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Introduction

Integral equation is encountered in a variety of applications in many fields of science and

engineering, such as the radiative transfer [10, 28], acoustic resonance scattering [7, 8],

population dynamics [6, 23], electromagnetic and elastic waves [12], fluid dynamics [33] and

on many other problems in science and engineering which are set in unbounded domains.

There are several methods to solve integral equations on a bounded domain, for ex-

ample (successive approximations method, degenerate kernel method, projection method,

Nyström method, modified Simpson method,...), however what is not addressed is the

solution of these equations on an unbounded domain i.e. on the real line, such as equation

of the form:

ϕ(x)−
∫ ∞
−∞

K(x, t)ϕ(t)dt = f(x) (1)

where the function K : R2 → C and f ∈ Y := BC(R), the space of bounded continuous

function on R, are assumed known, and ϕ ∈ Y is the solution to be determined (see,e.g.,

[7, 8, 9]).

In this work, we will search for solutions to this type of equation, here are two methods

to solve the integral equation. These methods will be explained later and have been used

in differential equations (see, e.g., [2, 22, 27, 36, 35, 34]).

So it is necessary to solve them over bounded or unbounded domains. In recent years

spectral methods for bounded domains have been found to be a powerful tool for the

solution of differential and integral equations due to their bigger accuracy when compared

to standard methods. The rate of convergence of spectral approximations depends only

on the smoothness of the solution, yielding the ability to achieve high precision with a

small number of data set (see, e.g., [2, 4, 5, 11, 36, 39]).

vi



INTRODUCTION vii

Spectral methods in unbounded domains have also been used and discussed by many

authors with different approaches, (see, e.g., [3, 4, 27, 31, 34, 36]). In general, they are es-

sentially classified into three procedures. First, impose artificial boundaries at a large but

finite distance (a procedure that will henceforth be called Domain truncation and solve

the problem on the interval [−L,L] instead of (−∞,∞)). Second on approximation by

classical orthogonal systems on unbounded domains ( e.g., Laguerre or Hermite polyno-

mials and functions,...), or approximation by non-classical orthogonal systems. Third, one

can employ a mapping for transform (−∞,∞) into the finite interval [−1, 1]. We should

note here that, the domain truncation approach is only a viable option for problems with

rapidly (exponentially) decaying solutions. However, with proper choices of mapping or

scaling parameters, the other three approaches can all be effectively applied to a variety

of problems with rapid or slow decaying solutions (see e.g., [2, 4, 17, 27, 36, 38]). The

thesis is organized as follows:

In chapter 1, we present integral equations and illustrate different criteria of classifica-

tion of these equations. We also we mention some theorems of existence and uniqueness of

the solution of equation (1). We describe conversion of initial value problems to Volterra

integral equations, and finally the conversion of boundary value problem to Fredholm

integral equations.

In chapter 2, we present technique of applications of the numerical methods for the

integral equations on the unbounded intervals where we starts with the method the La-

guerre polynomials and its generalization with the introduction of quadrature formulas

and interpolation of the Laguerre-Gauss. The same study was made for the Hermite and

Chebyshev polynomials and their generalization. Finally, we study by so-called mapping

for the unbounded intervals.

The last chapter presents the aim of this thesis, fredholm integral equation of the second

kind on the real-line is solved by the mapped Chebyshev spectral methods. Convergence

of the presented methods is analyzed and tested. Also we give some examples utilizing

these methods and compare them to classical results.



CHAPTER 1

Introductory Concepts

This chapter is dedicated to recalling some preliminary concepts that we use during the

completion of this work to exploit and use them as a means of clarifying the new notions.

1.1 Definitions

An integral equation is an equation in which the unknown to be determined function u(x)

appears under the integral sign. A typical form of an integral equation is of the form

u(x) = f(x) +

∫ β(x)

α(x)
K(x, t)u(t)dt, (1.1)

where K(x, t) is called the kernel of the integral equation, and α(x) and β(x) are the limits

of integration. In (1.1), it is easily observed that the unknown function u(x) appears under

the integral sign as stated above, and out of the integral sign in most other cases as will

be discussed later. It is important to point out that the kernel K(x, t) and the function

f(x) in (1.1) are given in advance. If we set f(x) = 0 in (1.1), the resulting equation is

called a homogeneous integral equation, otherwise it is called nonhomogeneous or inhomo-

geneous integral equation. Our goal is to determine u(x) that will satisfy (1.1), and this

may be achieved by using different techniques that will be discussed in the forthcoming

chapters. The primary concern of this text will be focused on introducing these methods

and techniques supported by illustrative and practical examples. Integral equations arise

naturally in physics, chemistry, biology and engineering applications modelled by initial

1



1.2. CLASSIFICATION OF INTEGRAL EQUATIONS 2

value problems on a finite interval [a, b]. More details about the history origins of integral

equations can be found in [14] and [20]. In the following example we will discuss how an

initial value problem will be converted to the form of an integral equation.

We will further discuss the algorithms of converting initial value problems and bound-

ary value problems in detail to equivalent integral equations in the forthcoming sections.

As stated above, our task is to determine the unknown function u(x) that appears under

the integral sign as in (1.1) and that will satisfy the given integral equation.

We further point out that integral equations as (1.1) are called linear integral equations.

This classification is used if the unknown function u(x) under the integral sign occurs

linearly i.e. to the first power. However, if u(x) under the integral sign is replaced by a

nonlinear function in u(x), such as u2(x), cosu(x), coshu(x) and eu(x), etc., the integral

equation is called in this case a nonlinear integral equation.

1.2 Classification of Integral Equations

The most frequently used integral equations fall under two main classes namely Fredholm

and Volterra integral equations. However, we distinguish four more related types of integral

equations to the two main classes. In what follows, we give a list of the Fredholm and

Volterra integral equations, and the four related types:

1. Fredholm integral equations.

2. Volterra integral equations.

3. Integro-differential equations.

4. Singular integral equations.

In the following we outline the basic definitions and properties of each type.
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1.2.1 Fredholm Integral Equations

Linear Fredholm Integral Equations

The standard form of linear Fredholm integral equations, where the limits of integration

a and b are constants, are given by the form

φ(x)u(x) = f(x) + λ

∫ b

a
K(x, t)u(t)dt, (1.2)

where the kernel of the integral equationK(x, t) and the function f(x) are given in advance,

and λ is a parameter. The equation (1.2) is called linear because the unknown function

u(x) under the integral sign occurs linearly, i.e. the power of u(x) is one. The value of

φ(x) will give the following kinds of Fredholm linear integral equations:

• When φ(x) = 0, equation (1.2) becomes

f(x) + λ

∫ b

a
K(x, t)u(t)dt = 0, (1.3)

is known as Fredholm linear integral equation of first kind.

• When φ(x) = 1, equation (1.2) becomes

u(x) = f(x) + λ

∫ b

a
K(x, t)u(t)dt, (1.4)

and the integral equation is called Fredholm linear integral equation of the second

kind. In fact, the equation (1.4) can be obtained from (1.2) by dividing both sides

of (1.2) by φ(x) provided that φ(x) 6= 0.

Nonlinear Fredholm Integral Equations

• Of the first kind

f(x) = λ

∫ b

a
K(x, t, u(t))dt. (1.5)

• Of the second kind

u(x) = f(x) + λ

∫ b

a
K(x, t, u(x), u(t))dt. (1.6)
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In summary, the Fredholm integral equation is of the first kind if the unknown function

u(x) appears only under the integral sign. However, the Fredholm integral equation is of

the second kind if the unknown function u(x) appears inside and outside the integral sign.

1.2.2 Volterra Integral Equations

Linear Volterra integral equations

The standard form of Volterra linear integral equations, where the limits of integration

are functions of x rather than constants, are of the form

φ(x)u(x) = f(x) + λ

∫ x

a
K(x, t)u(t)dt, (1.7)

where the unknown function u(x) under the integral sign occurs linearly as stated before.

It is worth noting that (1.7) can be viewed as a special case of Fredholm integral equation

when the kernel K(x, t) vanishes for t > x, x is in the range of integration [a, b].

As in Fredholm equations, Volterra integral equations fall under two kinds, depending

on the value of φ(x), namely:

• When φ(x) = 0, equation (1.7) becomes

f(x) + λ

∫ x

0
K(x, t)u(t)dt = 0, (1.8)

and in this case the integral equation is called Volterra integral equation of the first

kind.

• When φ(x) = 1, equation (1.7) becomes

u(x) = f(x) + λ

∫ x

0
K(x, t)u(t)dt, (1.9)

and in this case the integral equation is called Volterra integral equation of the

second kind.

Nonlinear Volterra Integral Equations

• Of the first kind

f(x) = λ

∫ x

a
K(x, t, u(t))dt. (1.10)
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• Of the first kind

u(x) = f(x) + λ

∫ x

a
K(x, t, u(x), u(t))dt. (1.11)

For example, consider the first order equation

du(t)

dt
= f(x, u), u(0) = u0.

Under suitable continuity on f(x, u) we can ’solve’ this initial value problem to yield

u(x) = u0 +

∫ x

0
f(t, u(t))dt.

Examining the equations (1.2)–(1.9) carefully, the following remarks can be concluded:

In summary, the Volterra integral equation is of the first kind if the unknown function

u(x) appears only under the integral sign. However, the Volterra integral equation is of

the second kind if the unknown function u(x) appears inside and outside the integral sign.

1.2.3 Integro-Differential Equations

Volterra, in the early 1900, studied the population growth, where new type of equations

have been developed and was termed as integro-differential equations. In this type of

equations, the unknown function u(x) occurs in one side as an ordinary derivative, and

appears on the other side under the integral sign. Several phenomena in physics and

biology [20], [22] and [30] give rise to this type of integro-differential equations.

