Binary Cross-Entropy" loss function: 

𝑩𝑪𝑬 =  −
𝟏

𝒏
 ∑  [𝒚𝒊 𝐥𝐧( 𝒂𝒊

𝑳)𝒏
𝒊=𝟏 + (𝟏 − 𝒚𝒊) 𝐥𝐧( 𝟏 − 𝒂𝒊

𝑳)]                                                                 (5) 

Where n is the total number of items in the training data, the sum is overall training inputs x, 𝑦𝑖 

is the corresponding desired output, and 𝑎𝑖
𝐿 represents the predicted output from the final layer 

L of the network. Binary Cross-Entropy measures the performance of a classification model 

whose output is a probability value between 0 and 1, guiding the model to minimize the 

difference between the predicted probabilities and the actual class labels.[15] 

1.5.3. Training the neural network 

    Simply informing the neural network model what a terrible job it’s doing isn’t very helpful. 

Instead, it's essential to guide the model in adjusting its weights and biases to enhance its 

predictions. These adjustments must be directed towards reducing the loss function. The key 

question is: how can we determine the inputs that will minimize the loss function's value? To 

address this, we implement gradient descent on the loss function, which systematically modifies 

the inputs to achieve the lowest possible cost. 

1.5.3.1.Gradient Descent (GD) 

This is the fundamental algorithm for optimizing neural networks. It calculates the gradient of 

the loss function for each trainable parameter (weights and biases). The gradient essentially 

points in the direction of the steepest descent in the loss function's landscape.  

          The parameters are then updated in the opposite direction of the gradient by a small 

amount (learning rate), moving the network closer to a minimum of the loss function.[16] 

                             𝒘 = 𝒘′ − 𝜸
 𝒅(𝑪)

𝒅(𝒘) 
                                                                                                                                    (6) 

𝒃 = 𝒃′ − 𝜸
 𝒅(𝑪)

𝒅(𝒃) 
                                                                                                                                       (7) 

where γ is a small, positive parameter (known as the learning rate),  ( 
 𝑑(𝐶)

𝑑(𝑤) 
 ) partial derivative 

with respect to weight, ( 
 𝑑(𝐶)

𝑑(𝑤) 
) partial derivative with respect to bias. Also, 𝑤′ and 𝑏′ represent 

old weight and bias, 𝑤 and 𝑏 indicate updated weight and bias. 
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1.5.3.2.Stochastic Gradient Descent (SGD) 

Indeed, in practical scenarios, it's computationally intensive to calculate the gradient descent 

for numerous layers across the full training set during each iteration of the algorithm. To make 

this process more efficient, a technique known as Batching is employed. Batching involves 

dividing the training set into smaller, manageable batches of data. These batches are then used 

to feed the neural network (NN). The gradient computation is not performed on the entire 

dataset but rather on these smaller subsets, denoted by m. This approach not only accelerates 

the training process but also helps in optimizing the use of memory resources and can contribute 

to better generalization of the model. 

𝒘 = 𝒘′ −
𝜸

𝒎
∑

 𝒅(𝑪𝒋)

𝒅(𝒘) 𝒋                                                                                                                   (8) 

𝒃 = 𝒃′ −
𝜸

𝒎
∑

 𝒅(𝑪𝒋)

𝒅(𝒃) 𝒋                                                       (9) 

1.5.3.3.Backpropagation 

Backpropagation is a fundamental algorithm in neural networks that calculates the 

gradient of the loss function with respect to the weights and biases of the neurons. The process 

of training a neural network involves finding the optimal set of weights that result in the best fit 

between the network's output and the actual data. Backpropagation facilitates this by linking 

the loss function's outcome to the weight parameters. Here's a simplified breakdown of the 

process: 

- If the loss function's value decreases with the current weights, it indicates that the gradient 

direction is beneficial. 

- Conversely, if the loss function's value increases, the gradient direction is reversed. 

- This iterative process continues until the loss function reaches a minimum value or no further 

reduction is possible (convergence). 

   Upon convergence, the neural network has located a point on the loss function where any 

increase or decrease in weight values leads to an increase in the loss function. This point is 

typically a local minimum, where the network's predictions are as close as possible to the target 

values given the current model architecture and data. 

1.5.4. Convolutional Neural Network (ConvNet/CNN)  

A Convolutional Neural Network (CNN), also known as ConvNet, is a specialized type 

of deep learning algorithm mainly designed for tasks that necessitate object recognition, 
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including image classification, detection, and segmentation. CNNs are employed in a variety of 

practical scenarios, such as autonomous vehicles, security camera systems, and others. [17] 

The convolutional neural network is made of different parts that help the CNNs mimic how the 

human brain operates to recognize patterns and features in images. This section dives into the 

definition of each one of these parts. 

 

1.5.4.1.Convolution layers 

This is the first building block of a CNN. As the name suggests, the main mathematical 

task performed is called convolution, which is the application of a sliding window function to 

a matrix of pixels representing an image. The sliding function applied to the matrix is called 

kernel or filter, and both can be used interchangeably. 

