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ABSTRACT 

Data hiding is a technique for carrying data in a suitable carrier for secure communication. Data hiding 

technique provides authentication and secure communication but there may be a chance of loss of carrier 

during communication. Data hiding techniques are mainly used for authentication, media registration, 

copyright protection, etc. But in the field of medicine and military distortion of the original image is not 

allowed. So, it needs high secure data hiding techniques. To overcome the problem faced during 

extracting the carrier with distortion was removed by RDH (Reversible Data Hiding) techniques. RDH 

technique gets the original data after extracting the secret encrypted data. RDH techniques are classified 

based on implementing method. In this paper we discussed about different techniques based on 

histogram shifting, compression embedding and different expansion for RDH are discussed.  
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GENERAL INTRODUCTION 

 

A digital image is an image composed of picture elements, also known as pixels, each with finite, 

discrete quantities of numeric representation for its intensity or gray level that is an output from its two-

dimensional functions fed as input by its spatial coordinates denoted with x, y on the x-axis and y-axis, 

respectively. Depending on whether the image resolution is fixed, it may be of vector or raster type. By 

itself, the term "digital image" usually refers to raster images or bitmapped images (as opposed to vector 

images). (22, s.d.) 

 

Watermarking is a method of embedding useful information into a digital work (especially, thus, audio, 

image, or video) for the purpose of copy control, content authentication, distribution tracking, broadcast 

monitoring, etc. The distortion introduced by embedding the watermark is often constrained so that the 

host and the watermarked work are perceptually equivalent. However, in some applications, especially 

in the medical, military, and legal domains, even the imperceptible distortion introduced in the 

watermarking process is unacceptable. This has led to an interest in reversible watermarking, where the 

embedding is done in such a way that the information content of the host is preserved. This enables the 

decoder to not only extract the watermark, but also perfectly reconstruct the original host signal from the 

watermarked work. (24) 

 

Due to information explosion, growth of digital content is ever increasing in the order of peta bytes. At 

present Internet has become a powerful source of information to the end users, at the same time 

unauthorized and copyright violated information is also easily available making them unsure about the 

originality of information. On the other Hand, establishing the legal ownership of digital content is 

important for the content providers. In such scenario, availability of authentic information from 

authorized sources is what the end users and content providers will be looking for. To ensure 

authenticity and legal ownership of digital content, various methods such as steganography 

cryptography, and watermarking have been proposed in the literature. Digital watermarking Is one such 

powerful information hiding technique extensively used to overcome illegal copying, modifying, and 

redistributing the digital content. (26) 

 

So, to overcome the information explosion we must implement watermarking algorithms, and this what 

we’ll be doing in the next chapters. 

Our work is split into 4 chapters: 

• General Overview of RDH techniques 

• The theory of DE & PE data-hiding algorithms 

• Implementing the algorithms 

• Comparing the results 
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I.1 Introduction 

This Internet has become more popular and common now-a-days. High risk is involved in sending the 

important data through the net. Data hiding is the one which provides secure communication without 

any loss of data. Number of approaches are present for data hiding techniques. Two main common 

approaches for protecting information leakage are Data hiding and Encryption. The former is used to 

protect the data, whereas the latter is used to protect the hidden data. Two main techniques Digital 

Steganography and watermarking are mainly used for communicating the secret data in appropriate 

carriers like audio, video, and image files. But these techniques may distort the original data after 

extracting the secret data. Data hiding techniques are mainly used for authentication, media registration, 

copyright protection, etc. But it is a problem for sensitive applications, such as medical images and 

military images. So Reversible data hiding (RDH) is best technique for these special applications, which 

aims to recover both embedded data and the original image. From the last few years many RDH 

algorithms have been proposed such as difference expansion (DE) based methods, lossless image 

compression-based methods, integer-to-integer transform-based methods, dual-image-based methods 

and histogram shifting (HS) based methods. 

RDH embeds hidden data known as secret data, invisible data into a digital image known as cover image 

in a reversible manner 

 

Figure 1 Reversible data hiding 

The main task of RDH technique is getting the original image after extracting the secret data with little 

distortions and good quality. For the security purpose, RDH embeds some digitized information, so that 

only the authorized used can extract the secret data and restore the original image. An information 

hiding systems consisting of four different aspects. 

• Security: refers to the ability to protect the secret key by an unauthorized user. 

• Robustness: Ability to handle the modifications on the medium without distorting the secret 

information. 

• Perceptibility: ability to find the secret information. 

• Capacity: It refers to the amount of information the media can accommodate. 
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Figure 2 Characteristics of Reversible Data Hiding 

RDH algorithms are mainly divides into three categories. The first kind of algorithm deals with lossless 

compression (1) embedding framework (LC). The algorithms first compute a pixel rate and then 

compressed. After that the left-out space will be allocated with messages. The second kind of algorithm 

is mainly based on DE (difference Expansion) (2). In this technique the difference between the pixel pair 

is extended to get the LSB’s (Least Significant Bits) all values as zeroes so that it can be used for adding 

the data. The third technique is mainly based on HS (Histogram) (3). The value of histogram is always 

irregular, and the values can be modified by using histogram bins. All RDH techniques include 2 steps: 

• By considering predicting errors (PE) host sequence with small entropy is generated. 

• By changing the histogram values using HS or DE the messages are embedded reversibly into 

host sequence. 

This results in payload maximization in over all or a given distortion condition. From the above 

techniques the HS based Techniques are widely used. HS methods are again divided into 3 types.  

• Histogram Shifting 

• Prediction Error Histogram Shifting 

• Difference Histogram Shifting. 

These techniques are mainly used to find the prediction error histogram. On modifying the histogram 

value, the host image is embedded reversibly along with the message. From last few years many 

algorithms of DHS (5) and PEHS (6) are proposed and they became very famous because of its high 

fidelity and huge embedding capability.  

I.2 Literature Review on RDH.  

Mintzer et al. (7) initiated reversible watermarks as a visible pattern. In this technique the image is 

marked with reversible visible watermark and that image is posted in internet and that water mark image 

will look like a puzzle. The user must pay money to remove that watermark after that the user will get 

the original image. Eastman Kodak (8) is the first one who to copyright the lossless invisible watermark. 

The similar thought was being proposed to extend the patchwork algorithm (9) but the outcome is not 

adequate. These technique cause salt and pepper visual artifacts. To get the watermarks here we used 

magnitude comparisons, which failed and cause visual artifacts. To avoid this problem Fridrich et al. 

(10) introduced a technique to change a bit plane of the image for watermarking and they extracted a 

complete bit plane and compress the losslessly for filling the watermark in the output space. But we get 
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disturbing artifacts due to different bit planes because the capacity may change from one image to 

another image. Fridrich’s technique works strictly for the environment wherever the watermarked image 

is processed without any loss and results in modification of bits and the bit plane will contain the 

payload will concern the entropy synchronization and it may lose the hidden data permanently. To 

overcome the Fridrich’s technique Vleeschouwer et al. proposed a technique. Vleeschouwer et al. (11) 

proposed a method that overcame Fridrich’s method. Here they used circular interpretation of bijective 

transformations. Here they used circular interpretation of bijective transformations. Circle is mapped 

with the histograms for groups of pixels that was operated by the transform. The relative orientation 

among the histograms of two groups conveyed one bit of information. Here the reversibility process did 

not experience artifacts and the wrapped pixels were not altered. 