Fredholm Integro-Differential Equations

Fredholm integro-differential equations appear when we convert differential equations to

integral equations. The Fredholm integro-differential equation contains the unknown func-

tion u(x) and one of its derivatives u(n)(x), n ≥ 1 inside and outside the integral sign

respectively. The limits of integration in this case are fixed as in the Fredholm integral

equations. The equation is labeled as integro-differential because it contains differential

and integral operators in the same equation. It is important to note that initial condi-

tions should be given for Fredholm integro-differential equations to obtain the particular
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solutions. The Fredholm integro-differential equation appears in the form:

u(n)(x) = f(x) + λ

∫ b

a
K(x, t)u(t)dt,

where u(n) indicates the nth derivative of u(x). Other derivatives of less order may appear

with u(n) at the left side.

Volterra Integro-Differential Equations

Volterra integro-differential equations appear when we convert initial value problems to in-

tegral equations. The Volterra integro-differential equation contains the unknown function

u(x) and one of its derivatives u(n)(x), n ≥ 1 inside and outside the integral sign. At least

one of the limits of integration in this case is a variable as in the Volterra integral equa-

tions. The equation is called integro-differential because differential and integral operators

are involved in the same equation. It is important to note that initial conditions should

be given for Volterra integro-differential equations to determine the particular solutions.

The Volterra integro-differential equation appears in the form:

u(n)(x) = f(x) + λ

∫ x

a
K(x, t)u(t)dt,

where u(n) indicates the nth derivative of u(x). Other derivatives of less order may appear

with u(n) at the left side.

1.2.4 Singular Integral Equations

An integral equation is called singular if the integration is improper. This usually occurs

if the interval of integration is infinite, or if the kernel becomes unbounded at one or more

points of the interval of consideration a ≤ t ≤ b. Examples of singular integral equations

are given by the following examples:

f(x) =

∫ ∞
0

K(x, t)u(t)dt,

u(x) = f(x) +

∫ 0

−∞
K(x, t)u(t)dt,

u(x) = f(x) +

∫ ∞
−∞

K(x, t)u(t)dt,
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where the singular behavior in these examples has resulted from the range of integration

becoming infinite. Based on the nature of unboundedness of the kernel, one can have

weakly singular integral equation and strongly singular integral equation.

Weakly singular integral equation

If K(x, t) is of the form

K(x, t) =
L(x, t)

|x− t|α
,

where L(x, t) is bounded in [a, b] × [a, b] with L(x, x) 6= 0, and α is a constant such that

0 < α < 1, then the integral
∫ b
a K(x, t)dt (a < x < b) exists in the sense of Riemann,

and the kernel is weakly singular, and the corresponding integral equation (first or second

kind) is called a weakly singular integral equation. Also the logarithmically singular kernel

K(x, t) = L(x, t) ln |x− t|,

where L(x, t) is bounded with L(x, x) 6= 0, is also regarded as a weakly singular kernel.

If the kernel K(x, t) is of the form

K(x, t) =
L(x, t)√
x− t

, a < x < b,

the corresponding integral equation (first or second kind) is called a Abel’s integral equa-

tion. The most general form Abel’s integral equation is given by

f(x) =

∫ x

0

1

(x− t)α
u(t)dt, 0 < α < 1.

Strong singular integral equation

If the kernel K(x, t) is of the form

K(x, t) =
L(x, t)

x− t
, a < x < b,

where L(x, t) is a differentiable function with L(x, x) 6= 0 (the function L can still be

weaker!), then the kernel K(x, t) has a strong singularity at t = x , or rather it has a

singularity of Cauchy type at t = x.
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If the kernel K(x, t) is of the form

K(x, t) =
L(x, t)

(x− t)2
, a < x < b,

where L(x, t) is continuous and L(x, x) 6= 0, then K(x, t) has a very strong singularity at

t = x. It is clear that the kernel in each equation becomes infinite at the upper limit t = x.

1.3 Existence Solutions of Integral Equations

It is also known to be an important step before solving each equation. in this section to

prove the existence of solutions of linear integral equations (1), we will apply Arzelà-Ascoli,

Riesz theory and Fredholm alternative,

Definition 1.1. A set G in Rm is called Jordan measurable if the characteristic function

χG, given by χG(x) = 1 for x ∈ G and χG(x) = 0 for x /∈ G, is Riemann integrable.

Theorem 1.2 (Arzelà-Ascoli). Each sequence from a subset U ⊂ C[a, b] contains a uni-

formly convergent subsequence; i.e., U is relatively sequentially compact, if and only if it

is bounded and equicontinuous, i.e., if there exists a constant C such that

|ϕ(x)| ≤ C

for all x ∈ [a, b] and all ϕ ∈ U . and for every ε > 0 there exists δ > 0 such that

|ϕ(x)− ϕ(y)| < ε,

for all x, y ∈ [a, b] with |x− y| < δ and all ϕ ∈ U .

Theorem 1.3 (Riesz). Given a compact linear operator A : X → X on a normed space

X, we define L := I −A, where I denotes the identity operator

1. The nullspace of the operator L, i.e.,

N(L) := {ϕ ∈ X : Lϕ = 0}

is a finite-dimensional subspace.
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2. The range of the operator L, i.e.,

L(X) := {Lϕ : ϕ ∈ X}

is a closed linear subspace.

3. There exists a uniquely determined nonnegative integer r, called the Riesz number

of the operator A, such that

0 = N(L0) $ N(L1) $ · · · $ N(Lr) = N(Lr+1) = ... , (1.12)

and

X = L0(X) % L1(X) % · · · % Lr(X) = Lr+1(X) = ... . (1.13)

Furthermore, we have the direct sum

X = N(Lr)⊕ Lr(X),

i.e., for each ϕ ∈ X there exist uniquely determined elements ψ ∈ N(Lr) and χ ∈ Lr(X)

such that ϕ = ψ + χ.

We now consider the integral equations of the form

ϕ(x)−
∫ ∞
−∞

K(x, t)ϕ(t)dt = f(x), (1.14)

where the functions K : R2 → C and f ∈ Y := BC(R), the space of bounded continuous

on R, and are assumed known, and ϕ ∈ Y is the solution to be determined. Define the

integral operator A by

Aϕ(x) =

∫
R
K(s, t)ϕ(t)dt, x ∈ R. (1.15)

Let X := L∞(R) . Then A : X → X and is bounded if and only if K is measurable,

K(x, .) ∈ L1(R) for almost all x ∈ R, and

|||K||| := ess. sup
x∈R
‖K(x, .)‖1 <∞. (1.16)

Clearly, A : X → Y and is bounded if and only if, in addition, K(x, .) ∈ L1(R) for all

x ∈ R, and Aϕ ∈ C(R) for every ϕ ∈ X, in which case it holds also that

|||K||| = sup
x∈R
‖K(x, .)‖1.
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If A : X → Y and is bounded, then ‖A‖ = |||K||| ,(see [9]).

In the case that K is measurable and (1.16). holds it is convenient to identify K : R2 → C

with the mapping x→ K(x, .) in Z := L∞(R, L1(R)), which is measurable and essentially

bounded with norm |||K|||. Let K denote the set of those functions K ∈ Z having the

property that Aϕ ∈ C(R) for every ϕ ∈ X, where A is the integral operator (1.15). It is

easy to see that Z is a Banach space with the norm |||.||| and that K is a closed subspace

of Z. Further, A : X → Y and is bounded if and only if K ∈ K.

Then the integral equation (1.14) can be written in terms of the operator A and I, the

identity operator, as

(I −A)ϕ = f. (1.17)

Definition 1.4. Let E and F be Banach spaces and let T : E → F be a bounded linear

operator. T is said to be Fredholm if the following hold.

1. ker(T ) is finite dimensional.

2. Ran(T ) is closed.

3. Coker(T ) is finite dimensional.

If T is Fredholm define the index of T denoted Ind(T ) by

Ind(T ) = dim(ker(T ))− dim(Coker(T )).

Theorem 1.5 (Fredholm alternative). Let W ⊂ BC(R, L1(R)). If W satisfies these

conditions and I − A is injective for all K ∈ W then I − A is also surjective for all

K ∈ W and, moreover, the inverse operators (I − A)−1 on Y are uniformly bounded for

K ∈W .

Remark 1.6 ([9]). We note certainly BC(R, L1(R)) ⊂ K; i.e., K ∈ K if K ∈ Z and if,

additionally, for all x ∈ R,

‖K(x, .)−K(x′, .)‖1 → 0 as x′ → x. (1.18)

Not much is known about the solvability in Y (or in other function spaces) of general

integral equations of the form (1.14), even when the kernel K ∈ Z satisfies (1.18).
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Corollary 1.7. Let K ∈ Z. If K satisfies (1.18) sufficient additional conditions so that

A is compact, for ∫
R
|K(x, t)|dt→ 0 as x→∞, (1.19)

Theorem 1.8. Let K ∈ Z. If K satisfies (1.18)–(1.19) sufficient additional conditions

and x ∈ R then (I −A) is Fredholm of index zero on Y so that

(I −A) injective⇒ (I −A) surjective, (I −A)−1 ∈ B(Y ),

where B(Y ) denotes the Banach space of bounded linear operators on Y .

Proof. (see, [8])

For more detail see [7, 8, 9].

1.4 Converting IVP to Volterra Integral Equation

In this section, we will study the method that converts an initial value problem (IVP) to

an equivalent Volterra integral equation. Before outlining the method needed, we wish to

recall the useful transformation formula (1.20). This is an essential and useful formula

that will be employed in the method that will be used in the conversion technique. We

wish to recall the useful transformation formula:∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
f(xn)dxn · · · dx1 =

1

(n− 1)!

