Dépôt Institutionnel de l'Université BBA

Super-Resolution Using a Deep Convolutional Network

Afficher la notice abrégée

dc.contributor.author MEGUELLATI Khaled, DIBEL Alaa-Eddine
dc.date.accessioned 2024-09-24T09:56:30Z
dc.date.available 2024-09-24T09:56:30Z
dc.date.issued 2024-05-28
dc.identifier.uri https://dspace.univ-bba.dz:443/xmlui/handle/123456789/5471
dc.description.abstract This master thesis deals with Super Resolution (SR) which is a set of image processing techniques used in computer vision to improve the quality of degraded images We focus on the differences between conventional image interpolation algorithms and deep learning based algorithms that have made significant progress in image quality improvement technology We will implement Conventional interpolation techniques and then we will implement deep learning algorithms SRCNN, VDSR,DWSR and EDSR Then the comparative study is performed in terms of calculating the peak signal-to-noise ratio PSNR and the structural similarity index SSIM. en_US
dc.language.iso en en_US
dc.publisher faculté des sciences et de la technologie* univ bba en_US
dc.relation.ispartofseries ;EL/M/2024/04
dc.subject Super Resolution , deep learning, CNN, Wavelet en_US
dc.title Super-Resolution Using a Deep Convolutional Network en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte