
* In accordance with:
- Decree n ° 055 of January 21, 2021 Fixing exceptional authorized provisions in terms of

organization and pedagogical management, evaluation and progression of students, during the
COVID-19 period for the academic year 2020-2021;

- Minutes of the meeting of the Science and Technology team for the month of May 2021

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTERY OF HIGHER EDUCATION AND SCIENTIFIC RESARCH

University Mohamed El-Bachir El-Ibrahimi - Bordj Bou Arreridj

Faculty of Sciences &technology

Department of Electronics

 Thesis

Presented to get

 THE MASTER'S DIPLOMA

BRANCH: ELECTRONIQUE

Specialty: EMBEDDED ELECTRONIC SYSTEMS

By

BENMAHDI Islam

BENSAID Ayoub

Entitled

Thesis assessed in: 12/09/2021

By the evaluation committee:

DIFFELLAH Nacira MCB Chairman Univ-BBA

HAMADACHE Fouzia MAA Supervisor Univ-BBA

LATOUI Abdelhakim MCA Examiner Univ-BBA

 Academic year 2020/2021

Hardware Software Co-Simulation For image

filtering and blurring Using Xilinx system generator

Abstract

mage filtering is one of the very useful techniques in image processing and computer

vision. It is used to eliminate useless details and noise from an image. Blur is a widely

used effect in graphics software, the visual effect of this blurring technique is a smooth

blur resembling that of viewing the image through a translucent screen.

In this thesis, a hardware-Software Co-Simulation for image filtering and blurring will be

present. The filtering and blurring architectures are based on convolution module which require

a significant amount of computing resources and this can be implemented using Xilinx System

Generator (XSG). The Simulink simulation and hardware-in-the loop approach presents a far

more cost efficient solution. The design was implemented targeting a Spartan3e device

(xc3s500e). Obtained results from software and hardware are discussed and compared using

the Peak Signal-to-Noise Ratio (PSNR), also the FPGA resource usage for different kernel

sizes.

Résumé

Le filtrage d'images est l'une des techniques très utiles en traitement d'images et en vision par

ordinateur. Il est utilisé pour éliminer les détails inutiles et le bruit d'une image. Le flou est un

effet largement utilisé dans les logiciels graphiques, l'effet visuel de cette technique de flou est

un flou lisse ressemblant à celui de la visualisation de l'image à travers un écran translucide.

Dans cette thèse, une Co-simulation matériel-logiciel pour le filtrage et le flou d'images sera

présenté. Les architectures de filtrage et de flou sont basées sur un module de convolution qui

nécessite une quantité importante de ressources et cela peut être implémenté à l'aide de Xilinx

System Generator (XSG). La conception a été mise en œuvre en ciblant FPGA Spartan3e

(xc3s500e). Les résultats obtenus sont discutés et comparés à l'aide du rapport signal sur bruit

(PSNR), ainsi que de l'utilisation des ressources FPGA pour différentes tailles de noyau de

convolution.

 الملخص

. يتم استخدامه لإزالة التفاصيل غير الحاسوبيةرؤية الدة جداً في معالجة الصور وتصفية الصور هي إحدى التقنيات المفي

والتأثير المرئي لتقنية الرسومات،هو تأثير مستخدمَ على نطاق واسع في برامج س. الطمالصورةالمفيدة والضوضاء من

.التمويه هذه عبارة عن تمويه سلس يشبه عرض الصورة من خلال شاشة نصف شفافة

سيكون هناك محاكاة مشتركة للأجهزة والبرامج لتصفية الصور والتعتيم. تعتمد هياكل التصفية الأطروحة،في هذه

 والتعتيم

.Xilinx System Generator باستخدام طلب قدرًا كبيرًا من موارد الحوسبة ويمكن تنفيذ ذلكعلى وحدة الالتفاف التي تت

جهاز عمالونهج الأجهزة في الحلقة حلاً أكثر فعالية من حيث التكلفة. تم تنفيذ التصميم باست Simulink تقدم محاكات

PSNR تتم مناقشة النتائج التي تم الحصول عليها من البرامج والأجهزة ومقارنتها باستخدام. (xc3s500e) Spartan3e

I

https://en.wikipedia.org/wiki/Image

Acknowledgements

First and foremost, praises and thanks to the God, the Almighty, for his showers of

blessings throughout our research work to complete the thesis successfully.

We would like to express ourdeep and sincere gratitude to our thesis supervisor,

F.HAMADACHE forgiving us the opportunity to do research and providing in valuable

guidance throughout this research work. Her dynamism, vision, sincerity and motivation

have deeply inspired us. She has taught us the methodology to carry out the research and

to present the research work as clearly as possible. It was a great privilege and honor to

work and study under her guidance. We have extremely grateful for what she has offered

us. We would also like to thank her for her friendship,empathy,andgreatsenseofhumor.

We are also grateful to the board of examiners for their willingness to evaluate our

work and to provide helpful comments and remarks.

We are extremely grateful to our parents for their love, prayers, caring and sacrifices

for educating and preparing us for the future. Also we express our thanks to our brother, sister

for their support and valuable prayers.

Finally, our thanks go to all the people who have supported us to complete the

research work directly orindirectly.

Contents

List of figures...i

List of tables...iii

Lists of abbreviations...iv

INTRODUCTION...01

Chapter 1: Spatial image filtering and blurring

1.1 Introduction...02

1.2 Image degradation..02

1.3 Filtering in spatial domain...04

1.4 Image filtering and blurring...07

1.5 Quality Measurement Technique...10

1.6 MATLAB results...11

1.7 Conclusion...15

Chapter 2: Xilinx FPGA Spartan-3E (XC3S500E)

2.1 Introduction...16

2.2 Overview of a general FPGA device..16

2.3 Xilinx Spartan-3E (XC3S500E)..17

2.4. FPGA Configuration...19

2.5 Summary of FPGA XC3S500E Xilinx Spartan-3E Attributes..............................20

2.6 NI Digital Electronics FPGA Board...20

2.7 FPGA Boot-Up Options..21

2.8 FPGA languages...22

2.9 Design flow in FPGA...23

2.10 Conclusion...24

Chapter 3: Implementation of image filtering and blurring in FPGA using Xilinx System

Generator

3.1 Introduction...25

3.2 Design methodology for implementation on FPGA with XSG.........................25

3.3 System generator flow diagram...26

3.4 Image filtering and blurring design using Xilinx system generator................27

3.5 FPGA implementation..34

3.6 Hardware Co-simulation results...42

3.7 FPGA Hardware Resource...46

3.8 Conclusion..47

Conclusion and future work...48

References

i List of figures

List of figures

Chapter 1: Spatial image filtering and blurring

Figure 1.1: Image degradation model ..02

Figure 1.2: Gaussian PDFs with different standard deviation ..04

Figure 1.3: Neighbourhood example..05

Figure 1.4: The principle of Convolution, illustrated with a 3x3 kernel06

Figure 1.5: Gaussian distribution in 3D ...07

Figure 1.6: Gaussian kernels 3 3, 5 5 with 0.5 ..07

Figure 1.7: Image filtering..07

Figure 1.8: Image Blurring...08

Figure 1.9: Box (average) kernels3x3, 5x5...09

Figure 1.10: Motion blur with length of 5, 7 and angle of 45°..10

Figure 1.11: Filtered image with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8..............................11

Figure 1.12: Filtered image with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8..............................11

Figure 1.13: Gaussian blur with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8................................12

Figure 1.14: Gaussian blur with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8..............................12

Figure 1.15: PSNR Computed against different sigma values..13

Figure 1.16: Box blur with kernel a) 5x5, b) 7x7...14

Figure 1.17: Motion blur with length of 5, 7 and angle of 45°..14

Chapter 2: Xilinx FPGA Spartan-3E (XC3S500E)

Figure 2.1: Conceptual structure of an FPGA device..17

Figure 2.2: FPGA XC3S500E Package Marking...17

Figure 2.3: Xilinx Spartan-3E (XC3S500E) Ordering Information...18

Figure 2.4: Xilinx Spartan-3E (XC3S500E) architecture...19

Figure 2.5: FPGA configuration (a) Master mode (b) Slave mode (c) JTAG mode...............20

Figure 2.6: The NI Digital Electronics FPGA Board...21

Figure 2.7: HDL Flow Diagram for a New Design...23

ii List of figures

Chapter 3: Implementation of image filtering and blurring in FPGA using Xilinx System

Generator

Figure 3.1: Design flow of System Generator..27

Figure 3.2: Simulink model of filtering/blurring design...28

Figure 3.3: (a) Block System Generator (b) System Generator block dialog...........................28