∫ x

a
(x− t)n−1f(t)dt, (1.20)

we apply this technique to a second order initial value problem given by:

y′′(x) + P (x)y′(x) +Q(x)y(x) = f(x), (1.21)

with the initial conditions

y(a) = α, y′(a) = β,

we first set

y′′(x) = u(x), (1.22)
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where u(x) is a continuous function on the interval of discussion. This can be simply

performed by integrating both sides of (1.22) from a to x where we find:

y′(x) = β +

∫ x

a
u(t)dt. (1.23)

Integrating both sides of (1.23) from a to x gives

y(x) = α+ β(x− a) +

∫ x

a

∫ x

a
u(t)dtdt. (1.24)

Using the conversion formulas (1.20),we obtain

y(x) = α+ β(x− a) +

∫ x

a
(x− t)u(t)dt. (1.25)

Substituting (1.22), (1.23) and (1.25) into (1.21) leads to the following Volterra integral

equation of the second kind

u(x) = F (x) +

∫ x

a
K(x, t)u(t)dt, (1.26)

where

K(x, t) = −P (x)−Q(x)(x− t),

and

F (x) = f(x)− βP (x)− (α+ β(x− a))Q(x).

Example 1.9. We want to derive an equivalent Volterra integral equation to the following

initial value problem

y′′ + 5y′ + 6y = 0, with y(0) = 1, y′(0) = 1, (1.27)

where

P (x) = 5, Q(x) = 6, f(x) = 0, a = 0, α = β = 1.

Consequently, the desired Volterra integral equation of the second kind is given by

u(x) = −6x− 11 +

∫ x

0
(6t− 6x− 5)u(t)dt, (1.28)
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1.5 Converting BVP to Fredholm Integral Equations

We present in this section how a boundary value problem (BVP) can be converted to

an equivalent Fredholm integral equation. The method is similar to that discussed in the

previous section with some exceptions that are related to the boundary conditions. It is to

be noted here that the method of reducing a BVP to a Fredholm integral equation is com-

plicated and rarely used. Let us consider the following second-order ordinary differential

with the given boundary conditions:

y′′(x) + P (x)y′(x) +Q(x)y(x) = f(x), a < x < b, (1.29)

with the boundary conditions:

y(a) = α, y(b) = β. (1.30)

We first set

y′′(x) = u(x). (1.31)

Integrating both sides of (1.31) from a to x gives

y′(x) = y′(a) +

∫ x

a
u(t)dt. (1.32)

Note that y′(a) is not prescribed yet. Integrating both sides of equation (1.32) with respect

to x from a to x and applying the given boundary condition at x = a, we find

y(x) = y(a) + (x− a)y′(a) +

∫ x

a

∫ x

a
u(t)dtdt

= α+ (x− a)y′(a) +

∫ x

a
(x− t)u(t)dt, (1.33)

and using the boundary condition at x = b yields

y(b) = β = α+ (b− a)y′(a) +

∫ b

a
(b− t)u(t)dt, (1.34)

and the unknown constant y′(a) is determined as

y′(a) =
β − α
b− a

− 1

b− a

∫ x

a
(b− t)u(t)dt− 1

b− a

∫ b

x
(b− t)u(t)dt. (1.35)
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Hence the solution (1.33) can be rewritten as

y(x) = α+(x−a)

(
β − α
b− a

− 1

b− a

∫ x

a
(b− t)u(t)dt− 1

b− a

∫ b

x
(b− t)u(t)dt

)
+

∫ x

a
(x−t)u(t)dt.

Therefore, equation (1.29) can be written in terms of u(x) as

u(x) = F (x) +

∫ b

a
K(x, t)u(t)dt, (1.36)

where

K(x, t) =


P (x)(a−t)−Q(x)(b−x)(a−t)

b−a if a ≤ t ≤ x
P (x)(b−t)−Q(x)(a−x)(b−t)

b−a if x ≤ t ≤ b

and

F (x) = f(x)− P (x)
β − α
b− a

−Q(x)

(
α+ (x− a)

β − α
b− a

)
.

This is a complicated procedure to determine the solution of a BVP by equivalent Fredholm

integral equation.

Example 1.10. We want to derive an equivalent Fredholm integral equation to the fol-

lowing boundary value problem

y′′ + 4y = sinx, 0 < x < 1 with y(0) = y(1) = 0, (1.37)

where

P (x) = 0, Q(x) = 4, f(x) = sinx, a = 0, b = 1, α = β = 0.

Consequently, the desired Fredholm integral equation of the second kind is given by

u(x) = sinx+

∫ b

a
K(x, t)u(t)dt, (1.38)

where the kernel K(x, t) is defined by

K(x, t) =

 4t(1− x) if a ≤ t ≤ x

4x(1− t) if x ≤ t ≤ b

which can be easily shown that the kernel is symmetric.



CHAPTER 2

Methods for Unbounded Intervals

Introduction

In this chapter, we discuss a spectral methods in unbounded domains have also been used

and discussed by many authors with different approaches, (see, e.g., [3, 4, 27, 31, 36]). It’s

been more than forty years since Grosch and Orszag [17] showed that differential equations

on a semi-infinite interval can be solved very effectively by mapping the interval into [−1, 1]

using an algebraic function for the map. Boyd [4] generalized their technique and provided

in Boyd [2, Ch. 17, p. 338] an excellent extensive review on general properties and practical

implementations for many of these approaches. The many options for unbounded domains

fall into three broad categories:

1. Domain truncation: approximation of y ∈ [−∞,∞] or y ∈ [0,∞] by [−L,L] or [0, L],

respectively, with L >> 1 (see, e.g., [13, 15, 16, 37]).

2. Basis functions intrinsic to an infinite interval (sinc, Hermite) or semi-infinite (La-

guerre) (see, e.g., [3, 5, 29]).

3. Change-of-coordinate (mapping) of the unbounded interval to a finite one, followed

by application of Chebyshev polynomials or a Fourier series (see, e.g., [2, 27, 35, 38]).

15
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2.1 Laguerre Polynomials and Functions

We present in this section some basic properties of Laguerre polynomials and functions,

and introduce the Laguerre-Gauss-type quadrature formulas and the associated interpo-

lation.

The Laguerre polynomials Lk = Lk(x) satisfy the second-order linear ordinary differ-

ential equation

xy′′(x) + (1− x)y′(x) + ky(x) = 0, (2.1)

and are defined by

Lk(x) =
1

k!
ex

dk

dxk
(xke−x)

=
(−1)k

k!

[
xk − k2xk−1 +

k2(k − 1)2

2!
xk−2 + ...

]
,

gives the recursion relation

Lk+1(x) =
1

k + 1
[(2k + 1− x)Lk(x)− kLk−1(x)] , k = 1, 2, 3, ..., (2.2)

with L0(x) = 1 and L1(x) = −x + 1. Write down few first Laguerre polynomials; we

determine them directly from formula (2.2):

L0(x) = 1,

L1(x) = −x+ 1,

L2(x) =
1

2
(x2 − 4x+ 2),

L3(x) =
1

6
(−x3 + 9x2 − 18x+ 6),

L4(x) =
1

24
(x4 − 16x3 + 72x2 − 96x+ 24),

L5(x) =
1

120
(−x5 + 25x4 − 200x3 + 600x2 − 600x+ 120),

L6(x) =
1

720
(x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x+ 720).

They are orthogonal in (0,+∞) with respect to the weight ω(x) = e−x∫ ∞
0
Ln(x)Lm(x)e−xdx = δnm. (2.3)
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2.1.1 Generalized Laguerre Polynomials

The generalized Laguerre polynomials (GLPs) L(α)
n = L(α)

n (x) (α > −1) satisfy the equa-

tion

xy′′(x) + (α+ 1− x)y′(x) + ky(x) = 0. (2.4)

and are defined by the formulas

L(α)
k (x) =

1

k!
x−αex

dk

dxk
(xk+αe−x)

=
k∑
i=0

Ck−ik+α

(−x)i

i!
,

gives the recursion relation

L(α)
k+1(x) =

1

k + 1

[
(2k + α+ 1− x)L(α)

k (x)− (k + α)L(α)
k−1(x)

]
, k ≥ 1. (2.5)

with L(α)
0 (x) = 1 and L(α)

1 (x) = −x+ 1 + α.

The first generalized polynomials of Laguerre are

L(α)
0 (x) = 1,

L(α)
1 (x) = −x+ α+ 1,

L(α)
2 (x) =

x2

2
− (α+ 2)x+

(α+ 2)(α+ 1)

2
,

L(α)
3 (x) =

−x3

6
+

(α+ 3)x2

2
− (α+ 3)(α+ 2)x

2
+

(α+ 3)(α+ 2)(α+ 1)

6
.

They are orthogonal in (0,+∞) with respect to the weight ωα(x) = xαe−x:∫ ∞
0
L(α)
n (x)L(α)

m (x)xαe−xdx =
Γ(α+ n+ 1)

n!
δnm. (2.6)

2.1.2 Generalized Laguerre Functions

In many applications, the underlying solutions decay algebraically or exponentially at

infinity, it is certainly not a good idea to approximate these functions by GLPs which

grow rapidly at infinity. It is advisable to approximate them by spectral expansions of

generalized Laguerre functions (GLFs).

The generalized Laguerre functions (GLFs) are defined by

L̂(α)
k (x) = e−x/2L(α)

k (x),
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three-term recurrence relation

(k + 1)L̂(α)
k+1(x) = (2k + α+ 1− x)L̂(α)

k (x)− (k + α)L̂(α)
k−1(x), (2.7)

L̂(α)
0 (x) = e−x/2, L̂(α)

1 (x) = (α+ 1− x)e−x/2.

the GLFs are orthogonal with respect to the weight function ω̃α(x) = xα∫ ∞
0
L̂(α)
n (x)L̂(α)

m (x)xαdx =
Γ(α+ n+ 1)

n!
δnm. (2.8)

In order to avoid such a problem for approximating functions that vanish at +∞, it may

be more appropriate to expand in the Laguerre functions defined as L̂k(x) = e−x/2Lk(x).

