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Abstract

In this data-driven world, companies need to work on their data strategy to survive and stay

competitive. Most existing data strategies depend on manual labor and minimize human

creativity in problem solving and value creation. Because of this, it takes a long time to

utilize data resources, making the insights gained obsolete. At Farmy.ai Startup, after a

year and a half in production, we understood that implementing an automated data pipeline

is imperative to accelerate the use of our data resources while scaling to new use cases.

This project aims to design a data architecture and implement a scalable data pipeline

for the startup Farmy. This data pipeline is intended to enable image-based diagnosis of

plant diseases. The implemented pipeline starts by regularly retrieving images and their

metadata from social media and other sources. It then stores and catalogs the collected data

in a cloud data lake. Then, it enriches the stored data with annotations from agriculture

experts. Finally, we orchestrate all the operations of this data pipeline to avoid repetitive

manual work.
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ملخص

مع التطور التكنولوجي السريع يشكل الذكاء الإصطناعي والبيانات الضخمة القاطرة التي تقودنا لثورة من الحلول المبتكرة,
لذلك تسعى المؤسسات جاهدة على نطاق واسع لدمج البيانات في أعمالها لتحسين منتجاتها وتجاوز منافسيها. تعد الزراعة

تحديا جذابا للذكاء الإصطناعي و البيانات الضخمة, فارمي شركة ناشئة جزائرية تهدف لاستعمال الذكاء الإصناعي لتمكين
الفلاحين من الحصول على تشخيصا سريعا و موثوقا لأمراض المحاصيل التي تقضي على جزء كبير منها سنويا.

نظرا لكون البيانات المحرك الأساسي للذكاء الإصطناعي, فارمي واجهت تحديات لدمج البيانات من مصادرها المختلفة حتى
تتمكن من تطبيق الذكاء الاصطناعي, ولكون الكثير من البيانات تكون تالفة و بلا صلة لما تحتاجه فارمي, يجب تطهير

وتصفية تلك البيانات, بعد ذلك حتى تكون البيانات ذات صلة جاهزة للإستعمال والتطبيق يجب إثرائها بمعلومات إضافية من
طرف خبراء زراعيين.

من الواضح أن القيام بكل هذه العمليات يتطلب جهدا, لهذا قررت فارمي بناء نظام سلس يسمح لها بإدارة هاته العمليات دون
عناء. يهدف هذا العمل إلى عرض تصميم يستفيد من بنية بحيرة البيانات والحوسبة السحابية لبناء خط أنابيب قوي وموثوق

لتجميع ومعالجة بيانات فارمي لتمكينها من تطبيق الذكاء الإصطناعي والقيام بأعمالها.
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Résumé

Dans ce monde axé sur les données, les entreprises doivent travailler sur leur stratégie de

données pour survivre et rester compétitives. Néanmoins, la plupart des stratégies de données

existantes requiert un effort manuel considérable et ne crée pas la valeur attendue. La startup

Farmy, proposant des solutions basées sur l’intelligence, a rapidement réalisé l’importance

d’une architecture de donnée robuste. Un pipeline de données automatisé permet également

d’accélérer le développement de nouvelles solutions.

Le cadre de ce projet concerne la conception d’une architecture de données et l’implémentation

d’un pipeline de données destinées à la startup Farmy. Ce pipeline de données est appliqué

au diagnostic automatisé de maladies des plantes. La première étape consiste à récupérer

périodiquement des images et leurs métadonnées à depuis les réseaux sociaux et d’autres

sources. Par la suite, ces données collectées sont stockées et cataloguées dans un lac de

données dans le cloud. Enfin, ces données sont enrichies par des annotations réalisées par

des experts agricoles.
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Chapter 1

Introduction

1.1 Context

The massive growth of data has increasingly affected organization worldwide. It has become

a fundamental part of any successful business. Data is the cornerstone of decision-making

processes and a key enabler for modern fields such as Artificial Intelligence, including machine

learning, Deep Learning, which are widely used in many organizations. The use of these

technologies leads to better results and higher efficiency.

The availability of data is not the only factor that leads to the success of these companies.

It is the intelligent and efficient use of data that makes it valuable. Companies that seek

alternative innovative approaches, solutions and technologies to deal with data in order to

strengthen their competitive advantages are one step ahead of those that still use unplanned

and traditional approaches.

With the emerging of IoT devices, 5G, drones and various new technologies, the potential

of data generated from these materials has grown even further. A systematic method is

required for such a revolution.

All fields are concerned with this leap of Big Data. Agriculture is no exception. It has

gone through many phases over the centuries and has always been a critical area for people.

Currently, agriculture is one of the hottest areas that is getting a lot of attention in the

current technological revolution.

The term Smart Farming is usually used to talk about the technological impact on agricul-
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Chapter 1. Introduction

ture. Smart Farming simply refers to the integration and management of various technolo-

gies and data to replace traditional farming approaches [1], such as real-time alerts, alarms,

automatic intervention, automation of repetitive manual tasks in farming, automatic data

collection, and assistance systems.

Agriculture is at the centre of a new era. We can have a revolution that would change the

way we farm.

1.2 Pain points and challenges

One of the major problems that farmers usually face is plant diseases, which greatly affect

the production of farms. Farmers find it difficult to get a reliable and immediate diagnosis

that allows for quick intervention to treat and save crops.

Given the effort and cost required to reliably diagnose plant diseases, Farmy.ai is a

startup registered in Algeria that seeks to develop AI and smart farming solutions to provide

farmers with high-quality and rapid diagnoses. The goal is to provide farmers with the right

information at the right time so they can make the right decisions.The business essentially

relies on the integration of Big Data and Deep Learning to run its business.

For startups, innovative solutions are key, but efficient resource management makes them

grow and persist. Farmy.ai is no exception, Farmy.ai is a data-driven startup, so building

efficient, cost-effective data integration is a critical task.

No coincidence, a solid integration of data in business gives more leading competition and

helps shipping successful products, for Farmy.ai startup to be up to deliver its solutions to

its end users it faced one major problem which building a robust data integration platform

that collects data from its data sources, to enable its Team to process data, do Machine

Learning, Deep learning, and Business analysis, to get smart decision, and deliver reliable

diagnosis to farmers.

For Farmy.ai Startup, providing reliable and quality diagnosis is a crucial thing. But

it suffers from the slow exploitation of its data living in different locations (Data silos).

regarding the slow process and manual collection of data, introducing additional data sources

was a bottleneck, with time it became extensively hard and track data and get fast outcomes.

As a result, Farmy.ai Startup needs to design and implement a data integration system

12



Chapter 1. Introduction

to enable its business. As Farmy.ai depends on data to do Deep Learning, it must efficiently

collect data from its different applications and sources, process and enrich that data, before

it can enable data scientists to do Deep learning.

The primary step for Farmy.ai before doing Deep learning is data Annotation, to annotates

data it needs to clean irrelevant data, then make it accessible to its data scientists. robustness

and scalability of the process is a key, Farmy.ai needs to build a reliable system with painless

infrastructure management to make data scientists focus more on the business.

1.3 Objective and contribution

To integrate its data from various sources, Farmy.ai ends up in need of building a data

pipeline, to do automated data collection, easy data cleansing, and data annotation, to

enables its Deep learning business.

As Farmy.ai depends mainly on images, we need to build a data pipeline that ingests

Images with their related data from its data sources, manage the flow of those data to pass

through data cleansing, data annotations, and make them available for data scientists and

analysts.

Clearly, this data pipeline represents the building block of Farmy.ai business, but what

is more important is to build a robust data management system that makes running and

managing this pipeline painless, Therefore the major objective of this work is to use a Data

lake architecture to design and implement Farmy.ai data pipeline.

Particularly, what makes really the target architecture practical is the ability to serve

business objectives by providing robust and flexible data governance, and painless data

processing. in addition we must:

• Ensure an efficient flow of data.

• Strive for cost effective system.

• Construct and run more data pipelines in the future.

• Enable quick and easy access to data respecting distinct types of users.

• Ensure high availability, and accessibility of data, and scalability of the system.

• Integrate well the data pipeline with the data lake architecture.

13



Chapter 1. Introduction

• Reduce human intervention with robust automation.