Figure 3.4: Test images for blurring and filtering..29

Figure 3.5: Image Pre-processing Blocks..29

Figure 3.6: FPGA boundary from the Simulink simulation model..30

Figure 3.7: 2D convolution block developed under XSG..30

Figure 3.8: Blurring/Filtering block 3x3...31

Figure 3.9: Blurring/Filtering block 5x5...32

Figure 3.10: Blurring/Filtering block 7x7...33

Figure 3.11: Image Post-processing Blocks..34

Figure 3.12: FPGA in Loop...35

Figure 3.13: Selection of new compilation target...36

Figure 3.14: Installing Hardware platform..36

Figure 3.15: Xilinx iMPACT APP..37

Figure 3.16: DEFB compilation target..38

Figure 3.17: Simulation-Hardware Co-Simulation block Insertion39

Figure 3.18: Hardware co-simulation block...40

Figure 3.19: Hardware Co-Simulation model...41

Figure 3.20: The connected Board..41

Figure 3.21: Co-simulation implementation...42

Figure 3.22: Hardware Filtered image with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8........43

Figure 3.23: Hardware Filtered image with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8........43

Figure 3.24: Hardware Gaussian blur with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8........44

Figure 3.25: Hardware Gaussian blur with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8........44

Figure 3.26: Hardware Box blur with kernel a) 5x5, b) 7x7...45

Figure 3.27: Hardware Motion blur with length of 5, 7 and angle of 45°..........................45

Figure 3.28: Xilinx Resource Estimator block..46

iii List of tables

List of tables

Chapter 1: Spatial image filtering and blurring

Table 1.1: PSNR values for different filtered images..11

Table 1.2: PSNR values for different Gaussian blurred images...13

Table 1.3: PSNR values for box and motion blur...14

Chapter 2 : Xilinx FPGA Spartan-3E (XC3S500E)

Table 2.1: Device/Package combinations..18

Table 2.2: FPGAXC3S500 attributs...20

Table 2.3: FPGA Boot-Up Options..22

Chapter 3: Implementation of image filtering and blurring in FPGA using Xilinx System

Generator

Table 3.1: PSNR values for different Hardware filtered images...43

Table 3.2: PSNR values for different Gaussian blurred images...44

Table 3.3: PSNR values for Hardware box and motion blur..46

Table 3.4: Resource Utilization Summary with different kernel...46

iv List of abbreviations

Lists of abbreviations

PDF: Probability Distribution Function

MSE: Mean Square Error

PSNR: Peak Signal to Noise Ratio

FPGA: Field Programmable Gate Array

PLCC:Plastic Leaded Chip Carrier

CLBs: Configurable Logic Blocks

IOBs: Input/Output Blocks

LUTs:Look-Up Tables

DDR:Double Data-Rate

DCM: Digital Clock Manager

ROM: Read Only Memory

SRAM:Static Random-Access Memory

PROM:Programmable Read-Only Memory

SPI: Serial Peripheral Interface

JTAG: Joint Test Action Group

NI:National Instruments

USB:Universal Serial Bus

HDL:Hardware Description Language

VHSIC:Very High Speed Integrated Circuits

ASICs:Application Specific Integrated Circuits

MATLAB:Matrix Laboratory

RTL:Register Transfer Level

XNF:Xilinx Netlist File

XSG: Xilinx System Generator

IDE:Integrated Design Environment

UCF: User ConstraintFile

DSP:Digital Signal Processing

1 Introduction

Introduction

Visual information transmitted in the form of digital images is becoming a major

method of communication in the modern age, but the image obtained after transmission is

often corrupted with noise. The received image needs processing before it can be used in

applications. Image filtering involves the manipulation of the image data to produce a visually

high quality image (Saxena & Kourav, 2014).Blur filters are designed primarily for

retouching images to soften, haze, cloud, fuzz, or distort specific areas of a picture or the

entire imageWidely distributed software packages such as Photoshop provide a set of

‘‘filtering’’ operations which enable the user to improve the image in some way: from image

smoothing that removes noise and high frequencies, sharpening that increases high frequency

content, contrast stretching, through to specialized algorithms (Behrenbruch et al.,2004).

Recently, Field Programmable Gate Array (FPGA) technology has become a viable

target for the implementation of algorithms suited to image processing applications. The use

of rapid prototyping tools such as MATLAB-Simulink and Xilinx System Generator becomes

increasingly important because of time-to-market constraints. The Simulink simulation and

hardware-in-the loop approach greatly facilitates the design process as a real-time embedded

system (Saidani et al., 2009).

This thesis presents the implementing of image filtering and blurring on a

reconfigurable logic platform using Xilinx System Generator (XSG). The design will be

implemented targeting a Spartan3e device (xc3s500e). Hardware in the loop verification and

co-simulation may also be performed. The thesis is organized as follows:

Chapter 1: provides details about image filtering and blurring algorithms. Simulation

with MATLAB will be done then we compare the image quality from obtained results using

the Peak Signal-to-Noise Ratio (PSNR)

Chapter 2: presents a description of Field Programmable Gate Array (FPGA),its

Programming Tools and Languages and the design methodology for implementation.

Chapter 3: .provides the implementation of image filtering (Gaussian filter) and image

blurring (Gaussian, motion and box) in Simulink and FPGA using FPGA-in-the-loop

approach (Co-simulation), a brief description of how to acquire results. Furthermore, results

and discussion of the acquired results will be discussed using peak signal to noise ratio.

Finally, a conclusion concludes our achievements, in addition to possible future work.

Chapter 1

Spatial image filtering and

blurring

 2 Spatial image filtering and blurring

Chapter 1: Spatial image filtering and blurring

1.1 Introduction

When an image is acquired by a camera or other imaging system, often the vision

system for which it is intended is unable to use it directly. The image may be corrupted by

noise which degrades the quality of image. Image filtering is the process of remove noise

from image and improve the visual quality of the image (Chandel & Gupta, 2013).

Blurring is reduced sharpness of edges and spatial details. Blurring is also a great way

to make images appear a little softer and make your subject stand out from the rest of the

image. In other words, you might want to create some depth of field in the image. The visual

effect of the blurring technique is a smooth blur resembling that of viewing the image through

a translucent screen. Gaussian smoothing is also used as a pre-processing stage in computer

vision algorithms in order to enhance image structures (Patel & Dangarwala, 2014).

This chapter provides details about Gaussian noise, Gaussian kernel and Gaussian blur

and also provides Matlab results and discussion of the acquired results with respect to peak

signal to noise ratio).

1.2 Image degradation

Image degradation is said to occur when a certain image under goes loss of stored

information either due to digitization or conversion decreasing visual quality. The detailed

mechanisms by which images are degraded are, of course, dependent on the imaging

modality. It is important to note that some forms of degradation are reversible while others are

not. (Md.Naseem Ashraf, 2013)

An additive noise follows the rule:

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (1.1)

 f (x,y) g(x,y)

 n(x,y)

Figure 1.1: Image degradation by additive noise

+

 3 Spatial image filtering and blurring

Where 𝑓(𝑥, 𝑦)is the original image, 𝑛(𝑥, 𝑦) denotes the noise introduced into the image to

produce the corrupted image 𝑔(𝑥, 𝑦), and (𝑥, 𝑦)represents the pixel location.

1.2.1 Noise

Noise is always presents in digital images during image acquisition, coding,

transmission, and processing steps. It is very difficult to remove noise from the digital images

without the prior knowledge of filtering techniques.

Image noise is random variation of brightness or color information in the images

captured. It is degradation in image signal caused by external sources. Different factors may

be responsible for introduction of noise in the image. The number of pixels corrupted in the

image will decide the quantification of the noise. The principal sources of noise in the digital

image are (Verma & Ali, 2013):

a) The imaging sensor may be affected by environmental conditions during image acquisition.

b) Insufficient light levels and sensor temperature may introduce the noise in the image.

c) Interference in the transmission channel may also corrupt the image.

d) If dust particles are present on the scanner screen, they can also introduce noise in the

image.

1.2.2 Gaussian Noise

Gaussian noise is also called as electronic noise because it arises in amplifiers or

detectors. Source: thermal vibration of atoms and discrete nature of radiation of warm objects.

(Gonzalez et al., 2002). As the name indicates, this type of noise has a Gaussian distribution,

which has a bell shaped probability distribution function PDF given by:

 𝑝(𝑧) =
1

√2𝜋𝜎2
𝑒

−
(𝑧−�̅�)2

2𝜎2 (1.2)

Where:𝑧 represents the gray scale,𝑧̅ is the mean (average) value of z, and σ is its standard

deviation. The standard deviation squared 𝜎2is called the variance.Generally Gaussian noise

mathematical model represents the correct approximation of real world scenarios.

