
Université Mohamed El Bachir El Ibrahimi de Bordj Bou Arréridj
Faculté des Mathématiques et de l’Informatique

Département des Mathématiques

Mémoire

Présenté par

HOUARI BOUTHEYNA ET BENHAMMADA RANIA

Pour l’obtention du diplôme de

Master

Filière : Mathématiques
Spécialité : Systèmes dynamiques

Thème

ON THE LIMIT CYCLES OF FAMILLY OF DIFFERENTIAL
SYSTEM DEGREE 5

Soutenu publiquement le 05 Septembre 2020 devant le jury composé
de

Président: BENTERKI RBIHA Université de Bordj Bou Arréridj
Encadrant: BERBACHE AZIZA Université de Bordj Bou Arréridj
Examinateur: CHARMOULE BILAL Université de Bordj Bou Arréridj

Promotion 2020/2021



Acknowledqement

First and formost, we would like to thank our supervisor Dr. Berbache Aziza. for her
quidance and support throughout this study, her confidence in us and specially for her
hard work. We would like to sincerly thank the members of the jury Dr. BENTERKI
Rebiha and Dr. GHARMOULE Bilal for agreeing to examine this work, and to have
awarded the
title of master in dynamical system.



Dedication

Thanks to Allah for giving us the capacity to overcome all the obstacles and achieve
our goal in contributing the academic carrier.

I didicate this work to may beloved parent

"HOUARI Brahim" and " HOUAMED Farida"

who have always beging source of motivation, insperation, encouragement to me.

To my lovely leader who have gride me step by step with gold advices, and smart
clues.

To all my sweet sister’s "Amina, Fatene, Malak" and our littel "Ghoufran" who have
supported me.

For my only brother "Khelifa" thanks for me see this adventure through to the end
specially.

To my friends "Imane ..." for always hoving my back, I’m infintly gratful all for you,
you were the reason why my work has done.

Thanks again to all who helped me

.

"HOUARI BOUTHEYNA"



Didication

Every challenging work needs self efforts as well as quidance of elders speatly those
who were very close to our heart. My humble effort I dedicate my sweet and loving

Mother & Father

Ben hammada Fadila and Ben hammada Arrezki.

Whose effection, love, encouragement and prays of day and night make me able to gut
such success and honor, I can’t forgat my dear friend Asma , who help me a lot. All my
brothers Djallel, Abd alatif and Youcef, and all my sisters Donia and Wiam. And finally
my dear husband Belmoumen Mohamad.

« BEN HAMMADA RANIA »



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 BASIC NOTION AND REMINDERS 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Polynomial Differential Systems . . . . . . . . . . . . . . . . . . . . 4
1.3 Vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Phase portrait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Equilibrium point . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Stability Of Equilibrium Points . . . . . . . . . . . . . . . . . 7
1.7 Invariant curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 First Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Solution and Periodic Solution . . . . . . . . . . . . . . . . . . . . . 9
1.10 Limit Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 The first return map . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A cubic polynomial differential systems with one explicit limit cycle 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Periodic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Existence and non existence of limit cycles . . . . . . . . . . . . . . . 17
2.5 Algebraic and non-algebraic limit cycle . . . . . . . . . . . . . . . . . 22
2.6 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Quintic polynomial differential systems with two explicit limit cycles 28
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



3.4 Non existence of limit cycles . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Existence of two limit cycles . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Tow non algebraic limit cycles . . . . . . . . . . . . . . . . . 43
3.5.2 Tow algebraic limit cycles . . . . . . . . . . . . . . . . . . . 43
3.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Existence of one limit cycle . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



List of Figures

1.1 Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Stability Of An Equilibrium Point . . . . . . . . . . . . . . . . . . . 7
1.3 Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The Poincaré Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Algebraic limit cycle of the differential system (2.11) . . . . . . . . . . 26
2.2 Non algebraic limit cycle of the differential system (2.12) . . . . . . . . 26
2.3 Phase portrait of the differential system (2.13) . . . . . . . . . . . . . . 27

3.1 Two non algebriac limit cycles of differential system (3.12) . . . . . . . 45
3.2 Two algebriac limit cycles of differential system (3.13) . . . . . . . . . 45
3.3 One non algebriac limit cycle of differential system (3.14) . . . . . . . . 51
3.4 One non algebriac limit cycle of differential system (3.15) . . . . . . . . 51
3.5 One algebriac limit cycle of differential system (3.16) . . . . . . . . . . 52
3.6 One algebriac limit cycle of differential system (3.17) . . . . . . . . . . 53

1



INTRODUCTION

Differential equation have important application and are powerful tool in the study of
many problems in the natural sciences and in technology; they are extensively employed
in mechanics, astronomy, physics, and in many problems of chemisty and biology. Direct
resolution of a differential equation is usually difficult or impossible.
However, another way out it possible. This is the qualitative study of differential equa-
tions. This study makes it possible to provide information on the behavior of the solutions
of a differential equation without the need to solve it explicit, and it consists in examining
the properties and the characteristics of the solutions of this equation, and to justify among
these solution, the existence or non existence of an isolated closed curve form called limit
cycle.

An important problem of the qualitative theory of differential equations is to determine
the limit cycles of a systems of a differential equations.
Usually, we ask for the number of such limit cycles as orbits, and an even more difficult
problem is to give an explicit expression of them.

The limit cycles introduced for the first time by Henri Poincaré in 1881 in his "Dis-
sertation on the curves defined by a differential equation" [6]. Poincaré was interested in
the qualitative study of the solutions of the differential equations, i.e. points equilibrium,
limit cycles and their stability.
This makes it possible to have an overall idea of the other orbits of the studied systems.
The mathematician David Hilbert presented at the second international congress of math-
ematics ([3], 1900), 23 problems whose future awaits resolution through new methods that
will be discovered in the century that begins. The problem number 16 is to know the max-
imum number and relative position of the limit cycles of a planar polynomial differential
systems of degree n. We denote Hn this maximum number. Dulac [2] in 1923, offered
a proof that Hn is finite. In recent years, several papers have studied the limit cycles of
planar polynomial differential systems. The main reason for this study is Hilbert 16-th
unsolved problem. Later on Van der Pol [7] in 1926, Liénard[4] in 1928 and Andronov
[1] in 1929 shown that the periodic solution of self-sustained oscillation of a circuit in a
vacuum tube was a limit cycle.

The objective of this work is to give a quintic polynomial differential system of the
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form: ẋ = x− (γ(2y − ax) + α(x2 + y2)(ax− 4y))Q(x, y),

ẏ = y − (−γ(2x+ ay) + α(x2 + y2)(4x+ ay))Q(x, y).
(1)

Where Q(x, y) is homogeneous polynomial of degrees 2 where α, γ and a are real
constants. The main motivation of this dissertation is to prove that these systems are
integrable. Moreover, we determine sufficient conditions for a polynomial differential
systems to possess at most two limit cycles, one of them algebraic and the other one
is non-algebraic, counted two explicit limit cycles. Concrete examples exhibiting the
applicability of our result are introduced.

This dissertation is structured in three chapters. The first chapter is dedicated to re-
minders of some preliminary concepts on the planar differential system. In the second
chapter we put α = 0 and we get a system of degree 3 as follows:ẋ = x− γ(2y − ax)Q(x, y),

ẏ = y − γ(−2x− ay)Q(x, y).
(2)

We solve this system and we use the available conditions in the theories to prove that this
system possesses at most one limit cycle. In the last chapter, we solve the system in the
caseα 6= 0 and apply the theorems conditions in order to prove that the system possesses
at most two limit cycles, and we prove as well the limit cycles algebraic or not.
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Chapter 1
BASIC NOTION AND REMINDERS

1.1 Introduction

This chapter contains basic and main concepts for the qualitative study of dynamic sys-
tems. To understand this chapter, we start by definition of polynomial differential systems,
we will discuss the notions of: vector field, phase portrait, solution and periodic solution,
limit cycle, nature of the critical points. We also quote some theorems used as tools in our
work. Most part of the results are given without proof, however references where they
can found, are included.

1.2 Polynomial Differential Systems

Definition 1.1 A polynomial differential system is a system of the form: ẋ = P (x(t), y(t)),
ẏ = Q(x(t), y(t)),

(1.1)

where P (x, y) andQ(x, y) are real polynomials in the variables x and y.
The degree n of the system is the maximum of the degrees of the polynomial P andQ.
As usual the dot denotes derivative with respect to the independent variable t.

Definition 1.2 A linear differential system consists of linear differential equations (the
linearity relates to the unknown functions and their derivatives).

Definition 1.3 A non linear system consists of non linear differential equation.

Definition 1.4 A differential system of the form
dx

dt
= f(t, x) is said to be autonomous

if the function f depends only on the vector variable x. Otherwise, it is not autonomous,

an autonomous system is written in the from
dx

dt
= f(x).
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1.3. VECTOR FIELD

Remark 1.1 If the polynomial P andQ are written in the form:
P (x, y) =

i+j=n∑
i+j=0

aijx
iyn−j,

Q(x, y) =
i+j=n∑
i+j=0

bijx
iyn−j.

(1.2)

We say that P and Q are homogeneous, in this case the system (1.1) is called homoge-
neous polynomial differential system.

1.3 Vector field

Definition 1.5 We call vector field a region of the plane in which exists in any point a
vector ~V (M, t). Suppose that we have a C1 vector field in Ω ⊂ R2, that is to say the
application:

M:

x
y

 7−→ ~V (M) =

F1(x, y)
F2(x, y)

 ,
where F1, F2 are C1 in Ω.

We consider the vector field χ associated to the system (1.1)

~dM

dt
= ~V ⇔

 ẋ = P (x, y),
ẏ = Q(x, y),

which means that system (1.1) is equivalent to the vector field χ(P,Q), we can also
write:

χ = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

1.4 Flow

Definition 1.6 Suppose that f ∈ C1(Ω), then for all x0 ∈ Ω there exists a unique
solution φt(x) defines on an open interval I ⊂ R. Given a point x belonging to Ω we
note φt(x) the position of x after a displacement of a duration t, (t ∈ I).
The φ : Ω × I −→ Ω application is called the flow of nonlinear differential system,
satisfies the following properties:
i) φ0(x) = x.

ii) φs(φt(x)) = φs+t(x); ∀t ∈ R.
iii) φ−t(φt(x)) = φt(φ−t(x));∀t ∈ R.
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1.5. PHASE PORTRAIT

Figure 1.1: Vector Field

Example 1.1 Let the vector field be:

ẋ = f(x) =

 −3x
y + 2x2

 .
The flow of the problem to the initial values:ẋ = f(x),

x(0) = c,

is given by

Φ(c1, c2) =

 c1e
−3t

−2
7
c2

1e
−6t + c2e

t +
2
7
c2

1e
t

 .