• The system should be future-proof by answering new questions about data.

1.4 Project Planning

This work describes our efforts to come up with a design and architecture to build a robust

data pipeline for the startup Farmy.ai.

This work contains the first chapter that is dedicated to the state-of-art, the second chapter

includes data architecture details, and the third chapter contains implementation, experi-

ments, and major deployment details.

1. Chapter 01: The first chapter presents the current state of the art in Big Data

and data processing. It aims to introduce some concepts of current architectures and

existing solutions used in the project, such as data storage, data lake, data collection,

data annotation and, more importantly, the concept of data pipeline, and describes

the impact of cloud computing on data solutions.

2. Chapter 02: In this chapter, we present a detailed study and analysis of Farmy.ai

requirements. It shows how we integrate the data lake architecture and data pipeline

to collect, cleanse and annotate data.

3. Chapter 03: In this chapter we address the practical aspect of our project. We show

the environment, infrastructure, software, tools, and techniques we use for the project,

and how we use Amazon Web Services (AWS) as the infrastructure for our work. It

includes a full end-to-end experiment of the Farmy.ai data pipeline with presentation

of the results.
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Chapter 2

Big Data Ecosystem

2.1 Introduction

Today, Data Science and Machine Learning are ubiquitous and have become a trending

approach in the IT world as they generate tremendous business value. Companies are racing

to outperform their competitors and stay ahead of the game.

Unfortunately, acquiring, managing and processing a huge amount of data, which we

often refer to as Big Data, is not an easy process. With the advent of modern approaches,

technologies and solutions, it has never been easier to build a reliable Big Data system.

Of course, there are various technical and business aspects to consider when developing a

robust data integration system, as processing many data sources with different data types

and formats is an additional challenge.

2.2 What is really Big Data

Governing relatively large data is not new, many big companies have been doing that for

years so far, but the speed of generating data in the last decade is the most regarded point,

this evolution has pushed researchers and engineers to develop and build new tools, and

techniques to manage that massive volume of data.

Surely, hearing the concept Big data makes us question what characteristics and properties

that truly define big data, the term big data is one of the most arguable terms in both
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academic and industry fields, one short and expressive definition:

Big data can mean big volume, big velocity, or big variety[2].

Another definition by The Publications Office of the European Union is:

Large amounts of different types of data are produced from various types of

sources, such as people, machines, or sensors. This data includes climate infor-

mation, satellite imagery, digital pictures and videos, transition records, or GPS

signals. Big Data may involve personal data: that is, any information relating to

an individual, and can be anything from a name, a photo, an email address, bank

details, posts on social networking websites, medical information, or a computer

IP address[3].

Big data interpretations can vary according to the treated problem. Commonly, they

define big data as the necessity to control and operate effectively large and various sorts of

data generated at high speed to get better business value[4]. In addition, people usually refer

to it as the complexity to manage and monitor the massive amount of data that traditional

databases and systems cannot handle.

The crucial point, above all, is what we can do with this data. What value can we extract

from it? [5] all this data should be well worth the effort we put in.

2.2.1 Big data V’s dimensions

Regardless of the different interpretations and attempts to define Big Data by Researchers

and Engineers, there are general properties that describe Big Data:

1. Volume: It is the most popular dimension that is closely associated with Big Data.

It just defines the size of the data. How much data do we have[6]. The amount of data

is gradually increasing and we expect it to grow massively in the coming years.

2. Variety: Data comes in different types and shapes. Variety describes the need to work

with many kinds of data that come in various formats and from different sources.

3. Velocity: Velocity refers to the frequency or the speed of generating, processing, and

analyzing data[6].

4. Value: We consider value as the most essential dimension in big data. It refers to the

usefulness of data and how actionable data are.
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5. Veracity: Unluckily, an extensive amount of data means we need to work with more

distrusted or corrupted data. Veracity defines the level of trustworthiness and accuracy

of the data[6].

2.3 Data Types and structures

Data comes in various structures and forms. To simplify the interaction with these types of

data, we can identify the following types:

1. Structured data: A consistent model describes this type of data. It usually comes

in an organized format as a tabular data (rows and columns) like the relational model,

and it has a standard and deterministic way to define, query, and search.

2. Semi-Structured data: Semi-structured data is relatively organized data like struc-

tured data, but offers more flexibility. It gives some level of search and aggregation

operations, but with some overhead and more complexity than structured data. Some

examples of semi-structured data are XML files, JSON files, YAML files, and NoSQL

databases.

3. Unstructured data: Unstructured data has no structure or model, making it the

most difficult type of data to search and organize. However, it is considered the most

valuable data. Some examples of unstructured data are videos and images.

2.4 Data Sources

The various data sources contribute a lot to the aggressive data growth. Data sources are

places where an organisation can collect data. Every day, we generate nearly 2.5 quintillion

bytes of data daily[7] from various data streams, such as IoT devices, search engines, social

media, enterprise data, financial systems, and healthcare systems.

We can classify data sources into three different types:

1. Machine generated data: Machines and devices such as IoT devices, servers, smart-

phones, satellites, and sensors generate this type of data without the intervention of

humans. This type of data is usually in a semi-structured format and is often available

in real time.
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2. Human generated data: Humans generate vast amounts of data in their various

activities. Human intervention generates this data in a variety of ways, including

speech, text, emotions, document files, spreadsheets, documents, writing, and speaking.

3. Organization generated data: There is no doubt that companies produce an enor-

mous amount of operational and analytical data. Typically, organizations keep their

data in separate locations as data silos. Data silos are a collection of data used by

different applications and software and stored in isolated local areas [8].

2.5 Data collection

In a data-driven world, ensuring a reliable and smooth way to collect data efficiently with

minimal information loss could be challenging, because of the heterogeneity of sources, and

the diversity of data.

Data collection is the process by which we get data from sources to process it in real-time

or store it for future processing. Data has influenced different aspects of business operations,

growth, decisions, and strategies. Finding efficient ways and techniques to collect data is

inevitable to build a good data strategy.

According to the source of data, used methods and techniques to collect data may vary.

Some companies ask for data from users, others track user activities, others use API provided

by social media. We cam see Web scraping as a data collection method, regardless of the

controversial debate about the ethical issues with it.

2.5.1 Web scraping

Social media, websites, and blogs represent human-generated data sources. Millions of trans-

actions take place every day, people can initiate transactions by transferring money, buying

goods online, paying for services, etc. According to a report by Statista, in 2020, about 3.6

billion users[9] use social media 145 minutes per day[10]. Usually, companies try to get data

from these platforms to help them gain business insights for their various activities.

Web scraping is a process by which we can collect and store data from websites in order to

process it and extract valuable information from it. Typically, we scrap data that changes

frequently, is not provided through an API, is only publicly available, and for which we have

access permission, otherwise illegal and ethical issues may arise.
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Data Scraping can improve data collection. It is a systematic approach to collect large

amounts of organized and frequently updated data. A good investment in data scraping can

save a lot of money and resources.

2.6 Data storage

One significant component of any Big Data system is a reliable storage. Data storage has

gone through several phases over the past few decades. Flat files have played an important

role in various businesses. Unfortunately, depending on them for data storage is not a reliable

method. Databases, especially relational databases, have been the salvation from the chaos

caused by files.

Databases, warehouses, and No-SQL

Relational databases have been the first choice for storing and managing data for decades.

We typically use them to store relational, operational, and transactional data. However, the

advent of data warehouses has been a game changer for enterprises to store analytical data

and perform analytics at scale.

A data warehouse is a central repository that merges data from many sources. It stores

columnar rather than transactional data, which gives it powerful and fast query and analysis

capabilities.

Data warehouses are optimized for data-driven organizations to analyze and extract useful

information optimally [11]. It enables the storage of historical data for reporting and analysis

to increase business value.

NoSQL databases are another alternative flexible way to store data in relational databases.

It allows for dynamic data schema by allowing access and management of data using a range

of data models [12]. Notably, it can handle large workloads, large volumes of data, and low

latency service requirements.

Hadoop Distributed File System(HDFS)

Databases and data warehouses in particular are designed for a specific purpose only, to store

operational and analytical data with limited processing capabilities. Hadoop Distributed File
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System (HDFS) has been a new generation of data storage and processing and has enabled

a new way of handling data at large scale.