 4 Spatial image filtering and blurring

Figure 1.2: Gaussian PDFs with different standard deviation

The distributions above show how the normal distribution changes as the standard

deviation changes. The average is 0 and there are three different distributions with standard

deviations of 0.25, 0.6, and 1. Note that the larger the standard deviation, the wider the

distribution. , the variance can be thought of as controlling the width of the Gaussian PDF.

This noise model is additive in nature and follow Gaussian distribution. Meaning that

each pixel in the noisy image is the sum of the true pixel value and a random, Gaussian

distributed noise value (Verma & Ali, 2013).

1.3 Filtering in spatial domain

1.3.1 Neighbourhood Operations

A neighbourhood operation generates an 'output' pixel on the basis of the pixel at the

corresponding position in the input image and on the basis of its neighbouring pixels. The size

of the neighbourhood may vary: several techniques use (3x3, 5x5…) neighbourhoods

centered at the input pixel, but many of the more advanced and useful techniques now use

neighbourhoods which may be as large as 63 x63 pixels. The neighbourhood operations are

often referred to as 'filtering operations'. This is particularly true if they involve the

convolution of an image with a filter kernel or mask. Since convolution is such an important

part of digital image processing, we will discuss it in detail before proceeding. (Vernon, 1991)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

P
D

F

probability density function

sigma=0.25

sigma=0.6

sigma=1

 5 Spatial image filtering and blurring

Figure 1.3: Neighbourhood 3x3

1.3.2 Convolution

The convolution operation is much used in digital image processing and, though it can

appear very inaccessible when presented in a formal manner for real continuous functions

(signals and images), it is quite a simple operation when considered in a discrete domain.

Before discussing discrete convolution, let us the two-dimensional convolution integral,

which is given by the equation:

𝑓(𝑥, 𝑦) = (𝑓 ∗ ℎ)(𝑥, 𝑦) = ∫  
∞

−∞
∫  

∞

−∞
𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)ℎ(𝑖, 𝑗)d𝑖d𝑗 (1.3)

The function ℎ is normally referred to as the filter, since it dictates what elements of the

input image 𝑓 are allowed to pass through to the output image𝑓. By choosing an appropriate

filter, we can enhance certain aspects of the output and attenuate others. A particular filter h is

often referred to as a 'filter kernel'. Attempts to form a conceptual model of this convolution

operation in one's mind are often fruitless. However, it becomes a little easier if we transfer

now to the discrete domain of digital images and replace the integral with the sigma

(summation) operator. Now the convolution operation is given by:

𝑓(𝑥, 𝑦) = (𝑓 ∗ ℎ)(𝑥, 𝑦) = ∑  𝑖 ∑  𝑗 𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)ℎ(𝑖, 𝑗) (1.4)

The summation is taken only over the area where f and h overlap. This multiplication

and summation is illustrated graphically in Figure 1.4. Here, a filter kernel h is a 3 x 3 pixel

image, with the origin h (0, 0) at the center, representing a mask of nine distinct weights:

f(-1,-1) f(-1,0) f(-1,+1)

f(0,-1) f(0.0) f(0,+1)

f(+1,-1) f(+1,0) f(+1,+1)

 6 Spatial image filtering and blurring

h (-1, -1)...h (+ 1, + 1). The kernel or mask is superimposed on the input image, the input

image pixel values are multiplied by the corresponding weight, the nine results are summed,

and the final value of the summation is the value of the output image pixel at a position

corresponding to the position of the center element of the kernel. (Vernon, 1991)

Figure 1.4: The principle of Convolution, illustrated with a 3 3 kernel

1.3.3 Gaussian mask

A Gaussian filter is a non-linear filter with impulse response equal to Gaussian

Function. Each pixel in the given image is transformed using Gaussian function. It is often

reasonable to truncate the filter window and implement the filter directly for narrow windows

using a simple rectangular window function (Eswar, 2015) The Gaussian function of two

variables has the basic form:

ℎ(𝑥, 𝑦) = 𝑒
−

𝑥2+𝑦2

2𝜎2 (1.5)

Where x the distance from the origin is in the horizontal axis, y is the distance from the origin

in the vertical axis, and σ is the standard deviation of the Gaussian distribution

 7 Spatial image filtering and blurring

Figure 1.5: Gaussian distribution in 3D

This Gaussian kernel when needed to be convolved with a 2 dimension matrix has to be

converted to an equivalent matrix structure and this matrix of the Gaussian discrete function is

known as the Gaussian kernel matrix. Filtering can be implemented by convolving the input

matrix with the Gaussian kernel matrix.

[
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

]

[

0.0000 0.0000 0.0002 0.0000 0.0000
0.0000 0.0113 0.0837 0.0113 0.0000
0.0002 0.0837 0.6187 0.0837 0.0002
0.0000 0.0113 0.0837 0.0113 0.0000
0.0000 0.0000 0.0002 0.0000 0.0000]

Figure 1.6: Gaussian kernels 3 3, 5 5 with 0.5

1.4 Image filtering and blurring

1.4.1 Image filtering

Image filtering is applied as pre-processing to eliminate useless details and noise from an

image.

 𝑔(𝑥, 𝑦)

 𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

 𝑛(𝑥, 𝑦)

Figure 1.7: Image filtering

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

0.2

0.4

0.6

0.8

1

Filter h(x,y)
+

 8 Spatial image filtering and blurring

Image filtering is produced by convolution between a degraded image and 2D Gaussian

mask which is usually odd and symmetrical 2 1 2 1n n , so the convolution become:

 , , , ,
n n

i n j n

f x y g h x y g x i y j h i j

 (1.6)

1.4.2 Image blurring

Blurring is reduced sharpness of edges and spatial details. It can be modeled as a

shifting towards lower frequencies component on the frequency domain. Blurring is also a

great way to make images appear a little softer and make your subject stand out from the rest

of the image. In other words, you might want to create some depth of field in the image.

Widely distributed software packages such as Photoshop provide a set of ‘‘blurring’’

operations which enable the user to improve the image in some way: from image smoothing

(typically local averaging) that removes noise and high frequencies, sharpening that increases

high frequency content, contrast stretching, through to specialized algorithms, for example for

red-eye reduction. Such image filtering is designed to improve the appearance of an image,

relying on the human visual system to disregard any unwanted change of content of the image

(Behrenbruch et al., 2004).

 𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

Figure 1.8: Image Blurring

1.4.2.1 Gaussian and box blur

Gaussian blur is the result of modifying the image parameters using the Gaussian

function. It is mainly used to reduce the noise in the image and minimize the image details.

The visual effect of this blurring effect resembles that of viewing the image through a

translucent lens. This process is also used as a pre-processing stage in order to enhance image

structure this blur produces a nice, smooth effect. Given its wide range of uses, Gaussian blur

is definitely one of the most popular blur effects (Eswar. S, 2015). Gaussian blur is a filter

whose impulse response h is a Gaussian mask

Blur h(x,y)

 9 Spatial image filtering and blurring

2

1 1

2

, , , ,
x y

i x j y

f x y f h x y f x i y j h i j

 (1.7)

As allured to above, Box blurring is a form of low-pass filter for image processing. The

kernel utilizes uniform values, meaning that every element within the kernel is equivalent.

Because this uniformity is relatively simple to calculate compared to some other methods, box

blurring is a fairly quick and common method for blurring images (Pulfer, 2019). Box blur is

a filter whose impulse response h is a Gaussian mask

1

, , ,
2 1 2 1

n n

i n j n

f x y f h x y f x i y j
n n

 (1.8)

The main parameter in box blurring is the size of kernel you would like to use.

[
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

]

[

0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400]

Figure 1.9: Box (average) kernels 3 3, 5 5

1.4.2.2 Motion blur

Motion blur effects may deliberately be introduced to create a sense of fast movement

of the object and photographers use this to produce dramatic effect to the picture taken for

more image appeal. (Kalalembang, 2009), Motion Blur helps to create a sense of motion,

speed and action in a picture. If you want to create a “speed trail” effect, this is the blur effect

you’ll want to use. Motion Blur is perfect for those who want to make cars seem like they’re

moving. You’ve definitely seen Motion Blur applied in car advertisements.

Motion blur on digital image can be modeled as a convolution between the image and the

motion blur kernel having point spread factor (PSF) distribution equals to the angle of the

blur:

H(𝑥, 𝑦) = 𝑓𝛼 ∗ 𝑚 = ∑  𝐾=1
𝐾=0 𝑚K𝑓(𝑥 + Kcos 𝛼 , 𝑦 + Ksin 𝛼) (1.9)

With 𝛼 and 𝐾 is the coefficient and the direction of shifting angle, respectively. An example

of motion blur kernel with blur length of 5, 7 and angle of 45 are shown below

 10 Spatial image filtering and blurring

[

0.0000 0.0000 0.0000 0.0501 0.0304
0.0000 0.0000 0.0519 0.1771 0.0501
0.0000 0.0519 0.1771 0.0519 0.0000
0.0501 0.1771 0.0519 0.0000 0.0000
0.0304 0.0501 0.0000 0.0000 0.0000]

[

0.0000 0.0000 0.0000 0.0000 0.0000 0.0145 0.0000
0.0000 0.0000 0.0000 0.0000 0.0376 0.1283 0.0145
0.0000 0.0000 0.0000 0.0376 0.1283 0.0376 0.0000
0.0000 0.0000 0.0376 0.1283 0.0376 0.0000 0.0000
0.0000 0.0376 0.1283 0.0376 0.0000 0.0000 0.0000
0.0145 0.1283 0.0376 0.0000 0.0000 0.0000 0.0000
0.0000 0.0145 0.0000 0.0000 0.0000 0.0000 0.0000]

Figure 1.10: Motion blur with length of 5, 7 and angle of 45°

1.5 Quality Measurement Technique

The Mean Square Error (MSE) and the PSNR are the two error measurements that were

usually used to evaluate image. MSE represents the cumulative squared error between the

transformed and the original images. Whereas PSNR represents a measure of the peak error.

The lower the value of MSE the lower the error. Below are the equations for MSE and PSNR

respectively:

2

1 1

1
, ,

M N

x y

MSE f x y f x y
MN

 (1.10)

Where: M and N are the dimensions of the image.

PSNR block computes the peak signal to noise ratio in decibels between two images.

This ratio is often used as a quality measurement between the original and the resulting

image. The higher the PSNR, the better the quality of the resulting image (Deshpande et al.,

2018).

2

1010 () /PSNR log peakval MSE (1.11)

Where peakval is the maximum value for a pixel.

1.6 MATLAB results

Matrix laboratory software (MATLAB) has been used to analysis the performances of noise

elimination filters and blurring filters.

1.6.1 Image Gaussian filtering

 We applied a Gaussian filter with respectively (3x3) and (5x5) kernel with 𝜎=0.5, 2

and 8 on the image (cameraman.tiff) affected by Gaussian noise with 𝜎=0.002.

The kernel will be conserved and sigma values will be changed in order to see their impact in

the filtered image.

 11 Spatial image filtering and blurring

a) PSNR: 31.3887654 dB

b) PSNR: 23.5510394 dB

c) PSNR: 23.2932480 dB

Figure 1.11: Filtered image with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8

a) PSNR: 31.3535081 dB

b) PSNR: 21.7628835 dB

c)PSNR: 21.1624726 dB

Figure 1.12: Filtered image with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8

For different sigma values and kernel size, Table 1.1 resumes the corresponding PSNR of

filtered images.

Table 1.1: PSNR values for different filtered images

𝜎 PSNR (3x3) PSNR (5x5)

0.5 31.3887654 dB 31.3535081 dB

2 23.5510394 dB 21.7628835 dB

8 23.2932480 dB 21.1624726 dB

Normally, if PSNR value is more than 40 dB, this is an indication that the quality of the

image is good. But, if the image is mean quality, the PSNR value is less than 30 dB which is

the case of our selected image.

 12 Spatial image filtering and blurring

The Gaussian filtering effect depends on 2 main factors kernel matrix size and the 𝜎

(sigma). We note that when we increase the sigma value and the kernel size, the Gaussian

noise is reduced, but not completely removed and the effect of smoothing increase and the

PSNR decrease. So, Gaussian filtering is best suited filters for low Gaussian noise with low

sigma value and kernel size

1.6.2 Image blurring

 We applied a blurring filter with respectively (3x3) and (5x5) kernel on the image

(cameraman.tiff).

1.6.2.1 Gaussian blur

The kernel will be conserved and sigma values will be changed in order to see their impact in

the blurred image.

a) PSNR: 37.5534494 dB

b) PSNR: 33.9966417 dB

c)PSNR: 33.8973597 dB

Figure 1.13: Gaussian blur with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8

a) PSNR: 37.5412050 dB

b) PSNR: 32.7157166 dB

c)PSNR: 32.7157166 dB

Figure 1.14: Gaussian blur with 5x5 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8

 13 Spatial image filtering and blurring

In the above images we can see the amount of blurring produced by different sizes of kernel

matrix and different value of sigma. Also from the images it is evident that the blurring effect

increases with the increase in kernel matrix size and sigma values. Figure 1.13 shows the blurring

effect associated with the kernel size is 3x3 and multiple values of sigma. It is observed that the

blurring effect increases with increase in the sigma. Similar variation is seen in figure 1.14 and

figure 25 along with the change in size of the matrix.

Table 1.2: PSNR values for different Gaussian blurred images

𝜎 PSNR (3x3) PSNR (5x5)

0.5 37.5534494 dB 37.5412050 dB

2 33.9966417 dB 32.7157166 dB

8 33.8973597 dB 32.7157166 dB

The Gaussian blur effect also depends on 2 main factors kernel matrix size and the 𝜎

(sigma). The blurring effect is directly proportional to sigma. As the sigma value increases,

more is the blurring effect on the image. This is because the deviation from the center pixel is

more and will be negligible as the weighted matrix elements are reduced and making the

convoluted value smaller. This will increase the blurring effect on image. Also, the other

factor that affects blurring is the kernel matrix size. The blurring is more when the kernel size

increases. Fig1.15 shows the plot of PSNR against various values of the Gaussian blur

standard deviation and indicate that the blurring is more when the kernel size increases.

Figure 1.15: PSNR Computed against different sigma values.

0 1 2 3 4 5 6 7 8
30

35

40

45

50

55

60

65

Sigma

P
S

N
R

3x3 Mask

5x5 Mask

 14 Spatial image filtering and blurring

1.6.2.2 Box and Motion blur

We applied a box blur with respectively (5x5) and (7x7) kernel and motion blur with length of

5, 7 and angle of 45°.

a) PSNR:32.4845860 dB

b) PSNR: 31.6905225 dB

Figure 1.16: Box blur with kernel a) 5x5, b) 7x7

a) PSNR:33.2743997 dB

b) PSNR:32.5897816 dB

Figure 1.17: Motion blur with length of 5, 7 and angle of 45°

From the images (figure 1.16) and table 1.3, it is evident that the box blur effect increases with the

increase in kernel matrix size while the motion blur is more when the blur length increases.

Table 1.3: PSNR values for box and motion blur

Box blur 5x5 32.4845860 dB 7x7 31.6905225 dB

Motion blur 5, 45K 33.2743997 dB 7, 45K 32.5897816 dB

 15 Spatial image filtering and blurring

1.7 Conclusion

In this chapter, we have introduced spatial image filtering and blurring algorithms, we

started with Gaussian filter by restoring images that has been corrupted by Gaussian noise

which follow Gaussian distribution then we presented box and motion blurring filters.

MATLAB has been used to analysis the performances of noise elimination and blurring

effects.

Conventional smoothing filters always tend to blur the images, so for noise rernovaI

tasks, the filter should have the ability to preserve features in an image while reducing the

noise.

Chapter 2

Xilinx FPGA

Spartan-3E (XC3S500E)

 16 Xilinx FPGA Spartan-3E (XC3S500E)

Chapter 2: Xilinx FPGA Spartan-3E (XC3S500E)

2.1 Introduction

FPGAs have become increasingly common in recent years due to their high

performance compared to processors running software. FPGAs are an attractive choice due to

their high performance, low energy dissipation per unit computation and re-configurability.

The parallel computing power of the PGA is extremely useful in the modern world of

demanding applications like signal and image processing. These flexible platforms are

quickly maturing in logic capacity or programmable devices and the availability of embedded

modules (Multipliers and Hard Cores) (Elamaran et al., 2012)

In this chapter, we give a brief overview of the FPGA device, a wide description of

Xilinx Spartan-3E (XC3S500E) with programming tools and languages and provide FPGA

design flow.

2.2 Overview of a general FPGA device

 A field programmable gate array (FPGA) is a logic device that contains a two-

dimensional array of generic logic cells and programmable switches. The conceptual structure

of an FPGA device is shown in figure 2.1.

 A logic cell can be configured to perform a simple function, and a programmable switch

can be customized to provide interconnections among the logic cells. A custom design can be

implemented by specifying the function of each logic cell and selectively setting the

connection of each programmable switch. Once the design and synthesis is completed, we can

use a simple adaptor cable to download the desired logic cell and switch configuration to the

FPGA device and obtain the custom circuit. Since this process can be done "in the field"

rather than "in a fabrication facility," the device is known as field programmable (Chu, 2011).

 17 Xilinx FPGA Spartan-3E (XC3S500E)

Figure 2.1: Conceptual structure of an FPGA device.

2.3 Xilinx Spartan-3E (XC3S500E)

 The Spartan-3E family of Field-Programmable Gate Arrays (FPGAs) is specifically

designed to meet the needs of high volume, cost-sensitive consumer electronic applications.

Offers densities ranging from 100,000 to 1.6 million system gates (Xilinx, 2018).

2.3.1 Package Marking and ordering information

 FPGA XC3S500E Xilinx Spartan-3E is a PLCC (Plastic Leaded Chip Carrier) circuit

with 256 pins; figure 2.2 provides a top marking for XC3S500E in the quad-flat packages.

Figure 2.2: FPGA XC3S500E Package Marking

 18 Xilinx FPGA Spartan-3E (XC3S500E)

Marking and ordering information are as follows:

Figure 2.3: Xilinx Spartan-3E (XC3S500E) Ordering Information

Valid device/package combinations are given in Table 2.1

Table 2.1: Device/Package combinations

Device Speed Grade Package Type / Number of Pins Temperature Range (TJ)

XC3S500E -4 : Standard Performance FT256 :256-ball Fine-Pitch Thin Ball

Grid Array (FTBGA)

C : Commercial (0°C to

85°C)

2.3.2 Architectural Overview

The Spartan-3E family architecture consists of five fundamental programmable functional

elements: (Xilinx, 2018).

 Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that

implement logic plus storage elements used as flip-flops or latches. CLBs perform a

wide variety of logical functions as well as store data.

 Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state

operation. Supports a variety of signal standards, including four high-performance

differential standards. Double Data-Rate (DDR) registers are included.

 Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

 Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the

product.

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital

solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock

signals.

 19 Xilinx FPGA Spartan-3E (XC3S500E)

Figure 2.4: Xilinx Spartan-3E (XC3S500E) architecture

2.4. FPGA Configuration

 The FPGA is made of SRAM (Volatile Memory) so the data configured inside FPGA

lost at power Off state. FPGA Configuration is the process of loading the FPGA chip with

Configuration data through external devices during power On state the Method of

Configuring FPGA Can be divided in to:

2.4.1. Master mode

In the Master Mode the configuration data is stored in external nonvolatile memories

such as SPI FLASH, Parallel FLASH, PROM and so on. During configuration process the

data is loaded in the FPGA Configurable Logic Blocks to operate as a specific application.

The configuration clock is provided by FPGA in Master Mode operation.

2.4.2. Slave mode

 In Slave Mode, the entire configuration process is controlled by external device. Those

external device may be of processor, Microcontroller, and so on. The Configuration can

performed serially or parallel method. The Clock input is supplied by the external device for

Slave mode.

 20 Xilinx FPGA Spartan-3E (XC3S500E)

2.4.3. JTAG mode

The four-wire JTAG interface is common on board testers and debugging

hardware.FPGA mainly uses JTAG interface for prototype download and debugging. Nearly

all FPGAs are configured through JTAG, making it a good interface for tools that need to

interact with a variety of devices (Gruwell, 2016).

(a) (b) (c)

Figure 2.5: FPGA configuration(a) Master mode (b) Slave mode (c) JTAG mode

2.5 Summary of FPGA XC3S500E Xilinx Spartan-3E Attributes

Table 2.2 gives the summary of FPGA XC3S500E Xilinx Spartan-3E attributes (Xilinx, 2018)

2.6 NI Digital Electronics FPGA Board

The NI Digital Electronics FPGA Board is a circuit development platform based on

the XC3S500E Xilinx Spartan-3E FPGA. Besides the FPGA, the board contains slide

switches, LEDs, a two digit seven-segment display, push-buttons, a rotary push-button knob

and LEDs for one external clock, Digilent Pmod terminals for external attachments, USB

download interface, and large breadboard area for digital electronics circuitry

experimentation.(NI,2009)

Table 2.2 : FPGAXC3S500 attributs

Device System

Gates

Equivalent

Logic Cells

CLB Array (One CLB = Four Slices) Distributed

RAM bits

Block

RAM

bits

Dedicated

Multipliers

DCMs Maximum

UserI/O/

Maximum

Differential

I/O Pairs

Rows Columns Total

CLBs

Total

Slices

XC3S500E 500K 10,476 46 34 1,164 4,656 73K 360K 20 4 232 92

 21 Xilinx FPGA Spartan-3E (XC3S500E)

Figure 2.6: The NI Digital Electronics FPGA Board

2.7 FPGA Boot-Up Options

 Boot-up selection on the NI Digital Electronics FPGA Board is controlled by switch

SW9. The two FPGA boot-up options are described in Table 2.3.

 22 Xilinx FPGA Spartan-3E (XC3S500E)

Table2.3:FPGA Boot-Up Options

. FPGA Boot-Up Option Switch Position

Boot-up from ROM (default)—Configures the FPGA

from the image stored in the Platform Flash PROM

Boot-up from JTAG—Does not load anything into the

FPGA, waits for program download from USB-JTAG port.

2.8 FPGA languages

Generally the languages used to program the FPGA can be divided to:

2.8.1 Hardware Description Language HDL

 FPGAs have traditionally been configured by hardware engineers using a Hardware

Design Language (HDL). The two principal languages used are Verilog HDL (Verilog) and

Very High Speed Integrated Circuits (VHSIC) HDL (VHDL) which allows designers to

design at various levels of abstraction. Verilog and VHDL are specialized design techniques

that are not immediately accessible to software engineers, who have often been trained using

imperative programming languages. Consequently, over the last few years there have been

several attempts at translating algorithmic oriented programming languages directly into

hardware descriptions (Arunmozhi & Mohan, 2012).

2.8.2 Software based languages:

 Have a single source that can be compiled to both hardware and software. This results in

speeding up the development process considerably (Abdelrahman, 2017). Generally software

based languages can be categorized as follows:

 Structural approach: high level synthesis based on structure hardware language (e.g.

JHDL and Quartz).

 Augmented Languages: mostly based on C language and can be used for modelling

complete system (e.g Handel-C,Mitrion-C and System-C).

 23 Xilinx FPGA Spartan-3E (XC3S500E)

2.8.3 Graphical programming

MATLAB and Simulink for model-based design provide signal, image and video

processing engineers with a development platform that spans design, modeling, simulation,

code generation, and implementation.

When using MATLAB and Simulink to target FPGAs or ASICs (Application Specific

Integrated Circuits), we can first design and run a simulation of the system with MATLAB,

Simulink and state flow and then generate bit-true, cycle-accurate, synthesizable Verilog and

VHDL code using System Generator which is provided by MATLAB(Abdelrahman, 2017).

2.9 Design flow in FPGA

 Application Specific Integrated Circuit (ASIC) designs or sections of these designs that

are targeted for FPGAs are often created with HDLs. The FPGA design flow comprises of

several steps, namely HDL design entry, performing a Register Transfer Level (RTL)

simulation of the design ,design synthesis, creating a Xilinx Netlist File (XNF) file,

performing a functional simulation, floor planning the design (this step is optional) then

design implementation (mapping place and route) and device programming. Figure 2.7 gives

an overview of the FPGA design flow carried out by specific automation tools.

Figure 2.7: HDL Flow Diagram for a New Design

 24 Xilinx FPGA Spartan-3E (XC3S500E)

2.10 Conclusion

 The Spartan-3E platform builds on the success of the earlier Spartan-3 platform by

adding new features that improve system performance and reduce the cost of configuration.

Because of their exceptionally low cost, Spartan-3 generation FPGAs are ideally suited to a

wide range of consumer electronics applications, including broadband access, home

networking, display/projection, and digital television equipment.

Chapter 3

Implementation of image filtering and

blurring in FPGA using Xilinx System

Generator

 25 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Chapter 3: Implementation of image filtering and blurring in FPGA using

Xilinx System Generator

3.1 Introduction

 Usually filtering algorithms are implemented using software-based, however, it is not

limited to software development but also hardware development.System Generator provides

accelerated simulation through hardware Co-simulation. System Generator will automatically

create a hardware simulation token for a design captured in the Xilinx DSP blockset that will

run on one the supported hardware platforms. This hardware will co-simulate with the rest of

the Simulink system to provide up to a 1000x simulation performance increase.

 In this chapter we will discuss the Simulink model of filtering and blurring algorithms

using Xilinx system generator and the implementation of the design targeting a Spartan3e

device (xc3s500e) using hardware co-simulation. We compare the image

qualityofhardwareCo-Simulation using the Peak Signal-to-Noise Ratio (PSNR). Also, the

FPGAresource usage for different sizes of Gaussian kernel will bepresented.

.3.2 Design methodology for implementation onFPGA with Xilinx system generator

 For accomplishing Image processing task using Xilinx System Generator needs two

Software tools to be installed. One is MATLAB Version R2010a or higher and Xilinx ISE

14.1 or higher.

 Xilinx ISE Design Suite 14.7 software which is a design and project management

software for FPGA circuits and it is an FPGA circuit design tool from Xilinx. This software

allows the simulation of the description and the synthesis of the equivalent logic circuit then

the placement and the routing of the circuit on a prototype corresponding to a very precise

FPGA technology and finally all the verifications are made comes the implantation on a real

FPGA which corresponds in generating the configuration file of the chosen target circuit in

order to establish the interconnections of the logic cells corresponding to the logic circuit

designed with an optimization of the resources available at the level of the programmable

FPGA circuit.

 26 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

 MATLAB R2010a with Simulink from MathWorks. Simulink is anadditional

MATLAB toolbox that provides for modeling,simulating and analyzing dynamic systems

within a graphicalenvironment. The software allows for both modular andhierarchical models

to be developed providing the advantage ofdeveloping a complex system design that is

conceptuallysimplified.

 Xilinx System Generator (XSG) is an integratordesign environment (IDE) for FPGAs,

which usesSimulink, as a development environment, it is presentingin the form of block

set.The System Generator token available along with Xilinx has to be configured to

MATLAB. This result in addition of Xilinx Block set to the Matlab Simulink environment

which can be directly utilized for building algorithmic model. Xilinx System Generator

(XSG) has an integrated design flow, to move directly to the configuration file (*. bit)

necessary for programming the FPGA. XSG automatically generates VHDL code and a draft

of the ISE model being developed. Make hierarchical VHDL synthesis, expansion and

mapping hardware, in addition to generating a user constraint file (UCF), simulation and test

bench and test vectors among other things (Mehra, R., and al., 2010).

3.3 System generator flow diagram

 System Generator works within the Simulink model-based design methodology. Often

an executable spec is created using the standard Simulink block sets. This spec can be

designed using floating-point numerical precision and without hardware detail. Once the

functionality and basic dataflow issues have been defined, System Generator can be used to

specify the hardware implementation details for the Xilinx devices. System Generator uses the

Xilinx DSP blockset for Simulink and will automatically invoke Xilinx Core Generator to

generate highly-optimized netlists for the DSP building blocks. System Generator can execute

all the downstream implementation tools to product a bit stream for programming the FPGA.

An optional test bench can be created using test vectors extracted from the Simulink

environment for use with ModelSim or the Xilinx ISE® Simulator. The System Generator of

DSP(Gupta, 2015).

 The hardware implementation on the FPGA requires the VHDL code and then the

Bitstream file, which can be automatically generated using the design from the XSG. Figure

 27 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

3.1 shows the broad flow design Xilinx SystemGenerator. As already mentioned, we can then

move to theconfiguration file to program the FPGA, and the synthesis andimplementation

steps are optional for the user but not for System Generator.

Figure 3.1: Design flow of System Generator

3.4 Image filtering and blurring design using Xilinx system generator

 The entire operation for any image processing technique using Simulink and Xilinx

blocks mainly goes through three phases:Image pre-processing, Image processing technique

using XSG and Image postprocessing.

 28 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.2:Simulink model of filtering/blurring design

3.4.1 System Generator Token

 Every System Generator diagram requires that at least one System Generator token be

placed on the diagram. This token is not connected to anything but serves to drive the FPGA

implementation process. The property editor for this token allows to specify the target netlist,

device, performance targets and system period. System Generator will issue an error if this

token is absent.The symbol and the dialog box of the "System Generator" token are shown in

the following figure:

(a)

(b)

Figure 3.3:(a) Block System Generator (b) System Generator block dialog

 29 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

3.4.2 Test images

 The Image from File block reads an image from a specified file location and imports it

to the Simulinkworkspace. The input file contain a grayscale image “cameraman.tif”.

Original image

Noisy image (Gaussian noise

2
0.002

Figure 3.4 : Test images for blurring and filtering

3.4.3 Image Preprocessing Blocks

 As image is two dimensional (2D) arrangement, to meet the hardware requirement the

image should be preprocessed and given as one dimensional (1D) vector. The model based

design used for image preprocessing is shown in Figure 3.5 , To process 2D image it is

converted into 1D by using convert 2D to 1D block. Frame conversion block sets output

signal to frame based data and provided to unbuffer block which converts this frame to scalar

samples at a higher sampling rate.

Figure 3.5: Image Pre-processing Blocks

 3.4.4Gateway in and Gateway out

 All Xilinx blocks should be connected between Gateway In and Gateway Out. Between

those two blocks any technique can be designed. All Xilinx blocks work on fixed point but

the real world signal (image, voice signal, etc.) are floating point so here the gateway in and

 30 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

gateway out blocks acts as translators for converting the real world signal into the desired

form. The two blocks define the boundary of the FPGA from the Simulink simulation model

Figure 3.6:FPGA boundary from the Simulink simulation model

3.4.5 Blurring and Filteringalgorithms using XSG

 The following figure illustrates the architecture of the 2D convolution block

developed under XSG and which mainly consists of three major functions: line buffers,

multipliers and adders. The convolution is the heart of both blurring and filtering algorithms.

Figure 3.7: 2D convolution block developed under XSG

Figure 3.8,Figure 3.9 and Figure 3.10 show what’s inside the Blurring/Filtering block using

3x3 , 5x5 and 7x7 kernel size.

 31 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.8: Blurring/Filtering block 3x3

 32 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.9: Blurring/Filtering block 5x5

 33 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.10: Blurring/Filtering block 7x7

 34 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

 The 2D filtering and blurring algorithm with 3x3 kernel maintains three line buffers.

Each iteration the input pixel is pushed into the current line buffer that is being written to. The

control logic rotates between these threebuffers when it reaches the column boundary. Each

buffer is followed by a shiftregister and data at the current column index is pushed into the

shift register. Ateach iteration a 3x3 kernel of pixels are formed from the pixel input, shift

registersand line buffer outputs. The kernel is multiplied by a 3x3 filter coefficient maskand

the sum of the result values is computed as the pixel output.

3.4.6 Image post processing blocks

 The image post processing blocks which are used to convert the image output back to

floating point type are shown in Figure 3.7. For post processing it uses a buffer block which

converts scalar samples to frame output at lower sampling rate, followed by a 1D to 2D

format signal block (Rao et al., 2015).

Image post- processing helps recreating image from 1D arrayshown in Fig 7. Post-processing

uses(Swara& Madhumati, 2014).

Data type conversion: It converts image signal to unsignedinteger format.

Buffer: Converts scalar samples to frame output at lowersampling rate.

Convert 1D to 2D: Convert 1D image signal to 2D imagematrix.

Figure 3.11:Image Post-processing Blocks

3.5 FPGA implementation

3.5.1 HardwareCo-Simulation

 System Generator provides hardware co-simulation, making it possible to incorporate

adesign running in an FPGA directly into a Simulink simulation. "Hardware Co-Simulation"

compilation targets automatically create a bitstream and associate it to a block.When the

design is simulated in Simulink, results for the compiled portion are calculatedin hardware.

 35 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

This allows the compiled portion to be tested in actual hardware and canspeed up simulation

dramatically.

 Hardware Co-Simulation also known as Hardware in Loop (HIL) allows us to use

Simulink software to test the design on real hardware for any existing HDL code. The

following figure illustrates HIL

Figure 3.12: FPGA in Loop

3.5.2 Installing Hardware platform DEFB (Digital Electronics FPGA Board)

 The first step in performing hardware co-simulation is to install and setup the hardware

platform DEFB.

3.5.2.1 Creation of new compilation target

 To create new compilation target, double click on System Generator token and in the

compilation menu choose Hardware Co-Simulation and finally select New Compilation

Target in the Hardware Co-Simulation submenu.

 36 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.13: Selection of new compilation target

The following window appears to do the installation:

Figure 3.14: Installing Hardware platform

 37 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

 To do the installation, fill in all the fields.

Platform Name: Digital Electronics FPGA

Clock frequency: 50 MHz and the locator pin is B8

In order to fill in JTAoptions, start the XilinxiMPACT software with a click on Boundary

scan then right click by choosing initialize JTAG chain which automatically connects to the

cable and identifies boundary scan chain (devices of the DEFB platform).

Figure 3.15: XilinxiMPACT APP

The existing circuits in the platform:

Device 1: (FPGA, xc3s500e) and device2: xcf04s

We choose Boundary Scan Position: 1 to program device 1 and we launch the detection of the

length of the instruction register (IR length) and that gives 6.8 and we add the target device to

program family: Spartan 3e, part: xc3s500e, speed: -4, package: FT256

Then we start the installation

3.5.3 Compiling thefiltering/ blurring Model for Hardware Co-Simulation

3.5.3.1 Choice of the installed platform

 Once the installation is complete, the DEFB platform is now included in the list of Co-

Simulation platforms

 38 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.16:DEFB compilation target

 When a compilation target is selected, the fields on the System Generator block dialog

boxare automatically configured with settings appropriate for the selected compilation

target.System Generator remembers the dialog box settings for each compilation target.

Thesesettings are saved when a new target is selected, and restored when the target is recalled.

3.5.3.2 Invoking the Code Generator

 The code generator is invoked by pressing the Generate button in the System

Generatorblock dialog box.The code generator produces a FPGA configuration bitstream for

thedesign that issuitable for hardware co-simulation. System Generator not only generates the

HDL and

netlist files for the model during the compilation process, but it also runs the downstreamtools

necessary to produce an FPGA configuration file.

 39 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

 The configuration bitstream contains the hardware associated with your model, and

alsocontains additional interfacing logic that allows System Generator to communicate

withyour design using a physical interface between the platform and the PC. This

logicincludes a memory map interface over which System Generator can read and write

valuesto the input and output ports on your design. It also includes any platform-

specificcircuitry (e.g., DCMs, external component wiring) that is required for the target

FPGAplatform to function correctly.

3.5.3.3 Hardware Co-simulation block

 System Generator automatically creates a new hardware co-simulation block once it

hasfinished compiling your design into an FPGA bitstream. A Simulink library is also

createdin order to store the hardware co-simulation block. At this point, you can copy the

blockout of the library and use it in your System Generator design as you would other

Simulinkand System Generator blocks.

Figure 3.17:Simulation-Hardware Co-Simulation block Insertion

 40 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

 The hardware co-simulation block assumes the external interface of the model

orsubsystem from which it is derived. The port names on the hardware co-simulation

blockmatch the ports names on the original subsystem. The port types and rates also match

theoriginal design.

Figure 3.18: Hardware co-simulation block

 Hardware co-simulation blocks are used in a Simulink design the same way other

blocksare used. During simulation, a hardware co-simulation block interacts with the

underlyingFPGA platform, automating tasks such as device configuration, data transfers,

andclocking. A hardware co-simulation block consumes and produces the same types

ofsignals that other System Generator blocks use. When a value is written to one of theblock's

input ports, the block sends the corresponding data to the appropriate location inhardware.

Similarly, the block retrieves data from hardware when there is an event on anoutput port.

 Hardware co-simulation blocks may be driven by Xilinx fixed-point signal types,

Simulinkfixed-point signal types, or Simulink doubles. Output ports assume a signal type that

isappropriate for the block they drive. If an output port connects to a System Generatorblock,

the output port produces a Xilinx fixed-point signal. Alternatively, the portproduces a

Simulink data type when the port drives a Simulink block directly.

 Like other System Generator blocks, hardware co-simulation blocks provide

parameterdialog boxes that allow them to be configured with different settings. The

parameters thata hardware co-simulation block provides depend on the FPGA platform the

block isimplemented for (i.e., different FPGA platforms provide their own customized

hardwareco-simulation blocks).

The system should appear as follows:

 41 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.19: Hardware Co-Simulation model

3.5.3.4 Co-SimulationImplementation

 Implementation of the co-simulation system consists of only two simple tasks. The first

is to connect the FPGA hardware to the host computer, and the second is to run the co-

simulation model. Begin by assembling the FPGA hardware. Set up all hardwareand connect

the board to the host computer using the serial to USB cable and the JTAG programming

cable. This will allow the co-simulation to access the hardware for the filtering/blurring

algorithms. Once the board is connected properly, check that the simulation time is still set to

the same value as in the original system design and click the Start simulation button: Upon

completion of the simulation run time, this co-simulation process is complete, and the output

signal can be accessed through video viewer.

Figure 3.20: The connected Board

 42 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Figure 3.21: Co-simulation implementation

3.6 Hardware Co-simulation results

3.6.1 Image Gaussian filtering

 We applied a Gaussian filter with respectively (3x3) and (5x5) kernel with 𝜎=0.5, 2 and

8 on the image (cameraman.tiff) affected by Gaussian noise with 𝜎=0.002.The kernel will be

conserved and sigma values will be changed in order to see their impact in the filtered image.

a) PSNR: 17.16 dB

b) PSNR: 18.14 dB

c) PSNR: 18.17 dB

Figure 3.22:Hardware Filtered image with 3x3 kernel and a) 𝜎=0.5 b) 𝜎=2 c) 𝜎=8

 43 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

a) PSNR: 15.65 dB

b) PSNR: 16.93 dB

c) PSNR: 12.52 dB

Figure 3.23:Hardware Filtered image with 5x5 kernel and a)𝜎=0.5 b) 𝜎=2 c) 𝜎=8

For different sigma values and kernel size, Table 3.1 resumes the correspondingPSNR of

filtered images.

Table 3.1: PSNR values for different Hardware filtered images

𝜎 PSNR (3x3) PSNR (5x5)

0.5 17.16 dB 15.65 dB

2 18.14 dB 16.93 dB

8 18.17dB 12.52dB

The Gaussian filtering effect depends on 2 main factors kernel matrix size and the 𝜎

(sigma). We note that when we increase the sigma value and the kernel size, the Gaussian

noise is reduced, but not completely removed and the effect of smoothing increase and the

PSNR decrease. So, Gaussian filtering is best suited filters for low Gaussian noise with low

sigma value and kernel size. The blurring effect increase with kernel size but we find a conflict

result when increasing sigma value (PSNR increase) which is not conform with MATLAB

results.

3.6.2 Image blurring

We applied a blurring filter with respectively (3x3) and (5x5) kernel on the image

(cameraman.tiff).

 44 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

3.6.2.1 Gaussian blur

The kernel will be conserved and sigma values will be changed in order to see their impact in

the blurred image.

a) PSNR: 17.8 dB

b) PSNR: 18.77 dB

c) PSNR: 18,81 dB

Figure 3.24:Hardware Gaussian blur with 3x3 kernel and a)𝜎=0.5 b) 𝜎=2 c) 𝜎=8

a) PSNR: 16.09 dB

b) PSNR: 17.36 dB

c) PSNR: 12.69dB

Figure 3.25:Hardware Gaussian blur with 5x5 kernel and a)𝜎=0.5 b) 𝜎=2 c) 𝜎=8

For different sigma values and kernel size, Table 3.2 resumes the correspondingPSNR of

blurredimages.

Table 3.2: PSNR values for different Gaussian blurred images

𝜎 PSNR (3x3) PSNR (5x5)

0.5 : 17.8 dB 16.09 dB

2 18.77 dB 17.36 dB

8 18,81 dB 12.69dB

 45 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

The Gaussian blur effect also depends on 2 main factors kernel matrix size and the 𝜎

(sigma). The blurring effect is directly proportional to kernel size. As the kernel matrix size

increases, more is the blurring effect on the image. Tableindicate that the blurring is more

when the kernel size increases. This will increase the blurring effect on image. Also, the other

factor that affects blurring is the sigma value. PSNR values indicate that the blurring effect is

less when sigma increases which is contradictory with MATLAB results.

3.6.2.2 Box and Motion blur

We applied a box blur with respectively (5x5) and (7x7) kernel and motion blur with length of

5, 7 and angle of 45°.

a) PSNR:17.6 dB

b) PSNR: 16.68 dB

Figure 3.26:Hardware Box blur with kernel a) 5x5, b) 7x7

a) PSNR:16.92 dB

b) PSNR: 12.02 dB

Figure 3.27:Hardware Motion blur with length of 5, 7 and angle of 45°

 From the images (figure 2.25, figure 2.26) and table 3.3, it is evident that the box blur effect

increases with the increase in kernel matrix size while the motion blur is more when the blur

length increases. The results are consistent with MATLAB results.