1.5 Phase portrait

The plane R2 is called phase plane and the solutions of a vector field χ, represent in the
phase plane of the orbits or the trajectories, the phase portrait of a vector field χ is the set
solutions in the phase plane.

Definition 1.7 A phase portrait is a geometric representation of the trajectories of a dy-
namic system in the phase space, at each set of initial conditions corresponds a curve or
a point.

1.6 Equilibrium point

The fixed points or equilibrium points play a vital role in the study of dynamic systems,
Henri Poincaré (1854-1912) showed that to characterize a dynamic system with multi-
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1.6. EQUILIBRIUM POINT

ple variables it is not necessary to calculate the detailed solutions, it is enough to know
equilibriums points and their stabilities.

Definition 1.8 We call critical point or equilibrium point of the system ẋ = f(x), any
point x0 ∈ Rn such that:

f(x0) = 0.

Definition 1.9 Consider the system (1.1), then the system: ẋ = Ax with

A =
(
∂fi

∂xj
(x0)

)
= Df(x0), 1 6 i, j 6 n.

And since f(x0) = 0, is called the linearized of (1.1) in x0.

1.6.1 Stability Of Equilibrium Points

Any non-linear system may have several equilibrium positions that may be stable or unsta-
ble. Let (x0, y0) be an equilibrium point of system (1.1). Note byX = (P (x, y), Q(x, y))
and
X(t) = (P (x(t), y(t)), Q(x(t), y(t))), X0 = (P (x0, y0), Q(x0, y0)).

Definition 1.10 We say that:
(x0, y0) is stable if and only if

∀ε > 0, ∃η > 0 : ‖(x, y)− (x0, y0‖ < η ⇒ ‖X(t)−X0‖ < ε,∀t > 0.

Figure 1.2: Stability Of An Equilibrium Point

(x0, y0) is asymptotically stable if and only if

lim
t−→+∞

‖X(t)−X0‖ = 0.
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1.7. INVARIANT CURVE

Figure 1.3: Asymptotic Stability

1.7 Invariant curve

Invariant algebraic curves play an important role in the integrability of differential planar
polynomial systems, and are also used in the study of the existence and non-existence of
periodic solutions and consequently the existence and non-existence of limit cycle.

Definition 1.11 Let f ∈ C[x, y] not identically zero. The algebraic curve f(x, y) = 0
is an invariant algebriac curve the polynomial system (1.1) if for some polynomial K ∈
C[x, y] we have:

χf = P (x, y)
∂f

∂x
(x, y) +Q(x, y)

∂f

∂y
(x, y) = K(x, y)f(x, y), (1.3)

for all (x, y) ∈ f.
The polynomialK is called the cofactor of the invariant algrbraic curve f = 0.We note
that since the polynomial system has degreem, any cofactor has degree at mostm− 1.

Example 1.2 The curve defined by equation ay+b is an invariant curve for the following
system ẋ = −y(ay + b)− (x2 + y2 − 1),

ẏ = x(ay + b).
(1.4)

Let f(x, y) = ay + b, then

ẋ
∂f

∂x
+ ẏ

∂f

∂y
= 0(−y(ay + b)− (x2 + y2 − 1) + a(x(ay + b))

= ax(ay + b).

Thus, f(x, y) = 0 is invariant curve with cofactor k(x, y) = ax.

1.8 First Integral

The notion of integrability for differential system is a based on the existence of first inte-
grals, so the question that arises: If we have a differential system, how can we know if it
has a first integral?
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1.9. SOLUTION AND PERIODIC SOLUTION

Definition 1.12 A function H : f −→ R of class Cj and which is constant on each
trajectory of (1.1) and not locally constant is called the first integral of the system (1.1)
of class j on U ∈ R2.

The equation H(x, y) = c fixed for c ∈ R, gives a set trajectories of the system in an
implicit way.
When j = 1, these condition are equivalent to

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂0
≡ 0

andH not locally constant.
The search for an explicit expression of a first integral and the determination of its func-
tional class is called the integrability problem.

Remark 1.2 - We say that the differential system (1.1) is integrable on an open subset Ω
if it admits a first integral on Ω of R2.
- It is well know that for differential systems defined on the plan R2 the existence of a first
integral determines their phase portrait.

1.9 Solution and Periodic Solution

Definition 1.13 We say that (x(t), y(t))t∈R is a solution of system (1.1) if the vector
filed X = (P,Q) is always tangent to the trajectory representing this solution in the
phase plane, in other words

∀t ∈ R, P (x(t), y(t))ẋ+Q(x(t), y(t))ẏ = 0.

Definition 1.14 called periodic solution of system (1.1), all solution (x(t), y(t)) for
which there exists a real T > 0 such that:

∀t ∈ R, x(t+ T ) = x(t) and y(t+ T ) = y(t).

The smallest number T > 0 is called the period of this solution.

1.10 Limit Cycle

We have seen that the solution tend towards a singular point, another possible behavior
for a trajectory is to tend towards a periodic movement in the case of a planar system, that
means that the trajectories tend towards what is called a limits cycles.

Definition 1.15 A limit cycle is an isolated closed orbit of (1.1), i.e., we can not find
another closed orbit in its neighborhood.

9



1.10. LIMIT CYCLE

A periodic orbit Γ is called stable if for each ε > 0 there is a neighborhoodU of Γ such
that for all x ∈ U and t > 0:

d(Φ(t, x),Γ) > ε.

A periodic orbit Γ is called unstable if it is not stable, and Γ is called asymptotically
stable if it is stable and if for all points x in some neighborhood U of Γ

lim
x−→∞

d(Φ(t, x),Γ) = 0.

Example 1.3 The system
ẋ = −4y + x(1−

x2

4
− y2),

ẏ = x+ y(1−
x2

4
− y2),

(1.5)

has a limit cycle Γ(t) represent by

Γ(t) = (2 cos(2t), sin(2t))

and

div(P,Q) =
∂P

∂x
+
∂Q

∂y
= 2− x2 − 4y2,

let’s calculates now
∫ π

0
div(Γ(t))dt

∫ π

0
(2 cos(2t), sin(2t))dt = (2− (2 cos(2t))2 − 4(sin(2t))2)

=
∫ 2π

0
−2dt

= −2π < 0.

So the cycle Γ(t) = (2 cos(2t), sin(2t)) is a an stable limit cycle.

Definition 1.16 If a limit cycle is contained in an algebraic curve of the plan, then we
say that it is algebraic, otherwise it is called non algebraic.

Remark 1.3 The limit cycle appear only in non-linear differential systems.
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1.11. THE FIRST RETURN MAP

1.11 The first return map

Probably the most basic tool for studying the stability of periodic orbits is the Poincaré
map or first return map, defined by Henri Poincaré in 1881. The idea of Poincaré map is
quite simple: If Γ is a periodic orbit of system (1.1), through the point (x0, y0) and Σ is
a hyperplane perpendicular to Γ at (x0, y0), then for any point (x, y) ∈ Σ sufficiently
near (x0, y0), the solution of(1.1) through (x, y) at t = 0,Φt(x, y) will cross Σ again
at a point Π(x, y) near (x0, y0), the mapping (x, y)→ Π(x, y) is called the Poincaré
map.
The next theorem establishes the existence and continuity of the Poincaré map Π(x, y)
and of its first derivativeDΠ(x, y).

Figure 1.4: The Poincaré Map

Theorem 1.1 [5] LetE be an open subset ofR2 and let (P (x, y), Q(x, y)) ∈ C1(E).
Suppose that Φt(x0, y0) is a periodic solution of (1.1) of period T and that the cycle

Γ = {(x, y) ∈ R2|(x, y) = Φt(x0, y0), 0 6 t 6 T}

is contained in E. Let Σ be the hyperplane orthogonal to Γ at (x0, y0), i.e., let

Σ = {(x, y) ∈ R2|(x− x0, y − y0), (P (x0, y0), Q(x0, y0)) = 0.

Then if a δ > 0 and a unique function τ (x, y), defined and continuously differentiable
for (x, y) ∈ Nδ(x0, y0), such that

τ (x0, y0) = T

and
Φτ(x,y)(x, y) ∈ Σ

for all (x, y) ∈ Nδ(x0, y0).

11



1.11. THE FIRST RETURN MAP

Definition 1.17 Let Γ,Σ, δ and τ (x, y) be defined as in Theorem 1.1. Then for (x, y) ∈
Nδ(x0, y0)⋂Σ, the function

Π(x, y) = Φτ(x,y)(x, y),

is called the Poincaré map for Γ at (x0, y0).

The following theorem gives the formula of Π′(0, 0).

Theorem 1.2 [5] Let γ(t) be a periodic solution of (1.1) of period T. Then the deriva-
tive of the Poincaré map Π(s) along a straight line Σ normal to Γ = {(x, y) ∈
R2|(x, y) = γ(t)− γ(0), 0 6 t 6 T} at (x, y) = (0, 0) is given by

Π′(0) = exp
∫ T

0
5 · (P (γ(t)), Q(γ(t)))dt.

Corollary 1.1 [5] Under the hypotheses of 1.4, the periodic solution γ(t) is a stable
limit cycle if ∫ T

0
5(P (γ(t)), Q(γ(t)))dt < 0

and it is an unstable limit cycle if∫ T

0
5(P (γ(t)), Q(γ(t)))dt > 0.

It may be a stable, unstable or semi-stable limit cycle or it may belong to a continuous
band of cycles of this quantity is zero.
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Chapter 2
A cubic polynomial differential systems
with one explicit limit cycle

2.1 Introduction

We consider the family of the polynomial differential system of the formẋ = x− γ(2y − ax)Q(x, y),

ẏ = y − γ(−2x− ay)Q(x, y),
(2.1)

whereQ(x, y) is homogeneous polynomial of degrees 2 and γ,a are real constants.
We prove that these systems are integrable. Moreover, we determine sufficient conditions
for a polynomial differential system to possess at most one limit cycles.
We defined the trigonometric polynomial

Q(θ) = Q(cos θ, sin θ).

Lemma 2.1 If Q(θ) 6= 0 for all θ ∈ [0, 2π], then the origin (0, 0) is the unique
equilibrium point of the polynomial differential systems (2.1).

Proof . We have

xẏ − yẋ = 2(x2 + y2)Q(x, y)γ

then, the equilibrium points of the polynomial differential system (2.1) if there exist, are
located on the curve

γ(x2 + y2)Q(x, y) = 0.