In the convolution layer, several filters of equal size are applied, and each filter is used 

to recognize a specific pattern from the image, such as the curving of the digits, the edges, the 

whole shape of the digits, and more. Put simply, in the convolution layer, we use small grids 

(called filters or kernels) that move over the image. Each small grid is like a mini magnifying 

glass that looks for specific patterns in the photo, like lines, curves, or shapes. As it moves 

across the photo, it creates a new grid that highlights where it found these patterns. For example, 

one filter might be good at finding straight lines, another might find curves, and so on. By using 

several different filters, CNN can get a good idea of all the different patterns that make up the 

image.[18] 

The more convolution layers the network has, the better the layer is at detecting more abstract 

features. 

 

Figure 9. Architecture of the CNNs applied to digit recognition. 
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1.5.4.2. Hyper-parameters 

In Convolutional Neural Networks (CNNs), hyperparameters play a crucial role in shaping 

the model’s performance. Let’s explore some of the key hyperparameters: 

1.5.4.2.1. Kernel Size (Filter Size) 

The kernel size determines the receptive field of each convolutional layer. A larger kernel 

size allows for the capture of more global features, thus providing a broader overview of the 

input data, whereas a smaller kernel size targets more localized patterns, offering detailed 

insights into specific regions of the input. Commonly utilized kernel sizes include 3x3, 5x5, and 

7x7, each offering a balance between feature granularity and computational efficiency. 

1.5.4.2.2  Number of Filters (Channels) 

The number of filters in a convolutional layer defines the depth of the output feature maps. 

More filters allow the network to learn complex features. However, increasing the number of 

filters also increases computational cost. 

1.5.4.2.3.  Stride 

The stride specifies the step size when sliding the kernel over the input. Larger strides 

reduce the spatial dimensions of the output feature maps. Smaller strides preserve more spatial 

information. 

1.5.4.2.4. Padding 

The padding adds extra pixels around the input to maintain spatial dimensions after 

convolution. Common types include “same” (zero-padding) and “valid” (no padding). 

1.5.4.3. Pooling layer 

The goal of the pooling layer is to pull the most significant features from the convoluted 

matrix. This is done by applying some aggregation operations, which reduce the dimension of 

the feature map (convoluted matrix), hence reducing the memory used while training the 

Figure 10.  An illustration of the convolution of a 2 x 2 kernel moving over a 4 x 

4 image, resulting in a 3 x 3. 
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network. Pooling is also relevant for mitigating overfitting. The most common aggregation 

functions that can be applied are: 

₋ Max pooling, which is the maximum value of the feature map 

₋ Average pooling is the average of all the values. 

Below is an illustration of each of the previous examples: 

Also, the dimension of the feature map becomes smaller as the pooling function is applied. The 

last pooling layer flattens its feature map so that it can be processed by the fully connected layer. 

1.5.4.4. Flattening 

     "Imagine we have a pooled feature map, a result of applying a pooling layer to the convolved 

image obtained from the initial convolution operation. The next step involves 'Flattening.' 

 

Figure 11. Application of max and average pooling with a stride of 2 using 

2x2 filter 

Figure 12. Illustration of the flattening step. 
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       This process entails transforming the pooled feature map into a single, elongated column. 

We sequentially arrange the numerical values, row by row, into a continuous vector. The 

primary goal of flattening is to prepare this vector for input into a subsequent artificial neural 

network, specifically the fully connected (FC) layer, where it undergoes further analysis. [19] 

       In essence, the journey begins with an input image. We first subject it to a convolution 

layer, followed by a pooling layer. The output is then flattened into an extensive vector that 

serves as the input for the fully connected layer, or ANN, completing the preparatory process 

for deep learning tasks." 

 

1.5.4.5. Fully connected layers (FC) 

These layers are in the last layer of the convolutional neural network, and their inputs 

correspond to the flattened one-dimensional matrix generated by the last pooling layer. A ReLU 

activations function is generally applied to them for non-linearity. Finally, the output layer.[20] 

Figure 14.Fully connected layer. 

Figure 13. Illustration of features extraction process for typical CNN model. 
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1.6.Conclusion 

In this chapter, we introduced the fundamentals of deep learning, which will be extremely 

helpful for our next phase: lane line detection. We began with a foundational overview of neural 

networks and then progressed to a detailed discussion of Convolutional Neural Networks 

(CNNs), a pivotal architecture in deep neural networks. This included an in-depth examination 

of each component and layer, from the convolutional layers to the final fully connected (FC) 

layers. Equipped with this insight, this section has come to an end, and a new beginning will be 

undertaken in the following chapters. 
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2.1 Introduction 

    Lane line detection is an essential component of modern autonomous driving systems and 

advanced driver assistance systems (ADAS). It involves the identification and localization of 

lane boundaries to facilitate the safe navigation of vehicles. This technology has seen significant 

advancements over the years, transitioning from basic (classic) computer vision techniques to 

sophisticated deep-learning models like CNNs. 

In this chapter of our project, we will explore the classic computer vision techniques of lane 

line detection, then we go deeply into deep learning techniques like CNNs, FCN, and other 

models, and then we delve into the advantages and disadvantages of each technique. 