HDFS is a highly fault-tolerant and distributed file system that provides fast access, low

cost, and high throughput, and enables the storage of a large amount of data sets of different

types on different platforms [13].

A major drawback of HDFS is the need to manage and provision servers, also the processing

capabilities are tightly coupled with storage.

Object based storage

Unfortunately, despite all the many capabilities of HDFS, but it is tightly couple processing

with storage which adds extra overheads to span and manage clusters. To overcome this

problem, object storage appeared. Object storage is an architecture to store an extensive

amount of unstructured data as objects accessed via API, like HTTP API.

Distinctly, each object is independent, self-contained, and holds its own meta-data. Object-

based storage offers high availability, and it scales independently from the processing tier.

Cloud providers offer this kind of object storage[14] as SaaS with multiple tiers that are

optimized for different cases like backup, and archive.

2.7 Data Cataloging

Data cataloging defines a process to centralize all meta-data related to an organization’s

data within accessible storage called Data Catalog, and Combine it with search capabilities

and quality management [15].

Meta-data is the data that describes and adds context to actual data. The major role of a

data catalog is automating data finding and searching by storing and tracking its Meta-data.

It permits consistent data usage and prevents wasting efforts when working on the same data

by separate teams within an organization.

Obviously, a data catalog adds more trust to organization data. It allows for a self-service

model. A self-service is the ability for organization stakeholders to find, and process data

without having to manually search of the data.
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2.8 Data Processing

Data processing is the operation of converting raw data into actionable and meaningful

data. It could be a transaction, a data preparation, data conversion, aggregation, or any

kind of transformation or manipulation. The output of this operation should help to generate

business value.

Processing large amounts of data is not an easy task. Databases have some built-in

processing capabilities that are scalable to a limited extent. Databases are used for storing

operational data rather than analytical data. On the other hand, warehouses are used to

store and query analytical data.

Hadoop was the first real scalable storage that allows for highly parallel and distributed

processing through the map-Reduce model, primarily it allows to define a map function that

processes a key-value pair to generate a set of intermediate key-value pairs, and a reduce

function that merges all intermediate values associated with the same intermediate key [16].

Hadoop depends on Map-Reduce model to allow for massively parallel processing of vast

amounts of data running on large clusters [17].

2.8.1 ETL processing

In data processing design patterns, ETL is the most known method to process and move

data. ETL does not depend on specific tools. It contains three primary steps, the first step

is extracting data from its data source, the second step is transforming retrieved data into

usable data. At last, we load transformed data into a final destination[18].

ETL is widely used in data processing systems, it is a fairly simple process that allows for

predictive use of system resources and many tools has built-in support for ETL process.

One drawback of ETL is it permits only a onetime processing over the extracted data, it

also introduces some bottlenecks to scale.

2.8.2 Lambda architecture

The Lambda architecture is more a general design of big data system, mainly it offers two

primary channel for data processing. A stream processing channel that allows for real-time

processing of the data, and the batch layer which ensures the consistency of the data by
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doing a full calculation over the received data [19]. This architecture is relatively flexible

since it provides both stream and batch processing, it offer speed and reliability, but it has a

problem of code redundancy to handle both scenarios (stream and batch) which introduces

some bottlenecks during maintenance and migration [19].

2.8.3 Kappa architecture

The Kappa architecture reduces the complexity of Lambda architecture by removing the

batch layer and keeps only the stream layer, which increases the performance of the system

[20]. Although we should see these architectures as a complementary way for designing a

big data system and not as an alternative to Lambda. Kappa is suitable when the scenario

it heavily depends on real-time data with no batch processing.

2.9 Data Lake architecture

A Data Lake is a central repository that stores raw data of different types. It leverages

the disk’s lower cost advantage, and distributed storage to offload capacities from data

warehouses and databases[21]. It only stores data without a pre-defined model, so we can

access it later in an on-read schema[22].

Figure 2.1: Data Lake Architecture
[23]

A Data Lake is not a Data warehouse, Data Lake dynamically allows for on-read schema

but data warehouse restricted on-write schema makes to it not flexible compared to the data
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lake schema. Table 2.1 shows a comparison between data lake and data-warehouse:

Table 2.1: Data Lake and Data Warehouse Comparison
Data lake Data warehouse
It stores all raw data of all types. mostly enhanced for relational

structured data and columnar data.
We may use it for Machine learning, data discovery. Enhanced for analytics and visualization.
It offers lower costs with relatively faster queries. Provides faster queries with higher costs.
Requires up-to-date catalogs for better queries. It has powerful querying capabilities.

2.10 Data pipelines

ETL is the common approach to integrate and process data, unfortunately, it struggles

poorly to scale, an alternative approach is to use a data pipeline which is an architecture to

organize data-life cycle including data ingestion, data processing, and data storage[24].

While ETL represents an abstract framework for designing pipelines, a data pipeline is a

complete system, it may follow ETL as well as it could just move data with no transformation.

A well-architected data pipeline extensively reduces human intervention. Particularly, data

pipeline ensures an efficient flow of data.

Data-driven businesses widely adopted data pipelines. Data pipeline is more about the

data movement either from one phase to another or between one or more different systems,

typically it moves from data sources, passing through various interconnected tasks until it

reaches its last destination (data sink)[25].

Data Ingestion Data Preparation
and processing Data Exploration

Experimentation
and Visualization

Figure 2.2: General life cycle of data
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In particular, practically building and managing a data pipeline is complex, as it requires

the administration of well-maintained infrastructure, integration of heterogeneous storage

solutions, managing communications, connections, additionally handling various errors and

issues raised by processing tasks, and traceability of executed tasks.

Despite of all challenges and bottlenecks to build and develop a robust data pipeline,

with wise tools choosing, solid infrastructure management, and leveraging best software

engineering practices, building data pipelines could be a moderately manageable task to do.

Ultimately, a well-architected data pipeline should permit for fully automated data move-

ment, including data extracting, validating, transforming, data analysis, and data visualiza-

tion[26].

2.11 Data Annotation

While ETL and data pipelines describe how to do data processing, data annotation describes

what to do with data, Data annotation is adding labels and semantics to data so we can use

to train machine learning models [27, p. 193].

The main power of a high-quality data annotation is accurate human intervention, choosing

highly skilled experts in the target domain is critical, for instance, labeling data for sentiment

analysis needs skilled psychology specialist, although some labeling may need less expertise,

it is still a good practice to strive for more skilled people to ensure the quality of data

annotation.

Data annotation can vary depending on the type of data. For instance, it could image

annotation, text annotation, audio annotation, video annotation, etc.

In addition, we need to prepare and set up a stable environment for annotators with robust

labelling tools, techniques, to ensure a quality data annotation, as humans are the keystone

of the process, a healthy human resource management is required [27, p. 193].

2.12 Big data on The Cloud

The advent of cloud computing has drastically changed the way Big Data is handled. It

has opened up completely new dimensions for different businesses and the way we develop

systems and software. Big Data has benefited greatly from this advent.
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Cloud computing virtualizes infrastructure as utilities delivered on demand over the In-

ternet instead of setting up complex hardware and software. It provides highly decoupled

services that remarkably enable resilient and scalable Big Data solutions with little effort

and in a cost-effective manner.

In the era of cloud computing, building data pipelines has never been easier. With a

well-architected design developed and deployed in the cloud, cloud providers offer access to

a wide range of services for various operations, such as storage, computing, and clusters.

Importantly, they also provide enough flexibility and control over the infrastructure to

create a highly customized solution for most business problems. They also offer a wide range

of managed services for rapid business development.

2.12.1 Serverless computing

Clearly, setting up infrastructure, running applications and servers is overwhelming, due

to the continuous management and patching of servers, operating systems, upgrades, and

updates , etc.

The emergence of serverless computing has hardly affected the enterprises in the industry.

The serverless model eliminates the need to manage infrastructures and computes, it allows

compute to be used only for the amount requested, without having to provision or manage

servers [28], and without additional costs or requirements.

Most often, cloud providers offer serverless computing as a service. A particularly common

service is Function as a Service (FaaS), which allows a portion of code to be executed on

demand and we only pay for execution time[29].