13



2.1. INTRODUCTION

In polar coordinate this equation become γQ(θ)r4 = 0. SinceQ(θ) 6= 0 then r4 = 0,
hence the origin (0, 0) is the unique equilibrium point of the polynomial differential
system (2.1).
r

Proposition 2.1 The curve U(x, y) = −2(x2 + y2)Q(x, y)γ = 0 is an invariant
algebraic of system (2.1) withe cofactor

K(x, y) = 4 + 2γQ(x, y)− γ
(

2y
∂Q(x, y)
∂x

− 2x
∂Q(x, y)
∂y

− 2aQ(x, y)
)
.

Proof . We have

ẋ
∂U

∂x
+ ẏ

∂U

∂y
= (x− γ(2y − ax)Q)

∂U

∂x
+ (y − γ(−2x− ay)Q)

∂U

∂y

= (x− γ(2y − ax)Q)(−4xγQ− 2γ(x2 + y2)
∂Q

∂x
)

+(y − γ(−2x− ay)Q)(−4yγQ− 2γ(x2 + y2)
∂Q

∂y
)

= −4γ(x2 + y2)Q+ 4γ2 (x(2y − ax) + y(−2x− ay))Q2

+2γ2(x2 + y2)Q
(

(2y − ax)
∂Q

∂x
+ (−2x− ay)

∂Q

∂y

)

−2γ(x2 + y2)
(
x
∂Q

∂x
+ y

∂Q

∂y

)

= 2γ2(x2 + y2)Q
(

(2y − ax)
∂Q

∂x
− (2x+ ay)

∂Q

∂y

)

−2γ(x2 + y2)
(
x
∂Q

∂x
+ y

∂Q

∂y

)

−(4γ(x2 + y2)Q)(1 + aγQ).

Due to the Euler’s theorem for homogeneous functionQ(x, y), we have

x
∂Q

∂x
+ y

∂Q

∂y
= 2Q.

Then,

ẋ
∂U

∂x
+ ẏ

∂U

∂y
= 2γ2(x2 + y2)Q

(
(2y − ax)

∂Q

∂x
− (2x+ ay)

∂Q

∂y

)

−2γ(x2 + y2)
(
x
∂Q

∂x
+ y

∂Q

∂y

)

−(4γ(x2 + y2)Q)(1 + aγQ)

= −2γ(x2 + y2)Q
(

4 + 2γQ− γ
(

2y
∂Q

∂x
− 2x

∂Q

∂y
− 2aQ

))
.
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2.2. INTEGRABILITY

Therefore, U = 0 is an invariant algebraic curve of the polynomial differential system
(2.1) with the cofactor

K(x, y) = 4 + 2γQ− γ
(

2y
∂Q

∂x
− 2x

∂Q

∂y
− 2aQ

)
.

This completes the proof of proposition 2.1. r

2.2 Integrability

The following theorem prove the integrability of system (2.1).

Theorem 2.1 Consider a polynomial differential system (2.1). Then the following state-
ments hold.
1) If γ 6= 0 andQ(θ) 6= 0 for all θ ∈ [0, 2π], then system (2.1) has the first integral

H(x, y) = −γ(x2 + y2)e−a arctan y
x +

∫ arctan y
x

0

e−as

Q(s)
ds.

2) IfQ(θ) ≡ 0, then system (2.1) has the first integral

H(x, y) =
y

x
.

Proof . Proof of statement (1) In order to prove our results we write the polynomial
differential system (2.1) in polar coordinates (r, θ), defined by x = r cos θ and y =
r sin θ, then the system (2.1) becomesṙ = r + aγQ(θ)r3,

θ̇ = 2γQ(θ)r2,
(2.2)

where θ̇ =
dθ

dt
, ṙ =

dr

dt
.

Taking as new independent variable the coordinate θ. The differential system (2.2) where
Q(θ) 6= 0 can be written as the equivalent differential equation

dr

dθ
=

1
2γQ(θ)r

+
ar

2
, (2.3)

we not that the differential equation (2.3) is a Bernoulli equation.
Via the change of variable ρ = r2, then the equation (2.3) is transformed into the linear
equation

dρ

dθ
=

1
γQ(θ)

+ aρ, (2.4)

solving it we find the first integral.

H(ρ, θ) = −γρe−aθ +
∫ θ

0

e−as

Q(s)
ds.
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2.3. PERIODIC SOLUTION

Then, the first integral of system (2.2) is

H(r, θ) = −γr2e−aθ +
∫ θ

0

e−as

Q(s)
ds.

Going bake through the changes of variables r2 = x2 + y2 and θ = arctan y
x

, we
obtain

H(x, y) = γ(x2 + y2)e−a arctan y
x −

∫ arctan y
x

0

e−as

Q(s)
ds.

Hence statement 1 of Theorem 2.1 is proved.

Proof of statement (2) IfQ(θ) ≡ 0, for all θ ∈ R thenQ(x, y) ≡ 0, for all x, y ∈ R,
and ẋ = x,

ẏ = y,
(2.5)

where ẋ =
dx

dt
and ẏ =

dy

dt
.

This system equivalent the differential equation

dx

dy
=
x

y
. (2.6)

The equation (2.6) is separable differential equation, then the solution of this equation is

y = Kx

where k is real constant, then the first integral in the variables (x, y) of the system (2.1)
is

H(x, y) =
y

x
.

Hence statement (2) of Theorem 2.1 is proved.
r

Remark 2.1 The curve H = h with h ∈ R, which is formed by trajectories of the
differential system (2.1), in cartesian coordinates are written as

γ(x2 + y2) = γ(x2 + y2)e−a arctan y
x −

∫ arctan y
x

0

e−as

Q(s)
ds.

2.3 Periodic solution

Theorem 2.2 If Q(θ) vanishes for some θ ∈ [0, 2π], then system (2.1) has no periodic
solutions surrounding the origin.
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2.4. EXISTENCE AND NON EXISTENCE OF LIMIT CYCLES

Proof . If θ∗ ∈ [0, 2π] is a zero of Q(θ) = 0, then (sin θ∗x− cos θ∗y) is a factor of
Q(x, y), and consequently the straight line

sin θ∗x− cos θ∗y = 0,

is invariant. It is well known that ifQ = 0 is an invariant algebraic curve, then any factor
of Q is also an invariant algebraic curve. So the straight line sin θ∗x − cos θ∗y = 0
through the origin of coordinates is invariant, i.e., formed by solutions of systems (2.1).
Therefore, it can not be periodic solutions surrounding the origin. This completes the
proof of Theorem 2.2. r

2.4 Existence and non existence of limit cycles

For the system (2.1), we will prove the existence or non existence of one limit cycle whose
explicit expression will be given.

Theorem 2.3 Consider a polynomial differential system (2.1). Then
1) If one of the following statements hold.

i) γQ(θ) > 0 and a < 0 for all θ ∈ [0, 2π],
ii) γQ(θ) < 0, and a > 0,

system (2.1) has an explicit hyperbolic limit cycle given in polar coordinates (r, θ) by

r(θ, r∗) =
√
eaθ(r2

∗ − f(θ)),

where r∗ =

√√√√ ea2π

1− ea2π
f(2π), and f(θ) =

∫ θ

0

1
γQ(s)

e−asds.

2) if one of the following statements hold.
a) γQ(θ) > 0, and a > 0 for all θ ∈ [0, 2π],
b) γQ(θ) < 0, and a < 0 for all θ ∈ [0, 2π],

system (2.1) has no limit cycle.

Proof . proof of statement (1): Use the notation and the expressions of the proof of
Theorem 2.1 we have the general solutions of linear equation (2.4) is

ρ(θ, h) = eaθ
(
h+

∫ θ

0

1
γQ(s)

e−asds

)
.

And the general solution of linear equation (2.3) is

r2(θ, h) = eaθ
(
h+

∫ θ

0

1
γQ(s)

e−asds

)
, (2.7)
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2.4. EXISTENCE AND NON EXISTENCE OF LIMIT CYCLES

where h ∈ R.
We remark that the solution r(θ, r0) such as r(0, r0) = r0 > 0, corresponds to the
value h = r2

0 provided a rewriting of the general solution r(θ, r0) of the differential
equation (2.3) as

r2(θ, r0) = eaθ
(
r2

0 +
∫ θ

0

1
γQ(s)

e−asds

)
.

where r0 = r(0). A periodic solution of system (2.1) must satisfy the condition
r2(2π, r0) = r2(0, r0), where

r2(2π, r0) = ea2π
(
r2

0 +
∫ 2π

0

1
γQ(s)

e−asds

)

and
r2(0, r0) = r2

0.

Then, the condition r2(2π, r0) = r2(0, r0) equivalent

ea2πr2
0 + ea2π

∫ 2π

0

1
γQ(s)

e−asds = r2
0,

this imply that

r2
0(1− ea2π) = ea2π

∫ 2π

0

1
γQ(s)

e−asds,

then

r2
0 =

ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds

and there are two differences values with the property r(2π, r0) = r0, so one of them is
equal to

r0 = −

√√√√ ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds

and we do not consider this case because r0 < 0, we only take into consideration the
following value r0 = r∗ which satisfies r(2π, r∗) = r∗ > 0

r∗ =

√√√√ ea2π

1− ea2π
f(2π),

where
f(2π) =

∫ 2π

0

1
γQ(s)

e−asds.
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2.4. EXISTENCE AND NON EXISTENCE OF LIMIT CYCLES

After the substitution of this value r∗ into r(θ, r0) we obtain

r(θ, r∗) =

√√√√eaθ ( ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds+
∫ θ

0

1
γQ(s)

e−asds

)
. (2.8)

Since γQ(θ) > 0, then

f(θ) =
∫ θ

0

1
γQ(s)

e−asds > 0,

for all θ ∈ [0, 2π], in particular f(2π) =
∫ 2π

0

1
γQ(s)

e−asds > 0, and a < 0, then

1− e2aπ > 0. So it follows that

r∗ =

√√√√ ea2π

1− ea2π
f(2π) > 0,

then system (2.1) can have one limit cycle.

Strict positivity: We have

r2(θ, r∗) = eaθ
(

ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds+
∫ θ

0

1
γQ(s)

e−asds

)
.

Since
ea2π

1− ea2π
> 0, and γQ(θ) > 0, then

r2(θ, r∗) > eaθ


ea2π

1− ea2π

∫ θ

0

1
γQ(s)

e−asds

+
∫ θ

0

1
γQ(s)

e−asds

 .

= eaθ
(

1
1− ea2π

∫ θ

θ

1
γQ(s)

e−asds

)
> 0,

because γQ(θ) > 0, and a < 0.

Periodicity: Let

g(θ) = eaθ
(
r2
∗ +

∫ θ

0

1
γQ(s)

e−asds

)
.