Thanks to (2.3), they satisfy∫ ∞
0
L̂k(x)L̂m(x)dx = δkm, k,m ≥ 0. (2.9)

Computation of Nodes

It suffices to compute the Laguerre-Gauss quadrature nodes and weights. We find the

zeros {x(α)
j }Nj=0 of L(α)

N+1(x) are the eigenvalues of the symmetric tridiagonal matrix

AN+1 =



a0 −
√
b1

−
√
b1 a1 −

√
b2

. . .
. . .

. . .

−
√
bn−1 an−1 −

√
bn−1

−
√
bn an


whose entries are derived from (2.5):

aj = 2j + α+ 1, 0 ≤ j ≤ N ; bj = j(j + α), 1 ≤ j ≤ N. (2.10)
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a. Node distribution b. Zeros of L(α)
16 (x)

0 20 40 60 80 100 120

N=8

N=16

N=24

N=32

0 10 20 30 40 50 60 70

α=−0.5

α=0

α=2

α=4

α=6

Figure 2.1: a. Distribution of Laguerre-Gauss nodes {xj}Nj=0 with N=8,16,24,32 with

α = 0; b. Distribution of L(α)
16 (x) zeros with various α.

Definition 2.1. Gauss-type quadrature is to seek the best numerical approximation of an

integral by selecting optimal nodes at which the integrand is evaluated. It belongs to the

family of the numerical quadratures:∫ b

a
f(x)ω(x)dx =

N∑
j=0

f(xj)ωj + EN [f ], (2.11)

where {xj , ωj}Nj=0 are the quadrature nodes and weights, and EN [f ] is the quadrature error.

Theorem 2.2. Let {xαj , ωαj }Nj=0 be a set of Laguerre-Gauss or Laguerre-Gauss-Radau

quadrature nodes and weights.

• For Laguerre-Gauss quadrature,

{x(α)
j }

N
j=0 are the zeros of L(α)

N+1(x)

ω
(α)
j = −Γ(N + α+ 1)

(N + 1)!

1

L(α)
N (x

(α)
j )∂xL(α)

N+1(x
(α)
j )

= − Γ(N + α+ 1)

(n+ α+ 1)(N + 1)!

x
(α)
j

[L(α)
N (x

(α)
j )]2

,

• For Laguerre-Gauss-Radau quadrature,

x
(α)
0 = 0 and {x(α)

j }
N
j=1 are the zeros of ∂L(α)

N+1(x),
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ω
(α)
0 =

(α+ 1)Γ2(α+ 1)N !

Γ(N + α+ 2)
,

ω
(α)
j =

Γ(N + α+ 1)

N !(N + α+ 1)

1

[∂xL(α)
N (x

(α)
j )]2

=
Γ(N + α+ 1)

N !(N + α+ 1)

1

[L(α)
N (x

(α)
j )]2

, 1 ≤ j ≤ N.

With the above nodes and weights, we have∫ ∞
0

p(x)xαe−xdx =
N∑
j=0

p(x
(α)
j )ω

(α)
j , ∀p ∈ P2N+δ, (2.12)

where δ = 1, 0 for the Laguerre-Gauss quadrature and Laguerre-Gauss-Radau quadrature,

respectively. And∫ b

a
f(x)e−xdx =

N−1∑
j=0

f(xj)ωj + EN [f ], with EN [f ] =
(N !)2

(2N)!
f (2N)(ξ).

Proof. ([see [36],p ,244])

Remark 2.3. If α = 0, we simply denote the usual Laguerre-Gauss-type nodes and weights

by {xj , ωj}Nj=0.

• In the Gauss case, {xj}Nj=0 are the zeros of LN+1(x), and the weights have the

representations:

ωj =
xj

(N + 1)2[LN (xj)]2
, 0 ≤ j ≤ N. (2.13)

• In the Gauss-Radau case, x0 = 0 and {xj}Nj=1 are the zeros of ∂xLN+1(x), and the

weights are expressed by

ωj =
1

(N + 1)[LN (xj)]2
, 0 ≤ j ≤ N. (2.14)

With a slight modification of the quadrature weights in Theorem 2.2, we can derive

the quadrature formulas associated with the generalized Laguerre functions.
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Theorem 2.4. Let {xαj , ωαj }Nj=0 be the set of Laguerre-Gauss or Laguerre-Gauss-Radau

quadrature nodes and weights in Theorem 2.2. Define

ω̃
(α)
j = ex

(α)
j ω

(α)
j , 0 ≤ j ≤ N,

and

P̂N := {ϕ : ϕ = e−x/2φ, ∀φ ∈ PN}.

Then we have the modified quadrature formula∫ ∞
0

p(x)q(x)xαdx =
N∑
j=0

p(x
(α)
j )ω

(α)
j , ∀p ∈ P2N+δ,

where δ = 1, 0 for the Laguerre-Gauss quadrature and Laguerre-Gauss-Radau quadrature,

respectively.

2.1.3 Interpolations and Approximations

Let {xj , ωj}Nj=0 be a set of Gauss, Gauss-Radau or Gauss-Lobatto quadrature nodes and

weights. We define the corresponding discrete inner product and norm as

〈u, v〉N,ω =

N∑
j=0

u(xj)v(xj)ω, ‖ u ‖N,ω=
√
〈u, u〉N,ω. (2.15)

Note that 〈., .〉N,ω is an approximation to the continuous inner product (u, v)ω , and the

exactness of Gauss-type quadrature formulas implies

〈u, v〉N,ω = (u, v)ω, ∀u, v ∈ P2N+δ, (2.16)

where δ = 1, 0 and − 1 for the Gauss, Gauss-Radau and Gauss-Lobatto quadrature,

respectively.

Definition 2.5. For any u ∈ C(Λ), The definition of the interpolation operator IN : C(Λ)→ PN

such that

(INu)(xj) = u(xj) = u(xj), 0 ≤ j ≤ N, (2.17)

where Λ = (a, b), [a, b), [a, b] for the Gauss, Gauss-Radau and Gauss-Lobatto quadrature,

respectively.
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Consider the interpolation using generalized Laguerre functions, let {x(α)
j , ω̃

(α)
j }Nj=0 be

a set of Laguerre-Gauss or Laguerre-Gauss-Radau quadrature nodes and weights. We

define the corresponding discrete inner product and norm as

〈u, v〉N,ω̃α =

N∑
j=0

u(x
(α)
j )v(x

(α)
j )ω̃

(α)
j , ‖ u ‖N,ω̃α=

√
〈u, u〉N,ω̃α . (2.18)

where ω̃
(α)
j = ex

(α)
j ω

(α)
j , 0 ≤ j ≤ N .

Definition 2.6. Let PN be the finite dimensional space defined by

PN := {φ : φ = e−x/2ϕ, ∀ϕ ∈ PN}.

Define the corresponding interpolation operator I(α)
N : C[0,+∞)→ PN such that

(I(α)
N u)(x

(α)
j ) = u(x

(α)
j ), 0 ≤ j ≤ N.

which can be expressed by

(I(α)
N u)(x) =

N∑
k=0

ũ
(α)
k L̂

(α)
k (x) ∈ PN .

where

ũ
(α)
k =

k!

Γ(k + α+ 1)

N∑
j=0

u(x
(α)
j )L̂(α)

k (x
(α)
j )ω̃

(α)
j , 0 ≤ j ≤ N.

Theorem 2.7. Let α > −1. If u ∈ C(R+)∩Bm
α (R+) and ∂xu ∈ Bm

α (R+) with 0 ≤ m ≤ N + 1,

then

‖I(α)
N u− u‖ωα ≤ c

√
(N −m+ 1)!

N !
(‖∂mx u‖ωα+m−1 + (lnN)1/2‖∂mx u‖ωα+m),

where c is a positive constant independent of m, N and u.

Now consider the approximations by (generalized) Laguerre polynomials or functions.

Consider the L2
ωα-orthogonal projection PN,α : L2

ωα(R+)→ PN , defined by

(PN,αu− u, vN )ωα = 0, ∀vN ∈ PN , (2.19)
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so we have

PN,αu(x) =
N∑
k=0

ũ
(α)
k L

(α)
k with ũ

(α)
k (x) =

k!

Γ(k + α+ 1)

∫
R+

u(x)L(α)
k (x)ωα(x)dx.

we introduce the space

Bm
α (R+) := {u : ∂kxu ∈ L2

ωα+k
(R+), 0 ≤ k ≤ m},

equipped with the norm and semi-norm

‖u‖Bmα =

(
m∑
k=0

‖∂kxu‖2ωα+k

)1/2

, |u|Bmα = ‖∂mx u‖ωα+m .

As usual, we will drop the subscript α if α = 0. Notice that the weight function cor-

responding to the derivative of different order is different in Bm
α (R+), as opposed to the

Sobolev space Hm
α (R+).

Theorem 2.8. Let α > −1. If u ∈ Bm
α (R+) and 0 ≤ m ≤ N + 1, we have

‖∂lx(PN,αu− u)‖ωα+l ≤

√
(N −m+ 1)!

(N − l + 1)!
‖∂mx u‖ωα+m , 0 ≤ l ≤ m.

we consider the projection of the Laguerre function, recall that ω̂α = xα. For any

u ∈ L2
ω̂α

(R+), we have uex/2 ∈ L2
ωα(R+). Define the operator

P̂N,αu = e−x/2PN,α(uex/2) ∈ P̂N .