2.2 Lane Line Detection 

      The emergence of intelligent vehicles has been a transformative force in the automotive 

industry, promising enhanced safety and efficiency on the road. At the forefront of this 

technological revolution is lane detection, a system that is indispensable for autonomous 

driving. Lane detection algorithms are tasked with the critical function of identifying and 

tracking lane boundaries, which is fundamental to maintaining vehicle positioning and ensuring 

safe navigation. Despite advancements in perception sensors and the clarity of lane markings 

on roadways, lane detection remains a formidable challenge for researchers due to 

environmental factors that can significantly impact the performance of recognition algorithms. 

      The main challenges facing the development of real-time lane detection algorithms include 

variations in road structures, incomplete or erased lane markings, and environmental variations 

that cause illumination disturbances such as snow, shadows, and rain precipitation. To 

accomplish reliable lane detection, algorithms must be capable of reacting successfully to these 

challenges, regardless of external factors. This chapter will explore the intricacies of these 

challenges in detail, examining how they affect the detection process and the solutions that have 

been proposed to overcome them. We will delve into the strengths and weaknesses of various 

approaches, including both rule-based and learning-based methodologies, and discuss how they 

have evolved to meet the robustness requirements of safe and reliable autonomous driving 

systems. 
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2.3 Lane line detection algorithms 

2.3.1 Classic Computer Vision method 

          Long before the advent of deep learning algorithms, traditional computer vision (CV) 

techniques were the primary tools for processing visual information. The origins of the field 

trace back nearly 60 years when the extraction of information from visual data gained 

prominence. Lawrence Gilman Roberts, often regarded as the father of CV, conducted 

pioneering experiments aimed at constructing and displaying three-dimensional representations 

of solid objects from two-dimensional photographs.  

           As image quality improved, academia further subdivided CV into various fields, with 

image segmentation and edge detection emerging as among the most prominent. To detect lane 

lines in images using computer vision we will use OpenCV-Python open-source library. By 

following these steps: 

2.3.1.1 Canny Edge Detection 

Canny edge detection is a popular edge detection algorithm developed by John F. Canny 

in 1986. It is widely used in computer vision and image processing for detecting the edges of 

objects within images. The Canny edge detection algorithm works in several steps:[21] 

2.3.1.1.1 Gaussian Smoothing 

The first step involves smoothing the image using a Gaussian filter to reduce noise. This 

step helps in removing small variations in pixel intensity that are not part of the actual edges. 

2.3.1.1.2 Gradient Calculation 

 After smoothing, the algorithm calculates the gradient of the image intensity at each pixel. 

Typically, this is done using Sobel masks to approximate the derivatives in the x and y 

directions. 

2.3.1.1.3 Non-Maximum Suppression 

This step aims to thin out the edges obtained from the gradient calculation. For each pixel, only 

the local maximum gradient magnitude in the edge direction is retained, while all others are 

suppressed. 

2.3.1.1.4 Double Thresholding 

The edge pixels obtained from non-maximum suppression are then classified into strong, weak, 

or non-edges based on their gradient magnitudes. This is done using two thresholds: a high 
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threshold (strong edge) and a low threshold (weak edge). Pixels with gradient magnitudes above 

the high threshold are considered strong edges, while those below the low threshold are 

considered non-edges. Pixels with gradient magnitudes between the two thresholds are labeled 

as weak edges. 

2.3.1.1.5 Edge Tracking by Hysteresis 

In this final step, weak-edge pixels that are connected to strong-edge pixels are reclassified as 

strong edges. This is done by tracing along the edges and connecting adjacent weak edge pixels 

to strong edge pixels. This helps in forming continuous. 

2.3.1.2 Region of interest 

The car's camera focuses solely on the two lanes directly within its field of view, disregarding 

any extraneous elements. To isolate the relevant lanes and filter out unwanted pixels, we employ 

a polygonal region of interest (ROI). By defining this polygon, we effectively exclude all pixels 

lying outside of its boundaries, ensuring that only the desired lane markings are retained for 

further processing. 

2.3.1.3 Hough Transform 

The Hough Transform is a popular technique in computer vision and image processing used 

primarily for detecting shapes within an image, particularly lines and curves. It was initially 

proposed by Paul Hough in 1962 for detecting straight lines in images and has since been 

extended to detect other shapes as well, such as circles and ellipses.[22] 

Figure 16. Canny edge detection algorithm. 
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2.3.1.4 Steering angle 

Now that we've identified the coordinates of the lane lines, our next task is to adjust the 

car's steering to ensure it remains within these lines. Ideally, we aim not just to keep it within 

the lane boundaries but also to position it at the center of the lane. This involves computing the 

appropriate steering angle for the car based on the detected lane lines. In the accompanying 

figure, the red line positioned in the middle symbolizes the computed steering angle for the car. 