Tian (12) is the first to use different expansion transform, the expansion is applied on a pixel pair to 

develop low distorted with high-capacity watermark. First the algorithm divides the image into pair of 

pixels which does not cause either overflow or underflow. Each single bit was embedded into difference 

pair of pixels. This technique results in embedding as high as 1 bit per one pixel in a single pass. Alattar 

(13) used vectors of an arbitrary size as parameter to difference expansion transforms. The algorithm 

results in computationally higher capacity with small distortion in image. Wang et al. (14) suggested to 

use 2D-vector maps for RDH. Two RDH difference expansion ideas were discovered by them. First 

idea, cover data is the coordinates of vertices and modifying the differences between the adjacent 

coordinates is used to hide the data. Second idea calculates the Manhattan distances between the 

neighboring vertices as the cover data and embedded the hidden data altering the differences among the 

neighboring distances. Here the two ideas result in high-capacity maps with high associated coordinates. 

The authors Dinu Cultic and Jean Mare has discussed about spatial domain reversible watermarking 

technique based on RCM contrast mapping and this technique results in high-capacity data embedding 

without any secondary compression stage, the remaining space is used by the LSBs for hiding the data. 

For improving RDH characteristics many different expansion transforms were concentrated. Xinpeng 

initially introduced RDH in encrypted image (15). In this real image is encrypted by a cipher text which 

is used to embed the secret information. In this technique, we can successfully extract the hidden data 

and the real image was completely claimed by using spatial correlation feature of the real image. By 

using this scheme, the author Xinpeng extended the idea of RDH in encrypted image. In this technique 

we introduced a new technique by using keys. In embedding phase, the data owner will encrypt the real 

uncompressed image by using encrypted key. LSB of the image is compressed by using the data hiding 

key and it creates some extra space so that the user can accommodate any extra data by the data hider. In 

this we get three possibilities that happens in encrypted image which contains data. 

• When the receiver is having the data hiding key, then the user can extract the secret data without 

knowing the content of the image. 

• In the next case if the receiver is having encryption key, then he can decrypt the received data to 

get an image which is like the original image, but he cannot extract the secret data. 

• If the receiver is having both data hiding key and encryption key, then he can extract the hidden 

data and recover the original data without any loss of data. But the hidden data should not be too 

big. 
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But the problem in this technique is it did not utilize the pixels completely when analyzing the 

smoothness of every pixel and borders of the neighboring blocks were not considered. To avoid the 

problems in this technique the Hong (16) introduced a new smooth evaluation technique in which the 

pixels are fully exploited for calculating the pixel variation in images. For confusing blocks, we 

presented a side match mechanism to analyze the smoothness. In this technique (17) it automatically 

converts the large size secret data into a hidden segment visible mosaic image of same size. By dividing 

the secret image into fragments and converting the color feature to those of the equal blocks of the 

output image generated the mosaic image. 

In (18)technique it includes three segments: content owner, the recipient, and the data hider. The owner 

of the data will encrypt the real image and upload the same into the target server. The recipient is the 

one who extracts the data by using secret key. The data hider is the one who divides the encrypted data 

into three groups and embed the message into each group which generates the marked encrypted image. 

By using the above technique, we can obtain the quality image on decryption by the receiver by using 

decryption key. If both keys are available, then we can get lossless original image. In distributed source 

coding was implemented in RDH encrypted images. Once the data owner encrypts the real image by 

using stream cipher, the data hider will compress some series of bits which is taken from the encrypted 

image to make it as a room for secret data. The selected series of bits is encoded by using low-density 

parity check codes by slepian-wolf. By using this he proposed (19) a new RDH scheme over encrypted 

domain. Here by using public key alteration mechanism we achieved data embedding, by which we 

cannot access encryption key. At the receiver side we use SVM classifier to differentiate between the 

encrypted and non-encrypted images and decodes the message from the encrypted image. Now a day’s 

cloud computing is one of the emerging technologies so RDH also included the cloud communication 

usage (20). RDH-EI technique which is based on reversible image transformation was proposed. Unlike 

the earlier encryption schemes where cipher texts attracted the probing cloud, RIT-based framework 

allowed the operator to convert the content of original image into the content of another image of the 

same size. The converted image, that seemed to be the target image, was used as the “encrypted image,” 

by the cloud. Another work using the cloud was implemented by the authors in (21). They proposed 

RDH scheme where the cipher text images were scrambled by public-key cryptosystems with 

probabilistic and homomorphic properties. In this scheme, the cipher text pixels were substituted with 

new values embedding the hidden data into different least significant bit planes of cipher text pixel using 

multilayer wet paper coding. The embedded data was then separated from the encrypted domain 

successfully. 

I.3 Spatial domain techniques 

In spatial domain steganography bits in the pixel’s values are changed to hide the data. It deals with 

image pixels. Spatial techniques are mainly used for altering the individual pixels values. 

I.4 Transform domain techniques 

Transform domain is based on frequency components. In this domain, by using different transforms, the 

image is converted into the frequency domain from the image in the spatial domain. After that 
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embedding process will be done in appropriate transform coefficients. Transform domain is less exposed 

to compression, cropping etc. 

Various techniques used for Data hiding is discussed below 

I.5 Spatial Domain Techniques 

  LSB substitution 

LSB substitution is one of the data hiding technique which keeps the secret message into an image by 

hiding that data or message. So that the attacker will not be able to read the message. It selects 8-bit 

grayscale images as cover media for hiding the information which is called as cover images. LSB 

substitution gives stego-image, by applying local pixel adjustment process, the quality can be improved 

in stego-images. LPAP will not be optimal because it considers the last three LSB and fourth bit and not 

all. So, it cannot be used in hiding. Hence it uses Optimal Pixel Adjustment Process (OPAP). 

Worst Mean Square Error (WMSE) gained by OPAP is less than 1⁄2 of that gained by LSB substitution 

technique. OPAP is applied to increase the capacity of simple LSB, and the quality of stego-image is 

improved effectively along with low extra computational complexity. LSB is the widely used simplest 

method where there is less chance for degradation of the original image. 

 ISB Technique 

ISB embedding technique keeps watermark pixels in empty/filled region in the place of original image 

pixels and it keeps the watermark pixels very closed. This technique mainly focuses on testing 

watermark pixel values. In grayscale images, it has 8-bit planes. while first bit planes include set of Most 

Significant Bits (MSB), while last bit planes include LSB and the sets in-between from second to 

seventh-bit planes are called as Intermediate Significant Bits (ISB). The value of a pixel between the 

range of middle and edge are the pixels in which the watermarked data can be protected from various 

attacks and it will retain less distortion of the watermarked image. Encryption of watermarked image is 

done by a random pixel manipulation technique to improve system security. Here robustness is 

improved by, embedding information according to the blocks of pixels. 

I.6 Reversible Data Hiding Techniques 

 

Figure 3 RDH Block Diagram 
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 Difference Expansion 

Reversible data embedding can also be called as lossless data embedding. In reversible data embedding, 

it restores the original image. For reversible data embedding, quality degradation of the image should be 

low after data is embedded. This technique provides reversible data embedding, imperceptibility, 

enhanced capacity, and high visual quality for digital images. Here Difference Expansion provides extra 

storage by investigating repetition in the content of the image, and the main importance of this technique 

is limit of payload capacity and visual quality of embedded images, it is fragile technique if there is 

reversible data embedding because if the embedded image is lossy compressed, there will be no 

restoration of original content and the decoder will find it is not authentic. 

 Interpolation technique 

Interpolation is one of the techniques for Reversible Data Hiding. The original cover image is separated 

as five by five blocks among non-overlapping boundaries, and it is minimized into three-by-three blocks 

of each five-by-five block and generate again into five-by-five blocks with the help of interpolation 

technique. Secret data is embedded in the position where the total dissimilarity value between the 

interpolation value and the original Gray level is smaller than a threshold in the middle of the four three 

by three overlapping blocks of every five-by-five block. Here embedding steps are followed to take out 

embedded data with the help of an embedded region location. After that, by shuffling back the order 

secret data can be found. This technique provides high quality with imperceptibility and cover image can 

be recovered back after extracting the secret data. 