2.13 Conclusion

In this chapter we have looked at Big Data, its controversial definitions and its dimensions.

We have talked about the different types of data and some of their examples.

We have looked at data collection and the different sources of data, we have explored

different storage solutions and design patterns for integrating and processing data, and we

have made a brief comparison between data lake and data warehouse.
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We also talked about data pipelines, the process of data annotation, and finally the leap

of cloud computing in creating data-centric solutions.
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Farmy.ai Data architecture

3.1 Introduction

In this chapter, we show the analysis and design of the Farmy.ai data integration system

to set up and run its annotation pipeline to enable its business.

This part covers various components of the system, decisions and concepts that ensure the

flow of data within Farmy.ai. It also includes a brief description of Farmy.ai’s data-centric

business and its specifications.

We strive to describe the design and approaches for a cost-effective and efficient data

pipeline running on a data lake architecture. We show comprehensive details of the compo-

nents of Farmy.ai Data-Lake.

We cover the process of data annotation that essentially drives the data pipeline, starting

with ingesting images from various sources, processing and annotating images, and finally

delivering the data to its final destination so that it is available for processing and ready to

be used to extract, visualize, and provide needed annotations for Deep Learning.

This type of platform provides an efficient way to enable scalable data flow that allows

Farmy.ai to manage data efficiently and, in particular, enables Data Scientists to run pro-

ductive Data Analysis and Machine Learning at scale.
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3.2 Data pipeline description

Ensuring efficient and smooth data flow is a critical task that requires a lot of effort and

attention. In this part, we would like to present the architecture we used to design and build

a reliable, loosely coupled, and service agnostic data integration system.

Farmy.ai needs to ingest and collect images with their metadata from various data sources

in order to run its business. This process involves cleaning and annotating images before we

can use the results for Deep Learning.

Although the image cleaning and annotation pipeline is the main goal of this project, there

are other motivations and requirements for the target system to allow Farmy.ai to create and

run other data pipelines for Deep Learning and data analysis.

In summary, we can divide the characteristics of this data integration system into 2 main

categories: business requirements and technical requirements.

3.2.1 Business requirements

Business requirements are the first and only motivation for building a new system. They

define the features and functions required to make the business run.

Since the system should be extensible to take on new data processing tasks, we specify

some functions for the system in advance. Here we list some of the most important ones:

• Eliminates manual intervention as much as possible.

• Is extensible to handle more data sources in the future.

• Help us clean up and label images effortlessly.

• Enable different users to find the data they need quickly and efficiently.

• Improve architecture for robust data processing and efficiently handle more data pipelines

in the future.

• Consume data continuously for Deep Learning and ensure the correctness and repro-

ducibility of the data pipeline.
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3.2.2 Technical requirements

Technical requirements are more about properties, principles, and tools used to develop the

system. There are certain technical requirements, of which we list some important ones:

• Efficiently ingest in various types of data.

• Enable modular, controllable, and reusable data ingestion.

• Build a maintainable and modular system.

• Debugging and testing the system should be relatively easy.

• Enable strong data governance and ensure high data availability, security and accessi-

bility of all assets.

• Ensure the security and integrity of the data against various processing and operations.

3.3 High-level overview of the system

Before examining the various components of the system, it is worthwhile to gain an overview

of the system to capture the various requirements, actors, and components of the Farmy.ai

platform.

The first thing we should discuss is that the Farmy.ai startup contains many services that

have full control over their functionalities and are the main data sources. The incoming data

comes mainly from the mobile application and from web scrapers that feed Deep Learning

with images and some metadata.

The incoming data is usually primarily images accompanied by some metadata in JSON

format. We regularly ingest this data into the data platform by retrieving the data in

scheduled batches, validating it, and then storing it.

After a successful data ingestion, we clean the ingested data. Farmy.ai team members

help in this phase. Farmy.ai plans to incorporate Machine Learning to automate this phase,

but the process still requires some level of human intervention.

The third part represents the first phase, which essentially requires complete human in-

tervention, mainly Agriculture Experts annotate relevant images with various labels. This

process may require one or many different annotations depending on the requirements.
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After completing the annotation phase, we release the results for consumption and pro-

cessing, load them for experiments, analyze them, load them on dashboards for visualization,

and essentially train the data using Deep Learning.

To ensure the proper flow and execution of these tasks, some synchronization and or-

chestration is required. This process logically extends horizontally across all phases of the

system.

Putting all these phases together, we get the Farmy.ai image annotation pipeline.

Figure 3.1: High level overview of Farmy Data Integration System

3.4 Farmy.ai Data Sources

Farmy.ai depends primarily on images to do its business. Most importantly, the images have

associated metadata that makes them understandable. All incoming data comes primarily

from the mobile app and web scrapers.

3.4.1 Farmy mobile Application

The mobile application of Farmy.ai is an important source of data. It allows farmers to

upload photos of plant diseases and get quick diagnoses in response to their posts. We would
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like to discuss this application to understand the context of the data used in the Farmy.ai

data pipeline.

The application allows farmers to upload images with a description and detailed infor-

mation about their infected plants. When farmers upload images, they receive a disease

diagnosis from an agricultural expert. The data resides in their local database, and the im-

ages are stored in their private Object-Storage. So when the data pipeline runs, it consumes

data from the application database and Object-Storage.

3.4.2 Social media scrapers

Before we developed this type of application at Farmy.ai, this process was done manually.

It was a slow and time-consuming task that created a bottleneck in data collection, and to

eliminate these problems we developed Web Scraper.

Web scrapers automate the process of image collection. These are primarily scripts that

are executed at a specific time or on demand to crawl data and images in batches from social

media websites. Web scrapers feed the data pipeline with images and metadata.

Images and metaData

Social Media websites

Web Scrapers

Extract

Produce

Figure 3.2: Basic workflow of Farmy.ai web scraper
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3.5 Farmy.ai Data Lake Architecture

Typically, data pipelines need to move data from one phase to another, interact with

databases, communicate, transfer data, or store intermediate results during some processing

jobs.

We use a data-lake architecture as the building block for constructing the Farmy.ai data

pipeline. The data lake represents the central repository where raw data and processing

results are stored. We use object-level storage to build an organized and highly available

scalable data integration system.

The motivation for choosing a data lake is not only that it is a resilient and persistent

storage, but also that it provides flexibility in terms of the data stored and the type of data.

When we ingest data from the Farmy.ai data source, we can easily store everything in its

original format.

Data Lake allows us to essentially not think about the processing required until we need

to interact with the data. It allows us to use the on read schema when dealing with the

data. This allows us to run our data pipeline multiple times on the same data, reducing the

overhead and effort required to process the data.

The Data Lake is at the heart of Farmy.ai image annotation pipeline. Developing such a

system was not a clear path from the start, given the requirements and concerns of developing

a robust, scalable, efficient, and extensible system.

3.5.1 The Data Lake constraints

There are some constraints and rules when building the Farmy.ai Data Lake. Our goal was

to maintain and ensure a low-coupled data lake with external components:

• The Data Lake should serve as a central point for access, management, auditing, and

provisioning.

• Separation of concerns and responsibilities, ingestion of data, use of storage, processing,

retrieval of data are all independent of each other, we just aim for few low-coupled

layers.

• Ensure accessibility and searchability of datasets for approved users.
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Data lake security is an important task. A complete Data Lake must include a security

layer that ensures data integrity, and confidentiality, a flexible authorization system, and

support for identity access management, data replication, data versioning, data retention

policies, and encryption.

3.5.2 Farmy.ai’s Data lake zones

Some of the key principles during the architecture process were to divide the data lake into

zones. There are three primary zones: the raw data zone, the staging data zone, and the

curated data zone. Each zone corresponds to a specific use and has a different level of access.

Figure 3.3 shows the Basic Farmy.ai Data lake architecture.

Figure 3.3: Basic Farmy.ai Data lake Architecture
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Raw data zone

This zone stores only the incoming raw data from the data sources in their native format.

Since few know how to handle this raw data, access to this zone is only accessible by engi-

neers and developers, and with limited access (temporary) for cleansing and data annotation

application.

Staging data zone

The staging zone stores data ready for processing, intermediate processing results, and some

other data under review. Raw data is usually moved to this area or is associated with data

stored in this area.

The data pipeline stores temporary data in this zone. Therefore, the staging zone primarily

acts as a transition station from the raw data zone to the curated zone. Processing jobs (data

cleansing and labeling application) have access to this zone.

Curated data zone

This area stores the curated data that is ready to consume in experiments, Machine Learning

(Deep Learning) training. Hence, this area is accessible for data science, data analysis.

3.5.3 Farmy.ai Data lake storage

Farmy.ai is highly dependent on images as the main data type. Choosing a storage that

ensures durability, high availability and security is the foundation of the Farmy.ai Data Lake.

A local environment like Hadoop Distributed File System (HDFS) with coupled compute

capacity is not an ideal choice for a decoupled system and a startup with small resources.

The Farmy.ai Data Lake uses AWS Cloud Simple Storage Service (S3) as its main storage,

a Object-Level storage that offers powerful features such as consistency, high scalability,

simplicity, lower cost, and robustness without managing servers.

The Object storage allows us to divide our data lake into zones, where each zone corre-

sponds to a Bucket, which is simply an organized container of data.
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3.5.4 Data ingestion Layer

The ingestion layer manages data extraction and uploads from Farmy.ai data sources and

provides a flexible and convenient way to interact with Data Lake. It also validates the

ingested data and data sources.

It acts as a gatekeeper for incoming data. It routes the data to the appropriate location

in each zone of the data lake. Whether the data is coming in batches or streams, this layer

should be able to handle it. In particular, it should ensure stable loading of the data into

the Data Lake.

Of course, the ingestion layer knows how to connect, extract images and their metadata

from Farmy.ai data sources. The ingestion layer uses object-level storage capabilities and an

identity access management system to ensure its functionalities. Farmy.ai mainly depends

on cloud services.

To ensure clean and maintainable ingestion and avoid the complexity of dealing with

mobile app databases, storage, and web scrapers on a regular basis, we delegate the ingestion

task to connectors that act as proxies to our data lake.

Connectors perform the communication between Data Lake and the data sources. Con-

nectors are mainly reusable libraries that provide an interface for common data ingesting

functions. Figure 3.4 depicts the ingesting process.

pull

pull Farmy.ai 
Data Lake storagepush

push

connector

</>

connector

</>

Data source

Data source

Figure 3.4: Farmy.ai Data Lake’s ingestion layer

In particular, a connector exposes its functionality to its users as an API encapsulated in

a library, abstracting from the details of the ingestion layer. It uses the storage API and
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the data source API to provide us with a painless and effortless data ingestion. Figure 3.5

shows the Basic Class diagram of Farmy.ai connectors.

Connector

- storage: StorageService
- credentials: CredentialOptions
- config: ConfigOptions

+ generateFileKey(fileName:String): String
+ validateSource(source:String): Boolean
+ setConfig(config:ConfigOption):void
+ ValidateMetaData(data:MetaData): Boolean
+ uploadFile(fileKey, fileBody:Buffer): UploadResult

ScraperConnector LabelAppConnector MobileAppConnector

Extends Extends Extends

Figure 3.5: UML class diagram of connectors

Other advantages of using data connectors include the ability to add more connectors,

refactor connectors and maintain compatibility without refactoring code in other parts of

the data pipeline, and a modular approach that leads to code isolation, ease of debugging,

and most importantly, testability.

3.5.5 Farmy.ai data lake catalog

Over time, as we add more data to the data lake, and since most Farmy.ai data is un-

structured, like images, the data lake lacks a defined way for searching and retrieval, and

especially after the growth of the stored data, it becomes really difficult to keep track of all

the data stored, we call this problem Data Swamp[30].

We need a mechanism to overcome this dilemma. Farmy.ai data lake maintains a data

catalog. The data lake’s data catalog is the source of truth that allows us to track all of our

data lake’s assets and compensate for the lack of structure in the Farmy.ai data.

The Farmy.ai data catalog is a database that tracks and stores information about all
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ingested data. It has answers to the actual data stored by storing important metadata

about all assets such as data source, data type, and owner of the data.

The data catalog makes the data lake storage queryable and accessible, it gives Farmy.ai

a broad overview of the stored data. Usually we call a data catalog within a Data Lake a

comprehensive or index data catalog[31].

Constructing the catalog

The object storage propagates some events during the life cycle of its resident objects (up-

loaded files). Setting up a handler that listens for triggered events when a file is uploaded

or updated allows us to get the metadata of the uploaded objects and add them to the

comprehensive catalog, keeping it up to date. Figure 3.6 shows the process of maintaining

the Farmy.ai comprehensive data lake catalog.

Figure 3.6: Constructing The Comprehensive Data Catalog

In Farmy.ai, the compute handler is a Function as a Service (FaaS), which is simply a

piece of code that executes when a Ingested Object event is triggered to update the catalog,

and then shuts down, there are no servers to manage which reduces considerably efforts and

cost.

The data Catalog data

The comprehensive data catalog contains all the necessary fields and information for easy

and quick access to data-sets, it has enough information to analyze and monitor the data-
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sets, Figure 3.7 represents an experimental schema we developed while building the data

lake for the data catalog Farmy.ai.

The main field is the primary key file type which represents the subject of the file, a file

identifier field file Key represents a unique generated key for the file, timestamp represents

the timestamp when we index the file in the catalog.

More about the fields in the catalog: The source field indicates where the file came from.

Occasionally, when new changes are made to the schema or content of files, version id con-

tains the version of the file to keep track of the different variants of the file.

Table

PK File_type

FK RelatedTo

file_key: string

timestamp: Date

source: string

location: string

ContentType: string

owner_id: string

user_id: string

version_id: string

meta_info: map

Figure 3.7: The Data Lake catalog schema

We also store some other fields like the location field which describes the location of the

file (bucket), the owner id is the owner of the file, user id is the user who caused the events.
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3.5.6 Farmy.ai Data lake Query layer

As the data is available, stored securely in our data lake, and the data catalog is up to date,

we naturally want to query or process our data sets. The query layer serves these purposes

and allows users of varying technical levels of Farmy.ai data lake to query and explore the

data.

The query layer depends on query engines, which function in some ways like connectors

but serve a different purpose. They decouple direct programmatic query and processing

access to our data lake. Similarly, we can add query and search capabilities to our Data

Lake by connecting compatible search services to the Data Lake storage.

The query layer also allows us to enforce and guarantee read-only queries to users or,

masking some parts of the data. We can also integrate search and processing tools as

needed. Figure 3.8 shows a Basic UML class diagram of query engines.

Since we insist that there is no direct interaction with our data lake, we add pre-configured

libraries to the data lake storage and data catalog that act as query engines for common

queries and help us build and run the data pipeline.

<<Interface>>
QueryEngine

- credentials: CredentialOptions

+ query(options:QueryOptions): QueryItem<List>

CatalogQueryEngine

- catalogName: String

+ getByFileType(fileType:String,options:QueryOptions): QueryResult

+ getByBucket(bucket:String,options:QueryOptions): QueryResult

+ getBysource(source:String,options:QueryOptions): QueryResult

+ getRelations(fileKey:String,options:QueryOptions): QueryResult

ObjectStorageQueryEngine

- config:ConfigOptions

+ setConfig(config: ConfigOptions): void

+ getByZone(zone:String,options:StorageOption): Object<List>

+ getByDate(zone:String,date:Date,options:StorageOption): Object<List>

+ getBysource(source:String,options:StorageOption): Object<List>

Figure 3.8: Query Engines UML Class Diagram

Query engines, whether libraries or search services, enable Farmy.ai data pipeline phases

such as image cleaning and annotation, Farmy.ai’s Deep Learning’s training, analysis, and

other experiments to gain insights and retrieve data as needed with minimal effort.
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3.5.7 Packing the data lake

When we combine all the Data Lake components, we get a complete picture of the fully

functional version. Figure 3.9 depicts the Farmy.ai data lake architecture, including the

ingestion layer with connectors, the query layer with query engines, Object-Level storage,

and the comprehensive data catalog.

For completeness, we show the security layer, which includes various tools, policies, and

best practices to enable a well-functioning data lake.