   Traditional computer vision methods like OpenCV for lane line detection have been widely 

used due to their simplicity and effectiveness in certain scenarios. Here are some advantages 

and disadvantages of these methods: Traditional methods boast speed advantages over their 

deep-learning counterparts. These methods, which often employ simpler algorithms such as 

edge detection and color filtering, are less computationally intensive, resulting in faster 

processing times. Additionally, traditional methods are easier to implement and understand, 

making them more accessible to individuals with limited resources or expertise in machine 

learning. They also have lower resource requirements, allowing them to operate effectively on 

less powerful hardware, which is particularly advantageous for real-time applications in 

vehicles with limited processing capabilities. However, traditional methods can be sensitive to 

varying lighting conditions, weather, and road surface quality, which can lead to unreliable 

detection. They may not perform well in complex scenarios, such as detecting lane lines in the 

presence of shadows, wear and tear of lane boundaries, or congested roads. Moreover, these 

methods often require manual feature engineering, which can be time-consuming and may not 

generalize well across different environments. 

Figure 17. Detecting straight lines using Hough transform. 
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2.3.2  Deep learning-based methods 

       Deep learning has significantly advanced the field of lane line detection, offering robust 

solutions to the challenges faced by traditional computer vision methods. By leveraging neural 

networks, particularly convolutional neural networks (CNNs), deep learning models can learn 

from large datasets and recognize complex patterns in lane markings with high accuracy. These 

models are trained on annotated images featuring various road types, lighting conditions, and 

weather scenarios, enabling them to detect lanes with remarkable precision. The deep learning 

approach to lane line detection typically involves several stages: 

₋ Data Preprocessing: Images are preprocessed to enhance lane line features, which may 

include techniques like normalization, augmentation, and perspective transformation. 

₋ Feature Extraction: CNNs are used to automatically extract relevant features from the 

preprocessed images without the need for manual feature engineering. 

₋ Lane Line Prediction: The extracted features are then used to predict the presence and 

position of lane lines, often through segmentation methods or direct end-to-end prediction. 

₋ Post-processing: The predicted lane lines are refined to ensure consistency and accuracy, 

which may involve filtering, polynomial fitting, or temporal smoothing. 

    In general, Deep learning models for lane line detection are trained and evaluated on various 

benchmarks such as CULane, TuSimple, and BDD100K, demonstrating their effectiveness in 

real-world conditions. These models are not only more accurate but also more adaptable to 

different driving environments compared to traditional methods. They continue to evolve, with 

ongoing research focusing on improving their efficiency and reliability for deployment in 

autonomous vehicles. Deep learning has become the method of choice for lane line detection 

due to its accuracy and robustness. Some of the most commonly used deep learning models for 

this task include: 

2.3.2.1 Encoder-decoder CNN architecture: 

  Encoder-decoder Convolutional Neural Networks (CNNs) are a powerful class of deep 

learning models particularly suited for tasks like image segmentation, which is a critical 

component in lane detection systems. These networks function by compressing the input image 

into a lower-dimensional feature space (encoding) and then reconstructing the output from this 

space back to the original image dimensions (decoding). 

In the context of lane detection, the encoder part of the network learns to capture the essential 

features of the road and lane markings, while the decoder part aims to map these features back 

to the spatial dimensions of the input image to predict the location of lane lines. The 
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effectiveness of encoder-decoder CNNs in lane detection has been demonstrated in various 

studies, where they have been used to process sequential frames from driving scenes, enhancing 

the detection robustness, especially in challenging conditions. 

Figure 17 shows an example of an encoder-decoder CNN architecture for lane line detection. 

 

2.3.2.2 Fully Convolutional Networks (FCNs) 

Fully Convolutional Networks (FCNs) are a specialized architecture designed primarily 

for semantic segmentation tasks, including lane detection. The architecture of FCNs is distinct 

from traditional CNNs in that it replaces fully connected layers with convolutional layers 

throughout the network. This design allows FCNs to handle input images of any size and 

produce segmentation maps that correspond in size to the input images. Here’s a simplified 

breakdown of the FCN architecture: 

₋ Convolutional Layers: These layers extract features from the input image through filters 

that capture various aspects of the image, such as edges and textures. 

₋ Pooling Layers: Following convolution, pooling layers reduce the spatial dimensions of 

the feature maps, which helps in reducing the computational load and controlling 

overfitting. 

₋ Upsampling Layers: To construct the segmentation map, FCNs use upsampling layers to 

increase the resolution of the feature maps back to the size of the original image. 

Figure 17. Encoder-decoder CNN architecture. 
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₋ Skip Connections: FCNs often include skip connections that combine deep, semantic 

information from lower layers with shallow, appearance information from higher layers to 

produce detailed and accurate segmentations.[23] 

The FCN architecture is efficient in learning and inference, as it has fewer parameters due 

to the absence of dense layers, making it faster to train and capable of real-time processing. 

This makes FCNs particularly suitable for applications like lane detection, where real-time 

analysis is crucial. 

FCNs have been successfully applied to various datasets, such as TuSimple and CULane, 

achieving high levels of accuracy and precision in lane detection tasks. Their ability to process 

large-scale datasets and produce detailed segmentations makes them a powerful tool in the 

development of advanced driver assistance systems and autonomous vehicles. 

2.3.2.3 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a class of neural networks that are adept at 

processing sequences of data, making them ideal for tasks that involve temporal dependencies, 

such as lane detection in video sequences. The architecture of RNNs allows them to maintain a 

memory of previous inputs by incorporating feedback loops in the network. Here’s a high-level 

overview of the RNN architecture: 

₋ Input Layer: This is where the network receives the input data, which in the case of 

lane detection, could be a sequence of image frames from a video. 

₋ Recurrent Layer: The core of the RNN, this layer has connections that feed back into 

itself, allowing it to pass information from one step of the sequence to the next. This is 

crucial for learning and remembering the context of lane positions across frames. 

₋ Hidden Layers: Depending on the complexity of the task, RNNs can have multiple 

hidden layers. Each neuron in these layers processes inputs from both the current time 

step and the previous time steps. 

Figure 18. Fully Convolutional Networks (FCNs) architecture. 



CHAPTER 02                                                                                           Lane Line Detection 

 

24 
 

₋ Output Layer: The final layer produces the output, which for lane detection would be 

the predicted positions of lane lines in the current frame. 

 

 

One of the challenges with basic RNNs is the vanishing gradient problem, which makes it 

difficult for the network to learn long-range dependencies. To address this, advanced variants 

like Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) have 

been developed. These architectures introduce gates that regulate the flow of information, 

allowing the network to better capture long-term dependencies and forget irrelevant data. 

In the context of lane detection, RNNs can be used to predict the trajectory of lane lines over 

time, providing a more consistent and accurate detection, especially in scenarios where the lane 

markings are temporarily occluded or faded. They are often combined with CNNs to form a 

CNN-RNN hybrid model, where the CNN extracts spatial features from individual frames, and 

the RNN analyzes the temporal sequence of these features to predict lane lines with greater 

precision. 

2.4  Conclusion 

In conclusion, in this chapter, we compared traditional computer vision and deep 

learning for lane line detection. While computer vision methods are more interpretable and less 

resource-intensive, they falter in complex conditions. Deep learning excels in robustness and 

adaptability, offering high accuracy despite its higher computational demand. In the next 

chapter, we will implement the conventional method using OpenCV and an FCN model to 

observe the practical differences between them. 

 

 

Figure 19. General form of RNNs. 
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3.1. Introduction 

In the concluding chapter of our project, we will present and analyze the results of our 

experiments. We have implemented the classic computer vision technique explained in Chapter 

Two and compared the results for lane line detection using the deep learning FCN model 

technique 

3.2. Software and Libraries for Implementation 

3.2.1. Software Overview 

      Our project leverages Google Colab, a cloud-based platform that facilitates the 

execution of Python scripts and machine learning tasks using CPUs, and TPUs. Here’s a concise 

summary of Google Colab’s features: 

✓ Virtual Machines: Google Colab utilizes virtual machines to run scripts and perform 

computations in the cloud. These machines are pre-equipped with various machine-

learning libraries such as TensorFlow and PyTorch. 

✓ Kaggle Notebooks: A Kaggle Notebook is an interactive environment provided by 

Kaggle, a platform for data science and machine learning competitions. These 

notebooks are hosted by Jupyter Notebooks which allow users to write and execute 

code in a web-based interface. They are equipped with various tools and resources for 

data analysis, visualization, and model building. Kaggle Notebooks support languages 

like Python and R, and they come preloaded with popular libraries and datasets, 

making it easy for users to start their data science projects without needing to set up 

their development environment. 

✓ Hardware Acceleration: Google Colab offers GPU and TPU acceleration, 

significantly speeding up machine learning processes, enabling efficient handling of 

large datasets, and quicker model training. 

✓ Google Drive Integration: Seamless integration with Google Drive allows for 

convenient storage and access to data and notebooks from anywhere. Users can mount 

their Google Drive within Colab for direct data access. 

✓ Collaborative Features: The platform supports collaboration, enabling users to share 

notebooks, comment on code, and work together in real-time. 

✓ Code Snippets Library: A vast collection of code snippets and examples in Google 

Colab simplifies the implementation of common machine learning tasks. 
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  In essence, Google Colab stands out as a powerful and flexible tool for machine learning and 

data science projects, offering a suite of features to accommodate diverse workflows. 

3.2.2.  Programming Language 

For our project within Google Colab, we chose Python as our programming language. 

Renowned for its high-level capabilities, Python is prevalent in various fields, including web 

development, data analytics, machine learning, and artificial intelligence. 

3.2.3.  Frameworks 

✓ TensorFlow: An open-source machine learning framework by Google Brain, released 

in 2015. It’s designed for developing, training, and deploying machine learning models 

across multiple platforms, with tools and resources for a broad spectrum of applications, 

from image/audio recognition to natural language processing. 

✓ Keras: A high-level neural network API in Python, Keras operates atop TensorFlow, 

CNTK, Theano, or PlaidML. Developed by François Chollet of Google, it’s licensed 

under MIT and simplifies the creation of deep learning models. 

✓ PyTorch: Originating from Facebook’s AI Research lab, PyTorch is an open-source 

Python library for machine learning. It emphasizes flexibility and speed in deep learning 

model development, supporting dynamic computational graphs and automatic 

differentiation. 

3.2.4. Libraries 

✓ OpenCV: A free, open-source computer vision and machine learning software library. 

✓ Matplotlib: A Python library for creating static, animated, and interactive 

visualizations. 