 Prediction Error Expansion 

PEE is one of the techniques for hiding the data which is considered for embedding the predictive errors. 

This technique enhances the accuracy in prediction of one channel through deriving a benefit from edge 

information from another channel. The prediction-error is reduced consequently; the performance of the 

algorithm is enhanced according to the rate of data hiding against distortion in embedding. Most vital 

role of the algorithm is improving the accuracy of prediction by utilizing the relationship between the 

channels. It also enhances the traditional sorting strategy by taking overflow/underflow issue into 

account. 

 Histogram shifting 

Histogram shifting is used to embed data or message in cover media by shifting the histogram of the 

image. This technique embeds data by shifting peak and zero points by detecting them in the histogram 

of the image. This technique divides the input image into blocks and histogram shifting is done on each 

block, by doing this data hiding capacity and visual quality is enhanced. It also provides a high capacity 

of data hiding with low distortion. 

 Recursive histogram modification 

RHM is one of the new techniques used for Reversible Data Hiding. This method embeds messages 

using the decompression and compression process recursively. It embeds the message by dividing the 

host set into disjoint blocks and by adjusting the histogram of every block recursive manner. The 
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message which is going to be embedded is encrypted before embedding. In the embedding process, the 

host set is divided as disjoint blocks for n blocks (n-1) that belongs to the same length and the last block 

have larger length. After dividing the host sequence message gets embedded into each block. It makes 

an equivalency between Reversible Data Hiding and lossless data compression and this technique gives 

improvements that are very important for larger images. 

 PWLC data hiding technique 

PWLC (Pair-Wise Logical Computation) is the proposed RDH technique for binary images. The main 

drawback of PWLC is, it fails to take out the secret data and it does not restore the original image. This 

technique either it uses spread spectrum technique or any other compression technique. For storing 

payload in host image, it uses XOR binary operations. The host images are scanned in some type of 

order. The sequences “000000” or “111111” that is situated close to the image boundaries are selected 

for hiding the data content. 

 DHTC data hiding technique 

DHTC (Data Hiding by Template ranking with symmetrical Central pixels) is defined as RDHTC which 

is depend on nonreversible data hiding. DHTC selects only imperceptible pixels to inject the secret data. 

The images that are marked by DHTC have brilliant visual quality, and there will be no salt-and-pepper 

noise. The result of a given pattern is according to the matching of the template with the lowest impact. 

I.7 Frequency Domain Technique 

 Discrete wavelets transform 

Wavelet is a most secure domain for embedding of watermark and data hiding. It represents the signal in 

another form by transforming the signal, and it will not change the content in it. Here the original image 

is converted into frequency domain which is called as frequency domain technique. DWT decomposes 

the hierarchy of image by providing both descriptions of spatial and frequency. In DWT, an image will 

be decomposed in 3 directions of spatial that is vertical, horizontal, and diagonal in result it divides an 

image into 4 components that are high-low, low_low, low_high, high_high. Low level is said to be the 

lowest level which includes approximation part belongs to the original image and other 3 levels give full 

data of the original image. 

Techniques Merits Demerits 

LSB substitution Improves stego-image quality Embedding capacity is low. 

ISB technique Improves the quality of watermarked 

images. 

Not robust against attacks 

Difference 

Expansion (DE) 

No loss of data due to compression and 

decompression 

Cannot be applied to textured 

Image because of more sensitive 

to the smoothness of the image 
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Interpolation 

Technique 

1. Less distortion 

2. High visual quality 

Low Embedding capacity 

Prediction Error 

Expansion (PEE) 

Enables to embed large payload while 

keeping distortion low 

Low efficiency and security of 

RDH 

Histogram shifting Higher simplicity Low capacity which is restricted 

by peak-pixel value frequency 

of the histogram 

Discrete Wavelet 

Transform (DWT) 

Improves image quality Low-performance time 

PWLC technique Improved data hiding capacity and image 

quality 

Does not extract secret data and 

not recovers the cover image 

DHTC technique Have brilliant visual quality and does not has 

salt-and-pepper noise 

To insert secret data DHTC flips 

only low- visibility pixels 

Recursive 

Histogram 

Modification 

Gives improvement that is more significant 

for larger images 

The issue of communicating 

multipeak and zero points 

Figure 4 Comparison table of data hiding techniques 

The table above defines how every technique has its drawbacks and benefits. Each technique differs 

from each other some methods provide more security whereas other methods have high capacity in 

hiding, some methods provide robustness, imperceptibility, and visual quality. Each method has a 

different level of applications according to their merits and demerits. One method cannot be suitable for 

other applications. 
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Chapter II DE & PE Algorithms Theory 
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II.1 Introduction 

Over the last two decades, several RDH methods have been proposed based on lossless data 

compression techniques. These schemes involve methods that apply lossless compression to a selected 

set of features from the original image and then embed the message in the space that has been saved due 

to feature compression. One of the earliest works, have proposed a data embedding framework having 

the property that the original image can be fully recovered once the data has been extracted from the 

marked image. They have presented methods for both the uncompressed formats (BMP, TIFF) and for 

the JPEG format. Another technique has presented a lossless generalized LSB embedding scheme (G-

LSB) which is based on grouping the pixels of an image and embedding data bits into the state of each 

group. To increase the embedding capacity of RDH, a different scheme called Difference Expansion 

(DE) has been proposed. The scheme is based on modifying the difference between a pair of pixel 

values while keeping the average of them unchanged. DE achieves good performance since natural 

images, in general, exhibiting high correlation between adjacent pixels. In novel methods were proposed 

to resolve two issues associated with DE method, i.e., the maximum number of embeddable location and 

the payload control capability. (25) 

II.2 Difference Expansion with Histogram Shifting and Overflow Map 

The DE Embedding technique is a technique that takes a Gray-Level image (White and Black) and 

calculates a bunch of numbers represented as low-pass image 𝐿 containing the integer averages and a 

high-pass image containing the pixel differences. 

 Calculating High Pass and Low Pass Values 

Let’s assume that a and b are two pixels besides each other, then the low-pass and high-pass values are 

defined as: 

𝑙 = 𝑓𝑙𝑜𝑜𝑟(
𝑎 + 𝑏

2
) 

Equation 1 Low-Pass 

ℎ = 𝑎 − 𝑏 

Equation 2 High-Pass 

These two values l and h can be used again to restore the original pixel values a and b as follows: 

𝑎 = 𝑙 + 𝑓𝑙𝑜𝑜𝑟(
ℎ + 1

2
) 

Equation 3 Value of a from l and h 

𝑏 = 𝑙 − 𝑓𝑙𝑜𝑜𝑟(
ℎ

2
) 

Equation 4 Value of b from l and h 
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Figure 5 Restoring a and b from l and h Example 

The restored a and b are the same. 

 Expansion Embedding the Information bit 

We can store an information bit i in the high-pass value h by shifting it to the left by one then adding the 

bit to the LSB of h as explained below: 

ℎ𝑤 = 2 ∗ ℎ + 𝑖 

Equation 5 Expansion-Embedded Difference 

The value hw is then used to calculate the watermarked pixels a and b using II.2.a 

Note: the values a and b are 8-bit represented so they don’t exceed 255. 