Data 
Catalog

Data lakeIngesting Layer

Raw data Zone

Staging
 zone

Curated 
zone

Protection and Security 

Query layer

Query
 engine

Query
 engine

Query
 engine

Data 
source

Data 
source

Data 
source connector

</>

connector

</>

connector

</>

Figure 3.9: The complete Farmy.ai Data Lake architecture

3.6 Farmy.ai Annotation Data pipeline

3.6.1 Annotation Process

The Farmy.ai annotation process begins by selecting ingested images from the Data Lake

storage. Usually, the ingested data contains irrelevant images for plant diseases. To filter

out these irrelevant images, we need a mechanism that examines newly received raw data

and removes these irrelevant images.

Non-expert people examine selected images to clean up irrelevant images. We clean the

data by accepting or rejecting the examined data through a web application. In this process,
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tags and labels are added as metadata to each task related to an image.

Next, two different agricultural experts (agronomists) examine the relevant images and

annotate them. This step may take some time. We assign annotation tasks to each of

them in a completely separate project. An annotation application essentially visualizes the

relevant images for them.

Figure 3.10 represents a UML use case for images cleansing and annotating images.

Farmy.ai Team

Explore raw images

Authentication

<<include>>

Annotate Images
Submit annotations

Clean images

Agriculture Expert

update annotationsDelete annotations

<<include>>

<<extend>> <<extend>>

Explore cleaned images
<<include>>

<<include>>

<<include>>

Figure 3.10: UML use case for cleaning and annotating images

The annotation process is quite simple. An authorized Agriculture Expert navigates

through the accepted images via the annotation web application and then continuously

annotates them with labels, classifications, and other types of comments.

Since two different experts do the image annotation, there is a possibility that different

annotations will be created for the same image. We need to resolve the conflict, a third

experienced agronomist resolves this conflict. Ultimately, annotation should be ready for

use in Deep Learning for plant disease detection.

The annotation application allows us to visualize our data and images by allowing us to

assign tasks for annotators to work on. It supports various types of annotations, including
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image annotations.

We call any complete annotation process an annotation round. It starts with loading the

ingested images and ends with exporting all created annotations. Figure 3.11 depicts the

annotation process.

Select N 
images

Remove 
irrelevant images

First expert 
annotation

Second expert 
annotation

Annotation 
agreement

Third expert 
annotation

No

Yes

Start new annotation round

End of Annotation round

Annotated 
images

Irrelevant 
images

Cleaning by non-Experts 
to delete images that do 

not contain plants 

Annotation by experts 
Crop + disease+
[bounding box]

Resolving 
disagreement by 

experienced expert

Figure 3.11: Farmy.ai data pipeline process

3.6.2 Farmy.ai Data Pipeline Details

The data pipeline of Farmy.ai manages the stages of the annotation process. It helps us

reduce the overhead of manual tasks, such as moving images between phases, assigning tasks

to annotators, checking completed phases, and finding conflicts in image annotations when

exporting them.
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The data pipeline ingests images with associated metadata into the Data Lake and then

loads them for cleanup, starting a new round of image annotation.

The building block of the data pipeline is the Data Lake. The pipeline is well integrated

with the data lake, but it is unaware of the Data-Lake architecture and infrastructure.

Since we perform data cleansing and annotation in an independent application, the data

pipeline connects between the data lake and the annotation application by acting as a pro-

ducer or consumer of the data lake through its ingestion and query layers.

Annotate
Images

Clean
Images

Ingest 
images

Resolve
Annotation

Conflict

Figure 3.12: Farmy.ai data pipeline phases

3.6.3 Farmy.ai Data pipeline phases

Images Ingestion phase

The data ingestion represents the first phase of the pipeline. The data pipeline extracts

images by running Web Scraper to obtain images and their associated metadata, and by

retrieving images and their metadata from the mobile application to load them into Data

Lake storage.

Images cleansing

This phase only works with raw data. Since we are cleaning images manually, the data

pipeline manages this phase by creating cleanup tasks for images and then loading them into

the data cleansing application.

Once we complete all cleansing tasks, the data pipeline exports the cleansing results and

stores them in the data lake. After it successfully exports the tasks, the data pipeline removes

them from cleansing application.
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Images annotation

The data pipeline manages the cleaned images by creating annotation tasks for them and

loading them into the annotation project. To keep track of the annotation round, it loads

new annotation tasks only when there are no annotation tasks in progress.

Finally, it exports the annotation results to the Data Lake as soon as they are ready, and

after each successful export of the results, the data pipeline removes all completed tasks.

Resolving annotation conflicts

This is a conditional phase that usually occurs after annotation results have been exported

from the annotation application. The data pipeline examines the annotation results from

both experts to find conflicts. If it finds a conflict between annotations of same images, it

generates annotation tasks for a third annotation performed by a more experienced expert.

The data pipeline is responsible for finding conflicts in annotations. It processes all ex-

ported annotation results from both annotation projects. If it does not find any conflict, it

exports the annotations to the data lake. Otherwise, it generates new annotation tasks with

these annotations and loads them to resolve the conflict.

3.6.4 Data Pipeline workflow

When translating the data pipeline of Farmy.ai to a workflow (see figure 3.13), more work

is added to ensure the correctness of the phases, e.g. checking for completed annotation,

completed cleanup tasks, generation of annotation rounds, but the main phases are still the

same.

The phases of the data pipeline have common functions, such as importing tasks, exporting

results, and checking complete phases. Each phase of the pipeline includes 3 tasks:

1. Generate work tasks and load the tasks to process them ( cleansing, annotation, re-

solving annotations conflict).

2. Each phase has a task to export the result of the whole phase.

3. All phases have a completion task that deletes completed tasks after each data export.

Searching for conflicts is a standalone task that works with exported annotations to find

mismatched annotations and load them into third annotations.
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Figure 3.13: Farmy.ai data pipeline workflow

The data pipeline checks to see if tasks are ready, empty projects to ensure that operations

are running correctly. A complete, successful round of the annotation data pipeline produces

ready annotations. Images and annotations should be ready to be trained by data scientists

with images for Deep Learning.

3.6.5 Integration of Data Pipeline with the Data Lake

We describe how we integrate the data pipeline into the Farmy.ai Data Lake and how it

interacts with its components. The data pipeline uses query engines to find target images

and their metadata, it queries the data catalog, the data lake storage when it runs.

Each time the data pipeline generates tasks for cleansing, annotation, and resolving conflict

tasks, it stores the generated tasks in the staging area using connectors, which indexes all

stored tasks in the data catalog passing through the entire ingestion life-cycle.

Figure 3.14 represents the complete integration of the Farmy.ai image Annotation pipeline

with the Data Lake.

Here we wrap up all interactions of the data pipeline with the data lake architecture:

• The data pipeline uses data lake storage as its main storage.

• The data pipeline uses connectors to load processing data (tasks) into the Data Lake
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Figure 3.14: integration of annotation data pipeline with the data lake
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staging zone.

• We query results and raw data with query engines.

• The data pipeline stores all processing tasks in the staging zone of the data lake,

including intermediate cleansing and annotation results.

• It exports its final annotation results and stores them in the curated zone using con-

nectors.

3.6.6 Orchestrating the data pipeline

Managing and provisioning the data pipeline workflow is particularly challenging because

orchestration involves coordinating the various tasks.

The keystone of orchestrating is automation. Orchestrating of a data pipeline includes

scheduling of tasks, resource, execution environment, retries, error handling, logs.

Clearly, a critical task like orchestration needs a robust system that can do it independently

and reliably. There are many open-source tools that can reduce the overhead of orchestration,

and let us focus more on logic.

In addition to the tool for orchestrating the data pipeline, we still need to model the data

pipeline and represent it as a workflow. In particular, we can represent almost any data

pipeline as DAG (direct acyclic graphs), which simply represent tasks as nodes, while the

dependencies between them are the edges.

3.6.7 Data lineage in the data pipeline

Running the data pipeline and tracking the flow of data through the various tasks, from

source to final destination, is a non-trivial task. Data lineage is about following the path of

data from its original source to its final destination [32]. Therefore, data lineage is the key

to ensure traceability of various data transformations and data movements in the pipeline.

Data linage involves more metadata management. when we consider the architecture of

the data lake, There is a single source of truth for metadata management, which is the data

catalog.

Using the data catalog could support our purpose in data lineage, but we can do more. A

complementary approach is to rely on the Data Lake storage zones. A more detailed way is
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to divide the data storage into a hierarchical structure that reflects the context of the data

it contains.

Achieving a storage hierarchy has added a prominent data lineage process, Figure 3.15

represents a hierarchical structure of the Farmy.ai Data Lake storage for the Annotation

Data Pipeline workflow, helping to track the data flow from the first step to the last.

Adding inputs and outputs for each processing task in the staging area forces us to ensure

data immutability, which allows for flawless data movement.

Processing tasks should generate entirely new data. Reducing transformation significantly

increases data lineage and reduces extensive processing errors and accidental data corruption.

Staging zone

subject

input output

round_id round_id

year/month/day year/month/day

object object

Curated Zone

subject

round_id

year/month/day

object

Raw zone

Source

subject

year/month/day

object

Figure 3.15: Hierarchical structure of Data Lake’s object storage

In addition, logging provides great capabilities to track data movement, errors, and get

feedback on various tasks in progress to intervene or improve them for future processing.

The combination of the data catalog, hierarchical structure of the data lake, and extensive

logging helps us to sufficiently track and feel confident about the datasets generated during

the data pipeline.
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3.7 Conclusion

In this chapter, we have shown how we build the Farmy.ai data pipeline using the data

lake architecture to offload capacity from databases and achieve a low-cost architecture. We

showed the importance of a data catalog to track data lake assets, how to maintain and build

the data catalog, and what to choose as storage for the data lake.

We have shown how we can create low-coupled and reusable ingestion components that

ease the burden of dealing with multiple data sources.

We showed how query engines enable reusability and add search capabilities to our data

lake. We then showed how to integrate the data pipeline with the data lake using connectors

and query engines.

We illustrate the critical role of orchestration to execute and monitor the data pipeline.

Finally, we described how we perform data lineage with data catalog, hierarchical structure,

and logging.
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Implementation and experiments

4.1 Introduction

This chapter presents the key implementation details of Farmy’s data integration solution to

build the image annotation pipeline using the Data Lake architecture and data annotation

application.

We describe various tools, services, environments, infrastructure, tools used, and how we

use Amazon Web Services (AWS) as the infrastructure for our work.

At the end, we describe a complete end-to-end experiment of the data pipeline with the

demonstration and presentation of the results. This includes a concrete visualization of the

tools and the results obtained.

4.2 Infrastructure and environment

Undoubtedly, choosing an environment and the tools required can be challenging and require

some time of investigation, comparison and actual testing of tools to decide.

For the development and deployment of the Farmy.ai data pipeline, it took some time to

get an idea of the combination of tools to be used for the system. However, given the limited

resources and short time it took to build the business, the easiest route was to choose what

was essentially a cloud-native solution.

50



Chapter 4. Implementation and experiments

In this section, we present the main parts and services used to build and deploy an exper-

imental integration system of Farmy.ai, including the data lake, the data pipeline, and the

data annotation tool.

4.3 Choosing a cloud provider

Numerous organizations across different industries are using the cloud for various use cases.

The cloud is an easy option for any startup, Farmy.ai is no exception. We have chosen many

Amazon Web Services (AWS) cloud services and solutions to implement Farmy data pipeline

along with some other open source solutions.

We have chosen AWS as our main cloud provider. AWS has a global presence due to

its features and offers great flexibility and different levels of control over infrastructure,

management and monitoring, and provides a wide range of services.

AWS offers a robust Object-Storage, the Simple Storage Service (S3), wide compute op-

tions, a wide range of databases. All these services provide convenient SDKs and APIs for

use and easy integration with various solutions.

4.4 AWS services used

There are various AWS services used to effectively build our data lake with the image anno-

tation pipeline. Here we list major services and how we integrate them with each other to

ensure an efficient flow of data.

4.4.1 AWS Identity and Access Management (IAM)

IAM is a free web service from AWS that allows us to securely control access to AWS

resources, authentication, authorization, permissions, and set up restrictions over resources

and users, we can use it through the AWS console, SDK, or CLI. The three basic concepts

of IAM are users, groups, and roles. It allows us to create multiple users under the control

of a root account or enable temporary access through identity federation.

It enables programmatic access through secure tokens. It allows users to be included in

groups. We can associate a user or group with one or more roles. It allows us to grant
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different permissions to users and groups. Policies are documents that grant access rights to

AWS services to specific users and groups [33].

Figure 4.1: AWS IAM icon
[34]

4.4.2 AWS simple storage service(S3)

S3 is a highly available, scalable, and durable object-level storage built with a minimal set

of features for simplicity and robustness. It can securely store an unlimited number of files

with a SLA of 99.99% [35], it provides strong read-after-write consistency so that data is

not corrupted across different operations, data is accessible over the web via HTTP REST

API or with the AWS SDK, objects reside in named, unique containers across regions, S3

is highly cost-effective, it provides different tiers of storage based on access level to further

reduce costs.

Figure 4.2: AWS S3 icon
[36]

4.4.3 AWS Dynamo

Amazon DynamoDB is a cost-effective, fully managed NoSQL database service designed

primarily for storing key-value data. It is a highly scalable distributed database that supports

nested JSON format and offloads the management overhead of running and scaling the

database. It eliminates hardware provisioning, setup and configuration, replication, software

patching, or cluster scaling[37].
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Figure 4.3: AWS DynamoDB icon
[36]

4.4.4 AWS Lambda

AWS Lambda is a Serverless Compute service, more specifically a Function as a Service

(FaaS) that eliminates the overhead of managing, provisioning, and monitoring servers. It has

built-in auto-scaling, code monitoring, and logging, and supports a variety of programming

languages [29], The defined FaaS runs on demand only for the time needed with no upfront

commitment (we only pay for what we use), it scales automatically, to handle thousands

of requests per second, we can call the Lambda function directly through the Lambda API

or in response to various events generated by other AWS services, it is well suited for the

event-driven approach to building and maintaining the data catalog of the Farmy’s data lake.

Figure 4.4: AWS Lambda icon
[36]

4.4.5 Amazon EC2

Amazon Elastic Compute (EC2) is a compute capacity distributed through Amazon Web

Services (AWS) with robust control over size and security, it can scale to handle massive

workloads, it offers a wide and diverse selection of operating systems, storage, processor,

networks, GPU, and purchasing models[38],

Figure 4.5: AWS EC2 icon
[36]
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it provides the building block to build and deploy various applications such as web appli-

cations and APIs, Machine Learning, mobile backend services.

4.4.6 Amazon Athena

Amazon Athena is an interactive query service that allows us to easily use standard SQL to

evaluate data directly in Amazon Simple Storage Service (Amazon S3)[39]. It allows us to

run and query Amazon S3 with a simple setup, it allows us to query the desired data with

conventional and rich SQL support.

Figure 4.6: AWS Athena icon
[36]

4.5 Programming languages And Tools

4.5.1 Python

Python is a popular open-source general-purpose programming language that is widely used

in various fields, especially in data science, AI, machine learning, automation, web program-

ming, data engineering, etc. It is a dynamic Object-Oriented and functional language that

offers rich and powerful features, standard and community libraries[40]. it is a solid choice

for fast scripting and simple data integration systems.

Figure 4.7: Python Logo
[41]

4.5.2 Node.js

Node.js is an open source and cross-platform JavaScript runtime built on Chrome’s V8

JavaScript engine[42], it offers asynchronous I/O and event-driven functionality to create
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efficient, non-blocking, event-driven programs and servers. It is a great choice for real-time

applications and for building web APIs to create scalable network applications. Although

it uses a single-thread model, its non-blocking mode makes it an ideal choice for high-

throughput IO operations. In addition, we can launch Node.js processes to use all the cores

of the machine.

Figure 4.8: NodeJS Logo
[43]

4.5.3 Apache Airflow

Apache Airflow is a highly extensible, easy-to-use open source orchestrator that program-

matically authors, schedules, and monitors workflows and can execute almost any com-

mand.Apache Airflow supports modelling data pipelines of different workflows with different

complexity as DAGs. It enables provisioning, monitoring, and execution of workflows that

are triggered periodically or sometimes by specific events. We define pipelines in Python,

which enables dynamic generation of pipelines. It also provides a web user interface for mon-

itoring, scheduling, and managing workflows and integrates well with most cloud providers

[44].