Clearly

(P̂N,αu− u, vN )ω̂α = (PN,α(uex/2)− (uex/2), (vex/2))ωα = 0, ∀vN ∈ P̂N .

Let us define

B̂m
α (R+) := {u : ∂̂kxu ∈ L2

ω̂α+k
(R+), 0 ≤ k ≤ m},

equipped with the norm and semi-norm

‖u‖B̂mα =

(
m∑
k=0

‖∂̂kxu‖2ω̂α+k

)1/2

, |u|B̂mα = ‖∂̂mx u‖ω̂α+m .

Theorem 2.9. Let ∂̂x = ∂x+1
2 and α > −1. Then for any u ∈ B̂m

α (R+) and 0 ≤ m ≤ N + 1,

‖∂̂lx(P̂N,αu− u)‖ω̂α+l ≤

√
(N −m+ 1)!

(N − l + 1)!
‖∂̂mx u‖ω̂α+m , 0 ≤ l ≤ m.

For more detail see [36].
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2.2 Hermite Polynomials and Functions

We present in this section basic properties of the Hermite polynomials and functions, and

derive Hermite-Gauss quadrature and the associated interpolation.

2.2.1 Hermite Polynomials

The Hermite polynomial Hk = Hk(x) satisfies the second-order linear ordinary differential

equation

y′′(x)− 2xy′(x) + 2ky(x) = 0, (2.20)

and is defined by the formulas

Hk(x) = (−1)kex
2 dk

dxk
(e−x

2
)

=

[k/2]∑
m=0

(−1)mk!

m!(k − 2m)!
(2x)k−2m.

where [k/2] denotes again the integral part of k/2. Then the Hermite polynomials satisfy

the three-term recurrence relation:

Hk+1(x) = 2xHk(x)− 2kHk−1(x), k ≥ 1, (2.21)

with H0(x) = 1 and H1(x) = 2x.

and the first few members are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x.

some properties of the Hermite polynomials are

Hk(−x) = (−1)kHk(x),

H ′k(x) = 2xHk(x)−Hk+1(x), k ≥ 0.

∂nxHk(x) =
2nk!

(k − n)!
Hk−n(x), k ≥ n,
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The Hermite polynomials, defined on the whole line R, are orthogonal with respect to

the weight function ω(x) = e−x
2
, namely,

∫ +∞

−∞
Hk(x)Hm(x)ω(x)dx =

 0 k 6= m

√
π2kk! k = m

(2.22)

2.2.2 Hermite Functions

The Hermite functions hk(x) are introduced by the formula

hk(x) =
1

π1/4
√

2kk!
e−x

2/2Hk(x), k ≥ 0, x ∈ R, (2.23)

which are normalized so that ∫ +∞

−∞
hk(x)hm(x)dx = δkm.

Computation of Nodes

The zeros {xj}Nj=0 of HN+1(x) are the eigenvalues of the symmetric tridiagonal matrix

AN+1 =



a0 −
√
b1

−
√
b1 a1 −

√
b2

. . .
. . .

. . .

−
√
bn−1 an−1 −

√
bn−1

−
√
bn an


whose entries are derived from (2.21):

aj = 0, 0 ≤ j ≤ N ; bj = j/2, 1 ≤ j ≤ N.
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Node distribution
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N=16

N=24
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N=40

Figure 2.2: Distribution of the Hermite-Gauss nodes {xj}Nj=0 with N=8,16,24,32.

Theorem 2.10. Let {xj}Nj=0 be the zeros of HN+1(x), and let {ωj}Nj=0 be given by

ωj =

√
π2NN !

(N + 1)[HN (xj)]2
, 0 ≤ j ≤ N. (2.24)

Then, we have ∫ +∞

−∞
p(x)e−x

2
dx =

N∑
j=0

p(xj)ωj , ∀p ∈ P2N+1, (2.25)

and ∫ b

a
f(x)e−x

2
dx =

N−1∑
j=0

f(xj)ωj + EN [f ], with EN [f ] =
N !
√
π

2N (2N)!
f (2N)(ξ).

Proof. ([see [36],p ,258])

2.2.3 Interpolations and Approximations

Let IhN be the interpolation operator associated with the Hermite-Gauss points {xj}Nj=0

such that for any u ∈ C(R),

IhNu ∈ PN ; (IhNu)(xj) = u(xj), 0 ≤ j ≤ N, (2.26)

which can be expanded as

(IhNu)(x) =
N∑
k=0

ũkHk(x), (2.27)
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where

ũk =
1

2k

N∑
i=0

u(xi)Hk(xi)ωi, 0 ≤ k ≤ N. (2.28)

Let

L2
ω(R) = {u| u is measurable and ‖u‖L2

ω
<∞},

is a Hilbert space with the inner product

(u, v)L2
ω(R) =

∫
R
u(x)v(x)ω(x)dx.

Theorem 2.11. For any u ∈ Bm
ω (R) and m ≥ 1 with 0 ≤ k ≤ m, then

‖IhNu− u‖Bkω ≤ cN
1
3

+m−k
2 ‖u‖Bmω .

Proof. see [19]

Now consider approximations by Hermite polynomials or functions. Let ω = e−x
2

be

the Hermite weight function as before. Consider the L2
ω-orthogonal projection PN : L2

ω(R)→ PN ,

defined by

(u− PNu, vN )ω = 0, ∀vN ∈ PN , (2.29)

It is clear that

PNu(x) =

N∑
k=0

ũkHk with ũk(x) =
1√
π2kk!

∫
R
u(x)Hk(x)ω(x)dx.

Theorem 2.12. For any u ∈ Bm
ω (R) with 0 ≤ m ≤ N + 1,

‖∂lx(PNu− u)‖ω ≤ 2(l−m)/2

√
(N −m+ 1)!

(N − l + 1)!
‖∂mx u‖ω, 0 ≤ l ≤ m.

Lemma 2.13 (see [19]). For any u ∈ Bm
ω (R) and m ≥ 1 with 0 ≤ k ≤ m, then

‖PNu− u‖Bkω ≤ cN
m−k

2 ‖u‖Bmω .

For the Hermite function approximations, notice that for any u ∈ L2(R), we have

uex
2/2 ∈ L2

ω(R). Define

P̂Nu = e−x
2/2PN (uex

2/2) ∈ P̂N ,
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which satisfies

(u− P̂Nu, vN ) = (uex/2 − PN (uex/2), vex/2)ω = 0, ∀vN ∈ P̂N .

The following result is a direct consequence of Theorem 2.12.

Corollary 2.14. Let ∂̂x = ∂x + x. For any ∂̂mx ∈ L2(R) with 0 ≤ m ≤ N + 1,

‖∂̂lx(P̂Nu− u)‖ω ≤ c2(l−m)/2

√
(N −m+ 1)!

(N − l + 1)!
‖∂̂mx u‖ω, 0 ≤ l ≤ m.

where c is a positive constant independent of m, N and u.

2.3 Jacobi Polynomials

In this section we collect some useful formulas for these polynomials (for more details, see,

e.g., [5], [36] and [29]).

2.3.1 Basic Properties

The Jacobi polynomials, Jα,βk (x), are solutions of the second-order linear ordinary differ-

ential equation

(1− x2)y′′(x) + [β − α− (α+ β + 2)x]y′(x) + k(k + α+ β + 1)y(x) = 0, (2.30)

and are defined by the formulas

Jα,βk (x) =
(−1)k

2kk!
(1− x)−α(1 + x)−β

dk

dxk
[(1− x)α+k(1 + x)β+k] (2.31)

= 2−k
k∑

m=0

Cmk+αC
k−m
k+β (x− 1)k−m(x+ 1)m, (2.32)

where the Cab are binomial coefficients. The Jacobi polynomials are generated by the

three-term recurrence relation

Jα,βk+1(x) = (aα,βk x− bα,βk )Jα,βk (x)− cα,βk Jα,βk−1(x), n ≥ 1,

Jα,β0 (x) = 1, Jα,β1 (x) =
1

2
(α+ β + 2)x+

1

2
(α− β),
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where

aα,βk =
(2k + α+ β + 1)(2k + α+ β + 2)

2(k + 1)(k + α+ β + 1)
,

bα,βk =
(β2 − α2)(2k + α+ β + 1)

2(k + 1)(k + α+ β + 1)(2k + α+ β)
,

cα,βk =
(k + α)(k + β)(2k + α+ β + 2)

(k + 1)(k + α+ β + 1)(2k + α+ β)
,

Jacobi polynomials for which α = β are called ultraspherical polynomials and are denoted

simply by Jαk (x), than the formula (2.31) is defined by:

Jαk (x) =
(−1)k

2kk!
(1− x2)−α

dk

dxk
[(1− x2)α+k].

and the norm is∫ 1

−1
(1− x)α(1 + x)β[Jα,βk (x)]2dx =

2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β)k!Γ(k + α+ β + 1)
.

Theorem 2.15. The Jacobi polynomials Jα,βk (x) are the orthogonal polynomials with the

weight function ω(x) = (1 − x)α(1 + x)β, α > −1, β > −1. The Gauss-Jacobi rule is

defined by ∫ 1

−1
(1− x)α(1 + x)βf(x)dx ≈

k∑
i=0

ωif(xi),

where the nodes and weight given by

• For Jacobi-Gauss

{xi}ki=0 are the zeros of Jα,βk (x),

ωi =
Gα,βk

Jα,βk (xi)∂J
α,β
k+1(xi)

.