To restore the original difference all we need to do is this: 

ℎ = 𝑓𝑙𝑜𝑜𝑟(
ℎ𝑤

2
) 

Equation 6 Restoring Expansion-Embedded Difference 

 Invertible Region Rd 

Since the values a and b are 8-bit represented, the watermarked difference hw need to satisfy the 

condition below so the watermarked values a and b don’t overflow: 

|ℎ| ∈ 𝑅𝑑(𝑙) = [0, min(2 ∗ (255 − 𝑙), 2 ∗ 𝑙 + 1)] 

Condition 1 Difference h 

Where Rd is called the invertible region, combining Equation 5 and Condition 1 we get the condition for 

DE for a pair-pixel a and b: 

|2ℎ + 𝑖| ∈ 𝑅𝑑(𝑙)   𝑓𝑜𝑟  𝑖 = 0,1 

Condition 2 Expandability for DE 

This is called the expandability condition for DE. 



22 

 

 

 LSB Replacement Embedding the Information bit 

In the DE Algorithm there is another technique that’s used which called LSB replacement. In the LSB 

replacement technique, the LSB of the difference is replaced with the information bit. 

Someone asks a question, the true LSB is replaced? so it is overwritten and lost isn’t? don’t worry, the 

true LSBs are saved with the payload to make sure that we can restore the original LSBs so the original 

pixels. 

We can replace the LSB of a difference only if the pair-pixels a and b satisfy the changeability 

condition: 

|2 ∗ 𝑓𝑙𝑜𝑜𝑟 (
ℎ

2
) + 𝑖| ∈ 𝑅𝑑(𝑙)    𝑓𝑜𝑟 𝑖 = 0,1 

Condition 3 Changeability for DE 

Take note that an expandable difference is also a changeable difference and a changeable difference 

remains changeable even after its LSB is replaced. 

  

 

Figure 6 Expansion Embedding Example 

 Difference Expansion’s Domains 

Let D be the common domain of the high-pass and low-pass images, H and L, respectively. Each 

element of is associated with a difference and an integer-average (or equivalently a pair of pixel 

intensities). Expandable locations and changeable locations are subsets of D. The subset of D with 

corresponding changeable differences is denoted by C and is called the set of changeable locations. An 

important subset of C containing the locations with expandable differences is denoted E by and is called 
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the set of expandable locations. Using a selection criterion depending on the size of the payload, E is 

partitioned into E’ and the set difference, E \ E’. The differences at E’ are expansion embedded. The 

differences at C \ E’ are modified by LSB replacement. To ensure reconstruction, the original LSBs are 

saved and embedded along with the payload. To enable reconstruction, a binary location map indicating 

the selected locations, E’, is created and losslessly compressed. A bitstream is formed by concatenating 

the compressed location map, the saved LSBs and the payload, and this bitstream is then embedded into 

the high-pass image H. The locations of H are traversed in a predefined order (raster-scan order or a 

secret-key order), and the bits are embedded into the changeable locations, C. The watermarked image is 

calculated from the modified high-pass image and the low-pass image. 

 

Figure 7 Difference Expansion Domains 

 Differences’ Histogram 

We take an example of this theory the Lena image: 

 

Figure 8 Lena Image 
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We begin by calculating High-Pass and Low-Pass Values of the image using Equation 1 and Equation 2 

in a raster-scan order for the pair-pixels, we obtain a 1-D array for both the High-Pass and Low-Pass 

Values. 

From these two arrays we draw a histogram of expandable differences: 

 

Figure 9 Expandable Differences Histogram 

 Histogram Shifting 

Consider the histogram of expandable differences of the Lena image, as shown in Figure 9. The 

difference histogram for most natural images would be like this, in the sense that difference values with 

small magnitudes occur more frequently. Consider a process of selecting locations for expansion 

embedding from the set of expandable locations that involves selecting suitable bins from the histogram 

of expandable differences. The bins whose differences have smaller magnitude are given preference in 

the selection process because the smaller the magnitude of the expandable difference, the smaller the 

resulting distortion. Therefore, the selection of locations for expansion embedding involves setting an 

appropriate threshold Δ ≥ 0, such that ∆ + 1 negative and ∆ + 1 nonnegative bins from the histogram are 

selected, resulting in 2∆ + 2 bins. These selected bins have differences in the range [∆ - 1, ∆]. This 

selection method divides the histogram into two nonoverlapping inner and outer regions as shown in 

Figure 9 for (∆ = 10) 

After we Expansion Embed the inner region as shown in Figure 9 using the methods in (II.2.bExpansion 

Embedding the Information bit), now the modified differences now occupy the range [-2∆ - 2, 2∆ + 1] : 
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Figure 10 Histogram after expansion of inner region (selected bins from Figure 9 ) 

Comparing this range with the range of the differences that constitute the outer regions, we see that they 

overlap in the range [-2∆ - 2, 2∆ + 1]. An appropriate histogram shift of the outer regions would cancel 

all overlap between the two regions. To achieve this, the negative differences and the nonnegative 

differences of the outer regions should be shifted left and right, respectively, by at least ∆ + 1 

ℎ𝑠 = {
ℎ + ∆ + 1,   𝑖𝑓 ℎ > ∆

ℎ − ∆ − 1,   𝑖𝑓 ℎ < −∆ − 1
 

Equation 7 Histogram Shifting 

From the above equation we get a histogram of: 

 

Figure 11 Shifted Histogram (not selected bins from Figure 10) 

The histograms of the expanded inner region and the shifted outer regions are shown in Figure 11. 

A histogram shift can be easily reversed if ∆ is known 
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ℎ = {
ℎ𝑠 − ∆ − 1,   𝑖𝑓 ℎ𝑠 > 2 ∆ + 1

ℎ𝑠 + ∆ + 1,   𝑖𝑓 ℎ𝑠 < −2∆ − 2
 

Equation 8 Reverse Histogram Shift 

Note that the discussion on histogram shifting has been restricted to expandable differences lying in the 

outer regions (i.e., differences outside the range [-∆-1, ∆]). Histogram shifting causes a smaller change 

in these differences than difference expansion. Therefore, it is not necessary to check whether a 

histogram shift might cause overflow/underflow. 

Incorporating histogram shifting along with DE also eliminates the need to have a location map of the 

selected expandable locations (they can be identified at the decoder from the histogram of the 

differences). Consequently, the amount of auxiliary information embedded is also significantly reduced. 

In addition, the computational intensity required for histogram shifting is much less than that required 

for the compression/ decompression engine. 

 Notation and Functions 

To simplify the explanation of the two approaches to extend Tian’s algorithm in the subsequent sections, 

we define some notation and functions in this section. The operators, ⊕ and •, represent the DE and 

LSB-embedding operations, respectively. They operate on an integer h and a bit b=0,1 and are defined 

as 

ℎ ⊕ 𝑏 = 2ℎ + 𝑏 

Equation 9 Expansion Notation 

ℎ • 𝑏 = 2 ∗ 𝑓𝑙𝑜𝑜𝑟 (
ℎ

2
) + 𝑏 

Equation 10 LSB Embedding Notation 

The concatenation operator, ☉, operates on two bitstreams and concatenates them. The length of a 

bitstream is returned by the function n (). Therefore, if A and B are two bitstreams, then 

𝑛(𝐴☉𝐵) = 𝑛(𝐴) + 𝑛(𝐵) 

Equation 11 Bitstream Length 

 Embedding the Bitstream 

We first decompose the image into differences and integer averages and determine the changeable and 

the expandable locations E. A 2-D overflow map, M, is formed, indicating the expandable locations. The 

overflow map is losslessly compressed. The compressed overflow map  and a header segment  

constitute the auxiliary information. The auxiliary information stream  is formed by concatenating the 

compressed bitstream  to the header segment . The header segment has a fixed length, which is also 

known to the decoder. The total length of the auxiliary stream n(A) is 

 