θ ∈ [0, 2π], then

g(θ + 2π) = ea(θ+2π)
(
r2
∗ +

∫ θ+2π

0

1
γQ(s)

e−asds

)
.
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2.4. EXISTENCE AND NON EXISTENCE OF LIMIT CYCLES

Since r2
∗ =

e2aπ

1− e2aπ
f(2π), then

g(θ+2π) = eaθea2π
((

ea2π

1− ea2π
+ 1

) ∫ 2π

0

1
γQ(s)

e−asds+
∫ θ+2π

2π

1
γQ(s)

e−asds

)
.

In the integral
∫ θ+2π

2π

1
γQ(s)

e−asds, we make the change of variable u = s− 2π, we

obtain ∫ θ+2π

2π

1
γQ(s)

e−asds =
∫ θ

0

1
γQ(u+ 2π)

e−a(u+2π)du

= e−a2π
∫ θ

0

e−a(u+2π)

γQ(u+ 2π)
du.

We have Q(s + 2π) = Q(s) because Q(cos θ, sin θ) is homogeneous function of
degrees 2 of two variables cos θ and sin θ, where cos θ and sin θ are continuous 2π-
periodic functions, then cos(θ + 2π) = cos θ. and sin(θ + 2π) = sin θ. Then,

g(θ + 2π) = eaθea2π


(

ea2π

1− ea2π
+ 1

) ∫ 2π

0

1
γQ(s)

e−asds

+e−a2π
∫ θ

0

1
γQ(s)

e−asds


= eaθ

(
ea2π

1− ea2π
f(2π) +

∫ θ

0

1
γQ(s)

e−asds

)
= g(θ).

Hence g is 2π-periodic.

Finally, it remains to show that r(θ, r∗) is hyperbolic limit cycle. For that we consider
r(θ, r∗) , and introduce the Poincaré return map λ −→ Π(2π, λ) = r(2π, λ).

We compute
dΠ
dλ

(2π, λ) |λ=r∗ . So

dΠ
dλ

(2π, λ) |λ=r∗= r∗e
a2π 1√√√√ea2π

(
λ2 +

∫ 2π

0

e−as

γQ(s)
ds

) ,

by replacing r∗ by its value given by r∗ =

√√√√ e2aπ

1− e2aπ
f(2π), and after some calcula-

tion, we get
dΠ
dλ

(2π, λ) |λ=r∗= ea2π. (2.9)
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2.4. EXISTENCE AND NON EXISTENCE OF LIMIT CYCLES

1) If a > 0, then ea2π > 1. Therefore, r(θ, r∗) is an unstable and hyperbolic limit
cycle of the differential equation (2.3).
2) If a < 0, then ea2π < 1. Therefore, r(θ, r∗) is an stable and hyperbolic limit cycle
of the differential equation (2.3) .

Proof of statement (2): r0 > 0 we only take into consideration the following value
r0 = r∗ which satisfies r(2π, r∗) = r∗

r∗ =

√√√√ ea2π

1− ea2π
f(2π),

where f(2π) =
∫ 2π

0

1
γQ(s)

e−asds.After the substitution of this value r∗ into r(θ, r0)

we obtain

r(θ, r∗) =

√√√√eaθ ( ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds+
∫ θ

0

1
γQ(s)

e−asds

)
.

Since γQ(θ) < 0, then f(θ) =
∫ θ

0

1
γQ(s)

e−asds < 0 and a > 0

then 1− e2aπ < 0, so it follows that

r∗ =

√√√√ ea2π

1− ea2π
f(2π) > 0,

then system (2.1) can have one limit cycle.

Proof of statement (3): If γQ(θ) > 0 for all θ ∈ R then

f(θ) =
∫ θ

0

1
γQ(s)

e−asds > 0,

for all θ ∈ [0, 2π], in particular

f(2π) =
∫ 2π

0

1
γQ(s)

e−asds > 0.

If a > 0, so it follows that 1− ea2π < 0

r2
∗ =

ea2π

1− ea2π
f(2π) < 0,

then r∗does not exist, and the system (2.1) has no limit cycle.

Proof of statement(4): If γQ(θ) < 0 for all θ ∈ R, then

f(θ) =
∫ θ

0

1
γQ(s)

e−asds < 0,
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2.5. ALGEBRAIC AND NON-ALGEBRAIC LIMIT CYCLE

for all θ ∈ [0, 2π], in particular

f(2π) =
∫ 2π

0

1
γQ(s)

e−asds < 0.

If a < 0. So it follows that 1− e2aπ > 0, thus

r2
∗ =

ea2π

1− ea2π
f(2π) < 0,

then r∗ does not exist, and the system (2.1) has no limit cycle. Hence the Theorem 2.4 is
proved. r

2.5 Algebraic and non-algebraic limit cycle

In this section, we give the conditions of existence of an algebraic limit cycle or non al-
gebraic and their exact expression for the polynomial differential system (2.1).

Theorem 2.4 Consider a polynomial differential system (2.1) with γQ(θ) > 0 for all
θ ∈ [0, 2π] . Then the following statements hold.
i) IfQ(θ) � ω , where ω ∈ R , then the limit cycle of system (2.1) is non algebraic.
ii) IfQ(θ) ≡ ω, where ω ∈ R , then the limit cycle of system (2.1) is algebraic.

Proof . Proof of statement (i): By Theorem 2.3 the curve r(θ) whereQ(θ) 6= constant

defined by the limit cycle of system (2.1) is

r2(θ, r∗) = eaθ
(

e2aπ

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds+
∫ θ

0

1
γQ(s)

e−asds

)
,

is not algebraic, due the expression

eaθ
(

ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds

)
.

More precisely in cartesian coordinates r2(θ, r∗) = x2 + y2 and θ = arctan(y
x
) the

curve defined by this limit cycle is

f(x, y) = x2 + y2 − earctan y
x


ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds

+
∫ arctan y

x

0

1
γQ(s)

e−asds

 = 0.
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2.5. ALGEBRAIC AND NON-ALGEBRAIC LIMIT CYCLE

But there is no integern for which both
∂nf

∂xn
and

∂nf

∂yn
vanish identically to be convinced

by this fact one has to compute for example
∂f

∂x
, that is

∂f

∂x
= 2x+

yea arctan y
x

x2 + y2


ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds

+
∫ arctan y

x

0

1
γQ(s)

e−asds


−

y

γQ(arctan y
x
)(x2 + y2)

.

Since f(x, y) appears again, it will remains in any order of derivation therefore the curve
f(x, y) = 0 is non algebraic and the limit cycle will also be non algebraic.

Proof of statement(ii): IfQ(θ) ≡ ω , we have

r2(θ, r∗) = eaθ
(

ea2π

1− ea2π

∫ 2π

0

1
γQ(s)

e−asds+
∫ θ

0

1
γQ(s)

e−asds

)

= eaθ
(

ea2π

1− ea2π

∫ 2π

0

1
γω
e−asds+

∫ θ

0

1
γω
e−asds

)
.

We calculate f(2π) and f(θ)

f(2π) =
∫ 2π

0

1
γω
e−asds =

1
γω

(
−

1
a
e−a2π +

1
a

)

and

f(θ) =
∫ θ

0

1
γω
e−asds =

1
γω

(
−

1
a
e−aθ +

1
a

)

then,

r2(θ, r∗) =
eaθ

γω

(
ea2π

1− ea2π

(
−1
a
e−a2π +

1
a

)
+
(
−1
a
e−aθ +

1
a

))

=
eaθ

γω

(
−1

a(1− ea2π)
+

ea2π

a(1− ea2π)
−
e−aθ

a
+

1
a

)

=
eaθ

γω

(
−(1− ea2π)
a(1− ea2π)

−
e−aθ

a
+

1
a

)

=
eaθ

γω

(
−1
a
−
e−aθ

a
+

1
a

)
=
−1
aγω

,

we precisely in cartesian coordinates

x2 + y2 = −
1
aγω

,
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2.6. SPECIAL CASES

in the latter this curve is a polynomial and thus is algebraic limit cycle of system (2.1).
This completes the proof of Theorem 2.4. r

2.6 Special Cases

In this section we are interested in studying the limit cycles of system (2.1) whenQ(x, y) =
βx2 +cy2 +bxy where β, b and c are real constants. Moreover, we determine sufficient
conditions for a polynomial differential system (2.1) to possess at most one explicit limit
cycle.

Lemma 2.2 Consider a polynomial differential system (2.1)ẋ = x− γ(2y − ax)(βx2 + bxy + cy2),

ẏ = y − γ(−2x− ay)(βx2 + bxy + cy2),
(2.10)

where β, b, c are constants in R . Then the following statements hold.
1) In each one of the followings cases

I) | β + c |>| β − c | + | b |, | β + c > 0, γ > 0 and a < 0.
II) | β + c |>| β − c | + | b |, | β + c < 0, γ < 0 and a > 0.
System (2.1) has exactly one limit cycle.

Moreover if β 6= c , and b 6= 0 , this limit cycle is non algebraic and if β = c and
b = 0 the limit cycle is algebraic whose expression in cartesian coordinates is

x2 + y2 = −
1
aγβ

.

2) In each one of the followings cases
III) | β + c |>| β − c | + | b |, | β + c > 0, γ < 0 and a < 0.
IV) | β + c |>| β − c | + | b |, | β + c < 0, γ > 0 and a > 0.
System (2.1) has no limit cycle.

Proof . Proof of statement (1) : In polar coordinate (r, θ);Q(x, y) reads as

Q(θ) = β cos2 θ + b cos θ sin θ + c sin2 θ

=
1
2

((β + c) + (β − c) cos 2θ + b sin 2θ) .

If
| β + c |>| β − c | + | b |, β + c > 0, γ > 0 and a < 0.
Or
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| β + c |>| β − c | + | b |, β + c < 0, γ < 0 and a > 0.
We have

γQ(θ) > 0,

through the Theorem 2.3, system (2.1) has one limit cycle.
If β = c and b = 0 then,

Q(θ) = β

for all θ ∈ R is constant, through the Theorem 2.4, the limit cycle is algebraic.
And because ω = β then whose expression is

x2 + y2 = −
1
aγβ

.