✓ NumPy: A Python library for large-scale multi-dimensional arrays and matrices, along 

with a comprehensive collection of mathematical functions. 

✓ Pandas: An open-source Python package for data manipulation and analysis, offering 

tools for data cleaning, exploration, transformation, and efficient handling of large data 

sets. 
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3.3. Dataset 

To train our FCN model we used the dataset provided by Michael Virgo (mvirgo), this dataset 

contains: 

✓ 21,054 total images were gathered from 12 videos (a mix of different times of day, 

weather, traffic, and road curvatures).  

Divided based on various conditions (night vs. day, shadows, rain vs. sunshine): 

Weather & Time Percentage of data 

Clear night driving 17.4% 

Rainy morning driving 16.4% 

Cloudy afternoon driving 66.2% 

Table 1. Percentage of data according to weather & time 

Divided based on straight lines and various curved lines: 

Curvature  Percentage of data 

Straight or mostly straight roads 26.5% 

A mix of moderate curves 30.2% 

Very curvy roads 43.3% 

Table 2. Percentage of data according to curvature 

✓ The roads also contain difficult areas such as construction and intersections. 

✓ Finally, after removing all the unusable images mainly due to blurriness, hidden lines, 

etc.… All in all, there were a total of 12,764 usable images for training. 

Table 3 displays the different road conditions represented in the images across the entire 

dataset. 

Figure 20. Various training dataset. 
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1 2 3 4 5 6 7 8 9 

Normal  Crowded Night No line Tunnel Arrows Dazzle 

light 

Curve Cross 

road  

Table 3. Dataset Scenarios 

3.4.  Baseline Model Selection 

    We had chosen the MLND-Capstone project by Michael Virgo as a baseline model for our 

project. Because it provides us a clear documentation with all the information we need and the 

clarity of its codebase. Michael’s project report indicates that he attained notable performance 

on his dataset with just 10 epochs of training. [24] 

3.4.1. Network Architecture Selection 

    The neural network of this baseline model is structured with an Encoder-Decoder 

architecture, as shown in (figure 22), The Encoder segment is composed of seven (07) 

Convolutional layers, mixed with five (05) Dropouts and three (03) Max pooling layers. The 

Encoder’s role is to compress the image dimensions while capturing its key features into more 

channels. On the other hand, the Decoder segment comprises six (06) layers of Deconv mixed 

with four (04) Dropouts and three (03) Upsampling layers. It up-samples the feature vectors to 

an image mask, which has the same height and width as the original image, on a gray-scale 

format. The main reason for selecting this particular architecture is to speed up training when 

it comes to processing our higher-resolution images. In contrast, applying alternative 

architectures that incorporate Convolutional Layers followed by Fully Connected Layers would 

necessitate the training of a very large number of large parameter sets, which would 

consequentially impede the neural network’s efficiency. 

 

 

 

Figure 18. Baseline model fully convolutional network architecture. 
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3.4.2. Model Adjustments 

To obtain a better lane line detection result we made some changes in the baseline model from 

(MLND-Capstone project by Michael Virgo). These are the key changes we applied: 

✓ Increase the number of convolutional layers: we added more two (02) Convolutional 

layers; (Conv2D (128, (3, 3)) two (02) Dropouts and one Pooling layer, and two (02) 

Deconv layers (Conv2DTranspose (128, (3, 3)) mixed with two (02) Dropouts and one 

Upsampling layer, with increased filters to capture more features. 

✓ Using padding='same' instead: ensures the output size matches the input size for better 

handling of edge cases. 

These changes aim to enhance the model's ability to accurately detect lane lines by learning 

more complex patterns and reducing overfitting. 

3.5.  Results, and Discussion 

3.5.1. Evaluation Metrics 

     To evaluate the performance of our training model, we have applied the following evaluation 

metrics: Accuracy, Recall, Precision, F1 Score, and MSE (mean-squared error) to minimize the 

loss between the predicted pixel values of the output lane image and what the lane image label 

was. As presented in (Table 4). 

Table 4. Evaluation Metrics Results for Different Epoch Values. 

Epochs Accuracy Recall Precision F1 Score Loss 

25 0.9612 0.9561 0.9590 0.9575 0.0051 

50 0.9619 0.9695 0.9635 0.9665 0.0040 

75 0.9627 0.9675 0.9668 0.9671 0.0033 

100 0.9628 0.9716 0.9682 0.9700 0.0029 

Figure 19.Final fully convolutional network architecture. 
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• Accuracy: The accuracy slightly increases from 0.9612 at 25 epochs to 0.9628 at 100 

epochs. 

• Recall: Recall improves significantly from 0.9561 at 25 epochs to 0.9716 at 100 epochs. 

Higher recall means the model is getting better at identifying the actual lane lines 

correctly. This improvement suggests that the model is becoming more sensitive to 

detecting lanes as training progresses. 

• Precision: Precision also shows an upward trend, from 0.9590 at 25 epochs to 0.9682 

at 100 epochs. This indicates that the model's predictions are becoming more accurate, 

meaning fewer false positives (non-lane pixels predicted as lane pixels). 