Equation 12 Length of Auxiliary Information 
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The total number of bits embedded by expansion embedding is the sum of the size of the auxiliary 

bitstream  and the size of the payload n(P). Let be the total number of bits embedded by expansion 

embedding 

 

Equation 13 Total Size of the payload 

The operating threshold ∆s is selected such that the total number of locations that comprise the selected 

bins is at least as large as t. Based on ∆s, we partition E into two sets Ee and Es, and, where Ee is the set 

of expandable locations that comprise the selected bins and the remaining expandable locations 

comprise Es. Histogram shifting of the bins that correspond to the set Es is done next. The auxiliary 

information stream is then created, wherein the header segment is populated with information regarding 

the size of the compressed overflow map, n(M), the operating threshold ∆s and the size of the payload 

n(P). The header segment Q is then appended to the compressed location map M to create the auxiliary 

information stream A 

 

Equation 14 Auxiliary Bitstream 

The LSBs of the differences at the locations in C \ Ee are then saved into L. The auxiliary information 

stream n(A), the saved LSBs L, and the payload P are then concatenated to create the bitstream B to be 

embedded 

 

Equation 15 Bitstream 

The bitstream B is embedded at the locations in C —using DE at the locations in Ee and using LSB 

replacement at the locations in C \ Ee. From the resulting differences and integer averages, the 

watermarked image is computed by inverting the transform using Equation 3 and Equation 4. 

  

Let’s say that we have an information to embed in Figure 8 Lena Image that consists of the name “Adel 

Benhamida”, after we mark the expandable/changeable locations such as Figure 7, we start creating the 

header segment which is the size of the compressed overflow map and the threshold ∆ and the size of 

the payload which is the size of the name 14 x 8, assuming that the size of compressed overflow map is 

1000 and delta value is 0 
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Figure 12 Header Segment 

Now, we have created the header segment and it is ready to be concatenated with the other segments. 

For the compressed overflow map, payload and the LSBs, they are just a collection of bits that are stick 

together. 

 

Figure 13 Compressed Overflow Map and Payload and LSBs 

After we built these segments, we just stick them together in this order to end up with a bitstream that 

we then embed to the image using Equation 4 and Equation 3 and Equation 5: 
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Figure 14 Bitstream Diagram 

II.3 Decoding the bitstream from a watermarked image 

 Extracting the bitstream 

To extract the bitstream all we need to do is to calculate the high pass and low pass values 

(II.2.aCalculating High Pass and Low Pass Values) and then we check for the changeable differences 

and then we start reading their LSBs in a raster-scan order to build our bitstream. 

 Restoring the Original Image 

After we extract the bitstream, we decompress the overflow map to get the expandable locations, and 

using the threshold ∆ we can derive the locations Ee and Es, as we talked in ( II.2.gHistogram Shifting ) 

the modified differences Ee now occupy the range of [-2∆ - 2, 2∆ + 1], so we use this range to identify 

Ee and Es, the Ee locations are expansion restored ( Equation 6 Restoring Expansion-Embedded 

Difference ), and Es and C locations are LSB-Replacement restored by overwriting the differences’ 

LSBs with the extracted LSBs from the bitstream, and we extract our payload. 

II.4 Prediction-Error Expansion 

 Pixel Context 

The embedding process involves computing the prediction-error (PE) from the neighborhood of a pixel  
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Figure 15 Pixel Context 

Using this equation: 

 

Equation 16 Predicted Value 

 Embedding Information bit 

Embedding the information bit in the expanded prediction error. The difference between the pixel 

intensity and its predicted intensity à is the prediction error 

p = a - à 

Equation 17 Prediction Error 

Embedding a bit i in p results in the watermarked value PE 

 

Equation 18 Watermarked Prediction Error 

 Invertible Region Rp 

The invertibility region of PE that we need to check the watermarked error value for is described as 

follows: 

 

Equation 19 Invertibility Region for PE 

From this interval we can derive Expandability / Changeability conditions which are: 

2 ∗ 𝑝 + 𝑖 ∈ 𝑅𝑝(à), 𝑖 = 0,1 

Condition 4 Expandability for PE 

2 ∗ 𝑓𝑙𝑜𝑜𝑟 (
𝑝

2
) + 𝑖 ∈ 𝑅𝑝(à),    𝑖 = 0,1 

Condition 5 Changeability for PE 

c1 c2 

a c3 
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 Embedding the bitstream 

In the PE Algorithm is the same as DE Algorithm, we build the bitstream that consists of the Header, 

compressed overflow map, payload and the LSBs and we start embedding it to the predicted error using 

( Equation 18 Watermarked Prediction Error ) and from it we derive the watermarked pixel using ( 

Equation 17 Prediction Error ), we do the whole image in a raster-scan order. 

Since the predicted value relies on the 3 neighbor pixels and these neighbor pixels are also modified 

during the embedding process it would be impossible at the decoder to identify the changeable locations 

since the pixel’s context has been changed, we came to an idea of making sure that all the locations of 

the image are changeable by restricting the predicted value at any location to be an even value. 

à = 2 ∗ 𝑓𝑙𝑜𝑜𝑟(
à

2
) 

Equation 20 Even Predicted Value 

II.5 Decoding the Bitstream from a Watermarked Image 

 Extracting the bitstream 

Since the prediction algorithm ensures that the predicted value for any location is an even number, the 

PE at any location is a changeable PE, so extracting the embedded bitstream is trivial because the 

embedded bits are the LSBs of the pixel values. 

 Restoring the Original Image 

The restoration process is sequential because the pixel context has also been changed, we start by 

decompressing the overflow map to get the expandable locations and then we start by the first pixel 

which has no context ( à =0 ), we check if it is in the interval of [-2∆ - 2, 2∆ + 1] so restore the pixel 

using ( Equation 6 Restoring Expansion-Embedded Difference ) if it is out of that range we restore it 

using LSB-Replacement, after we restore the first pixel we have to commit it to the image so the context 

of the next pixel will be ready and correct to be read. 
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Chapter III Implementing the Algorithms in C++ 
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III.1 Introduction 

 What is an IDE? 

An integrated development environment (IDE) is software for building applications that combines 

common developer tools into a single graphical user interface (GUI). An IDE typically consists of: 

• Source code editor: A text editor that can assist in writing software code with features such as 

syntax highlighting with visual cues, providing language specific auto-completion, and checking 

for bugs as code is being written. 

• Local build automation: Utilities that automate simple, repeatable tasks as part of creating a 

local build of the software for use by the developer, like compiling computer source code into 

binary code, packaging binary code, and running automated tests. 

• Debugger: A program for testing other programs that can graphically display the location of a 

bug in the original code. 

 Why developers use IDEs 

An IDE allows developers to start programming new applications quickly because multiple utilities 

don’t need to be manually configured and integrated as part of the setup process. Developers also don’t 

need to spend hours individually learning how to use different tools when every utility is represented in 

the same workbench. This can be especially useful for onboarding new developers who can rely on an 

IDE to get up to speed on a team’s standard tools and workflows. In fact, most features of IDEs are 

meant to save time, like intelligent code completion and automated code generation, which removes the 

need to type out full character sequences. 

Other common IDE features are meant to help developers organize their workflow and solve problems. 

IDEs parse code as it is written, so bugs caused by human error are identified in real-time. Because 

utilities are represented by a single GUI, developers can execute actions without switching between 

applications. Syntax highlighting is also common in most IDEs, which uses visual cues to distinguish 

grammar in the text editor. Some IDEs additionally include class and object browsers, as well as class 

hierarchy diagrams for certain languages. 