And if the opposite β 6= c and b 6= 0, then

Q(θ) =
1
2

((β + c) + (β − c) cos 2θ + b sin 2θ) .

is a homogeneous trigonometric polynomial in the variables cos θ and sin θ and is non
identically a non-zero real constants in R , then through the Theorem 2.4, the limit cycle
is non algebraic.
Proof of statement (2): If
| β + c |>| β − c | + | b |, | β + c > 0, γ < 0 and a < 0.
Or
| β + c |>| β − c | + | b |, | β + c < 0, γ > 0 and a > 0.
We have

γQ(θ) < 0,

through the Theorem 2.3 ,system (2.1) has no limit cycle. Hence the Lemma 2.2 is proved.
r

2.7 Examples

Example 2.1 If we take β = c = 1, b = 0 and γ = 1, a = 2, then system (2.1) readsẋ = x− (2y + x)(x2 + y2),

ẏ = y − (−2x+ y)(x2 + y2).
(2.11)

So the first hypothesis of Lemma 2.2 is satisfied and hence the system (2.11) has exactly
one algebraic limit cycle whose expression in cartesian coordinates (x, y) is

x2 + y2 =
1
2
.
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2.7. EXAMPLES

Figure 2.1: Algebraic limit cycle of the differential system (2.11)

Example 2.2 If we take β = 4, b = c = 2 and γ = 1, a = −2, then system (2.1)
reads ẋ = x− (2y − 2x)(4x2 + 2xy + 2y2),

ẏ = y − (−2x− 2y)(4x2 + 2xy + 2y2),
(2.12)

it is easy to verify that the first conditions of Lemma 2.2 are satisfied and hence the system
(2.12) has exactly one non algebraic limit cycle whose expression in polar coordinates
(r, θ) is

r(θ, r∗) =

√√√√√√√√√e2θ


e4π

1− e4π

∫ 2π

0

2
5 + 3 cos 2θ + sin 2θ

e−2sds

+
∫ θ

0

2
5 + 3 cos 2θ + sin 2θ

e−2sds

.

Figure 2.2: Non algebraic limit cycle of the differential system (2.12)

Example 2.3 If we take β = −6, b = 1, c = −8 and γ = 1, a = −2, then system
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2.7. EXAMPLES

Figure 2.3: Phase portrait of the differential system (2.13)

(2.1) reads ẋ = x− (2y + 2x)(−6x2 + xy − 8y2),

ẏ = y − (−2x+ 2y)(−6x2 + xy − 8y2),
(2.13)

it is easy to verify that the second condition of Lemma 2.2 is satisfied and hence the
system (2.13) has no limit cycle.
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Chapter 3
A Quintic polynomial differential systems
with two explicit limit cycles

3.1 Introduction.

We consider the family of the polynomial differential system of the formẋ = x− (γ (2y − ax) + α (x2 + y2) (ax− 4y))Q (x, y) ,

ẏ = y − (−γ (2x+ ay) + α (x2 + y2) (4x+ ay))Q (x, y) ,
(3.1)

whereQ(x, y) is homogeneous polynomial of degrees 2 and γ, α, a real constants.We
prove that these systems are integrable. Moreover, we determine sufficient conditions for
a polynomial differential system to possess at most two limit cycles. Concrete examples
exhibiting the applicability of our result are introduced.

3.2 Equilibrium points

Lemma 3.1 If Q(x, y) 6= 0 for all (x, y) ∈ R × R , then the equilibrium points of
system (3.1) are present on the curve(

x2 + y2
) (

2αx2 + 2αy2 − γ
)

= 0.

Proof . We have

ẋy − ẏx = 2
(
x2 + y2

) (
2αx2 + 2αy2 − γ

)
Q (x, y) = 0,

thus, the equilibrium points of system (3.1) if exists, must present in the curve

2
(
x2 + y2

) (
2αx2 + 2αy2 − γ

)
Q (x, y) = 0.
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3.3. INTEGRABILITY

From the conditionQ(x, y) 6= 0 for all (x, y) ∈ R× R then, the equilibrium points of
system (3.1) are present on the curve(

x2 + y2
) (

2αx2 + 2αy2 − γ
)

= 0,

so the equilibrium points of system (3.1) are present on the curve(
2αx2 + 2αy2 − γ

)
= 0,

and the origin of coordinates.
Since the Jacobian matrix of the vector field defined in (3.1) at (0, 0) is given by:

J(0, 0) =

 1 0
0 1

 .
The origin is an unstable node because its eigenvalues are λ1 = λ2 = 1 > 0. r

3.3 integrability

Theorem 3.1 Consider a polynomial differential system (3.1). Then the following state-
ment hold.
If αaγ 6= 0 andQ(θ) 6= 0 for all θ ∈ [0, 2π), then system (3.1) has the first integral

H(x, y) =
(
x2 + y2

) (
α
(
x2 + y2

)
− γ

)
e−a arctan y

x +
∫ arctan y

x

0

e−as

Q (s)
ds.

Proof . In polar coordinates system (3.1) reads asṙ = r +Q(θ)ar3γ −Q(θ)ar5α,

θ̇ = −2Q(θ)r2 (2r2α− γ) .
(3.2)

Let

H(x, y) =
(
x2 + y2

) (
α
(
x2 + y2

)
− γ

)
e−a arctan y

x +
∫ arctan y

x

0

e−as

Q (s)
ds..

(3.3)
In polar coordinates, (3.3) reads as

H(x, y) =
(
r2
) (
α
(
r2
)
− γ

)
e−aθ +

∫ θ

0

e−as

Q (s)
ds.

Then, the derivative ofH with respect to r is

dH (r, θ)
dr

= 2e−aθr
(
−γ + 2r2α

)
.
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3.4. NON EXISTENCE OF LIMIT CYCLES

And the derivative ofH with respect to θ is

dH (r, θ)
dθ

=
(

1
Q(θ)

e−aθ
(
−Q(θ)aαr4 +Q(θ)aγr2 + 1

))
.

By replacing the expressions of derivatives ofH with respect to and r in

dH

dt
= ṙ

∂H (r, θ)
∂r

+ θ̇
∂H (r, θ)

∂θ
,

it follows that :

dH

dt
=

(
r +Q(θ)ar3γ −Q(θ)ar5α

) (
2eaθr

(
−γ + 2r2α

))
+

(
−2Qr2

(
2r2α− γ

)) ( 1
Q(θ)

eaθ
(
−Q(θ)aαr4 +Q(θ)aγr2 + 1

))
≡ 0.

So H(r, θ) is a first integral of system (3.2). Consequently H(x, y) is a first integral
of system (3.1). r

3.4 Non existence of limit cycles

Theorem 3.2 The quintic polynomial differential system (3.1) has no limit cycle when
the one of the following conditions is assumed:

1) γ2 +
4αe2πa

e2πa − 1
g (2π) < 0.

2) αγ < 0 and−γ2 <
4αe2πa

e2πa − 1
g (2π) < 0.

Proof . The differential system (3.2) where−2Q (θ) r2 (2r2α− γ) 6= 0 can be writ-
ten as the equivalent differential equation

dr

dθ
= −

r +Q (θ) ar3γ −Q (θ) ar5α

2Q (θ) r2 (2r2α− γ)
. (3.4)

Note that since θ̇ (t) is positive for all t, the orbit r(θ) of the differential equation (3.4)
has preserved their orientation with respect to the orbits (r(t), θ(t)) or (x(t), y(t)) the
differential systems (3.1) or (3.2).
Via the change of variables (r2 (αr2 − γ)) = ρ, we have

d (r2 (αr2 − γ))
dr

= −2r
(
γ − 2r2α

)
.

Thus

−2r
(
γ − 2r2α

) dr
dθ

= −
r +Q (θ) ar3γ −Q (θ) ar5α

2Q (θ) r2 (2r2α− γ)

(
−2r

(
γ − 2r2α

))
,
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3.4. NON EXISTENCE OF LIMIT CYCLES

then and the differential equation (3.4) becomes the linear differential equation

dρ

dθ
= aρ (θ)−

1
Q (θ)

. (3.5)

The general solution of linear equation (3.5) is

ρ (θ) = eaθ
(
h−

∫ θ

0

e−as

Q (s)
ds

)
.

Where h ∈ R
Consequently, the implicit form of the solution of the differential equation (3.4) is

F (r, θ) =
(
r2
(
αr2 − γ

))
− eaθ

(
h−

∫ θ

0

e−as

Q (s)
ds

)
= 0.

Notice the system (3.1) has a periodic orbit if and only is equation (3.4) has a strictly
positive 2π− periodic solution r(θ). This, moreover, this is equivalent to the existence
of a solution of (3.4) that satisfies r(0, r∗) = r(2π, r∗) and r(θ, r∗) > 0 for any in
[0, 2π]. we remark that the solution r(θ, r0) of the differential equation (3.4) such that
r(θ, r0) = r0 > 0, we have since (r2 (αr2 − γ)) = ρ, then there are two different
values with the property r(2π, r0) = r0, so one of them is equal tor

2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
.

(3.6)

Since the change of variable is (r2 (αr2 − γ)) = ρ, it is clear that ri (2π, r0) =
ri (0, r0) if and only if ρ (2π, r0) = ρ (0, r0) = ρ0. To go a steep further, we remark
that the solution such as r(0, r0) = r0 > 0, corresponds to the value

h = ρ0 = ρ (0, r0) =
(
r2

0

(
αr2

0 − γ
))
,

we have

ρ (2π, r0) = ea2π
((
r2

0

(
αr2

0 − γ
))
−
∫ 2π

0

e−as

Q (s)
ds

)
.

Then, the condition ρ (2π, r0) = ρ (0, r0) implies that

(
r2

0

(
αr2

0 − γ
))

= ea2π
((
r2

0

(
αr2

0 − γ
))
−
∫ 2π

0

e−as

Q (s)
ds

)
,

the solution of this last equation are

r2
∗i =

1
2α

γ ±
√√√√γ2 +

4αe2πa

e2πa − 1
g (2π)

 , (3.7)

where g (2π) =
∫ 2π

0

e−as

Q (s)
ds.
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3.4. NON EXISTENCE OF LIMIT CYCLES

1) If γ2 +
4αe2πa

e2πa − 1
g (2π) < 0, then r2

∗i are not exists. Then, system (3.1) has no

limit cycle.

2) If α > 0, γ < 0 and−γ2 <
4αe2πa

e2πa − 1
g (2π) < 0 then

γ2 +
4αe2πa

e2πa − 1
g (2π) > 0,

and √√√√γ2 +
4αe2πa

e2πa − 1
g (2π) <

√
γ2,

we have
1

2α
> 0 and

1
2α

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π) <

1
2α

√
γ2 =

−1
2α
γ,

then

r2
1∗ =

1
2α

γ +

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π)


<

1
2α

(γ − γ) = 0.

On the other hand we have

If α > 0, γ < 0 and−γ2 <
4αe2πa

e2πa − 1
g (2π) < 0

1
2α
γ < 0 <

1
2α

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π),

thus

r2
2∗ =

1
2α

γ −
√√√√γ2 +

4αe2πa

e2πa − 1
g (2π)

 < 0.