• F1 Score: The F1 score, which is the harmonic mean of precision and recall, improves 

from 0.9575 at 25 epochs to 0.9700 at 100 epochs. This metric shows that the model is 

achieving a good balance between precision and recall, making it reliable for lane 

detection tasks. 

• Loss: The loss decreases from 0.0051 at 25 epochs to 0.0029 at 100 epochs. A lower 

loss indicates that the model's predictions are getting closer to the actual values, which 

implies better performance and convergence. 

3.5.2. Specific Observations 

   All metrics show a steady improvement as the number of epochs increases. This suggests that 

the model continues to learn and generalize better over time without overfitting, which is a good 

sign of the model's robustness. 

    Both precision and recall are improving together, which is critical for the lane detection task. 

High recall ensures that most lane lines are detected, while high precision ensures that there are 

few false detections. 

     The significant improvement in metrics between 25 and 100 epochs indicates that the 

training process is effective. The model leverages the training data efficiently to enhance its 

performance. 

     Overall, the training appears to be progressing well, and the model is performing admirably 

in detecting lane lines. 
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3.5.3. Our model results progression  

    The following images are extracted frames from a tasting video based on our trained model 

to detect lane lines, in different weather, time, and curvature, in four different epoch values: 

 

 

Figure 21. Training and Validation Loss Figure 20. Training and Validation Accuracy 

Figure 22. Training and Validation F1 Score Figure 23. Training and Validation Recall 

Figure 24. Training and Validation Precision 
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3.5.3.1 Straight and clear lane lines 

 

  

 

 

 

 

 

 

 

 

  Figure 25: Model results from Straight and clear lane lines. 

 As we can see in the previous result the model only needs 25 epochs to detect the lane lines 

due to the Straight and clear lane lines. 

3.5.3.2 Curvy Lane Lines 

Figure 26: Model results in Curvy lane lines. 

25 epochs 50 epochs 

75 epochs 100 epochs 

25 epochs 50 epochs 

75 epochs 100 epochs 
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      In this case, it takes the model 100 epochs to well detect the lane lines and that is because 

of curvy lane lines. 

3.5.3.3 Hard shadows 

Figure 30: Model results in Hard shadows. 

    In this scenario, the model requires 100 epochs to accurately detect the lane lines due to the 

hard shadows which make it difficult to detect the lane lines. 

25 epochs 50 epochs 

75 epochs 100 epochs 
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3.5.3.4 Hard sunlight 

 

    As we can notice from the result shown, the model needs at least 100 epochs to accurately 

detect the lane lines due to the intense sunlight, which complicates their detection. 

3.5.3.5 Blurry footage 

     Figure 28:  Model results in Blurry footage. 

 

 

 

 

 

 

 

 

 

* 

 

 

Figure 27 : Model results in  Hard Sunlight. 

 

25 epochs 50 epochs 

75 epochs 100 epochs 
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In this final scenario, where the footage is blurry which makes it hard to detect lane 

lines, it takes at least 100 epochs to accurately detect the lane lines. 

 

      Overall, it is evident that challenging conditions such as curvy lines, hard shadows, intense 

sunlight, and blurry footage significantly increase the training epochs needed for the model to 

detect lane lines accurately. 

3.5.4. Comparison between the baseline model and Our model results 

    In this part, we will do a comparison between the baseline model results and our adjusted 

model results in four different scenarios: Straight and clear lines, curvy lines, hard shadows, 

hard sunlight, and blurry footage. 

3.5.4.1 Straight and clear lane lines 

 

Figure 29: Comparison of our model and the baseline model in straight and clear lane lines. 

3.5.4.2 Curvy Lane Lines  

Figure 30 : Comparison of our model and the baseline model in Curvy Lane line. 

 

 

 

       

                               Original model                                                                    Developed model 

Original model Developed model 
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3.5.4.3 Hard shadows 

 

Figure 31 : Comparison of our model and the baseline model in Hard shadows. 

3.5.4.4 Hard Sunlight 

 

Figure 32: Comparison of our model and the baseline model in Hard Sunlight. 

3.5.4.5 Blurry footage  

 

      Figure 37: Comparison of our model and the baseline model in Blurry footage. 

 

 

      

                               Original model                                                                    Developed model 

 

    

                               Original model                                                                    Developed model 

 

     

                               Original model                                                                    Developed model 
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Based on the results we obtained, show that our model performs better in most scenarios; 

Straight and clear lines, curvy lines, hard shadows, hard sunlight, and blurry footage, this 

improvement can be attributed to the fact that the baseline model was trained in fewer number 

of epochs. On the other hand, our model was trained with an advanced architecture for 100 

epochs, leading to enhanced performance outcomes. 

3.5.5. Comparison between Computer vision and Deep learning  

    Now we will compare our FCN model output and the computer vision (OpenCV) output in 

different scenarios as follows: 

3.5.5.1 Straight and clear lane lines: 

 

Figure 33: Comparison between CV and DL in Straight and clear lane lines. 

3.5.5.2 Curvy Lane lines 

 

Figure 34 : Comparison between CV and DL in Curvy Lane lines. 