• For Jacobi-Gauss-Radau

x0 = −1 and {xi}ki=1 be the zeros of Jα,β+1
k (x),

ω0 =
2α+β+1(β + 2)Γ2(β + 1)k!Γ(k + α+ 1)

Γ(k + β + 2)Γ(k + α+ β + 2)
,

ωi =
1

1 + xi

Gα,β+1
k−1

Jα,β+1
k−1 (xi)∂J

α,β+1
k (xi)

.
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• For Jacobi- Gauss-Lobatto

x0 = −1, xk = 1 and {xi}k−1
i=1 be the zeros of ∂Jα,βk (x),

ω0 =
2β+1(β + 2)Γ2(β + 1)Γ(k)Γ(k + α+ 1)

Γ(k + β + 1)Γ(k + α+ β + 2)
,

ω0 =
2α+1(β + 2)Γ2(α+ 1)Γ(k)Γ(k + β + 1)

Γ(k + α+ 1)Γ(k + α+ β + 2)
,

ωi =
1

1− x2
i

Gα+1,β+1
k−2

Jα+1,β+1
k−2 (xi)∂J

α+1,β+1
k−1 (xi)

,

where

Gα,βk =
2α+β(2k + α+ β + 2)Γ(k + α+ 1)Γ(k + β + 1)

(k + 1)!Γ(k + α+ β + 2)
.

Proof. see [36].

2.3.2 Computation of Nodes

The explicit expressions of the nodes and weights of the general Jacobi-Gauss quadrature

are not available, so they have to be computed by numerical means.the zeros of the Jacobi

polynomial Jα,βk+1(x) are the eigenvalues of the following symmetric tridiagonal matrix

Ak+1 =



a0 −
√
b1

−
√
b1 a1 −

√
b2

. . .
. . .

. . .

−
√
bk−1 ak−1 −

√
bk−1

−
√
bk ak


where

aj =
β2 − α2

(2j + α+ β)(2j + α+ β + 2)
,

bj =
4j(j + α)(j + β)(j + α+ β)

(2j + α+ β − 1)(2j + α+ β)2(2j + α+ β + 1)
.

2.3.3 Interpolations and Approximations

Let {xj , ωj}Nj=0 be a set of Jacobi-Gauss-type nodes and weights. As in Sect.2.1.3 we can

define the corresponding interpolation operator, discrete inner product and discrete norm,



2.4. CHEBYSHEV POLYNOMIALS 31

denoted by Iα,βN , 〈., .〉N,ωα,β and ‖.‖N,ωα,β , respectively.

The exactness of the quadratures implies

〈u, v〉N,ωα,β = (u, v)ωα,β , ∀u, v ∈ P2N+δ, (2.33)

where δ = 1, 0 and − 1 for the Jacobi-Gauss, Jacobi-Gauss-Radau and Jacobi-Gauss-

Lobatto, respectively. Accordingly, we have

‖u‖N,ωα,β = ‖u‖ωα,β , ∀u ∈ PN . for JG and JGR.

Definition 2.16. The interpolation polynomials Iα,βN u ∈ PN are defined by

(Iα,βN u)(x) =

N∑
k=0

ũα,βk Jα,βk (x), (2.34)

where the coefficients {ũα,βk }
N
k=0 are determined by the forward discrete Jacobi transform.

Theorem 2.17.

ũα,βk =
1

δα,βk

N∑
j=0

u(xj)J
α,β
k (xj)ωj , (2.35)

where δα,βk = γα,βk for 0 ≤ N ≤ N − 1, and

δα,βk =

 γα,βk , for JG and JGR,

(2 + α+β+1
N )γα,βk , for JGL.

Proof. see [36].

2.4 Chebyshev Polynomials

In this section, we consider Chebyshev polynomials of the first kind, which are proportional

to Jacobi polynomials {J1/2,1/2
n } and are orthogonal with respect to the weight function

ω(x) = (1− x2)−1/2.

2.4.1 Chebyshev Polynomials of the First Kind

Classical references on the Chebyshev polynomials are Fox and Parker (1968) and Rivlin

(1974) provided in [5]. The Chebyshev polynomials of the first kind Tk = Tk(x) satisfy
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the equation

(1− x2)y′′(x)− xy′(x) + k2y(x) = 0, (2.36)

and are defined by

Tk(x) = cos(k arccosx)

=
(−2)kk!

(2k)!

√
1− x2

dk

dxk
[(1− x2)k−

1
2 ],

then, for any k, Tk(x) is even if k is even, and odd if k is odd. If Tk is normalized so that

Tk(1) = 1.

Thus, the Chebyshev polynomials are nothing but cosine functions after a change of in-

dependent variable. This property is the origin of their widespread popularity in the

numerical approximation of non periodic boundary value problems.

The Chebyshev polynomials can be expanded in power series as

Tk(x) =
k

2

[k/2]∑
i=0

(−1)k
k − i− 1

i!(k − 2i)!
(2x)k−2i. (2.37)

Moreover, the trigonometric relation

cos(k + 1)θ + cos(k − 1)θ = 2 cos θ cos kθ,

gives the recursion relation

Tk(x) = 2xTk−1(x)− Tk−2(x), k = 2, 3, ... , (2.38)

with T0(x) ≡ 1 and T1(x) ≡ x.

Write down few first Chebyshev polynomials of the first kind; we determine them directly

from formula (2.38):

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, (2.39)

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1.
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Some properties of the Chebyshev polynomials are

|Tk(x)| ≤ 1, −1 ≤ x ≤ 1, (2.40)

Tk(±1) = (±1)k, (2.41)

|T ′k(x)| ≤ k2, −1 ≤ x ≤ 1, (2.42)

T ′k(±1) = (±1)k+1k2. (2.43)

It is also easy to show that ∫ 1

−1
Tk(x)Tl(x)

dx√
1− x2

= ck
π

2
δkl, (2.44)

where

ck =

 2, k = 0

1, k ≥ 1

The Chebyshev expansion of a function u ∈ L2
ω(−1, 1) is

u(x) =
∞∑
k=0

ûkTk(x), ûk =
2

πck

∫ 1

−1
u(x)Tk(x)ω(x)dx. (2.45)

Theorem 2.18 (see [36], p. 108). Let {xj , ωj}Nj=0 be a set of Chebyshev-Gauss type

quadrature nodes and weights.

• For Chebyshev-Gauss (CG) quadrature

xj = − cos
(2j + 1)π

2N + 2
, ωj =

π

N + 1
, 0 ≤ j ≤ N.

• For Chebyshev-Gauss-Radau (CGR) quadrature,

xj = − cos
(2j + 1)π

2N + 2
, 0 ≤ j ≤ N,

ω0 =
π

2N + 1
, ωj =

2π

2N + 1
, 1 ≤ j ≤ N.

• For Chebyshev-Gauss-Lobatto (CGL) quadrature,

xj = − cos
jπ

N
, ωj =

π

c̃jN
, 0 ≤ j ≤ N.

where c̃0 = c̃N = 2 and c̃j = 1 for j = 1, 2, ..., N − 1.
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With the above choices, there holds∫ 1

−1
p(x)

1√
1− x2

dx =
N∑
j=1

p(xj)ωj , ∀p ∈ P2N+δ, (2.46)

where δ = 1, 0,−1 for the CG, CGR and CGL, respectively.

Theorem 2.19 (see [21], p. 94). Given f ∈ C2N [−1, 1] and let x0, x1, ..., xN be the N + 1

zeros of TN+1(x), then ∫ 1

−1

f(x)√
1− x2

dx ≈ π

N + 1

N∑
i=0

f(xi). (2.47)

2.4.2 Interpolations and Approximations

Let {xj , ωj}Nj=0 be a set of Gauss, Gauss-Radau or Gauss-Lobatto quadrature nodes and

weights. We define the corresponding discrete inner product and norm as

〈u, v〉N,ω :=
N∑
j=0

u(xj)v(xj)ωj , ‖u‖N,ω =
√
〈u, u〉N,ω. (2.48)

Definition 2.20. For any u ∈ C[−1, 1], The definition of the interpolation operator

IN : C[−1, 1]→ PN such that

(INu)(xj) = u(xj), 0 ≤ j ≤ N. (2.49)

Theorem 2.21. For the approximation using Chebyshev polynomials, we have

(PNu)(x) =
N∑
i=0

ciTi(x),

where

c0 ≈ 1

N + 1

N∑
i=0

u(xi)

cj ≈
2

N + 1

N∑
i=0

u(xi)Tj(xi), 1 ≤ j ≤ N.

Lemma 2.22 (see [5], p. 296). Let u ∈ Hm
ω (−1, 1) with m ≥ 1. The truncation error

u− PNu, satisfies the inequality

‖u− PNu‖L2
ω(−1,1) ≤ CN−m|u|Hm,N

ω (−1,1)
(2.50)



2.5. CARDINAL FUNCTIONS 35

where,

|u|
Hm,N
ω (−1,1)

=

 m∑
k=min(m,N+1)

‖u(k)‖2L2
ω(−1,1)

1/2

. (2.51)

2.5 Cardinal Functions

Sir Edmund Whittaker (1915) showed that for an infinite interval, the analogues to the

fundamental polynomials of Lagrangian interpolation are what he called the cardinal func-

tions. The collocation points are evenly spaced:

xi = ih, i = 0,±1,±2,±3, ... , (2.52)

Whittaker’s cardinal functions are

S(k, h)(x) = sinc(
x− kh
h

), (2.53)

where

sinc(x) =
sin(πx)

πx
,

and have the property

S(k, h)(xi) = δik.

Definition 2.23. An approximation to a function f(x) of the form

f(x) ≈
n∑

k=−n
f(xk)S(k, h)(x), x ∈ R,

and we have ∫ ∞
−∞

sinc(x)dx = 1,

then ∫ ∞
−∞

f(x)dx ≈
n∑

k=−n
f(xk)

∫ ∞
−∞

S(k, h)(x)dx = h
n∑

k=−n
f(xk),

where h is the grid spacing.
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For example ∫ ∞
−∞

e−x
2
dx ≈

∫ ∞
−∞

n∑
k=−n

e−x
2
kS(k, h)(x)dx

=
n∑

k=−n
e−x

2
k

∫ ∞
−∞

sinc(
x− kh
h

)dx

= h
n∑

k=−n
e−(kh)2 .

2.6 Mappings for Unbounded Domains

The purpose of this section is to present a general framework for the analysis and imple-

mentation of the mapped spectral methods. A common and effective strategy in dealing

with unbounded domains is to use a suitable mapping that transforms an infinite domain

to a finite domain. Then, images of classical orthogonal polynomials under the inverse

mapping will form a set of orthogonal basis functions which can be used to approximate

solutions of PDEs in the infinite domains.

Mappings

Consider a family of mappings of the form

x = x(y; s), s > 0, y ∈ I := (−1, 1), x ∈ Λ := (0,∞) or (−∞,∞), (2.54)

such that

dx

dy
= x′(y; s) > 0, s > 0, y ∈ I,

x(−1, s) = 0, x(1; s) = +∞, if Λ = (0,+∞), (2.55)

x(±1; s) = ±∞, if Λ = (−∞,+∞).

Without loss of generality, we assume that the mapping is explicitly invertible, and denote

its inverse mapping by

y = y(x; s), ∀x ∈ Λ. ∀y ∈ I.

In this one-to-one transform, the parameter s is a positive scaling factor.
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2.6.1 Semi-Infinite Intervals

The most frequently used mappings are algebraic, exponential and logarithmic, given by

the following formulas, between x ∈ Λ = (0,+∞) and y ∈ I = (−1, 1) with s > 0:

- Algebraic Mapping

x = s
1 + y

1− y
, y =

x− s
x+ s

. (2.56)

- Logarithmic Mapping

x = s tanh−1(
1 + y

2
), y = 1− 2 tanh(

x

s
). (2.57)

- Exponential Mapping

x = sinh(
s

2
(1 + y)), y =

2

s
ln(x+

√
x2 + 1)− 1, (2.58)

where y ∈ (−1, 1) and x ∈ (0, Ls) with Ls = sinh(s).

Hence, The intensity of stretching essentially depends on the derivative values of the

mapping. For the mappings (2.56), (2.57) and (2.58), we have

dx

dy
=

2s

(1− y)2
,

2s

(3 + y)(1− y)
,
s

2
cosh(

s

2
(1 + y)),

respectively. Therefore, the grid is stretched more and more as s increases.



2.6. MAPPINGS FOR UNBOUNDED DOMAINS 38

(a)Distribution of xj ∈ [0,∞) ( b) Effect of scaling factor s
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Figure 2.3: (a).Distribution of L16 zeros by used mappings for s=5. (b), (c) and (d)

distribution a 16 point of the interval [−1, 0.9] before used Alg.map, Log.map and Exp.map

inverse, respectively.

2.6.2 The Real Line

Similar considerations apply to expansions on (−∞,+∞) as on semi-infinite intervals,

given by the following formulas, between x ∈ Λ = (−∞,+∞) and y ∈ I = (−1, 1) with

s > 0:

- Algebraic Mapping

x =
sy√

1− y2
, y =

x√
x2 + s2

. (2.59)



2.6. MAPPINGS FOR UNBOUNDED DOMAINS 39

- Logarithmic Mapping

x = s tanh−1(y), y = tanh(
x

s
). (2.60)

- Exponential Mapping

x = sinh(sy), y =
1

s
ln(x+

√
x2 + 1), (2.61)

where y ∈ (−1, 1) and x ∈ (−Ls, Ls) with Ls = sinh(s).

Hence, The intensity of stretching essentially depends on the derivative values of the

mapping. For the mappings (2.59), (2.60) and (2.61), we have

dx

dy
=

s

(1− y2)3/2
,

s

1− y2
, s cosh(sy),

respectively. Therefore, the grid is stretched more and more as s increases.
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(a) Distribution of xi ∈ (−∞,∞) (b) Effect of scaling factor s
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Figure 2.4: (a) Distribution of the zeros of H16 by used mappings for s=2.5; (b), (c) and

(d) Mapped Chebyshev-Gauss with n = 24 using the algebraic map (2.59), logarithmic

map (2.60) and exponential map (2.61) respectively, various scaling factor s.



CHAPTER 3

Mapped Chebyshev Spectral Methods for Solving Second

Kind Integral Equations on the Real Line

Introduction

In this chapter we investigate the utility of mappings to solve numerically an important

class of integral equations on the real line. The main idea is to map the infinite interval to

a finite one and use Chebyshev spectral-collocation method to solve the mapped integral

equation in the finite interval. Numerical examples are presented to illustrate the accuracy

of the method.

3.1 Solution Methods

3.1.1 Logarithmic Mapping

Consider integral equations of the form

ϕ(x)−
∫ +∞

−∞
K(x, t)ϕ(t)dt = f(x), (3.1)

where the functions K(x, t) and f(x) are given, and ϕ(x) is an unknown function to be

determined. The regular part of (3.1) is assumed to be exists in the Riemann sense. Which

is considered becomes

lim
L→∞

∫ L

−L
K(x, t)ϕ(t)dt. (3.2)

41
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We use Logarithmic mapping then (3.1) becomes

ϕ(x)−
∫ 1

−1
K(x, s tanh−1 y)ϕ(s tanh−1 y)

s

1− y2
dy = f(x). (3.3)

If we pose x = s tanh−1 z, then

ϕ(s tanh−1 z)−
∫ 1

−1
K(s tanh−1 z, s tanh−1 y)ϕ(s tanh−1 y)

s

1− y2
dy = f(s tanh−1 z),

and let u(z) = ϕ(s tanh−1 z), so we obtain

u(z)−
∫ 1

−1
K(s tanh−1 z, s tanh−1 y)u(y)

s

(1− y2)
dy = f(s tanh−1 z), (3.4)

by setting

M(z, y) =
K(s tanh−1 z, s tanh−1 y)√

1− y2
,

ω(y) =
1√

1− y2
and F (z) = f(s tanh−1 z),

equation (3.4) can be written as follows

u(z)− s
∫ 1

−1
M(z, y)u(y)ω(y)dy = F (z). (3.5)

3.1.2 Algebraic Mapping

For using Algebraic mapping then (3.1) becomes

ϕ(x)−
∫ 1

−1
K(x,

sy√
1− y2

)ϕ(
sy√

1− y2
)

s

(1− y2)3/2
dy = f(x). (3.6)

If we pose x = sz√
1−z2 , then

ϕ(
sz√

1− z2
)−

∫ 1

−1
K(

sz√
1− z2

,
sy√

1− y2
)ϕ(

sy√
1− y2

)
s

(1− y2)3/2
dy = f(

sz√
1− z2

),

and let u(z) = ϕ( sz√
1−z2 ), so we obtain

u(z)−
∫ 1

−1
K(

sz√
1− z2

,
sy√

1− y2
)u(y)

s

(1− y2)3/2
dy = f(

sz√
1− z2

), (3.7)

by setting

M(z, y) =
K( sz√

1−z2 ,
sy√
1−y2

)

1− y2
,
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and

F (z) = f(
sz√

1− z2
),

equation (3.7) can be written as follows

u(z)− s
∫ 1

−1
M(z, y)u(y)ω(y)dy = F (z). (3.8)

Therefore, in both cases, the problem is to solve approximately the mapped integral equa-

tion (3.8) which can be written in the operator form

(I − sK)u = F. (3.9)

To do this, we assume that the operator K is compact on the space L2
ω(−1, 1), and let

Pn the n + 1-dimensional subspace spanned by the Chebyshev polynomials T0, · · · , Tn.

Let Pn : L2
ω(−1, 1) −→ Pn be a bounded projection operator. Our motivation is to

approximate (3.8) by attempting to solve the problem

(I − sPnK)un = PnF, un ∈ Pn. (3.10)

Using Gauss-Chebyshev quadrature formula given by Theorem 2.19 to approximate the

integral part of the equation (3.8) gives

ũ(z)− sπ

n+ 1

n∑
i=0

M(z, yi)ũ(yi) = F (z). (3.11)

Now, forcing this semi-discrete equation to be almost exact in the sense that the residual

rn(z) = ũ(z)− sπ

n+ 1

n∑
i=0

M(z, yi)ũ(yi)− F (z), (3.12)

is zero at collocation points zj , j = 0, ..., n. Thus, the condition r(zj) = 0, for j from 0

to n, lead to the following system of linear equations

ũ(zj)−
sπ

n+ 1

n∑
i=0

M(zj , yi)ũ(yi) = F (zj). (3.13)

Therefore, using the Chebyshev polynomial approximation formula given by Theorem 2.21

then

Pnũ(z) =

n∑
i=0

ciTi(z), (3.14)
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where

c0 ≈ 1

n+ 1

n∑
i=0

ũ(zi), (3.15)

cj ≈
2

n+ 1

n∑
i=0

ũ(zi)Tj(zi), j = 1, . . . , n. (3.16)

Consequently, the approximate solution of equation (3.1) in the real line is given by

ϕn(x) =

n∑
i=0

ciTi
(
tanh(s−1x)

)
, (3.17)

using Logarithmic map, and

ϕn(x) =

n∑
i=0

ciTi

(
x/
√
x2 + s2

)
, (3.18)

in the case of algebraic map.

3.1.3 Spectral Convergence Analysis

In this subsection, a convergence analysis for the numerical schemes for the mapped in-

tegral equation (3.8) will be provided. The goal is to show that the rate of convergence

depends on the regularity properties of the corresponding exact solution. Also, we note

that the following results are based on framework in [1, 5].