-If α < 0, γ > 0 and−γ2 <
4αe2πa

e2πa − 1
g (2π) < 0, we have

1
2α

< 0 and

1
2α

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π) >

1
2α

√
γ2 =

1
2α
γ,

then

r2
1∗ =

1
2α

γ +

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π)

 < γ

α
< 0.
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On the other hand we have

γ =
√
γ2 >

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π) ,

thus
1

2α
γ <

1
2α

√√√√γ2 +
4αe2πa

e2πa − 1
g (2π),

so

r2
2∗ =

1
2α

γ −
√√√√γ2 +

4αe2πa

(e2πa − 1)
g (2π)

 < 0.

Then, system (3.1) has no limit cycle. Hence the Theorem 3.2 is proved. r

3.5 Existence of two limit cycles

Theorem 3.3 Consider polynomial differential system (3.1). Then the following state-
ments hold
a) If α < 0, γ < 0 and one of the following conditions are holds.

1) a < 0, Q (θ) < 0 for all θ and
e2πa

e2πa − 1
g (2π) <

(
−
γ2

4α

)
.

2) a > 0, Q (θ) > 0 for all θ, ea2π
(

e2πa

e2πa − 1
g (2π)

)
<

(
−
γ2

4α

)
.

b) If α > 0, γ > 0 and and one of the following conditions are holds.

1) a < 0, Q (θ) > 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
.

2) a > 0, Q (θ) < 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
.

Then, system (3.1) has two explicit limit cycle, given in polar coordinates (r, θ) byr
2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
,

where g (θ) =
∫ θ

0

e−as

Q (s)
ds and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
,

and 
r2

1∗ = 1
2α

(
γ −

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
,

r2
2∗ = 1

2α

(
γ +

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
.

Next Lemma collects some results which we need to show the statements of theorem 3.3.
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3.5. EXISTENCE OF TWO LIMIT CYCLES

Lemma 3.2 If one of then the following statements hold

1) If α < 0, γ < 0 and a < 0, Q (θ) < 0 for all θ and
e2πa

e2πa − 1
g (2π) <(

−
γ2

4α

)
.

2) If α < 0, γ < 0, a > 0, Q (θ) > 0 for all θ, ea2π
(

e2πa

e2πa − 1
g (2π)

)
<(

−
γ2

4α

)
.

then
−γ2 < 4αρ (θ) < 0

for all θ. Where ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
and g (θ) =

∫ θ

0

e−as

Q (s)
ds.

Proof . Proof of statement (1) of Lemma 3.2 : Since α < 0, γ < 0 and a <

0, Q (θ) < 0 for all θ, then
e2πa

e2πa − 1
< 0 and g (2π) < g (θ) < 0, it follows that

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

> eaθ
(

e2πa

e2πa − 1
g (2π)

)
> 0.

We prove that

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
<
−γ2

4α
,

we have

0 < eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< ea2π
(

e2πa

e2πa − 1
g (2π)− g (2π)

)

=
e2πa

e2πa − 1
g (2π) .

Since
e2πa

e2πa − 1
g (2π) < −

γ2

4α
, then

0 < ρ (θ) <
(
−
γ2

4α

)
.

Proof of statement (2) of Lemma 3.2 : Since α < 0, γ < 0, a > 0 and Q (θ) > 0
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for all θ, then g (2π) > g (θ) > 0 and g
e2πa−1 > 0, it follows that

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

> eaθ
(

e2πa

e2πa − 1
g (2π)− g (0)

)

=
e2πa

e2πa − 1
g (2π) > 0,

we prove that

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
<
−γ2

4α
,

we have a > 0 and ρ (θ) > 0, thus
e2πa

e2πa − 1
g (2π)− g (θ) > 0 so

ρ (θ) = eaθ
(
g(2π)

e2πa

e2πa − 1
− g (θ)

)

< ea2π
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< ea2π
(

e2πa

e2πa − 1
g (2π)

)
.

Since ea2π
(

e2πa

e2πa − 1
g (2π)

)
< −

γ2

4α
then

0 < ρ (θ) <
(
−
γ2

4α

)
.

This complete the proof of lemma 3.2. r

Lemma 3.3 If one of then the following statements hold

1) α > 0, γ > 0 and a < 0, Q (θ) > 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
.

2)α > 0, γ > 0 and a > 0, Q (θ) < 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
.

Then for all θ we have
−γ2 < 4αρ (θ) < 0

Where ρ (θ) = e−aθ
(

e2πa

e2πa − 1
g (2π) + g (θ)

)
and g (θ) =

∫ θ

0

e−as

Q (s)
ds

Proof . Proof of statement (1) of Lemma 3.3 : If α > 0, γ > 0, a < 0, Q (θ) > 0

for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
we prove that

0 > ρ (θ) >
−γ2

4α
.

35



3.5. EXISTENCE OF TWO LIMIT CYCLES

SinceQ (θ) > 0 for all θ then g(0) = 0 < g (θ) < g (2π) and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< eaθ
(

e2πa

e2πa − 1
g (2π)

)

= eaθ
e2πa

e2πa − 1
g (2π) ,

since a < 0, then e2πa − 1 < 0 so

ρ (θ) < eaθ
e2πa

e2πa − 1
g (2π) < 0.

On the other hand we have 0 > ρ (θ) for all θ,which implies that
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
<

0, so

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

> ea2π
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
,

sinceQ (θ) > 0 for all θ, thus−g (θ) > −g (2π) and

ρ (θ) > ea2π
(

e2πa

e2πa − 1
g (2π)− g (2π)

)
=

e2πa

e2πa − 1
g (2π) ,

by hypotheses
e2πa

e2πa − 1
g (2π) >

−γ2

4α
, it follows that

ρ (θ) >
−γ2

4α
,

the statement (1) holds.
Proof of statement (2) of Lemma 3.3 : If α > 0, γ > 0 and a > 0, Q (θ) < 0 for

all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
, we have

g(0) = 0 > g (θ) > g (2π) ,

thus

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< eaθ
(

e2πa

e2πa − 1
g (2π)− g

)

=
eaθ

e2πa − 1
g (2π) ,
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if a > 0 we have (e2πa − 1) > 0, then

ρ (θ) < 0

for all θ.

On the other hand we have a > 0, 0 > g (θ) > g (2π) and
(

1
e2πa − 1

g (2π) + g (θ)
)
<

0, then

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

>

(
e2πa

e2πa − 1
g (2π)− g (θ)

)

>
e2πa

e2πa − 1
g (2π) ,

by hypotheses we have
e2πa

e2πa − 1
g (2π) >

−γ2

4α
so

ρ (θ) >
−γ2

4α

for all θ, the statement (2) holds. This completes the proof of lemma 3.3. r

Lemma 3.4 The curve

(
r2
(
αr2 − γ

))
− eaθ

(
e2πa

e2πa − 1
g (2π)−

∫ θ

0

e−as

Q (s)
ds

)
= 0 (3.8)

does not intersect the orbit (
2αx2 + 2αy2 − γ

)
= 0. (3.9)

Proof . The curve (3.9) in polar coordinates becomes (2αr2 − γ) = 0. All this is
equivalent to show that the system

(
r2
(
αr2 − γ

))
− eaθ

(
e2πa

e2πa − 1
g (2π)−

∫ θ

0

e−as

Q (s)
ds

)
= 0, (3.10)(

2αr2 − γ
)

= 0.

From the second equation of this system, we get that r2 =
(
γ

2α

)
; we replace this value

in the first equation we obtain

−
1

4α
γ2 = eaθ

(
e2πa

e2πa − 1
g (2π)−

∫ θ

0

e−as

Q (s)
ds

)
,
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which is a contradiction because eaθ
(

e2πa

e2πa − 1
g (2π) +

∫ θ

0

e−as

Q (s)
ds

)
= ρ (θ) and

from lemma 3.2 and 3.3 we have

−γ2

4α
6= ρ (θ) ,

for all θ. So the system (3.10) has no solutions, hence there does not exist any singular
point of (3.8). This completes the proof of lemma 3.4. r

Lemma 3.5 The functions θ −→ ρ (θ) is 2π-periodic,

Proof . We have

ρ (θ + 2π) = ea(θ+2π)
(

e2πa

e2πa − 1
g (2π)− g (θ + 2π)

)
.

However,

g (θ + 2π) =
∫ θ+2π

0

e−as

Q (s)
ds

= g (2π) +
∫ θ+2π

2π

e−as

Q (s)
ds.

In the integral
∫ θ+2π

2π

e−as

Q (s)
ds, we use the change of variable w = s− 2π, we obtain

g (θ + 2π) = g (2π) +
∫ θ

0

e−a(w+2π)

Q (w + 2π)
dw

= g (2π) + e−2πag (θ) .

In (3.8) we replace g (θ + 2π) by g (2π) + e−2πag (θ) , and after some calculations
we obtain ρ (θ + 2π) = ρ (θ) hence ρ (θ) is 2π-periodic. This completes the proof of
lemma 3.5. r

Proof . of Theorem 3.3 . To show that r(θ, r∗) is a periodic solution, we have to show
that:
i) the function θ → ri(θ, r∗) is 2π-periodic.
ii) ri(θ, r∗) > 0. for all θ ∈ [0, 2π[.
This last condition ensures that r(θ, r∗) is well defined for all θ ∈ [0, 2π[ and the
periodic solution do not pass through the equilibrium point (0, 0) of system (3.1).

Periodicity. We say that by lemma 3.5 we have ρ (θ) is 2π-periodic, then ri (θ) , i =
1, 2 are 2π-periodic.
Strict positivity of ri(θ, r∗) :
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Proof of statement 1: Ifα < 0, γ < 0 and a < 0, Q (θ) < 0 then
4αe2πag (2π)

(e2πa − 1)
<

0 and since
e2πa

e2πa − 1
g (2π) <

(
−
γ2

4α

)
from the statement (1) of Lemma 3.2 we have

−γ2 < 4αρ (θ) < 0, then the two solutionsr
2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
,

are strictly positive


r2

1∗ = 1
2α

(
γ −

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
,

r2
2∗ = 1

2α

(
γ +

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
.

On the other hand, we have
4αe2πa

(e2πa − 1)
g (2π) < 0 and

e2πa

e2πa − 1
g (2π) <

(
−
γ2

4α

)
for all θ ∈ R, which implies that

γ2 +
4αe2πa

(e2πa − 1)
g (2π) > 0,

and √√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) <

√
γ2 = −γ,

thus γ +

√√√√γ2 +
4αe2aπ

(e2πa − 1)
g (2π)

 < 0

and γ −
√√√√γ2 +

4αe2aπ

(e2πa − 1)
g (2π)

 < 2γ < 0,

since α < 0, then
r2

1∗ = 1
2α

(
γ −

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
> 0,

r2
2∗ = 1

2α

(
γ +

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
> 0.