Figure 4.9: Apache Airflow Logo
[45]
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4.5.4 Docker

Docker is an open source platform for building, deploying, and managing containerized appli-

cations. It provides more isolation and flexibility than virtual machines, completely separates

infrastructure from running applications, and enables fast, consistent application deploy-

ment, as well as efficient application management, testing, and rapid deployment [46]. As

enterprises migrate to a cloud-native model, Docker is becoming more popular. It essentially

provides a set of features that allow developers to create, deploy, and control containers with

a great deal of automation in hand.

Figure 4.10: Docker Logo
[47]

4.5.5 Label Studio

Label Studio is an open source data labeling tool that allows us to label and explore different

types of data. We use it for Image Classification, Semantic Segmentation, object detection

on images including B-boxes, polygons. It easily integrates with Machine Learning by adding

pre-labels and predictions to models to greatly improve and streamline the process. Label

Studio is also available in Enterprise and Cloud editions[48].

Figure 4.11: Label Studio Logo
[49]

4.6 Experiments and results

In this section, we show an experimental end-to-end run of the data cleaning and annotation

pipeline, including the tool used for image annotation (Label Studio) and the data pipeline

orchestrator Apache Airflow.
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4.6.1 Mapping the architecture to AWS

In addition to the AWS infrastructure, we use a few other open source tools and solutions

to map the final architecture and get our data pipeline up and running. Figure 4.12 shows

the core services we used to run this experiment.

Cleansing and
labeling application

EC2 instance contents EC2 instance contents

Orchestrator

AWS  SDK AWS NodeJS  SDK

Query Layer

Web scrapers

Mobile application

Ingestion Layer

Annotate
Images

Clean
Images

Ingest 
images

Resolve
Annotation

Conflict

Data Lake

Figure 4.12: Farmy data pipeline on AWS

The Figure 4.12 shows the full architecture of the Farmy Data Lake and data pipeline

deployed in the AWS infrastructure. The ingesting layer ingests data from the mobile ap-

plication, and web scrapers and stores it in AWS S3. A Lambda function listens for events

triggered by AWS S3 to update the data catalog, which uses AWS DynamoDB to store the

metadata.

The query layer provides preconfigured libraries and AWS Athena for searching AWS

DynamoDB and AWS S3. The data pipeline is driven by Apache Airflow deployed on an

AWS EC2 instance. It uses Data Lake and Label Studio, also deployed on an EC2 instance,

to achieve the desired behavior.
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4.6.2 Starting a New Annotation Round

In this part, we describe the starting round of the Farmy.ai image pipeline. Each run of the

pipeline performs a full image ingestion. For this experiment, we capture over 160 images

using the Web Scraper to clean and annotate them.

On the first run, the data pipeline starts a new round of annotation each time it detects

that all projects are empty or it has finished resolving annotation conflicts. Figure 4.13

shows Apache Airflow’s DAG representation of the first run of the data pipeline.

Figure 4.13: Initial loading of tasks from a new annotation round

Figure 4.14 shows the loaded tasks to Label Studio for cleaning.

Figure 4.14: Initial loading of annotation tasks within a new round

After the first successful run, the data pipeline loads images, generates tasks, and then

imports them into the annotation application for cleansing by Farmy.ai team.
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4.6.3 Preview the annotation phase

Once we complete image cleansing, the next successful run of the pipeline exports the cleans-

ing results and then generates tasks with relevant images. Last, it imports them for anno-

tation by Agriculture Experts, working on two different annotation projects. Figure 4.15

shows DAG representation of this run.

Figure 4.15: Successful export of cleansing results

Figure 4.16 shows an assigned annotation task accessible to the agricultural expert in one

of the two projects.

Figure 4.16: Working Annotation task
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4.6.4 Resolving annotation phase

After we finish annotating images, our data pipeline exports the annotation result to work

with. If we find a conflict in some image annotations, we load them into a third anno-

tation project. Figure 4.17 shows an annotation task that resolves a conflict between two

annotations.

Figure 4.17: Resolving Annotation task

4.6.5 Exporting the Resolved Annotation

Ultimately, our data pipeline exports the results of the resolved annotation conflicts, which

declare a complete and successful round of cleansing and annotation data pipeline. Figure

4.18 shows the DAG state of this run.

Figure 4.18: Export resolved annotations
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4.6.6 Apache Airflow Orchestration

Apache Airflow orchestrates our data pipeline. It manages communication, transition be-

tween tasks, and allows us to schedule our data pipeline or respond to external events to

trigger execution of DAG.

Figure 4.19 represents tree view that includes our data pipelines runs during this experi-

ment, beside some other old runs.

Figure 4.19: Tree view of the data pipeline

Figure 4.20 represents the Apache Airflow web user interface for configuring, scheduling,

and testing the annotation data pipeline DAGs. It allows us to manage users and many

other functions.
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Figure 4.20: Apache Airflow Web Server User Interface

4.6.7 Query Annotations in S3 with AWS Athena

With AWS Athena, we can use SQL syntax to directly query the under-processing data such

as annotation tasks assigned to the two agricultural experts, accepted or rejected images from

an annotation round, assigned cleansing tasks, and, more importantly, the final annotations

created.

AWS Athena, easily and reliably allows us to search the contents of working files, such as

annotations tasks, by providing the schema defined in a table to read files (schema on-read).

Figure 4.21 shows the final result of the annotation pipeline after we complete the anno-

tation round.

AWS Athena helps us find conflicting annotations in the Data Lake storage. Figure 4.22

describes an SQL query to find annotations that have gone through a third annotation to

resolve a conflict.
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Figure 4.21: Query Annotation results

Figure 4.22: Find Conflict Query
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4.7 Conclusion

In this chapter, we have shown the concrete data flow in Farmy.ai, we have shown the de-

ployment architecture in AWS, including Data Lake components such as AWS S3, AWS

DynamoDB, the Lambda compute function, Apache Airflow and the Annotation web appli-

cation, we have run a complete experiment with various tools and services mentioned.
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General Conclusion

Data is gradually changing the way we do business. Collecting and processing data has

always been a challenge for engineers and developers. An efficient flow of data is the most

critical operations in today’s data-driven businesses.

A valuable business can start only when we guarantee that the data is available in a ready

and secure state. Cloud computing greatly helps us to develop reliable and cost-effective

solutions. However, a well-designed architecture is still required.

5.1 Findings

In this project, we have presented an effective architecture for managing data throughout

its life-cycle. We have shown how Big Data can be integrated into the real world business,

we also showed the significant impact that good data collection has on the business.

Building a reliable data pipeline is challenging, a reusable and reproducible data pipeline

is even more challenging as it involves various movements, processing steps and dependencies

between processing tasks. We have developed a design that leverages data cataloging and

object-level storage to build a reliable data lake architecture for Farmy.ai. Developing an

efficient and reusable low-coupled data ingestion layer using components such as connectors

was a critical step that significantly reduces data ingestion overhead.

Avoiding a data swamp is key to data lake architecture. Creating a comprehensive data

catalog was the cornerstone for fast data discovery and traceability. We demonstrated how
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to achieve an event-driven architecture to build and maintain an up-to-date data catalog.

To track the path of data in the data lake, we showed the hierarchical structure of data

lake storage that leads us to a modular and clean schema to track different data movements

or produced assets during different processing operations. Combining such a structure with

the data catalog, consistent logging, and robust orchestration helped us efficiently manage

and execute the image annotation pipeline of Farmy.ai.

5.2 Final thoughts

Developing data pipelines based on Data Lakes does not mean we have to throw away other

data tools and solutions like data warehouses. In fact, data warehouses integrate well with

data lakes because they offer great search and processing capabilities, while data lakes can

significantly reduce the cost of data warehouses by offloading their capacities.

Building Data pipelines with Data Lakes provides great flexibility, but data lineage is not

always easy and depends heavily on the type of data processing and data movement in the

system, there are a variety of tools and solutions that can reliably perform this task.
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