It is possible to develop applications without an IDE, or for each developer to essentially build their own 

IDE by manually integrating various utilities with a lightweight text editor like Vim or Emacs. For some 

developers the benefit of this approach is the ultra-customization and control it offers. In an enterprise 

context, though, the time saved, environment standardization, and automation features of modern IDEs 

usually outweigh other considerations. 

Today, most enterprise development teams opt for a pre-configured IDE that is best suited to their 

specific use case, so the question is not whether to adopt an IDE, but rather which IDE to select. 
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 Visual Studio 

Visual Studio is an Integrated Development Environment (IDE) developed by Microsoft to develop GUI 

(Graphical User Interface), console, Web applications, web apps, mobile apps, cloud, and web services, 

etc. With the help of this IDE, you can create managed code as well as native code. It uses the various 

platforms of Microsoft software development software like Windows store, Microsoft Silverlight, and 

Windows API, etc. It is not a language-specific IDE as you can use this to write code in C#, C++, VB 

(Visual Basic), Python, JavaScript, and many more languages. It provides support for 36 different 

programming languages. It is available for Windows as well as for macOS. 

III.2 Using Visual Studio 

 Create a New Project 

This is the entry window of the program: 

 

Figure 16 Entry-Window VS2019 

We click at Create a new project and then we fill the information about our project (project name, 

location, select Windows Desktop Application as a project template) and we end up with: 

 

Figure 17 Project Window 
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 GUI Design Window 

In top-right window we can find Solution Explorer, we use it to browse the project’s files such as 

header and source files, it also includes the GUI design files used to describe how the user interface will 

look like: 

 

Figure 18 GUI Design Window 

 Add New Source (Class) File 

 

Figure 19 Adding a class 

After we click at Class, a new window will appear asking for the class name, automatically creates the 

Header (.h) and the Class (.cpp) File and puts them in right folders (.h file in Header Files folder and 

.cpp in Source Files folder). 
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 Debugging Code 

Debugging feature is a must-have feature in an IDE, it allows you to inspect the execution of code at run 

time and allows you to inspect values of the variables at run, you can set breakpoints at any statement, 

you can see this here: 

 

Figure 20 Debugging Feature 

You can see the current being-executed statement and the values of the variables at that time, you can 

also check the memory usage of the process. 

III.3 Implementing the Algorithm 

 BitArray Class 

Since we are dealing with bits everywhere, we can’t access them directly in C++ because the smallest 

variable type in computer programming languages is char which is 8-bits, so we need some sort of code 

that manipulates Bits easily, for that we’ll create a class for it, let’s name it BitArray. 

With this class we’ll be able to: 

• Read bit at any location 

• Write bit to any location 

• Compare Two BitArray Objects using the = = operator 

• Get an Iterator for loop-based operations 

 Here is the class declaration BitArray.h (Header File): 
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Figure 21 BitArray Header Class 

As you can see in the picture above, we declared: 

• 3 numbers, one for the size of the array (in bits), and the others are for iterator function. 

• Two constructors, the first one takes a number (number of bits) and uses it to create an empty 

bit-array and the second one takes a pointer to another buffer and its size so you can manipulate 

its bits. 

• A pointer for buffer that will hold the array of bits. 

• Two functions (set, reset) to access the bits. 

• next () function for the iterator accessing. 

• The operators [ ] and = = will be explained later in this chapter. 

Now we come to explaining the functions: 

 

Figure 22 First Constructor Function 

This function take number and uses it to create a buffer in the heap using malloc() function, it returns a 

pointer to the new created buffer, we save this pointer in the bitArray variable. 

 

Figure 23 Second Constructor 
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Stores the input buffer and its size and now we can use the class to access bits in that array 

 

Figure 24 Reading Writing bits Functions 

In these two functions we use the number pos to indicate the character position, since we are dealing 

with a char array (8-bit per item) we need to convert the pos variable from indexing a bit into indexing 

a character as explained in this picture: 

 

Figure 25 Reading Writing bits Diagram 1 

Since the variable pos is declared unsigned int so any division operations on it will result in another int 

value (decimal digits after point gets ignored) unless it is being divided by a float / double value this will 

result in a float / double result. 

After we got the position of the bit in which char it is located, now to get the position of the bit in that 

char, it is just as easy as this statement pos % 8 which means the rest of pos divided by 8, the result will 

be used to shift the value 0x80 to the right then it will be used to perform an OR or AND operation with 

the char it is located in. 

0 0 1 0 1 1 1 0 1 0 0 1 1 1 *bitArray 

char[0] char[1] 

pos1 = 11 pos0 = 5 

pos0 / 8 = 0 position in bitArray pos1 / 8 = 1 position in bitArray 



39 

 

 

 

Figure 26 Reading Writing bits Diagram 2 

The figure above explains how to set a bit to 1 in a char array, to set a bit to 0, all we need to do is after 

we shift the value 0x80 to right we perform a NOT operation on it and then we AND it with the desired 

character from the char array. 

 

Figure 27 Reading Writing bits Diagram 3 

 

Figure 28 Push Function 

0 0 1 1 0 0 0 1 

pos
1
 = 13 

char[1] 

1 0 0 0 0 0 0 0 

0x80 value 

Shifted to the right by pos1 % 8 = 5 

0 0 0 0 0 1 0 0 

0 0 1 1 0 0 0 1 

OR 

0 0 1 1 0 1 0 1 Modified character 

= 

0 0 1 1 0 1 0 1 

pos
1
 = 13 

char[1] 

1 0 0 0 0 0 0 0 

0x80 value 

Shifted to the right by pos1 % 8 = 5 

0 0 0 0 0 1 0 0 

0 0 1 1 0 1 0 1 

AND 

0 0 1 1 0 0 0 1 Modified character 

= 

1 1 1 1 1 0 1 1 

NOT 
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It receives a char and then we AND it with 0x01 to extract the LSB which is the bit that we want to push 

to bit-array, if the result equals 1 which means true in C++ then we set the bit number currIndex to 1 

else to 0 

Note: currIndex starts from 0, and every time we want to overwrite the array, we need to reset this 

variable 

 

Figure 29 [ ] Operator Function 

We use this function to read an array’s bit by its position, first we read the byte where the bit is located 

in *(char*)(bitArray + i/8) then we shift the byte to the right by the current bit position, so we make the 

desired bit at the LSB of the byte and then we AND the byte with 0x01, so we return only the bit which 

is 0 or 1. 

 

Figure 30 [ ] Operator Diagram 

 

Figure 31 Next Function 

We use this function to read bits starting for the index variable nextIndex=0, and this function uses 

(Figure 29 [ ] Operator Function)  

 

Figure 32 = = Operator Function 

1 0 0 1 0 0 1 0 

*(char*)(bitArray + i/8) returns: 

Desired bit 

1 0 0 1 0 0 1 0 

Shift to the  right by 7 - i % 8 = 7 – 3 = 4 

0 0 0 0 1 0 0 1 

0 0 0 0 0 0 0 1 

AND 0x01 

Returned Value 
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This is an overloaded operator (overloading is a C++ concept, please refer to 

https://en.cppreference.com/w/cpp/language/operators for more information), we use it to compare two 

BitArray objects, the parameter obj is the to-be-compared-with object, and this object is what we will 

compare to obj, it is a for loop that starts from 0 to the Size of the bitarray comparing bit by bit and if it 

finds two unequal bits then it returns false otherwise true. 

 EEAlgo Class 

This class will hold common functionalities between the next PEAlgo and DEAlgo Classes to avoid 

boilerplate code. 

For loading the images’ pixels we’ll be using a library called OpenCV, I installed it using vcpkg (Please 

refer to https://github.com/microsoft/vcpkg for more information). 