Theorem 3.1 (see [1], p. 55). Assume K : L2
ω(−1, 1) −→ L2

ω(−1, 1) is bounded, and

assume I − sK is one-to-one and onto operator. Further assume

‖K − PnK‖ → 0 as n→∞. (3.19)

Then for all sufficiently large n, the operator (I − sPnK)−1 exists as a bounded operator.

Moreover, it is uniformly bounded:

sup
n
‖(I − sPnK)−1‖ ≤M. (3.20)

For the solution of (3.9) and (3.10),

‖u− un‖ ≤ s−1M‖u− Pnu‖. (3.21)
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Lemma 3.2. Assume K : L2
ω(−1, 1) −→ L2

ω(−1, 1) is a compact operator and assume

Pnu→ u for all sufficiently large n. Then,

‖K − PnK‖ → 0. (3.22)

Proof. From the definition of operator norm,

‖K − PnK‖ = sup
‖u‖≤1

‖Ku− PnKu‖ = sup
v∈K(U)

‖v − Pnv‖,

with K(U) = {Ku | ‖u‖ ≤ 1}. Since the set K(U) is compact. Therefore, by the

Lemma 2.22,

sup
v∈K(U)

‖v − Pnv‖ → 0,

for all sufficiently large n.
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3.2 Illustrative Examples

Example 3.3. Consider Fredholm integral equation (3.1) with

K(x, t) = x2t, f(x) = xe−x
2 −
√
π

2
x2.

Whose exact solution is ϕ(x) = xe−x
2
, which is a smooth function and decay expo-

nentially at infinity. In Figure 3.1, a. we comparison of the solution determined by the

approximate solution using Logarithmic map, b. we give maximum absolute errors at 1000

selected equally spaced points on the interval [-200, 200] using logarithmic map against

various N and different scaling factor s.

a. Numerical vs. exact b. Maximum errors
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Figure 3.1: a. Comparison of the solution exact by the approximate solution using Loga-

rithmic map. b. Relative factor s versus the degree of approximate solution N .

Example 3.4. Consider Fredholm integral equation (3.1) with

K(x, t) = sin(xt), f(x) = sin(
1

1 + x2
).

Whose exact solution is ϕ(x) = sin( 1
1+x2

), which is a smooth function and decay

exponentially at infinity. In Figure 3.2, a. we comparison of the solution determined by

the approximate solution using algebraic map, b. we give maximum absolute errors at

1000 selected equally spaced points on the interval [-250, 250] using algebraic map against

various N and different scaling factor s.
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a. Numerical vs. exact b. Maximum errors
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Figure 3.2: a. Comparison of the solution exact by the approximate solution using Alge-

braic map. b. Relative factor s versus the degree of approximate solution N .

3.3 Comparison of Results

Example 3.5. Consider Fredholm integral equation (3.1) with

K(x, t) = cos(x− t), f(x) = e−x
2 −
√
πe−0.25 cos(x).

Where the exact solution is ϕ(x) = e−x
2
. In Table (3.2) we give maximum absolute

errors at 1000 selected equally spaced points on the interval [−500, 500], using algebraic

map and logarithmic map against various N and different scaling factor s. Table (3.1)

shows the results of the previous methods and another method Card. Func. which will be

explained in the near future.

Table 3.1: Maximum absolute error at 50, 100 or 150 equally spaced points on the interval

[−100, 100] for example 3.5.

interval N Log.map Alg.map Card.func.

50 1.54E-09 6.95E-06 4.32E-006

[−100, 100] 100 1.71E-09 1.31E-09 8.50E-011

150 2.10E-09 1.31E-09 8.50E-011
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Table 3.2: Maximum absolute error at 500 equally spaced points on the interval [−100, 100]

for example 3.5.

s

Mapping N 1 2.5 5 7.5

Log.map 20 4.30E-04 2.86E-06 8.48E-03 1.19E-01

30 9.65E-05 2.92E-09 1.21E-05 8.98E-03

40 1.68E-05 3.81E-11 3.96E-10 2.58E-04

50 2.41E-06 5.61E-13 1.62E-13 2.34E-06

60 1.90E-07 3.94E-14 2.89E-15 4.60E-09

Alg.map 20 9.37E-04 5.82E-05 6.95E-03 1.19E-01

30 5.44E-05 5.59E-07 1.04E-05 8.34E-03

40 9.79E-06 2.20E-08 1.78E-08 1.79E-04

50 1.44E-06 6.66E-10 1.02E-10 4.33E-07

60 1.90E-07 5.22E-11 1.07E-12 5.23E-10

Example 3.6. Consider Fredholm integral equation (3.1) with

K(x, t) = x2t2, f(x) = cos(x)e−x
2 −
√
π

4
e−0.25x2.

The corresponding exact solution is ϕ(x) = cos(x)e−x
2
. In Table (3.3) we give maxi-

mum absolute errors at 200 selected equally spaced points on the interval [−50, 50], using

algebraic map and logarithmic map against various N and different scaling factor s. Table

(3.4) shows the results of the previous methods and another method Card. Func. we give

maximum absolute errors at 50, 100 and 200 selected equally spaced points on the interval

[−100, 100].
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Table 3.3: Maximum absolute error at 200 equally spaced points on the interval [−50, 50]

for example 3.6.

s

Methods N 1 2 3 4 5 6

Log.map 20 1.88E-04 6.95E-06 4.32E-06 9.70E-04 1.17E-02 3.71E-02

40 2.83E-05 1.31E-09 8.50E-11 1.22E-10 9.95E-09 8.36E-06

60 8.02E-07 1.19E-11 8.38E-15 7.81E-15 1.81E-14 3.29E-13

80 4.41E-07 8.60E-14 4.66E-15 7.74E-15 1.95E-14 2.87E-14

Alg.map 20 1.43E-03 1.03E-04 1.55E-04 4.88E-04 1.10E-02 4.08E-02

40 1.03E-05 2.75E-07 4.30E-08 3.27E-08 1.60E-07 1.53E-06

60 5.27E-07 1.05E-09 3.46E-11 7.32E-12 8.31E-12 3.64E-11

80 4.51E-08 1.41E-11 2.38E-13 8.21E-14 1.07E-13 1.35E-13

Table 3.4: Maximum absolute error at 50, 100 and 150 equally spaced points on the

interval [−100, 100] for example 3.6.

Interval N Log.map Alg.map Card.func.

50 1.54E-09 6.95E-06 4.32E-06

[−100, 100] 100 1.71E-09 1.31E-09 8.50E-11

150 2.10E-09 1.31E-09 8.50E-11

Example 3.7. Consider Fredholm integral equation (3.1) with

K(x, t) = x2t2, f(x) =
1

1 + x2
− πx2.

The corresponding exact solution is ϕ(x) = 1
1+x2

. Table (3.1) shows the results of the

previous methods and another method Card.func. we give maximum absolute errors at

40, 100 and 160 selected equally spaced points on the interval [−100, 100].
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Table 3.5: Maximum absolute error at 40, 100 and 160 equally spaced points on the

interval [−100, 100] for example 3.7.

Interval N Log.map Alg.map Card.func.

40 1.54E-09 6.95E-06 4.34E-04

[−100, 100] 100 1.71E-09 1.31E-09 4.65E-04

160 2.10E-09 1.31E-09 4.72E-04



Conclusions and Future Lines of Research

The integral equations of the type (1) are difficult to study for two reasons, the first rea-

son is , from one side, the singularity, which is the type of the interval of integration is

infinite, while the second reason is the lack or the absence of the theories of this type.

Two methods were found to solve these equations, which we have explained, given and

have compared in Chapter 3.

The proposed methods provides a good efficiency for smooth solutions decaying exponen-

tially or algebraically at infinity as shown in Tables (3.2)–(3.3). The scaling factor s offers

great flexibility to improve the numerical resolution. However, the best choice of s is one

that gives a good adjustment of the collocation points.

The Card.func method is quadrature which is in preparation. This leads us to ask the

following questions:

(i) What is the optimal value of the scaling factor s?

(ii) Are there other methods to solve this type of equation?

A part of these questions will discuss in a future work.
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 صــملخ
 ، التي لها الشكل العامشاذةفي هذه الأطروحة قمنا بدراسة المعادلة التكاملية ال

 ( )  ∫  (   )

 

  

 ( )    ( )              

ل من غير محدود إلى مجال  تغيير المجا  هي الفكرةفـ ،حل هذه المعادلةهو إيجاد    الهدف من هذه الأطروحة
 المحدود.  لمجالة في ايكاملالتالمعادلة  حل  ل  من أج لتشيبيشيف طرق الطيفيةالاستخدام  ثمّ   محدود،
 .، والطرق الطيفيةتكامل غير محدودحدود تشيبيشيف،  اتكثير المعادلات التكاملية،   :المفتاحية  الكلمات

Abstract 

In this thesis, we have studied the singular integral equation, which has the general 

form 

 ( )  ∫  (   )

 

  

 ( )    ( )              

The aim of this thesis is to provide the solution of this equation. The main idea is 

to change the unbounded interval to a bounded one and use the Chebyshev spectral 

methods to solve the integral equation in the finite interval. 

Keywords: Integral equations, Chebyshev polynomials, Infinite integral, Spectral 

methods. 

Résumé 

Dans cette thèse nous avons étudié l'équation intégrale singulière, qui a la forme 

générale 

 ( )  ∫  (   )

 

  

 ( )    ( )              

Le but de cette thèse est trouvé la solution de cette équation. L'idée principale est 

de changé l'intervalle non borné au intervalle borné et d'utiliser les méthodes 

spectrale de Tchebychev pour résoudre l'équation intégrale dans l'intervalle fini. 

Mots-clés: Equations intégrale, polynômes de Tchebychev, intégrale infinie, méthodes spectrale. 
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