 

 

 

 

       

                 Computer vision (OpenCV)                                          Deep learning FCN 

      

                 Computer vision (OpenCV)                                          Deep learning FCN 
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3.5.5.3 Hard shadows 

 

Figure 35: Comparison between CV and DL in Hard shadows. 

3.5.5.4 Hard Sunlight 

 

Figure 36: Comparison between CV and DL in Hard Sunlight. 

3.5.5.5 Blurry Footage 

 

Figure 37: Comparison between CV and DL in Blurry footage. 

 

 

 

       

                 Computer vision (OpenCV)                                         Deep learning FCN 

 

       

                 Computer vision (OpenCV)                                          Deep learning FCN 

 

      

                 Computer vision (OpenCV)                                          Deep learning FCN 
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      In perfect conditions like Straight and clear lane lines, the traditional computer vision 

method shows a better result than the deep learning model. Except that the results clearly show 

that the Deep learning FCN model has outperformed the traditional computer vision method 

significantly in most of the scenarios we had, in the scenario of images that contain a curvy line 

we noticed that the deep learning FCN model gave much more accurate results than computer 

vision method, the same with scenarios that contain hard shadows and sunlight and blurred 

footage, Since the image processing suffers from several problems. 

   Both traditional image processing and deep learning approaches have their own set of 

advantages and limitations when it comes to lane line detection. Traditional methods are simple, 

efficient, and suitable for controlled environments, but they struggle with variability and require 

manual tuning. Deep learning methods, while computationally intensive and dependent on large 

datasets, offer robustness, adaptability, and high accuracy, making them ideal for the dynamic 

and unpredictable conditions encountered in real-world driving. As technology advances, the 

integration of both methods could potentially leverage their respective strengths, leading to 

more reliable and efficient lane detection systems. 

3.6. Conclusion 

      In this work, we explored the application of deep learning techniques, particularly Fully 

Convolutional Networks (FCNs), for robust lane detection in autonomous driving scenarios. 

We demonstrated the effectiveness of FCNs in accurately identifying lane markings under 

various challenging conditions, such as different times of day, weather, and road curvatures. 

Our experiments on the dataset showed promising results, with the FCN model achieving high 

precision, recall, and F1 scores as training progressed. The steady improvement in these 

metrics, coupled with the reduced loss, indicates that the model was able to generalize well 

without overfitting, making it a strong choice for real-world path detection applications after 

further development. While traditional computer vision methods like OpenCV offer simplicity 

and speed, deep learning approaches like FCNs have the advantage of superior performance 

and adaptability to complex scenarios. As autonomous driving technology continues to 

advance, the adoption of deep learning for lane detection will play a crucial role in ensuring 

safe and reliable navigation on our roads.
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General Conclusion 

        Working on lane detection for autonomous driving using deep learning has been an 

enriching and challenging experience. The journey has highlighted the vast potential and 

current limitations of deep learning in real-world applications. 

At first, there were notable gains when using deep learning models instead of conventional 

computer vision techniques. The ability of the model to reliably identify lanes in a variety of 

scenarios demonstrated the strength of Fully Convolutional Networks (FCNs). But it was soon 

apparent that there were still several difficult situations, including changes in light and shadow 

and intense glare. 

One key lesson from this project is the critical importance of data diversity. While the current 

dataset was sufficient to outperform traditional methods, it lacked the variety needed to 

generalize across all possible driving conditions. This realization underscores the fundamental 

principle in deep learning: the quality and diversity of data are as crucial as the model 

architecture itself. 

In summary, this project has been a profound learning experience. It has not only demonstrated 

the power of deep learning but also revealed its limitations and areas for improvement. By 

focusing on more diverse data, exploring advanced neural network architectures, and expanding 

detection capabilities, we can move closer to developing a truly reliable and versatile 

autonomous driving system. The journey ahead is filled with challenges, but with each step, we 

get closer to realizing the full potential of autonomous driving technology. 

Potential Improvements 

      This is our approach to lane detection using deep learning. While it's not perfect, it is 

significantly more accurate than the traditional computer vision technique, but in the hard 

challenging scenarios still loses the lane in the transition between light and shadow. 

 Here are some ideas to improve our model in the future: 

₋ More data. This is always the case in deep learning of course, but we think with an even 

wider array of conditions (such as transitions between light and shadow) and more 

different cameras, the model can get even better. 

₋ Use of data without lane lines or only one line. This will be useful in areas outside cities 

where there is one line or no line on the road. 
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₋ Expanding the model to detect even more items like vehicle and pedestrian detection, 

we could add that on separate filters at the end. This will make driving safer in crowded 

cities. 

₋ Experiment with different network architectures: While the Fully Convolutional 

Network (FCN) architecture performed well, exploring other deep learning models like 

U-Net or DeepLabV3 could potentially lead to even better results. 

₋ Implement test-time augmentation: Applying transformations like flipping, rotating, or 

scaling to the input images during inference and averaging the predictions can often 

improve robustness and accuracy. 

By incorporating these improvements, the deep learning model for lane detection could 

potentially achieve even higher accuracy, robustness, and generalization capabilities, making it 

more suitable for real-world autonomous driving applications.
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