The common things between the PE and DE are: 

• Bitstream (Header, Overflow Map…) 

• Expand and Change bit Functions (Expansion and LSB Replacement Techniques) 

• Input and Output Image 

This is the Header File of the class: 

 

Figure 33 EEAlgo Header 

The ExpandBit Function takes two parameters, first one is the variable that we want to embed the bit to 

and the second one is the to-be-embedded bit using (Equation 5 Expansion-Embedded Difference) 

The ChangeBit Function is just as same as the ExpandBit function it just implements (Equation 10 LSB 

Embedding Notation) 

https://en.cppreference.com/w/cpp/language/operators
https://github.com/microsoft/vcpkg
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isExpandable / isChangeable Function checks if the value is expandable or not and takes a pointer to a 

function that checks the value if it’s in the range (Invertible Region Rd, Invertible Region Rp) 

GeneratePayload Function generate a random bit-array and returns a pointer to it to embed it later with 

the bitstream. 

 

Figure 34 getCurrentRegion Function 

getCurrentRegion Function returns what region the current being-embedded bit is located at. 

This is the declaration of the bitstream struct: 

 

Figure 35 BitStream Declaration 

Since we know that the size of header segment is 4 + 1 + 4 bytes but in this struct above the compiler 

allocates 4 + 4 + 4 bytes for it, for performance concerns it must be aligned to an address that is multiple 

to 4. 
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Figure 36 Header Struct Diagram 

But if we declared another char variable after delta variable, the compiler would make use of the 

Wasted Bytes until we declare a variable that’s larger than the wasted bytes. 

 DEAlgo Class 

In the DEAlgo Header Class we have these public functions: 

 

Figure 37 DEAlgo Header Class 
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As you can see this class extends the parent class EEAlgo, so we’ll be able to use EEAlgo’s 

functionalities on DEAlgo data. 

In this class we have two constructors, one takes a full file path name of the image and how it is loaded, 

here we loaded it as a Grayscale image, and the other constructor take an already-loaded image or matrix 

to apply the algorithm on it. 

The CalcHighPass Function is a simple loop that iterate all over the image’s pixels and calculate the 

high pass and low pass value using (II.2.aCalculating High Pass and Low Pass Values) 

 

Figure 38 DetermineLocations Function 

in DetermineLocations function, we are iterating over the high and low pass values and check every 

pair if they are expandable or changeable and mark them in another vector called Locations and mark 

the Expandable Locations which are the overflow map, the sizeOfLSBs variable will be used later to 

indicate the size of LSBs segment. 

 

Figure 39 GetDelta Function 
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GetDelta Function iterates over the high pass values and checks the number of the differences that are 

in the range of [-∆-1, ∆], if that number is enough for the Auxiliary Information and the payload to be 

embedded in then we break the loop and save the threshold ∆ (delta variable). 

OutterHistogramShift Function iterates over the high pass values that are expandable and outside of 

the range [-∆-1, ∆] then it shifts them to right and the left according to their sign, see (Equation 7 

Histogram Shifting). 

 

Figure 40 BuildBitStream Function 

BuildBitStream Function fills the struct BitStream with the information and saves the LSBs of C \ Ee, 

see Figure 7 Difference Expansion Domains. 

 

 

Figure 41 EmbedBitStream Function 

In this function, we are reading the header struct (BS.aInfo.header) as a stream of bits using our 

BitArray Class and the payload and the LSBs, we use the variable bitsEmbedded to indicate which 

region we currently are in and then we check if the location is Expandable_in_delta then we embed the 
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bit using Equation 5 Expansion-Embedded Difference and if it is Changeable or Expandable we embed 

the bit using Equation 10 LSB Embedding Notation 

CompileImage Function calculates the new watermarked pixels using Equation 3 Value of a from l and 

h and Equation 4 Value of b from l and h 

 

Figure 42 CompressOverFlowMap Function 

The compressing algorithm we used is Google’s snappy compressing engine please refer to 

https://github.com/google/snappy for information 

For now, we mentioned the encoding functions and explained them, now we go the decoding part 

We call the CalcHighPass function to calculate the high and low pass values. 

GetCLocations Function marks every high-low pass pair-values that is changeable. 

 

Figure 43 ExtractBitStream Function 

https://github.com/google/snappy
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In this function, we read the bitstream variable BS as a stream of bits. 

According to Figure 36 Header Struct Diagram we need to fill the wasted bytes 

RANGE_HEADER_EMPTY_BYTES with zeros and then start extracting the LSBs of high pass values 

to build our BitStream. 

DecompressOverFlowMap Function decompresses the extracted overflow map using Google’s snappy 

library 

 

Figure 44 IdentifyExpandedLocations Function 

IndentifyExpandedLocations Function uses the decompressed overflow map to mark the expanded 

locations E and derive the Ee from it by marking the values that in the range of [-2∆ - 2, 2∆ + 1]. 

(according to II.2.gHistogram Shifting) 

 

Figure 45 Restore the LSBs Function 

We read the LSBs from the bitstream we extracted and start recovering the differences that are LSB-

Replacement embedded C \ Ee. 

RestoreExpanded Function restores the Ee Locations using Equation 6 Restoring Expansion-Embedded 

Difference. 
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Figure 46 ReverseShift Function 

This function reverse shifts the expandable differences that are outside of [-2∆ - 2, 2∆ + 1], according to 

II.2.g Histogram Shifting. 

  

Now we declared the DEAlgo class, how to use it? 

• Create an instance of it and pass the full file path name of the image to the constructor 

• Call CalcHighPass function 

• Call DetermineLocations function 

• Call CompressOverFlowMap function 

• Call GetDelta Function 

• Call OutterHistogramShift function 

• Call BuildBitStream function 

• Call EmbedBitStream function 

• Call CompileImage function 

And now we’ve embedded a random payload to the image, how to extract the payload and restore the 

original image? 

• Create another instance of the DEAlgo class and pass the result image of the object encoder. 

• Call CalcHighPass function 

• Call GetCLocations function 

• Call ExtractBitStream function 

• Call DecompressOverFlowMap function 

• Call IdentifyExpandedLocations function 

• Call RestoreLSBs function 

• Call RestoreExpanded function 

• Call ReverseShift function 

• Call CompileImage function 

And now you’re done, you have extracted the bitstream thus the payload and restored the original image. 

 PEAlgo Class 

The PEAlgo class also extends the parent class EEAlgo class 



49 

 

 

 

Figure 47 PEAlgo Header Class 

With a little bit of modifications. 

 

Figure 48 PixelVal Function 

To calculate the predicted value of a pixel we need its neighbor pixels, but the first pixel for example has 

no neighbor pixels (II.4.a Pixel Context), so when we try to access a row or a column that doesn’t exist 

in the image matrix, we simply make it 0, for that case, we created a dedicated function that checks if 

the row or column number is negative then return 0 else return the true pixel value. 

 

Figure 49 CalcPE Function 
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We calculate the predicted values and errors using Equation 16 Predicted Value and Equation 17 

Prediction Error 

GetLocations function same as DEAlgo’s, iterates over the predicted error values and marks the 

expandable and changeable ones and creates the overflow map that indicates the expandable ones 

GetDelta function is also same DEAlgo’s, iterates over the predicted errors and marks the errors that are 

in the range of [-∆-1, ∆]. 

CompressOverFlowMap function, compresses the overflow map using Google’s snappy engine. 

OutterHistogramShift function, iterates over the expandable predicted errors that are outside of the 

range [-∆-1, ∆] and shifts them by ∆ to the right (positive side) and -∆ - 1 to the left (negative side). 

BuildBitStream function, same as DEAlgo’s, it combines the segments together (Header, compressed 

ov map…). 