Proof of statement 2: Ifα < 0, γ < 0, a > 0, Q (θ) > 0 for all θ and
e2πa

e2πa − 1
g (2π) <(

−
γ2

4α

)
from the statement (1) of Lemma 3.2 we have−γ2 < 4αρ < 0, then

√
γ2 + 4αρ (θ) <

√
γ2 = −γ,
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thus
γ < −

√
γ2 + 4αρ (θ)(

γ −
√
γ2 + 4αρ (θ)

)
< −2

√
γ2 + 4αρ (θ) < 0,

and (
γ +

√
γ2 + 4αρ (θ)

)
< 0,

since α < 0, thus the two solutionsr
2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
,

are strictly positive.

On the other hand, we have ea2π
(

e2πa

e2πa − 1
g (2π)

)
<

(
−
γ2

4α

)
and since a > 0 and(

e2πa

e2πa − 1
g (2π)

)
> 0, then

g
e2πa

e2πa − 1
< ea2π

(
e2πa

e2πa − 1
g (2π)

)

thus
e2πa

e2πa − 1
g (2π) <

(
−
γ2

4α

)
and a > 0, then

γ2 +
4αe2πa

(e2πa − 1)
g (2π) > 0

and (e2πa − 1) > 0, thus 4αe2πa

(e2πa−1)g (2π) < 0 for all θ ∈ R, which implies that

√√√√γ2 +
4αe2πag

(e2πa − 1)
<
√
γ2 = −γ,

thus γ +

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π)

 < 0

and γ −
√√√√γ2 +

4αe2πa

(e2πa − 1)
g (2π)

 < −2

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) < 0,

since α < 0, then
r2

1∗ = 1
2α

(
γ +

√
γ2 + 4αe2πa

(e2πa−1)g (2π)
)
> 0,

r2
2∗ = 1

2α

(
γ −

√
γ2 + 4αe2πag

(e2πa−1)g (2π)
)
> 0.
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Proof of statement 3: α > 0, γ > 0 and a < 0, Q (θ) > 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
from the statement (1) of Lemma 3.3 we have −γ2 <

4αρ (θ) < 0,then √
γ2 + 4αρ (θ) <

√
γ2 = γ.

Since α < 0, then (
γ −

√
γ2 + 4αρ (θ)

)
> 0,

and (
γ +

√
γ2 + 4αρ (θ)

)
> 2

√
γ2 + 4αρ (θ) > 0,

the two solutions r
2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
,

are strictly positive.
On the other hand, we have

e2πa

e2πa − 1
g (2π) >

−γ2

4α
,

for all θ ∈ R, then,

γ2 +
4αe2πa

(e2πa − 1)
g (2π) > 0,

since a < 0, Q (θ) > 0 for all θ then
4αe2πa

(e2πa − 1)
g (2π) < 0 and

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) <

√
γ2 = γ.

Thus

r2
1∗ =

1
2α

γ +

√√√√γ2 −
4αe2πa

(e2πa − 1)
g (2π)


>

1
2α

2

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)

 > 0,

r2
2∗ =

1
2α

γ −
√√√√γ2 −

4αe2πa

(e2πa − 1)
g (2π)

 > 0.

Proof of statement 4: α > 0, γ > 0 and a > 0, Q < 0 for all θ and
e2πa

e2πa − 1
g (2π) >

−γ2

4α
, from the statement (2) of Lemma 3.3 we have −γ2 < 4αρ (θ) < 0 for all θ,

then the two solutionsr
2
1 (θ) = 1

2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

r2
2 (θ) = 1

2α

(
γ +

√
γ2 + 4αρ (θ)

)
,
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are strictly positive.
On the other hand, because a > 0 and Q (θ) < 0 for all θ we have (e2πa − 1) > 0

and
4αe2πa

(e2πa − 1)
g (2π) < 0, since

e2πa

e2πa − 1
g (2π) >

−γ2

4α
, thus

−γ2 +
4αe2πa

(e2πa − 1)
g (2π) > 0,

so √√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) <

√
γ2 = γ,

then

r2
1∗ =

1
2α

γ +

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π)


>

1
2α

2

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)

 > 0,

r2
2∗ =

1
2α

γ −
√√√√γ2 +

4αe2πag (2π)
(e2πa − 1)

 > 0.

Finally r(θ, r∗) defines through (3.6) a periodic solution. To show that it is a limit cycle,
we consider (3.6), and introduce the Poincaré return map Πi : (2π, λ) → ri(2π, λ),
to prove that the periodic solution is an isolated periodic orbit, (see [5], it is sufficient for
the function of Poincaré first return), we compute

dΠi(2π, λ)
dλ

∣∣∣∣∣
λ=r∗i

by replacing r∗i by its value given by
r2

1∗ = 1
2α

(
γ +

√
γ2 − 4αe2πa

(e2πa−1)g (2π)
)

r2
2∗ = 1

2α

(
γ −

√
γ2 − 4αe2πa

(e2πa−1)g (2π)
)
> 0.

and after some calculation, we get

dr1(2π;λ)
dλ

∣∣∣∣∣
λ=r∗

1

=
dr2(2π;λ)

dλ

∣∣∣∣∣
λ=r∗

2

= e2πa.

If a < 0 then e2πa < 1
Consequently the limit cycles of thedifferential equation (3.4) are hyperbolic and

stable.
If a < 0 then e2πa > 1

Consequently the limit cycles of the differential equation (3.4) are hyperbolic and
unstable. r
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3.5.1 Tow non algebraic limit cycles

Theorem 3.4 Assume that one of the conditions (a) and (b) of theorem 3.3 is hold and
Q (θ) 6= const. Then the orbits r2

1 (θ) and r2
2 (θ) are two non-algebraic hyperbolic

limit cycles for system (2).

Proof . More precisely, in Cartesian coordinates, r2 = x2 + y2, θ = arctan y
x
, the

implicit solution of equation (6) can be written as

G (x, y) = ((x2 + y2) (α (x2 + y2)− γ))
−ea arctan y

x

(
e2πa

e2πa−1g (2π)−
∫ arctan y

x
0

e−as

Q(s)ds
)

= 0.
(3.11)

We remark that the curve G (x, y) = 0 does not a polynomial because there is no in-

teger n for which both
∂nG

∂xn
and

∂nG

∂yn
vanish identically, for example when calculating

∂G

∂x
note that the expression ea arctan y

x

(
e2πa

e2πa − 1
g (2π)−

∫ arctan y
x

0

e−as

Q (s)
ds

)
ap-

pear again, So for any order of derivation this expression will appear. Therefore the curve
G (x, y) = 0 is non-algebraic and the limit cycles of the system (3.1) will also be
non-algebraic. r

3.5.2 Tow algebraic limit cycles

Theorem 3.5 Assume that one of the conditions (a) and (b) of theorem 3.3 is holds and
Q (θ) = w = const for all θ, then the orbits r2

1 (θ) and r2
2 (θ) are two algebraic

hyperbolic limit cycles for system (3.1) whose expression in cartesian coordinates (x, y)
are

αx4 + αy4 + 2αx2y2 − γx2 − γy2 −
1
aw

= 0.

Proof . ifQ (θ) = w for all θ we have

g (θ) =
∫ θ

0

e−as

w
ds =

−1
aw

(
e−aθ − 1

)
,

and

g (2π) =
∫ 2π

0

e−as

w
ds =

−1
aw

(
e−a2π − 1

)
.

Then

ρ (θ) = eaθ
(

e2πa

e2πa − 1

(
−1
aw

(
e−a2π − 1

))
−
(
−1
aw

(
e−aθ − 1

)))

=
1
aw

,
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3.5. EXISTENCE OF TWO LIMIT CYCLES

through the previous change of variable (r2 (αr2 − γ)) = ρ and by passing to Carte-
sian coordinates (x, y), we obtain that the system (3.1) has two algebraic limit cycles,
these two algebraic limit cycles given by

((
x2 + y2

) (
α
(
x2 + y2

)
− γ

))
−

1
aw

= 0.

This complete the proof of Theorem 3.3. r

3.5.3 Examples

Example 3.1 If we take

Q (x, y) =
(
cx2 + cy2 − bxy

)
,

and α = a = 1, b = 2, γ = 3, c = −2 then system (3.1) readsẋ = x+ (−6y − x3 + 4x2y + 4y3 + 3x− xy2) (−2x2 − 2y2 − 2xy) ,

ẏ = y − (4x3 + x2y + 4xy2 − 6x+ y3 − 3y) (−2x2 − 2xy − 2y2) ,
(3.12)

this system has two non algebraic limit cycles whose expressions in polar coordinates
(r, θ) is r

2
1 (θ) = 1

2

(
3−

√
9 + 4ρ (θ)

)
,

r2
2 (θ) = 1

2

(
3 +

√
9 + 4ρ (θ)

)
,

where g (θ) =
∫ θ

0

e−s

Q (s)
ds and

ρ (θ) = eθ
(
g e2π

e2π−1 − g (θ)
)
,

Q (θ) = −2− sin 2θ,

and 
r2

1∗ = 1
2

(
3−

√
9 + 4e2π

(e2π−1)
∫ 2π

0
e−s

(−2−sin 2s)ds
)

= 0.159 20,

r2
2∗ = 1

2

(
3 +

√
9 + 4e2π

(e2π−1)
∫ 2π

0
e−s

(−2−sin 2s)ds
)

= 2. 840 8.

Example 3.2 Let
Q (x, y) = wx2 + wy2,

and α = a = 1, γ = 3, w = −2, then the system (3.1) becomesẋ = x+ (−2x2 − 2y2 − 2xy) (−6y − x3 + 4x2y + 4y3 + 3x− xy2) ,

ẏ = y − (−2x2 − 2xy − 2y2) (4x3 + x2y + 4xy2 − 6x+ y3 − 3y) ,
(3.13)
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3.6. EXISTENCE OF ONE LIMIT CYCLE

Figure 3.1: Two non algebriac limit cycles of differential system (3.12)

this system possess two algebraic limit cycles, these two limit cycles given in Cartesian
coordinates by the expression

(
x2 + y2

) ((
x2 + y2

)
− 3

)
+

1
2

= 0.

Figure 3.2: Two algebriac limit cycles of differential system (3.13)

3.6 Existence of one limit cycle

Theorem 3.6 1) If α < 0, γ < 0 and aQ (θ) < 0, then system (3.1) has two explicit
limit cycles, given in polar coordinates (r, θ) by

r2
1 (θ) =

1
2α

(
γ −

√
γ2 + 4αρ (θ)

)
,

where g (θ) =
∫ θ

0

e−as

Q (s)
ds and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
,
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and

r2
1∗ =

1
2α

γ −
√√√√γ2 +

4αe2πa

(e2πa − 1)
g (2π)

 .
Moreover, if Q (θ) = w = constant, this limit cycle is algebraic and if Q (θ) 6=
const, the limit cycle is non algebraic.
2)If α > 0, γ > 0 and aQ (θ) > 0, for all θ then, system (3.1) has two explicit limit
cycle, given in polar coordinates (r, θ) by

r2
2 (θ) =

1
2α

(
γ +

√
γ2 + 4αρ (θ)

)
,

where g (θ) =
∫ θ

0

e−as

Q (s)
ds and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)
,

and

r2
2∗ =

1
2α

γ +

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π)

 .
Moreover, if Q (θ) = w = constant, this limit cycle is algebraic and if Q (θ) 6=
constant, the limit cycle is non algebraic.