 46 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

Table 3.3: PSNR values for Hardware box and motion blur

Box blur 5x5 17.6 dB 7x7 16.68 dB

Motion blur 5, 45K 16.92 dB 7, 45K 12.02 dB

3.7 FPGA HardwareResource

 System Generator supplies tools that estimate the FPGA hardware resources needed to

implement a design. Estimates include numbers of slices, lookup tables, flip-flops, block

memories, embedded multipliers, I/O blocks and tristate buffers. These estimates make it easy

to determine how design choices affect hardware requirements. To estimate the resources

needed for a subsystem, drag a Resource Estimator block into the subsystem, double-click on

the estimator, and press the Estimate button.

Figure 3.28:Xilinx Resource Estimator block

The results are produced using Simulink and Xilinx DSP Tools, synthesized with ISE 14.7 for

the target Spartan3e device (xc3s500e) FPGA device. Table3.4 shows the resource utilization

summary for image filtering and blurring results with different kernels.

Table 3.4: Resource Utilization Summary with different kernel

Resource Kernel 3x3 Kernel 5x5 Kernel 7x7

Slices 139 389 711

Flip Flops 118 282 510

BRAMs 2 4 6

LUTs 158 480 853

IOBs 36 36 36

Above table 3.4, shows the comparison of image filtering and blurring with different kernel

size. We conclude that FPGA Hardware Resource increases with the increase in kernel matrix

size.

 47 Implementation of image filtering and blurring in FPGA using Xilinx System Generator

3.8 Conclusion

 The Xilinx System Generator tool is a new application in image processing, and offers a

friendly environment design for the processing, because the filters are designed by blocks.

This tool support software simulation, but the most important is that can synthesize in FPGAs

hardware, with the parallelism, robust and speed, this features are essentials in image

processing.

 Image filtering and blurring design is implemented in the device Spartan 3(xc3s500-

4ft256) using Hardware Co-simulation. The cost-efficient hardware co-simulation is adopted

to evaluate the real time performance of the desired algorithms.

48 Conclusion

Conclusion and future work

In this thesis, we focus on real-time image processing, software and hardware

implementation of Gaussian filter and motion, Gaussian box blur were achieved. The effect of

the kernel size onthe result images qualities has been studied and analyzed.

Convolution of a smoothing kernel with the desired noisy images produces a filtered or

blurred image. The convolution is in the heart of filtering and blurring operations, so the

convolution module has been developed using advanced design tool Xilinx System Generator

(XSG) and the design was implemented on a reconfigurable logic platform targeting a

Spartan3device (xc3s500e).The cost-efficient hardware co-simulation is adopted to evaluate

the real time performance of the desired algorithms.

Objectives of this thesis were achieved Results using filtering and blurring image

processing were obtained and it was noticed that the Gaussian filter has a better performance

mainly as it uses the smallest kernel size, the Gaussian noise may be reduced, but not

completely removed, by Gaussian filter typically yields the smoothest image, so Gaussian

filter is more effective at smoothing images. By controlling the value of sigma and the size of

kernel, the degree of smoothing can also be controlled. Also, larger kernel will blur the image

more than a smaller kernel.

Furthermore, the results indicate that Xilinx System Generator tool offers an easy and

efficient method for implementing image algorithms into FPGA. It allows the design of

hardware system starting from a graphical high level Simulink environment, extends the

traditional Hardware Description Language (HDL) design providing graphical modules, and

thus does not require a detailed knowledge of this complex language.

 The FPGA, being a reprogrammable piece of hardware, is able to perform complex

calculations in a timely manner compared to that of a microprocessor due to its ability to

perform multiple tasks and calculations at a single time.

 Future works include the use of the Xilinx System Generator development tools for the

implementation of wiener filtering which lead to better performance in removing Gaussian

noise with high kernel size and also use Xilinx System Generator for removing blurring

artifacts using deblurring techniques.

References
 Abdelrahman, H. M. W. (2017). Image Processing and Computer Vision: A

Comparison between CPU and FPGA (Doctoral dissertation, University of Khartoum).
Arunmozhi, R., & Mohan, G. (2012). Implementation of digital image morphological

algorithm on FPGA using hardware description languages. International Journal of Computer

Applications, 57(5).

Bailey, D. G. (2019). Image processing using FPGAs.

Behrenbruch, C. P., Petroudi, S., Bond, S., Declerck, J. D., Leong, F. J., & Brady, J.

M. (2004). Image filtering techniques for medical image post-processing: an overview. The

British journal of radiology, 77(suppl_2), S126-S132.

Chandel, R., & Gupta, G. (2013). Image filtering algorithms and techniques: A

review. International Journal of Advanced Research in Computer Science and Software

Engineering, 3(10).

Chu, P. P. (2011). FPGA prototyping by VHDL examples: Xilinx Spartan-3 version.

John Wiley & Sons.

 Deshpande, R.G., Ragha, L.L. and Sharma, S.K. (2018) Video Quality Assessment

through PSNR Estimation for Different Compression Standards. Indonesian Journal of

Electrical Engineering and Computer Science, 11, 918-924.

 Elamaran, V., Praveen, A., Reddy, M. S., Aditya, L. V., &Suman, K. (2012). FPGA

implementation of spatial image filters using Xilinx system generator. Procedia

Engineering, 38, 2244-2249.

 Eswar, S. (2015). Noise reduction and image smoothing using gaussian blur (Doctoral

dissertation, California State University, Northridge).

 Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing.

 Gruwell, A., Zabriskie, P., &Wirthlin, M. (2016, September). High-speed FPGA

configuration and testing through JTAG. In 2016 IEEE AUTOTESTCON (pp. 1-8). IEEE.

 Kalalembang, E., Usman, K., & Gunawan, I. P. (2009, November). DCT-based local

motion blur detection. In International Conference on Instrumentation, Communication,

Information Technology, and Biomedical Engineering 2009 (pp. 1-6). IEEE.

 Md.Naseem Ashraf, (2013) Image degradation and noiseMehra, R., & Devi, S. (2010).

Efficient Hardware Co-Simulation Of Down Convertor for Wireless Communication

Systems. International journal of VLSI design & Communication Systems (VLSICS), 1(2),

13-21.

 Nasri .S Design and Implementation of FPGA-Based Systems, 2009

 NI 2009 NI Digital Electronics FPGA Board User Manual Circuit Development

Platform

 Patel, N., Shah, A., Mistry, M., &Dangarwala, K. (2014). A study of digital image

filtering techniques in spatial image processing. In Proceedings of the 2014 International

Conference on Convergence of Technology (I2CT) (pp. 1-6).

 Rao, R. S., & Nakkeeran, R. (2015). High level abstraction method for implementing

Image Processing Techniques on FPGA. In International Conference on Knowledge

Collaboration in Engineering March (pp. 27-28).

 Robert K. Dueck. Digital design with CPLD applications and VHDL, 2005.

 R. S. Boyer, and J. Moore, a ComputationalLogic Handbook, Academic Press, Boston,

1988.

 Saidani, T., Dia, D., Elhamzi, W., Atri, M., & Tourki, R. (2009, July). Hardware co-

simulation for video processing using xilinx system generator. In Proceedings of the World

Congress on Engineering (Vol. 1, pp. 3-7).

Saxena, C., & Kourav, D. (2014). Noises and image denoising techniques: a brief

survey. International journal of Emerging Technology and advanced Engineering, 4(3), 878-

885.

Søgaard, J., Krasula, L., Shahid, M., Temel, D., Brunnstrom, K. and Razaak, M.

(2016) Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video

Streaming. Society for Imaging Science and Technology IS&T International Symposium on

Electronic Imaging.

Swaraj, D., & Madhumati, G. L. (2014). FPGA Implementation of SIFT Algorithm

Using Xilinx System Generator. Int. J. Emerging Trends in Electrical and

Electronics, 10(10), 80-85.

 Verma, R., & Ali, J. (2013). A comparative study of various types of image noise and

efficient noise removal techniques. International Journal of advanced research in computer

science and software engineering, 3(10).

 Vernon, D. (1991). Machine vision-Automated visual inspection and robot

vision. NASA STI/Recon Technical Report A, 92, 40499.

 Warkari, K. D. S., &Kshirsagar, U. A. (2015). Design of Point Processing Algorithm

using Hardware Co-simulation for Digital Image Processing Application. International

Journal of Electronics, Communication and Soft Computing Science & Engineering

(IJECSCSE), 4, 70.

 Xilinx 2018, " Spartan-3E FPGA Family Data Sheet".

	Spatial image filtering and blurring
	Xilinx FPGA
	Chapter 2: Xilinx FPGA Spartan-3E (XC3S500E)
	Implementation of image filtering and blurring in FPGA using Xilinx System Generator
	3.7 FPGA HardwareResource