EmbedBitStream function, same as DEAlgo’s, it reads the bitstream variable BS as a stream of bits and 

then embeds it bit by bit to the predicted errors according to their state, EXPANDABLE_IN_DELTA 

ones by Expansion and CHANGEABLE \ EXPANDABLE ones by LSB-Replacement. 

CompileImage function, same as DEAlgo’s, calculates the watermarked pixels using the predicted 

values and errors. 

These are the encoding functions that embeds the bitstream to an image, now we’ll talk about the 

decoding functions 

GetCLocations function, iterates over the predicted errors and marks them 

ExtractBitStream function, same as DEAlgo’s, it reads the LSBs of the changeable predicted errors 

and pushes them into the bitstream variable BS using our BitArray Class. 

DecompressOverFlowMap function, decompresses the extracted bitstream using Google’s snappy 

engine. 
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Figure 50 RecoverOriginalValues Function 

According to II.5.b Restoring the Original Image, the recovery process is sequential, since the first pixel 

has no context (equal to 0) so it’s the same after the embedding the bitstream, so we start recovering the 

first pixel and then use the recovered pixel to restore the second pixel and so on. 

We calculated the predicted error and value and then we use them to mark the C, Ee, Es locations and 

then using the marked locations we restore the original pixel based on its location Ee by Equation 6 

Restoring Expansion-Embedded Difference and C \ Ee by Equation 10 LSB Embedding Notation, we 

repeat the same process for the next pixel until we restore all the image. 

  

For now, we’ve covered the class’s functions and declarations, how to use it? 

• Create an instance of the PEAlgo class giving the full image file path name as an argument for 

the constructor. 

• Call CalcPE function 

• Call GetLocations function 
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• Call CompressOverFlowMap function 

• Call GetDelta function 

• Call OutterHistogramShift function 

• Call BuildBitStream function 

• Call EmbedBitStream function 

• Call CompileImage function 

For now, we’ve completed the embedding process, now we need the code on how to recover the payload 

and restore the original image. 

• Create an instance of the PEAlgo class giving the encoded image matrix as an argument for the 

constructor  

• Call ExtractBitStream function 

• Call DecompressOverFlowMap function 

• Call RecoverOriginalValues function 

And you’re done, you’ve extracted the payload and recovered the original image. 

To see the source code, you can check it out at: 

https://github.com/h3x3ncr7pt/MCILGraduation/tree/master/MCILGraduation 
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Chapter IV Comparing the results  
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IV.1 Introduction 

We’ll be comparing the algorithms we’ve implemented so far (PE and DE) on multiple images and then 

we compare the results of each algorithm (pros and cons). 

 Images Test List 

The images are 512 x 512 and 256 x 256 Grayscale:  

 

Figure 51 Test Image 1 

(256 x 256) 

 

Figure 52 Test Image 2 

(256 x 256) 

 

Figure 53 Test Image 3 

(512 x 512) 

 

Figure 54 Test Image 4 

(512 x 512) 

 

Figure 55 Test Image 5 

(512 x 512) 

 PSNR 

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the maximum 

possible value (power) of a signal and the power of distorting noise that affects the quality of its 

representation.  Because many signals have a very wide dynamic range, (ratio between the largest and 

smallest possible values of a changeable quantity) the PSNR is usually expressed in terms of the 

logarithmic decibel scale. 

Image enhancement or improving the visual quality of a digital image can be subjective.  Saying that 

one method provides a better-quality image could vary from person to person.   For this reason, it is 

necessary to establish quantitative/empirical measures to compare the effects of image enhancement 

algorithms on image quality. Using the same set of tests images, different image enhancement 

algorithms can be compared systematically to identify whether a particular algorithm produces better 

results.  The metric under investigation is the peak-signal-to-noise ratio.  If we can show that an 

algorithm or set of algorithms can enhance a degraded known image to resemble more closely the 

original, then we can more accurately conclude that it is a better algorithm. (23, s.d.) 

 

Figure 56 PSNR Equation 

Where MSE is Mean Squared Error which is the mean of the difference between the original image and 

the encoded image squared. 
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IV.2 Tests 

We’ll draw charts for every test image starting by Image 1: 

 

Figure 57 Bpp to Delta 1 

 

Figure 58 PSNR to Bpp 1 

 

Figure 59 PSNR to Delta 1 

With a max Payload capacity of 29032 bits for DE and 58932 bits for PE. 

 

Figure 60 Bpp to Delta 2 

 

Figure 61 PSNR to Bpp 2 

 

Figure 62 PSNR to Delta 2 

With a max Payload capacity of 30856 bits for DE and 62113 bits for PE. 

 

Figure 63 Bpp to Delta 3 

 

Figure 64 PSNR to Bpp 3 

 

Figure 65 PSNR to Delta 3 

With a max Payload capacity of 122210 bits for DE and 247962 bits for PE. 
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Figure 66 Bpp to Delta 4 
 

Figure 67 PSNR to Bpp 4 

 

Figure 68 PSNR to Delta 4 

With a max Payload capacity of 114952 bits for DE and 242295 bits for PE. 

 

Figure 69 Bpp to Delta 5 

 

Figure 70 PSNR to Bpp 5 

 

Figure 71 PSNR to Delta 5 

With a max Payload capacity of 124563 bits for DE and 249457 bits for PE. 

 

As we can clearly see on the results that the PE Algorithm has more (almost double) payload capacity 

but less PSNR quality unlike the DE Algorithm that has less payload capacity but more PSNR compared 

to BPP. 

For BPP to Delta, we can see that both the algorithms reach their max BPP together (Same Delta), the 

PSNR at the max BPP rate for both algorithms we see that the DE algorithm has better PSNR than PE 

one, but if we see at the same BPP we see that the PE algorithm is always the better, also the DE 

algorithm has better PSNR at low BPP values (for all test images). 

 

Finally, we say that if we want more embedding capacity, we should go for the PE algorithm, but we 

lose some PSNR and if the capacity isn’t important but the PSNR is, we should go for DE then. 
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Figure 72 Max Payload Capacity 

IV.3 Conclusion 

In This article, we’ve studied and implemented two Reversible Data Hiding algorithms which are the 

Difference Expansion and the Prediction Error algorithms, they both have their own pros and cons 

which means that the optimal (the perfect) embedding technique is still not achieved yet, the major 

difference between them is the embedding capacity, the PE algorithm has double DE algorithm’s 

payload capacity. 
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GENERAL CONCLUSION 

We did a complete analysis of different data hiding techniques. Data hiding techniques become more 

important these days because of security maintaining requirements. These techniques have its own 

merits and demerits. Distortion level and payload capacity differ on every technique. Some methods 

reduce distortion levels whereas, other methods increase payload capacity. The main aim of these 

techniques is to provide security, undetectability, robustness, capacity. The methods in each work have a 

different level of applications. These methods overcome distortion problems and enhance image quality 

and contrast. This review paper presents how every technique differs and has its individual benefits and 

disadvantage. By using the techniques discussed above, data hiding and RDH can be achieved 

effectively. In the future, there is scope to invent applications by combining the above methods for 

improved data hiding with better security which can be also used in networks with lower bandwidth. 

Watermarking is a very active research field with a lot of applications. Although it is a relatively new 

field, it has produced important algorithms for hiding messages into digital signals, RDH techniques 

recover the real data after doing encryption of the secret data. These techniques are used in the 

applications like military, medical imagery and forensics use this method for media registration, 

copyright protection, integrity authentication, etc. In this paper we discussed the techniques used for 

RDH (Reversible Data Hiding) over the last few years like lossless compression, histogram shifting, 

differential expansion, prediction error. All the above-mentioned techniques were implemented for 

better results in terms of robustness, capacity, security, and perceptibility. 
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