Next Lemma collects some results which we need to show the statements of Theorem
3.6.

Lemma 3.6 Consider polynomial differential system (3.1). Then the following three
statements hold
1) If α < 0, γ < 0 and aQ (θ) < 0 for all θ

ρ (θ) < 0.

2) If α > 0, γ > 0 and aQ (θ) > 0 for all θ

ρ (θ) > 0.

Proof . 1) If α < 0, γ < 0 and a < 0, Q (θ) > 0, for all θ then

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< eaθ
(

e2πa

e2πa − 1
g (2π)

)
,
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by the hypotheses we have a < 0, Q (θ) > 0 for all θ thus
(

e2πa

e2πa − 1
g (2π)

)
< 0

so
ρ (θ) < 0.

-If α < 0, γ < 0 and a > 0, Q (θ) < 0, for all θ then g (2π) < g (θ) < 0 and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

< eaθ
(

e2πa

e2πa − 1
g (2π)− g (2π)

)

=
g (2π)
e2πa − 1

,

by the hypotheses we have a < 0, Q (θ) > 0 for all θ thus
g (2π)
e2πa − 1

< 0 so

ρ (θ) < 0.

2) -If α > 0, γ > 0 and a > 0, Q (θ) > 0, for all θ then g (2π) > g (θ) and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

> eaθ
(

e2πa

e2πa − 1
g (2π)− g (2π)

)

=
eaθ

e2πa − 1
g (2π) .

By the hypotheses we have a < 0, Q (θ) > 0 for all θ thus
eaθ

e2πa − 1
g (2π) > 0 so

ρ (θ) > 0.

-If α > 0, γ > 0 and a < 0, Q (θ) < 0, for all θ then, then g (2π) < g (θ) < 0
and

ρ (θ) = eaθ
(

e2πa

e2πa − 1
g (2π)− g (θ)

)

> eaθ
(

e2πa

e2πa − 1
g (2π)

)
.

By the hypotheses we have a < 0, Q (θ) > 0 for all θ thus
e2πa

e2πa − 1
g (2π) > 0 so

ρ (θ) > 0.

r
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Proof .
of Theorem 3.6: If α < 0, γ < 0 and a < 0, Q (θ) > 0 for all θ then

4αe2πa

(e2πa − 1)
g (2π) > 0, it follows that

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) >

√
γ2 = −γ,

so

−

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π) < γ,

andγ −
√√√√γ2 +

4αe2πa

(e2πa − 1)
g (2π)

 < 2γ < 0,

γ +

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π)

 > −

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)
+

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)
= 0.

Since α < 0, then

r2
2∗ =

1
2α

γ +

√√√√γ2 +
4αe2πa

(e2πa − 1)
g (2π)

 < 0,

and we do not consider this case. We only take into consideration the following value r∗
which satisfies r(2π, r∗) = r∗ > 0

r2
1∗ =

1
2α

γ −
√√√√γ2 +

4αe2πa

(e2πa − 1)
g (2π)

 > 0.

On other hand by Lemma 3.6 we have

ρ (θ) < 0.

Consequently
4αρ (θ) > 0,

this imply that √
γ2 + 4αρ (θ) >

√
γ2 = −γ,

thus
−
√
γ2 + 4αρ (θ) < γ,

and (
γ −

√
γ2 + 4αρ (θ)

)
< 2γ < 0,(

γ +
√
γ2 + 4αρ (θ)

)
> −

√
γ2 + 4αρ (θ) +

√
γ2 + 4αρ (θ) = 0.
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Since α < 0, it follows that

r2
1 (θ) =

1
2α

(
γ −

√
γ2 + 4αρ (θ)

)
> 0,

and we do not consider this case. We only take into consideration the following value
r (θ)

r2
2 (θ) =

1
2α

(
γ +

√
γ2 + 4αρ (θ)

)
< 0.

2) If α > 0, γ > 0 and aQ (θ) > 0 for all θ then
4αe2πag (2π)

(e2πa − 1)
> 0, thus

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)
>
√
γ2 = γ,

andγ −
√√√√γ2 +

4αe2πag (2π)
(e2πa − 1)

 <

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)
−

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)
< 0,

γ +

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)

 > 2γ = 0.

Since α > 0, then

r2
1∗ =

1
2α

γ −
√√√√γ2 +

4αe2πag (2π)
(e2πa − 1)

 < 0,

and we do not consider this case. We only take into consideration the following value r∗
which satisfies r(2π, r∗) = r∗ > 0

r2
2∗ =

1
2α

γ +

√√√√γ2 +
4αe2πag (2π)

(e2πa − 1)

 > 0.

On other hand by Lemma 3.6 we have

ρ (θ) > 0.

Consequently
4αρ (θ) > 0,

this imply that √
γ2 + 4αρ (θ) >

√
γ2 = γ,

and (
γ −

√
γ2 + 4αρ (θ)

)
<

√
γ2 + 4αρ (θ)−

√
γ2 + 4αρ (θ) = 0,(

γ +
√
γ2 + 4αρ (θ)

)
> 2γ > 0.
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Since α > 0, it follows that

r2
1 (θ) =

1
2α

(
γ −

√
γ2 + 4αρ (θ)

)
< 0,

for all θ and we do not consider this case. We only take into consideration the following
value r (θ)

r2
2 (θ) =

1
2α

(
γ +

√
γ2 + 4αρ (θ)

)
> 0.

r

3.6.1 Examples

Let
Q (x, y) =

(
cx2 + cy2 − bxy

)
,

Example 3.3 If we take α = −1, a = 1, b = 2, γ = −3, c = −2 then system (3.1)
readsẋ = x− (−2 (x2 + y2)− 2xy) (−3 (2y − x)− (x2 + y2) (x− 4y)) ,

ẏ = y − (−2 (x2 + y2)− 2xy) (3 (2x+ y)− (x2 + y2) (4x+ y)) ,
(3.14)

this system has one non algebraic limit cycle whose expressions in polar coordinates
(r, θ) is

r2
1 (θ) =

−1
2

(
−3−

√
9− 4ρ (θ)

)
,

where g (θ) =
∫ θ

0

e−s

−2− sin 2s
ds and

ρ (θ) = eθ
(

e2π

e2π − 1
g (2π)− g (θ)

)
,

and

r2
1∗ =

−1
2

−3−

√√√√9 +
−4e2π

(e2π − 1)

∫ 2π

0

e−s

−2− sin 2s
ds

 = 3. 143 9.

:

Example 3.4 If we take α = 1, a = −1, b = 2, γ = 3, c = −2 then system (3.1)
readsẋ = x− (3 (2y + x) + (x2 + y2) (−x− 4y)) (−2 (x2 + y2)− 2xy) ,

ẏ = y − (−3 (2x− y) + (x2 + y2) (4x− y)) (−2 (x2 + y2)− 2xy) ,
(3.15)
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Figure 3.3: One non algebriac limit cycle of differential system (3.14)

this system has one non algebraic limit cycle whose expressions in polar coordinates
(r, θ) is

r2
2 (θ) =

1
2

(
3 +

√
9 + 4ρ (θ)

)
,

where g (θ) =
∫ θ

0

es

−2− sin 2s
ds and

ρ (θ) = e−θ
(

e−2π

e−2π − 1
g (2π)− g (θ)

)
,

and

r2
2∗ =

1
2

3 +

√√√√9 +
4e−2π

(e2π − 1)

∫ 2π

0

es

−2− sin 2s
ds

 = 2.999 6.

Figure 3.4: One non algebriac limit cycle of differential system (3.15)

Example 3.5 If we take α = −1, a = 1, b = 0, γ = −3, c = −2 then system (3.1)
readsẋ = x− (−2 (x2 + y2)) (−3 (2y − x)− (x2 + y2) (x− 4y)) ,

ẏ = y − (−2 (x2 + y2)) (3 (2x+ y)− (x2 + y2) (4x+ y)) ,
(3.16)
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since

ρ (θ) = eθ
(

e2π

e2π − 1

∫ 2π

0

e−s

−2
ds−

∫ θ

0

e−s

−2
ds

)
= −

1
2

this system possess one algebraic limit cycle, this limit cycle given in Cartesian coordi-
nates by the expression

(
x2 + y2

) (
−
(
x2 + y2

)
+ 3

)
+

1
2

= 0

Figure 3.5: One algebriac limit cycle of differential system (3.16)

Example 3.6 If we take α = 1, a = −1, b = 0, γ = 3, c = −2 then system (3.1)
readsẋ = x− (3 (2y + x) + (x2 + y2) (−x− 4y)) (−2 (x2 + y2)) ,

ẏ = y − (−3 (2x− y) + (x2 + y2) (4x− y)) (−2 (x2 + y2)) ,
(3.17)

since

ρ (θ) = e−θ
(

e−2π

e−2π − 1

∫ 2π

0

es

−2
ds−

∫ θ

0

es

−2
ds

)
=

1
2

this system possess one algebraic limit cycle, this limit cycle given in Cartesian coordi-
nates by the expression

(
x2 + y2

) ((
x2 + y2

)
− 3

)
−

1
2

= 0
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Figure 3.6: One algebriac limit cycle of differential system (3.17)
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CONCLUSION

In this dissertation, we focused on studying the limit cycles and its number of quintic
differential systems. Moreover, if there exists we distinguish when it is algebriac or not.
In the first chapter, we presented some basic results of the necessary qualitative theory
of differential systems. Whereas in the second one we analysis the existence and non
existence of one limit cycle for a cubic polynomial differential system(2.1). Moreover, if
the expression of a limit cycle is contained in algebraic curve of the plan, then we say that
it is algebriac otherwise it is called non algebriac.

As for the third chapter, we study the following problems for a quintic polynomial
differential system(3.1):

• Non existence of limit cycles
• Existence of two limit cycles
• Two non algebriac limit cycles
• Tow algebriac limit cycles
• Existense of one limit cycle
The question asked if we replaced the homogeneous polynomial Q(x, y) of degree

2 of the system (2.1) and (3.1) with an homogeneous polynomial of degree more than 2,
will we able to find expressions of limit cycles by using the polar coordinates or not? and
if we can be, what is her number?.
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